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Abstract. In this paper, we prove the structural stability of the transonic shocks for

three dimensional axisymmetric Euler system with swirl velocity under the perturbations

for the incoming supersonic flow, the nozzle boundary, and the exit pressure. Compared

with the known results on the stability of transonic shocks, one of the major difficulties for

the axisymmetric flows with swirls is that corner singularities near the intersection point of

the shock surface and nozzle boundary and the artificial singularity near the axis appear

simultaneously. One of the key points in the analysis for this paper is the introduction of

an invertible Lagrangian transformation which can straighten the streamlines in the whole

nozzle and help to represent the solutions of transport equations explicitly.

1. Introduction and main results

The three-dimensional steady inviscid gas motion is governed by the following compressible

Euler system 
div (ρu) = 0,

div (ρu⊗ u + PIn) = 0,

div (ρ(1
2
|u|2 + e)u + Pu) = 0,

(1)

where u = (u1, u2, u3), ρ, P , and e stand for the velocity, density, pressure, and internal

energy, respectively. Suppose that the gas is polytropic. Then the equation of state and the

internal energy are of the form

(2) P = Aργe
S
cv and e =

P

(γ − 1)ρ
,

respectively, where γ ≥ 1, A, and cv are positive constants, and S is called the specific

entropy. The system (1) is a hyperbolic system for supersonic flows (Ma > 1), a hyperbolic-

elliptic coupled system for subsonic flows (Ma < 1), and degenerate at sonic point (i.e.
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Ma = 1), respectively, where Ma = |u|
c(ρ,S)

is called the Mach number of the flows with

c(ρ, S) =
√
∂ρP (ρ, S) called the local sound speed.

In this paper, we are interested in the basic transonic shock problem in a De Laval nozzle

described by Courant and Friedrichs ( [11, Page 386]): given appropriately large receiver

pressure Pe, if the upstream flow is still supersonic behind the throat of the nozzle, then

at a certain place in the diverging part of the nozzle a shock front intervenes and the gas

is compressed and slowed down to subsonic speed. The position and the strength of the

shock front are automatically adjusted so that the end pressure at the exit becomes Pe.

The stability of transonic shocks in nozzles is a fundamental problem in gas dynamics that

have been studied extensively in various situations. The early studies for transonic flows, in

particular for quasi-one dimensional models, can be found in [3, 12, 24]. The structural sta-

bility of transonic shocks for multidimensional steady potential flows in nozzles was studied

in [7,27,28]. It was showed in [27,28] that the stability of transonic shock for potential flows

is usually ill-posed under the perturbation of the exit pressure. Later on, it was proved that

the transonic shock problem in the flat nozzle with small perturbations is either ill-posed

under general perturbations of the exit pressure or well-posedness if the exit pressure satis-

fies a special constraint, see [8–10,19,21] and the references therein. There have been many

interesting results on transonic shock problems in a nozzle for different models with various

exit boundary conditions, for example, the non-isentropic potential model, the exit boundary

condition for the normal velocity, the spherical flows without boundary, etc, see [1, 5, 6, 23]

and references therein. The well-posedness of the transonic shock problem was first estab-

lished in a special class of two dimensional divergent nozzle under the perturbations for the

exit pressure in [16]. Later on, the results were generalized to the problem in general two

dimensional divergent nozzles, see [17, 20]. In particular, in [20], the Courant-Friedrich’s

transonic shock in a two dimensional straight divergent nozzle is shown to be structurally

stable under generic perturbations for both the nozzle shape and the exit pressure, and

optimal regularity of solutions are also obtained. Such a structural stability also holds for

perturbations of incoming supersonic flows [25]. The key idea there is to introduce a La-

grangian transformation to straighten the streamlines and reduce the Euler system with the

shock to a second order elliptic equation with a nonlocal term and an unknown parameter

together with an ODE for the shock front. In [18,19], the existence and stability of transonic

shock for three dimensional axisymmetric flows without swirl in a conic nozzle was proved

to be structurally stable under suitable perturbations of the exit pressure.

In this paper, we study the stability of transonic shocks for 3D axisymmetric flows with

swirls under the perturbations of the exit pressure, the nozzle wall, and supersonic incoming
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flows. First, let us introduce the standard spherical coordinates
x1 = r cos θ,

x2 = r sin θ cosϕ,

x3 = r sin θ sinϕ

and


er = (cos θ, sin θ cosϕ, sin θ sinϕ)t,

eθ = (− sin θ, cos θ cosϕ, cos θ sinϕ)t,

eϕ = (0,− sinϕ, cosϕ)t.

Let u = U1er + U2eθ + U3eϕ. The three dimensional axisymmetric Euler system can be

written as

(3)



∂r(r
2ρU1 sin θ) + ∂θ(rρU2 sin θ) = 0,

ρU1∂rU1 +
1

r
ρU2∂θU1 + ∂rP −

ρ(U2
2 + U2

3 )

r
= 0,

ρU1∂rU2 +
1

r
ρU2∂θU2 +

1

r
∂θP +

ρU1U2

r
− ρU2

3

r
cot θ = 0,

ρU1∂r(rU3 sin θ) +
1

r
ρU2∂θ(rU3 sin θ) = 0,

ρU1∂rS +
1

r
ρU2∂θS = 0.

Suppose that θ0 ∈ (0, π
2
), r1, r2(> r1) are fixed positive constants. Let Ωb = {(r, θ) : r ∈

(r1, r2), θ ∈ [0, θ0)} be a straight divergent nozzle and Γb = ∂Ωb be its boundary.

Γ

Γb

S

Γo

Γen

Γa
r1 rb r2

Figure 1. The straight and perturbed nozzles

Suppose that the incoming supersonic flow is prescribed at the inlet r = r1, i.e.,

(4) u−(x) = U−b (r1)er, P−b (x) = P−b (r1) > 0, S−b (x) = S−b , at r = r1,

where U−b (r1) > c(ρ−b (r1), S−b ) > 0 and S−b is a constant. There exist two positive constants

P1 and P2 which depend only on the incoming supersonic flows and the nozzle, such that if

the pressure Pe ∈ (P1, P2) is given at the exit r = r2, then there exists a unique piecewise
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smooth spherical symmetric transonic shock solution

Ψb(x) = (ub, Pb, Sb)(x) =

{
Ψ−b (x) := (U−b (r), 0, 0, P−b (r), S−b ), in Ω−b

Ψ+
b (x) := (U+

b (r), 0, 0, P+
b (r), S+

b ), in Ω+
b

(5)

to (1) with a shock front located at r = rb ∈ (r1, r2), where

(6) Ω−b = Ωb ∩ {r ∈ (r1, rb)} and Ω+
b = Ωb ∩ {r ∈ (rb, r2)}.

Across the shock, the Rankine-Hugoniot conditions and the physical entropy condition are

satisfied:

(7) [ρUb]
∣∣∣
r=rb

= 0, [ρbU
2
b + Pb]

∣∣∣
r=rb

= 0, [B]
∣∣∣
r=rb

= 0, S+
b > S−b ,

where B = |u|2
2

+e+ P
ρ

is called the Bernoulli function and [g]
∣∣∣
r=rb

:= g(rb+)−g(rb−) denotes

the jump of g at r = rb. Later on, this special solution, Ψb, will be called the background

solution. Clearly, one can extend the supersonic and subsonic parts of Ψb in a natural way,

respectively. With an abuse of notations, we still call the extended subsonic and supersonic

solutions Ψ+
b and Ψ−b , respectively. One can refer to [11, Section 147] or [29, Theorem 1.1]

for more details of this spherical symmetric transonic shock solution. The main goal of

this paper is to establish the structural stability of this spherical symmetric transonic shock

solution under axisymmetric perturbations of the incoming supersonic flows, the nozzle walls,

and the exit pressure.

The perturbed nozzle is Ω = {(r, θ) : r1 < r < r2, 0 ≤ θ ≤ θ0 + εf(r)}, where ε is a small

positive constant and f ∈ C2,α([r1, r2]) satisfies

f(r1) = f ′(r1) = 0.(8)

Suppose that the incoming supersonic flow at the inlet r = r1 is given by

(9) Ψ
∣∣∣
r=r1

:= (U−1 , U
−
2 , U

−
3 , P

−, S−)
∣∣∣
r=r1

= Ψ−en = Ψ−b + εΨp(θ),

where

(10) Ψp(θ) = (U−1,p, U
−
2,p, U

−
3,p, P

−
p , S

−
p )(θ) ∈ (C2,α([0, θ0]))5

The flow satisfies the slip condition u · n=0 on the nozzle wall, where n is the outer normal

of the nozzle wall. In terms of spherical coordinates, the slip boundary condition for the

axisymmetric flows can be written as

U2 = εrf ′(r)U1 on Γ := {(r, θ) : θ = θ0 + εf(r), r1 ≤ r ≤ r2}.(11)

At the exit of the nozzle, the end pressure is prescribed by

P (x) = Pe + εP0(θ) at Γo := {(r2, θ) : θ ∈ (0, θ0)},(12)
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here P0 ∈ C1,α([0, 2θ0]) (in fact, what is needed in this paper is that P0 is a C1,α function in

a region slightly larger than [0, θ0]).

