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Abstract

We study the time-domain acoustic scattering problem by a cluster of small holes (i.e. sound-soft
obstacles). Based on the retarded boundary integral equation method, we derive the asymptotic expansion
of the scattered field as the size of the holes goes to zero. Under certain geometrical constraints on the
size and the minimum distance of the holes, we show that the scattered field is approximated by a linear
combination of point-sources where the weights are given by the capacitance of each hole and the causal
signals (of these point-sources) can be computed by solving a, retarded in time, linear algebraic system. A
rigorous justification of the asymptotic expansion and the unique solvability of the linear algebraic system
are shown under natural conditions on the cluster of holes. As an application of the asymptotic expansion,
we derive, in the limit case when the holes are densely distributed and occupy a bounded domain, the
equivalent effective acoustic medium (an equivalent mass density characterized by the capacitance of the
holes) that generates, approximately, the same scattered field as the cluster of holes. Conversely, given a
locally variable, smooth and positive mass density, satisfying a certain subharmonicity condition, we can
design a perforated material with holes, having appropriate capacitances, that generates approximately
the same acoustic field as the acoustic medium modelled by the given mass density (and constant speed
of propagation). Finally, we numerically verify the asymptotic expansions by comparing the asymptotic
approximations with the numerical solutions of the scattered fields via the finite element method.

Keywords: Time-domain acoustic scattering; Asymptotic analysis; Retarded layer potentials; Effec-
tive medium theory.
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1 Introduction

We are concerned with the time-domain acoustic scattering from a cluster of small sound-soft obstacles (i.e.
holes) located in the homogeneous background medium in R?. Let D be a union of holes, i.e. D = Uj]‘/ile.
Assume that D is bounded and R?®\ D is connected. We denote by cy the constant wave speed in R?\ D.
Let
Mt =gtz —2%))

wi( 1) = Az — 2*|

(1.1)

be an incident wave emitted from a point source located at z* & D, where A € C*(R) is a causal signal such
that A vanishes for all ¢ < 0. We note that ¢y ?ul, — Au’ = 0 for x € R®\ {z*} and ¢ > 0. Then the scattered
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acoustic wave u® := u®(x, t), generated after the incident wave hits the cluster D, satisfies the following initial
boundary value problem:
o 2uf, — Au® =0 in (R3\ D)r,

u® = —u' on (0D)r, (1.2)

uli=o = 0, uilt=o =0 in R3\ D.

We denote by u := u? + u® the total field. For simplicity of notations, here and throughout this paper, we
denote X x (0, T) and 90X x (0, T) by Xr and (0X)r, respectively, where X is a domain in R® and 0X
denotes its boundary. The uniqueness and existence of the solution to the direct scattering problem (1.2) are
well studied by using the retarded boundary integral equation method; see for instance [6, 13, 17, 21, 28].

Now, we consider our holes to be of the form D; = ¢B; + z;, j = 1,2, ---, M, characterized by the
parameter £ > 0 and the locations z; € R3, where B;’s are bounded and C*-smooth domains containing
the origin. The parameter ¢ is the relative size of D;, as compared to the size of Bj, (i.e. a dimensionless
quantity) and it is intended to be small. To fix some notations, we set a as the maximum among the diameters
of the holes, i.e.,

a:i= max diam(D;) = ¢ |nax diam(B;), (1.3)

and d as the minimum distance between the holes, i.e.,

d:= 1SIiI71]121w dij, dij = diSt(Di, D]) (14)
i#j
Because of (1.3), we sometimes abuse the notations a and e when they naturally appear in some estimates.
In this paper, we are interested in the following regimes for modeling the cluster

M~e® deel asexl (1.5)
with positive constants s and f.

In this work, we are interested in analyzing the asymptotic behavior of the scattered field u® for the
above time-domain scattering model as the relative size £ of the holes goes to zero. As we know, asymptotic
expansions of the fields generated by a cluster of small particles (of different kinds) are well developed in
the literature for the elliptic models; see for instance [1-3, 5, 7-9, 11, 12, 18, 22-27] and the references
therein. However, there are few results on time-domain models, as those related to parabolic, Schrodinger
or hyperbolic equations, unless for periodic media [10, 14, 15, 22] or finitely many holes [19]. Recently, we
studied in [29] the asymptotic analysis of the solution to a heat conduction problem by a cluster of small
cavities using the boundary integral equation method, and then derived an equivalent effective medium that
generate approximately the same temperature field as the cluster of cavities. For the time-domain wave
scattering problem, the situation is much less clear. This motivates our work in this paper.

Our first result is stated as follows.

Theorem 1.1 We assume that the incident wave is causal and X € C*[0, T| such that >~ ,Cy is finite
where Cp, := maxc(o, 7 IAX™)(t)|. Under the following condition on the cluster of holes:

€ max d;2 <1, (1.6)
1<i<M vy v
JF

which means that 1 — 28 — s/3 > 0, we have the following asymptotic expansion:

M —1
’U,S(II," t) _ Cjaj(t — Cy |.’II - Z]|) + 0 (&_2—5) + 9] (83_25) + O (83_26_5) ase — 0 (17)
JZZI An|z — 2]



for x € R®\ D, x away from D, and t € (0, T), where the constant C; is the capacitance of D; defined by

aD;
with o; satisfying
;(y)
——=—ds(y) =1 ondD;, 1.9
L, e ; (19)

and {o; };‘il is the unique solution of the invertible, retarded in time, linear algebraic system

M -1 —1
Ciaj(t —cglzi — z4) ANt —co lzi —2%) .
At Z 7% 0 =i VAV 0 I~ =1.2. --- .M. 1.10
a()+j:1 4|z — z] s I o
J#i

This kind of asymptotic expansions plays a key role in highly important applied sciences, such as imaging
and material sciences. As an application of the asymptotic expansion in the limit case that the holes are
densely distributed and occupy a bounded domain, we derive an effective medium that can produce approx-
imately the same scattered field as the union of holes. Explicitly, the solution of the initial boundary value
problem (1.2) can be approximated by the solution of an effective initial value problem whose governing
equation contains a zero order term generated by the capacitance of the holes. To show this, let Q be a
bounded domain containing all the holes D;, j =1, 2, --- , M. Here we assume that the holes have the same
shapes®. We know that the capacitance C; of D; is given by the one of B;, which we denote by C';, through
the formula C; = Cje. We set the common capacitance C; by C. We divide  into [a~!] subdomains
Qj,5=1,2,---, [a"1], periodically arranged for instance?, such that the Q,’s are disjoint and of a volume
a. Let each subdomain €; contain one hole. Such a distribution obeys the condition (1.6), with 8 = % and
s =1, as we explained in [29]. Then we have the following result.

Theorem 1.2 Let W (x, t) be the solution of the initial value problem

{(0523“ — A+ Cxa)W = —Cxqui(z, t) inR?x (0, 7T), 111)
Wz, 0) =0, W(z, 0) =0 in R3.
Then, for any fived x € R3\ Q and t € (0, T'), we have the estimate
w(z, t) = Wz, t)+0(a%) ase =0, (1.12)
where u®(x, t) is the solution to (1.2). If we define U := W + u', we also have
u(z, t) =U(z, t)+ O (a%) ase — 0. (1.13)
Let p be the unique solution of the problem
{—Ap—i—ap:O in €, (1.14)
p=1 on 0f).

