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LOSS OF DOUBLE-INTEGRAL CHARACTER DURING RELAXATION

CAROLIN KREISBECK AND ELVIRA ZAPPALE

Abstract. We provide explicit examples to show that the relaxation of functionals

L
p(Ω;Rm) ∋ u 7→

∫
Ω

∫
Ω

W (u(x), u(y)) dx dy,

where Ω ⊂ R
n is an open and bounded set, 1 < p < ∞ and W : Rm

× R
m

→ R a suitable
integrand, is in general not of double-integral form.

This proves an up to now open statement in [Pedregal, Rev. Mat. Complut. 29 (2016)]
and [Bellido & Mora-Corral, SIAM J. Math. Anal. 50 (2018)]. The arguments are inspired
by recent results regarding the structure of (approximate) nonlocal inclusions, in particular,
their invariance under diagonalization of the constraining set. For a complementary viewpoint,
we also discuss a class of double-integral functionals for which relaxation is in fact structure
preserving and the relaxed integrands arise from separate convexification.
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1. Introduction

Let Ω ⊂ Rn be a non-empty, open and bounded set and 1 < p < ∞. Moreover, let W : Rm×
Rm → R be a lower semicontinuous function satisfying p-growth, i.e., W (ξ, ζ) ≤ C(|ξ|p+ |ζ|p+1)
for all (ξ, ζ) ∈ Rm × Rm with a constant C > 0. For any such W , we define a double-integral
functional

IW (u) =

∫

Ω

∫

Ω
W (u(x), u(y)) dx dy(1.1)

for u ∈ Lp(Ω;Rm). Without loss of generality (see e.g. [19]), one may assume W to be symm-
metric, that is, W (ξ, ζ) = W (ζ, ξ), for every (ξ, ζ) ∈ Rm × Rm.

Nonlocal functionals of this type and their inhomogeneous versions with explicit dependence
of W on x, y ∈ Ω have recently become of increasing interest in the literature. Besides their
nonlocal character, which gives rise to interesting mathematical questions that require the de-
velopment of new techniques [2, 4, 18, 20], this can also be attributed to their relevance in
various modern modeling approaches, e.g. in image processing [5, 11, 13], in machine learning
[1, 23, 25], in the theory of phase transitions [8, 22], or in continuum mechanics through the
theory of peridynamics [3, 10, 15, 17, 24] and crystal plasticity [16].

Under the additional assumption that W is p-coercive, i.e., there are constants c, C > 0 such
that

W (ξ, ζ) ≥ c(|ξ|p + |ζ|p)− C for all (ξ, ζ) ∈ R
m × R

m,

the existence of minimizers of IW is guaranteed by the direct method in the calculus of variations,
if IW is Lp-weakly lower semicontinuous, or equivalently, if W is separately convex [4, 18, 20].
In situations when W fails to have this property, minimizers of IW do in general not exist due
to oscillation effects. A common strategy to capture the asymptotic behavior of minimizing
sequences of IW is resorting to a related variational problem, called the relaxed problem, which
involves the Lp-weak lower semicontinuous envelope of IW , i.e., for u ∈ Lp(Ω;Rm),

IrlxW (u) = inf{lim inf
j→∞

IW (uj) : uj ⇀ u in Lp(Ω;Rm)}.(1.2)

http://arxiv.org/abs/1907.13180v2


2 CAROLIN KREISBECK AND ELVIRA ZAPPALE

The major challenge in relaxation theory lies in finding alternative representations of IrlxW , ideally
via closed formulas. Contrary to the single-integral case, where a body of works has emerged
over the last decades, see e.g. [6, 7] and the references therein, relaxation in the nonlocal setting
is still largely unsolved. In the following, we give some background and outline briefly the latest
developments related to this problem.

The first paper to present a characterization of Lp-weak lower semicontinuity of IW in the
scalar case m = 1 goes back to Pedregal [19] in the late 1990s. Separate convexity of W as a
necessary and sufficient condition was identified almost ten years later in [4], and generalized to
the case of vector-valued fields, meaning for m ≥ 1, in [18]. More recent results, in particular
on the inhomogeneous setting, can be found in [2, 20].

Motivated by these findings, a natural first guess for the relaxed functional associated with
IW would seem to be a double integral with the separately convex hull W sc of W as integrand.
However, there are one-dimensional counterexamples to disprove this conjecture, see e.g. [4,
Example 3.1] or [2, Example 7.2] for integral functionals involving suitably chosen double inte-
grands with eight or six wells, respectively. Here, Corollary 4.7 and Corollary 4.8, which both
provide different necessary conditions for the relaxation of IW via separate convexification of
W , put us in the position to generate a whole class of counterexamples. Among the simplest
ones for m = 1 are the cases when W is a four-well integrand with minima in

{(1, 0), (−1, 0), (0, 1), (0,−1)}.(1.3)

In [20], Pedregal claims even more than IrlxW 6= IW sc , namely that IrlxW may not be representable
as a double integral at all. His reasoning is based on a monotonicity argument along the lines
of a basic observation for single integrals. As Bellido & Mora-Coral point out in [2, Section 7],
though, this argument is in general not valid in the nonlocal context, see Section 4.1 for more
details.

In this paper, we present two different proofs to confirm that Pedregal’s statement is indeed
correct (see Propositions 5.1 and 5.4). Both approaches involve the construction of a counterex-
ample arising from a functional IW , where W is a double integrand of distance type, precisely,

W (ξ, ζ) = distp((ξ, ζ),K) for (ξ, ζ) ∈ R× R,

with a suitable combination of a compact set K ⊂ R × R and a norm inducing the distance;
notice that it suffices to discuss the one-dimensional setting, since counterexamples in the case
m > 1 follow after a simple modification, cf. Remark 5.6.

In Proposition 5.1, we take K as in (1.3) and choose the 1-norm on R × R. Assuming to
the contrary that IrlxW is a double integral with integrand G, we show that the infimum of IG
is then attained in the origin, and thus minu∈Lp(Ω) IG(u) = IG(0, 0) = 0; this follows from
comparison arguments for nonlocal integral functions as established in Section 4.1, which sets
G in relation to W and W sc, and from exploiting that G is separate convex as the double
integrand of a weakly lower semicontinuous functional. On the other hand, it turns out that
infu∈Lp(Ω) I

rlx
W > |Ω|2min(ξ,ζ)∈R×RW (ξ, ζ) = 0. The proof is inspired by recent insights into the

properties of nonlocal supremal functionals [14]. Especially the operation of diagonalization of
sets in the sense of Definition 2.5, applied here to the zero sublevel sets of W , and its interplay
with approximate nonlocal inclusions, plays a central role; in fact, the latter are invariant under
diagonalization as we prove in Theorem 3.1.

The second counterexample in Proposition 5.4 uses for K the boundary of the convex hull
of (1.3), or equivalently, the boundary of the unit ball in the 1-norm. In this case, the order
relations from Section 4.1 allow us to conclude that if IrlxW is a double integral, then its integrand
needs to coincide with W sc. However, we can prove that the correlation between the values 0
and 1, which is connected to the fact that K fails to be diagonal, gives rise to IW sc(v) 6= IrlxW (v)
for any non-constant v : Ω → {0, 1}.

Closely related the double integrals we investigate here are nonlocal supremal functionals

L∞(Ω;Rm) ∋ u 7→ esssup(x,y)∈Ω×Ω Z(u(x), u(y))(1.4)
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with a suitable symmetric supremand Z : Rm × Rm → R. Indeed, the latter arise (formally)
through Lp-approximation, that is, in the limit process p → ∞. The problem of relaxing (1.4)
has been settled recently in the case m = 1 (and for general m > 1 under an additional technical
assumption, see [14, Remark 7.6]): it is shown in [14, Theorem 1.3] that the relaxation of (1.4)
with m = 1 is structure preserving, meaning that it is again of supremal form, and that the
relaxed supremand corresponds to the separate level convexification of the diagonalization of Z,
cf. (4.1). Here, in contrast, the challenging open question remains: What kind of representation
for IrlxW in (1.2) can be expected if double integrals are out of the picture? For first steps towards
a better understanding, we refer to the Young measure relaxation result in [2, Theorem 6.1], as
well as to Proposition 6.1, where we contribute a partial result by giving a closed formula for
the relaxation of a specific class of double integrals.

This article is organized as follows. After introducing notation and collecting some auxiliary
results in Section 2, Section 3 is concerned with the asymptotic behavior of approximate nonlocal
inclusions; in particular, we provide a characterization of Young measures generated by sequences
of nonlocal fields of the form (u(x), u(y)) for (x, y) ∈ Ω × Ω subject to approximate pointwise
constraints, see Theorem 3.3. Even though these results serve here primarily as technical tools
for the remaining paper, they are also interesting in their own right. In Section 4, we address the
issue of order relations and comparison arguments for double integrals as in (1.1), and deduce
conditions on W that are necessary for the identity IrlxW = IW sc . The centerpiece of this paper,
namely the two counterexamples to structure preservation during relaxation, are presented,
along with their proofs, in Section 5. For a complementary viewpoint, we close in Section 6
by discussing functionals with double integrands in the form of distances to Cartesian sets and
extended-valued indicators; the relaxations in both cases give rise to the intuitively expected
double integrals with separately convexified integrands.

