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Abstract. In many applications of practical interest, solutions of partial differential equation

models arise as critical points of an underlying (energy) functional. If such solutions are

saddle points, rather than being maxima or minima, then the theoretical framework is non-
standard, and the development of suitable numerical approximation procedures turns out

to be highly challenging. In this paper, our aim is to present an iterative discretization

methodology for the numerical solution of nonlinear variational problems with multiple (saddle
point) solutions. In contrast to traditional numerical approximation schemes, which typically

fail in such situations, the key idea of the current work is to employ a simultaneous interplay
of a previously developed local minimax approach and adaptive Galerkin discretizations. We

thereby derive an adaptive local minimax Galerkin (LMMG) method, which combines the

search for saddle point solutions and their approximation in finite-dimensional spaces in a
highly effective way. Under certain assumptions, we will prove that the generated sequence of

approximate solutions converges to the solution set of the variational problem. This general

framework will be applied to the specific context of finite element discretizations of (singularly
perturbed) semilinear elliptic boundary value problems, and a series of numerical experiments

will be presented.

1. Introduction

Consider a (real) Hilbert space X, equipped with an inner product (·, ·)X and an induced
norm ‖ · ‖X. Given a nonlinear operator F : X→ X?, where X? signifies the dual space of X, we
focus on solutions of the equation

u ∈ X : F(u) = 0 in X?. (1)

This problem is variational if there exists an underlying functional E ∈ C1(X;R) such that
solutions u ∈ X of (1) arise as critical points of E, i.e. if they satisfy the Euler–Lagrange
equation

u ∈ X : E′(u) = 0 in X?, (2)

with E′ denoting the Fréchet derivative of E. A solution to the Euler–Lagrange equation (2) is
called a critical point, and the value of the functional E at a critical point is termed critical value.

The purpose of this paper is to provide a new adaptive algorithm for the numerical solution
of (2), which exploits the theoretical framework of the mountain pass critical point theory, in
combination with adaptive Galerkin discretizations. The key idea is to exploit an automatic and
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simultaneous interplay of these two approaches in order to design a highly effective numerical
approximation procedure. This will be illustrated in the specific context of classical adaptive
finite element discretizations of singularly perturbed semilinear partial differential equations
(PDE); such problems have wide ranging applications in practice (including, e.g., nonlinear
reaction-diffusion in ecology and chemical models [9, 16, 19, 30, 31], economy [5], or classical and
quantum physics [6, 34]). Yet, they are notoriously challenging to solve numerically due to the
existence of several (or even infinitely many) solutions and/or the appearance of singular effects
including boundary layers and (multiple) spikes.

Minimax theory. Basic critical point theory in the calculus of variations pays attention to
critical points that are either local minima or maxima of a given functional E ∈ C1(X;R). Many
solutions to nonlinear variational problems of practical relevance, however, occur as unstable
critical points, i.e. they are neither a (local) maximum nor minimum. Such unstable critical
points are called saddle points: More precisely, a saddle point of a functional E is an element
u? ∈ X such that E′(u?) = 0, and for any (open) neighbourhood U(u?) of u? there are u, v ∈ U(u?)
with

E(u) < E(u?) < E(v).

In the minimax theory of Ambrosetti–Rabinowitz [2], see also [33, §2], saddle points appear
as solution to a two-level optimization problem of the form

min
A∈A

max
u∈A

E(u),

where A is a collection of subsets of X. In this context, a central result for the existence of
(multiple) critical points, especially of saddle points, is the mountain pass theorem. It is based
on the so-called Palais–Smale compactness condition of the functional E:

(PS) Any sequence {uk}k ⊂ X for which {E(uk)}k is a bounded sequence in R, and E′(uk)→ 0
in X?, as k →∞, possesses a convergent subsequence.

Theorem 1.1 (Mountain pass theorem). Let X be a (real) Hilbert space and E ∈ C1(X;R)
satisfying the Palais–Smale condition (PS). Suppose that

(a) E(0) = 0;
(b) there are constants r, α > 0 such that E(v) ≥ α for all v ∈ X with ‖v‖X = r;
(c) there exists an element h ∈ X with ‖h‖X > r such that E(h) ≤ 0.

Then, E possesses a critical value c ≥ α, which can be expressed by

c = inf
g∈Γ

max
u∈g([0,1])

E(u),

where Γ = {g ∈ C0([0, 1];X) : g(0) = 0, g(1) = h}.

Mountain pass type numerical algorithms. The importance of saddle points appearing in
natural science applications has raised a high demand for non-standard numerical approaches
for nonlinear variational problems. Although this endeavour turns out to be tremendously chal-
lenging in practice, it seems natural to apply the framework provided by the minimax theory,
and, in particular, to exploit the analytical foundation of the mountain pass theorem for the
purpose of designing numerical solution algorithms for (2). This route was first pursued by Choi
and McKenna in their pathbreaking paper [10]. In conjunction with its theoretical counterpart,
their scheme is widely known as the Mountain Pass Algorithm (MPA). The core of the method
is an iterative steepest descent procedure which takes care of finding a minimum along a local
mountain range of E. This part of the algorithm is expressed in terms of a linear equation; in
the context of nonlinear PDE, for example, this problem can be solved by traditional numerical
discretization schemes such as the finite element method (FEM).
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Although the work of Choi and McKenna can certainly be considered a milestone in the
development of numerical solution schemes for nonlinear variational problems, many issues have
remained open. For instance, their paper [10] does not contain any error or convergence analysis
of the proposed MPA. Moreover, the MPA will typically find critical points of Morse index 0 or 1
only. Several subsequent papers have used the MPA approach in order to achieve further progress
on the topic: In the article [14], for example, a numerical algorithm to compute sign-changing
solutions of the semilinear elliptic PDE

−∆u = f(·, u), (3)

subject to Dirichlet boundary conditions, was proposed. The main idea is to construct a local link
from a known critical point to a new critical point. The resulting high-linking algorithm (HLA)
presumes that a mountain pass solution is already available, and the MPA [10] is applied as part
of the scheme. This work showed that the HLA is able to generate sign-changing solutions for
non-symmetric domains and odd nonlinearities, which could not be found by the original MPA.
Moreover, in the special case of symmetric domains, the paper [13] has focused on sign-changing
solutions of (3). The approach is based on a modified Mountain Pass Algorithm (MMPA),
which applies a restriction of the underlying functional to the fixed point set of certain compact
topological groups representing the symmetry of the domain. Still, no convergence analysis was
done by then.

Local minimax approach. Further progress in the development of numerical schemes for non-
linear variational problems with multiple solutions was made by Li and Zhou in their paper [26].
Beginning with a set of already known critical points, the idea is to use solution-submanifolds of
so-called peak selection mappings, whose local minima occur as new unstable critical points of
the underlying functional. One of the crucial advantages of the local minimax (LMM) algorithm
proposed by Li and Zhou is that the generated sequence of approximated solutions exhibits a
decay of the associated energy functional. Moreover, the LMM algorithm may find critical points
of Morse index greater than 1. In their subsequent paper [27], Li and Zhou have introduced a new
step-size rule for the LMM procedure leading to the modified local minimax algorithm. Moreover,
a first convergence analysis has been derived; remarkably, under certain assumptions, the LMM
algorithm is able to generate approximation sequences which contain converging subsequences
to a critical point of the energy functional. In addition, for initial guesses sufficiently close to
an isolated critical point, the authors have proved that the iteration converges precisely to that
point. This result was improved further by Zhou in [40, Thm. 2.4]; we note that the proof of that
result can be adapted in such a way that it yields the convergence of the generated sequence to
the set of critical points.

