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Abstract. In this paper, we investigate optimal control problems subject to a semilinear elliptic
partial differential equation. The cost functional contains a term that measures the size of the
support of the control, which is the so-called L0-norm. We provide necessary and sufficient optimality
conditions of second order. The sufficient second-order condition is obtained by analyzing a partially
convexified problem. Interestingly, the structure of the problem yields second-order conditions with
different bilinear forms for the necessary and for the sufficient conditions.
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1. Introduction. In this paper, we study the following optimal control problem:

(P) : inf
u\in Uad

J(u) :=

\int 
\Omega 

L(x, yu(x)) dx+
\alpha 

2
\| u\| 2L2(\Omega ) + \beta \| u\| 0,

where yu is the solution of the following semilinear elliptic equation:

(1.1)

\biggl\{ 
Ay + a(x, y) = u in \Omega ,

y = 0 on \Gamma .

Here A denotes an elliptic operator in the domain \Omega \subset \BbbR n, 1 \leq n \leq 3, whose
boundary is denoted by \Gamma , and a : \Omega \times \BbbR  - \rightarrow \BbbR is a given function. Additionally,
L : \Omega \times \BbbR  - \rightarrow \BbbR is another given function, \alpha \geq 0, \beta > 0, and

\| u\| 0 = | \{ x \in \Omega : u(x) \not = 0\} | ,

where | B| denotes the Lebesgue measure of a set B \subset \Omega . Finally, we set

Uad = \{ u \in L\infty (\Omega ) : | u(x)| \leq \gamma for a.a. x \in \Omega \} ,

0 < \gamma \leq \infty . We assume that \gamma <\infty if \alpha = 0. Precise assumptions on these data will
be given in the next section.

We are interested in a second-order analysis of this problem. That is, we are
looking for optimality conditions of second order of necessary and sufficient type.
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CONTROL PROBLEMS WITH L0 TERM IN COST FUNCTIONAL 3487

First-order necessary conditions are given by the famous Pontryagin maximum prin-
ciple; see Theorem 3.7. Due to the properties of the cost functional, several difficulties
will arise. First, the functional u \mapsto \rightarrow \alpha 

2 \| u\| 
2
L2(\Omega ) + \beta \| u\| 0 is nonsmooth. We overcome

this difficulty by studying the convexification of this functional, which is continuously
differentiable. Still, this convexification is not twice differentiable, which gives rise to
the following observation: two different bilinear forms connected to a second deriva-
tive of this functional are needed for necessary and sufficient optimality conditions.
Second, the functional u \mapsto \rightarrow \alpha 

2 \| u\| 
2
L2(\Omega ) + \beta \| u\| 0 is nonconvex, and its convexification

is not strictly convex. Hence, we cannot expect that second-order derivatives of the
Lagrangian associated with the control problem are coercive in L2(\Omega ). Here, we resort
to techniques developed for bang-bang control problems; see, e.g., [2].

Optimal control problems with L0-control cost were recently studied in [11, 14].
The motivation is to obtain sparse controls, i.e., controls with small support. In
the seminal paper [12], this was addressed by using \| u\| L1(\Omega ) instead of \| u\| 0 in the
cost functional. Optimal control problems with L0-norms were also used to enforce a
particular control structure. We refer the reader to [7] for an application to switching
control problems and to [8] for control problems where the control is allowed to take
values only from a finite set.

The second-order analysis of the control problem with the convexified cost func-
tional, mentioned above, is related to similar results for sparse control problems in
[3, 4, 10]. In addition, we use recent results of [6] to reduce the cone of test directions
in sufficient second-order conditions.

The main result of the paper is the derivation of sufficient second-order optimality
conditions, given in Theorem 4.22. It is proven by applying similar results for the
control problem with a convexified cost functional, which is studied in section 4. As
one might expect, the positivity requirements of sufficient conditions are stronger
than those obtained from necessary second-order conditions; the latter are studied in
section 3. The analysis relies on differentiability results related to the control-to-state
map associated with the partial differential equation; these are provided in section 2.
Finally, let us mention that, under a certain assumption, a local (global) solution of
the partially convexified problem is also a local (global) solution of (P); see Corollary
4.3.

2. Assumptions and preliminary results. Let us formulate the assumptions
on our control problem (P).

(A1) We assume that \Omega is an open and bounded domain in \BbbR n, 1 \leq n \leq 3, with
a Lipschitz boundary \Gamma , and A denotes a second-order elliptic operator in \Omega of the
form

Ay =  - 
n\sum 

i,j=1

\partial xj (aij(x)\partial xiy)

with coefficients aij \in L\infty (\Omega ) satisfying

\Lambda A| \xi | 2 \leq 
n\sum 

i,j=1

aij(x)\xi i\xi j \forall \xi \in \BbbR n, for a.e. x \in \Omega ,

for some \Lambda A > 0.
(A2) a : \Omega \times \BbbR  - \rightarrow \BbbR is a Carath\'eodory function of class C2 with respect to the
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3488 EDUARDO CASAS AND DANIEL WACHSMUTH

second variable satisfying that a(\cdot , 0) \in L\=p(\Omega ) with \=p > n/2,

\partial a

\partial y
(x, y) \geq 0 for a.e. x \in \Omega ,

and for all M > 0 there exists a constant Ca,M > 0 such that\bigm| \bigm| \bigm| \bigm| \partial a\partial y (x, y)
\bigm| \bigm| \bigm| \bigm| + \bigm| \bigm| \bigm| \bigm| \partial 2a\partial y2

(x, y)

\bigm| \bigm| \bigm| \bigm| \leq Ca,M for a.e. x \in \Omega and | y| \leq M.

Furthermore, for every M > 0 and \varepsilon > 0 there exists \delta > 0, depending on M and \varepsilon ,
such that\bigm| \bigm| \bigm| \bigm| \partial 2a\partial y2

(x, y2) - 
\partial 2a

\partial y2
(x, y1)

\bigm| \bigm| \bigm| \bigm| < \varepsilon if | y1| , | y2| \leq M, | y2  - y1| \leq \delta , and for a.e. x \in \Omega .

(A3) L : \Omega \times \BbbR  - \rightarrow \BbbR is a Carath\'eodory function of class C2 with respect to
the second variable satisfying that L(\cdot , 0) \in L1(\Omega ), and for all M > 0 there exist a
constant CL,M > 0 and a function \psi M \in L\=p(\Omega ) such that for every | y| \leq M and
almost all x \in \Omega \bigm| \bigm| \bigm| \bigm| \partial L\partial y (x, y)

\bigm| \bigm| \bigm| \bigm| \leq \psi M (x),

\bigm| \bigm| \bigm| \bigm| \partial 2L\partial y2 (x, y)
\bigm| \bigm| \bigm| \bigm| \leq CL,M .

In addition, for every M > 0 and \varepsilon > 0 there exists \delta > 0, depending on M and \varepsilon ,
such that\bigm| \bigm| \bigm| \bigm| \partial 2L\partial y2 (x, y2) - \partial 2L

\partial y2
(x, y1)

\bigm| \bigm| \bigm| \bigm| < \varepsilon if | y1| , | y2| \leq M, | y2  - y1| \leq \delta , and for a.e. x \in \Omega .

In the case \gamma = +\infty , we also assume that there exists a function \psi \in L1(\Omega ) such that
L(x, y) \geq \psi (x) for a.a. x \in \Omega and all y \in \BbbR .

Discussion of the state equation. As a consequence of assumptions (A1) and
(A2) we infer that for every u \in Lp(\Omega ) with p > n/2, the state equation (1.1) has
a unique solution yu \in H1

0 (\Omega ) \cap C(\=\Omega ). The proof of this result is a quite standard
combination of Schauder's fixed point theorem and the L\infty (\Omega ) estimates [13]. For
the continuity of the solution in \=\Omega see, for instance, [9, Theorem 8.30]. Moreover, the
mapping S : Lp(\Omega )  - \rightarrow H1

0 (\Omega ) \cap C(\=\Omega ), defined by S(u) = yu, is of class C
2. In what

follows, we will take p = 2, and we will denote zv = S\prime (u)v, which is the solution of

(2.1)

\left\{   Az +
\partial a

\partial y
(x, y)z = v in \Omega ,

z = 0 on \Gamma .

As usual, we consider the adjoint state equation associated with a control u,

(2.2)

\left\{   A\ast \varphi +
\partial a

\partial y
(x, y)\varphi =

\partial L

\partial y
(x, y) in \Omega ,

\varphi = 0 on \Gamma ,

where y = S(u) is the state corresponding to u, and A\ast is the adjoint operator

A\ast \varphi =  - 
n\sum 

i,j=1

\partial xj
(aji(x)\partial xi

\varphi ).
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CONTROL PROBLEMS WITH L0 TERM IN COST FUNCTIONAL 3489

Because of assumption (A3) on L, we have that \varphi \in H1
0 (\Omega ) \cap C(\=\Omega ). Moreover, for

every u \in L2(\Omega ) we have the estimates

(2.3) \| yu\| L\infty (\Omega ) \leq Mu = \=C(\| a(\cdot , 0)\| L\=p(\Omega ) + \| u\| L2(\Omega )), \| \varphi u\| L\infty (\Omega ) \leq \=C\| \psi Mu\| L\=p(\Omega ).

Consequently, if \gamma <\infty , there exists M\gamma > 0 such that

(2.4) \| yu\| \infty + \| \varphi u\| \infty \leq M\gamma \forall u \in Uad.

Let us analyze the cost functional. First, we distinguish two parts in J . We set
J(u) = F (u) + \alpha \| u\| 2L2(\Omega ) + \beta \| u\| 0 with

F (u) =

\int 
\Omega 

L(x, yu(x)) dx.