Since the steady Euler system for supersonic flow is hyperbolic, if the incoming data

satisfies the following compatibility conditionsU−2,p(0) = U−3,p(0) = d2

dθ2
U−2,p(0) = d

dθ
P−p (0) = d

dθ
U−3,p(0) = d

dθ
S−p (0) = 0,

U−2,p(θ0) = 0, d
dθ
P−p (θ0) = (U−3,p(θ0))2 cot θ0,

(13)

then the problem for the system (3) together with (9) and (11) can be solved by the charac-

teristic method and Picard iteration (see [15]). Furthermore, for small ε > 0, there exists a

unique C2,α(Ω) solution Ψ− = (U−1 , U
−
2 , U

−
3 , P

−, S−)(r, θ) to (1), which does not depend on

ϕ and satisfies the following properties

‖(U−1 , U−2 , U−3 , P−, S−)− (U−b , 0, 0, P
−
b , S

−
b )‖C2,α(Ω) ≤ C0ε,(14)

and

U−2 = U−3 =
∂

∂θ
(U−1 , U

−
3 , P

−, S−) =
∂2

∂θ2
U−2 = 0, at Γa := {(r, 0) : r1 < r < r2}.(15)

Now we are looking for a piecewise smooth solution Ψ for (3) supplemented with the

boundary conditions (9), (11), and (12), which jumps only at a shock front at S = {(r, θ) :

r = ξ(θ), 0 ≤ θ ≤ θ0}. More precisely, Ψ has the form

(16) Ψ =

{
Ψ− = (U−1 , U

−
2 , U

−
3 , P

−, S−)(r, θ), if r1 < r < ξ(θ), 0 ≤ θ < θ0,

Ψ+ = (U+
1 , U

+
2 , U

+
3 , P

+, S+)(r, θ), if ξ(θ) < r < r2, 0 ≤ θ < θ0,

and the following Rankine-Hugoniot conditions on the shock surface S = {(r, θ)|r = ξ(θ)}
are satisfied

(17)



[ρU1]− ξ′(θ)
ξ(θ)

[ρU2] = 0,

[ρU2
1 + P ]− ξ′(θ)

ξ(θ)
[ρU1U2] = 0,

[ρU1U2]− ξ′(θ)
ξ(θ)

[ρU2
2 + P ] = 0,

[ρU1U3]− ξ′(θ)
ξ(θ)

[ρU2U3] = 0,

[e + 1
2
|U |2 + P

ρ
] = 0.

To state the main results, some weighted Hölder norms are needed. For any bounded

domain D ⊂ Rn, K ⊂ ∂D, and x ∈ D, define

δx := dist(x,K), and δx,x̃ := min(δx, δx̃).
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For any nonnegative integer m, α ∈ (0, 1) and σ ∈ R, define weighted Hölder norms by

[u]
(σ;K)
k,0;D :=

∑
|β|=k

sup
x∈D

δmax{|β|+σ,0}
x |Dβu(x)|, k = 0, 1, · · · ,m,

[u]
(σ;K)
m,α;D :=

∑
|β|=m

sup
x,x̃∈D,x 6=x̃

δ
max{m+α+σ,0}
x,x̃

|Dβu(x)−Dβu(x̃)|
|x− x̃|α ,

‖u‖(σ;K)
m,α;D :=

m∑
k=0

[u]
(σ;K)
k,0;D + [u]

(σ;K)
m,α;D.

C
(σ;K)
m,α;D denotes the space of all smooth functions whose ‖ · ‖(σ;K)

m,α;D norms are finite. One can

refer to [13, 14, 22] for the properties of these weighted Hölder spaces. Furthermore, Ω± are

defined as follows

Ω− := {(r, θ) : r1 ≤ r ≤ ξ(θ), 0 ≤ θ < θ0 + εf(r)} and Ω+ := Ω \ Ω−.

Theorem 1. Assume that Γ satisfies (8) and Ψen satisfies (13). There exists a small

ε0 > 0 depending only on the background solution Ψb and boundary data Ψp, f , P0 such

that if 0 ≤ ε < ε0, the problem (3) with (9), (11), (12), and (17) has a unique solution

Ψ+ = (U+
1 , U

+
2 , U

+
3 , P

+, S+)(r, θ) with the shock front S = {(r, θ) : r = ξ(θ), θ ∈ [0, θ∗]}
satisfying the following properties.

(i) The function ξ(θ) ∈ C(−1−α;{θ∗})
3,α;(0,θ∗)

satisfies

‖ξ(θ)− rb‖(−1−α;{θ∗})
3,α;(0,θ∗)

≤ C0ε,(18)

where (ξ(θ∗), θ∗) stands for the intersection circle of the shock surface with the nozzle

wall and C0 is a positive constant depending only on the supersonic incoming flow.

(ii) The solution Ψ+ = (U+
1 , U

+
2 , U

+
3 , P

+, S+)(r, θ) ∈ C(−α;Γw,s)
2,α;Ω+

satisfies the entropy con-

dition

(19) P+(ξ(θ)+, θ) > P−(ξ(θ)−, θ) for θ ∈ [0, θ∗]

and

‖Ψ+ − Ψ̂+
b ‖

(−α;Γw,s)
2,α;Ω+

≤ C0ε,(20)

where

Γw,s = {(r, θ) : ξ(θ) ≤ r ≤ r2, θ = θ0 + εf(r)}.

In fact, if the nozzle boundary is straight and the exit pressure satisfies some further

compatibility conditions, we have the higher order regularity for both the flows and the

shock surface. This is our second main result.
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Theorem 2. Assume that the nozzle wall is straight, i.e., f(r) ≡ 0. If, in addition to (13),

the following compatibility conditions

P ′0(0) = P ′0(θ0) = 0,(21)

and

U−3,p(θ0) = 0,
d

dθ
(U−1,p, U

−
3,p, S

−
p )(θ0) = 0,(22)

hold then the system (3) in Ωb together with (9), (12), and the slip boundary conditions

U2(r, θ0) = 0, r ∈ [r1, r2].(23)

has a unique solution Ψ(r, θ) with the shock surface S = {(r, θ) : r = ξ(θ), θ ∈ [0, θ0]}
satisfying the following properties.

(i) The function ξ(θ) ∈ C3,α([0, θ0]) satisfies

‖ξ(θ)− rb‖C3,α([0,θ0]) ≤ C0ε,(24)

where C0 is a positive constant depending only on the supersonic incoming flow and

the background solutions.

(ii) Ψ+ = (U+
1 , U

+
2 , U

+
3 , P

+, S+)(r, θ) ∈ C2,α(R+) satisfies the entropy condition (19)

with θ∗ = θ0 and

‖Ψ(r, θ)−Ψ+
b (r, θ)‖C2,α(R+) ≤ C0ε,(25)

where R+ = {(r, θ) : ξ(θ) < r < r2, 0 < θ < θ0} is the subsonic region.

We make some comments on the key ingredients of the analysis in this paper. As is

well-known, the supersonic flow is fully determined in the whole nozzle when the data at

the entrance is given. Therefore, the transonic shock problem is reduced to a free bound-

ary problem in subsonic region where the unknown shock surface is a free boundary and

should be determined with the subsonic flow simultaneously, see [20]. In general, the opti-

mal boundary regularity for subsonic flow is Cα for some α ∈ (0, 1) (see [26, Remark 3.2 and

Lemma 3.3]), hence the streamline may not be uniquely determined. For two dimensional

problem, the strategy to overcome this difficulty is to introduce a Lagrangian transformation

to straighten the streamline. However, there is a singular term sin θ in the density equation

(cf. (3)) for axisymmetric flows. This makes the Lagrangian transformation (the one used

in [20]) not invertible near the axis θ = 0. Our key observation is that the singular term sin θ

is of order O(θ) so that there is a simple invertible Lagrangian transformation to straighten

the streamline. Although the density equation still preserves the conservation form and a

potential function as in [20] can be introduced, it is not easy to represent all the quantities

in terms of the potential function and the entropy because the function θ becomes a nonlocal
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and nonlinear term in the Lagrangian coordinates. Here we resort to the first order elliptic

system for the flow angle and the pressure and look for the solution in the function space

C
(−α;Γw,s)
2,α;Ω+

rather than the space C
(−α;Γw,s)
1,α;Ω+

used in [20]. The axisymmetric Euler system with

the shock front equation can be decomposed as a boundary value problem for a first order

elliptic system with a nonlocal term and a singular term together with some transport equa-

tions. Compared with the elliptic system derived in [19], the coefficients for the linearized

elliptic system for the angular velocity and pressure are smooth near the axis. One may

refer to Proposition 3 for more details. When the nozzle is a straight cone, even if the swirl

component of the velocity is not zero, the key issue is that U3 = ∂θU3 = 0 on the axis so

that the singular term
U2
3 cot θ

r
does not cause any essential difficulty.

The rest of this paper is organized as follows. In Section 2, we introduce a new invertible

Lagrangian transformation and reformulate the transonic shock problem in the new coordi-

nates. Then the Euler system is decomposed as an elliptic system of the flow angle and the

pressure together with the transport equations for the entropy, the swirl velocity, and the

Bernoulli function. An iteration scheme is developed in Section 3 to prove the existence and

uniqueness of the transonic shock problem. In the last section, an improved regularity of the

shock front and subsonic solutions is obtained if the nozzle is kept to be straight and some

further compatibility conditions are satisfied.

2. The reformulation of the transonic shock problem

In this section, we first introduce a Lagrangian transformation to rewrite the Euler system.

Then we use a transformation to fix the shock front so that the problem becomes a fixed

boundary problem.

2.1. Lagrangian formulation. As we mentioned before, in general, one can only expect

the Cα boundary regularity for the solution in subsonic region ( [26, Remark 3.2]). To avoid

the difficulty to determine the streamline uniquely, we introduce a Lagrangian transforma-

tion to straighten the streamline. Note that there is a singular factor sin θ in the density

equation of (3), the standard Lagragian coordinates used in [20] is not invertible near the

axis θ = 0. Observing that sin θ is of order O(θ) near θ = 0, there indeed exists a sim-

ple invertible Lagrangian coordinates so that the streamlines can be straightened. Define

(ỹ1, ỹ2) = (r, ỹ2(r, θ)) such that
∂ỹ2

∂r
= −rρ−U−2 sin θ,

∂ỹ2

∂θ
= r2ρ−U−1 sin θ,

ỹ2(r1, 0) = 0,

and


∂ỹ2

∂r
= −rρ+U+

2 sin θ,

∂ỹ2

∂θ
= r2ρ+U+

1 sin θ,

ỹ2(r1, 0) = 0

(26)
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for (r, θ) ∈ Ω− and Ω+, respectively. It is clear that ỹ2 ≥ 0 in Ω as long as U±1 > 0 in Ω±.