The original local minimax approach by Li and Zhou [26, 27] has been studied, modified,
generalized, and applied in various subsequent papers by Zhou, and other authors. We mention
the work [37] where a modified LMM method to find multiple solutions of singularly perturbed
semilinear PDE with Neumann boundary conditions has been presented. In that paper, the
authors have proposed an ’ad hoc’ computational idea on how local mesh refinements in the
framework of finite element Galerkin spaces, with a special emphasis on the resolution of spike
layers, may be applied. Specifically, after a (fixed) number of steps in the LMM, mesh refine-
ments are performed whenever the residual is not sufficiently small; the refinements, in turn,
are performed simply by subdividing any elements where the numerical solution tends to form a
spike. A further article [38] has paid special attention to the convergence analysis of the LMM
scheme on a finite dimensional Galerkin space. Within this setting, it has been proved that the
generated discrete sequence possesses subsequences that converge to a solution of the discrete
problem. Furthermore, for finite element discretizations of semilinear elliptic equations, as the
mesh size tends to zero, it has been shown that the subset of discrete solutions which can be



4 P. HEID AND T. P. WIHLER

approximated by the LMM algorithm converges to a subset of solutions of the original problem.
This does not, however, imply the convergence of the generated sequence to a solution of the
problem. Finally, we point to the work [36] which offers a modification of the LMM method
based on applying a projection onto subspaces with certain symmetry properties; this, in turn,
allows to find saddle points with corresponding symmetric features (including critical points of
higher Morse index).

Contribution. Whilst most previous works on local minimax methods focus on abstract (not
necessarily finite dimensional) spaces (and are thus not feasible in actual simulation practice), the
aim of the current work is to provide a computational approximation procedure for saddle points
of a functional E, which is based on a simultaneous interplay of the LMM approach proposed
in [26] and efficient adaptive Galerkin space enrichments. This idea follows the recent develop-
ments on the (adaptive) iterative linearized Galerkin (ILG) methodology [3,4,12,23–25], whereby
adaptive discretizations and iterative linearization solvers are combined in an intertwined way;
we also refer to the closely related works [7, 17,18,20–22].

A key building block of the numerical scheme to be presented in this paper concerns the
decision of whether hierarchical Galerkin space enrichments or LMM iterations on the current
discrete space should be given preference. This is accomplished by estimating the residual on a
given Galerkin space in terms of a computable indicator. Once the residual is found sufficiently
small, we conclude that any further LMM iteration will not significantly reduce the residual on
the present discrete space. Consequently, by making use of local residual indicators, we will
hierarchically enrich the Galerkin space. On the theoretical side, under certain assumptions, we
prove that the sequence generated by the adaptive LMM Galerkin (LMMG) algorithm converges
to the set of critical points of E.

Special attention will be given to (singularly perturbed) semilinear elliptic PDE in the context
of standard finite element discretizations. We will apply the approach presented in [35], which has
been developed for linear elliptic problems, in order to derive a posteriori residual bounds for the
LMMG algorithm that are robust with respect to the singular perturbation parameter; see also [4]
for related results in the context of Newton-type linearizations of semilinear singularly perturbed
PDE. Our numerical tests display optimal convergence rates with respect to the number of
elements in the mesh.

Outline of the paper. We will briefly recall the main concepts of the local minimax algorithm
from Li and Zhou in §2, and present some summarized results from [26, 27, 38]. Furthermore,
the focus of §3 is on the new (abstract) adaptive LMMG algorithm that exploits an interplay
between the classical LMM method and adaptively enriched general Galerkin discretizations.
In addition, under certain assumptions, we will prove that the approximated discrete solution
sequence generated by the proposed LMMG procedure converges to the set of solutions of the
original problem. Then, in §4, we will show that our general theory applies to a class of singularly
perturbed semilinear elliptic boundary value problems. A series of numerical experiments will
be presented in §5.

2. The local minimax approach by Li and Zhou

In this section, we revisit the local minimax method introduced in [26,27]. For the convenience
of the reader, we will recall the relevant definitions, and point to some existing results. In
the sequel, let E ∈ C1(X;R) be a given functional that satisfies the Palais–Smale compactness
condition (PS).
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2.1. Peak selection. Let L ⊂ X be any closed subspace, and denote by L⊥ its orthogonal
complement with respect to the X-inner product: L ⊕ L⊥ = X. Then, for any v in the sphere
SL⊥ := {v ∈ L⊥ : ‖v‖X = 1}, we define the closed half space

Lv := L+ {tv : t ≥ 0} = {u+ tv : u ∈ L, t ≥ 0}.
For given v ∈ SL⊥ , a point w0 ∈ Lv is called a local maximum of E in Lv if there exists δ > 0
such that E(w) ≤ E(w0) for all w ∈ Lv with ‖w − w0‖X < δ; the set of all local maxima of E in
Lv is signified by P(Lv).

A single-valued mapping p : SL⊥ → X with p(v) ∈ P(Lv) for all v ∈ SL⊥ is called a peak
selection of E (with respect to L). Furthermore, for a point x0 ∈ SL⊥ , we say that E has a local
peak selection at x0 (with respect to L) if there exists δ > 0 and a mapping p : {v ∈ SL⊥ :
‖v − x0‖X < δ} → X with p(v) ∈ P(Lv) for all v in the domain of the local mapping p.

The following observation about local peak selections is instrumental in view of an algorithmic
development of the mountain pass theory.

Proposition 2.1 (Theorem 2.1 of [26]). Suppose that E has a local peak selection p at some
point x0 ∈ SL⊥ (with respect to L). Furthermore, let the following conditions hold true:

(a) p is continuous at x0;
(b) it holds infu∈L ‖p(x0)− u‖X ≥ α for some constant α > 0;
(c) x0 is a local minimum point of E(p(·)) on SL⊥ .

Then, p(x0) is a critical point of E.

For a given peak selection p of E (with respect to L), we consider the image of p given by

im(p) := {p(v) : v ∈ SL⊥} ⊂ X.

Then, under the assumptions (a)–(c), the above result shows that a local minimizer of E in im(p)
is a critical point of E in X.

2.2. Local minimax scheme. We will briefly outline the main ideas of the minimax algorithm
from [27, §2]. To this end, for n ≥ 0, consider previously known critical points w1, . . . , wn−1 ∈ X
ordered in such a way that

E(w1) ≤ . . . ≤ E(wn−1), (4)

and define the linear subspace

L := span{w1, . . . , wn−1}.
We aim to find a new critical point wn ∈ X by pursuing the following procedure:

(i) For a given v0 ∈ SL⊥ , we suppose that there is t0 > 0 such that

w0 := p(v0) = u0 + t0v0 ∈ Lv0 , (5)

for some u0 ∈ L.
(ii) Now we find a local minimum of E in a vicinity of w0. This is accomplished by moving

along the steepest descent direction, d0 ∈ X, of E at w0, given by

(d0, v)X := −
〈
E′(w0), v

〉
X?×X ∀v ∈ X,

where 〈·, ·〉X?×X signifies the dual product. Note that this is a linear problem. Then, for a

suitable step size s0 > 0, we replace v0 by a new direction

v1 := v(s0), (6)

where, for s > 0, we define

v(s) :=
v0 + sd0

‖v0 + sd0‖X
∈ SL⊥ ; (7)
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here, notice that v0 + sd0 ∈ L⊥ since p(v0) is a local minimum of E on Lv0 , and d0 is the
steepest descent direction of E at p(v0) (cf. [27, Lem. 1.2]); thus, v(s) ∈ SL⊥ . Furthermore,
under the assumptions (a) and (b) in the above Proposition 2.1, if w0 is not a critical point
of E (i.e. E′(w0) 6= 0), then, for any δ > 0 with

‖E′(w0)‖X? > δ, (8)

there exists σ0 > 0 such that it holds the descent property

E(p(v(s)))− E(w0) < −αδ‖v(s)− v0‖X ∀s ∈ (0, σ0). (9)

Hence, selecting the step size s0 ∈ (0, σ0) in (6) appropriately, and letting

w1 := p(v1) = u1 + t1v1, (10)

for some u1 ∈ L and t1 ≥ 0, we obtain E(w1) < E(w0).