Concerning the function F : L2(\Omega )  - \rightarrow \BbbR , we have that it is of class C2 and the first
and second derivatives are given by

(2.5) F \prime (u)v =

\int 
\Omega 

\varphi (x)v(x) dx

and

(2.6) F \prime \prime (u)(v1, v2) =

\int 
\Omega 

\biggl( 
\partial 2L

\partial y2
(x, y(x)) - \varphi (x)

\partial 2a

\partial y2
(x, y(x))

\biggr) 
zv1(x)zv2(x) dx,

where y is the state associated with u, solution of (1.1), \varphi is the adjoint state, solution
of (2.2), and zvi

= S\prime (u)vi is the solution of (2.1) for v = vi, i = 1, 2; see, for instance,
[5]. In what follows we will use the identification F \prime (u) = \varphi u as an L2(\Omega ) element.

Properties of \| \cdot \| \bfzero and existence of solutions. For ease of presentation, let
us define function | \cdot | 0 : \BbbR \rightarrow \BbbR by

| r| 0 :=

\Biggl\{ 
1 if r \not = 0,

0 if r = 0.

Then, clearly \| u\| 0 =
\int 
\Omega 
| u(x)| 0 dx holds. The function | \cdot | 0 : \BbbR \rightarrow \BbbR is discontinuous

and lower semicontinuous, which implies that u \mapsto \rightarrow \| u\| 0 is lower semicontinuous on
Lp(\Omega ) with respect to the norm topology for all p \in [1,\infty ]. However, this mapping
is not weakly lower semicontinuous on these Lp(\Omega ) spaces; see the example in [14,
section 2.2]. In particular, the lack of weakly lower semicontinuity implies that the
direct method of the calculus of variations cannot be applied to prove existence of
solutions. Actually, the problem has no solution in general. For an explicit example
of such a situation see [14, section 4.5], where the state equation is a linear elliptic
equation with Neumann boundary conditions.

This question will be addressed in section 4, where we provide sufficient conditions
for the existence of local solutions of (P).

Lipschitz estimates of \bfitF \prime and \bfitF \prime \prime with respect to \bfitz \bfitv . In the subsequent
second-order analysis, we will frequently need the following technical results.

Theorem 2.1. Given \=u \in L2(\Omega ), there exist \rho > 0 and C > 0 such that

\| F \prime (u) - F \prime (\=u)\| L2(\Omega ) \leq C\| zu - \=u\| L2(\Omega ) \forall u \in \=B\rho (\=u),

where zu - \=u = S\prime (\=u)(u  - \=u) is the solution of (2.1) corresponding to y = y\=u and
v = u - \=u.
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3490 EDUARDO CASAS AND DANIEL WACHSMUTH

Proof. Let us take \rho \leq 1 to be fixed later. Let u \in \=B\rho (\=u) \subset \=B1(\=u). Then,
subtracting the equations satisfied by yu and \=y = y\=u, we get with the mean value
theorem

A(yu  - \=y) +
\partial a

\partial y
(x, y\theta )(yu  - \=y) = u - \=u,

where y\theta = \=y + \theta (yu  - \=y) for some measurable function \theta : \Omega  - \rightarrow [0, 1]. From the
above equation we get

(2.7) \| yu  - \=y\| L2(\Omega ) \leq C1\| u - \=u\| L2(\Omega ) \leq C1\rho .

On the other side, subtracting the equations satisfied by the adjoint states \varphi u and \=\varphi ,
we get
(2.8)

A\ast (\varphi u - \=\varphi )+
\partial a

\partial y
(x, \=y)(\varphi u - \=\varphi ) =

\Bigl[ \partial L
\partial y

(x, yu) - 
\partial L

\partial y
(x, \=y)

\Bigr] 
+
\bigl[ \partial a
\partial y

(x, \=y) - \partial a

\partial y
(x, yu)

\Bigr] 
\varphi u.

Now, from (2.3) we infer the existence of a constant M such that

\| yu\| L\infty (\Omega ) + \| \varphi u\| L\infty (\Omega ) \leq M \forall u \in \=B1(\=u).

Hence, using assumptions (A2) and (A3) and the mean value theorem, we deduce
from (2.8) the existence of a constant C2 such that

(2.9) \| F \prime (u) - F \prime (\=u)\| L2(\Omega ) = \| \varphi u  - \=\varphi \| L2(\Omega ) \leq C2\| yu  - \=y\| L2(\Omega ) \forall u \in \=B1(\=u).

Arguing as in [2, Corollary 2.8, (2.27)], there is \rho > 0 such that \| yu  - \=y\| L2(\Omega ) \leq 
2\| zu - \=u\| L2(\Omega ) for all u \in \=B\rho (\=u). Combining this inequality with (2.9) the statement
of the theorem follows.

Theorem 2.2. For all \epsilon > 0 there is \rho > 0 such that\bigm| \bigm| (F \prime \prime (u) - F \prime \prime (\=u))(u - \=u)2
\bigm| \bigm| \leq \epsilon \| zu - \=u\| 2L2(\Omega )

for all u \in B\rho (\=u).

Proof. The proof is a consequence of [2, Lemma 2.7] by selecting there Uad =
\=B1(\=u).

Theorem 2.3 ([2, Lemma 2.6, (2.16)]). Given \=u \in Uad, there exists a constant
Cz such that

\| zv\| L2(\Omega ) \leq Cz\| v\| L1(\Omega ) \forall v \in L1(\Omega ).

3. Necessary optimality conditions. Let \=u be a local minimum of (P) in the
sense of L2(\Omega ). Let us define \=y := y\=u. We will investigate necessary optimality condi-
tions. The first step is the well-known maximum principle, which can be considered
a first-order necessary optimality condition.

3.1. Pontryagin's maximum principle. Let us define the Hamiltonian H :
\Omega \times \BbbR 3 \rightarrow \BbbR associated with (P) by

H(x, y, u, \varphi ) := L(x, y) + \varphi u+
\alpha 

2
u2 + \beta | u| 0.
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CONTROL PROBLEMS WITH L0 TERM IN COST FUNCTIONAL 3491

Theorem 3.1. Let \=u be locally optimal for (P). Then there exists a uniquely
determined adjoint state \=\varphi := \varphi \=u solving the adjoint equation (2.2) such that for
almost all x \in \Omega 

(3.1) H(x, \=y(x), \=u(x), \=\varphi (x)) \leq H(x, \=y(x), u, \=\varphi (x)) \forall u \in [ - \gamma ,+\gamma ]

is satisfied.

Proof. The proof of this theorem can be accomplished by using spike perturba-
tions as in [1, Lemma 2] combined with the Lebesgue differentiation theorem.

Let us note that the maximum principle implies a certain sparsity structure of
the optimal controls. To this end, let us first study a scalar optimization problem.

Lemma 3.2. Let \varphi \in \BbbR be given. Let u\ast be a global minimum of

min
| u| \leq \gamma 

\varphi \cdot u+
\alpha 

2
u2 + \beta | u| 0.

If \alpha = 0, then

(u\ast , \varphi ) \in \{  - \gamma \} \times 
\biggl[ 
+
\beta 

\gamma 
,+\infty 

\biggr) 
\cup \{ 0\} \times 

\biggl[ 
 - \beta 
\gamma 
,+

\beta 

\gamma 

\biggr] 
\cup \{ \gamma \} \times 

\biggl( 
 - \infty , - \beta 

\gamma 

\biggr] 
.

If \alpha > 0, then one of the following conditions is satisfied:
1. | \varphi | > \alpha \gamma 

2 + \beta 
\gamma and | \varphi | \geq \alpha \gamma \Rightarrow u\ast =  - sign(\varphi )\gamma ,

2. | \varphi | = \alpha \gamma 
2 + \beta 

\gamma and | \varphi | \geq \alpha \gamma \Rightarrow u\ast =  - sign(\varphi )\gamma or u\ast = 0,

3. | \varphi | < \alpha \gamma 
2 + \beta 

\gamma and | \varphi | \geq \alpha \gamma \Rightarrow u\ast = 0,

4.
\surd 
2\alpha \beta < | \varphi | < \alpha \gamma \Rightarrow u\ast =  - \varphi 

\alpha ,
5.

\surd 
2\alpha \beta = | \varphi | < \alpha \gamma \Rightarrow u\ast =  - \varphi 

\alpha or u\ast = 0,
6. | \varphi | <

\surd 
2\alpha \beta \Rightarrow u\ast = 0.

In particular, u\ast = 0 if | \varphi | <
\surd 
2\alpha \beta for \alpha > 0 or | \varphi | < \beta 

\gamma for \alpha = 0.

Proof. Let \alpha = 0. Then only the points \{  - \gamma , 0,+\gamma \} are candidates for solutions
of min| u| \leq \gamma \varphi \cdot u + \beta | u| 0. The claim follows by elementary computations. The case

\alpha > 0 can be deduced from [14, Lemma 3.5] using the inequality \alpha \gamma 
2 + \beta 

\gamma  - 
\surd 
2\alpha \beta =

1
2 (
\surd 
\alpha \gamma  - 

\sqrt{} 
2\beta 
\gamma )2 \geq 0. Observe that this is used to prove 6. The last statement is a

straightforward consequence of 6 for \alpha > 0.

Corollary 3.3. Let \=u be a local minimum of (P) with associated adjoint state
\=\varphi . Then we have for almost all x \in \Omega 

1. for \alpha > 0
(a) if | \=\varphi (x)| <

\surd 
2\alpha \beta then \=u(x) = 0,

(b) if \=u(x) \not = 0 then | \=u(x)| \geq min(
\sqrt{} 

2\beta 
\alpha , \gamma ),

2. for \alpha = 0
(a) if | \=\varphi (x)| < \beta 

\gamma then \=u(x) = 0,

(b) if \=u(x) \not = 0 then | \=u(x)| = \gamma .

Proof. The claim is a direct consequence of Theorem 3.1 and Lemma 3.2.

Corollary 3.4. Let \gamma < +\infty . Then there is \beta \ast \in (0,+\infty ) such that \=u = 0 is
the only stationary point of (P) for every \beta > \beta \ast and thus the only possible local (and
global) solution of (P).
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3492 EDUARDO CASAS AND DANIEL WACHSMUTH

Proof. This is a consequence of (2.4) and Corollary 3.3. Actually, we can take

\beta \ast =

\Biggl\{ 
M2

\gamma 

2\alpha if \alpha > 0,
\gamma M\gamma if \alpha = 0

with M\gamma as in (2.4).