Since C is positive in €2, the unique solution of (1.14) is also positive in (2, due to the maximum principle.
We extend p from €2 to R? by simply setting p = 1 in R3\ Q. Define U := p~'U and observe that U satisfies

the problem
p2ey 204U — V - (pQVU) =pAt)§(x —2*) inR3®x (0, T), (1.15)
U(z, 0) =0, Uz, 0) =0 in R3. '

Then, as a corollary of Theorem 1.2, we deduce the following result.

1 Actually, we only need them to have the same capacitance.
2The periodicity is actually not needed.



Corollary 1.3 For x € R*\ Q and t € (0, T), we have the approzimation
u(z, t)=U(z, t) + O (E%) ase — 0. (1.16)

This result means that the wave reflected by the cluster of holes is approximately the same as the one generated

2

by the acoustic medium characterized by the speed of propagation ¢y and the mass density p := p~=, where

p is the unique solution of the problem (1.14). Conversely, let p be any given mass density function which
is C%-smooth, positive such that p := p~'/? is subharmonic, i.e. Ap > 0 in a given region Q and p = 1 in
R3\ Q. Then starting from a homogeneous material (i.e. the background), we drill small holes D; of center
z; and radius € having the capacitance 6(2’]‘) e, where C' = %, distributed, periodically for instance, in
). This perforated material will behave as an acoustic medium with constant speed of propagation and the

mass density as the given function p.3

Here we would like to add the following two observations:

1. The periodicity in distributing the holes in €2 is actually not needed. We assume it only for simplicity
of exposition, and the result can be extended to more general cases. In addition, we can put arbitrary
number of holes in each subdomain €2;. In this case, we need to introduce the local distribution density
function K (z) and replace C' by C K(x) in the governing equation; see for instance [1, 3, 11] for the
harmonic regime cases.

2. Theorem 1.2 may have important applications in material sciences. On one hand, we can design new
materials by appropriately distributing the holes in the background medium so that we can get the
desired mass density and the scattered field as we explained above. On the other hand, for the wave
scattering from an inhomogeneous medium modeled by (cy 29y — A —q(x))u® = 0, we may kill the term
g(z)u® and make the inhomogeneity invisible through properly embedding the holes into the medium
such that C' K (z) = q(x). This would be a good insight for acoustic cloaking in the time-domain.

The rest of the paper is organized as follows. In Section 2, we provide the analysis for the case of a single
hole to describe the main steps of our approach. In Section 3, we prove the asymptotic expansion for the
case of multiple holes, i.e. Theorem 1.1. In Section 4, we derive the effective medium and prove Theorem
1.2. Three numerical examples are presented in Section 5 to illustrate the effectiveness of the asymptotic
expansion.

2 Proof of Theorem 1.1: the single hole case

In this section, we consider the single hole case that D = ¢ B + z and prove Theorem 1.1 (with M = 1).
To begin with, we introduce the function space

H{(0,T) == {glo,7): 9€ H'(R) with =0 in (—o0,0)}, reR

and generalize it to the H*(9D)-valued function space, denoted by H{ (0, T; H*(0D)). Let E be a Hilbert
space and define
LT (0, E):={f €D\ (E): e 7' feS (E)}, o>0,

where D’ (E) and S’ (E) denote the sets of distributions and temperate distributions on R with values in £
and support in [0, +00). Then we define the space

H§ ,(0, T; H*(OD)) := {f € LT (0, H*(D)) : e 7"A" f € L§(0, T; H*(dD))},

3The proof of Theorem 1.2 is proved for holes having the same capacitances. However, we do believe that the same result is
true for variable capacitances as described above; see [1] for the time harmonic acoustic model.



where r € R and A" denotes the r-th order derivative with respect to the variable t. For nonnegative integer

r, we use the norm
T , 9 1/2
| fll 2z 0, 7; o (0D)) = / e 2 ||f||?qs(aD)+Z dt :
' 0 k=1 HS(GD)
t—cytle — —
wiey= [ ARLZO W o) o e @\ D), 1)
oD

We now express the solution to (1.2) as a retarded single-layer potential
drlz —y|

o°f
R

where ¢ is a causal density to be determined. In view of the boundary condition in (1.2), we obtain from the
continuity property of the potential (2.1) that

/ Py, t —co |z —y)) ds(y) = —u'(z, t), (x,t) € (OD)p. (2.2)
oD 4|z — y|

It was proved in [21] that the boundary integral equation (2.2) has a unique solution with the a-priori estimate
HSOHH()‘YU(O,T;H*1/2(8D)) S Hui”Hg;?(o,T; /20Dy T € R. (2.3)
By the embedding H"(0, T') < C[0, T for r > 1/2, we also have

||90(5 t)”H*l/?(BD) S Hui”H&U(O,T;H1/2(8D))7 r> 5/27 le [Oa T] (24)

Throughout the paper, we use the notation “<” to denote “<” with its right-hand side multiplied by a generic
positive constant, if we do not emphasize the dependence of the constant on some parameters.

As we need to deal with changes of coordinates in estimating ¢ by Sobolev norms, we introduce some
notations here. We first consider the scaling for the space variable. Set

. § x—z
p(&) =p"(&) =p(e€ +2), £€0B and ((z) =q"(z) :==¢ ( ) e
We introduce the following Sobolev norms defined in [16]:
Iplle/2op) == inf Alul|gr(p) forallpe H'?(0D) (2.5)
uweH" (D)
ulop=p
and
lgll r-1/2(0py == sup g, plonl. for all ¢ € H~Y/2(0D), (2.6)
e o Tollraon)
p#0

where (-, -)op denotes the duality paring between H~/2(dD) and H'/?(0D). Let

5/2(3D) ={pe HY?(dD) : /

pds =0} and H§1/2(8D) = {qu_1/2(8D):/ qds =0}.
oD

oD

Then we have the following properties for scaling the space variable.

Lemma 2.1 Suppose 0 < e < 1. Ifp€ H§/2(8D) and q € H;1/2(8D), there exist two constants ¢ and co
such that

c1 51/2”13”1111/2(83) <|plla1/20py < 51/2”13HH1/2(BB)a (2.7)
2N dll g-1r20m) < lallg-1720py < 22 |dll r-1/2(0)- (2.8)

If p € H'?(OD) and q € H-Y/%(0D) are constants, there exist two constants cz and ¢4 such that

c3 53/2”15”1{1/2(33) < lpllgrirzomy < €210l 1r2(08); (2.9)

e 2\l gr-1/20my < lall-1/200) < cae?Ndll gr-1/2(a)- (2.10)



Proof. The scaling results (2.7) and (2.8) were proved in [4, Lemma 4.1], while (2.9) and (2.10) can also be
observed from the proof there. o

Next, we do the scaling for both the space and time variables. Denote T. := T'/e. For any functions ¢
and v defined on (0D)r and (9B)r., respectively, we use the notations

P& )= (& ) = p(e€ + 2, e7), (& 7) €(9B)r1.,
Tr—z E

By =@ =v (225 1), @0 e @D

g

Notice that (. 1) o ) ol )
n@ 5 T) n<P 5 ET . on n@ B
o~ am o o "€

Then, using Lemma 2.1, we have the following scaling result.