On the axis θ = 0 and the nozzle wall Γ, one has

d

dr
ỹ2(r, 0) = 0 and

d

dr
ỹ2(r, θ0 + εf(r)) = 0.

Without loss of generality, assume that

ỹ2(r, 0) = 0 for all r ∈ [r1, r2].

Then there exist two positive constants M and M1 satisfying

ỹ2(r, θ0 + εf(r)) = M2 for r ∈ [r1, r∗] and ỹ2(r, θ0 + εf(r)) = M2
1 for r ∈ [r∗, r2]

respectively, where (r∗, θ0 + εf(r∗)) is the intersection point of the shock front S with the

nozzle wall Γ. We claim that ỹ2(r, θ) is well-defined in Ω̄ and belongs to Lip(Ω̄). Using the

first equation in (17) yields

d

dθ
ỹ2(ξ(θ) + 0, θ) =

d

dθ
ỹ2(ξ(θ)− 0, θ).

This implies M1 = M which can be computed as follows

M2 = r2
1

ˆ θ0

0

(ρ−U−1 )(r1, θ) sin θdθ > 0.

Set

y1 = r, y2 = ỹ
1
2
2 (r, θ).(27)

Under the transformation (27), the domains Ω, Ω−, and Ω+ are changed into D = (r1, r2)×
(0,M),

D− = {(y1, y2) : r1 < y1 < ψ(y2), y2 ∈ (0,M)}, and D+ = D \D−,(28)

respectively. Note that if (ρ±, U±1 , U
±
2 ) are close to the background solution (ρ±b , U

±
b , 0), then

there exist two positive constants C1 and C2 depending only on the background solution

such that

C1θ
2 ≤ ỹ2(r, θ) = r2

ˆ θ

0

(ρ±U±1 )(r, τ) sin τdτ ≤ C2θ
2.

Hence
√
C1θ ≤ y2(r, θ) ≤ √C2θ and the Jacobian of the transformation L : (r, θ) ∈ Ω̄ 7→

(y1, y2) = (r, y2(r, θ)) ∈ D̄ satisfies

det

(
∂y1
∂r

∂y1
∂θ

∂y2
∂r

∂y2
∂θ

)
= det

(
1 0

− rρU2 sin θ
2y2

r2ρU1 sin θ
2y2

)
=
r2ρU1 sin θ

2y2

≥ C3 > 0,(29)

where C3 is a constant depending only on the background solution. Hence the inverse

transformation L−1 : (y1, y2) 7→ (r, θ) exists. To simplify the notations, we neglect the
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superscript “+” for the solutions in the subsonic region. Under the transformation (26), the

Euler system (3) can be written as

∂y1

(
2y2

y21ρU1 sin θ

)
− ∂y2

(
U2

y1U1

)
= 0,

∂y1(U1 + P
ρU1

)− y1 sin θ
2y2

∂y2(
PU2

U1
)− 2P

y1ρU1
− PU2 cos θ

y1ρU2
1 sin θ

− (U2
2 +U2

3 )

y1U1
= 0,

∂y1(y1U2) +
y21 sin θ

2y2
∂y2P − U2

3

U1
cot θ = 0,

∂y1(y1U3 sin θ) = 0,

∂y1B = 0.

(30)

The nozzle wall Γw,s is straightened to be Γw,y = (ψ(M), r2)×{M}. Suppose that the shock

front S and the flows ahead and behind S are denoted by y1 = ψ(y2) and (U±1 , U
±
2 , U

±
3 , P

±, S±)(y),

respectively. Then the Rankine-Hugoniot conditions on S, (17), become

2y2
ψ(y2) sin θ

[ 1
ρU1

] + ψ′(y2)[U2

U1
] = 0,

[U1 + P
ρU1

] + ψ′(y2)ψ(y2) sin θ
2y2

[PU2

U1
] = 0,

[U2]− ψ′(y2)ψ(y2) sin θ
2y2

[P ] = 0,

[U3] = 0,

[B] = 0,

(31)

where [g] = g(ψ(y2)+, y2)− g(ψ(y2)−, y2).

It should be emphasized that in terms of the new coordinates (y1, y2), θ becomes nonlinear

and nonlocal. Indeed, one has

∂θ

∂y1

=
U2

y1U1

,
∂θ

∂y2

=
2y2

y2
1ρU1 sin θ

, θ(y1, 0) = 0.(32)

Thus it holds that

θ(y1, y2) = arccos

(
1−
ˆ y2

0

2s

y2
1(ρU1)(y1, s)

ds

)
.(33)

For the background solution (ρ±b , U
±
b ), the similar Lagrangian transformation yields

∂θb
∂y2

=
2y2

y2
1(ρbUb)(y1) sin θ

=
2κby2

sin θb
,

where

(34) κb =
1

y2
1(ρbUb)(y1)

is a positive constant for any y1 ∈ [rb, r2]. Hence

θb(y2) = arccos(1− κby2
2).(35)
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2.2. The elliptic modes. Note that there is a singular factor cot θ in (30), which is also a

nonlinear and nonlocal term because of (33). In order to study the system (30), we need to

focus on the governing equations for the pressure and the flow angle. Denote $ = U2

U1
. Due

to the first equation in (30), the second and third equations in (30) can be written as

∂y1$ −
y1ρU1$ sin θ

2y2

∂y2$ −
$

y1

− $2

y1

cot θ +
y1 sin θ

2y2U1

∂y2P

− $

ρc2(ρ, S)
∂y1P −

U2
3

y1U2
1

cot θ = 0,

∂y1P −
ρc2(ρ, S)U2

1

y1(c2(ρ, S)− U2
1 )

y2
1ρU1 sin θ

2y2

∂y2$ −
y1ρc

2(ρ, S)U1$ sin θ

2y2(c2(ρ, S)− U2
1 )

∂y2P

− ρc2(ρ, S)U2
1

y1(c2(ρ, S)− U2
1 )

($2 +$ cot θ + 2)− ρc2(ρ, S)U2
3

y1(c2(ρ, S)− U2
1 )

= 0,

(36)

where one used the following equation for the entropy,

∂y1S = 0.(37)

In fact, the equation (37) can be obtained from (30) together with the definition of the

equation of the state (2). It follows from (11) and (12) that the corresponding boundary

conditions for $ and P read$(y1, 0) = 0, $(y1,M) = εy1f
′(y1), for any y1 ∈ [r1, r2],

P (r2, y2) = Pe + εP0(θ(r2, y2)), for any y2 ∈ [0,M ].
(38)

By the third equation in (31), one has

ψ′(y2) =
2y2

sin θ(ψ(y2), y2)

U2(ψ(y2), y2)− U−2 (ψ(y2), y2)

ψ(y2)(P (ψ(y2), y2)− P−(ψ(y2), y2))
.(39)

Substituting (39) into the first two equations in (31) yields that[ρU1] = ρU1ρ
−U−1

[U2]
[P ]

[
U2

U1

]
,

[ρU2
1 + P ] = −ρ−U−1 [U2]

[P ]

[
PU2

U1

]
+ (ρ(U1)2 + P )ρ−U−1

[U2]
[P ]

[
U2

U1

]
.

(40)

Furthermore, the last two equations in (31) are equivalent to

U3(ψ(y2), y2) = U−3 (ψ(y2), y2) and B(ψ(y2), y2) = B−(ψ(y2), y2).(41)

It follows from the Bernoulli’s law, the last equation in (30), that one can represent U1 as

U1 =

√√√√2B − U2
3 − 2A

1
γ γ

γ−1
P

γ−1
γ e

S
γcv

1 +$2
.
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Hence we can write ρU1 and ρU2
1 +P as smooth functions of P , S, B, U3, and $. Note that

(ρ+
b U

+
b )(rb) = (ρ−b U

−
b )(rb) and (ρ+

b (U+
b )2 + P+

b )(rb) = (ρ−b (U−b )2 + P−b )(rb)

Applying the Taylor’s expansion for (40) yields

a11(P (ψ(y2), y2)− P+
b (rb)) + a12(S(ψ(y2), y2)− S+

b )

= − ρ
+
b (rb)

U+
b (rb)

(B(ψ(y2), y2)−B+
b )− 2(ρ−b U

−
b )(rb)

rb
(ψ(y2)− rb) +R1,

a21(P (ψ(y2), y2)− P+
b (rb)) + a22(S(ψ(y2), y2)− S+

b )

= −2ρ+
b (rb)(B(ψ(y2), y2)−B+

b )− 2(ρ−b (U−b )2)(rb)

rb
(ψ(y2)− rb) +R2,

(42)

where

a11 =
(U+

b (rb))
2 − c2(ρ+

b (rb), S
+
b )

U+
b (rb)c2(ρ+

b (rb), S
+
b )

, a12 = −
(U+

b (rb))
2 + 1

γ−1
c2(ρ+

b (rb), S
+
b )

cvU
+
b (rb)c2(ρ+

b (rb), S
+
b )

P+
b (rb),

a21 =
(U+

b (rb))
2 − c2(ρ+

b (rb), S
+
b )

c2(ρ+
b (rb), S

+
b )

, a22 = −
(U+

b (rb))
2 + 2

γ−1
c2(ρ+

b (rb), S
+
b )

cvc2(ρ+
b (rb), S

+
b )

P+
b (rb)

and Ri = Ri(Φ
+(ψ(y2), y2)−Φ+

b (rb), ψ(y2)−rb,Φ−(ψ(y2), y2)−Φ−b (ψ(y2))) (i = 1, 2) denotes

the error term with

(43) Φ± :=(U±1 , $
±, U±3 , P

±, S±) and Φ±b := (U±b , 0, 0, P
±
b , S

±
b )

Later on, we denote Φ+ by Φ for simplicity. Furthermore, for i = 1 and 2, straightforward

computations give

(44) |Ri| ≤ C(|Φ(ψ(y2), y2)−Φ+
b (rb)|2 + |ψ(y2)− rb|2 + |Φ−(ψ(y2), y2)−Φ−b (ψ(y2))|).