Upon repeating step (ii), we obtain a sequence {wk = p(vk)}k ⊂ im(p) such that E(wk) is
strictly monotonically decreasing with respect to k. The following result, which summarizes [27,
Thm. 3.1 and 3.2], attends to the convergence of the above process.

Proposition 2.2. Let p be a peak selection of E (with respect to L), and suppose that E satisfies
the Palais–Smale condition (PS). If

(a) p is continuous,
(b) infu∈L ‖wk − u‖X ≥ α for all k = 0, 1, 2, . . . , for some constant α > 0, and
(c) infv∈S

L⊥
E(p(v)) > −∞,

then {wk}k has a converging subsequence. Moreover, any such convergent subsequence tends to
a critical point of E.

For the above iterative scheme, this theorem asserts that we can find k? large enough such
that ‖E′(wk?)‖X? is sufficiently small. We then let wn := wk

?

, and restart the search for a new
critical point.

Remark 2.3. It is sensible to choose v0 ∈ SL⊥ in (5) to be an ascent direction of E at wn−1, i.e.

E(wn−1 + tv0) > E(wn−1), (11)

for any t > 0 sufficiently small. Indeed, moving along an ascent direction works in favour of
assumption (b) in Proposition 2.2 (see also Theorem 3.2 below).

3. An adaptive local minimax Galerkin method

The purpose of this section is to provide a practical scheme for the approximation of the non-
linear equation (1). To this end, we employ a sequence of finite-dimensional Galerkin subspaces
XN ⊂ X, N ≥ 0, with the hierarchical property X0 ⊂ X1 ⊂ . . . ⊂ X. In order to deal with
the nonlinearity of F, based on a suitable a posteriori error analysis, we introduce an adaptive
interplay between the minimax scheme from §2.2 and the Galerkin discretizations. We thereby
obtain an iterative minimax Galerkin method.

3.1. Galerkin discretization. For N ≥ 0, the Galerkin discretization of (2) is to find discrete
approximations wN ∈ XN such that

RN (wN ) = 0 in XN ,

where, for w ∈ X, we define the discrete residual RN (w) ∈ XN by

(RN (w), v)X := 〈E′(w), v〉X?×X ∀v ∈ XN . (12)
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Denoting by {wkN}k ⊂ XN the sequence generated by the local minimax procedure from §2.2 on
a given Galerkin space XN , it holds that

‖RN (wkN )‖X = sup
v∈XN
‖v‖X=1

〈
E′(wkN ), v

〉
X?×X

‖v‖X
=: ‖E′(wkN )‖X?

N
→ 0, (13)

for k → ∞; see [38, Thm. 4.1]. Hence, if we consider a given positive function σ : N0 → (0,∞)
with

σ(N)→ 0 for N →∞,

then, for any N ∈ N0, there is kN ∈ N such that

‖RN (wkN )‖X < σ(N), (14)

for all k ≥ kN .

3.2. Adaptive local minimax Galerkin procedure. The main idea of the Algorithm 1 in
the current work is to provide an adaptive interplay between the following two strategies:

(I) Mountain pass approximation: On a given Galerkin space XN , for N ≥ 0, we run the local
minimax procedure from §2.2 on XN until the resulting approximations, wkN ∈ XN , k ≥ 0,

are sufficiently close to a zero of RN . Let us denote by wk
?

N the final approximation on
the present Galerkin space XN . From the point of view of computational complexity, we
note that the core part of the minimax Galerkin discretization is the solution of the linear
problem (12), together with the application of the peak selection in each iteration step.

(II) Adaptive Galerkin discretization: Once the norm of the residual obtained from step (I),
i.e. ‖RN (wk

?

N )‖X, is small enough, we enrich the Galerkin space XN appropriately. This
is based on the assumption that we have at our disposal a computable error indicator
ηN : XN → [0,∞) such that

‖E′(v)‖X? ≤ CηN (v) ∀v ∈ XN , (15)

for some constant C > 0 (independent of XN ); here, the dual norm is defined by

‖φ‖X? := sup
y∈SX

〈φ, y〉X?×X . (16)

Furthermore, we suppose that ηN (v) comprises of local error contributions which allow to
refine the Galerkin space XN effectively.

This iterative Galerkin scheme is outlined in Algorithm 1.

Remark 3.1. We comment on two aspects of Algorithm 1.

(a) The stopping criterion for the iteration is expressed in terms of the inequality

‖RN (wk
?

N )‖X ≤ min
(
γηN (wk

?

N ), σ(N)
)
, (19)

where γ > 0 is a prescribed method parameter. In contrast to the expression ‖E′(wk?N )‖X? ,

cf. (15), the quantity ‖RN (wk
?

N )‖X is computable in practice. The second condition from the
stopping criterion (19), i.e. ‖RN (wkN )‖X ≤ σ(N), was introduced for the rather theoretical
purpose of Theorem 3.2 below. Indeed, running the experiments in §5.3 without this stopping
criterion seems to yield the same solutions, with the same asymptotic convergence behaviour
and comparable number of iteration steps. Yet, if σ(N) decays too fast for increasing N ,
then unnecessary iteration steps are performed (which, desirably, should be prevented).
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Algorithm 1 Adaptive local minimax Galerkin (LMMG) algorithm

1: Input n− 1 previously found critical points w1, . . . , wn−1 of E as in (4).
2: Prescribe a steering parameter γ > 0, a step size control λ > 0, and a tolerance εtol > 0.
3: Start with an initial Galerkin space X0 ⊂ X, and set N = 0.
4: Let L0 := span{w0,1, . . . , w0,n−1} ⊂ X0, with suitable approximations (e.g. a nodal inter-

polant in the context of finite element discretizations) w0,1, . . . , w0,n−1 of w0, . . . , wn−1 in
X0, respectively.

5: Choose v0
0 ∈ SL⊥0 ∩ X0 to be an (ascent) direction at w0,n−1, cf. (11).

6: repeat
7: Set k = 0.

8: Use a peak selection pN on XN , and determine w0
N = pN (v0

N ) = t0Nv
0
N + u0

N .

9: while ‖RN (wkN )‖X > γηN (wkN ) or ‖RN (wkN )‖X > σ(N) do
10: Compute the steepest descent direction of E at the point wkN , i.e. solve the linear

discrete problem (12) to define

dkN := −RN (wkN ). (17)

11: Set

vkN (s) =
vkN + sdkN
‖vkN + sdkN‖X

. (18)

12: Compute skN from (20).

13: Set vk+1
N = vkN (skN ), and determine wk+1

N = pN (vk+1
N ) = tk+1

N vk+1
N + uk+1

N , for unique

uk+1
N ∈ LN and tk+1

N ≥ 0, cf. (10).

14: Update k ← k + 1.
15: end while
16: Enrich the Galerkin space XN appropriately using the local error indicator ηN (wkN ).

17: Define w0
N+1 := wkN and v0

N+1 := vkN by inclusion XN+1 ←↩ XN .

18: Update N ← N + 1.
19: Let LN = span{wN,1, . . . , wN,n−1} ⊂ XN , where wN,i signifies a suitable approximation

(cf. line 4) of wi in XN , for 1 ≤ i ≤ n− 1.

20: until ‖RN (wkN )‖X < εtol.

(b) Following [27, p. 870], the step size for the update of the ascent direction from (7), applied
on the Galerkin space XN , is defined by

skN =
λ

2m
, (20)

where λ > 0 is a step size control parameter, and m ∈ Z is the minimal integer such that

2m > ‖dkN‖X,

and

E
(
p
(
vkN (λ/2m)

))
− E(wkN ) ≤ −1

2
tkN‖dkN‖X‖vkN (λ/2m)− vkN‖X. (21)
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Here, dkN and vkN (s) are the steepest descent direction and updated ascent direction from (17)
and (18), respectively. We observe that the estimate (21) follows from (9) upon letting

α :=
1√
2
tkN < tkN = inf

u∈L
‖wkN − u‖X,

and

δ :=
1√
2
‖dkN‖X < ‖dkN‖X ≤ ‖E′(wkN )‖X? ,

cf. Proposition 2.1 (b) and (8), respectively, whenever m is chosen large enough.