Lemma 3.5. Suppose that \gamma = +\infty , \alpha > 0. Then there is \beta \ast \in (0,+\infty ) such that
\=u = 0 is the only possible global solution of (P) for every \beta > \beta \ast .

Proof. If \=u is a global solution of (P), then J(\=u) \leq J(0). This implies with
assumption (A3) that \| \psi \| L1(\Omega ) +

\alpha 
2 \| \=u\| 

2
L2(\Omega ) \leq J(\=u) \leq J(0); therefore

\| \=u\| L2(\Omega ) \leq M0 =

\sqrt{} 
2

\alpha 

\Bigl( 
J(0) - \| \psi \| L1(\Omega )

\Bigr) 
.

We infer from (2.3) the inequalities \| \=y\| L\infty (\Omega ) \leq \=M = \=C(\| a(\cdot , 0)\| L\=p(\Omega ) + M0) and

\| \=\varphi \| L\infty (\Omega ) \leq \=C\| \psi \=M\| L\=p(\Omega ). Then, it is enough to take \beta \ast = 1
2\alpha 

\=C2\| \psi \=M\| 2L\=p(\Omega ) to
deduce from Corollary 3.3 that \=u = 0 whenever \beta > \beta \ast .

Let us introduce the tangent cone of Uad at \=u, which is given by

TUad
(\=u) = \{ v \in L2(\Omega ) : v(x) \geq 0 if \=u(x) =  - \gamma ,

v(x) \leq 0 if \=u(x) = +\gamma \} .

Lemma 3.6. Let \=u satisfy the maximum principle (3.1). Then it holds that

(3.2)

\int 
\Omega 

( \=\varphi + \alpha \=u)v dx \geq 0 \forall v \in TUad
(u) : v(x) = 0 if \=u(x) = 0 a.e.

If \alpha = 0, then for all such v

(3.3)

\int 
\Omega 

\=\varphi v dx \geq \beta 

\gamma 
\| v\| L1(\Omega )

is fulfilled.

Proof. First, suppose \alpha > 0. Let us discuss the sign of the integrand in the
claim pointwise. It suffices to investigate only points x \in \Omega such that \=u(x) \not = 0. If
| \=u(x)| < \gamma , then \alpha \=u(x) + \=\varphi (x) = 0 by the maximum principle and properties 3 and
4 of Lemma 3.2. If \=u(x) = \gamma , then v(x) \leq 0, and \=\varphi (x) \leq  - \alpha \gamma by properties 1 and 2
of Lemma 3.2. Hence, ( \=\varphi (x) + \alpha \=u(x))v(x) \geq 0 holds. Analogously, we argue for the
case \=u(x) =  - \gamma . Second, let \alpha = 0. Then from the characterization in Lemma 3.2,
we have | \varphi (x)| \geq \beta 

\gamma for almost all x \in \Omega such that \=u(x) \not = 0. Moreover, v(x) and \varphi (x)
have the same sign; hence the claim follows.

3.2. Second-order necessary optimality conditions. In addition, we will
prove second-order necessary conditions for (P).

Theorem 3.7. Let \=u be locally optimal for (P). Then it holds that

F \prime \prime (\=u)(v, v) + \alpha \| v\| 2L2(\Omega ) \geq 0

for all v \in C\=u, where the critical cone C\=u is given by

C\=u = \{ v \in TUad
(\=u) : v(x) = 0 if \=u(x) = 0 or \=\varphi (x) + \alpha \=u(x) \not = 0\} .
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CONTROL PROBLEMS WITH L0 TERM IN COST FUNCTIONAL 3493

Observe that Lemma 3.2 leads to C\=u = \{ 0\} in the case \alpha = 0.

Proof. Let v \in C\=u be given. For k \in \BbbN define

vk(x) :=

\Biggl\{ 
0 if \gamma  - 1

k < | \=u(x)| < \gamma ,

Proj[ - k,k](v(x)) otherwise.

Then vk is a feasible direction at \=u, and it holds that J(\=u+ tvk) \geq J(\=u) for all t > 0
sufficiently small. In addition, \| \=u+ tvk\| 0 \leq \| \=u\| 0 by definition of vk and v. Using this
fact and expanding the differentiable parts, we find

0 \leq J(\=u+ tvk) - J(\=u)

\leq F (\=u+ tvk) - F (\=u) +
\alpha 

2
\| \=u+ tvk\| 2L2(\Omega )  - 

\alpha 

2
\| \=u\| 2L2(\Omega )

= t

\int 
\Omega 

( \=\varphi + \alpha \=u)vk dx+
t2

2
F \prime \prime (\=u+ \theta ttvk)v

2
k +

\alpha 

2
t2\| vk\| 2L2(\Omega )

with some \theta t \in (0, 1). By construction of vk, we have
\int 
\Omega 
( \=\varphi + \alpha \=u)vk dx = 0. Dividing

the inequality by t2 and passing to the limit t\searrow 0, it follows that

F \prime \prime (\=u)(vk, vk) + \alpha \| vk\| 2L2(\Omega ) \geq 0

for all k. Since vk \rightarrow v in L2(\Omega ) for k \rightarrow \infty , the claim is proven.

3.3. Study of a reduced problem. If \=u is a local solution of (P), then it is
also a local solution of

(Pred) : min
u\in Uad(\=u)

\int 
\Omega 

L(x, yu(x)) dx+
\alpha 

2
\| u\| 2L2(\Omega )

subject to the state equation (1.1), where the set Uad(\=u) is given by

Uad(\=u) := \{ u \in Uad : u(x) = 0 if \=u(x) = 0\} .

Due to the absence of the L0-term, the problem (Pred) is a smooth optimal control
problem. Its first and second-order necessary optimality conditions are identical to
Lemma 3.6, (3.2), and Theorem 3.7 above.

The first-order inequality (3.3) of Lemma 3.6 in the case \alpha = 0 is in fact a first-
order sufficient condition for local optimality in (Pred).

Corollary 3.8. Let \alpha = 0. Let \=u satisfy the maximum principle for (P). Then
there exists \rho > 0 such that

F (\=u) +
\beta 

2\gamma 
\| u - \=u\| L1(\Omega ) \leq F (u)

for all u \in B\rho (\=u) \cap Uad(\=u), where B\rho (\=u) denotes the L2(\Omega )-ball around \=u.

Proof. First, we have the expansion

F (u) - F (\=u) = F \prime (\=u)(u - \=u) + (F \prime (\=u+ \theta (u - \=u)) - F \prime (\=u))(u - \=u)

with some \theta \in (0, 1). Using the properties of F , there is \rho > 0 such that \| F \prime (\=u +
\theta (u - \=u)) - F \prime (\=u)\| L\infty (\Omega ) \leq \beta 

2\gamma for all u \in B\rho (\=u); see [2, Lemma 2.5]. The claim follows

from the above identity, (2.5), and Lemma 3.6, (3.3):

F (u) - F (\=u) \geq \beta 

\gamma 
\| u - \=u\| L1(\Omega )  - 

\beta 

2\gamma 
\| u - \=u\| L1(\Omega ) =

\beta 

2\gamma 
\| u - \=u\| L1(\Omega ).
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3494 EDUARDO CASAS AND DANIEL WACHSMUTH

Similarly, we can formulate a second-order sufficient condition for (Pred) in the
case \alpha > 0.

Corollary 3.9. Let \alpha > 0. Let \=u satisfy the maximum principle for (P). As-
sume that

F \prime \prime (\=u)(v, v) + \alpha \| v\| 2L2(\Omega ) > 0 \forall v \in C\=u \setminus \{ 0\} ,

where C\=u is as in Theorem 3.7. Then \=u is locally optimal for (Pred) in the L2(\Omega )
sense.

Proof. This is [2, Theorem 2.2] applied to (Pred).

4. Second-order sufficient optimality conditions. In this section, we will
study sufficient optimality conditions of second order. First, we will develop such a
condition for a partially convexified problem, where the term

j(u) :=
\alpha 

2
\| u\| 2L2(\Omega ) + \beta \| u\| 0

is replaced by its convexification on the feasible interval [ - \gamma , \gamma ].

4.1. Partially convexified problem. The convexification of j will be denoted
by

G(u) :=

\int 
\Omega 

g(u(x)) dx,

where g : \BbbR \rightarrow \BbbR is the convexification of the integrand of j. Here, we have to

distinguish two cases. In case
\sqrt{} 

2\beta 
\alpha < \gamma , the function g is given by

g(u) =

\left\{   \alpha 
2 u

2 + \beta if | u| \geq 
\sqrt{} 

2\beta 
\alpha ,

\surd 
2\alpha \beta | u| if | u| <

\sqrt{} 
2\beta 
\alpha ,

with its directional derivative at u \in \BbbR in direction v given by

(4.1) g\prime (u; v) =

\left\{       
\alpha uv if | u| \geq 

\sqrt{} 
2\beta 
\alpha ,

\surd 
2\alpha \beta sign(u)v if 0 < | u| <

\sqrt{} 
2\beta 
\alpha ,\surd 

2\alpha \beta | v| if u = 0.

In addition, we have the important equality

(4.2) g(u) =
\alpha 

2
u2 + \beta | u| 0 \leftrightarrow u = 0 or | u| \geq 

\sqrt{} 
2\beta 

\alpha 
.

In the case
\sqrt{} 

2\beta 
\alpha \geq \gamma with \alpha \geq 0 the integrand g of the convex hull of j is given by

g(u) =

\biggl( 
\alpha \gamma 

2
+
\beta 

\gamma 

\biggr) 
| u| .

Please compare also with the distinction of cases in Lemma 3.2 and Corollary 3.3.
The function g is continuously differentiable on \BbbR \setminus \{ 0\} . In addition, G is weakly lower
semicontinuous on L2(\Omega ).
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The partially convexified problem is defined as

(Pp.c.) : min
u\in Uad

F (u) +G(u).

