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Abstract

This article provides a strong law of large numbers for integration on
digital nets randomized by a nested uniform scramble. The motivating
problem is optimization over some variables of an integral over others,
arising in Bayesian optimization. This strong law requires that the inte-
grand have a finite moment of order p for some p > 1. Previously known
results implied a strong law only for Riemann integrable functions. Pre-
vious general weak laws of large numbers for scrambled nets require a
square integrable integrand. We generalize from L2 to Lp for p > 1 via
the Riesz-Thorin interpolation theorem.

1 Introduction

Numerical integration is a fundamental building block in many applied mathe-
matics problems. When the integrand is a smooth function of a low dimensional
input, then classical methods such as tensor products of Simpson’s rule are very
effective [10]. For non-smooth integrands or higher dimensional domains, these
methods may perform poorly. One then turns to Monte Carlo methods, where
the integrand is expressed as the expected value of a random variable which is
then sampled in a simulation and averaged. Sample averages converge to popu-
lation averages by the law of large numbers (LLN), providing a justification for
the Monte Carlo method.

The Monte Carlo method converges very slowly to the true answer as the
number n of sampled values increases. The root mean squared error is O(n−1/2).
Quasi-Monte Carlo (QMC) methods [12, 13, 41] replace random sampling by
deterministic sampling methods. These may be heuristically described as space
filling samplers using n points constructed to reduce the unwanted gaps and
clusters that would arise among randomly chosen inputs. Because the inputs
are not random, we cannot use the law of large numbers to ensure that the
estimate converges to the integral as n→∞. Such consistency is a minimal re-
quirement of an integration method. For QMC, consistency requires additional
assumptions of Riemann integrability or bounded variation, whose descriptions
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Unit square

512  MC

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Unit square

512  QMC
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Figure 1: Each panel depicts 512 points in the unit square [0, 1]2. From left to
right: plain Monte Carlo points, Sobol’ points, scrambled Sobol’ points.

we defer. Under the latter condition, the integration error is O(n−1+ε) for any
ε > 0. QMC has proved valuable in financial valuation [18], graphical rendering
[30] and solving PDEs in random environments [34].

In addition to knowing that a method would work as n→∞, users also need
to have some estimate of how well it has worked for a given sample size n. Monte
Carlo methods make it easy to quantify uncertainty by using the central limit
theorem in conjunction with a sample variance estimate. Plain QMC lacks such
a convenient error estimate. Randomized QMC (RQMC) methods, surveyed
in [36], produce random points with QMC properties. Then a few statistically
independent repeats of the whole RQMC process support uncertainty quan-
tification. One of these methods, scrambled nets [44, 45], provides estimated
integrals that are consistent as n→∞ under weaker conditions than plain QMC
requires. It can also reduce the root mean squared error to O(n−3/2+ε) [46, 52]
under further conditions on the integrand.

The first panel in Figure 1 shows 512 MC points in the unit square [0, 1]2.
We see clear gaps and clumps among those points. The second panel shows 512
QMC points from a Sobol’ sequence described in Section 3. The points are very
structured and fill the space quite evenly. The third panel shows a scrambled
version of those 512 points also described in Section 3.

Up to this point, we have considered the LLN as just one result. There are
in fact strong and weak forms of the LLN that we discuss below. The distinction
does not come up for plain Monte Carlo sampling because both laws hold at
once. For RQMC, mostly weak laws of large numbers have been proved. Our
contribution here is to establish strong laws. The motivation to do this comes
from the PyTorch [3] tool for Bayesian optimization. A prototypical Bayesian
optimization problem is to find minθ∈Θ

∫
Rd g(θ,x) dx for some function g(θ,x)

2



and a set Θ of allowed values for a parameter θ. In a simulation-optimization
framework [2] the integral over x values may be approximated by a Monte Carlo
average. Integration is then a building block in a larger problem. PyTorch has a
version using RQMC points instead of MC. Consistent estimation of the optimal
θ could be proved assuming a strong LLN for some sample values x1, . . . ,xn.
Such a strong law was available for plain Monte Carlo but not for RQMC, yet
RQMC shows much better empirical results in [3].