Theorem 3.2. Suppose that the functional E satisfies the Palais–Smale condition (PS) on X,
and let {XN}N≥0 be the sequence of finite dimensional subspaces of X generated by running
Algorithm 1 (for εtol = 0). Furthermore, for every N ≥ 0, consider the closed subspace LN ⊂ XN
from line 19, and assume that the peak selection pN of E with respect to LN fulfils the following
properties:

(a) pN is continuous,
(b) infy∈LN

‖wkN − y‖X ≥ αN > 0 for all k ≥ 0, and
(c) infN≥0 infv∈S

L⊥
N
∩XN

E(pN (v)) > −∞.

Then, the following two convergence properties hold true:

(I) If there exists an index N ≥ 0 such that the while loop (line 9–line 15) in Algorithm 1 does
not terminate, and if E′ : X → X? is continuous on the subspace XN , then the generated
sequence {wkN}k≥0 ⊂ XN converges to the set of critical points of E, given by

CE := {w ∈ X : E′(w) = 0 in X?}, (22)

in the sense that limk→∞ infy∈CE
‖wkN − y‖X = 0.

(II) Otherwise, for each N ≥ 0, suppose that there exists a finite integer k? = k?(N) ∈ N such
that (19) is satisfied. Moreover, let the sequence of Galerkin spaces {XN}N≥0 be dense

in X, i.e. X =
⋃
N≥0 XN . Furthermore, for any infinite subset J ⊆ N, assume that the

corresponding sequence {E′(wk?N )}N∈J has a converging subsequence in X. Then, we have

infy∈CE
‖wk?N − y‖X → 0, as N →∞, with CE from (22).

Proof of (I). If, for some N ≥ 0, the while loop does not terminate in finitely many steps, i.e.
(19) is never satisfied, then, taking into account (14), we conclude that γηN (wkN ) ≤ ‖RN (wkN )‖X
for k sufficiently large. Hence, due to (15) and (13), it follows that

‖E′(wkN )‖X? ≤ CηN (wkN ) ≤ C

γ
‖RN (wkN )‖X → 0 for k →∞.

We will now show that this, in turn, yields

dkN := inf
y∈CE

‖wkN − y‖X → 0,

for k → ∞. Assume this were false. Then, there would exist some δ > 0 and a subsequence

{wkjN }j with d
kj
N ≥ δ for all kj ≥ 0. Owing to assumption (c) and the monotonicity property (21),

we notice that the sequence {E(w
kj
N )}j is bounded. Furthermore, we have E′(w

kj
N ) → 0 in X?

for j → ∞. Then, exploiting the Palais–Smale compactness condition (PS) for E, there is a

convergent subsequence w
kji
N , with a limit w?N ∈ XN . By continuity of E′ on XN , it holds that

E′(w?N ) = 0. This means that w?N is a critical point of E, i.e. d
kji
N → 0 for j → ∞, which

constitutes a contradiction. �
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Proof of (II). For any N ≥ 0, define gN := E′(wk
?

N ) ∈ X?, where wk
?

N is the final approximation
on the Galerkin space XN . We aim to show that gN → 0 in X? for N → ∞; the remainder of
the proof then follows as in (I). Suppose to the contrary that there exists δ > 0 and an infinite
subset J ⊂ N such that ‖gN‖X? ≥ δ for all N ∈ J . By assumption, there exists a subsequence
{gN`

}`, with {N`}` ⊂ J , which converges to some limit g∞ ∈ X?:

‖g∞ − gN`
‖X? → 0 for `→∞. (23)

Set γ := ‖g∞‖X? ≥ δ, and let ε := 1/4 min{δ, δγ−1} ≤ 1/4. Pick any x ∈ X with ‖x‖X = 1. By
density, there exists xε ∈

⋃
N≥0 XN such that ‖x−xε‖X ≤ ε, and, in particular, xε ∈ XN for any

N large enough. Therefore, applying the triangle inequality, and exploiting the linearity of the
involved operators, we find

|g∞(x)| ≤ |g∞(x− xε)|+ |g∞(xε)− gN`
(xε)|+ |gN`

(xε)|

≤ ε‖g∞‖X? + (1 + ε)
(
‖g∞ − gN`

‖X? + ‖gN`
‖X?

N`

)
,

for ` large enough. For the last term, recalling (13), we obtain

‖gN`
‖X?

N`
= ‖RN`

(wk
?

N`
)‖X ≤ σ(N`)→ 0 for `→∞.

Therefore, invoking (23), for sufficient large `, it holds that ‖g∞ − gN`
‖X? + ‖gN`

‖X?
N`
≤ ε/2.

In summary, by our choice of ε, we infer that |g∞(x)| ≤ γε + ε ≤ δ/2. Thus, since x ∈ X was
arbitrary, we deduce that ‖g∞‖X? < δ which yields a contradiction. �

Remark 3.3. We add a few comments on part (II) of Theorem 3.2 above.

(i) From the proof of (II) we deduce that E′(wk
?

N ) → 0 in X? for N → ∞. Hence, from

boundedness of {E(wk
?

N )}N≥0, cf. part (I), and owing to the Palais-Smale condition (PS),

we infer that the sequence {wk?N }N≥0 has a convergent subsequence in X. In addition, any
convergent subsequence tends to some critical point in CE.

(ii) If E′ : X→ X? is a (nonlinear) compact mapping, and the sequence {wk?N }N≥0 is bounded in

X?, then any subsequence of {E′(wk?N )}N≥0 possesses a converging subsequence, as required
in part (II).

(iii) If the sequence {E′(wk?N )}N ⊂ X? is merely bounded, without presuming the existence of

converging subsequences, it still holds that {E′(wk?N )}N converges weakly to 0. This can
be derived from the proof of Theorem 3.2 upon replacing the strong topology by the weak
topology. Moreover, if we make the uniform approximation assumption that

sup
u∈CE

inf
vN∈XN

‖u− vN‖X → 0 as N →∞,

then it follows

dN := inf
y∈CE

‖wk
?

N − y‖X → 0 as N →∞,

where CE denotes the set of critical points of E from (22).
(iv) In the context of finite element methods, the space

⋃
N≥0 XN is typically dense in X

whenever the mesh size (i.e. the maximal element diameter) tends to zero; cf., e.g., [11,
Thm. 3.2.3].

Corollary 3.4. Given the assumptions of Theorem 3.2 (II). If there exists a constant α > 0 such
that αN ≥ α > 0 uniformly for all N ≥ 0, and wN,i → wi for N → ∞, i ∈ {1, . . . , n− 1}, then
any limit point w?, as mentioned in Remark 3.3 (i), is a new critical point of E, i.e. w? 6= wi
for each i ∈ {1, . . . , n− 1}.
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Proof. Suppose to the contrary that there exists a subsequence {wk?Nj
}j with limit w? = wi for

some i ∈ {1, . . . , n− 1}. Then, for Nj ≥ 0 large enough, it holds that

‖wk
?

Nj
− wi‖X = ‖wk

?

Nj
− w?‖X ≤ α/4 and ‖wi − wNj ,i‖X ≤ α/4.

Hence, applying the triangle inequality leads to

‖wk
?

Nj
− wNj ,i‖X ≤ ‖wk

?

Nj
− wi‖X + ‖wi − wNj ,i‖X ≤ α/2.