The objective functional is the sum of a smooth function F and a convex function G.
This functional is weakly lower semicontinuous; hence (Pp.c.) has at least one solution.
Its first-order optimality conditions are as follows.

Theorem 4.1 (first-order necessary conditions for (Pp.c.)). Let \=u \in Uad be locally
optimal for (Pp.c.). Let \=\varphi denote the associated adjoint state. Then the variational
inequality

(4.3)

\int 
\Omega 

[ \=\varphi (x)v(x) + g\prime (\=u(x); v(x))] dx \geq 0

is satisfied for all v \in TUad
(\=u).

By standard arguments, inequality (4.3) is equivalent to the pointwise inequality

(4.4) \=\varphi (x)v + g\prime (\=u(x); v) \geq 0 for a.a.x \in \Omega , \forall v \in T[ - \gamma ,\gamma ](\=u(x)),

where

T[ - \gamma ,\gamma ](\=u(x)) =

\biggl\{ 
v \in \BbbR : v

\biggl\{ 
\geq 0 if \=u(x) =  - \gamma ,
\leq 0 if \=u(x) = +\gamma .

\biggr\} 
In addition, this inequality is equivalent to the Pontryagin maximum principle for

(Pp.c.) due to the convexity of g. In the case
\sqrt{} 

2\beta 
\alpha \geq \gamma , the function G is a multiple

of the L1(\Omega )-norm, which implies a certain sparsity structure of optimal controls. A

similar result is true for the
\sqrt{} 

2\beta 
\alpha < \gamma as well. Here, we have the following result,

which is an analogue to Corollary 3.3.

Lemma 4.2. Suppose
\sqrt{} 

2\beta 
\alpha < \gamma . Let \=u be stationary point of (Pp.c.). Then we

have the implications

| \=\varphi (x)| <
\sqrt{} 

2\alpha \beta \Rightarrow \=u(x) = 0,

\=\varphi (x) =  - 
\sqrt{} 
2\alpha \beta \Rightarrow \=u(x) \in 

\biggl[ 
0,+

\sqrt{} 
2\beta 

\alpha 

\biggr] 
,

\=\varphi (x) = +
\sqrt{} 
2\alpha \beta \Rightarrow \=u(x) \in 

\biggl[ 
 - 
\sqrt{} 

2\beta 

\alpha 
, 0

\biggr] 
,

| \=\varphi (x)| >
\sqrt{} 

2\alpha \beta \Rightarrow \=u(x) = Proj[ - \gamma ,\gamma ]

\biggl( 
 - 1

\alpha 
\=\varphi (x)

\biggr) 
for almost all x \in \Omega . If \bigm| \bigm| \{ x \in \Omega : | \=\varphi (x)| =

\sqrt{} 
2\alpha \beta \} 

\bigm| \bigm| = 0

is satisfied, then

\=u(x) \not = 0 \Rightarrow | \=u(x)| \geq 
\sqrt{} 

2\beta 

\alpha 

holds for almost all x \in \Omega .
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3496 EDUARDO CASAS AND DANIEL WACHSMUTH

Proof. Let | \=\varphi (x)| <
\surd 
2\alpha \beta . Suppose \=u(x) > 0. Choose v < 0. Then, (4.4) implies

that \=\varphi (x)v + g\prime (\=u(x), v) \geq 0. From the expression for g\prime (\=u(x), v) we get

\=\varphi (x) + \alpha \=u(x) \leq 0 if \=u(x) \geq 
\sqrt{} 

2\beta 

\alpha 
\Rightarrow 
\sqrt{} 
2\alpha \beta \leq \alpha \=u(x) \leq  - \=\varphi (x),

\=\varphi (x) +
\sqrt{} 

2\alpha \beta \leq 0 if \=u(x) <

\sqrt{} 
2\beta 

\alpha 
\Rightarrow 
\sqrt{} 
2\alpha \beta \leq  - \=\varphi (x).

In any of these cases we get a contradiction with the fact that | \=\varphi (x)| <
\surd 
2\alpha \beta .

A similar contradiction is obtained for the case \=u(x) < 0. Now, we assume that

\=\varphi (x) =  - 
\surd 
2\alpha \beta and we prove that 0 \leq \=u(x) \leq 

\sqrt{} 
2\beta 
\alpha . We argue by contradiction and

we assume that \=u(x) >
\sqrt{} 

2\beta 
\alpha . Taking again v < 0 in (4.4) we deduce that

0 \geq \=\varphi (x) + \alpha \=u(x) >  - 
\sqrt{} 
2\alpha \beta + \alpha 

\sqrt{} 
2\beta 

\alpha 
= 0,

and we get a contradiction. If \=u(x) < 0, then selecting v > 0 it is easy to check
that g\prime (\=u(x); v) < 0 and, hence, \=\varphi (x)v + g\prime (\=u(x); v) < 0, which contradicts (4.4).
Analogously we prove the case \=\varphi (x) = +

\surd 
2\alpha \beta .

Finally, we analyze the case | \=\varphi (x)| >
\surd 
2\alpha \beta . First we prove that | \=u(x)| >

\sqrt{} 
2\beta 
\alpha .

Indeed, in the contrary case (4.4) implies that

( \=\varphi (x) +
\sqrt{} 

2\alpha \beta sign(\=u(x)))v \geq 0 if \=u(x) \not = 0,

\=\varphi (x)v +
\sqrt{} 

2\alpha \beta | v| \geq 0 if \=u(x) = 0

hold for every v \in \BbbR . However, taking v =  - sign( \=\varphi (x)), we get a contradiction.

Hence, we have that | \=u(x)| >
\sqrt{} 

2\alpha 
\beta , and, consequently, (4.4) implies that ( \=\varphi (x) +

\alpha \=u(x))v \geq 0 \forall v \in T[ - \gamma ,\gamma ](\=u(x)). Taking into account that v - \=u(x) \in T[ - \gamma ,\gamma ](\=u(x)) for
every v \in [ - \gamma ,+\gamma ], we have that ( \=\varphi (x) + \alpha \=u(x))(v  - \=u(x)) \geq 0 \forall v \in [ - \gamma ,+\gamma ], which
is well known to be equivalent to \=u(x) = Proj[ - \gamma ,\gamma ]( - 1

\alpha \=\varphi (x)).

Finally, if | \=\varphi (x)| =
\surd 
2\alpha \beta is only true on a set of zero measure, then 0 < | \=u(x)| <\sqrt{} 

2\beta 
\alpha is only true on a set of zero measure, which proves the second claim.

Corollary 4.3. Suppose
\sqrt{} 

2\beta 
\alpha < \gamma . Let \=u be a local (global) solution of (Pp.c.).

Assume that \bigm| \bigm| \{ x \in \Omega : | \=\varphi (x)| =
\sqrt{} 
2\alpha \beta \} 

\bigm| \bigm| = 0.

Then \=u is a local (global) solution of (P).

Proof. Let \=u be a minimum of F +G on some neighborhood U of \=u, i.e., F (\=u) +
G(\=u) \leq F (u)+G(u) for all u \in U \cap Uad. Then the conclusion of Theorem 4.1 is valid,
and property (4.4) is satisfied. Using the result of Lemma 4.2 it follows that for almost

all x \in \Omega we have \=u(x) = 0 or | \=u(x)| \geq 
\sqrt{} 

2\beta 
\alpha . By (4.2), this implies j(\=u) = G(\=u).

Let now u \in U \cap Uad be given. Then, using that G is a minorant for j by the
properties of convex hulls, we have the chain of inequalities

F (\=u) + j(\=u) = F (\=u) +G(\=u) \leq F (u) +G(u) \leq F (u) + j(u),

which proves the claim.
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Let us finish this subsection by showing an example where this corollary applies.
Example. Consider the state equation\biggl\{ 

 - \Delta y + y3 = u in \Omega ,
y = 0 on \Gamma 

and the cost functional

J(u) =
1

2

\int 
\Omega 

(yu  - yd)
2 dx+

\alpha 

2
\| u\| 2L2(\Omega ) + \beta \| u\| 0

with \alpha > 0. Let \=u be a local minimizer for the corresponding problem (Pp.c.). Then,
the adjoint state satisfies\biggl\{ 

 - \Delta \=\varphi + 3\=y2 \=\varphi = \=y  - yd in \Omega ,
\=\varphi = 0 on \Gamma .

Let us denote \Omega \alpha \beta = \{ x \in \Omega : | \=\varphi (x)| =
\surd 
2\alpha \beta \} . Since \=\varphi \in H2

loc(\Omega ), we have that
\Delta \=\varphi (x) = 0 a.e. in \Omega \alpha \beta . Hence, we have

3
\sqrt{} 
2\alpha \beta \=y2(x) - \=y(x) + yd(x) = 0 a.e. in \Omega \alpha \beta .

This implies that

\=y(x) =
1\pm 

\sqrt{} 
1 - 12

\surd 
2\alpha \beta yd(x)

6
\surd 
2\alpha \beta 

a.e. in \Omega \alpha \beta .

If we assume that yd(x) > [12
\surd 
2\alpha \beta ] - 1 in \Omega , then the above identity is impossible and,

hence, \Omega \alpha \beta is of Lebesgue measure zero. Then, Corollary 4.3 implies the existence of
a global solution of (P), which is also a global solution of (Pp.c.).

4.2. Second-order analysis of \bfitG . Let us assume now
\sqrt{} 

2\beta 
\alpha < \gamma . In this case,

the directional derivative of g at u in direction h is given by

g\prime (u;h) =

\left\{       
\alpha uh if | u| \geq 

\sqrt{} 
2\beta 
\alpha ,

\surd 
2\alpha \beta sign(u)h if 0 < | u| <

\sqrt{} 
2\beta 
\alpha ,\surd 

2\alpha \beta | h| if u = 0.

Clearly g is not differentiable at u = 0, and it is not twice differentiable at \pm 
\sqrt{} 

2\beta 
\alpha .