An outline of this paper is as follows. Section 2 presents the strong and
weak laws of large numbers referred to above as well as MC and QMC and
RQMC sampling, making more precise some of the conditions stated in this
introduction. It includes a lemma to show that functions of bounded variation
in the sense of Hardy and Krause (the usual regularity assumption in QMC)
must also be Riemann integrable. That is either a new result or one hard to
find in the literature. Section 3 defines the QMC method known as digital nets
whose RQMC counterparts are called scrambled nets. Section 4 has the main
result. It is a strong law of large numbers for scrambled net sampling. The
integrand is assumed to be square integrable. The first new strong law is a
form of consistency for scrambled net integration as n → ∞ through the set
of values that can be written as n = rbm for r = 1, . . . , R using some integers
m > 0, b > 2 and R > 1. While those are the best sample sizes to use for
reasons given in that section, we next extend the result to the ordinary limit as
n→∞ through all integer values. Section 5 replaces the assumption that f2 be
integrable by one that |f |p have a finite integral for some p > 1. This result uses
the Riesz-Thorin interpolation theorem [6]. Section 6 provides some additional
context and discussion, including randomly shifted lattice versions of RQMC.

2 Background on LLNs, QMC and RQMC

We begin with the unit cube [0, 1]d in dimension d > 1. For p > 1, the space
Lp[0, 1]d consists of all measurable functions f on [0, 1]d for which ‖f‖p =(∫

[0,1]d
|f(x)|p dx

)1/p
<∞. We consider the problem of computing an estimate

µ̂ of the integral µ =
∫

[0,1]d
f(x) dx. Here µ is the expected value of f(x) when

x has the uniform distribution on [0, 1]d. We write µ = E(f(x)) for x ∼ U[0, 1]d

and we use Pr(A) below to denote the probability of the event A. Many prob-
lems that do not originate as integrals over [0, 1]d have such a representation
using transformations to generate non-uniformly distributed random variables
over the cube and other spaces [11]. We suppose that those transformations
are subsumed into f . Also, while our theory works for genuinely random num-
bers, in practice one ordinarily uses deterministic output of a random number
generator that simulates randomness.

The plain Monte Carlo (MC) method takes independent xi ∼ U[0, 1]d and
estimates µ by µ̂n = µ̂MC

n = (1/n)
∑n
i=1 f(xi). There are many more sophisti-

cated Monte Carlo methods but when we refer to Monte Carlo below we mean
this simple one.

3



The weak law of large numbers (WLLN) implies that for any ε > 0,

lim
n→∞

Pr
(
|µ̂MC
n − µ| > ε

)
= 0. (1)

The strong law of large numbers (SLLN) implies that

Pr
(

lim
n→∞

µ̂MC
n = µ

)
= 1 (2)

which we may write as Pr(lim supn→∞ |µ̂MC
n −µ| > ε) = 0 to parallel the WLLN.

Both the WLLN and SLLN hold for independent and identically distributed
(IID) random variables f(xi) when f ∈ L1[0, 1]d. For proofs of these laws, see
[15, Chapter 2]. For an example of a sequence of independent random variables
that satisfies the WLLN but not the SLLN, let µ̂n = µ with probability 1− 1/n
and µ̂n = µ+ 1 otherwise.

In QMC sampling, the xi are constructed so that the discrete distribution
placing probability 1/n on each of x1, . . . ,xn (with repeated points counted
multiple times) is close to the continuous uniform distribution on [0, 1]d. There
are various ways, called discrepancies [7], to quantify the distance between these
discrete and continuous measures. For a set S ⊂ [0, 1]d define 1{x ∈ S} to be
1 if x ∈ S and 0 otherwise. The most widely used discrepancy is the star
discrepancy

D∗n = D∗n(x1, . . . ,xn) = sup
a∈[0,1]d

∣∣∣∣ 1n
n∑
i=1

1{xi ∈ [0,a)} −
d∏
j=1

aj

∣∣∣∣
where [0,a) = {x ∈ [0, 1]d | 0 6 xj < aj , j = 1, . . . , d}.

To keep this paper at a manageable length, the relevant properties of QMC
and RQMC methods are presented but the details of their constructions are
omitted. For the latter, see [12, 13, 41, 36] among others.