Recalling that αN ≥ α > 0 uniformly, this contradicts assumption (b) of Theorem 3.2. �

4. Application to semilinear elliptic PDE

We apply the adaptive LMMG Algorithm 1 in the context of finite element discretizations of
semilinear elliptic Dirichlet boundary value problems of the form

−ε∆u+ qu = f(·, u) in Ω (24a)

u = 0 on ∂Ω; (24b)

here, we assume that Ω ⊂ Rn is a (Lebesgue-measurable) bounded open domain, and ε > 0 is
a singular perturbation parameter. Furthermore, q ∈ L∞(Ω) satisfies the following condition:
there are two constants ν ≥ 0 and cν ≥ 0, which do not depend on ε, such that

q ≥ ν in Ω and ‖q‖L∞(Ω) ≤ cνν; (25)

cp. [35, §4.4, (A3)]. Moreover, the right-hand side function f satisfies the following standard
conditions (see, e.g., [33, p. 9]):

(f1) f ∈ C(Ω× R;R);
(f2) there are constants a1, a2 ≥ 0 such that

|f(x, t)| ≤ a1 + a2|t|s,
where 0 ≤ s < (n+2)/(n−2) if n > 2, and

|f(x, t)| ≤ a1 exp(ϕ(t)),

where ϕ(t)t−2 → 0 as |t| → ∞, if n = 2.

In the one-dimensional case, n = 1, we note that (f2) can be dropped.

4.1. Existence of weak solutions. Under the above conditions it can be shown that critical
points of the functional Eε : X→ R, defined by

Eε(u) :=
ε

2

∫
Ω

|∇u(x)|2 dx+
1

2

∫
Ω

q(x)u(x)2 dx−
∫

Ω

F (x, u(x)) dx, (26)

with

F (x, t) :=

∫ t

0

f(x, s) ds (27)

the anti-derivative of f , are weak solutions of (24a)–(24b) in the standard Sobolev space X :=
H1

0(Ω); see, e.g., [33, Prop. B.10.]. Moreover, the functional Eε ∈ C1(H1
0(Ω);R) is well-defined,

and an elementary calculation reveals that

〈E′ε(u), v〉X?×X = ε

∫
Ω

∇u · ∇v dx+

∫
Ω

quv dx−
∫

Ω

f(x, u)v dx ∀v ∈ H1
0(Ω). (28)

For our purpose, we endow the space H1
0(Ω) with the inner product defined by

(u, v)ε := ε

∫
Ω

∇u · ∇v dx+ ν

∫
Ω

uv dx, (29)
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and the induced norm

‖u‖2X := ‖u‖2ε := ε

∫
Ω

|∇u|2 dx+ ν

∫
Ω

u2 dx, (30)

where ν is the constant from (25). We note that this norm is equivalent to the standard H1
0(Ω)-

norm (with equivalence constants depending on ε and ν); in particular the space H1
0(Ω) equipped

with the above inner product is a Hilbert space.
If we state some additional conditions on f , then the functional Eε from (26) satisfies the

Palais–Smale compactness condition (PS) on H1
0(Ω). Specifically, we assume that

(f3) f(x, t) = o(|t|) as t→ 0, and
(f4) there are constants µ > 2 and r ≥ 0 such that

0 < µF (x, t) ≤ tf(x, t) ∀|t| ≥ r.

We remark that integrating (f4) yields the existence of constants a3, a4 > 0 such that

F (x, t) ≥ a3|t|µ − a4 ∀x ∈ Ω ∀t ∈ R; (31)

cf. [33, Rem. 2.13]. If f satisfies (f1)–(f4), then Eε from (26) does indeed fulfil the PS-condition;
we refer to [33, p. 11] for a detailed analysis. Moreover, invoking the mountain pass theorem,
Theorem 1.1, these assumptions yield the existence of a nontrivial weak solution to (24a)–(24b);
see [33, Thm. 2.15]. Furthermore, we may obtain a nontrivial classical solution, provided that
the domain Ω is sufficiently smooth, and (f1) is replaced by the following stronger condition:

(f1’) f is locally Lipschitz continuous in Ω× R.

Within this setting, i.e. for a sufficiently smooth domain Ω, and assuming (f1’) and (f2), it follows
that any weak solution of (24a)–(24b) is in fact classical; see, e.g. [1]. Moreover, supposing that
(f1’) and (f2)–(f4) hold true, then there exists a positive and negative classical solution; we refer
to [33, Cor. 2.23].

4.2. Galerkin discretization. We consider a sequence of hierarchically enriched conforming
finite-dimensional subspaces X0 ⊂ X1 ⊂ . . . ⊂ H1

0(Ω). In the specific context of the semilinear
boundary value problem (24) the steepest descent direction from (17) with respect to the inner
product defined in (29) satisfies the following linear Galerkin formulation: Given wkN ∈ XN , find
dkN ∈ XN such that

ε

∫
Ω

∇dkN · ∇v dx+ ν

∫
Ω

dkNv dx = −ε
∫

Ω

∇wkN · ∇v dx−
∫

Ω

qwkNv dx+

∫
Ω

f(x,wkN )v dx, (32)

for all v ∈ XN . This is the key part in the LMMG Algorithm 1 (in addition to the optimization
process associated to the peak selection). It underlines that the discrete solution of (24) splits
into a sequence of linear discrete problems which is obtained iteratively on each of the Galerkin
spaces {XN}N . Incidentally, from (32) we immediately see that dkN = 0 if and only if∫

Ω

ε∇wkN · ∇v dx+

∫
Ω

qwkNv dx =

∫
Ω

f(x,wkN )v dx ∀v ∈ XN ,

i.e. if and only if wkN is the Galerkin solution of (24) in XN .

4.3. Convergence of the adaptive LMMG algorithm in the context of semilinear
elliptic PDE. We aim to solve the semilinear elliptic problem (24a)–(24b) by applying the
adaptive LMMG Algorithm 1 to the functional Eε from (26). In order for the assumptions of
Theorem 3.2 to hold, we introduce two additional properties of f :
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(f5) For any given x ∈ Ω, the function

t 7→

{
0 if t = 0,

|t|−1f(x, t) if t 6= 0,

is strictly increasing in t,
(f6) For any x ∈ Ω, the function f(x, t) is continuously differentiable with respect to t.

We focus on the case L = {0}. Then, L⊥ = X = H1
0(Ω) and SL⊥ = SX = {v ∈ H1

0(Ω) : ‖v‖ε = 1}.
Recall that the energy functional Eε satisfies the Palais–Smale condition (PS) provided that f
features the properties (f1)–(f4). We will now verify the conditions (a)–(c) in Proposition 2.2,
as well as the boundedness of p(·) and E′(p(·)), cf. Theorem 3.2 and Remark 3.3. The following
proposition is a summary of the results in [26, §4]; its proof is presented in Appendix A.

Proposition 4.1. Let p be a peak selection of Eε from (26) with respect to L := {0}. If f
satisfies (f1)–(f6), then

(i) the peak selection p is uniquely defined and continuous,
(ii) infv∈SX Eε(p(v)) ≥ ρ for some ρ > 0,
(iii) infy∈L ‖p(v)− y‖ε = ‖p(v)‖ε ≥ α for some α > 0 and for all v ∈ SX,
(iv) ‖p(v)‖ε ≤ β and ‖E′ε(p(v))‖X? ≤ γ for some β, γ > 0 and for all v ∈ SX.

In particular, the assumptions of Proposition 2.2 are satisfied.

Remark 4.2. In the present setting it is not evident whether {E′ε(wk
?

N )}N∈J , for any infinite sub-
set J ⊆ N, has a converging subsequence, i.e. Theorem 3.2 (II) cannot be applied straightaway.
Moreover, with regards to Remark 3.3 (ii), we note that the operator E′ε : H1

0(Ω) → H−1(Ω) is
not compact. By assumption (iv) above, however, Remark 3.3 (iii) implies the weak convergence
of {Eε(wk

?