Still let us introduce some kind of second-order directional derivative defined by

g\prime \prime (u;h, h) :=

\left\{             
\alpha h2 if | u| >

\sqrt{} 
2\beta 
\alpha ,

\alpha h2 if u =
\sqrt{} 

2\beta 
\alpha , h \geq 0,

\alpha h2 if u =  - 
\sqrt{} 

2\beta 
\alpha , h \leq 0,

0 otherwise,

and

G\prime \prime (u;h, h) :=

\int 
\Omega 

g\prime \prime (u(x);h(x), h(x)) dx.

This choice of g\prime \prime is justified by the Taylor expansion provided by the next lemma.
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Lemma 4.4. Let u \in \BbbR be given. Then there is \delta = \delta (u) > 0 such that

g(u+ h) - g(u) - g\prime (u;h) - 1

2
g\prime \prime (u;h, h) = 0

for all h with | h| \leq \delta .

Proof. Obviously, the claim is true if u \not \in \{  - 
\sqrt{} 

2\beta 
\alpha , 0,

\sqrt{} 
2\beta 
\alpha \} , because g is a poly-

nomial of degree at most two near such values of u with second derivative given by

the expression for g\prime \prime (u, \cdot ) above. First, let us consider the case u = 0. Let | h| <
\sqrt{} 

2\beta 
\alpha .

Then clearly g(u+ h) - g(u) - g\prime (u;h) - 1
2g

\prime \prime (u;h, h) = 0. Second, let u =
\sqrt{} 

2\beta 
\alpha and

h > 0. Then both u and u+h lie on the quadratic branch of g, which means that the

remainder is zero. If  - 
\sqrt{} 

2\beta 
\alpha < h < 0,

g(u+ h) - g(u) - g\prime (u;h) - 1

2
g\prime \prime (u;h, h) =

\sqrt{} 
2\alpha \beta 

\bigl( 
(u+ h) - u - h

\bigr) 
 - 0 = 0.

The case u =  - 
\sqrt{} 

2\beta 
\alpha follows analogously.

For second-order optimality conditions, only lower bounds of this remainder term
are of importance. Here, we have the following result.

Lemma 4.5. Let u, h \in \BbbR be given. Then it holds that

g(u+ h) - g(u) - g\prime (u;h) - 1

2
g\prime \prime (u;h, h) \geq 

\left\{     
0 if | u| \leq 

\sqrt{} 
2\beta 
\alpha 
,

 - \alpha 
2

\biggl[ \Bigl( \sqrt{} 
2\beta 
\alpha 

 - | u+ h| 
\Bigr) 
+

\biggr] 2
if | u| >

\sqrt{} 
2\beta 
\alpha 
.

Proof. If | u| <
\sqrt{} 

2\beta 
\alpha , then the claim follows from the convexity of g. Let now

u =
\sqrt{} 

2\beta 
\alpha . Then for h < 0 the claim follows again from the convexity of g, while for

h > 0 the claim follows from the quadratic nature of g on [
\sqrt{} 

2\beta 
\alpha ,+\infty ).

Consider now the case | u| >
\sqrt{} 

2\beta 
\alpha . If | u + h| \geq 

\sqrt{} 
2\beta 
\alpha , then g(u + h)  - g(u)  - 

g\prime (u;h) - 1
2g

\prime \prime (u;h, h) = 0. Suppose | u+ h| <
\sqrt{} 

2\beta 
\alpha . Then we find

g(u+ h) - g(u) - g\prime (u;h) - 1

2
g\prime \prime (u;h, h) =

\sqrt{} 
2\alpha \beta | u+ h|  - \alpha 

2
(u+ h)2  - \beta 

=  - \alpha 
2

\Biggl( \sqrt{} 
2\beta 

\alpha 
 - | u+ h| 

\Biggr) 2

,

which finishes the proof.

Using this pointwise inequality, we can prove a lower bound of a Taylor expansion
of the integral functional G.

Lemma 4.6. Let p > 2. Let u \in Lp(\Omega ); then

G(u+ h) - G(u) - G\prime (u;h) - 1

2
G\prime \prime (u;h, h) \geq o(\| h\| 2Lp(\Omega u)

)

for h\rightarrow 0 in Lp(\Omega ) with

\Omega u :=

\Biggl\{ 
x \in \Omega : | u(x)| >

\sqrt{} 
2\beta 

\alpha 

\Biggr\} 
.

D
ow

nl
oa

de
d 

11
/2

3/
20

 to
 8

3.
40

.3
4.

9.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

CONTROL PROBLEMS WITH L0 TERM IN COST FUNCTIONAL 3499

Proof. Let hk be given such that hk \rightarrow 0 in Lp(\Omega ) and pointwise, p > 2. Due to
Lemma 4.5, we have the lower bound

G(u+ hk) - G(u) - G\prime (u;hk) - 
1

2
G\prime \prime (u;hk, hk) \geq  - \alpha 

2

\int 
\Omega u,u+hk

\Biggl( \sqrt{} 
2\beta 

\alpha 
 - | u+ hk| 

\Biggr) 2

\mathrm{d}x,

where

\Omega u,u+hk
:=

\Biggl\{ 
x \in \Omega : | u(x)| >

\sqrt{} 
2\beta 

\alpha 
> | u(x) + hk(x)| 

\Biggr\} 
.

Clearly the measure of \Omega u,u+hk
tends to zero for k \rightarrow \infty . In addition (| u(x)+hk(x)|  - \sqrt{} 

2\beta 
\alpha )2 \leq hk(x)

2 holds on this set. Using H\"older's inequality, we thus find

G(u+ hk) - G(u) - G\prime (u;hk) - 
1

2
G\prime \prime (u;hk, hk) \geq  - \alpha 

2
| \Omega u,u+hk

| 1 - 
2
p \| hk\| 2Lp(\Omega ),

which proves the claim.

Remark 4.7. Let us comment that the previous result is not true in general for

p = 2. To this end, let \Omega = (0, 1), \alpha = \beta = 1, u(x) = 2 >
\sqrt{} 

2\beta 
\alpha =

\surd 
2, hk(x) :=

 - \chi (0, 1k )(x). Then \| hk\| 2L2(\Omega ) =
1
k . In addition, we have

G(u+ hk) - G(u) - G\prime (u;hk) - 
1

2
G\prime \prime (u;hk, hk)

=  - 
\int 
\Omega 

1

2

\biggl[ \Bigl( \surd 
2 - | u(x) + hk(x)| 

\Bigr) 
+

\biggr] 2
dx

=  - 1

2

1

k
(
\surd 
2 - 1)2 =  - 1

2
(
\surd 
2 - 1)2\| hk\| 2L2(\Omega ).

4.3. Second-order optimality conditions for the partially convexified
problem. Let us comment on second-order optimality conditions of (Pp.c.) in the

case
\sqrt{} 

2\beta 
\alpha \geq \gamma . In this case, the function G is a multiple of the L1(\Omega )-norm. Such

problems are well studied in the literature. A sufficient optimality condition is given

by [2, Theorem 3.6]. Hence, we will consider the case
\sqrt{} 

2\beta 
\alpha < \gamma from now on.

Let us introduce the critical cone for (Pp.c.) by

Cpc,\=u := \{ v \in TUad
(\=u) : \=\varphi (x)v(x) + g\prime (\=u(x); v(x)) = 0\} .

We have the following characterization of Cpc,\=u.

Lemma 4.8. Let \=u be a stationary point of (Pp.c.). Then, v \in Cpc,\=u if and only if
v \in TUad

(\=u) and the following conditions hold for almost all x \in \Omega :
1. If | \=\varphi (x)| <

\surd 
2\alpha \beta then v(x) = 0,

2. If \=\varphi (x) = +
\surd 
2\alpha \beta and \=u(x) = 0 then v(x) \leq 0,

3. If \=\varphi (x) =  - 
\surd 
2\alpha \beta and \=u(x) = 0 then v(x) \geq 0,

4. If | \=\varphi (x)| > \alpha \gamma then v(x) = 0.

Proof. This is a direct consequence of Lemma 4.2 and the form of g\prime ; see (4.1).

Remark 4.9. The conditions on v(x) in case \=\varphi (x) =
\surd 
2\alpha \beta also appear in the

critical cone associated to L1(\Omega )-optimal control problems; see [2, Proposition 3.3].
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3500 EDUARDO CASAS AND DANIEL WACHSMUTH

Remark 4.10. Let us compare the critical cones Cpc,\=u and C\=u, where the latter
was defined in Theorem 3.7. Clearly it holds that C\=u \subset Cpc,\=u for any feasible control
\=u.

Theorem 4.11. Let \=u be locally optimal for (Pp.c.). Then it holds that

F \prime \prime (\=u)v2 +G\prime \prime (\=u; v, v) \geq 0 \forall v \in Cpc,\=u.

Proof. Let v \in Cpc,\=u be given. For k \in \BbbN define

vk(x) :=

\left\{       
0 if \gamma  - 1

k < | \=u(x)| < \gamma ,

0 if
\sqrt{} 

2\beta 
\alpha < | \=u(x)| <

\sqrt{} 
2\beta 
\alpha + 1

k ,

Proj[ - k,k](v(x)) otherwise.

Then vk \in Cpc,\=u\cap L\infty (\Omega ) is a feasible direction at \=u, which implies F (\=u+tvk)+G(\=u+
tvk)  - F (\=u)  - G(\=u) \geq 0 for all t > 0 small enough. In addition, Lemma 4.5 and the

construction of vk implies that G(\=u + tvk)  - G(\=u)  - tG\prime (\=u; vk) \geq t2

2 G
\prime \prime (\=u; vk, vk) for

all t > 0 small enough. For such a small t we have

0 \leq F (\=u+ tvk) +G(\=u+ tvk) - F (\=u) - G(\=u)

\leq tF \prime (\=u)vk +
t2

2
F \prime \prime (\=u+ \theta ttvk)v

2
k + tG\prime (\=u; vk) +

t2

2
G\prime \prime (\=u; vk, vk)

=
t2

2
F \prime \prime (\=u+ \theta ttvk)v

2
k +

t2

2
G\prime \prime (\=u; vk, vk)

with some \theta t \in (0, 1). Dividing by t2 and passing to the limit yield F \prime \prime (\=u)v2k +
G\prime \prime (\=u; vk, vk) \geq 0 for all k. Passing to the limit k \rightarrow \infty proves the claim.