Lemma 2.2 Suppose 0 < ¢ < 1. Ify € HS;Q(O, T; H§/2(8D)) and ¢ € Hg (0, T; Hglm(aD)) with

nonnegative integer r, there exist two constants c1 and ca such that

C1 57(T+1)”dJHHg;i(O,TE;Hl/?(BB)) = ||1/’||ng,2(o,T; H1/2(9D)) S C(T)57(T+1)HU)HH&ﬁ(QTE;HI/Z(BB))GQ'H)

e @l

50,1 1-1/208)) < @llmg 0,7, m-1/2(0p)) < 2 C(T) 7@y 0.1 H-1/2(08))> (2:12)

0,c0

where C(T') stands for a constant that depends onT. Ift € HS;’?(O, T; HY/?(0D)) and ¢ € Hg (0, T; H~'Y2(0D))
are independent of the space variable, there exist two constants cs and ¢4 such that

e3 E_THJ)“H&tg(O, T.; H/2(9B)) < H‘/’”ng}(o, T; HY/2(8D)) < C(T) E_TW}HH&g(O, T.; HY/2(0B))> (2.13)

517T|\¢|\Hg,w(o,TE;H71/2(aB)) < llellug 0,7, 1H-1/20p)) < €4 C(T)e" " 1@l (0, 72: r-1/2(8m))-(2.14)

0,0

Proof. We only prove (2.11), since the others can be proved in the same way. Note that H&f—norm

with respect to t is equivalent to L2-norm of the highest derivative. Then, for ¢ € H&JgQ(O, T; Hg/2 (0D)),
we derive

T 2
O 2Y(, 1)
2 —20t )
||¢||HSI2(O,T;H1/2(8D)) < C(T)/O € otr+2 H'/2(0D) dt
~ 2
T: r+2 .
S O(T)/ 672067 5727“73 9 adr)—(i_; T) edr
0 ’ H'/2(0B)
S C(T) 8_2(T+1)”w”égti(O,TE;H1/2(BB))'
On the other hand, we have
T 2
8T+2¢(_ t)
2 —20t ’

”dJHHg,trQ(O*T;Hl/Z(aD)) S /o ‘ St H'/2(dD) “
T ~ 2

: (-, 7)

—20eT —2r—3 ’
2 /0 e g W edr
HY/2(9B)
—2(r+1 2
Z € ( )”d}HH&tg(O,TE;Hl/z(BB))'
The proof is complete. O

In the next lemma, we investigate scaling property of the retarded single-layer potential operator Ssp
defined by

Soplel(e )= [ FLZOLEZ ) (0, ) € @D)r. (2.15)



For this purpose, we also define

Sislol(e )= [ PIZO W a6 e @ .10

Lemma 2.3 The inverse of the operator S§p + Hj (0, Te; H-Y/2(9B)) — Hg;gg(o, T.; HY2(0B)) with
r =0, 1 is estimated by O(%r) for e < 1.

Proof. Denote by V(s) the single-layer potential operator for the Helmholtz equation AU — s? U = 0.
Then, by Proposition 3 in [6], the operator V(s) : H~'Y/2(0B) — H'/?(0B) is an isomorphism and the
operator norm of its inverse V ~!(s) is bounded by

2
Wvs)) < —

S i B = 2.1
S Cmin{l o} Res =0 >0, (2.17)

where c is a positive constant which depends only on dB. View the single-layer potential operator S5 as a
convolution with respect to the time variable, and use the operational notation K (9;)g := k=g, where k is the
inverse Laplace transform of K and g vanishes for ¢ < 0. Then we have S5 = V(0;). By Lemma 2.1 in [21],
we obtain from (2.17) that V ~1(9;) extends to a bounded linear operator from Hgifg (0, T) into Hf ., (0, Tt)

for arbitrary real number r. More explicitly, for r = 0 and g € Hg ., (0, T; H ~1/2(9B)) compactly supported
with respect to ¢ in [0, T¢], we have

2

T
(5207 1) L@ v @)glvagon)”

HY ., (0,To; H-1/2(0B))

+oo
< [T EEE I @l veom) @) dr
0

- / _R (E [Hv_l(at)g”H*lﬂ(aB)} (S))2 ds
_ / LV () o ds

= [ WV L siom ds
eo—iR4

1
S o [ 1RO o ds
EOT—1 +
1
- o [ IR B o
eo—iR4
1 e —eot 2 2
= o s (e 10291l 12 (am)) "~ dt
1 2
S o 9Mlezz __ 0,72 m172(0m)) -
Similarly, we derive for r = 1 that
. " oV (@)g||"
Se) ! ‘ :/ =2¢at [ 17-1(9,)ql12, ov_\o)g dt
g Al L LAY PRV L o

Te
< (1+T€2)/0 e 278y (V7H0)9) 51720 At

+oo 2
< (1+ Tf)/0 (Fle= 110 (V=10)g) l-1/2(0m)] (1)~ dn

1
<O+Tmg [ IS e o) o
E0—UR4



1

— 4T [ IO om
E0—UR4

= (1+12)

+oo
—2eot 3 2
i AR L AR

2
< (1+ Tf)w lgllzs .

Q

[y

(0,Te; HY/2(8B)) *

The proof is complete.
Lemma 2.4 Let ¢ € Hf (0, T; H-/2(0D)) and ¢ € Hi 1?0, T; H'/(0D)). Then
Saply] = e(S5al2])", (2.18)
(Sop) ™[] = = ((S5)7'14]) (219)

and

|(Sap)~" HL(Hg;Z(o, T, HY/2(9D)), Hy ,(0,T; H-1/2(9D)))

Se H(SEB)_lHﬁ(HT+2 (0.T2: HY/? (0B)). Hy ., (0. Te H=1/2(0B)) ) (2.20)

0,e0 0,e0

Proof. Let x =€ + 2,y =en+ z and t = e7. Then we have

SBD[(P](xu t) _ /é)D cp(y, Zﬂ-|x0_|y| y|) ds(y)

_ plen+2 7 —co ele —nl)
8/aB Am|€ — | ()
= £S5p[¢1(E, 7),

which gives (2.18). Further, the identity (2.19) follows from the derivation

S [ (5)7161) | = (55 (5500 200]) " =" = o0
To show the estimate (2.20), we derive that

I(Sop)™* Hc(H&tﬁ(o,T; HY/?(0D)), Hj,, (0, T; H=1/2(9D)))

[(Sap)~*[¥] HH&U(O, T; H-1/2(9D))

= sup
0#£YeH 2 (0, T; HY  (9D)) ||7/’|\ng,2(0, T; H/2(0D))

_r _ A
el ((SBD) 1[7/1]) ||H6150(0,T5;H*1/2(OB))

A

sup =
0#£peHyH2(0, T; HY* (0D)) g=(r+D) H‘/’HHg;g(O, T.. H'/2(9B))
ell(S5) " )l g

0,c0

(0,Te; H-1/2(9B))

A

sup =
0£PeHI T2 (0, To; HY 2 (0B)) 1l g2

0,60 0,e0

(0, Tc; H/2(0B))

- c H(SEB)_IHﬁ(Hé,ti(o,Ts;Hé/%aB)),HT (0,75 H=1/2(9B)) ) *

0,e0

Thus, the proof is complete. O

Here we point out that if we restrict (Spp)~! into the subset consisting of functions independent of the
space variable in Hg;2(0, T; HY2(0D)), then the estimate (2.20) should be |(Sap) ™| £ [|(S5) |-