Because QMC is deterministic, it has no analogue of the WLLN (1). There
is an analogue of the SLLN (2), as follows. Let µ̂QMC

n = (1/n)
∑n
i=1 f(xi) where

now the points xi have been chosen to have small discrepancy. If f is Riemann
integrable and D∗n → 0 then [32, p. 3]

lim
n→∞

µ̂QMC
n = µ (3)

providing the QMC version of the SLLN (2). There is a converse, where if
|µ̂n − µ| → 0 whenever D∗n → 0, then f must be Riemann integrable. See the
references and discussion in [39]. That is, QMC could fail to be consistent when
f is not Riemann integrable. Riemann integrable f must also be bounded.

A better known result about QMC is the Koksma-Hlawka inequality below
which uses the notion of bounded variation. Recall that a differentiable function
f on [0, 1] has total variation V (f) =

∫ 1

0
|f ′(x)|dx and it is of bounded variation

for V (f) < ∞. There are numerous generalizations of the total variation for
functions on the unit cube [0, 1]d when d > 1 (see [8]). Of those, the total
variation in the sense of Hardy and Krause [22, 31], denoted by VHK(f), is the

4



most useful one for QMC. If VHK(f) < ∞, then we write f ∈ BVHK[0, 1]d.
Although we don’t need f to have bounded variation to get the SLLN (3) for
QMC, bounded variation gives us some information on the rate of convergence,
via the Koksma-Hlawka inequality

|µ̂QMC
n − µ| 6 D∗n(x1, . . . ,xn)VHK(f) (4)

(see [26]). Typical QMC constructions provide infinite sequences xi whose initial
subsequences satisfy

D∗n(x1, . . . ,xn) = O
( log(n)d

n

)
.

Then |µ̂QMC
n − µ| = O(n−1+ε) by (4) for any ε > 0.

The counterpart in MC to the Koksma-Hlawka inequality is that

E((µ̂MC
n − µ)2)1/2 = n−1/2σ(f) (5)

when, for x ∼ U[0, 1]d the variance of f(x) is σ2 = σ2(f) = E((f(x)−µ)2) <∞.
Where the rate for QMC comes after strengthening the regularity requirement
on f from Riemann integrability to bounded variation, the rate for MC comes
about after strengthening the requirement from f ∈ L1[0, 1]d to f ∈ L2[0, 1]d.
The MC counterpart (5) is exact while the QMC version (4) is an extremely
conservative upper bound, in that it covers even the worst f ∈ BVHK[0, 1]d for
any given x1, . . . ,xn.

A Riemann integrable function is not necessarily in BVHK. For instance
f(x) = 1{

∑d
j=1 xj 6 1} is Riemann integrable but, for d > 2, it is not in BVHK

[49]. A function in BVHK is necessarily Riemann integrable. This result is hard
to find in the literature. It must almost certainly have been known to Hardy,
Krause, Hobson and others over a century ago, at least for d = 2, which earlier
work emphasized. Here is a short proof based on some recent results.

Lemma 1. If f ∈ BVHK[0, 1]d, then f is also Riemann integrable.

Proof. If f ∈ BVHK[0, 1]d then f(x) = f(0) + f+(x) − f−(x) where f± are
uniquely determined completely monotone functions on [0, 1]d with f±(0) = 0
[1, Theorem 2]. Completely monotone functions are, a fortiori, monotone. Now
both f± are bounded monotone functions on [0, 1]d. They are then Riemann
integrable by the corollary in [35].

While QMC has a superior convergence rate to MC for f ∈ BVHK, MC has
an advantage over QMC in that E((µ̂MC − µ)2) = σ2/n is simple to estimate
from independent replicates, while D∗n is very expensive to compute [14] and
VHK(f) is much harder to estimate than µ. In a setting where attaining accu-
racy is important, it must also be important to estimate the attained accuracy.
RQMC methods, described next, are hybrids of MC and QMC that support
error estimation.