It follows from (1) and (7) that B+
b = B−b . This, together with (41), yields

B(ψ(y2), y2)−B+
b = B−(ψ(y2), y2)−B−b .

Hence one has P (ψ(y2), y2)− P+
b (rb) = e1(ψ(y2)− rb) +R3,

S(ψ(y2), y2)− S+
b = e2(ψ(y2)− rb) +R4,

(45)

where Ri (i = 3, 4) satisfies the similar estimate as (44),

e1 =2
cv(ρ

−
b U
−
b )(rb)c

2(ρ+
b (rb), S

+
b )

rb((U
+
b (rb))2 − c2(ρ+

b (rb), S
+
b ))

(
U−b (rb)

(
(U+

b (rb))
2 +

1

γ − 1
c2(ρ+

b (rb), S
+
b )

)
− U+

b (rb)

(
(U+

b (rb))
2 +

2

γ − 1
c2(ρ+

b (rb), S
+
b )

))
,
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and

e2 =
2(γ − 1)cv

rb

(ρ−b U
−
b )(rb)

P+
b (rb)

(U−b (rb)− U+
b (rb)).(46)

Clearly, e2 > 0.

2.3. Fix the domain and the reformulation of the problem. To fix the shock front,

we introduce the following coordinate transformation

z1 =
y1 − ψ(y2)

r2 − ψ(y2)
N and z2 = y2 with N = r2 − rb.

Clearly, the domain D+ and the wall Γw,y are changed into

E+ = (0, N)× (0,M) and Γw,z = (0, N)× {M},

respectively. Define

(ρ̃+
b , Ũ

+
b , P̃

+
b )(z1) = (ρ+

b , U
+
b , P

+
b )(rb + z1),

(ρ̃, Ũ1, $̃, Ũ3, P̃ , S̃, B̃, θ̃)(z) = (ρ, U1, $, U3, P, S,B, θ)

(
ψ(z2) +

r2 − ψ(z2)

N
z1, z2

)
.

Set W := (W1,W2,W3,W4,W5,W6) with

W1(z) = Ũ1(z)− Ũ+
b (z1), W2(z) = $̃(z), W3(z) = Ũ3(z),

W4(z) = P̃ (z)− P̃+
b (z1), W5(z) = S̃(z)− S+

b , W6(z2) = ψ(z2)− rb,

and

(47) W♦
6 (z2) = rb +W6(z2), W#

6 (z1, z2) = rb + z1 +
N − z1

N
W6(z2).

In terms of the coordinates (z1, z2), the equation (39) becomes

W ′
6(z2) =

2z2

sin θ(0, z2)

(Ũ+
b (0) +W1(0, z2))W2(0, z2)− U−2 (W♦

6 (z2), z2)

W♦
6 (z2)((P̃+

b (0) +W4(0, z2))− P−(W♦
6 (z2), z2))

.(48)

It follows from the last equation in (30) and (37) that one has

∂z1W5 = 0 and ∂z1B̃ = 0, in E+.(49)

This, together with (41) and the second equation in (45), gives

(50)
W5(z) =W5(0, z2) = e2W6(z2)

+R4(Φ(W♦
6 (z2), z2)−Φ+

b (rb),W6(z2),Φ−(W♦
6 (z2), z2)−Φ−b (W♦

6 (z2))),

and

B(z)−B+
b = B(0, z2)−B+

b = B−(W♦
6 (z2), z2)−B−b .(51)
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It follows from the fourth equations in (30) and (31) that∂z1 [W
#
6 (z1, z2)W3 sin θ(z1, z2)] = 0,

W3(0, z2) = U−3 (W♦
6 (z2), z2).

(52)

This yields

W3(z) =
W♦

6 (z2)

W#
6 (z1, z2)

sin θ(0, z2)

sin θ(z1, z2)
U−3 (W♦

6 (z2), z2).(53)

Note that

U1(y1, y2) = (Ũ+
b +W1)

(
y1 −W♦

6 (y2)

N −W6(y2)
N, y2

)
.

Then it follows from (33) that

θ(z1, z2) = arccos(1− ϑ(z1, z2)),(54)

where

(55) ϑ(z1, z2) =

ˆ z2

0

2s

(W#
6 (z1, z2))2{%(W4,W5)(Ũ+

b +W1)}
(
W#

6 (z1,z2)−W♦6 (s)

N−W6(s)
N, s

)ds
with

(56) %(W4,W5) = A−
1
γ (P̃+

b +W4)
1
γ e−

S+
b

+W5
γcv .

The Bernoulli’s law (51) together with the Rankine-Hugoniot conditions (41) yields

(57)

{
1

2
(Ũ+

b +W1)2(1 +W 2
2 ) +

1

2
W 2

3 + h(P̃+
b +W4, S

+
b +W5)

}
(W♦

6 (z2), z2)

=B−(W♦
6 (z2), z2).

Since B−b = B+
b = 1

2
(Ũ+

b )2 + h(P̃+
b , S

+
b ), one has

(58)

W1 =
1

Ũ+
b

{
B−(W♦

6 (z2), z2)−B−b − [h(P̃+
b +W4, S

+
b +W5)− h(P̃+

b , S
+
b )]

}
− 1

2Ũ+
b

[W 2
1 + (Ũ+

b +W1)2W 2
2 +W 2

3 ].

Finally, we rewrite the system (36) in terms of W2 and W4. Note that

d

dz1

P̃+
b −

2γP̃+
b (Ũ+

b )2

(rb + z1)(c2(ρ̃+
b , S

+
b )− (Ũ+

b )2)
= 0.(59)
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Then straightforward calculations yield that

− 2γP̃ Ũ2
1(

ψ(z2) + r2−ψ(z2)
N

z1

)
(c2(ρ̃, S̃)− Ũ2

1 )

+
2γ

rb + z1

P̃+
b (Ũ+

b )2

c2(ρ̃+
b , S

+
b )− (Ũ+

b )2

= e3(z1)(B̃(z)−B+
b ) + e4(z1)W4 + e5(z1)W5 + ẽ6(z1)W6(z2) +R5(W),

where

e3(z1) =
4γP̃+

b c
2(ρ̃+

b , S
+
b )

c2(ρ̃+
b , S

+
b )− (Ũ+

b )2
,

e4(z1) =
2γ

(rb + z1)ρ̃+
b (c2(ρ̃+

b , S
+
b )− (Ũ+

b )2)
(ρ̃+
b (Ũ+

b )4 − P+
b (Ũ+

b )2 + 2P̃+
b c

2(ρ̃+
b , S

+
b )),

e5(z1) =
2γ(P̃+

b )2((Ũ+
b )2 + 2

γ−1
c2(ρ̃+

b , S
+
b ))

cv(rb + z1)ρ̃+
b (c2(ρ̃+

b , S
+
b )− (Ũ+

b )2)2
,

ẽ6(z1) =
2γ(N − z1)P̃+

b (Ũ+
b )2

N(rb + z1)2(c2(ρ̃+
b , S

+
b )− (Ũ+

b )2)
,

and R5 is quadratic with respect to W. Clearly, one has

e3, e4, e5 > 0.

Therefore, it follows from (36) that

(60)



∂z1W2 −
c2(ρ̃+

b , S
+
b ) + (Ũ+

b )2

(rb + z1)(c2(ρ̃+
b , S

+
b )− (Ũ+

b )2)
W2 +

rb + z1

Ũ+
b

sin θb(z2)

2z2

∂z2W4

+
rb + z1

Ũ+
b

z1 −N
N

d

dz1

P̃+
b

sin θb(z2)

2z2

W ′
6(z2) = F1(W,∇W,Φ− −Φ−b ),

∂z1W4 −
γP̃+

b (Ũ+
b )2

c2(ρ̃+
b , S

+
b )− (Ũ+

b )2

1

κb(rb + z1)

sin θb(z2)

2z2

(
∂z2W2 +

2κbz2 cos θb(z2)

sin2 θb(z2)
W2

)
+ e4(z1)W4(z) + e5(z1)W5(z) + e6(z1)W6(z2) = F2(W,∇W,Φ− −Φ−b )

where F1(W,∇W,Φ− −Φ−b ) and F2(W,∇W,Φ− −Φ−b ) are quadratic with respect to W

and ∇W and

e6(z1) = ẽ6(z1) +
1

N

d

dz1

P̃+
b (z1) =

2γr2P̃
+
b (Ũ+

b )2

N(rb + z1)2(c2(ρ̃+
b , S

+
b )− (Ũ+

b )2)
.
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Clearly, the system (60) should be supplemented with the following boundary conditions

(61)

W4(0, z2) = e1W6(z2) +R3(W(0, z2),Φ− −Φ−b ),

W2(z1, 0) = 0, for z1 ∈ [0, N ],

W2(z1,M) = εW#
6 (r1,M))f ′(W#

6 (r1,M)), for z1 ∈ [0, N ],

W4(N, z2) = εP0(θ(N, z2)), for z2 ∈ [0,M ].

Therefore, the original problem is equivalent to (48), (50), (53), (58), and (60)-(61).