We now show an a-priori estimate of the solution ¢ to (2.2). Set

-1

g1(t) == — u'(z, t)ds(z) and go(z, t) := —u'(z, t) — g1(t), = €D, te(0,T).
10D Jop



Then for any fixed t € (0, T') we have that ga(-, t) € H? (0D). Define ¢ and @9 as the solutions to

/ oyt 1=yl o) () € (@9D)r (2.21)
oD drlz — y|
and 1
/ P2y, t—co |2 —yl) ds(y) = ga(x, t), (x,t) € (dD)r, (2.22)
oD drlz — y|

respectively. Due to the linearity of the equation (2.2), we see that ¢ = @1 + @a.
Now, using the embedding H*(0, T') < C0, T, we have

o205 Olla-17200p) S H‘p2”H%’U(O,T;H*1/2(8D))

-1
< I(Sop) Hﬁ(HS,U(QT;Hi”(aD)),H&,U(O,T;Hfl/Z(aD))) ”92HH3,0(01T;H1/2(8D))
1 1/2
Se H(S;;B) HL(HS’EU(O, TE;Hép(BB)),H(%’EU(O,TE;H*U?(@B))) €
< e 12 (2.23)

where we have used the fact that ||(S§B)_1HL(H3 is estimated by

0,c0
O(1/?%) due to Lemma 2.3.

By the same derivation, we obtain

(0.7 HY*(0B)), H} ., (0, Te: H~V/2(9B)) )

0,e0

ler (s Ol =120y S lleallmg 0,7, H-12(0p)) S em1/2, (2.24)

Therefore, we have
leCs Olla-1720p) S 1€l 0,7 H-1720D)) S e /2 (2.25)

Similarly, we can also prove

[0uo(, ) ar-172(0p) S NOrpllmy 0,7, H-1/2(0p)) S e /2, (2.26)

We are now in a position to show the asymptotic behavior of the solution to (1.2) with M = 1.

Theorem 2.5 For x € R®\ D, with x away from D, and t € (0, T'), we have the following expansion:

Mt =gtz — 2| — gtz — 2%))

*(z, t) = —C O(e? 0 2.27
u®(z, t) 0 1672z — 2] [z — 2] +0(e”) ase—0, (2.27)
with the constant Cy defined by
Coi= [ nln)dsty). (228)
oD
where @o(x) is the solution to
vo(y)
P gs(y) =1, e aD. 9.29
| s (2.29)

Proof. First, we rewrite the equation (2.2) as

/ oy, 1) ds(y)+/ oy, t —cg'le —yl) — oy, 1) ds(y)
o oD

p 4|z —y| drlz -yl

I ) F@—@%—fn_xrwyu—fw7(Lwewmﬂfgﬁ.

4|z — z*| 47|z — 2|

47|z — z*|

Note that

oy, t —cy 'z —yl) — oy, 1) B
L, prr— d“”}‘

téD@f@iﬁddw}

47TCO



= 0(1) <at90(a t*)a 1>(9D
S 0wy t) N -1/2(00) 11 17200
< O(e),

and
At — Cal|2 —2")) _ At — Callx —2") =0(e), (x,t) € (D).

4|z — z*| drlx — z*|

Then we conclude that

ey, t) e (e )
—d = 0] t oD)r. 2.30
| sty = 2l 0, (@) € @D) (2.30)
Consider the equation
?(y; t) At =yt = 2%))
/2 -d = t oD 2.31
| mllasty) - 2D e @D (2.31)
Then we have ( 1| )
_ e e
Sp(xv t) = 47T|Z — Z*| 900(‘%')7
and hence ( 1| |
At —cq |z —2%)
Bz, t)ds(z) = 0 Co. 2.32
| e s - =02 e (232
In addition, we obtain from (2.30) and (2.31) that
oy, t) — Py, 1)
PO =PV s(y) = O(e), e (0, T),
| BB el i) - o). te(.T)
and hence
[o(y, ) =By, )] ds(y) = O(e?), te(0,T). (2.33)
oD
Now, for (x, t) € (R*\ D)z, we derive
s oy, t —cy lx—yl)
u(x, t) = ds(y
00 = [, Sy )
:/ Sp(yaf_051|x_z|)d8(y)+/ sp(y7t_cal|x_y|)_sp(yat_00_1|x_z|)
oD drlx — 2| oD dr|x — y| drlx — 2|
Py, t —cg'fr —2]) / 1
= d — t— — d
oD 47T|(E _ Z| S(y) 47T|(E _ Z| yv CO |'r Z|) (ya C() |I Z|)] S( )
1 1
t— Yz — - d
ettt | - | )
1 _ _
+ | g et e =) = el = o = 2] ds)
Mt — eyt — 2| — ¢tz — 2%|) _
= -C 0 0 O +0 / t—colz—yl)d
0 167T2|I . Z| |Z . Z*| + (8 ) + (8) oD (P(y, Co |.’II y|) S(y)
/ Oro(y, t7)ds(y) (as x is away from D)
Mt — eyt — 2| — ¢tz — 2%|)
- —C, 0 0 O(e?).
1672 |z — z| |z — 2¥| +0(E)
The proof is complete. o
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3 Proof of Theorem 1.1: the multiple holes case

In this section, we give a rigorous justification of the asymptotic expansion for the solution to (1.2) as
¢ < 1 and prove the unique solvability of the linear algebraic system (1.10) for the case of multiple holes.

We express the solution to (1.2) as a retarded single-layer potential

Sz, 1) Z/a it =0 17290 4 (2, 1) € RO\ Dy (3.1)

Ar|z — y|

where ¢;’s are causal densities to be determined. Then we have

iy, t—cy'tlz —yl) / iy, t —co'tlz —y))
)+ ds(y)
~/6Di |z —y| Z oD, dm|z —y|
J#Z
A\t —cgtx — 2¥)) ,
- ) € (D), i=1,2, -, M. 3.2
Ar|z — 2*| ) (‘Ta ) € ( )T v ( )

For convenience, we define

iy, t—cg'lz —yl)
Siilpil(z, t ::/ ds(y), (x,t)€ (0D;)r, 3.3
el )= | PO (), (v.1)€(@Di)r (33)
and rewrite (3.2) as
i+ > S5 Sjile] = =S; ' [u'] on (9D;)r. (3.4)
J#

The unique solvability of (3.2) can be shown in a standard way. To proceed, we first prove the following a
priori estimate of the densities.