N )}N to 0. Finally, in certain cases, we notice that a small enough a posteriori bound

for ‖Eε(wk
?

N )‖X? , cp. (33) below, may guarantee the existence of a weak solution of (24) in a

neighbourhood of wk
?

N ; we refer the interested reader to [8, 32].

Remark 4.3. For the special case L = {0} as in the above Proposition 4.1, the application of
the peak selection, cf. lines 8 and 13 of the LMMG Algorithm 1, amounts to a one-dimensional
optimization problem. More precisely, we need to minimize the mapping t 7→ −Eε(tv) on R+, for

v = vk+1
N . Applying differentiation, this can be expressed in terms of a scalar nonlinear equation,

viz.

t

(
ε

∫
Ω

|∇v|2 dx+

∫
Ω

qv2 dx

)
=

∫
Ω

f(x, tv)v dx,

cf. (37) in Appendix A. This yields a unique minimizer t?v > 0, and, thereby, the evaluation
of the peak selection p(v) = t?vv. Equivalently, in the singularly perturbed case 0 < ε � 1, a

numerically more stable approach is to first compute the unique minimizer t̂?v > 0 of the scaled

mapping t 7→ −ε−1Eε(ε
1/2tv) on R+, and then to determine p(v) = ε1/2t̂?vv.

Remark 4.4. Once Algorithm 1, initiated from L = {0}, yields an adequate approximate solu-
tion wk

?

N , we may restart the procedure with w1 := wk
?

N and L := {w1}; see e.g. Experiment 5.3.2
(Case 2). The peak selection now amounts to a two-dimensional (constraint) local minimization
problem, for which a variety of solvers are available including gradient methods or interior-point
schemes. Here, we note that Proposition 4.1 does no longer apply for dim(L) > 0. Nonetheless,
as can be seen from Figure 6, the a posteriori error bound for ‖Eε(wk

?

N )‖X? may still decay; in
combination with the existence and enclosure results from [8, 32], this could potentially yield a
new solution of (24) in a neighbourhood of wk

?

N .
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5. Numerical experiments

The aim of this section is to test our adaptive LMMG Algorithm 1 in the context of the singu-
larly perturbed semilinear elliptic boundary value problem (24). This requires to solve (32) on a
suitable family of Galerkin spaces. In the sequel, standard low-order finite element discretizations
will be applied.

5.1. Finite element discretization. We consider regular and shape-regular meshes TN that
partition the polygonal domain Ω into open and disjoint triangles T ∈ TN such that Ω =⋃
T∈TN T . For a triangle T ∈ TN , we denote by hT the diameter of T . Moreover, we consider

the finite element space

XN :=
{
v ∈ H1

0(Ω) : v|T ∈ Pp(T ) ∀T ∈ TN
}
,

where, for fixed p ∈ N, we signify by Pp(T ) the space of all polynomials of total degree at most
p ≥ 1 on T ∈ TN . In particular, in our numerical experiments below, we set p = 1.

Within the adaptive LMMG framework, we will consider a sequence of finite element meshes
{TN}N , whereby we start with an initial (coarse) triangulation T0 of Ω. All subsequent meshes
are obtained by (regular) refinement, i.e. for N ≥ 0, the mesh TN+1 is a hierarchical refinement
of TN .

For an edge e ⊂ ∂T+∩∂T−, which is the intersection of two neighbouring elements T± ∈ TN ,
we signify by JvK |e = v+|e · nT+ + v−|e · nT− the jump of a (vector-valued) function v along e,
where v±|e denote the traces of the function v on the edge e taken from the interior of T±,
respectively, and nT± are the unit outward normal vectors on ∂T±, respectively.

5.2. Error indicator. We will use a local error indicator which satisfies (15). To this end,
we pursue a residual-based a posteriori error analysis, which is robust with respect to possibly
small values of the singular perturbation parameter ε > 0 appearing in (24a); see, e.g., [35].
Specifically, for a fixed triangulation TN , and for any finite element approximation u ∈ XN , it
holds the ε-robust upper a posteriori residual bound

‖E′ε(u)‖X? ≤ CI

( ∑
T∈TN

η2
T (u)

)1/2

, (33)

where X? = H−1(Ω) signifies the dual space of X = H1
0(Ω), equipped with the norm ‖ · ‖X?

from (16). Furthermore, CI > 0 is an interpolation constant (only depending on the polyno-
mial degree p and on the shape-regularity of the mesh, however, independent of the singular
perturbation parameter ε, and

η2
T (u) = α2

T ‖ε∆u− qu+ fT (·, u)‖2L2(T )

+
1

2
ε−

1/2αT ‖ Jε∇uK ‖2L2(∂T\∂Ω) + α2
T ‖f(·, u)− fT (·, u)‖2L2(T ),

(34)

where fT (·, u) denotes a piecewise polynomial approximation of f(·, u) in the (local) finite element
space; alternatively, if no data oscillation needs to be considered, it is sufficient to replace fT (·, u)
by f(·, u). Furthermore, for T ∈ TN , we let

αT =

{
min(ν−1/2, ε−1/2hT ), if ν 6= 0,

ε−1/2hT if ν = 0.

We refer to [35, §4.4 & §5.2] for details, or to [4, §4] for an analogous analysis. In the context
of piecewise linear approximation, for instance, we remark that the data oscillation term in (34)
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can be bounded from above in the form

‖f(·, u)− fT (·, u)‖2L2(T ) ≤ ChT
∥∥∥∥∂f(·, u)

∂u

∥∥∥∥2

L∞(T )

‖∇u‖2L2(T ),

where C is a constant depending on the shape-regularity of the mesh; indeed, this results from
the approximation property of the Clément operator (see [35, Remark 5.17] for a related issue).
Finally, we define, for any finite element approximation u,

ηN (u) :=

( ∑
T∈TN

η2
T (u)

)1/2

,

which satisfies (15).

5.3. Examples. In our test problems we consider either of the two square domains Ω1 :=
(0, 1)2 ⊂ R2 or Ω2 := (−1, 1)2 ⊂ R2, with the Euclidean coordinates denoted by x = (x, y) ∈ R2.
The nonlinearity f in (24a) is chosen in compliance with the assumptions (f1)–(f6) from Propo-
sition 4.1 for all our experiments. We use an initial mesh consisting of 32 uniform triangles, and
run the LMMG algorithm until the number of elements in the mesh exceeds 106. The marking
and refinement of elements are based on the Dörfler strategy [15] (with parameter θ = 0.5), and
on the newest vertex bisection method [28], respectively. In our performance plots, the residual
indicator ηN (uk

?

N ) and the norm ‖Rk?N ‖ε, for N ≥ 1, will be displayed each time before a mesh
refinement is undertaken. In accordance with the expected optimal convergence rate of the P1-
FEM, the function σ : N → R+ applied in Algorithm 1 is defined by σ(N) := ‖R1

0‖ε/|TN |
1/2, for

N ≥ 1; in particular, on the initial space X0, we apply one minimax step only (thereby yielding
R1

0), and then run the while loop in Algorithm 1 from N ≥ 1 onwards.
Our numerical tests indicate that γ = 0.25 and λ = 0.5 are sensible choices for the steering

parameter and step size control, respectively. For this setup our computations show that only a
few steps (namely, one or two) of the minimax iteration are usually required on each Galerkin
space, meaning that no unnecessary iterative steps are performed. In some experiments the
number of minimax steps are slightly larger during the initial phase. In addition, we have
observed some cases where the number of minimax steps suddenly increases on a specific Galerkin
space, together with a rapid decay of the value of the functional E; this may indicate that the
algorithm either follows a more effective steepest descend direction, or it has detected a new
critical point.

5.3.1. Lane-Emden equation. In our first experiment, which is borrowed from [10, §6, (1)], we
consider the boundary value problem

−∆u = u3 in Ω1

u = 0 on ∂Ω1.