In RQMC [36, 44] one starts with points a1, . . . ,an ∈ [0, 1]d having a small
star discrepancy and randomizes them to produce points x1, . . . ,xn. These
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points satisfy the following two conditions: individually xi ∼ U[0, 1]d, and col-
lectively, x1, . . . ,xn have small star discrepancy. The RQMC estimate of µ is
µ̂RQMC
n = (1/n)

∑n
i=1 f(xi). From the uniformity of the points xi we find that

E(µ̂RQMC
n ) = µ. Their small star discrepancy means that they are also QMC

points and so they inherit the accuracy properties of QMC. To estimate the er-
ror, one takes several independent randomizations of ai producing independent
replicates of µ̂RQMC

n whose sample variance can be computed.

3 Scrambled nets and sequences

In this section, we describe digital nets and sequences and scrambled versions of
them. Many authors reserve the term ‘digital’ to only mean points obtained from
some certain specific classes of algorithms. Since the overwhelming majority of
nets and sequences in use are constructed with such algorithms, we lose little
by this simplification.

Let b > 2 be an integer base. Let k = (k1, . . . , kd) for integers kj > 0 and
c = (c1, . . . , cd) where cj ∈ {0, 1, . . . , bkj − 1}. Then the set

E(k, c) =

d∏
j=1

[ cj
b
kj
j

,
cj + 1

b
kj
j

)
(6)

is called an elementary interval in base b. It has volume b−|k| where |k| =∑d
j=1 kj .

Definition 1. For integers m > t > 0, b > 2 and d > 1, the points x1, . . . ,xn ∈
[0, 1)d for n = bm are a (t,m, d)-net in base b if

n∑
i=1

1{xi ∈ E(k, c)} = bm−|k|

holds for every elementary interval E(k, c) from (6) with |k| 6 m− t.

An elementary interval of volume b−|k| should ideally contain nb−|k| =
bm−|k| points from x1, . . . ,xn. In a (t,m, d)-net in base b, every elementary
interval that should ideally contain bt of the points does so. For any given b, m
and d, smaller t imply finer equidistribution. It is not always possible to attain
t = 0.

Definition 2. For integers t > 0, b > 2 and d > 1, the points xi ∈ [0, 1)d

for i > 1 are a (t, d)-sequence in base b if every subsequence of the form
x(r−1)bm+1, . . . ,xrbm for integers m > t and r > 1 is a (t,m, d)-net in base b.

The best available values of t for nets and sequences are recorded in the
online resource MinT described in [55], which also includes lower bounds. The
Sobol’ sequences of [57] are (t, d)-sequences in base b = 2. There are newer
versions of Sobol’s sequence with improved ‘direction numbers’ in [29, 60]. The
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Faure sequences [17] have t = 0 but require that the base be a prime number
b > d. Faure’s construction was generalized to prime powers b > d in [40]. The
best presently attainable values of t for base b = 2 are in the Niederreiter-Xing
sequences of [42, 43].

Randomizations of digital nets and sequences operate by applying certain
random permutations to their base b expansions. For details, see the survey in
[48]. We will consider the ‘nested uniform’ scramble from [44].

If a1, . . . ,an is a (t,m, d)-net in base b then after applying a nested uniform
scramble, the resulting points x1, . . . ,xn are a (t,m, d)-net in base b with prob-
ability one [44]. If ai for i > 1 are a (t, d)-sequence in base b then after applying
a nested uniform scramble, the resulting points xi for i > 1 are a (t, d)-sequence
in base b with probability one [44]. In either case, each resulting point satisfies
xi ∼ U[0, 1]d.

If f ∈ L2[0, 1]d and µ̂RQMC
n is based on a nested uniform scramble of a

(t, d)-sequence in base b with sample sizes n = bk for integers k > 0, then
E((µ̂RQMC

n − µ)2) = o(1/n) as n → ∞. It is thus asymptotically better than
MC for any f . For smooth enough f , E((µ̂RQMC

n − µ)2) = O(n−3+ε) for any
ε > 0. See [46, 52] for sufficient conditions.