Lemma 3.1 Define d;. = dist(z*, D;) and C,, := maxyco, 1 N (8)]. Assume that ZI:B C,, is convergent
and denote C := ZI:B Cn. Then, under the condition

2o 15%42 di? <1, (3.5)
we have
too —1
> =5 Sl ) () ey
n=0 H (0, T; H=1/2(2D;)) =M ¢
= O(e'/?™), r=0,1,i=1,2 ---, M. (3.6)

Proof. First, by the same argument as for estimating (Spp)~! in Section 2, we can derive the estimate

H IHL H L2 (0,75 HY/2(0Dy)), Hy (0, T; H=1/2(0D;)))

-1 —(r+1
< 83807 e (a2 0,12 0 2080 15y 0,112 720m0) S €T (3.7)

0,e0
Next, we show the estimate of ||S;; [(pj]HHT+2(O T, H1/2(9Dy)) 10T J # i Since
0,0 P i
2S5 105 |17
jilPj

e dt, (3.8)

H1/2(3D;)

T
2 —20
ISt 32007 000y S OT) [ e

11



2
. . L o

it suffices to estimate Hia”fg[% ] .
H'/2(dD;)

|

» 2
o +25ji[%’j]

T . Note that for z € D; we have

H*(D;)
02 Sjilpil| |92 / 2ily: t—eo e =) 4o
otr+2 ot +2 Jop, 4|z — y|
1 205 (y, t — g ta —
ap; 4|z —y| ot
1 iy, t) OBy, t—bicg tlr —yl) 4
= ) - ’ o - d
fo o= | R "t =)] s
< g1 <3’"“<ﬂj(y, 0 1>‘+ ‘<3”3%(y, t—fico ' lr —yl) 1>}
~ 1] 6t’r‘+2 at’l‘-‘r?)
" p;(y t)‘
St 55— 11/l g1/2 0,
J oOtr+2 H*1/2(8Dj) (0D;)
+H8T+3<Pj(y7 t_9J001|$_y|)H ||1H Lo
r 9D;
otr+3 H-1/2(6D)) H/2(0Dj)
< glg3/2 Iy, t) 3/2 " ;(y, t_9j081|$_y|)
~ Gy € otr+2 te Otr+3 ’
H=1/2(0D;) H=1/2(0Dy)
where 6; € (0, 1). Then it follows that
o728l | i
| T | B
. 2 . _ 2
< g2 6 0" 2p;(y, t) 43 395y, t —0jc5  x — yl) ds(z)
Sdje G2 € 5ies s(x).
H71/2(8Dj) D; H71/2(8Dj)
. 2
Similarly, we can also estimate HVJE% Lo(Dy)
ar+28,i 112
r+2, .. t 2 r+3, 4. t—9 —1 _ 2
5 d1_34 56 Ha ﬁ]fgv ) +d:]2 53 / 8 Pj (yv T+éCO |I y|)H dS({E)
ot H-1/2(0D;) D; ot H-1/2(0D;)
2 6 ||0 Py 1) ooy, t— By e — oD |
e[ o [Pt
H-1/2(8Dj) D; H-1/2(8D;)
with 0;, 6; € (0, 1). So we finally have
s 2 I 2
Ha +28ji[90j] < Ha +25jz‘[%‘]
otr+2 H2(0Dy otr+2 H(Dy)
+20, " 2 ort3,. t—@.c e — 2
< e H siﬂ(zy’ )’ +d;—263/ iy, Yo |z —yl) ds(z)
ot H-1/2(8D;) D ot H-1/2(8D;)
s 6 |0, 0| (.t~ yey e — y)||
+d;; eb H 6:—1—37 H +63/ J ’8T+i 0 ds(x).
t H*1/2(8Dj) Di t Hfl/g(aDj)
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Thus, we derive

2
”Sji [%‘] HHgfg?(o, T; H'/2(0D;))

2
—20t H aT+2(pj (y7 t)

2

T
dt 4 d;? 56 / 6—20't
H*1/2(6Dj) 0

_ 2
OBy, t — 0cy | —y|) H
otr+3 H=1/2(dDy)

9" 305y, t)

otr+3 dt

H71/2(8Dj)

otr+2

T
+di__j2‘€3/ 672015/
0 D;

T
+€3/ e—20’t/
0 i

2

A
=9
<
o
™
[=}
fﬁ

ds(z) dt

~ 2
iy, t — 0c5|x —y|)

pr ds(z) dt

H71/2(6Dj)
p; ’
ot2

Py,
ot3

—4 _6
ij

+d;j256
Hg (0,T; H-1/2(0Dj))

T—6; 2
2.3 se0” lol o —20(n+0;c5 [z—y)) " 20;(y, m)
+d” 0 r+3
o H-1/2(dD;)

A

Hg (0, T; H=1/2(0D;))

dnds(x)

—0jcq |z —y|

T—6jc5 " lz—y| N r+4 . 2

e 0 Y e—20(nt+0c5  lz—yl) w dnds(z)
877T+4 -1

H-1/2(8D;)

2

—0jcy z—y|
32% ’
ot?

P¢;
ot3

A

d-4eb

)

—2 6
+d;;"¢

Hy (0, T; H=1/2(0D;))

- 2
+d 2 3/ / e—20m 0 +390j(y7 77)
ij

onr+3 HHl/z(aDj)
o
D; JO

2
©j(y, n)
It implies that

Hf (0, T; H=1/2(0D;))

dnds(x)

dnds(x). (3.9)

ot HH1/2(aDj)

%,

ot?
*p;
ot4

PP,
ot3

||Sﬁ[9"j]||ng,2(o,T; H1/2(8D;)) < g3 i_j2 + 34t

J
Hy (0, T; H=1/2(dDy))

Hg,g(O, T; H-1/2(0D;))

+&3 (3.10)

Hg (0, T3 H-1/2(8Dy))

Then, from (3.4) and (3.7), we derive

H%‘HH&U(O, T; H-1/2(0D;))

0%,

2—r —2 J

€ Z dij ot2
J#i

+e27T Z

J#i

PPy,
ot3

+ 82_T Zd;1

HE (0,75 H=1/2(0Djy)) j#i

Hg (0, T; H-1/2(0D;))
'¢;
ot4

A Y (3.11)
Hy (0, T; H=1/2(2D;))

Using the same argument, we can estimate H Btﬁi forn=2,3,--- as

Hy (0, T; H-1/2(3D;))

ot H (0, T; H=1/2(9D;))
< 52—7‘ Z d72 an+290j + 52—7‘ Z d71 an+3(pj
S i || g i || et
Hy (0, T; H-1/2(8D;)) J#i Hy (0, T; H-1/2(8D;))

J#i
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8n+4
L V2T Cgyn A (3.12)

42T Z

ot g o, 12000, ))
Let N
o0
8”(/71'
Ai = .
2| Hy (0,75 H-1/2(D,)

Then we have

—+oo
A; S 352_T Zd;JQ Aj + 61/2_Td;1 ZCT+2+’R

J#i n=0

< e | max A; di? +Ce/*" max d;}'.
~ <1<3<M ; gl 1<i<M
JF

Under the condition (3.5), we get
max A; <[ 1—-¢*" max Zd 2 (Cel/zf’”) max d;.'.