2. Notation and preliminaries

To make the paper self-contained, we fix notation and collect some well-known results that
will be used later on.

2.1. Notation. We denote the Euclidean norm of a vector η = (η1, . . . , ηd) ∈ Rd by |η| =

(
∑d

i=1 η
2
i )

1
2 , and use the notation ‖ ·‖ for a generic norm on Rm×Rm (without explicit mention,

we often idenitfy Rm×Rm with R2m); specific choices of norms in the following include the 1-norm

‖(ξ, ζ)‖1 := |ξ|+ |ζ|, the Euclidean norm ‖(ξ, ζ)‖2 =
√

|ξ|2 + |ζ|2, or more generally the q-norm

‖(ξ, ζ)‖q = (|ξ|q + |ζ|q)1/q with 1 ≤ q < ∞, and the maximum norm ‖(ξ, ζ)‖∞ = max{|ξ|, |ζ|}
for (ξ, ζ) ∈ Rm × Rm. Further, Br(ξ, ζ) ⊂ Rm × Rm represents the closed ball of radius r > 0
centered at (ξ, ζ), and for the distance of a point (ξ, ζ) ∈ Rm×Rm to a non-empty, compact set
K ⊂ Rm × Rm, we write

dist((ξ, ζ),K) = min
(α,β)∈K

‖(ξ, ζ) − (α, β)‖;(2.1)

if relevant, the use of a specific norm is indicated by super- and subscript indices, e.g. B1
3(0, 0) =

{(ξ, ζ) ∈ Rm × Rm : ‖(ξ, ζ)‖1 ≤ 3} or dist∞(·,K) = min(α,β)∈K ‖ · −(α, β)‖∞. The generalized
closed interval [ξ, ζ] with ξ, ζ ∈ Rm is the set {λξ + (1− λ)ζ ∈ Rm : λ ∈ [0, 1]}.

For the complement of A ⊂ Rd, we write Ac = Rd \ A, whereas Aco stands for the convex
hull of A. Let 1A be the characteristic function of A, i.e.,

1A(η) :=

{
1 if η ∈ A,
0 otherwise,

η ∈ R
d.

To refer to the minimum of a function f : Rd → R (if existent), we usually use the short-hand
notation min f rather than minη∈Rd f(η).
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For any probability measure µ ∈ Pr(Rd),

[µ] := 〈µ, id〉 =

∫

Rd

η dµ(η)

stands for its barycenter. The product measure of ν, µ ∈ Pr(Rd) is denoted by ν ⊗ µ, and for
the Lebesgue measure of a Lebesgue measurable set U ⊂ Rl, we write Ll(U), or simply |U |. We
employ standard notation for Lp-spaces with p ∈ [1,∞]; particularly, our way to symbolize weak
and weak∗ convergence of a sequence (uj)j ⊂ Lp(U ;Rd) to a function u ∈ Lp(U ;Rd) as j → ∞
is uj ⇀ u in Lp(U ;Rd) if p ∈ [1,∞) and uj ⇀

∗ u in L∞(U ;Rd) if p = ∞. Moreover, S∞(U ;Rd)

refers to the set of simple functions on U with values in Rd.
Unless stated otherwise, Ω is a non-empty, open and bounded subset of Rn and p > 1.

2.2. A tool from convex analysis. The following lemma is a corollary of a standard result
in convex analysis, also known as zig-zag lemma (see e.g. [7, Lemma 20.2]). For the readers’
convenience, we give here a simple explicit construction.

Lemma 2.1. Let A ⊂ Rm and suppose that v ∈ S∞(Ω;Rm) is a simple function with image in
Aco. Then there exist a sequence (vj)j ⊂ S∞(Ω;Rm) such that vj ∈ A a.e. in Ω for all j ∈ N

and vj ⇀
∗ v in L∞(Ω;Rm).

Proof. Let v =
∑N

i=1 ξ
(i)
1Ω(i) with ξ(i) ∈ Aco and Ω(i) disjoint measurable subsets of Ω.

By Caratheodory’s theorem (see e.g. [6, Theorem 2.13]), each ξ(i) ∈ Aco is the convex com-

bination of m+1 elements of A, that is, ξ(i) =
∑m+1

l=1 λ
(i)
l ξ

(i)
l with ξ

(i)
l ∈ A and λ

(i)
l ∈ [0, 1] such

that
∑m+1

l=1 λ
(i)
l = 1.

For any i ∈ {1, . . . , N} and l ∈ {1, . . . ,m + 1}, let Ω
(i)
l,j with j ∈ N be measurable subsets of

Ω(i) such that

1

Ω
(i)
l,j

⇀∗ λ
(i)
l 1Ω(i) in L∞(Ω) as j → ∞;

this can be achieved for instance by choosing

Ω
(i)
l,j = Ω(i) ∩

⋃

z∈Zm

1

j
z +

1

j

[
0,

m

√
λ
(i)
l

]m
.

Then,

v
(i)
j :=

m+1∑

l=1

ξ
(i)
l 1

Ω
(i)
l,j

⇀∗ v in L∞(Ω;Rm) as j → ∞.

With these definitions, the sequence (vj)j given by vj =
∑N

i=1 v
(i)
j 1Ω(i) for j ∈ N has all the

desired properties. �

2.3. Separate (level) convexity of sets and functions. Convexity notions including sepa-
rate convexity, separate level convexity and the related envelopes are a recurring theme in this
paper. We briefly collect here some basics, referring the reader to [14, Sections 2, 3 and 4] for
more properties, relations and characterizations of the following definitions.

A set E ⊂ Rm × Rm is called separately convex (with vectorial components), if for every
t ∈ (0, 1) and every (ξ1, ζ1), (ξ2, ζ2) ∈ E with ξ1 = ξ2 or ζ1 = ζ2 it holds that

t(ξ1, ζ1) + (1− t)(ξ2, ζ2) ∈ E.

The smallest separately convex set in Rm×Rm containing E is called the separately convex hull
of E and denoted by Esc.

Observe that for any A ⊂ Rm,

(A×A)sc = (A×A)co = Aco ×Aco,(2.2)

as a consequence of Carathéodory’s theorem.
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The next definition introduces separate convexity for functions, as well as the weaker notion
of separate level convexity. For the latter, recall that a function f : Rd → R∞ := R ∪ {∞} is
level convex if all (sub)level sets of f , that is,

Lc(f) := {η ∈ R
d : f(η) ≤ c} with c ∈ R,

are convex.

Definition 2.2. We call W : Rm ×Rm → R∞ separately convex (with vectorial components) if
for every ξ ∈ Rm, the functions W (·, ξ) and W (ξ, ·) are convex. The function W is separately
level convex (with vectorial components) if the sets Lc(W ) = {(ξ, η) ∈ Rm × Rm : W (ξ, η) ≤ c}
are separately convex for all c ∈ R.

Moreover, W sc : Rm × Rm → R∞ (W slc : Rm × Rm → R∞) stands for the separately (level)
convex envelope of W , that is, the largest separately (level) convex function below W . Due to
the implications between these different notations of convexity, it holds that

W (ξ, ζ) ≥ W slc(ξ, ζ) ≥ W sc(ξ, ζ) ≥ W co(ξ, ζ)(2.3)

for (ξ, ζ) ∈ Rm × Rm.

Lemma 2.3. Let V,W : Rm × Rm → R be such that V is separately level convex and

Lc(V ) = Lc(W )sc(2.4)

for every c ∈ R. Then V = W lsc.

Proof. Due to Lc(W
slc) ⊃ Lc(W )sc ⊃ Lc(W ) for every c ∈ R, it follows from (2.4) that

W slc ≤ V ≤ W.

The separate level convexity of V concludes the proof. �

Next, we discuss functions of distance type, meaning, W : Rm × Rm → R given by

W (ξ, ζ) = distp((ξ, ζ),K) for (ξ, ζ) ∈ R
m × R

m,(2.5)

where K ⊂ Rm × Rm is a non-empty and compact set and p ≥ 1, cf. also (2.1). It is a classical
implication of Caratheodory’s theorem that the convex envelope of W as in (2.5) is

W co(ξ, ζ) = distp((ξ, ζ),Kco)(2.6)

for (ξ, ζ) ∈ Rm × Rm.
The following lemma presents a class of distance-type functions whose the separately convex

envelope is convex.

Lemma 2.4. If W is as in (2.5) with Ksc = Kco, then W sc = W co.