In line with Proposition 4.1, we let L := {0}. Furthermore, we select the initial guess v0
0 to be

the linear interpolant of the function (x, y) 7→ sin(πx) sin(πy) in the element nodes, scaled to
unit length in X. A visual comparison of Figure 1 (left) and [10, Fig. 8] shows that the same
solutions are obtained in both computations. Moreover, Figure 1 (right) underlines that the
residual indicator decays at an optimal convergence rate of O(|TN |−1/2) (indicated by the dashed
line).

5.3.2. Henon equation. Next, we focus on the problem

−∆u+ qu = |x|9u3 in Ω

u = 0 on ∂Ω.
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Figure 1. Experiment 5.3.1. Left: Approximated solution. Right: Conver-
gence plots and number of minimax steps on each finite element space.

We start the numerical experiments with L := {0}, and v0
0 := sin(πx) sin(πy).

Case 1: q ≡ 0. We let Ω = Ω2. The approximated solution obtained by the LMMG Algorithm 1
is plotted in Figure 2 (left). We remark that the computed solution exhibits a spike close to the
corner (−1, 1), and coincides, up to sign, with the one from [36, Fig. 7 (left)]. As in the experiment
before in §5.3.1, the convergence rate of the residual indicator is optimal, see Figure 2 (right).
Moreover, we observe that the mesh is mostly refined at the location of the spike, see Figure 3.

We remark that the symmetry of the initial guess with respect to the origin is not retained
by the adaptive LMMG algorithm. This is likely due to the fact that local refinements of the
elements are not always performed in a consistently symmetric way. Indeed, if we repeat the
same experiment based on a sequence of uniform mesh refinements, then a symmetric solution
is obtained, which, again up to a sign change, resembles the one from [36, Fig. 9 (center)]; see
Figure 4. We emphasize, however, that this latter critical point features a higher energy than
the former one.

Case 2: q ≡ 1. We let Ω = Ω1. Applying the same initial configuration as in the case q ≡ 0
above, a qualitatively similar solution (i.e. exhibiting one corner spike) is obtained by the LMMG
algorithm, see Figure 5 (left). In a subsequent experiment, we use this approximated critical point
(denoted by w1) to define L = {w1}. For this choice, the LMMG algorithm (based on the same
initial guess as before) seems to generate a new solution, which we illustrate in Figure 6 (left).

5.3.3. A singularly perturbed Henon type equation with q ≡ 1. We consider the problem

−ε∆u+ u = |x|9u3 in Ω1

u = 0 on ∂Ω1,

with the singular perturbation parameter ε = 0.001; in this experiment, we set γ = 0.125 and
λ = 0.25. The convergence of the residual estimator and the numerical solution are depicted in
Figure 7 (left) and 8 (left), respectively. We see that the spike in the corner has become much
sharper, yet, the convergence rate is again asymptotically optimal. This has been accomplished
by means of appropriate adaptive local element refinements near the spike, see Figure 8 (right).
Indeed, if we employ uniform mesh refinement in Algorithm 1, then the same solution is obtained,
however, the convergence regime is inferior as expected, see Figure 7 (right); here, we note that
the uniform mesh needs to be sufficiently fine (thereby requiring a considerably higher number
of degrees of freedom) in order to be able to properly resolve the singular effects. Moreover, in
comparison with the results in §5.3.2 for ε = 1, the performance for the adaptive mesh refinement
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Figure 2. Experiment 5.3.2 with q ≡ 0. Left: Approximated solution. Right:
Convergence plots and number of minimax steps.

Figure 3. Experiment 5.3.2 with q ≡ 0: Mesh after 11 adaptive refinements.

Figure 4. Experiment 5.3.2 with q ≡ 0 and uniform mesh refinement. Left:
Approximated solution. Right: Convergence plots and number of minimax steps.

strategy has not deteriorated in the singularly perturbed case. This underlines the robustness of
the adaptive LMMG with respect to ε� 1.
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Figure 5. Experiment 5.3.2 with q ≡ 1 and L = {0}. Left: Approximated
solution w1. Right: Convergence plots and number of minimax steps.

Figure 6. Experiment 5.3.2 with q ≡ 1 and L = {w1}. Left: Approximated
solution. Right: Convergence plots and number of minimax steps.

Figure 7. Experiment 5.3.3 with ε = 10−3. Convergence plots and number
of minimax steps for adaptive mesh refinement (left) and uniform refinement
(right).

5.3.4. A singularly perturbed Lane-Emden type equation with q ≡ 1. We consider a further sin-
gularly perturbed problem,

−ε∆u+ u = u3 in Ω1

u = 0 on ∂Ω1,
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Figure 8. Experiment 5.3.3 with ε = 10−3. Left: Approximated solution.
Right: Adaptive mesh after 18 refinement steps.

now with ε = 10−8. Since this is a strongly perturbed problem, we expect a thin spike (or
layer) in the solution. This is confirmed in Figure 9 (left), where we observe a thin spike in the
solution at the center of the domain, which is carefully resolved by adaptive mesh refinements,
see Figure 10. Once more the convergence rate is optimal, see Figure 9 (right), which further
highlights the ε-robustness of the LMMG algorithm. In this experiment, due to the appearance
of a thin spike in the solution, we notice again that the local mesh refinement strategy is far
superior to the uniform mesh refinement, see Figure 9.

Figure 9. Experiment 5.3.4 with ε = 10−3. Convergence plots and number
of minimax steps for adaptive mesh refinement (left) and uniform refinement
(right).

6. Conclusion

In this work, we have established an adaptive computational scheme and a convergence analysis
for the numerical approximation of saddle points of non-convex energy functionals. Our approach
is based on using an instantaneous interplay of the local minimax method from [26, 27] and
adaptive Galerkin space enrichments. Our numerical procedure was tested for a class of adaptive
finite element discretizations of (singularly perturbed) semilinear elliptic PDE. The experiments
presented here illustrate that the proposed LMMG algorithm is able to properly resolve thin
spikes, and to achieve optimal convergence rates for the residual estimator.
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Figure 10. Experiment 5.3.4 with ε = 10−8. Left: Approximated solution.
Right: Adaptive mesh after 25 refinement steps.

Appendix A. Proof of Proposition 4.1

We will outline the proof of Proposition 4.1 for n ≥ 3; the case n = 2 is similar (and, in fact,
slightly simpler). In order to do so, we will proceed along the lines of [26, §4]. We define the
norm

|||v|||2ε = ε

∫
Ω

|∇v|2 dx+

∫
Ω

qv2 dx, v ∈ H1
0(Ω),

which is equivalent to the norm ‖ · ‖ε from (30). In particular, it holds that

‖v‖2ε ≤ |||v|||2ε ≤ κν‖v‖2ε, (35)

for any v ∈ H1
0(Ω), where κν := max{1, cν}, cp. (25).

Proof of (i): Uniqueness. We show that the peak selection p of Eε with respect to L = {0}
is uniquely defined. To this end, we adapt the proof of [29, Lem. 2] for our more general case.
For any v ∈ SX, i.e. ‖v‖ε = 1, let

gv(t) := Eε(tv) =
t2

2
|||v|||2ε −

∫
Ω

F (x, tv) dx, (36)

for t ≥ 0. Interchanging differentiation and integration, by invoking (f1), an elementary calcula-
tion reveals that

g′v(t) = t|||v|||2ε −
∫

Ω

f(x, tv)v dx. (37)

Upon defining the set Av := {x ∈ Ω : v(x) 6= 0}, we see that g′v(t) = 0 if and only if∫
Av

f(x, tv)

tv
v2 dx = |||v|||2ε. (38)

Due to (f5) note that the left-hand side of (38) is strictly increasing in t > 0. Consequently, it
exists at most one t?v > 0 such that g′v(t

?
v) = 0. It remains to establish the existence of t?v. To

this end, we examine the function gv(t) for small and large t in order to show that gv changes
sign.