1<j<M 1<i<M 1<i<M **
J#i

The proof is complete. o

Remark 3.2 Using the embedding H'(0, T) < C|0, T] and taking r = 1 in (3.6), we have the pointwise

estimate 5
i, T _ )
#‘ :O(a 1/2), te(0,T),i=1,--, M, n=0,1,--. (3.13)
ot H~=1/2(dD;)
Set
vl(t) = /[;D @Z(yv t) dS(y), te (07 T)v 1= 17 25 Tty M. (314)

Then (3.2) can be rewritten as

/ (pi(yv t) ds(y)_i_ivj(t_callzi_zj')
oD; <

p, 47|z —y| e dr|z; — zj
J#i
—A(t - Co_l|2i —2%) (1) (2) (3)
- E; E; E; 3 oD;)r, 3.15
o] T TETHES, (@) €@Dr (3.15)
where
iy, t) — iy, t — P
g ;:/ iy, t) — pily, t = ¢q | —y|) ds(y)
oD; 47T|$—y|
iy, t —c |z — zl) — @iy, t — gz —yl)
d 3.16
+Z/ 4| — y| s(y); ( )
J#l
1
B / (y t =o'z = zl) d 3.17
Z oD 47T|21—ZJ| 47T|x—y| iy, co |z — 2z51) ds(y), ( )
J#l
and

M= gl ) A=t — =)
dr|z; — 2] drlr — z*| '

E® .—

K2

(3.18)

14



In the following, let us estimate EZ-(l), EZ-(Q) and El-(g). Since

eily, t) — iy, t —cg 'tz —y
oD; Al — y|

8<Pi (ya t)
ot ‘ ds(y)

,1>§5.

—1 —1
iy, t —cy zi —zj]) —piy, t—co |l —y
/ ]( 0 | 7|) ]( 0 | |) dS(y)
oD,

1
4m
1
= Ar oD, tG[O,)é’]

< s Dpi(y, t)
te[0, T) ot

A

For ¢ # j, we have

drlz —y|

/ (pj(y,t—Cal|Zi—Zj|)—g0j(y,t—051|$—2j|) dS(y)
aD; drlz —y|

+

/ <pj(y,t—cal|x—zj|)—tpj(y,t—cal|y—zj|) dS(y)
D, dr|x — y|

= O(EQdi_jl—l—E).

So we obtain
EZ-(I) =0(e)+0(? Zd;l)
JFi
Due to the estimate
I N L
lzi = zi| e —yll 2= zlle -yl

<2ad;®, x€dD;, ycdD;,i#j,

we can easily see

(2 _ 2 -2
EY =0(*) d; ).
j#i
In addition, it can be easily deduced that

Let 3, (x, t) be the solution to

— M 1 . .
Bilv. 1) ot =gl = zl) At =gl = =)
ds(y) = — — , xe€dD;, te(0,T).
J#i
Define
wlt) = [ il 1) dsty)
oD,
Then we have
M . .
- v;(t — o |z — ) At — etz — 2%])
it)==Ci ) ———> L 0 te (0, 7).
o ; am|zi — 7 Amlz; — 2% €, T)
J#i

From (3.15) and (3.22), we obtain for (z, t) € (0D;)r that

wi(y, t) = @iy, t) 1), =2 | 20 2 2 (4)
ds(y) = EY + E® + g® = d=2) =: E
/aDi pp pe— s(y) =B + B + E” =0() +O(e ;# G =B,
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and hence

/w iy, t) = Bi(y, )] ds(y) = C; B

By (3.24) and (3.25), we get

M 1 o
Zv-(t—c lzi —z) At —cptlzi—2]) L@ .
t ’ . 1= 0 E; t 0,7 =1.2. ...
) j Am|z; — 2] 4|z; — 2*| +E7, te(0,T1),i=12

J#i
To proceed, we show the invertibility of this linear algebraic system.

Lemma 3.3 If

1
C max — <1
1<iSM &~ 47|z — zj]
JFi

with C' := maxi<;<m Cj, then the linear algebraic system

3 Gt =z = %)

ql(t)+ = 47T|Z,O_ZZ,| ’ :fl(t)a tE(O, T)v 1=1, 25 aM
i—=1 g J
7

is uniquely solvable in H}(0, T). Moreover, we have the estimate

y 12 ) -1 1/2
<Zlqi(t)l2> < 1_012%2m <Z ||fi|?ﬂ<o,T>> :
i=1 T g# =1

Proof. Multiplying (3.28) by ¢;(t) and taking integration with respect to t, we have

M M T _
Cj Jy ai(t)g;(t — gtz

i Jo @i(t)g;(t — —zhdt s (T
Z/ HOLED S fr — =3 [ s0awa

=1 j=1
JFi
Since
M M M M 1 - 1/2 .
b < S — Y 20— = 1a — ot
S st [Canwon <353 b ([awa) ([Tt )
y = ‘7,7,
J#i j#i
M M
< ZZ qu'”N(O,T) H%‘HL?(O,T)
e Ar|z; — 2]
=1 j=1
J#i
< ii H%’”%%o T)
T4 drlz; — 25|’
=1 j=1
J7i

it follows that

H H 1/2 M 1/2
ZillL2 0,7
Zuqznwm S »S T o (Zwmw) (Z ||qz-||%2<o,T>> -
=1 j=1 =1
J#i

So we get

. /2 1/2
2
1- 012%{\4; m Z ||‘J1||L2(0 ) = <Z ||fl||L2(0 T)) (; |Qi|L2(o,T)> :
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Due to the condition (3.27), we have

M 1/2 ) Ry 1/2
2 2
<Zl ||qi||L2(o,T)> <|1- Clg%’]‘w — m <z; |fi|L2(0,T)> :
= JF# i=

Take the derivative with respect to ¢ for (3.28) and use the same argument as above for ¢/(t). Then we have

IN
|
Q
=
I
"

M 1/2 . v 1/2
/112 112
<; ||qi||L2(O,T)> 1<Z.<M;m (; |fi|L2(O,T)> :

So we obtain

—1

o 1/2 . o 1/2
2 2
(; ||qi|H1(o,T)> < 1_0122?1(\4#1. e P—— <;|fi|H1(O,T)> , te(0,T).

The proof is completed, by using the embedding H*(0, T') — C([0, T). O

We are now in a position to show the main result.

Theorem 3.4 Under the condition
£ max d <1, (3.30)

1<i<M
J#i

which means that 1 — 25 — s/3 > 0, we have the following asymptotic expansion:

M R I
u’(z, t) = Z Ciast = ¢y |z = %)) +0(E ) +0(E ) +0 (%) ase—0 (3.31)

An|z — 2]

Jj=1

Jor x € R*\ D and t € (0, T), where the constants C;’s are defined by (1.8) and {a;}}L, € Hy(0, T) is the
unique solution of the linear algebraic system

+ . i=1,2 -, M. (3.32)

LGyt =gz =zl M= gl — =)
Az — 2] dr|z; — 2]
2

375

Proof. By (3.26) and (3.32), we obtain from Lemma 3.3 that

M 1/2 M 1/2
Z -1 2 Z 1 Z (4) 2
oy : . < max E:
< il “ ul) ~ ! Cl<i<M GAi |z — Zj| X ( ! )

i=1

|

.
—

<

B

5

5

&
~

due to the fact in [3] that maxi<i<am D, dw2 =0(d?)+O0(M).Forz e R*\ D and ¢t € (0, T), we have

—1
0y, t —cy |z —yl)
t d
(= Z/aD drle —y] ()

= (y, t—cgte — 24)d
me—m 1, #1001 = e = 2] ds(w)
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+Z/D o [ =l =) = eyt e - )] dsty)

+Z/ o3 (s t— g Mo — 2]) [ — ———— | ds(y)

Amlz —y|  Arw|z — z4]

chaa(t_ca |z — Z‘7|)+O(CM [e + €% (0(d™2) + O(M))]) + O (Me?)