3. Iteration scheme and Proof of Theorem 1

We are now in position to design an iteration scheme to prove Theorem 1. The approach

is motivated by [20]. Define

Ξδ =

{
W

∣∣∣∣∣ ‖|W|‖ ≤ δ; ∂z2Wj(z1, 0) = 0, j = 1, 3, 4, 5;

W2(z1, 0) = ∂2
z2
W2(z1, 0) = W5(z1, 0) = 0; W ′

6(0) = W
(3)
6 (0) = 0

}
,(62)

where

‖|W|‖ =
5∑
i=1

‖Wi‖(−α;Γw,z)
2,α;E+

+ ‖W6‖(−1−α;{M})
3,α;(0,M) .

Clearly, Ξδ is a complete metric space under the metric d(W,Ŵ) = ‖|W − Ŵ|‖. Given

any Ŵ ∈ Ξδ, we use an iteration to define a mapping with T Ŵ = W from Ξδ to itself by

choosing suitable small δ.

3.1. The iteration scheme for W6, W5, and W3. It follows from (48) that W6 is required

to satisfy the following equation

W ′
6(z2) = a

2z2

sin θb(z2)
W2(0, z2) +R11(Ŵ(0, z2),Φ−(Ŵ♦

6 (z2), z2)−Φ−b (Ŵ♦
6 (z2))),

where Ŵ♦
6 (z2) = Ŵ6(z2) + rb, R11 is quadratic with respect to Ŵ(0, z2), and

a =
Ũ+
b (0)

rb(P̃
+
b (0)− P−b (rb))

.(63)

Hence W6 can be solved as follows

W6(z2) = W6(M)− a
ˆ M

z2

2s

sin θb(s)
W2(0, s)ds+R12,(64)

where θb is defined in (35) and

R12(Ŵ,Φ− −Φ−b ) = −
ˆ M

z2

R11(Ŵ(0, s),Φ−(Ŵ♦
6 (s), s)−Φ−b (rb))ds.

We also note that for Ŵ ∈ Ξδ, R11(z1, 0) = ∂2
z2
R11(z1, 0) = 0 for any z1 ∈ [0, N ].



STABILITY OF TRANSONIC SHOCK 17

Since ∂z1W5 = 0, one has

W5(z) = W5(0, z2) = e2W6(z2) +R4(Ŵ,Φ− −Φ−b ),(65)

where e2 is defined in (46). It is easy to verify that ∂z2R4(z1, 0) = 0 for Ŵ ∈ Ξδ.

It follows from (53) that one defines

W3(z1, z2) =
Ŵ♦

6 (z2)

Ŵ#
6 (z1, z2)

sin θ̂(0, z2)

sin θ̂(z1, z2)
U−3 (Ŵ♦

6 (z2), z2),(66)

where Ŵ#
6 (z1, z2) = rb + z1 + N−z1

N
Ŵ6(z2) and θ̂(z1, z2) = arccos(1− ϑ̂(z1, z2)) with

(67) ϑ̂(z1, z2) =

ˆ z2

0

2s

(Ŵ#
6 (z1, z2))2

{
%(Ŵ4, Ŵ5)(Ũ+

b + Ŵ1)

}(
Ŵ#

6 (z1,z2)−Ŵ♦6 (s)

N−Ŵ6(s)
N, s

)ds,

where % is the function defined in (56). Note that
Ŵ#

6 (z1,z2)−Ŵ♦6 (s)

N−Ŵ6(s)
N may exceed the interval

[0, N ], hence we extend the functions Ŵ to a larger domain [−N, 2N ]× [0,M ] as follows

Ŵe(z1, z2) =


∑3

k=1 ckŴ(− z1
k
, z2), −N ≤ z1 < 0,∑3

k=1 ckŴ(2N−z1
k

, z2), N < z1 ≤ 2N,
(68)

where the constants ck (k = 1, 2, 3) satisfy the following algebraic relations

3∑
k=1

ck = 1, −
3∑

k=1

ck
k

= 1,
3∑

k=1

ck
k2

= 1.(69)

It is easy to see that the extended functions Ŵe belong to C2 as long as Ŵ ∈ C2. For ease

of notations, we still denote these extended functions by Ŵ.

3.2. The iteration scheme for W2 and W4. Substituting (64) and (65) into (60) yields

that W2 and W4 satisfy the following first order elliptic system with a nonlocal term and a
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parameter,

(70)

∂z1W2 − c2(ρ̃+b ,S
+
b )+(Ũ+

b )2

(rb+z1)(c2(ρ̃+b ,S
+
b )−(Ũ+

b )2)
W2 + rb+z1

Ũ+
b

sin θb(z2)
2z2

∂z2W4 + a rb+z1
Ũ+
b

z1−N
N

d
dz1
P̃+
b W2(0, z2)

= F3(Ŵ,∇Ŵ,Φ− −Φ−b ),

∂z1W4 − γP̃+
b (Ũ+

b )2

κb(rb+z1)(c2(ρ̃+b ,S
+
b )−(Ũ+

b )2)

sin θb(z2)
2z2

(
∂z2W2 + 2κbz2 cos θb(z2)

sin2 θb(z2)
W2

)
+ r4(z1)W4

+

(
e6(z1) + e2e5(z1)

)(
W6(M)− a

´M
z2

2s
sin θb(s)

W2(0, s)ds

)
= F4(Ŵ,∇Ŵ,Φ− −Φ−b ),

W4(0, z2) = e1

(
W6(M)− a

´M
z2

2s
sin θb(s)

W2(0, s)ds

)
+ e1R12 +R5(Ŵ(0, z2),Φ− −Φ−b ),

W2(z1, 0) = 0, z1 ∈ [0, N ],

W2(z1,M) = εŴ#
6 (M)f ′(Ŵ#

6 (M)), z1 ∈ [0, N ],

W4(N, z2) = εP0(θ̂(N, z2)), z2 ∈ [0,M ],

where F3(Ŵ,∇Ŵ,Φ− −Φ−b ) and F4(Ŵ,∇Ŵ,Φ− −Φ−b ) are quadratic with respect to W

and ∇W. Since the values Ŵ#
6 (z1,M) and θ̂(N, z2) may exceed the interval [rb, r2] and

[0, θ0 + εf(r2)], respectively, one can also extend the functions f and P0 smoothly to a larger

interval as in (68) and (69). The straightforward computations show

F3(Ŵ,∇Ŵ,Φ− −Φ−b )(z1, 0) = 0 and ∂z2F4(Ŵ,∇Ŵ,Φ− −Φ−b )(z1, 0) = 0.

To obtain the estimate for F3 and F4, we should be careful about the singular terms involving

sine and cotangent functions of θ̂(z) and θb(z2). Note that there exists κi(i = 1, 2) depending

only on the background solutions such that

κ1z2 ≤ θ̂(z) ≤ κ2z2 for any z ∈ E+.S

Since Ŵ2(z1, 0) = Ŵ3(z1, 0) = 0, it is easy to see that

3∑
j=2

‖Ŵ 2
j cot θ̂(z)‖(1−α;Γw,z)

1,α;E+
≤ C‖|Ŵ|‖2.(71)

Also by (67) and (35), one has

cos θ̂(z)− cos θb(z2) =
1

(rb + z1)2ρ̃+
b (z1)Ũ+

b (z1)
z2

2 − ϑ̂(z1, z2)

and

(72)

(cot θ̂(z)− cot θb(z2))Ŵ2(z) =
Ŵ2(z)

sin θb(z2)
(cos θ̂(z)− cos θb(z2))

+
cos θ̂(cos θ̂(z) + cos θb(z2))

sin θ̂(z) + sin θb(z2)

cos θ̂(z)− cos θb(z2)

sin θ̂(z) sin θb(z2)
Ŵ2(z).
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With the aid of (71), one has

4∑
j=3

‖Fi(Ŵ,∇Ŵ,Φ− −Φ−b )‖(1−α;Γw,z)
1,α;E+

≤ C(ε+ ‖|Ŵ|‖2).(73)

The crucial part for the analysis is to get the existence of solutions for the problem (70).

Set

λ1(z1) = exp

(
−
ˆ z1

0

c2(ρ̃+
b , S

+
b ) + (Ũ+

b )2

(rb + z1)(c2(ρ̃+
b , S

+
b )− (Ũ+

b )2)
ds

)
,

λ2(z1) =
rb + z1

Ũ+
b (z1)

λ1(z1), λ3(z1) = a
rb + z1

Ũ+
b (z1)

(z1 −N)∂z1P̃
+
b

N
λ1(z1),

λ4(z1) = exp

( ˆ z1

0

e3(s)ds

)
, λ5(z1) =

γP̃+
b (Ũ+

b )2

κb(rb + z1)(c2(ρ̃+
b , S

+
b )− (Ũ+

b )2)
λ4(z1),

λ6(z1) =

(
e6(z1) + e2e4(z1)

)
λ4(z1).

It is clear that

(74) λ1, λ2, λ4 > 0 and λ3 ≤ 0.