For second-order sufficient optimality conditions, we will work with the following
extensions of the critical cone Cpc,\=u. Similarly to [6], we define for \tau > 0

D\tau 
\=u := \{ v \in TUad

(\=u) : v(x) \geq 0 if \=u(x) = 0 and \=\varphi (x) =  - 
\sqrt{} 
2\alpha \beta ,(4.5)

v(x) \leq 0 if \=u(x) = 0 and \=\varphi (x) =
\sqrt{} 
2\alpha \beta ,

v(x) = 0 if | \=\varphi (x)| \leq 
\sqrt{} 

2\alpha \beta  - \tau or | \=\varphi (x)| \geq \alpha \gamma + \tau \} ,

(4.6) E\tau 
\=u := \{ v \in TUad

(\=u) : F \prime (\=u)v +G\prime (\=u; v) \leq \tau \| zv\| L2(\Omega )\} ,

and

(4.7) C\tau 
\=u := D\tau 

\=u \cap E\tau 
\=u .

Directions not contained in D\tau 
\=u give rise to positive lower bounds from first-order

derivatives. Precisely, we have the following lemma.

Lemma 4.12. Let \=u satisfy the necessary optimality conditions of (Pp.c.) and as-
sume that \tau <

\surd 
2\alpha \beta . Let w \in TUad

(\=u). Define the set

\Omega \=u,w := \{ x \in \Omega : w(x) < 0 if \=u(x) = 0 and \=\varphi (x) =  - 
\sqrt{} 

2\alpha \beta ,

w(x) > 0 if \=u(x) = 0 and \=\varphi (x) =
\sqrt{} 
2\alpha \beta ,

w(x) \not = 0 if | \=\varphi (x)| \leq 
\sqrt{} 
2\alpha \beta  - \tau or | \=\varphi (x)| \geq \alpha \gamma + \tau \} .

Then we have

F \prime (\=u)w +G\prime (\=u;w) \geq \tau \| w\| L1(\Omega \=u,w).
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Proof. Take x \in \Omega such that w(x) < 0, \=u(x) = 0, and \=\varphi (x) =  - 
\surd 
2\alpha \beta . Then

it holds that \=\varphi (x)w(x) + g\prime (\=u(x);w(x)) = 2
\surd 
2\alpha \beta | w| . A similar argument leads to

the same equality when w(x) > 0 and \=\varphi (x) =
\surd 
2\alpha \beta . Let now x \in \Omega such that

w(x) \not = 0 and | \=\varphi (x)| \leq 
\surd 
2\alpha \beta  - \tau , implying \=u(x) = 0 by Lemma 4.2. Then we find

\=\varphi (x)w(x)+g\prime (\=u(x);w(x)) \geq (\tau  - 
\surd 
2\alpha \beta +

\surd 
2\alpha \beta )| w| = \tau | w| . Finally, if | \=\varphi (x)| > \alpha \gamma +\tau 

and w(x) \not = 0, we infer from Lemma 4.2 and the fact that w \in TUad
(\=u) that

\=\varphi (x)w(x) + g\prime (\=u(x);w(x)) = | \=\varphi (x)| | w(x)|  - \alpha \gamma | w(x)| \geq \tau | w(x)| .

Using (4.4), we obtain

F \prime (\=u)w +G\prime (\=u;w) \geq 
\int 
\Omega \=u,w

\=\varphi (x)w(x) + g\prime (\=u(x);w(x)) dx \geq \tau \| w\| L1(\Omega \=u,w),

which is the claim.

Unfortunately, there are no remainder term estimates of G of the type

G(u+ h) - G(u) - G\prime (u;h) - 1

2
G\prime \prime (u;h, h) \geq o(\| h\| 2L2(\Omega u)

)

available; cf. Lemma 4.6 and Remark 4.7. To overcome this difficulty, we will replace
G\prime \prime by

(4.8) \~G(\=u; v, v) := \alpha 

\int 
\{ x\in \Omega : | \=u(x)| \geq 

\surd 
2\beta 
\alpha , sign(v(x))=sign(\=u(x))\} 

v2 dx

in the second-order condition. Clearly, G\prime \prime (\=u; v, v) \geq \~G(\=u; v, v) \geq 0 holds. In addition,
we have the following lemma.

Lemma 4.13. Let u, v, h \in L2(\Omega ); then the inequalities

G(u+ h) - G(u) - G\prime (u;h) - 1

2
\~G(u;h, h) \geq 0,

G\prime (v;u - v) \leq  - G\prime (u; v  - u) - \~G(u; v  - u, v  - u) \leq  - G\prime (u; v  - u)

are satisfied.

Proof. The first claim is a consequence of Lemma 4.5. Let us prove the second
claim. From the convexity of g we get that

g\prime (v(x);u(x) - v(x)) + g\prime (u(x); v(x) - u(x))

\leq [g(u(x)) - g(v(x))] + [g(v(x)) - g(u(x))] = 0

for a.a. x \in \Omega . In addition, if | u(x)| \geq 
\sqrt{} 

2\beta 
\alpha and sign(v(x) - u(x)) = sign(u(x)), which

implies | v(x)| \geq | u(x)| \geq 
\sqrt{} 

2\beta 
\alpha , then from (4.1) we get

g\prime (v(x);u(x) - v(x)) + g\prime (u(x); v(x) - u(x)) =  - \alpha (v(x) - u(x))2.

Integrating the above inequalities, we infer

G\prime (v;u - v) +G\prime (u; v  - u) \leq  - \~G(u; v  - u, v  - u),

which is the second claim.
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3502 EDUARDO CASAS AND DANIEL WACHSMUTH

Theorem 4.14. Let \=u satisfy the necessary optimality conditions of (Pp.c.). As-
sume there exist \delta > 0 and \tau > 0 such that

F \prime \prime (\=u)v2 + \~G(\=u; v, v) \geq \delta \| zv\| 2L2(\Omega ) \forall v \in C\tau 
\=u .

Then there are \rho > 0 and \kappa > 0 such that

F (\=u) +G(\=u) + \kappa \| zu - \=u\| 2L2(\Omega ) \leq F (u) +G(u)

for all u \in B\rho (\=u) \cap Uad.

Proof. Without loss of generality we can assume that \tau <
\surd 
2\alpha \beta . We follow the

proof of [6, Theorem 3.1]. The positive number \rho will be determined in the course of
the proof. Take u \in B\rho (\=u) \cap Uad. Let us distinguish the following cases.

Case 1: u - \=u \not \in E\tau 
\=u. Then we can expand and use the property of E\tau 

\=u to estimate
with some \theta \in (0, 1)

F (u) +G(u) - (F (\=u) +G(\=u))

\geq F \prime (\=u)(u - \=u) +G\prime (\=u;u - \=u) + (F \prime (\=u+ \theta (u - \=u)) - F \prime (\=u))(u - \=u)

> \tau \| zu - \=u\| L2(\Omega )  - \rho \| F \prime (\=u+ \theta (u - \=u)) - F \prime (\=u)\| L2(\Omega ).

According to Theorem 2.1, there is \rho \prime > 0 and C > 0 such that

\| F \prime (\=u+ \theta (u - \=u)) - F \prime (\=u)\| L2(\Omega ) \leq C\| zu - \=u\| L2(\Omega )

if u \in B\rho \prime (\=u). Let \rho 1 := min(\rho \prime , \tau 
2C ). Then for \rho \in (0, \rho 1), we obtain

\rho \| F \prime (\=u+ \theta (u - \=u)) - F \prime (\=u)\| L2(\Omega ) \leq 
\tau 

2
\| zu - \=u\| L2(\Omega ),

which proves

F (u) +G(u) - (F (\=u) +G(\=u)) \geq \tau 

2
\| zu - \=u\| L2(\Omega ).

By Theorem 2.3, there is c > 0 such that

(4.9) \| zu - \=u\| 2L2(\Omega ) \leq c\rho \| zu - \=u\| L2(\Omega ),

which finishes the proof of this case.
Case 2: u - \=u \in C\tau 

\=u . Using Lemma 4.13, we can expand with \theta \in (0, 1)

F (u) +G(u) - (F (\=u) +G(\=u))

\geq 1

2
F \prime \prime (\=u)(u - \=u)2 +

1

2
\~G(\=u;u - \=u, u - \=u) +

1

2
(F \prime \prime (\=u+ \theta (u - \=u)) - F \prime \prime (\=u))(u - \=u)2

\geq \delta 

2
\| zu - \=u\| 2L2(\Omega ) +

1

2
(F \prime \prime (\=u+ \theta (u - \=u)) - F \prime \prime (\=u))(u - \=u)2.

By Theorem 2.2, there is \rho 2 > 0 such that

| (F \prime \prime (\=u+ \theta (u - \=u)) - F \prime \prime (\=u))(u - \=u)2| \leq \delta 

2
\| zu - \=u\| 2L2(\Omega )

holds for all u \in B\rho 2(\=u) \cap Uad. This implies

F (u) +G(u) - (F (\=u) +G(\=u)) \geq \delta 

4
\| zu - \=u\| 2L2(\Omega ).
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Case 3: u  - \=u \in E\tau 
\=u \setminus D\tau 

\=u. Let \Omega \=u,u - \=u be as in Lemma 4.12; i.e., it is the set of
points where u - \=u violates the pointwise conditions in the definition of D\tau 

\=u. Then we
split u  - \=u = v + w with v := (1  - \chi \Omega \=u,u - \=u

)(u  - \=u) \in D\tau 
\=u and w := \chi \Omega \=u,u - \=u

(u  - \=u).
Then Lemma 4.12 implies

(4.10) F \prime (\=u)w +G\prime (\=u;w) \geq \tau \| w\| L1(\Omega ).