=~ An|z — 2]

M
Z Cjay(t = — ¢ |517 = zjl) L0 (5275) +0 (53725) +0 (6372575) '

T — zj]

The proof is now complete. O

4 Application to the effective medium theory

In this section, we prove Theorem 1.2 by utilizing the asymptotic expansion in the limit case that the
holes are densely distributed and occupy a bounded domain.

Let © be a bounded domain containing the holes D, j =1, 2, --- , M. We divide { into [a~!] periodically
subdomains Q;, j =1, 2, -+, [a~!] such that Q;’s are disjoint and each €2; contains one single hole D; and
has a volume a; see Figure 4.1. We also assume that the holes D;, j =1, 2, ---, M have the same shape.
This means that C; = C; for ¢, j =1, 2, ---, M. Define C := C; = C a, where C is the scaled value of C;.

Figure 4.1: Bold red line encloses U[ ]Qj.

Since {2 can have an arbitrary shape, the set of the cubes intersecting 9€) is not empty (unless if {2 has
a simple shape as a cube). Later in our analysis, we will need the estimate of the volume of this set. Since
each {2; has volume of the order a, its maximum radius is of the order a%, and then the intersecting surfaces
with 9§ has an area of the order a%. As the area of 9 is of the order one, we conclude that the number of
such cubes will not exceed the order a=%. Hence the volume of this set will not exceed the order a3 a = a%,
as a — 0. In particular Vol (Q\ Ug-a;;]Qj) =0 (a%).

We consider the integral equation

1 _ .
v(z, t) / C — ¢ |z = =) dz = —u'(z, t), (x,t) € Qp. (4.1)

47T|:c — 2|
Following the convolution quadrature based argument in [21], we can prove that the equation (4.1) has a
unique solution in H{; (0, Ty L2(Q)) for u' € H{t?(0, T; L*(Q)) with r € Zy; see [20]. As u'(x, t) given
by (1.1) with z* ¢ Q is sufficiently smooth for (z,t) € Qr, we have v € Hg (0, T; L*(Q2)), and hence
v e C ([0, T]; L*(2)) by Sobolev embedding H?(0, T') — C*|[0, T7.

18



Define

v(z, t) in Qr,
Vix, t) := ) _ t—e g — _ 4.2
(@ 1) —ui(z, t) — / gtz lw=2) o e\ o, (4.2)
Q 4|z — z|
and set W (x, t) := —u’(z, t) — V(x, t). Then W(z, t) satisfies
(co 20 — A+ Cxo)W = —Cxqu'(z, t) inR?x (0, T), (4.3)
Wz, 0) =0, Wy(z, 0) =0 in R3. '
If we define U := W + u’, we also have
(cg20i — A+ Cxo)U =0 inR3x(0,7T), (4.4)
Uz, 0) =0, Uz, 0)=0 inR3. '
The main result of this section is stated as follows.
Theorem 4.1 For any fized x € R*\ Q and t € (0, T), we have the estimate
Wz, ) = u*(z, ) + O (a%) asa — 0, (4.5)
or equivalently,
Uz, t) = ulz, t) + O (a%) asa — 0 (4.6)

where u®(x, t) is the solution to (1.2) and u = u® + u®.

Proof. First, we show the regularity of v(z, t). From (4.1), we see

vz, )] < / o — 2" u(z, t = gt |o = 2[)] dz + [u' (=, 1),
Q
and hence .
2
ot 05 ([ 1o =72 d2) ol sy + O
So v isin C ([0, T]; L*°(©2)). In addition, by taking the derivative on the both sides of (4.1), we can also get

[v(z, t — c5 |z — 2])] |0r0(z, t — 5| — 2])]

0 vz, 1) < d dz + |0y (x, ¢
| ]U(ZE )| ~ 0 47T|£C—Z|2 Z+ 0 47T|(E—Z| Z+| LU (.I )|
1
2
§/|$—Z|delv||0([o,T];Loo(Q))+</ |17—Z|2d2> 9]¢ (o, 7; L2()) + O(1)
Q Q

= 0(1).
This means that 9,,v € C ([0, T]; L>=(£2)). So we obtain that v € C ([0, T]; W'*(Q)). Analogously, we can
also prove that ;v € C ([0, T]; WH>(Q))

Next, we estimate Eﬁl lovj () —v(zj, t)|?, where {a;(t) jj\il is the solution to the linear algebraic system

(3.32). To this end, we rewrite the integral equation (4.1) at x = z; for 1 <1 < M as

vz, t) + ]ijﬁav(zj’ Z;lch_l'j I_ 4D i+ A+ A4+ B, (4.7)
= J
where
A::—/ —v(z,t—cal|zl—z|)dz
o\ (Ul ;) dn|z — 2| ’
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A = _/ 6v(z,t—cofl|zl—z|) iz,
Q

. 47|z — 2|
B o [azl]a/ v(z, t— cal|zl —zl|) ds + [azl} Cua v(zj, t — cal|zl -z
N Q. 4|z — 2| ‘ o p—— .
Jj=1 7 Jj=1
J#l J#l
Since v € C ([0, T; L*°(2)), we have
A :O(/ |z—zl|_1dz>,
ol
and hence, by a scaling, we get the estimate
A =0 (ag) ase < 1. (4.8)

Let us estimate B;. As || = a, we have

-1

— _1 — . J— _1 P .
B = Z ol |:’U(Z, t—cy |z —2|) B v(zj, t—cy |z zﬂ)} .
QJ

4|z — 2| Arm|z — 2]

Write the above integrand as

v(z, t — cal|zl —z))  w(z, t— cal|zl —zl)

4|z — 2| Az — zj]
1 1
:vz,t—cflzl—z { — }
( 0| y Az — 2| Ar|z — 2]
1 _ _
yrp—] P [v(z, t —cg Mo — 2]) — v(z5, t — ¢ M — 2])] -

Then we see

B = O( Z dfﬁ) as =0 (a%) . (4.9)

Let us estimate the term 4. We distinguish the following two cases:

(1)

(2)

The point z; is away from the boundary 99 and so |z, — z|~! is bounded in z near the boundary. In
-1
this case, we have A = O (Vol (Q\ Ug-azl ]Qj)) =0 (a%).

The point z; is located near one of the €2;’s touching the boundary d€2. In this case, we split the estimate
into two parts. By IV; we denote the part that involves 2;’s close to z;, and we denote the remaining
part by Fj. The integral over F; can be estimated in a manner similar to the case (1) discussed above.

Also note that F; C Q\ Ug-illlﬂj and so Vol (F}) is of the order a3 as a — 0.

To estimate the integral over IV;, we first estimate the number of Q;’s close to z;. We observe that the
;s close to z; are located near a small region of the boundary 9€2. Since we assume that the boundary
is smooth enough, this region can be assumed to be flat and centered at z;. We now divide this flat
region into concentric squared layers (centered at z;); see Figure 4.2. Observe that as this flat region is
of order 1, in term of the parameter a, and the maximum radius of the squares (or the ;’s) is a%, then
the number of the layers is at most of the order [a~3]. In this case, we have at most (2n+ 1)? squares
(and hence cubes intersecting the surface) in the n first layers, forn =0, ..., [a_%]. So the number of
holes in the n'" layer (n # 0) will be at most [(2n 4+ 1)2 — (2n — 1)2] and their distance from ) is at

1
least n (as -5
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Figure 4.2: Concentric squared layers centered at z; (with three layers, i.e. n = 2).