In terms of λi (i = 1, · · · , 6), the problem (70) can be rewritten as

∂z1(λ1(z1)W2) + sin θb(z2)
2z2

∂z2(λ2(z1)W4) + λ3(z1)W2(0, z2) = G1(z),

∂z1(λ4(z1)W4)− λ5(z1) sin θb(z2)
2z2

(∂z2W2 + 2κbz2 cos θb(z2)

sin2 θb(z2)
W2)

+λ6(z1)

(
W6(M)− a

´M
z2

2s
sin θb(s)

W2(0, s)ds

)
= G2(z),

W4(0, z2) = e1a

(
W6(M)

a
−
´M
z2

2s
sin θb(s)

W2(0, s)ds

)
+G3(z2),

W4(N, z2) = εG4(z2),

W2(z1, 0) = 0, W2(z1,M) = εG5(z1),

(75)

where a is given in (63) and

G1(z) = λ1(z1)F3(Ŵ,∇Ŵ,Φ− −Φ−b ), G2(z) = λ4(z1)F4(Ŵ,∇Ŵ,Φ− −Φ−b ),

G3(z2) = e1R12(Ŵ(0, z2),Φ− −Φ−b ) +R5(Ŵ(0, z2)), G4(z2) = P0(θ̂(N, z2)),

G5(z1) = Ŵ#
6 (z1,M)f ′(Ŵ#

6 (z1,M)).
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Note that the first equation in (75) can be written as follows

∂z1

(
2z2

sin θb(z2)
λ1(z1)W2

)
+ ∂z2

{
λ2(z1)W4 + λ3(z1)

(
W6(M)

a
−
ˆ M

z2

2s

sin θb(s)
W2(0, s)ds

)
−
ˆ M

z2

G1(z1, s)ds

}
= 0.

Hence there exists a potential function φ satisfying

(76)


∂z1φ = λ2(z1)W4 + λ3(z1)

(
W6(M)

a
−
ˆ M

z2

2s

sin θb(s)
W2(0, s)ds

)
−
ˆ M

z2

G1(z1, s)ds,

∂z2φ = −λ1(z1)
2z2

sin θb(z2)
W2(z), φ(0,M) = 0.

Therefore, W2 and W4 can represented in terms of φ as follows


W2(z) = − 1

λ1(z1)

sin θb(z2)

2z2

∂z2φ,

W4(z) =
∂z1φ

λ2(z1)
− λ3(z1)

λ2(z1)

(
W6(M)

a
− φ(0, z2)

)
+

1

λ2(z1)

ˆ M

z2

G1(z1, s)ds.

(77)

Now, substituting (77) into the second equation and the boundary conditions in (75) gives

(78)

∂z1

(
λ4(z1)
λ2(z1)

∂z1φ

)
−
{
aλ6(z1) + d

dz1

(
λ4(z1)λ3(z1)

λ2(z1)

)}
(φ(0, z2)− W6(M)

a
)

)
+λ5(z1)
λ1(z1)

(
sin θb(z2)

2z2
∂z2

(
sin θb(z2)

2z2
∂z2φ

)
+ κb cos θb(z2)

2z2
∂z2φ

)
= ∂z2

( ´ z2
0
G2(z1, s)ds

)
− ∂z1

(
λ4(z1)
λ2(z1)

´M
z2
G1(z1, s)ds

)
,

∂z1φ(0, z2) + (aλ2(0)e1 + λ3(0))

(
φ(0, z2)− W6(M)

a

)
= λ2(0)G3(z2)−

´M
z2
G1(0, s)ds,

∂z1φ(N, z2) = ελ2(N)P0(θ̂(N, z2))−
´M
z2
G1(N, s)ds,

∂z2φ(z1, 0) = 0,

∂z2φ(z1,M) = − 2M
sin θb(M)

λ1(z1)ε(Ŵ#
6 (z1,M))f ′(Ŵ#

6 (z1,M)).
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To simplify the notations, we define

a1(z1) =
λ4(z1)

λ2(z1)
, a2(z1) =

λ5(z1)

λ1(z1)
, a3(z1) =

{
aλ6(z1) +

d

dz1

(
λ4(z1)λ3(z1)

λ2(z1)

)}
,

a4 = ae1λ2(0) + λ3(0), µ = −W6(M)

a
, G1(z2) = λ2(0)G3(z2)−

ˆ M

z2

G1(0, s)ds

F1(z) = −λ4(z1)

λ2(z1)

ˆ M

z2

G1(z1, s)ds, F2(z) =

ˆ z2

0

G2(z1, s)ds,

G2(z2) = ελ2(N)P0(θ̂(N, z2))−
ˆ M

z2

G1(N, s)ds, G3(z1) = − 2M

sin θb(M)
λ1(z1)G5(z1),

d1(z2) =
sin θb(z2)

2z2

, d2(z2) =
κb cos θb(z2)

2z2

.

It follows from (73) that

2∑
i=1

‖Fi‖(−α;Γw,z)
1,α;E+

+
2∑
i=1

‖Gi‖(−α;{M})
1,α;(0,M) ≤ C(ε+ ‖|Ŵ|‖2).(79)

To deal with the singularity near z2 = 0, we define

ζ1 = z1, ζ2 = z2 cos τ, ζ3 = z2 sin τ, for z1 ∈ [0, N ], z2 ∈ [0,M ], τ ∈ [0, 2π].

and denote

E1 = {(ζ1, ζ2, ζ3) : 0 < ζ1 < N, ζ2
2 + ζ2

3 ≤M2}, Γw,ζ = [0, N ]× {(ζ2, ζ3) : ζ2
2 + ζ2

3 = M2},
E2 = {(ζ2, ζ3) : ζ2

2 + ζ2
3 ≤M2}, Γ′ζ = {(ζ2, ζ3) : ζ2

2 + ζ2
3 = M2},

Υ(ζ) = φ(ζ1,
√
ζ2

2 + ζ2
3 ),

Denote Υ∗(ζ) = Υ(ζ) + µ where ζ = (ζ1, ζ2, ζ3). Then Υ∗ satisfies the following problem

∂ζ1(a1(ζ1)∂ζ1Υ
∗)− κ2

b

4
a2(ζ1)(ζ2∂ζ2Υ

∗ + ζ3∂ζ3Υ
∗) + a3(ζ1)Υ∗(0, ζ2, ζ3)

+ a2(ζ1)d1(
√
ζ2

2 + ζ2
3 )

[
∂ζ2(d1(

√
ζ2

2 + ζ2
3 )∂ζ2Υ

∗) + ∂ζ3(d1(
√
ζ2

2 + ζ2
3 )∂ζ3Υ

∗)

]
= ∂ζ1F1(ζ1,

√
ζ2

2 + ζ2
3 ) +

3∑
i=2

∂ζi

(
ζiF2(ζ1,

√
ζ2

2 + ζ2
3 )√

ζ2
2 + ζ2

3

)
− F2(ζ1,

√
ζ2

2 + ζ2
3 )√

ζ2
2 + ζ2

3

,

∂ζ1Υ
∗(0, ζ2, ζ3) + a4Υ∗(0, ζ2, ζ3) = G1(

√
ζ2

2 + ζ2
3 ),

∂ζ1Υ
∗(N, ζ2, ζ3) = G2(

√
ζ2

2 + ζ2
3 ),

(ζ2∂ζ2 + ζ3∂ζ3)Υ
∗(ζ1, ζ2, ζ3) = MG3(ζ1), on ζ2

2 + ζ2
3 = M2.

(80)
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Proposition 3. For any (F1,F2) ∈ C(−α;Γw,ζ)
1,α;E1

and F2(x1, 0) = 0, G1, G2 ∈ C
(−α;Γ′ζ)

1,α;E2
, then the

problem (80) has a unique solution Υ∗(ζ) = Υ̃∗(ζ1,
√
ζ2

2 + ζ2
3 ) ∈ C(−1−α;Γw,ζ)

2,α;E1
, which satisfies

the following estimate

‖Υ∗‖(−1−α;Γw,ζ)
2,α;E1

≤ C

(
2∑
i=1

‖Fi‖(−α;Γw,ζ)
1,α;E1

+
2∑
j=1

‖Gj‖
(−α;Γ′ζ)

1,α;E2
+ ‖G3‖1,α;[0,N ]

)
.(81)

Proof. Note that the coefficients in the first equation of (80) are infinitely smooth near the

axis ζ2
2 +ζ2

3 = 0, which is quite different from the elliptic system in [19, Lemma 4.3]. So we do

not need to take much care of the regularity near the axis. This advantage comes essentially

from our new Lagrangian transformation. The system (80) has a variational structure similar

to the one in the proof of [19, Lemma 4.3], one can obtain the existence and uniqueness of

H1(E1) weak solution by Lax-Milgram theorem and Fredholm alternative theorem as in [19].

To get the estimate (81), one can put the term a3(ζ1)Υ∗(0, ζ2, ζ3) on the right hand side,

so by the trace theorem, the right hand side belongs to L2(E1) and the interior estimates

can be obtained by a standard way. Furthermore, one can use [22, Theorems 5.36 and

5.45] to obtain global L∞ bound and Cα norm estimates for Υ∗ with some Hölder exponent

α ∈ (0, 1). Hence the nonlocal term a3(ζ1)Υ∗(0, ζ2, ζ3) becomes Cα and (81) follows by

employing [22, Theorem 4.6]. �

Proposition 3 actually implies the following estimates for W2 and W4.

Proposition 4. The probelm (75) has a unique solution (W2,W4,W6(M)) ∈ (C
(−α;Γw,z)
2,α;E+

)2×R
satisfying

‖W2‖(−α;Γw,z)
2,α,E+

+ ‖W4‖(−α;Γw,z)
2,α,E+

+ |W6(M)| ≤ C(δ2 + ε)(82)

and

W2(z1, 0) = ∂2
z2
W2(z1, 0) = 0, ∂z2W4(z1, 0) = 0.(83)

Proof. It follows from Proposition 3 and the equivalence between ‖·‖(−α;Γw,z)
1,α;E+

and ‖·‖(−α;Γw,ζ)
1,α;E1

that the system (75) has a unique solution (W2,W4,W6(M)) ∈ (C
(−α;Γz,w)
1,α;E+

)2 × R satisfying

‖W2‖(−α;Γw,z)
1,α,E+

+ ‖W4‖(−α;Γw,z)
1,α,E+

+ |W6(M)|

≤C(
2∑
i=1

‖Gi‖(1−α;Γw,z)
1,α;E+

+ ‖G3‖(−α;Γw,z)
1,α;E+

+ ε)

≤C(‖|Ŵ|‖2 + ε) ≤ C(δ2 + ε).