Proof. We set V = distp(·,Ksc). Since the separately convex and the convex hulls of K coincide,
one knows from (2.6) that V = W co is convex. On the other hand,

Lc(V ) = Ksc +Bc1/p(0, 0) =
(
K +Bc1/p(0, 0)

)sc
= Lc(W )sc

for all c ∈ R, and hence, V = W slc by Lemma 2.3. Summing up, this shows that W sc = V = W co

in view of (2.3). �

2.4. The concept of diagonalization. We recall some terminology related to the diagonal-
ization of symmetric subsets of Rm × Rm as introduced in [14, (4.1)]. A set E ⊂ Rm × Rm is
symmetric if (ξ, ζ) ∈ E if and only if (ζ, ξ) ∈ E.

Definition 2.5. Let E ⊂ Rm × Rm be symmetric, then

Ê = {(ξ, ζ) ∈ E : (ξ, ξ), (ζ, ζ) ∈ E} ⊂ R
m × R

m(2.7)

is called the diagonalization of E. We also use the alternative notation E∧.
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Note that for any symmetric E ⊂ Rm × Rm,

Ê =
⋃

P∈PE

P ;(2.8)

here, PE stands for the set of maximal Cartesian subsets of E. A set P ⊂ E is a maximal
Cartesian subset of E if P = A × A with A ⊂ Rm and if for any B ⊂ Rm with A ⊂ B and
B ×B ⊂ E it holds that B = A. As a simple consequence of the definitions above,

PE = PÊ(2.9)

Moreover, if K ⊂ Rm × Rm is symmetric and compact, then also K̂ is compact.

2.5. Double integrals. We associate with any suitableW : Rm×Rm → R∞ the double-integral
functional IW : Lp(Ω;Rm) → R∞ with

IW (u) :=

∫

Ω

∫

Ω
W (u(x), u(y)) dx dy(2.10)

for u ∈ Lp(Ω;Rm). To keep notations light, we dispense with highlighting explicitly the depen-
dence on p and Ω, which will always be clear from the context.

The nonlocal field vw ∈ Lp(Ω×Ω;Rm×Rm) corresponding to a function w ∈ Lp(Ω;Rm) with
p ≥ 1 is defined as

vw(x, y) := (w(x), w(y)) for a.e. (x, y) ∈ Ω× Ω.(2.11)

3. Approximate nonlocal inclusions

Throughout this section, let E ⊂ Rm × Rm be symmetric.
As in [14], all essentially bounded solutions u : Ω → Rm to the (exact) nonlocal inclusion

(u(x), u(y)) ∈ E for a.e. (x, y) ∈ Ω× Ω(3.1)

are collected in the set AE. In view of (2.11),

AE = {u ∈ L∞(Ω;Rm) : vu ∈ E a.e. in Ω×Ω},

and we introduce

A∞
E := {u ∈ L∞(Ω;Rm) : uj ⇀

∗ u in L∞(Ω;Rm) with (uj)j ⊂ AE}(3.2)

to describe the limiting behavior of sequences in AE. Upon relaxing the strict requirement of
the exact nonlocal inclusion (3.1), one obtains an approximate version whose asymptotics is
encoded in

B∞
E := {u ∈ L∞(Ω;Rm) : uj ⇀

∗ u in L∞(Ω;Rm) with (uj)j ⊂ L∞(Ω;Rm) such that

dist(vuj , E) → 0 in measure as j → ∞}.
(3.3)

Clearly, A∞
E ⊂ B∞

E . Under the additional assumption of compactness, we show equality of
these two sets and provide a new characterization, valid in any dimension.

Theorem 3.1. Let K ⊂ Rm × Rm be symmetric and compact. Then,

A∞
K = B∞

K = {u ∈ L∞(Ω;Rm) : u ∈ Aco a.e. in Ω with A×A ∈ PK},(3.4)

recalling that PK is the set of maximal Cartesian subsets of K.

Remark 3.2. a) The sets A∞
K and B∞

K remain unchanged under diagonalization of K, that is,
A∞

K = A∞
K̂

and B∞
K = B∞

K̂
. Since PK = PK̂ by (2.9), this is apparent from the representa-

tion (3.4).
Even though based on a different argument, the diagonalization invariance of A∞

K has been
observed before in [14]; indeed, [14, Proposition 5.1] yields that AK = AK̂ , which implies A∞

K =
A∞

K̂
in view of (3.2).
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b) An equivalent way of expressing the characterization formula in (3.4) is

A∞
K = B∞

K =
⋃

A×A∈PK

AAco×Aco = A⋃
A×A∈PK

Aco×Aco ,(3.5)

cf. also (6.11). Under an additional assumption on K, which is always satisfied for m = 1, it
was shown in [14, Theorem 1.1] that

A∞
K = AK̂sc ,(3.6)

where K̂sc is the separately convex hull of K̂.
c) The assumption that the set K in Theorem 3.1 is closed cannot be dropped. To see this,

we refer to [14, Remark 5.2] for a simple example of a symmetric, non-closed set E ⊂ Rm×Rm

and a set Ω ⊂ Rm such that ∅ = AÊ 6= AE. This implies in particular that A∞
E 6= A∞

Ê
, and

hence, (3.4) cannot be true.

We postpone the proof of Theorem 3.1 to the end of the section, since it is a consequence of
the characterization of Young measures generated by sequences subject to approximate nonlocal
constraints, which we address next.

Following the notation of [14, Section 2.2], we consider the sets of parameterized measures

YE := {Λ ∈ L∞
w (Ω× Ω;Pr(Rm × Rm)) : Λ(x,y) = νx ⊗ νy with ν ∈ L∞

w (Ω;Pr(Rm))

and suppΛ(x,y) ⊂ E for a.e. (x, y) ∈ Ω×Ω},
(3.7)

Y∞
E := {Λ ∈ L∞

w (Ω× Ω;Pr(Rm × Rm)) : vuj

YM
−→ Λ with (uj)j ⊂ AE},

and

Ỹ∞
E := {Λ ∈ L∞

w (Ω× Ω;Pr(Rm × Rm)) : vuj

YM
−→ Λ with (uj)j ⊂ L∞(Ω;Rm) such that

dist(vuj , E) → 0 in measure as j → ∞};

(3.8)

here, L∞
w (U ;Pr(Rd)) denotes the space of weakly measurable functions defined on an open

set U ⊂ Rl with values in the space of probability measures on Rd. By vj
Y M
−→ µ, we mean

that a sequence (vj)j ⊂ L∞(U ;Rd) generates the Young measure µ ∈ L∞
w (U ;Pr(Rd)), see e.g.

[12, 19, 21] for more details.
It was shown in [14, (5.21) and Theorem 5.11] that for symmetric and compact K ⊂ Rm×Rm,

⋃

P∈PK

YP = Y∞
K ⊂ Ỹ∞

K = YK .(3.9)

In light of Proposition 3.5, which is proven below, all four sets in (3.9) have to coincide. This
gives rise to the following theorem.

Theorem 3.3. Let K ⊂ Rm × Rm be compact and symmetric. Then

Ỹ∞
K = Y∞

K = YK =
⋃

P∈PK

YP .(3.10)

Due to (2.9), all the sets in (3.10) are invariant under diagonalization of K. In particular,
YK = YK̂ .

The next lemma serves as the main tool for the proof of Proposition 3.5.

Lemma 3.4. Let ν, µ ∈ Pr(Rm) and Λ = ν ⊗µ ∈ Pr(Rm ×Rm). If (ξ, ζ), (ζ, ξ), (α, β), (β, α) ∈
suppΛ, then

{ξ, ζ, α, β} × {ξ, ζ, α, β} ⊂ suppΛ.
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Proof. It suffices to prove that one element of {ξ, ζ, α, β} × {ξ, ζ, α, β} different from (ξ, ζ),
(ζ, ξ), (α, β) and (β, α) is contained in suppΛ, say (ξ, α). For the other elements, the argument
is analogous.

Recalling the definition of the support of Λ, that is,

suppΛ = {(ξ, ζ) ∈ R
m × R

m : Λ(U) > 0 for any open neighborhood U of (ξ, ζ)},

let U be an open neighborhood of (ξ, α). Within U , one can find another neighborhood of the
form A×B ⊂ U with A,B ⊂ Rm open such that ξ ∈ A and α ∈ B. From

Λ(U) ≥ Λ(A×B) = (ν ⊗ µ)(A×B) = ν(A)µ(B) > 0,(3.11)

we conclude that (ξ, α) ∈ suppΛ, as desired. For the last inequality in (3.11), we have used that
A× (B − α+ ζ) is an open set containing (ξ, ζ), and thus,

0 < Λ(A× (B − α+ ζ)) = ν(A)µ(B − α+ ζ)

by the assumption that (ξ, ζ) ∈ suppΛ. This implies in particular that ν(A) > 0. Similarly, we
show that µ(B) > 0. �

Proposition 3.5. Let E ⊂ Rm × Rm be symmetric. Then,

YE =
⋃

P∈PE

YP .