The main result that we will use is as follows. Let f ∈ L2[0, 1]d and write
σ2 for the variance of f(x) when x ∼ U[0, 1]d. Then for a (t,m, d)-net in base
b, scrambled as in [44], we have

E((µ̂RQMC
n − µ)2) 6

Γσ2

n
(7)

for some Γ < ∞ [47, Theorem 1]. That is, the RQMC estimate for these
scrambled nets cannot have more than Γ times the mean squared error that an
MC estimate has. The value of Γ is found using some conservative upper bounds.
We can use Γ = bt[(b+ 1)/(b− 1)]d. If t = 0, then we can take Γ = [b/(b− 1)]d,
and for d = 1 we can take Γ = bt. The quantity Γ arises as an upper bound
on an infinite set of ‘gain coefficients’ relating the RQMC variance to the MC
variance for parts of a basis expansion of f . The worst case bound σ

√
Γ/n for

the RQMC root mean squared error does not contain the factor log(n)d that
makes the QMC worst case error so large for large d and n of practical interest.

4 RQMC laws of large numbers

This section outlines some very simple LLNs for RQMC before going on to prove
two SLLN results for scrambled net integration when f ∈ L2[0, 1]d. The first
SLLN requires sample sizes to be of the form rbm for 1 6 r 6 R and m > 0
where b is the base of those nets. The second SLLN extends the first one to
include all integer sample sizes.

If f ∈ BVHK[0, 1]d, then there is an SLLN for RQMC from the Koksma-
Hlawka inequality (4) when Pr(limn→∞D∗n(x1, . . . ,xn) = 0) = 1. More gen-
erally, for Riemann integrable f we get an SLLN for RQMC as an immediate
consequence of equation (3).
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Theorem 1. Let f : [0, 1]d → R be Riemann integrable. For i > 1, let xi ∈
[0, 1]d be RQMC points with Pr(limn→∞D∗n(x1, . . . ,xn) = 0) = 1. Then

Pr
(

lim
n→∞

µ̂RQMC
n = µ

)
= 1.

Proof. From equation (3),

Pr
(

lim
n→∞

µ̂RQMC
n = µ

)
> Pr

(
lim
n→∞

D∗n(x1, . . . ,xn) = 0
)

= 1.

Theorem 1 is not strong enough for some important applications. It does
not cover integration problems where the integrand f is not in BVHK[0, 1]d

including many where f is not even Riemann integrable. Integrands with jump
discontinuities or kinks (jumps in their gradient) [19, 20, 21, 24] commonly fail
to be in BVHK and integrands containing singularities [5, 23, 51, 58] are not
even Riemann integrable.

Sobol’ [58] noticed that some of his colleagues were using his QMC points
with apparent success on problems with integrable singularities and then he
initiated a theory in which QMC could be consistent provided the points xi
avoided the singularities in a suitable and problem specific way. Uniform random
points show no preference for the region near a singularity no matter where it is
and this is enough to get consistent integral estimates on some problems with
integrable singularities [5, 50, 51].

In those cases, we can easily get a WLLN, if the integrand is in L2. The usual
results for RQMC show that E((µ̂RQMC

n − µ)2)→ 0 as n→∞ for f ∈ L2[0, 1]d.
From that a WLLN follows by Chebychev’s inequality. A WLLN proves to be
not quite enough for some problems, so we seek an SLLN for scrambled net
quadrature.

First we prove a strong law of large numbers for sample sizes equal to rbm

for 1 6 r 6 R and b > 2 and f ∈ L2[0, 1]d. These are the best sample sizes to
use in a (t, d)-net with values n = bm being the best of those because they are
the smallest sample sizes to properly balance elementary intervals of size bt−m.

Sobol’ [59] recommends using sample sizes in a geometric progression such
as n` = 2`, not an arithmetic one and there is a lengthier discussion of this point
in [53]. To see informally how this works, suppose that |µ̂n − µ| 6 An−1−δ for
δ > 1 and A > 0 while |µ̂n − µ̂n+1| > B/n. The first is an instance of better
than 1/n error and the second will be common because µ̂n+1 = µ̂n(n/(n+1))+
f(xn+1)/(n+ 1). Then |µ̂n+1 − µ| > |µ̂n+1 − µ̂n| − |µ̂n − µ| and so for large n,
µ̂n+1 will commonly be worse than µ̂n. A rate like n−1−δ can only be attained
on geometrically spaced sample sizes n under conditions in [53].