In the next step, we show that there exists \tau \prime \in (0, \tau ] such that if u  - \=u \in E\tau \prime 

\=u , then
v \in E\tau \prime 

\=u \subset E\tau 
\=u . Using Theorem 2.3, we deduce with (4.10)

F \prime (\=u)w +G\prime (\=u;w) \geq c\tau \| zw\| L2(\Omega )

for c\tau > 0. Take \tau \prime := min(\tau , c\tau ). Suppose u - \=u \in E\tau \prime 

\=u . Since v and w have disjoint
support, it holds that

G\prime (\=u;u - \=u) = G\prime (\=u; v + w) = G\prime (\=u; v) +G\prime (\=u;w).

Then we obtain

F \prime (\=u)v +G\prime (\=u; v) = F \prime (\=u;u - \=u) +G\prime (\=u;u - \=u) - F \prime (\=u)w  - G\prime (\=u;w)

\leq \tau \prime \| zu - \=u\| L2(\Omega )  - c\tau \| zw\| L2(\Omega )

\leq \tau \prime \| zv\| L2(\Omega ) + (\tau \prime  - c\tau )\| zw\| L2(\Omega ) \leq \tau \prime \| zv\| L2(\Omega ),

and v \in E\tau \prime 

\=u follows. We now study the two cases u - \=u \in E\tau \prime 

\=u and u - \=u \not \in E\tau \prime 

\=u .
Case 3a: u  - \=u \in E\tau 

\=u \setminus D\tau 
\=u and u  - \=u \in E\tau \prime 

\=u . As argued above, this implies
v \in E\tau \prime 

\=u \subset E\tau 
\=u and v \in D\tau 

\=u \cap E\tau 
\=u . Hence the second-order condition applies to v.

Using Lemma 4.13, (4.3), and (4.10) above, we find

F (u) +G(u) - (F (\=u) +G(\=u))

\geq F \prime (\=u)(v + w) +
1

2
F \prime \prime (\=u)(v + w)2 +

1

2
(F \prime \prime (u\theta ) - F \prime \prime (\=u))(v + w)2

+G\prime (\=u; v + w) +
1

2
\~G(\=u; v, v)

\geq c\tau \| zw\| L2(\Omega ) +
\delta 

2
\| zv\| 2L2(\Omega )

+ F \prime \prime (\=u)(v, w) +
1

2
F \prime \prime (\=u)w2 +

1

2
(F \prime \prime (u\theta ) - F \prime \prime (\=u))(v + w)2.

Due to (2.6), there is M > 0 such that

| F \prime \prime (\=u)(v, w)| \leq M\| zv\| L2(\Omega )\| zw\| L2(\Omega ) \leq 
\delta 

8
\| zv\| 2L2(\Omega ) +

2M2

\delta 
\| zw\| 2L2(\Omega ).

By Theorem 2.2, there is \rho 3a > 0 such that

| (F \prime \prime (u\theta ) - F \prime \prime (\=u))(v + w)2| \leq \delta 

4
(\| zv\| 2L2(\Omega ) + \| zw\| 2L2(\Omega ))

for all u \in B\rho 3a
(\=u) \cap Uad. Collecting these estimates yields with some K > 0

F (u) +G(u) - (F (\=u) +G(\=u)) \geq (c\tau  - K\| zw\| L2(\Omega ))\| zw\| L2(\Omega ) +
\delta 

8
\| zv\| 2L2(\Omega ).

Decreasing \rho 3a if necessary, we can achieve c\tau  - K\| zw\| L2(\Omega ) \geq \delta 
8\| zw\| L2(\Omega ). Using

(4.9) and \| zw\| 2L2(\Omega ) + \| zv\| 2L2(\Omega ) \geq 
1
2\| zu - \=u\| 2L2(\Omega ) concludes this case.
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Case 3b: u - \=u \in E\tau 
\=u \setminus D\tau 

\=u and u - \=u \not \in E\tau \prime 

\=u . This case was already studied (with
different parameters) in Case 1, proving optimality in a ball B\rho 3b

(\=u).
Taking the \rho := min(\rho 1, \rho 2, \rho 3a, \rho 3b) proves the claim.

Corollary 4.15. Under the assumptions of Theorem 4.14, there exists \rho \prime > 0
such that

F (\=u) +G(\=u) +
\kappa 

2
\| yu  - \=y\| 2L2(\Omega ) \leq F (u) +G(u) \forall u \in B\rho \prime (\=u) \cap Uad.

Proof. This is a consequence of the inequality

\| yu  - \=y\| L2(\Omega ) \leq 2\| zu - \=u\| L2(\Omega ) \forall u \in B\rho \prime (\=u) \cap Uad

for \rho \prime > 0 small enough; see [2, Corollary 2.8].

Corollary 4.16. There is \beta \ast such that for all \beta > \beta \ast the control \=u = 0 is locally
optimal.

Proof. Let us denote by \varphi 0 the adjoint state associated to \=u := 0. Take \tau > 0, and
set \beta \ast such that \| \varphi 0\| L\infty (\Omega ) \leq 

\surd 
2\alpha \beta \ast  - \tau . Then for \beta > \beta \ast , it holds that D\tau 

\=u = \{ 0\} ,
and the second-order condition is trivially fulfilled. Therefore, \=u = 0 is a local solution
of (Pp.c.).

Remark 4.17. In the proof of Theorem 4.14, we only used the following condition:

F \prime \prime (\=u)(u - \=u)2 +

\int 
\{ x:| \=u| \geq 

\surd 
2\beta 
\alpha ,| u| \geq 

\surd 
2\beta 
\alpha \} 

(u - \=u)2 dx \geq \delta \| zu - \=u\| 2L2(\Omega ) \forall u - \=u \in C\tau 
\=u .

Of course, the expression on the left-hand side is not a bilinear form.

Remark 4.18. Let us remark that a condition of the type

F \prime \prime (\=u)v2 + \~G(\=u; v, v) \geq \delta \| v\| 2L2(\Omega )

for test functions v in some cone cannot be expected to hold, as v \mapsto \rightarrow \~G(\=u; v2) is not
coercive on L2(\Omega ). Hence, we have to resort to the weaker condition, which is also
used in [2] for bang-bang control problems.

Theorem 4.19. Let \=u satisfy the necessary optimality conditions of (Pp.c.). As-
sume there exist \delta > 0 and \tau > 0 such that

F \prime \prime (\=u)v2 + \~G(\=u; v, v) \geq \delta \| zv\| 2L2(\Omega ) \forall v \in C\tau 
\=u .

Then \=u is an isolated stationary point of (Pp.c.).

Proof. We follow the proof of Theorem 4.14 above. We will show that there is
\rho > 0 such that B\rho (\=u) \cap Uad does not contain a stationary point of (Pp.c.) different
from \=u. The positive number \rho will be determined in the course of the proof. Take
u \in B\rho (\=u) \cap Uad, u \not = \=u. We will show that if \rho is small enough, then the inequality
F \prime (u)(\=u  - u) + G\prime (u; \=u  - u) < 0 holds, and u cannot be a stationary point. Let us
note that u \not = \=u implies zu - \=u \not = 0. Again, we will distinguish the following cases.

Case 1: u - \=u \not \in E\tau 
\=u. From the convexity of G we get that

G\prime (u; \=u - u) +G\prime (\=u;u - \=u) \leq [G(\=u) - G(u)] + [G(u) - G(\=u)] = 0.
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We use this inequality, the property of E\tau 
\=u , and Theorem 2.1 to estimate

F \prime (u)(\=u - u)+G\prime (u; \=u - u) \leq  - (F \prime (\=u)(u - \=u)+G\prime (\=u;u - \=u))+(F \prime (\=u) - F \prime (u))(u - \=u)

\leq (C\| u - \=u\| L2(\Omega )  - \tau )\| zu - \=u\| L2(\Omega ).

Clearly, this expression is negative if \rho < \rho 1 := \tau 
2C .

Case 2: u  - \=u \in C\tau 
\=u . By Lemma 4.13, we can expand with u\theta := \=u + \theta (u  - \=u),

\theta \in (0, 1),

F \prime (u)(\=u - u) +G\prime (u; \=u - u)

\leq  - (F \prime (\=u)(u - \=u) +G\prime (\=u;u - \=u)) - \~G(\=u;u - \=u, u - \=u) + (F \prime (\=u) - F \prime (u))(u - \=u)

\leq  - (F \prime \prime (\=u)(u - \=u)2 + \~G(\=u;u - \=u, u - \=u)) + (F \prime \prime (\=u) - F \prime \prime (u\theta ))(u - \=u)2

\leq  - \delta \| zu - \=u\| 2L2(\Omega ) + (F \prime \prime (\=u) - F \prime \prime (u\theta ))(u - \=u)2.

By Theorem 2.2, there is \rho 2 > 0 such that F \prime (u)(\=u  - u) + G\prime (u; \=u  - u) < 0 holds if
\rho < \rho 2.

Let us split u - \=u = v + w as in the proof of Theorem 4.14. Let \tau \prime be as in that
proof. Then it remains to consider the following two cases.

Case 3a: u  - \=u \in E\tau 
\=u \setminus D\tau 

\=u and u  - \=u \in E\tau \prime 

\=u . We obtain using Lemmas 4.12 and
4.13 with u\theta := \=u+ \theta (u - \=u), \theta \in (0, 1),

F \prime (u)(\=u - u) +G\prime (u; \=u - u)

\leq  - (F \prime (\=u)(u - \=u) +G\prime (\=u;u - \=u)) - \~G(\=u;u - \=u, u - \=u) + (F \prime (\=u) - F \prime (u))(u - \=u)

\leq  - c\tau \| zw\| L2(\Omega )  - F \prime \prime (\=u)(u - \=u)2  - \~G(\=u;u - \=u, u - \=u) + (F \prime \prime (\=u) - F \prime \prime (u\theta ))(u - \=u)2.