Proof. We prove the first two identities of

YE = Y
Ê
=

⋃

P∈P
Ê

YP =
⋃

P∈PE

YP .(3.12)

in separate steps; the last one is immediate, since PE = PÊ by (2.9).

Step 1: Invariance under diagonalization. Since Ê ⊂ E, we only need to prove that YE ⊂ Y
Ê
.

Let Λ ∈ YE, and assume to the contrary that there exists a measurable set N ⊂ Ω × Ω with
positive L2n-measure such that

suppΛ(x,y) ∩ E \ Ê 6= ∅

for all (x, y) ∈ N . Due to the symmetry of E and Ê, we may take N to be symmetric.

Now fix (x, y) ∈ N and let (ξ, ζ) ∈ suppΛ(x,y) with (ξ, ζ) /∈ Ê. Then also (ζ, ξ) ∈ suppΛ(x,y),
and we infer from Lemma 3.4 that

{ξ, ζ} × {ξ, ζ} ⊂ suppΛ(x,y) ⊂ E.

Hence, (ξ, ζ) ∈ Ê according to Definition 2.5, which is a contradiction.

Step 2: Alternative representation of Y
Ê
. By definition, any P ∈ P

Ê
is contained in Ê;

hence,
⋃

P∈P
Ê
YP ⊂ Y

Ê
is immediate. For the reverse inclusion, let Λ ∈ Y

Ê
. To show that

Λ ∈ YP for some P ∈ P
Ê
, we argue again by contradiction, assuming that there is a measurable

set N ⊂ Ω × Ω with L2n(N) > 0, as well as a maximal Cartesian set P ∈ P
Ê

such that for all
(x, y) ∈ N ,

suppΛ(x,y) ⊂ Ê,

as well as

suppΛ(x,y) ∩Q 6= ∅ and suppΛ(x,y) ∩Q 6= ∅,

with

Q := P \
⋃

P∈P
Ê
,P 6=P

P and Q :=
⋃

P∈P
Ê
,P 6=P

P \ P .(3.13)

Since Q and Q are both symmetric, N can be chosen to be symmetric, too.
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Next, we fix (x, y) ∈ N and take (ξ, ζ), (α, β) ∈ suppΛ(x,y) such that

(ξ, ζ) ∈ Q and (α, β) ∈ Q.(3.14)

By symmetry, also (ζ, ξ), (β, α) ∈ suppΛ(x,y), and we infer from Lemma 3.4 that

M := {ξ, ζ, α, β} × {ξ, ζ, α, β} ⊂ suppΛ(x,y) ⊂ Ê.

Since M is a Cartesian product, it is contained in some maximal Cartesian subset P of Ê.
However, in view of (3.14) and (3.13), P cannot coincide with any element of PÊ ; indeed,

(ξ, ζ) ∈ P , but (ξ, ζ) does not lie in any maximal Cartesian subset of Ê other than P , hence,
P = P ; on the other hand, (α, β) ∈ P , but (α, β) /∈ P , which shows that P 6= P . This is the
sought contradiction. �

Proof of Theorem 3.1. The equality of A∞
K and B∞

K follows from Theorem 3.3 when thinking
in terms of barycenters of Young measures. Indeed, it suffices to use (3.10) along with the
observation that

A∞
K = {u ∈ L∞(Ω;Rm) : vu = [Λ], Λ ∈ Y∞

K } and B∞
K = {u ∈ L∞(Ω;Rm) : vu = [Λ], Λ ∈ Ỹ∞

K }.

For the desired representation formula, we invoke again (3.10) to deduce that

A∞
K = B∞

K =
{
u ∈ L∞(Ω;Rm) : vu = [Λ],Λ ∈

⋃

P∈PK

YP

}

=
⋃

A×A∈PK

{u ∈ L∞(Ω;Rm) : vu = [Λ],Λ ∈ YA×A}

=
⋃

A×A∈PK

{u ∈ L∞(Ω;Rm) : u = [ν], ν ∈ L∞
w (Ω;Pr(Rm)), supp νx ⊂ A for a.e. x ∈ Ω}

=
⋃

A×A∈PK

{u ∈ L∞(Ω;Rm) : u ∈ Aco a.e. in Ω},

which was the claim. In the last step, we used the well-known characterization of convex hulls
via barycenters of probability measures, see e.g. [9]. �

Remark 3.6. Let p ≥ 1 and E ⊂ Rm × Rm symmetric. Replacing the weakly∗ converging

L∞-sequences in the above definitions of Ỹ∞
E and B∞

E (see (3.8) and (3.3)) by weakly converging
Lp-sequences results in new sets of functions and parametrized measures, which we want to call

Ỹ∞
E,p and B∞

E,p, respectively.
If K ⊂ Rm × Rm is symmetric and compact, then

B∞
K,p = B∞

K and Ỹ∞
K,p = Ỹ∞

K ,

which is a consequence of [19, Proposition 2.2] and the fundamental theorem on Young measures,
see e.g. [12, Theorem 8.6 (iii)].

4. Necessary conditions for relaxation via separate convexification

As pointed out in the introduction, each of the papers [2, 4] presents a specific example of a
double-integral functional of multi-well form for which separate convexification of the integrand
fails in providing a correct relaxation formula. Here, we generalize these findings and generate
a whole class of such examples (see Corollary 4.7), motivated by recent insights from the study
of nonlocal supremal functionals and nonlocal inclusions [14]. A key ingredient is the following
notion of diagonalization for functions introduced in [14, (7.1)].

Definition 4.1. The diagonalization of a symmetric function W : Rm × Rm → R is defined as

Ŵ : Rm × R
m → R, Ŵ (ξ, ζ) = inf{c ∈ R : (ξ, ζ) ∈ L̂c(W )},

where L̂c(W ) = Lc(W )∧ is the diagonalization of the sublevel set Lc(W ) with c ∈ R in the sense
of Definition 2.5.



10 CAROLIN KREISBECK AND ELVIRA ZAPPALE

Notice that Ŵ ≥ W and that

Lc(Ŵ ) = L̂c(W ) = Lc(W )∧(4.1)

for all c ∈ R, cf. [14, (7.2)].

4.1. Double integrals and order relations. An important difference between the theory of
single- and double-integral functionals with substantial conceptual and technical ramifications
lies in the order relations for the functionals and their integrands.

Whereas it holds for any suitable f : Rm → R that

inf
u∈Lp(Ω;Rm)

∫

Ω
f(u) dx ≥ 0 ⇒ f ≥ 0,

the analogy of this implication is in general not true in the context of double integrals. In fact,
if

inf
u∈Lp(Ω;Rm)

∫

Ω

∫

Ω
W (u(x), u(y)) dx dy ≥ 0,

for a suitable W : Rm × Rm → R, the integrand W may take both positive and negative
values, which is owed to nonlocal effects. This observation was pointed out first by Bellido
& Mora-Corral in [2, Section 7] and illustrated with an explicit scalar example of the form
W (ξ, ζ) = w(ξ − ζ) for (ξ, ζ) ∈ R × R, where w : R → R is a fourth-order even polynomial;
see [2, Example 7.2] for the details. In the next proposition, we investigate a more general class
of related integrands, cf. also Remark 4.3 c) below.

Proposition 4.2. Let W : Rm × Rm → R be a symmetric, lower semicontinuous function with
p-growth and p-coercivity. If

minW < min Ŵ ,(4.2)

then,

|Ω|2 min Ŵ ≥ inf
u∈Lp(Ω;Rm)

IW (u) > |Ω|2 minW.

Remark 4.3. a) It is clear that W attains its infimum on Rm × Rm due to its coercivity and

lower semicontinuity of W . Since these two properties carry over to Ŵ considering that the

sublevel sets of Ŵ are again compact (cf. (4.1) and at the end of Section 2.4), also min Ŵ is
well defined.

b) Due to Proposition 4.2 and the properties of Ŵ , one finds that minW = min Ŵ if and
only if

inf
u∈Lp(Ω;Rm)

IW (u) = min
u∈Lp(Ω;Rm)

IW (u) = |Ω|2 minW.

c) The statement of Proposition 4.2 is valid also for double integrands W : Rm ×Rm → R of
the form W (ξ, ζ) = w(ξ−ζ) for (ξ, ζ) ∈ Rm×Rm, where w : Rm → R is a lower semicontinuous
function with p-growth and p-coercivity, provided we consider IW only on the smaller space of
Lp(Ω;Rm)-functions with vanishing mean value.

Proof of Proposition 4.2. For simplicity of notation, we write inf IW := infu∈Lp(Ω;Rm) IW (u) in
what follows, and we assume without loss of generality that minW = 0; otherwise, W can be
translated suitably.