Theorem 2. Let x1,x2, . . . be a (t, d)-sequence in base b, with gain coeffi-
cients no larger than Γ < ∞ and randomized as in [44]. Let f ∈ L2[0, 1]d with∫

[0,1]d
f(x) dx = µ. For an integer R > 1, let N = {rbm | 1 6 r 6 R,m > 0}.

Then
Pr
(

lim
`→∞

µ̂RQMC
n`

= µ
)

= 1

where n` for ` > 1 are the unique elements of N arranged in increasing order.
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Proof. Pick any ε > 0. Let σ2 < ∞ be the variance of f(x) for x ∼ U[0, 1]d.
First we consider n` = rbm for some m > t and 1 6 r 6 R. Because m > t, the
definition of a (t, d)-sequence implies that

µ̂RQMC
n`

=
1

r

r∑
j=1

µ̂`,j

where each µ̂`,j is the average of f over a scrambled (t,m, d)-net in base b. We
don’t know the covariances cov(µ̂`,j , µ̂`,j′) but we can bound them by assuming
conservatively that the corresponding correlations are 1. Then

var(µ̂RQMC
n`

) =
1

r2

r∑
j=1

r∑
j′=1

cov(µ̂`,j , µ̂`,j′) 6 var(µ̂`,1) 6
Γσ2

n`/r
.

Next, by Chebychev’s inequality, Pr(|µ̂RQMC
n`

− µ| > ε) 6 rΓσ2/(n`ε
2). Now

∞∑
`=1

Pr(|µ̂RQMC
n`

− µ| > ε) 6
∞∑
m=0

R∑
r=1

Pr(|µ̂RQMC
rbm − µ| > ε)

6 tR+

∞∑
m=t

R∑
r=1

Γσ2

bmε2
. (8)

The first inequality arises because some sample sizes n` may have more than
one representation of the form rbm. Because the sum (8) is finite,

Pr(|µ̂RQMC
n`

− µ| > ε for infinitely many `) = 0

by the Borel-Cantelli lemma [15, Chapter 2]. Therefore Pr
(
lim`→∞ µ̂RQMC

n`
=

µ
)

= 1.

Next we extend this SLLN to a limit as n→∞ without a restriction to geo-
metrically spaced sample sizes. While geometrically spaced sample sizes should
be used, it is interesting to verify this limit as well. The proof method is adapted
from the way that Etemadi [16] extends an SLLN for pairwise independent and
identically distributed random variables from geometrically spaced sample sizes
to all sample sizes.

Theorem 3. Let x1,x2, . . . be a (t, d)-sequence in base b, with gain coeffi-
cients no larger than Γ < ∞ and randomized as in [44]. Let f ∈ L2[0, 1]d with∫

[0,1]d
f(x) dx = µ. Then

Pr
(

lim
n→∞

µ̂RQMC
n = µ

)
= 1.

Proof. First we suppose that f(x) > 0. This is no loss of generality because
f(x) = f+(x)−f−(x) where f+(x) = max(f(x), 0) and f−(x) = max(−f(x), 0).
If f ∈ L2[0, 1]d then both f± ∈ L2[0, 1]d and an SLLN for f± would imply one
for f .
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Because f(xi) > 0, we know that T (n) ≡
∑n
i=1 f(xi) is nondecreasing in

n. Choose R = bk for k > 1 and let N = N (R) = {rbm | 1 6 r 6 R,m > 0}.
For any integer n > 1 define n̄ = n̄(n) = min{ν ∈ N | ν > n} and n = n(n) =
max{ν ∈ N | ν 6 n}. Monotonicity of T (n) combined with µ̂RQMC

n = T (n)/n
gives

n(n)

n
µ̂RQMC
n 6 µ̂RQMC

n 6
n̄(n)

n
µ̂RQMC
n̄ .

By Theorem 2, Pr(lim supn→∞ µ̂RQMC
n̄ = µ) = 1 and Pr(lim infn→∞ µ̂RQMC

n =
µ) = 1. What remains is to bound n̄/n and n/n.