1. For any ε′ > 0, the assumptions (f2)–(f3) imply that there exists a constant Cε′ > 0 such that

f(x, t) ≤ 2ε′|t|+ Cε′(s+ 1)|t|s ∀t ∈ R.



LOCAL MINIMAX GALERKIN METHODS 21

Therefore, upon integration, we deduce that

F (x, t) ≤ ε′t2 + Cε′ |t|s+1 ∀t ∈ R. (39)

Hence, ∣∣∣∣∫
Ω

F (x, vt) dx

∣∣∣∣ ≤ ε′t2 ∫
Ω

v2 dx+ Cε′t
s+1

∫
Ω

|v|s+1 dx, t ≥ 0.

Notice that H1
0(Ω) equipped with the standard H1

0(Ω)-norm is continuously embedded in
Ls+1(Ω) for 1 ≤ s+ 1 ≤ 2n/(n−2); equivalently, 0 ≤ s ≤ (n+2)/(n−2), which is satisfied for n ≥ 3
in view of condition (f2). Thus, since ‖v‖ε = 1, and because of the equivalence of the norm
‖ · ‖ε and the standard H1

0(Ω)-norm, there are constants C1, C2 ≥ 0 (depending on ε) such
that ∣∣∣∣∫

Ω

F (x, vt) dx

∣∣∣∣ ≤ ε′C1t
2 + C2Cε′t

s+1, (40)

for t ≥ 0. Moreover, comparing the lower and upper bounds in (39) and (31), respectively,
and recalling (f4), we observe that s+ 1 ≥ µ > 2. Since ε′ > 0 is chosen arbitrarily, it follows
from (36) and (40) that

gv(t) =
t2

2
|||v|||2ε + o(t2), t↘ 0,

with o(t2) independent of v ∈ SX. Hence, invoking (35), we find that

gv(t) ≥
t2

2
+ o(t2), t↘ 0, (41)

uniformly in v ∈ SX. Consequently, there is a constant ρ > 0 such that supt>0 gv(t) ≥ ρ > 0
for all v ∈ SX.

2. Applying the bounds (31) and (35) in (36), results in

gv(t) ≤
t2

2
κν + a4|Ω| − a3t

µ

∫
Ω

|v|µ dx, (42)

where |Ω| signifies the volume of Ω. Since µ > 2, the right-hand side of the above estimate
tends to −∞ for t→∞; thus, the same applies for gv(t).

Recalling (27), we note that gv(0) = 0. Hence from the two steps above, we conclude that gv(t)
attains at least one maximum for t > 0. In summary, we have shown that there exists a unique
maximum of gv(t) in t ≥ 0 for any v ∈ SX. Therefore, the unique peak selection p : SX → X is
given by p(v) = t?vv, where t?v > 0 is the unique solution of g′v(t) = 0, cf. (37), for fixed v ∈ SX.

Proof of (i): Continuity. Next, by proceeding along the lines of the proof of [26, Thm. 4.3.],
we show that the peak selection p is continuous. To this end, we define the map G : SX×R+ → R
by G(v, s) := g′v(s). By assumption (f6), we conclude that G(v, s) is continuously differentiable
in s, and we have

∂G

∂s
(v, s) = |||v|||2ε −

∫
Ω

v2 ∂f

∂t
(x, sv) dx.

Furthermore, due to (f5), we observe that ft(x, t) > f(x, t)t−1, for any x ∈ Ω and t ∈ R \ {0}.
Fix an arbitrary v0 ∈ SX and set s0 := t?v0 > 0, i.e. G(v0, s0) = g′v0(s0) = 0. Then, recalling (37),
we deduce

0 = G(v0, s0) > s0|||v0|||2ε −
∫

Ω

s0v
2
0ft(x, s0v0) dx = s0

∂G

∂s
(v0, s0).

Since s0 > 0, we obtain that ∂G
∂s (v0, s0) < 0. Thus, by the implicit function theorem, there

exists an open neighbourhood U(v0) ⊂ SX of v0, and a continuous map σ : U(v0) → R+ such
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that G(v, σ(v)) = 0 for all v ∈ U(v0); see, e.g., [39, Thm. 4.E]. By uniqueness it follows that
σ(v) = t?v, and the peak selection p(v) = t?vv = σ(v)v, for v ∈ U(v0), is continuous. Since this
holds for any v0 ∈ SX, the peak selection mapping p : SX → X is globally continuous.

Proof of (ii). From the proof of (i) it follows that

Eε(p(v)) = max
t>0

Eε(tv) = max
t>0

gv(t) ≥ ρ > 0 ∀v ∈ SX, (43)

which proves (ii).

Proof of (iii). Recalling (43) and (41), which is uniform with respect to v ∈ SX, it follows that
there exists α > 0 such that

arg max
t>0

Eε(tv) = arg max
t>0

gv(t) ≥ α ∀v ∈ SX.

Thus, for L = {0}, we deduce

inf
y∈L
‖p(v)− y‖ε = ‖p(v)‖ε = t?v = arg max

t>0
Eε(tv) ≥ α > 0 ∀v ∈ SX.

This shows (iii).

Proof of (iv). We first show that the peak selection p constructed above is bounded, i.e. there
exists β > 0 such that

‖p(v)‖ε ≤ β ∀v ∈ SX. (44)

If not then there is a sequence {p(v`)}` with t?v` = ‖p(v`)‖ε →∞ for `→∞. Applying (43) and
(42) leads to

0 < ρ ≤ Eε(p(v
`)) = Eε(t

?
v`v

`) = gv`(t
?
v`) ≤

κν
2

(t?v`)
2

+ a4|Ω| − a3 (t?v`)
µ
∫

Ω

∣∣v`∣∣µ dx.

Since µ > 2, the right-hand side tends to −∞ for t?v` → ∞, which leads to the desired contra-
diction. Thus, p is bounded.

Using (28) and the Cauchy-Schwarz inequality, for u, v ∈ H1
0(Ω), we find that

〈E′ε(w), u〉X?×X ≤ |||w|||ε|||u|||ε +

∫
Ω

|f(x,w)||u| dx.

Invoking (f2), this leads to

〈E′ε(w), u〉X?×X ≤ |||w|||ε|||u|||ε + a1

∫
Ω

|u| dx+ a2

∫
Ω

|w|s|u| dx

≤ |||w|||ε|||u|||ε + a1‖u‖L1(Ω) + a2

∫
Ω

|w|s|u| dx.

Let p = 2n/(n−2) > 2, and q = p/(p−1) < p its conjugate, i.e. 1/p + 1/q = 1. Then, Hölder’s
inequality yields

〈E′ε(w), u〉X?×X ≤ |||w|||ε|||u|||ε + a1|Ω|
1/2‖u‖L2(Ω) + a2‖w‖sLsq(Ω)‖u‖Lp(Ω).

From (f2) we observe that s < p−1, and, thus, sq < p. Furthermore, we note that the embedding
H1

0(Ω) ↪→ Lr(Ω) is continuous for 1 ≤ r ≤ p. Hence, we deduce the bound

〈E′ε(w), u〉X?×X ≤ |||w|||ε|||u|||ε + C1‖u‖ε + C2‖w‖sε‖u‖ε,

for some constants C1, C2 > 0. Then, from (35), we further obtain

〈E′ε(w), u〉X?×X ≤ κν‖w‖ε‖u‖ε + C1‖u‖ε + C2‖w‖sε‖u‖ε.
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Consequently, recalling (44), it follows that

‖E′ε(p(v))‖X? = sup
u∈SX

〈E′ε(p(v)), u〉X?×X ≤ κν‖p(v)‖ε + C1 + C2‖p(v)‖sε ≤ κνβ + C1 + C2β
s,

for all v ∈ SX. This proves (iv) with γ = κνβ + C1 + C2β
s <∞.
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