First, we show the estimate

|Ω|2 min Ŵ ≥ inf IW .(4.3)

Let (ξ, ζ) ∈ Rm × Rm be a minimizer of Ŵ . Then, (ξ, ζ) ∈ L
min Ŵ

(Ŵ ) = L
min Ŵ

(W )∧ by (4.1),
so that

Ŵ (ξ, ζ) = Ŵ (ζ, ξ) = Ŵ (ξ, ξ) = Ŵ (ζ, ζ) = min Ŵ ,(4.4)
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by the symmetry of Ŵ and the definition of diagonalization of sets in (2.7). Considering the
constant function v : Ω → Rm given by v(x) = ξ for x ∈ Ω, we conclude in view of (4.4) and

W ≤ Ŵ that

inf IW ≤ IW (v) = |Ω|2W (ξ, ξ) ≤ |Ω|2Ŵ (ξ, ξ) = |Ω|2minŴ .

This implies (4.3).
To prove the strict inequality inf IW > minW = 0, we assume to the contrary that inf IW = 0,

meaning that there exists a sequence (uj)j ⊂ Lp(Ω;Rm) such that

lim
j→∞

IW (uj) = lim
j→∞

∫

Ω

∫

Ω
W (vuj(x, y)) dx dy = 0,(4.5)

cf. (2.11). As a consequence of the p-coercivity of W , (vuj )j is uniformly bounded in Lp(Ω ×
Ω;Rm × Rm).

If Λ = {Λ(x,y)}(x,y) = {νx⊗νy}(x,y) with ν ∈ L∞
w (Ω;Pr(Rm)) is the Young measure generated

by a (non-relabeled) subsequence of (vuj )j ⊂ Lp(Ω × Ω;Rm × Rm) according to [19, Proposi-
tion 2.3], the fundamental theorem on Young measures (see e.g. [12, Theorem 8.6 (i)]) yields
that

lim
j→∞

∫

Ω

∫

Ω
W (vuj(x, y)) dx dy ≥

∫

Ω

∫

Ω
〈Λ(x,y),W 〉 dx dy,

where 〈Λ(x,y),W 〉 :=
∫
Rm

∫
Rm W (ξ, ζ) dΛ(x,y)(ξ, ζ).

In light of (4.5) and the non-negativity of W , it follows that 〈Λ(x,y),W 〉 = 0 for a.e. (x, y) ∈
Ω× Ω, and hence, suppΛ(x,y) ⊂ L0(W ) for a.e. (x, y) ∈ Ω×Ω, or equivalently by (3.7),

Λ ∈ YL0(W ).(4.6)

On the other hand, (3.12) in the proof of Lemma 3.5 together with (4.2) results in

YL0(W ) = Y
L̂0(W )

= ∅.(4.7)

Combining (4.6) with (4.7) produces the desired contradiction. �

We continue our discussion of order relations for double integrals with the following basic,
yet useful, observation.

Lemma 4.4. Let V,W : Rm × Rm → R be symmetric, lower semicontinuous integrands with
p-growth such that IV ≤ IW . Then V (ξ, ξ) ≤ W (ξ, ξ) for all ξ ∈ Rm.

Moreover, if V (ξ, ξ) = W (ξ, ξ) for all ξ ∈ A ⊂ Rm, then V ≤ W on A×A.

Proof. Trivially, the first statement follows by evaluating IV and IW for constant functions.
To show the second statement, let (ξ, ζ) ∈ A × A and consider a piecewise constant function
v = ξ1Ωξ

+ ζ1Ω\Ωξ
∈ S∞(Ω;Rm) with a measurable set Ωξ ⊂ Ω such that |Ωξ| =

1
2 |Ω|. Then,

|Ω|2

4
V (ξ, ξ) +

|Ω|2

4
V (ζ, ζ) +

|Ω|2

2
V (ξ, ζ) = IV (v)

≤ IW (v) =
|Ω|2

4
W (ξ, ξ) +

|Ω|2

4
W (ζ, ζ) +

|Ω|2

2
W (ξ, ζ).

Since V and W coincide on the diagonal elements in A × A, this implies V (ξ, ζ) ≤ W (ξ, ζ),
concluding the proof. �

Remark 4.5. The previous lemma shows in particular that a double integral IW as in (2.10)
determines its integrand W uniquely. We point out that this is in contrast to the supremal
setting, where according to [14, (7.3)], all supremands with the same diagonalization in the sense
of Definition 4.1 generate the same supremal functional.

With the help of the previous lemma, we can derive the following bounds for a class of relaxed
double integrands.
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Proposition 4.6. Let W,G : Rm×Rm → R be symmetric, lower semicontinuous functions with
p-growth. Suppose that IrlxW = IG and that there exists A ⊂ Rm such that W (ξ, ξ) = W sc(ξ, ξ)
for every ξ ∈ Ac. Then,

W sc ≤ G ≤ W on (A×A)c.(4.8)

If A = ∅, it holds that G = W sc.

Proof. From

IW sc ≤ IrlxW = IG ≤ IW ,

we conclude with Lemma 4.4 that W sc(ξ, ξ) ≤ G(ξ, ξ) ≤ W (ξ, ξ) for all ξ ∈ Ac, which, in view
of our hypothesis, yields

W sc(ξ, ξ) = G(ξ, ξ) = W (ξ, ξ) for ξ ∈ Ac.(4.9)

Let (ξ, ζ) ∈ (A×A)c, and assume without loss of generality that ξ 6∈ A; otherwise interchange
the roles of ξ and ζ. Moreover, suppose for simplicity that |Ω| = 1. We define

v = ξ1Ωξ
+ ζ1Ω\Ωξ

∈ S∞(Ω;Rm),

where Ωξ ⊂ Ω is measurable such that |Ωξ| = λ with λ ∈ (0, 1). Then,

λ2G(ξ, ξ) + (1− λ)2G(ζ, ζ) + 2λ(1− λ)G(ξ, ζ) = IG(v)

≤ IW (v) = λ2W (ξ, ξ) + (1− λ)2W (ζ, ζ) + 2λ(1 − λ)W (ξ, ζ).

Due to (4.9), this can be rewritten as

G(ξ, ζ) ≤
1− λ

2λ

(
W (ζ, ζ)−G(ζ, ζ)

)
+W (ξ, ζ).

Letting λ tend to 1, allows us to conclude that G ≤ W on the complement of A×A.
If we replace G in the argument above with W sc, and W with G, the exact same reasoning

provides that W sc ≤ G outside of A×A. Overall, this proves (4.8).
For the statement on the special case A = ∅, we infer from (4.8) that W sc ≤ G ≤ W .

Since G has to be separately convex due to the Lp-weak lower semicontinuity of IG (see e.g. [4,
Theorem 1.1]), it follows that even G ≤ W sc, which entails the claim. �

4.2. Implications for relaxation formulas. Based on the results of Section 4.1, we derive
necessary conditions for the relaxation of IW as in (2.10) via separate convexification of the

double integrand W . We distinguish between the two cases when minW 6= min Ŵ and minW =

min Ŵ , addressed in Corollary 4.7 and Corollary 4.8, respectively.

Corollary 4.7. Let W : Rm × Rm → R be as in Proposition 4.2 with min Ŵ > minW . If
IrlxW = IW sc, then

min Ŵ sc > minW.(4.10)

Proof. By the assumptions and standard results in relaxation theory (see e.g. [7, Section 3]),
one obtains that

inf
u∈Lp(Ω;Rm)

IW (u) = min
u∈Lp(Ω;Rm)

IrlxW (u) = min
Lp(Ω;Rm)

IW sc(u).

Thus, applying Proposition 4.2 to IW and Remark 4.3 b) with Ŵ sc results in

|Ω|2minW < inf
u∈Lp(Ω;Rm)

IW (u) = min
u∈Lp(Ω;Rm)

IW sc(u) ≤ inf
u∈Lp(Ω;Rm)

I
Ŵ sc(u) = |Ω|2 min Ŵ sc,

which, due to |Ω| > 0, concludes the proof. �

For a simple one-dimensional example of a double integrand that fails to satisfy the necessary
conditions (4.10), see Section 5.1, especially (5.6). Next, we formulate a corresponding result in
the case when the minima of the double integrand and its diagonalization coincide.
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Corollary 4.8. Let W : Rm × Rm → R be symmetric and lower semicontinuous with p-growth

and p-coercivity such that minW = min Ŵ = 0. If IrlxW = IW sc , then,

L0(W
sc)∧ =

⋃

A×A∈PL0(W )

Aco ×Aco.(4.11)

If m = 1, it holds that

L0(W
sc)∧ = (L0(W )∧)sc.(4.12)

Proof. According to the classical abstract theory of relaxation (see e.g. [6, Section 9] and [7,
Section 3] and the references therein), the set of Lp-weak limits of sequences of almost minimizers
for IW coincides with the set of minimizers of the relaxed functional IrlxW = IW sc .

Translated into the language of nonlocal inclusions in the spirit of Section 3, this means

B∞
L0(W ),p = AL0(W sc).