In addition, W2(z1, 0) = ∂z2W4(z1, 0) = 0.
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Rewrite the problem (75) as
∂z1(λ1(z1)W2) + ∂z2(λ2(z1)W4) = G5(z),

∂z1(λ4(z1)W4)− λ5(z1) sin θb(z2)
2z2

(∂z2W2 + 2κbz2 cos θb(z2)

sin2 θb(z2)
W2) = G6(z),

W4(0, z2) = G8(z2), W4(N, z2) = εG4(z2),

W2(z1, 0) = 0, W2(z1,M) = εG5(z1),

(84)

where

G5(z) = G1(z)− λ3(z1)W2(0, z2),

G6(z) = G2(z) + λ6(z1)

(
W6(M)− a

ˆ M

z2

2s

sin θb(s)
W2(0, s)ds

)
,

G7(z) = e1a

(
W6(M)

a
−
ˆ M

z2

2s

sin θb(s)
W2(0, s)ds

)
+G3(z2).

Hence W4 satisfies
∂z1

(
2z2

sin θb(z2)
λ1(z1)
λ5(z1)

∂z1(λ4(z1)W4)

)
+ λ2(z1)

(
∂2
z2
W4 + 2κbz2 cos θb(z2)

sin2 θb(z2)
∂z2W4

)
= ∂z1

(
2z2

sin θb(z2)
λ1(z1)
λ5(z1)

G6(z)

)
+ ∂z2G5(z) + 2κbz2 cos θb(z2)

sin2 θb(z2)
G5(z),

W4(0, z2) = G7(z2), W4(N, z2) = εG4(z2), ∂z2W4(z1, 0) = 0.

(85)

Similar to the proof of Proposition 3, one has

(86)
‖W4‖(−α;Γw,z)

2,α;E+
≤C
( 6∑

i=5

‖Gi‖(1−α;Γz,w)
1,α;E+

+ ‖G7‖(−α;{M})
1,α;(0,M) + ε

)
≤C(‖|Ŵ|‖2 + ε) ≤ C(δ2 + ε).

This, together with the first equation in (84), gives

‖(∂2
z1
W2, ∂

2
z1z2

W2)‖(2−α;Γw,z)
α;E+

≤ C(‖W4‖(−α;Γw,z)
2,α;E+

+ ‖W2‖(−α;Γw,z)
1,α,E+

) ≤ C(δ2 + ε).

Finally, note that

W2(z) =
2

λ5(z1) sin θb(z2)

ˆ z2

0

s(∂z1(λ4(z1)W4)(z1, s)−G6(z1, s))ds.

Similar to [19, Lemma B.3], we conclude that W2 satisfies (82) and ∂2
z2
W2(z1, 0) = 0. �
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3.3. The iteration scheme for W1 and the estimate for W1, W3, W5, and W6. It

follows from (58) that W1 can be solved as follows

W1 =
1

Ũ+
b

{B−(Ŵ♦
6 (z2), z2)−B−b − [h(P̃+

b +W4, S
+
b +W5)− h(P̃+

b , S
+
b )]}

− 1

2Ũ+
b

[Ŵ 2
1 + (Ũ+

b + Ŵ1)2Ŵ 2
2 + Ŵ 2

3 ].

(87)

Now we are ready to estimate W1, W3, W5, and W6.

Proposition 5. With (W2,W4) ∈
(
H

(−α;Γw,z)
2,α;E+

)2

obtained in Proposition 4, W6, W5, W3,

and W1 are uniquely determined by (64), (65), (66) and (87) and satisfy

(88)
∑
j=1,3,5

‖Wj|(−α;Γw,z)
2,α;E+

+ ‖W6‖(−1−α;{M})
3,α,[0,M) ≤ C(δ2 + ε).

Proof. It follows from (64) that

W6(z2) =W6(M)− a
ˆ M

z2

2s

sin θb(s)
W2(0, s)ds

−
ˆ M

z2

R11(Ŵ(0, s),Φ−(rb + Ŵ6(s), s)−Φ−b (rb + Ŵ6(s)))ds.

(89)

Thus W ′
6(0) = 0 and the following estimate holds

‖W6‖(−1−α;{M})
3,α,[0,M) ≤C(|W6(M)|+ ‖W2‖(−α;Γw,z)

2,α,E+
+ ‖R11(Ŵ ,Φ− −Φ−b )‖(−α;Γw,z)

2,α,E+
)

≤C(δ2 + ε).
(90)

It follows from (65) that

W5(z) = W5(0, z2) = e2W6(z2) +R4(Ŵ,Φ− −Φ−b ).(91)

Hence ∂z2W5(z1, 0) = 0 and

‖W5‖(−α;Γw,z)
2,α,E+

≤e2‖W6‖(−1−α;{M})
3,α,[0,M) + ‖R4‖(−α;Γw,z)

2,α,E+
≤ C(δ2 + ε).(92)

Using (66) gives

‖W3‖(−α;Γw,z)
2,α;E+

≤ C‖Ŵ‖Ξδ‖U−3 ‖C2,α(Ω) ≤ Cεδ.(93)

It follows from (87) that

‖W1‖(−α;Γw,z)
2,α;E+

≤ C

(
ε+

4∑
j=3

‖Wi‖(−α;Γw,z)
2,α;E+

+ ‖|Ŵ|‖2

)
≤ C(ε+ δ2).(94)

Combining (90) with (92)-(94) together finishes the proof of the proposition. �
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3.4. Proof of Theorem 1. Now we are in position to prove Theorem 1.

Proof of Theorem 1. The proof is divided into three steps.

Step 1. Boundedness. Given any Ŵ ∈ Ξδ, let W = T (Ŵ) be the solutions obtained in

Propositions 4 and 5. Thus one has

‖|W|‖ ≤ C∗(ε+ δ2).(95)

Let δ = 2C∗ε and choose ε0 small enough satisfying 2C2
∗ε0 ≤ 1

2
. Therefore, for any 0 < ε ≤ ε0,

one has

C∗(ε+ δ2) =
δ

2
+ 2C2

∗εδ ≤
δ

2
+
δ

2
= δ.

This implies that T maps Ξδ into itself.

Step 2. Contraction. Given any Ŵ(i) ∈ Ξδ ( i = 1, 2), let W(i) = T Ŵ(i) (i = 1, 2) be

obtained in Step 1. Denote

Ŷ = Ŵ(1) − Ŵ(2) and Y = W(1) −W(2).

It follows from (70) that Y2 and Y4 satisfies

∂z1(λ1(z1)Y2) + sin θb(z2)
2z2

∂z2(λ2(z2)Y4) + λ3Y2(0, z2) = G
(1)
1 (z)−G(2)

1 (z),

∂z1(λ4(z1)Y4)− λ5(z1) sin θb(z2)
2z2

(∂z2Y2 + 2κbz2 cos θb(z2)

sin2 θb(z2)
Y2)

−λ6(z1)

(
Y6(M)− a

´M
z2

2s
sin θb(s)

Y2(0, s)ds

)
= G

(1)
2 (z)−G(2)

2 (z),

Y4(0, z2) = e1a

(
Y6(M)
a
−
´M
z2

2s
sin θb(s)

Y2(0, s)ds

)
+G

(1)
3 (z2)−G(2)

3 (z2),

Y4(N, z2) = G
(1)
4 (z2)−G(2)

4 (z2),

Y2(z1, 0) = 0, Y2(z1,M) = G
(1)
5 (z1)−G(2)

5 (z1).

(96)

Using Proposition 4 gives

(97)

∑
i=2,4

‖Yi‖(−α;Γw,z)
2,α;E+

+ |Y6(M)| ≤C
2∑
i=1

‖G(1)
i −G(2)

i ‖
(1−α;Γw,z)
1,α;E+

+ ‖G(1)
3 −G(2)

3 ‖(−α;{M})
1,α;[0,M)

+ ε‖P0(θ̂(1))− P0(θ̂(2))‖(−α;{M})
1,α;E+

+ Cε|Ŷ (M)|

≤Cε
(

5∑
i=1

‖Ŷi‖(−α;Γw,z)
2,α;E+

+ ‖Ŷ6‖(−1−α;{M})
3,α;[0,M)

)
.

It follows from (89) that Y6 satisfies

Y6(z2) = Y6(M)−
ˆ M

z2

2s

sin θb(s)
Y2(0, s)ds+R

(1)
12 −R(2)

12 .(98)
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Therefore, one has

‖Y6‖(−1−α;{M})
3,α;[0,M) ≤ |Y6(M)|+ C‖Y2‖(−α;Γw,z)

2,α;E+
+ ‖R(1)

11 −R(2)
11 ‖(−α;Γw,z)

2,α;E+
(99)

≤ Cε‖|Ŷ|‖.