We can suppose that n > bk. The base b expansion of n is
∑L
`=0 a`b

` where
a` = a`(n) ∈ {0, 1, . . . , b − 1} and L = L(n) = 1 + blogb(n)c is the smallest
number of base b digits required to write n. Choosing m = L− k + 1 we know
that n > ν = rbm for r =

∑L−m
s=0 am+sb

s 6 bk = R. As a result

n(n)

n
>

∑L
`=L−k+1 a`b

`∑L
`=0 a`b

`
>

∑L
`=L−k+1 a`b

`

bL−k+1 +
∑L
`=L−k+1 a`b

`
>

bL

bL−k+1 + bL
.

It follows that
Pr
(

lim inf
n→∞

µ̂RQMC
n > (1 + b1−k)−1µ

)
= 1

and since we may choose k as large as we like, Pr(lim infn→∞ µ̂RQMC
n > µ) = 1.

Similarly, if n = ALb
L then n ∈ N and we may take n̄ = n. Otherwise, n̄ 6

ν+bm = (r+1)bm with r+1 6 R and then Pr(lim infn→∞ µ̂RQMC
n 6 µ) = 1.

5 An SLLN without square integrability

The SLLN for Monte Carlo only requires that f ∈ L1[0, 1]d. The results in
Section 4 for RQMC require the much stronger condition that f ∈ L2[0, 1]d. In
this section, we narrow the gap by proving an SLLN for scrambled nets when
f ∈ Lp[0, 1]d for some p > 1.

The proof is based on the Riesz-Thorin interpolation theorem from [6, Chap-
ter 4]. Let E be the operator that takes an integrand f and returns the integra-
tion error

µ̂RQMC
n − µ =

1

n

n∑
i=1

f(xi)− µ.

The integration error is a function of x1, . . . ,xn ∈ [0, 1]d. Together these belong
to [0, 1]dn. Let Ω be the set [0, 1]dn equipped with the distribution induced by
the scrambled net randomization producing x1, . . . ,xn. If n = bm, then E is a
bounded linear operator from L2[0, 1]d to L2(Ω). The norm of E is

‖E‖L2[0,1]d→L2(Ω) = sup
‖f‖261

(
E(µ̂RQMC

n − µ)2
)1/2

6
√

Γ/n.
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The operator E is also a bounded linear operator from L1[0, 1]d to L1(Ω).
Here the norm is

‖E‖L1[0,1]d→L1(Ω) = sup
‖f‖161

E(|µ̂RQMC
n −µ|) 6 sup

‖f‖161

|µ(f)|+
∫

[0,1]d
|f(x)|dx 6 2.

By the Riesz-Thorin theorem below, E is also a bounded linear operator from
Lp[0, 1] to Lp(Ω) for any p with 1 6 p 6 2.

Theorem 4 (Riesz-Thorin). For 1 6 q1 6 q2 < ∞ and θ ∈ [0, 1], let p > 1
satisfy

1

p
=

1− θ
q1

+
θ

q2
.

For probability spaces Θ1 and Θ2, let T be a linear operator from Lq1(Θ1) to
Lq1(Θ2) and at the same time a linear operator from Lq2(Θ1) to Lq2(Θ2) satis-
fying

‖T ‖Lq1 (Θ1)→Lq1 (Θ2) 6M1 and ‖T ‖Lq2 (Θ1)→Lq2 (Θ2) 6M2.

Then T is a linear operator from Lp(Θ1) to Lp(Θ2) satisfying

‖T ‖Lp(Θ1)→Lp(Θ2) 6M1−θ
1 Mθ

2 .

Proof. This is a special case of Theorem 2.2(b) in [6].

Because 1/p is a convex combination of 1/q1 and 1/q2 we must have q1 6
p 6 q2. Our interest is in q1 = 1 and q2 = 2 and 1 6 p 6 2. The following
corollary handles that case.

Corollary 1. Let T be a linear operator from L1(Θ1) to L1(Θ2) and at the
same time from L2(Θ1) to L2(Θ2) with

‖T ‖L1(Θ1)→L1(Θ2) 6M1 and ‖T ‖L2(Θ1)→L2(Θ2) 6M2.