Because L0(W ) is symmetric and compact as the sublevel set of a lower semicontinuous and
coercive symmetric function, we infer from (3.5) (cf. also Theorem 3.1) in conjunction with
Remark 3.6 that

AL0(W sc) = A∞
L0(W ) = A⋃

A×A∈PL0(W )
Aco×Aco .

By [14, Proposition 5.1], this is equivalent to

L0(W
sc)∧ =

( ⋃

A×A∈PL0(W )

Aco ×Aco
)∧

.(4.13)

Since the right-hand side of (4.13) is the union of Cartesian products and thus, already diagonal,
this shows (4.11).

Regarding m = 1, we infer from (3.6) that A∞
L0(W ) = A(L0(W )∧)sc . Then, (4.12) follows

from the same argumentation as above, along with the observation that diagonalization keeps
(L0(W )∧)sc invariant, see [14, Remark 4.8]. �

Given that the operations of diagonalization and separate convexification do not commute, (4.11)
and (4.12) impose in general non-trivial restrictions on W , as the following example for m = 1
illustrates.

Example 4.9. Let K = {(±1, 0), (0,±1), (2, 2)} ⊂ R× R and consider

W (ξ, ζ) = distp((ξ, ζ),K) for (ξ, ζ) ∈ R× R,

with respect to any norm on R × R. On the one hand, L0(W )∧ = K̂ = {(2, 2)} is already
separately convex. On the other hand,

L0(W
sc) ⊃ L0(W )sc = Ksc = {0} × [−1, 1] ∪ [−1, 1] × {0} ∪ {(2, 2)},

which, after diagonalization, turns into L0(W
sc)∧ ⊃ K̂sc = {(0, 0), (2, 2)}. This shows that (4.12)

is not satisfied here.

5. Counterexamples for preservation of double-integral character

In this section, we present and analyze two examples to disprove that the relaxation of a
double integral yields again a double integral. In both cases, the integrand W of IW as in (1.1)
with m = 1 measures the distance to a compact set K ⊂ R×R of diamond-like shape; choosing
the 1-norm is a good fit with the structure of K and helps to keep the calculations simple. The

conceptual difference between the two densities is that for the first, minW 6= min Ŵ , while the

second satisfies minW = min Ŵ .
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5.1. First counterexample. Let W : R× R → R be the function defined by

W (ξ, ζ) = distp1((ξ, ζ),K)(5.1)

for (ξ, ζ) ∈ R × R with K = {(±1, 0), (0,±1)} and the underlying norm ‖ · ‖1. We start by
observing that Ksc = {0} × [−1, 1] ∪ [−1, 1]× {0}.

Looking into the sublevel sets of W and its different convex envelopes gives the following
relations: For c ∈ R,

Lc(W ) =





B1
1+c1/p

(0, 0) for c ≥ 1,⋃
(ξ,ζ)∈K B1

c1/p
(ξ, ζ) for 0 ≤ c ≤ 1,

∅ for c < 0,

(5.2)

and

Lc(W
sc) ⊃ Lc(W

slc) ⊃ Lc(W )sc

=





Lc(W ) for c ≥ 1,

Lc(W ) ∪ [(−c1/p, c1/p)× (−1, 1)] ∪ [(−1, 1) × (−c1/p, c1/p)] for 0 ≤ c ≤ 1,

∅ for c < 0,

(5.3)

see also Figure 5.1; by (2.6), W co = distp1(·,K
co), and hence,

Lc(W
co) =

{
B1

1+c1/p
(0, 0) for c ≥ 0,

∅ for c < 0.
(5.4)

After diagonalization, (5.2) and (5.3) turn into

Lc(W )∧ =

{
[−c1/p, c1/p]2 for c ≥ 1,

∅ for c < 1,
and (Lc(W )sc)∧ =

{
[−c1/p, c1/p]2 for c ≥ 0,

∅ for c < 0,

(5.5)

for c ∈ R, see Figure 5.1. Observe in particular that L0(W )∧ = K̂ = ∅. In view of (4.1)
and (5.5), one can deduce an explicit expression for the diagonalization of W , that is,

Ŵ (ξ, ζ) = distp∞((ξ, ζ), [−1, 1]2) + 1 for (ξ, ζ) ∈ R
m.

On the other hand, by (5.3), (5.5) and (4.1), L0(Ŵ sc) = L0(W
sc)∧ ⊃ {(0, 0)}.

Summing up, the previous calculations show that

minW = 0 < 1 = min Ŵ and min Ŵ sc = minW sc = minW = 0.(5.6)

Thus, according to Corollary 4.7, separate convexification of the double integrand W fails to
give a representation for IrlxW . The next result provides even more, namely that the relaxation
of IW is not of double-integral form at all.

Proposition 5.1. Let W : R× R → R as in (5.1). There exists no symmetric, lower semicon-
tinuous double integrand G : R×R → R with p-growth such that IrlxW = IG.

Proof. We argue by contradiction, and suppose therefore that

0 ≤ IWsc ≤ IrlxW = IG ≤ IW(5.7)

for some G : R× R → R as in the statement.
A comparison of the sublevel sets of W and W co in (5.2) and (5.4) shows that

Lc(W ) \ (−1, 1)2 = Lc(W
co) \ (−1, 1)2

which entails that W coincides with W co outside of (−1, 1)2. In view of (2.3),

W = W slc = W sc = W co on [(−1, 1)2]c.
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ζ

ξ1

Lc(W )

ζ

ξ1

Lc(W )sc

ζ

ξ1

Lc(W )∧ = Lc(Ŵ )

ζ

ξ1

(Lc(W )sc)∧

Figure 1. Illustration of the (sub)level sets of W for p = 2 and their separate
convexifications and diagonalizations for the levels c = 0 (violet), c = 1

4 (purple),

c = 1 (red), c = 5
4 (orange), c = 3

2 (yellow).

We invoke Proposition 4.6 to infer that G = W on the complement of (−1, 1)2, and therefore,
G = 0 onK. Moreover, G(0, 0) ≥ W sc(0, 0) ≥ 0 by Lemma 4.4. Consequently, the Lp-weak lower
semicontinuity of IG = IrlxW , which yields that G is separately convex (see e.g. [4, Theorem 1.1]),
leads us to conclude that G vanishes on {0} × [−1, 1] ∪ [−1, 1] × {0} = Ksc; in particular,
G(0, 0) = 0.

This proves that minu∈Lp(Ω) IG(u) = IG(0) = 0, cf. (5.7). As IG coincides with the relaxation
of IW by assumption, one has that

inf
u∈Lp(Ω)

IW (u) = min
u∈Lp(Ω)

IrlxW (u) = min
u∈Lp(Ω)

IG(u) = 0.(5.8)

However, by Proposition 4.2 in combination with (5.6), infu∈Lp(Ω) IW (u) > |Ω|2 minW = 0,
which contradicts (5.8) and finishes the proof. �

Remark 5.2. Alternatively, there is also a direct and self-contained argument for the last step
in the previous proof, meaning, one that does not make use of Proposition 4.2. Following along
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the lines of [20, Section 3], we argue by contradiction and let infu∈Lp(Ω) IW (u) = 0, so that

IW (uj) =

∫

Ω

∫

Ω
W (vuj) dx dy → 0 as j → ∞(5.9)

for some sequence (uj)j ⊂ Lp(Ω). Due to W ≥ 0, we know that (vuj )j needs to concentrate
around L0(W ) = K, and since K is finite, it has to concentrate partially around at least one
point, without loss of generality (1, 0). Then, there exists a set ω ⊂ Ω of positive measure where
(uj)j concentrates around 1, which again entails that (vuj )j concentrates around (1, 1) on ω×ω,
and thus, ∫

ω

∫

ω
W (vuj) dx dy → |ω|2 W (1, 1) as j → ∞.

Observing that the limit is strictly positive because (1, 1) /∈ K = L0(W ) and ω has non-vanishing
Ln-measure, produces a contradiction with (5.9).

Not only homogeneous double integrals fail to provide an explicit representation for the Lp-
weak lower semicontinuous envelope of IW , allowing for inhomogeneous double integrands does
not help in obtaining correct relaxation formulas either.

Remark 5.3. In generalization of Proposition 5.1, one can show that it is not possible to express
IrlxW with W as in (5.1) in terms of

Lp(Ω) ∋ u 7→

∫

Ω

∫

Ω
G(x, y, u(x), u(y)) dx dy,

where G : Ω×Ω×R×R→ R is a symmetric and normal function with p-growth, i.e., G satisfies

(i) G(x, y, ξ, ζ) = G(y, x, ξ, ζ) and G(x, y, ξ, ζ) = G(x, y, ζ, ξ) for all x, y ∈ Ω and ξ, ζ ∈ R;
(ii) G(x, y, ·, ·) is lower semicontinuous for a.e. (x, y) ∈ Ω×Ω and G(·, ·, ξ, ζ) is measurable

for all (ξ, ζ) ∈ R×R;
(iii) |G(x, y, ξ, ζ)| ≤ C(a(x, y) + |ξ|p + |ζ|p) for all (x, y) ∈ Ω × Ω and (ξ, ζ) ∈ R × R with a

constant C > 0 and a ∈ L1(Ω× Ω).