Arguing as in the proof of Theorem 4.14, we find

F \prime (u)(\=u - u) +G\prime (u; \=u - u) \leq  - (c\tau  - K\| zw\| L2(\Omega ))\| zw\| L2(\Omega )  - 
\delta 

8
\| zv\| 2L2(\Omega ),

where the right-hand side is negative for \rho < \rho 3a, since zu - \=u = zv + zw \not = 0.
Case 3b: u  - \=u \in E\tau 

\=u \setminus D\tau 
\=u and u  - \=u \not \in E\tau \prime 

\=u . This case is Case 1 with different
parameters, proving the claim in a ball B\rho 3b

(\=u).
Taking the \rho := min(\rho 1, \rho 2, \rho 3a, \rho 3b) proves the claim.

4.4. Second-order sufficient optimality condition for the original prob-
lem. We will use the sufficient conditions for (Pp.c.) to obtain sufficient optimality
conditions for (P). First, let us observe that stationary points of (P) are stationary
points of (Pp.c.) as well.

Lemma 4.20 ([14, Lemma 3.25]). Let \=u satisfy the PMP for (P). Then it is a
stationary point of (Pp.c.).

Let us notice that \=u is usually said to be a stationary point if it satisfies the first
order optimality conditions, namely inequality (4.3).

Lemma 4.21. Let \=u satisfy the PMP for (P). Then

g(\=u(x)) =
\alpha 

2
| \=u(x)| 2 + \beta | \=u(x)| 0

for almost all x \in \Omega .
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Proof. Consider first the case \alpha > 0. Then by Corollary 3.3, we have \=u(x) = 0 or

| \=u(x)| \geq min(
\sqrt{} 

2\beta 
\alpha , \gamma ) =

\sqrt{} 
2\beta 
\alpha . The claim follows using the implication (4.2). In the

case \alpha = 0, we have g(\=u(x)) = \beta | \=u(x)| 0 if and only if \=u(x) \in \{  - \gamma , 0, \gamma \} . The latter
inclusion is valid for almost all x due to Corollary 3.3.

Theorem 4.22. Let \=u satisfy the PMP for (P). Assume there exist \delta > 0 and
\tau > 0 such that

F \prime \prime (\=u)v2 + \~G(\=u; v, v) \geq \delta \| zv\| 2L2(\Omega ) \forall v \in C\tau 
\=u .

Then there are \rho > 0 and \kappa > 0 such that

J(\=u) + \kappa \| zu - \=u\| 2L2(\Omega ) \leq J(u)

for all u \in B\rho (\=u) \cap Uad. In addition, (B\rho (u) \cap Uad) \setminus \{ \=u\} does not contain a control
satisfying the PMP for (P).

The critical cones are defined in (4.5)--(4.7). The definition of \~G is in (4.8).

Proof. By Lemma 4.20, \=u is stationary for (Pp.c.). Theorem 4.14 implies that \=u
is a local minimum of (Pp.c.), and there are \kappa > 0 and \rho > 0 such that

F (\=u) +G(\=u) + \kappa \| zu - \=u\| 2L2(\Omega ) \leq F (u) +G(u)

for all u \in B\rho (u) \cap Uad. Take u \in B\rho (u) \cap Uad. Then we have the following:

J(\=u) + \kappa \| zu - \=u\| 2L2(\Omega ) = F (\=u) +G(\=u) + \kappa \| zu - \=u\| 2L2(\Omega ) \leq F (u) +G(u) \leq J(u),

where the first equality is due to Lemma 4.21, and the last inequality follows from
properties of the convex envelope.

By decreasing \rho if necessary, Theorem 4.19 yields that \=u is an isolated stationary
point for (Pp.c.). Since controls satisfying PMP for (P) are stationary for (Pp.c.) by
Lemma 4.20, the claim follows.

Analogously to Corollary 4.15 we have the following result.

Corollary 4.23. Under the assumptions of Theorem 4.22 there exists \rho \prime > 0
such that

J(\=u) +
\kappa 

2
\| yu  - \=y\| 2L2(\Omega ) \leq J(u) \forall u \in B\rho \prime (\=u) \cap Uad.

Let us briefly compare the bilinear forms that appear in the second-order necessary
and sufficient optimality. First, Theorem 3.7 states that

F \prime \prime (\=u)(v, v) + \alpha \| v\| 2L2(\Omega ) \geq 0

for all v \in C\=u, where the critical cone C\=u is given by

C\=u = \{ v \in TUad
(\=u) : v(x) = 0 if \=u(x) = 0 or \=\varphi (x) + \alpha \=u(x) \not = 0\} .

The sufficient condition in Theorem 4.22 is based on the following inequality:

F \prime \prime (\=u)v2 + \~G(\=u; v, v) \geq \delta \| zv\| 2L2(\Omega ) \forall v \in C\tau 
\=u .

Clearly, it holds that \alpha \| v\| 2L2(\Omega ) \geq \~G(\=u; v, v) for v \in C\=u, and the inequality is strict if

the conditions
\sqrt{} 

2\beta 
\alpha \leq | \=u(x)| < \gamma and sign(v(x)) \not = sign(\=u(x)) are satisfied on a set of

positive measure.

D
ow

nl
oa

de
d 

11
/2

3/
20

 to
 8

3.
40

.3
4.

9.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

CONTROL PROBLEMS WITH L0 TERM IN COST FUNCTIONAL 3507

REFERENCES

[1] E. Casas, Pontryagin's principle for optimal control problems governed by semilinear ellip-
tic equations, in Control and Estimation of Distributed Parameter Systems: Nonlinear
Phenomena (Vorau, 1993), Internat. Ser. Numer. Math. 118, Birkh\"auser, Basel, 1994,
pp. 97--114.

[2] E. Casas, Second order analysis for bang-bang control problems of PDEs, SIAM J. Control
Optim., 50 (2012), pp. 2355--2372, https://doi.org/10.1137/120862892.

[3] E. Casas, R. Herzog, and G. Wachsmuth, Optimality conditions and error analysis of semi-
linear elliptic control problems with L1 cost functional, SIAM J. Optim., 22 (2012), pp. 795--
820, https://doi.org/10.1137/110834366.

[4] E. Casas, R. Herzog, and G. Wachsmuth, Analysis of spatio-temporally sparse optimal
control problems of semilinear parabolic equations, ESAIM Control Optim. Calc. Var., 23
(2017), pp. 263--295, https://doi.org/10.1051/cocv/2015048.

[5] E. Casas and M. Mateos, Optimal control of partial differential equations, in Computational
Mathematics, Numerical Analysis and Applications, M. Mateos and P. Alonso, eds., SEMA
SIMAI Springer Ser. 13, Springer, Cham, 2017, pp. 3--59.

[6] E. Casas and M. Mateos, Critical cones for sufficient second order conditions in PDE con-
strained optimization, SIAM J. Optim., 30 (2020), pp. 585--603, https://doi.org/10.1137/
19M1258244.

[7] C. Clason, K. Ito, and K. Kunisch, A convex analysis approach to optimal controls with
switching structure for partial differential equations, ESAIM Control Optim. Calc. Var.,
22 (2016), pp. 581--609, https://doi.org/10.1051/cocv/2015017.

[8] C. Clason and K. Kunisch, Multi-bang control of elliptic systems, Ann. Inst. H. Poincar\'e Anal.
Non Lin\'eaire, 31 (2014), pp. 1109--1130, https://doi.org/10.1016/j.anihpc.2013.08.005.

[9] D. Gilbarg and N. Trudinger, Elliptic Partial Differential Equations of Second Order,
Springer-Verlag, Berlin, Heidelberg, 1983.

[10] R. Herzog, G. Stadler, and G. Wachsmuth, Directional sparsity in optimal control of
partial differential equations, SIAM J. Control Optim., 50 (2012), pp. 943--963, https:
//doi.org/10.1137/100815037.

[11] K. Ito and K. Kunisch, Optimal control with Lp(\Omega ), p \in [0, 1), control cost, SIAM J. Control
Optim., 52 (2014), pp. 1251--1275, https://doi.org/10.1137/120896529.

[12] G. Stadler, Elliptic optimal control problems with L1-control cost and applications for the
placement of control devices, Comput. Optim. Appl., 44 (2009), pp. 159--181, https://doi.
org/10.1007/s10589-007-9150-9.

[13] G. Stampacchia, Le probl\`eme de Dirichlet pour les \'equations elliptiques du second ordre \`a
coefficients discontinus, Ann. Inst. Fourier (Grenoble), 15 (1965), pp. 189--258.

[14] D. Wachsmuth, Iterative hard-thresholding applied to optimal control problems with L0(\Omega )
control cost, SIAM J. Control Optim., 57 (2019), pp. 854--879, https://doi.org/10.1137/
18M1194602.

D
ow

nl
oa

de
d 

11
/2

3/
20

 to
 8

3.
40

.3
4.

9.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s

https://doi.org/10.1137/120862892
https://doi.org/10.1137/110834366
https://doi.org/10.1051/cocv/2015048
https://doi.org/10.1137/19M1258244
https://doi.org/10.1137/19M1258244
https://doi.org/10.1051/cocv/2015017
https://doi.org/10.1016/j.anihpc.2013.08.005
https://doi.org/10.1137/100815037
https://doi.org/10.1137/100815037
https://doi.org/10.1137/120896529
https://doi.org/10.1007/s10589-007-9150-9
https://doi.org/10.1007/s10589-007-9150-9
https://doi.org/10.1137/18M1194602
https://doi.org/10.1137/18M1194602

	Introduction
	Assumptions and preliminary results
	Necessary optimality conditions
	Pontryagin's maximum principle
	Second-order necessary optimality conditions
	Study of a reduced problem

	Second-order sufficient optimality conditions
	Partially convexified problem
	Second-order analysis of G
	Second-order optimality conditions for the partially convexified problem
	Second-order sufficient optimality condition for the original problem

	References