It follows from (91) that

Y5(z) = e2Y6(z2) +R
(1)
4 −R(2)

4 .(100)

Thus it holds that

‖Y5‖(−α;Γw,z)
2,α;E+

≤ C‖Y6‖(−1−α;{M})
3,α;[0,M) + ‖R(1)

4 −R(2)
4 ‖(−α;Γw,z)

2,α;E+
≤ Cε‖|Ŷ|‖.(101)

The equation (66) implies

Y3(z1, z2) =
Ŵ♦

6 (z2)

Ŵ#
6 (z1, z2)

sin θ̂(0, z2)

sin θ̂(z1, z2)
U−3 (Ŵ♦

6 (z2), z2).(102)

Thus one has

‖Y3‖(−α;Γw,z)
2,α;E+

≤ Cε‖|Ŷ|‖.(103)

Finally, (87) implies that

‖Y1‖(−α;Γw,z)
2,α;E+

≤ C(ε‖Ŷ6‖(−1−α;{M})
3,α;(0,M) +

4∑
j=3

‖Yj‖(−α;Γw,z)
2,α;E+

+ Cε‖|Ŷ|‖

≤ Cε‖|Ŷ|‖.
(104)

Collecting all the estimates (97), (99), (101), (103), and (104) together gives

‖|Y|‖ ≤ C]ε‖|Ŷ|‖.(105)

Obviously, if one chooses ε0 ≤ min{ 1
4C2
∗
, 1

2C]
}, then T is a contraction mapping for Ξδ to

Ξδ. Hence T must have a fixed point in Ξδ. It is easy to see that this fixed point is a

solution for the problem (48), (50), (53), (58), and (60). Furthermore, since the Lagrangian

transformation is invertible, the associated solution (U+
1 , U

+
2 , U

+
3 , P

+, S+) and ξ satisfy the

properties listed in (18) and (20).

Step 3. Uniqueness. Suppose that there are two solutions (U
+,(j)
1 , U

+,(j)
2 , U

+,(j)
3 , P+,(j), S+,(j))

and ξj (j = 1, 2) satisfying the properties (18) and (20). We can perform the corresponding

Lagrangian transformation and decompose the Euler system as above, in this case we do not

need to use the extension (68) any more because the existence of solutions has been assumed.

It is the same as the proof for that the operator T is a contraction mapping. Therefore,

these two solutions are indeed the same. �
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4. High order regularity of the transonic shock solution

In this section, we show that the regularity of the shock front and subsonic solutions can

be improved if the nozzle wall is not perturbed and the supersonic incoming flow satisfies

some additional compatibility conditions.

In the following lemma, we show that the compatibility conditions (13) and (21) for the

supersonic solutions are preserved along the straight wall.

Lemma 6. If (13) and (21) hold, the system (3) supplemented with (9) and (23) has a

unique smooth solution Ψ− = (U−1 , U
−
2 , U

−
3 , P

−, S−)(r, θ) ∈ C2,α(Ω̄). Moreover, this solution

Ψ− satisfies

(106) ‖(U−1 , U−2 , U−3 , P−, S−)− (U−0 , 0, 0, P̂
−
0 , Ŝ

−
0 )‖C2,α(Ω) ≤ C0ε,

where the positive constant C0 depends only on α and the supersonic incoming flow.

If, in addition, Ψ−en satisfies (22), then the solutions Ψ− satisfies

∂

∂θ
(U−1 , U

−
3 , P

−, S−)(r, θ0) = 0.(107)

Proof. Since U2(r, θ0) ≡ 0, it follows from the third, fourth and fifth equation of (3) that one

has

∂θP − (ρU2
3 ) cot θ = 0, (r∂rU3 + U3) = 0, ∂rS = 0 for θ = θ0.(108)

Furthermore, differentiating the fifth equation of (3) with respect to θ yields

ρU1∂r(∂θS)(r, θ0) +
ρ

r
∂θU2∂θS(r, θ0) = 0.

Therefore, ∂θS(r, θ0) ≡ 0 as long as ∂θS(r1, θ0) = 0.

If U3(r1, θ0) ≡ 0, then one can conclude U3(r, θ0) ≡ 0 from (108). Using (108) again yields

∂θP (r, θ0) = 0 and ∂rU3(r, θ0) ≡ 0. Differentiating the second equation of (3) with respect

to θ gives

ρU1∂r(∂θU1)(r, θ0) + ρ∂rU1∂θU1(r, θ0) +
ρ

r
∂θU2∂θU1(r, θ0) = 0.

Hence, ∂θU1(r, θ0) ≡ 0 provided ∂θU1(r0, θ0) = 0. The compatibility conditions at θ = 0 can

be obtained similarly except for the second derivative ∂2
θU2(r, 0) = 0, which can be obtained

by differentiating the first equation of (3) with respect to θ. �

In the next lemma, we give the compatibility conditions of the subsonic flows at the

intersection circles of the shock front and the nozzle wall as long as the assumptions of

Lemma 6 hold.
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Lemma 7. If the system (3) with (9), (12), (23) and (22), has a solution

(U±1 (r, θ), U±2 (r, θ), U±3 (r, θ), P±(r, θ), S±(r, θ)) ∈ C2,α(Ω±)

and ξ(θ) ∈ C3,α([0, θ0]), then the following compatibility conditions on the nozzle wall and

the symmetry axis hold

(109)


∂θ(U

+
1 , U

+
3 , P

+, S+)(r, θ0) ≡ 0, ∂θ(U
+
1 , U

+
3 , P

+, S+)(r, 0) ≡ 0,

U2(r, 0)+ = U+
3 (r, 0) = U+

2 (r, θ0) = U+
3 (r, θ0) = 0, ∂2

θU
+
2 (r, 0) = ∂2

θU
+
2 (r, θ0) = 0,

ξ′(0) = ξ′(θ0) = 0, ξ(3)(0) = 0.

Proof. It follows from the boundary condition (23) and the jump conditions (17) that

U+
2 (r, 0) = U+

2 (r, θ0) = 0, ξ′(0) = ξ′(θ0) = 0.

Furthermore, the fourth equation in (17) implies that U+
3 (ξ(θ0), θ0) = U−3 (ξ(θ0), θ0) = 0.

Thus it follows from the fourth equation in (3) that U+
3 (r, θ0) = 0 for any r ∈ [ξ(θ0), r2].

Therefore, ∂
∂θ
P+(r, θ0) ≡ 0.

Differentiating the first, the second, the fourth, and the fifth equations in (17) along the

shock front gives
∂θ(ρ

+U+
1 )(ξ(θ0)+, θ0) = ∂θ(ρ

−U−1 )(ξ(θ0)−, θ0),

∂θ(ρ
+(U+

1 )2 + P+)(ξ(θ0)+, θ0) = ∂θ(ρ
−(U−1 )2 + P−)(ξ(θ0)−, θ0),

∂θU
+
3 (ξ(θ0)+, θ0) = ∂θU

−
3 (ξ(θ0)−, θ0),

∂θ

(
e+ + |U+|2

2
+ P+

ρ+

)
(ξ(θ0)+, θ0) = ∂θ

(
e− + |U−|2

2
+ P−

ρ−

)
(ξ(θ0)−, θ0).

It follows from Lemma 6 that ∂θ(U
−
1 , U

−
3 , P

−, S−)(r, θ0) = 0. These then imply that ∂θU
+
3 (ξ(θ0), θ0) =

0 and 
∂θ(ρ

+U+
1 )(ξ(θ0)+, θ0) = 0,

(ρU+
1 ∂θU

+
1 + ∂θP

+)(ξ(θ0)+, θ0) = 0,

∂θ(e
+ + |U+|2

2
+ P+

ρ+
)(ξ(θ0)+, θ0) = 0,

which yields

∂θU
+
1 (ξ(θ0), θ0) = ∂θS

+(ξ(θ0), θ0) = ∂θρ
+(ξ(θ0), θ0) = 0.(110)

Differentiating the second and the fifth equation in (17) with respect to θ yields
{
U1∂r(∂θU

+
1 ) + (∂rU

+
1 + 1

r
∂θU

+
2 )∂θU

+
1 +

U+
1 ∂rU

+
1 ∂Sρ

ρ
∂θS

+
}

(r, θ0) = 0,{
U1∂r(∂θS

+) + 1
r
∂θU

+
2 ∂θS

+ + ∂rS
+∂θU

+
1

}
(r, θ0) = 0.
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This, together with (110), implies

∂θU
+
1 (r, θ0) = ∂θS

+(r, θ0) = ∂θρ
+(r, θ0) ≡ 0 for r ∈ (ξ(θ0), r2].

It follows from the equation for U+
3 (the fourth equation in (3)) that one has

{
U+

1 ∂r(∂θU
+
3 ) +

U+
1

r
∂θU

+
3 +

∂θU
+
2

r
∂θU

+
3

}
(r, θ0) = 0,

∂θU
+
3 (ξ(θ0), θ0) = 0.

Hence ∂θU
+
3 (r, θ0) ≡ 0.

In addition, differentiating the first equation of (3) with respect to θ leads to

∂2
θU

+
2 (r, 0) = 0.

Furthermore, differentiating the third equation of (17) along the shock front twice yields

ξ(3)(0) = 0.

Hence The proof of Lemma 7 is completed. �

With the help of Lemmas 6 and 7, one can prove Theorem 2.

Proof of Theorem 2. First, if the nozzle boundary is straight, then $ and P satisfy the

following system
∂θ$ +$ cot θ − r

(
1
ρU2

1
− 1

ρc2(ρ,S)

)
∂rP + $

ρc2(ρ,S)
∂θP + ($2 + 2) +

U2
3

U2
1

= 0,

∂r$ − $
r
− $2

r
cot θ +

(
1
ρU2

1
− $2

ρc2(ρ,S)

)
1
r
∂θP − $

ρc2(ρ,S)
∂rP − U2

3

rU2
1

cot θ = 0.
(111)

Comparing with [19, equation (2.20)], both of the additional terms
U2
3

U2
1

and
U2
3

rU2
1

cot θ in (111)

can be regarded as error terms and do not cause any trouble. Moreover, U3 satisfiesU1∂r(rU3 sin θ) + U2

r
∂θ(rU3 sin θ) = 0,

U3(ξ(θ), θ) = U−3 (ξ(θ), θ).
(112)

The transport equation (112) can be uniquely solved by characteristic method. Furthermore,

we can use the standard even extension (a simple modification for [26, Lemma A] ) to get

C2,α(Ω+) regularity near the corner. The detailed proof of Theorem 2 is very similar to the

proof for [19, Theorem 1.1], so we omit it here. �
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