Then for 1 6 p 6 2,

‖T ‖Lp(Θ1)→Lp(Θ2) 6M
(2−p)/p
1 M

2(p−1)/p
2 .

Now we are ready to use the Riesz-Thorin theorem to get an SLLN. The
operator T will be the RQMC error E , the space Θ1 will be [0, 1]d under the
uniform distribution and the space Θ2 will be [0, 1]nd under the distribution
induced by the RQMC points x1, . . . ,xn.

Theorem 5. Let x1,x2, . . . be a (t, d)-sequence in base b, with gain coefficients
no larger than Γ < ∞ and randomized as in [44]. For p > 1, let f ∈ Lp[0, 1]d

with
∫

[0,1]d
f(x) dx = µ. Then

Pr
(

lim
n→∞

µ̂RQMC
n = µ

)
= 1.
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Proof. For p > 2, the conclusion follows from Theorem 3 and so we assume now
that 1 < p < 2. Choose any ε > 0 and suppose that n = rbm for 1 6 r 6 R <∞
and m > 0. The error operator E for this n satisfies ‖E‖L1 6 2 and ‖E‖L2 6
(rΓ/n)1/2. Taking T = E in Corollary 1,

sup
‖f‖p61

(
E(|µ̂RQMC

n − µ|p
)1/p

6 2(2−p)/p
(rΓ
n

)(p−1)/p

from which E(|µ̂RQMC
n − µ|p) 6 22−p(rΓ/n)p−1 and then

Pr(|µ̂RQMC
n − µ| > ε) 6 22−pε−p(rΓ)p−1‖f‖ppn1−p.

This probability has a finite sum over r = 1, . . . , R and m > 0 and so

Pr
(

lim
n→∞

µ̂RQMC
n = µ

)
= 1

when the limit is over n ∈ {rbm | 1 6 r 6 R,m > 0}. We have thus established
a version of Theorem 2 for p > 1 and the extension to the unrestricted limit as
n→∞ uses the same argument as Theorem 3.

The Riesz-Thorin theorem has been previously used to bound p’th moments
in similar problems. See for instance [25, 54, 33].

6 Discussion

We have proved a strong law of large numbers for scrambled digital net in-
tegration, first for geometrically spaced sample sizes and a square integrable
integrand, then removing the geometric spacing assumption and finally, reduc-
ing the squared integrability condition to E(|f(x)|p) <∞ for some p > 1. It is
interesting that this strong law for p > 1 is obtained before an equally general
weak law was found.

There are other ways to scramble digital nets and sequences. The linear
scrambles of [38] require less space than the nested uniform scramble. They
have the same mean squared discrepancy as the nested uniform scramble [28]
and so they might also satisfy an SLLN. A digital shift [36, 48] does not produce
the same variance as the nested uniform scramble and it does not satisfy the
critically important bound (7) on gain coefficients, so the methods used here
would not provide an SLLN for it. The nested uniform scramble is the only one
for which central limit theorems have been proved [4, 37].

A second major family of RQMC methods has been constructed from lattice
rules [56]. Points a1, . . . ,an on a lattice in [0, 1]d are randomized into xi = ai+u
mod 1, for u ∼ U[0, 1]d. That is, they are shifted with wraparound in what is
known as a Cranley-Patterson rotation [9]. Then the estimate of µ is µ̂RLAT

n =
(1/n)

∑n
i=1 f(xi). For an extensible version of shifted lattice rules, see [27]. The

Cranley-Patterson rotation does not provide a Γ bound like (7) because there
are functions f ∈ L2[0, 1]d with var(µ̂RLAT

n ) = σ2(f) [36], and so a proof of
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an SLLN for this form of RQMC would require a different approach. The fact
that var(µ̂RLAT

n ) = σ2(f) is possible does not provide a counter-example to an
SLLN because this equality might only hold for a finite number of n` in the
infinite sequence. Given a class of functions F with var(µ̂RLAT

n`
) 6 Bσ2(f)/n`

for all f ∈ F , all ` > 1, and some B < ∞, we get an SLLN for f ∈ F if∑∞
`=1 1/n` < ∞. Some such bounds B for randomly shifted lattices appear in

[36] though they hold for specific n` not necessarily an infinite sequence of them.
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