To see this, it suffices to substitute G in the proof of Proposition 5.1 by

G(ξ, ζ) :=

∫

Ω

∫

Ω
G(x, y, ξ, ζ) dx dy for (ξ, ζ) ∈ R×R,

and to use [20, Theorem 2.5] in place of [4, Theorem 1.1].

5.2. Second counterexample. The double integrand for our second example is qualitatively
different from the first, in the sense that its minimum does not change under diagonalization.

Proposition 5.4. Let K = ∂B1
1(0, 0) = {(ξ, ζ) ∈ R× R : |ξ|+ |ζ| = 1} and let W : R× R → R

be given by

W (ξ, ζ) = distp1((ξ, ζ),K) for (ξ, ζ) ∈ R× R.(5.10)

There exists no symmetric, lower semicontinuous double integrand G : R×R → R with p-growth
such that IrlxW = IG.

Proof. Arguing by contradiction, we suppose that IrlxW = IG with G as in the statement, and
split the proof into two steps. First, Step 1 shows that necessarily G = W sc, and then, we
conclude in Step 2 that IrlxW 6= IW sc , which yields the desired contradiction.

Step 1: G = W sc. Since Ksc = Kco = B1
1(0, 0), it follows from Lemma 2.4 that W sc = W co.

With W co = distp1(·,K
co) by (2.6), we see that W and W sc differ only in the interior of Kco =

B1
1(0, 0), which we will denote by B in the following; hence,

W sc = W on Bc.(5.11)

A comparison between G, W and W sc along the diagonal yields

W sc(ξ, ξ) = G(ξ, ξ) = W (ξ, ξ) for ξ ∈ R with |ξ| ≥ 1
2 ,
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according to Lemma 4.4; note that like in Section 5.1, (5.7) has to hold here as well. In view of
Proposition 4.6, W sc ≤ G ≤ W on [(−1

2 ,
1
2)

2]c, we obtain together with (5.11) that

G = W sc on Bc.(5.12)

Next, we prove that

G = W sc on [−1
2 ,

1
2 ]

2.(5.13)

The argument is based on the observation that K̂ = {−1
2 ,

1
2}

2, and therefore K̂sc = K̂co =

[−1
2 ,

1
2 ]

2.

For (ξ, ζ) ∈ [−1
2 ,

1
2 ]

2, let v = ξ1Ωξ
+ ζ1Ω\Ωξ

with a measurable set Ωξ ⊂ Ω of measure λ|Ω|

with λ ∈ (0, 1). By Lemma 2.1, one can find a sequence (vj)j ⊂ S∞(Ω) of simple functions that
oscillate suitably between the values ±1

2 such that vj ⇀
∗ v in L∞(Ω). As

0 ≤ IW sc(v) = IG(v) = IrlxW (v) ≤ lim sup
j→∞

IW (vj) = 0,

owing to W = 0 on K̂ ⊂ K, it follows that

λ2G(ξ, ξ) + (1− λ)2G(ζ, ζ) + 2λ(1− λ)G(ξ, ζ) = 0 for all λ ∈ (0, 1).

Letting λ → 0 and λ → 1 yields first that G(ξ, ξ) = G(ζ, ζ) = 0, and eventually, also G(ξ, ζ) = 0.
This finishes the proof of (5.13).

We can now infer from (5.12) and (5.13) that G coincides with W sc everywhere on the
diagonal, and since IW sc ≤ IrlxW = IG, Lemma 4.4 implies that G ≥ W sc ≥ 0 on R× R. Since G
is non-negative with G = 0 on ∂B1

1(0, 0) = ∂B by (5.12) and G has to be separately convex (see
e.g. [4, Theorem 1.1]), it follows that

G = 0 on B1
1(0, 0).(5.14)

In combination with (5.12), this shows G = W sc.
Step 2: IrlxW 6= IW sc. Considering the simple function v = 1Ω1 , where Ω1 ⊂ Ω is a set of

positive Lebesgue measure, we aim to show that

IrlxW (v) 6= IW sc(v).

Assume to the contrary that IrlxW (v) = IW sc(v). Then, by the definition of the relaxed functional,
there exists a sequence (uj)j ⊂ Lp(Ω) such that uj ⇀ v in Lp(Ω) and

lim
j→∞

IW (uj) = IW sc(v) = |Ω1|
2W sc(1, 1) + |Ω \ Ω1|

2W sc(0, 0) + 2|Ω1||Ω \ Ω1|W
sc(1, 0) = |Ω1|

2;

(5.15)

here, in the last step we have exploited again that W sc = W co = distp1(·,K
co). On the other

hand, along with the weak convergence of the restrictions of (uj)j to Ω1 and Ω\Ω1, i.e. uj |Ω1 ⇀ 1
in Lp(Ω1) and uj |Ω\Ω1

⇀ 0 in Lp(Ω \ Ω1), as well as the symmetry and non-negativity of W ,

lim
j→∞

IW (uj) = lim
j→∞

(∫

Ω1

∫

Ω1

W (uj(x), uj(y)) dx dy +

∫

Ω\Ω1

∫

Ω\Ω1

W (uj(x), uj(y)) dx dy

+ 2

∫

Ω1

∫

Ω\Ω1

W (uj(x), uj(y)) dx dy
)

≥ |Ω1|
2W sc(1, 1) + |Ω \Ω1|

2W sc(0, 0) + 2 lim inf
j→∞

∫

Ω1

∫

Ω\Ω1

W (uj(x), uj(y)) dx dy(5.16)

= |Ω1|
2 + 2 lim inf

j→∞

∫

Ω1

∫

Ω\Ω1

W (uj(x), uj(y)) dx dy ≥ |Ω1|
2.
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Combining (5.16) with (5.15) turns all equalities in (5.16) into equalities. Hence, after passing
to a suitable (not relabeled) subsequence,

lim
j→∞

∫

Ω1

∫

Ω1

W (uj(x), uj(y)) dx dy = |Ω1|
2,(5.17)

lim
j→∞

∫

Ω\Ω1

∫

Ω\Ω1

W (uj(x), uj(y)) dx dy = 0,(5.18)

and

lim
j→∞

∫

Ω1

∫

Ω\Ω1

W (uj(x), uj(y)) dx dy = 0.(5.19)

The identity (5.18) shows that the sequence (uj |Ω\Ω1
)j ⊂ Lp(Ω \ Ω1) concentrates around

±1
2 , while (5.17) indicates that this is not the case for (uj |Ω1)j ⊂ Lp(Ω1). Now, let ω ⊂ Ω \ Ω1

and ω1 ⊂ Ω1 be sets of positive Ln-measure and ε > 0 such that (uj |ω)j concentrates around
1
2 , and (uj |ω1)j concentrates on the complement of (12 − ε, 12 + ε) ∪ (−1

2 − ε,−1
2 + ε). Such

sets exist without loss of generality, otherwise replace 1
2 by −1

2 for the set of concentrations of
(uj |ω)j. With ν ∈ L∞

w (ω1;Pr(R)) the Young measure generated by a suitable (non-relabeled)
subsequence of (uj |ω1)j , it follows that

lim
j→∞

∫

ω

∫

ω1

W (uj(x), uj(y)) dx dy = |ω|

∫

ω1

∫

R

W (ξ, 12) dνx(ξ) dx > 0,(5.20)

which contradicts (5.19). The estimate in (5.20) makes use of the fact that by the choice of
ω1, ±

1
2 /∈ supp νx for a.e. x ∈ ω1, along with the observation that W (ξ, 12) = 0 if and only if

ξ ∈ {−1
2 ,

1
2}. �

Remark 5.5. We notice that condition (4.12) from Corollary 4.8, which is necessary for
structure-preserving relaxation of double integrals via separate convexification in the scalar set-
ting, is in general not sufficient.

Indeed, for the double integrand W introduced in (5.10), one has that L0(W ) = K with

K̂ = {−1
2 ,

1
2}

2, Ksc = Kco = B1
1(0, 0) and W sc = W co; therefore,

(L0(W )∧)sc = K̂sc = [−1
2 ,

1
2 ]

2 = B1
1(0, 0)

∧ = K̂co = L0(W
co)∧ = L0(W

sc)∧,

which is (4.12).

With Propositions 5.1 and 5.4 at hand, it is not hard to generate counterexamples also in
the vectorial setting.

Remark 5.6. Let m ∈ N with m > 1 and K as in Proposition 5.1 or 5.4. For ξ, ζ ∈ Rm,
let ξ′, ζ ′ ∈ Rm−1 be the vectors of the last m − 1 components of ξ and ζ, respectively, so that
ξ = (ξ1, ξ

′) ∈ Rm and ζ = (ζ1, ζ
′) ∈ Rm.