Therefore we can write

_ t—city —
IAIZ/ . c”(z’4 % a2 4,
Q\(u[.‘i ]Qj) |z — 2|
<‘ —vz t—cytla—2|) dz' ol v(z, t —cy 'tz — 2|) s
- Nl 4|z — 2| A 47|z — 2|
1 —
< Z C [vlleqo, 715 Lo (2)) Vol () i + C vl eqo, 71; Lo (e2)) Vol (F1)
m=1 m
I
— 1
- 1 1
O(a 2 i —i—CaB)
1 _
< o(a[(2n+1)2—(2n—1)2} 1 +ca%)
n(cﬁ — %)
1
- O(aO(a ?)+O(a%)),
and hence
Al =0 (a%) : (4.10)

Gathering the estimates (4.8), (4.9) and (4.10), we have
S (AR + AR+ 1B2) = 0 (Mab + Ma?) =0 (a7H) .
1

Using the invertibility property and the estimate (3.29) for the algebraic system (3.28), we deduce the
following estimate:

Z|aj —v(z, )?=0(a"3) asa— 0. (4.11)

Finally, we estimate |W (z, t) — u(z, t)|. Let x be away from QU {z*}. Recall that

—vz t—cytle—2|)

dz

Wiz, t) = —u'(z, t) (z, t)

Amt|z — 2| ’

and rewrite it as

(Zj7 l— 061|€E - Z7|)
Az — 2]

W, t)= |Q,]T2 +D
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[W%t—%ﬂx—ﬂ) vz, t— gl = ) st —2))

- dz +/
4|z — 2| An|z — 2] ] Q\(U][-‘:l]ﬂj) dr|x — 2|

)

[
S

Ql

Following the similar steps as for estimating B; and A, and as the integrands are smooth here, it can be
easily proved that D = O(a%) as a — 0. Then we have

a1

[ o=
W(.’L‘, t) _ 6|Qj|a‘7(t Co |$L' Zjl)
j=1

+ &+ 0(a?)

An|z — 2]
with »
N gy @t e = D) — vz = et )
£i=- ¢l Atz — 2] '
j=1 J

The term £ can be estimated as

E=0 (aMl/Qafl/G) =0 (a%) .
Hence, we conclude from Theorem 3.4 that
Wiz, t) =u®(z, t) + O (a%) asa — 0. (4.12)

The proof is now complete. O

5 Numerical examples

In this section, we show three numerical examples to verify our theoretical results in Theorems 1.1 and
1.2. Examples 5.1 and 5.2 are presented to illustrate the effectiveness of the asymptotic expansion (1.7), while
Example 5.3 is devoted to testing the approximation (1.12). To numerically solve the scattering problem
(1.2), we truncate the infinite domain R?\ D by a large enough spherical domain Qp such that D C Q5 and
the scattered field on 9 p in a finite time interval (0, T') is zero by Huygens’ principle. That is, we consider
the following initial boundary value problem in a bounded domain:

052u§t —Au® =0 in (Qp \ D)7,
u® =0 on (8QB)T, (5 1)
u® = —u’ on (0D)r, .

uli=o = 0, uilt=o =0 in Qp\ D.

In all numerical examples, we take the causal signal A\(¢) in the incident wave (1.1) as

At = {exp (—t‘2) , t>0,

o, t<0

and set the wave speed ¢y of the background medium as ¢y = 1. The domain Qg is fixed as a ball of radius
R = 1.2 centered at the origin. The holes D;, j =1, ---, M are balls of radius ¢ with different centers, and
then the capacitance for each hole D; is C; = 4me.

Example 5.1 Let D be a small spherical hole with the radius e and center at (0.1, 0, 0). Set z* = (0.15, 0, 0)
and T = 1.
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Figure 5.1: One hole case: the scattered field is computed on I', with » = 0.2. The blue line denotes the
numerical solution by FEM, and the red line stands for the asymptotic approximation.

We solve the scattering problem (5.1) by using the finite element method and take its numerical solution
as the exact one. Let I', be the sphere of radius r centered at the origin, that is, ', = {z € R3 : |z| =},
where we compare the numerical solution of (5.1) via the finite element method (FEM) with the asymptotic
approximation computed by (1.7). To numerically verify the effectiveness of the asymptotic expansion (1.7)
and the convergence of the asymptotic approximation as € — 0, we test the cases of different radii e.

In Figure 5.1, we show the numerical results of the scattered field u®(z, t) on ', with » = 0.2 for
e=1073,10"%,107°, 1075, It can be easily observed that the dominant term of the asymptotic expansion
gives a good approximation of the scattered field with reasonable errors and the approximation is evidently
improved as the radius € becomes smaller. In Figure 5.2, we also show the numerical results of the scattered
field u®(x, t) on I', with » = 0.3. We observe that the error of the asymptotic approximation becomes large
as the observation points are away from the hole, which is reasonable from the derivation of the asymptotic
expansion.

Example 5.2 Let D be the union of 27 small spherical holes of radius € distributed in the cube [—0.05, 0.05]3;
see Figure 5.3 for the distribution of holes. Set z* = (0.123, 0, 0) and T = 0.8.

We test the case of radius ¢ = 1075, The scattered field is computed in the planar domain {(z, y, 2) :
—-0.5 < 2,y < 0.5,z = 0.01}, and we display in Figure 5.4 the numerical solution obtained by solving
(5.1) via the finite element method and the asymptotic approximation via (1.7). We conclude from the
above numerical results that the asymptotic expansion we derived could be used to approximately compute
the scattered wave by a cluster of small holes. The complexity and computation time in using asymptotic
approximation are much less than those for the finite element method.

Finally, we show the performance of the approximation (1.12) by comparing the solutions to the original
scattering problem (1.2) and the effective medium problem (1.11).
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a0 €=103
T

—asymptotic|

Figure 5.2: One hole case: the scattered field is computed on I', with » = 0.3. The blue line denotes the
numerical solution by FEM, and the red line stands for the asymptotic approximation.

-0.05 - - 0.4
015
—
0.06 >
004 402 0 -0.05

Figure 5.3: The distribution of 27 small holes.

=107 =10

Figure 5.4: The case of 27 holes: the scattered field is computed in the plane z = 0.01. The left one shows the
numerical solution by FEM, and the right one shows the numerical solution by the asymptotic approximation.
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Example 5.3 Let D be the union of 64 small spherical holes of radius € = 0.0055, which are densely
distributed in = [-1.8 x 1072, 1.8 x 1072]3, see Figure 5.5. Set z* = (0.0243, 0, 0) and T = 0.8.

0.04 T

002

002 T—0_— o002
004 004

Figure 5.5: The distribution of 64 small holes.

In our setting, the scaled capacitance is C' = 47. Using the finite element method, we solve the original
scattering problem (1.2) and the effective problem (1.11), and then compare their solutions in the planar
domain {(z, y, z) : —0.5 <z, y < 0.5, 2 = 0.025}; see Figure 5.6. The numerical result greatly support our
theoretical result in Theorem 1.2.

Figure 5.6: The case of 64 holes: the scattered field is computed in the plane z = 0.025. The left one shows
the numerical solution to (1.2), and the right one shows the numerical solution to (1.11).
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