We define

W (ξ, ζ) = distp1((ξ1, ζ1),K) + |(ξ′, ζ ′)|p =: W1(ξ1, ζ1) +W ′(ξ′, ζ ′)

for (ξ, ζ) ∈ Rm × Rm. Due to the decoupling of the first component from the last ones, it is
straightforward to check that

IrlxW (u) = IrlxW1
(u1) + IW ′(u′) for u =: (u1, u

′) ∈ Lp(Ω;Rm).

Therefore, since IrlxW1
: Lp(Ω) → R fails to be a double integral, so does IrlxW : Lp(Ω;Rm) → R.

6. Examples of structure-preserving relaxation

In this last section, we provide examples of non-trivial relaxation where the double-integral
structure is preserved and the integrands result from taking the separately convex envelope.
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6.1. Integrands of distance type. LetK = A×A with a compact set A ⊂ Rm and 1 ≤ q ≤ ∞.
We consider functions W : Rm × Rm → R defined via

W (ξ, ζ) = distpq((ξ, ζ),K) = distpq((ξ, ζ), A ×A) for (ξ, ζ) ∈ R
m × R

m,(6.1)

cf. (2.1).
As Ksc = Kco = Aco ×Aco according to (2.2), Lemma 2.4 implies that the separately convex

envelope of W is identical with the convex one, that is,

W sc(ξ, ζ) = W co(ξ, ζ) = distpq((ξ, ζ), A
co ×Aco)(6.2)

=

{(
distq(ξ,Aco) + distq(ζ,Aco)

) p
q if 1 ≤ q < ∞,

max{dist(ξ,Aco),dist(ζ,Aco)}p if q = ∞,

for (ξ, ζ) ∈ Rm×Rm; notice that the function dist(·, Aco) on Rm denotes the Euclidean distance
from Aco.

Under the additional hypothesis on A that

dist(ξ,Aco) = dist(ξ,A) for all ξ /∈ Aco,(6.3)

one can express the (separate) convexification of W in the following way: With any α, β ∈ A,

W sc(ξ, ζ) =





0 if ξ ∈ Aco and ζ ∈ Aco,

W (ξ, ζ) if ξ /∈ Aco and ζ /∈ Aco,

W (α, ζ) if ξ ∈ Aco and ζ /∈ Aco,

W (ξ, β) if ξ /∈ Aco and ζ ∈ Aco,

(6.4)

for (ξ, ζ) ∈ Rm×Rm. Notice that the condition (6.3) is always fulfilled for A if m = 1; a sufficient
condition for (6.3) in the vectorial case m > 1 is for instance that A ⊂ Rm satisfies ∂Aco = ∂A.

We have the following characterization result.

Proposition 6.1. Let W be as in (6.1) with A satisfying (6.3). Then, IrlxW = IW sc.

Proof. SinceW sc is separately convex, and hence IW sc Lp-weakly lower semicontinuous (see e.g. [18,
Theorem 1.1], [20, Theorem 2.6]), it is clear that IrlxW ≥ IW sc . To prove the reverse inequality, let
u ∈ Lp(Ω;Rm), which we approximate by a sequence of simple functions (uk)k such that uk → u
in Lp(Ω;Rm). Under consideration of the continuity and p-growth of W sc, the Vitali-Lebesgue
convergence theorem yields that IW sc(u) = limk→∞ IW sc(uk). It remains to find for any simple
function

v =

N∑

i=1

ξ(i)1Ω(i)(6.5)

with ξ(i) ∈ Rm and {Ω(i)}i=1,...,N a decomposition of Ω into measurable subsets, a sequence
(vj)j ⊂ Lp(Ω;Rm) such that vj ⇀ v in Lp(Ω;Rm), and

lim sup
j→∞

IW (vj) ≤ IW sc(v);(6.6)

the claim follows then from a diagonalization argument.
In the following, we take v as in (6.5) and detail the construction of (vj)j with the desired

properties. If ξ(i) ∈ Aco, let (v
(i)
j )j ⊂ Lp(Ω(i);Rm) be a sequence that converges weakly to v in

Lp(Ω(i);Rm) and takes values only in A, meaning,

v
(i)
j ∈ A a.e. in Ω(i) for all j ∈ N,(6.7)
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cf. Lemma 2.1. If ξ(i) /∈ Aco, let v
(i)
j for any j ∈ N be the constant function on Ω(i) with value

ξ(i). With these definitions, consider the sequence (vj)j ⊂ Lp(Ω;Rm) given by

vj :=

N∑

i=1

v
(i)
j 1Ω(i) for j ∈ N.

By construction, vj ⇀ v in Lp(Ω;Rm), and

IW (vj) =

∫

Ω

∫

Ω
W (vj(x), vj(y)) dx dy =

N∑

i,l=1

∫

Ω(i)

∫

Ω(l)

W (v
(i)
j (x), v

(l)
j (y)) dx dy

=

N∑

i,l=1

|Ω(i)| |Ω(l)|W sc(ξ(i), ξ(l)) = IW sc(v)(6.8)

for all j ∈ N, which implies (6.6) and concludes the proof; the third identity in (6.8) follows
from the observation that for any j ∈ N and i, l ∈ {1, . . . , N},

W (v
(i)
j (x), v

(l)
j (y)) = W sc(ξ(i), ξ(l)) for a.e. (x, y) ∈ Ω(i) × Ω(l).(6.9)

To see the latter, we distinguish three different cases. If ξ(i), ξ(l) /∈ Aco, the functions v
(i)
j and

v
(l)
j are constant, and W sc(ξ(i), ξ(l)) = W (ξ(i), ξ(l)) by (6.4). For ξ(i), ξ(l) ∈ Aco, both expressions

in (6.9) are zero (almost everywhere) according to (6.7) and (6.4). In the case ξ(i) ∈ Aco and

ξ(l) /∈ Aco, we invoke again (6.4) to obtain that W sc(ξ(i), ξ(l)) = W (α, ξ(l)) for any α ∈ A;

hence, (6.9) holds in light of (6.7). For ξ(i) /∈ Aco and ξ(l) ∈ Aco, the reasoning is analogous. �

6.2. Indicator functionals. For a symmetric, diagonal and compact set K ⊂ Rm × Rm, we
define the associated indicator functional JK via

Lp(Ω;Rm) ∋ u 7→ JK(u) := IχK
(u) =

∫

Ω

∫

Ω
χK(u(x), u(y)) dx dy,(6.10)

where χK is the indicator function of K, i.e., χK(ξ, ζ) = 0 if (ξ, ζ) ∈ K and χK = ∞ otherwise
in Rm × Rm. Note that JK can be expressed in terms of nonlocal inclusions as

JK(u) =

{
0 if u ∈ AK ,

∞ otherwise,

for u ∈ Lp(Ω;Rm); recall the definition of AK in Section 3.
According to [14, Corollary 6.2] and Theorem 3.3, the Young measure relaxation of JK is

JY
K(ν) =

{
0 supp ν ⊗ ν ⊂ K̂ a.e. in Ω× Ω,

∞ otherwise,

=

{
0 supp ν ⊗ ν ⊂ P a.e. in Ω× Ω with P ∈ PK ,

∞ otherwise,

=

{
0 supp ν ⊂ A a.e. in Ω with A×A ∈ PK ,

∞ otherwise,
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for ν ∈ L∞
w (Ω;Pr(Rm)), and (3.4) provides a representation formula for the relaxation of JK

with respect to the Lp-weak topology; precisely, for u ∈ Lp(Ω;Rm),

J rlx
K (u) := inf{lim inf

j→∞
JK(uj) : uj ⇀ u in Lp(Ω;Rm)}(6.11)

=

{
0 if u ∈ B∞

K,p = A∞
K ,

∞ otherwise,

=

{
0 if u ∈ Aco a.e. in Ω with A×A ∈ PK ,

∞ otherwise,
(6.12)

=

∫

Ω

∫

Ω
χ[⋃

A×A∈PK
Aco×Aco

](u(x), u(y)) dx dy = JKrlx ,

with Krlx :=
⋃

A×A∈PK
Aco×Aco; for the second identity, we invoke Theorem 3.1 in combination

with Remark 3.6.
It is generally not true that Krlx coincides with the separately convex hull of K (see [14,

Example 4.6 b)]); yet, under the additional assumption that

K̂sc =
⋃

(α,β)∈K

[α, β] × [α, β],

which is for instance satisfied for m = 1 (see [14, Lemma 4.7]), it was shown in [14, Corollary 6.1]

that J rlx
K = JKsc . Whether this identity holds in general, or equivalently, if Krlx = K̂sc without

further assumptions on K, remains unknown.
In conclusion, we have seen that the relaxation of indicator functionals of the type (6.10) is

always structure preserving.
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