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LINEAR SCHRÖDINGER EQUATION WITH AN ALMOST PERIODIC POTENTIAL

RICCARDO MONTALTO, MICHELA PROCESI

Abstract. We study the reducibility of a Linear Schrödinger equation subject to a small unbounded almost-
periodic perturbation which is analytic in time and space. Under appropriate assumptions on the smallness,
analiticity and on the frequency of the almost-periodic perturbation, we prove that such an equation is reducible
to constant coefficients via an anaytic almost-periodic change of variables. This implies control of both Sobolev
and Analytic norms for the solution of the corresponding Schrödinger equation for all times.
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1. Introduction

The problem of control of Sobolev norms for Linear Schrödinger operators on a torus with smooth time
dependent potential has been studied by various authors. Groundbreaking results were proved by Bourgain in
[Bou99a] in the case of quasi-periodic bounded potentials with a Diophantine frequency, then in [Bou99b] for
general time dependent potentials. The main result was an upper bound on the growth in time of the Sobolev
norm, respectively logaritmic and polynomial in time. Such results were generalized to unbounded potentials
in see [Del10], [MR17], [Mon18], [BM18],[BGMR17], [Mon19a], [Mon19b], [BM19], [FM19].
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The main feature of such results is that they are very general, require little or no conditions on the time
dependence of the potential and can often be applied also in non-perturbative settings. At this level of
generality such results are in fact optimal as showed in [Bou99b]. See also [Mas18], [HM19] for examples of
growth.
A parallel point of view is to study the reducibility of Schrödinger operators with quasi-periodic potentials
by requiring stronger non-resonance conditions on the frequency, see [EK09]. We recall that a first order
differential equation is said to be reducible if there exists a (uniformly bounded) time dependent operator
which conjugates it to an equation whose vector field is diagonal (or block diagonal). Thus one gets a uniform
control in time of the Sobolev norms to the price of restricting to small quasi-periodic potentials with rather
involuted non-resonance conditions on the frequency. We remark that reducibility is a key argument in KAM
for non-linear PDEs. This is a strong motivation for studying reducibility for linear PDEs. Conversly many
KAM results can be adapted to the reducibility setting.
As can be expected the (block) diagonalization algorithm relies on lower bounds on the difference of distinct
eigenvalues (the spectral gaps) as well as on a strong control on their possible multiplicity. Indeed the first
results were for bounded potentials in the case of Dirichlet boundary conditions on [0, π], where the eigenvalues
are simple (see for instance [Kuk87], [Pös89], [P9̈6], [KP96], [Kuk98]). The last ten years have seen considerable
progress in this field, particularly in the case of unbounded potentials. The first results were in [IPT05] in
the case of periodic potentials and [BBM14], [BBM16] for the quasi-periodic case. Regarding Schrödinger
equations we mention [FP14], [Feo15],[Bam17],[Bam18]. Note that all the preceding papers deal with Sobolev
stability; generalizing to the analytic case, especially in the case of unbounded potentials of order two and in
the context of a nonlinear KAM scheme, is not straightforward. A strategy was discussed in [CFP],[FP]. While
the literature on reducibility of quasi-periodic potentials is quite extensive in the case of one space dimension,
the case of higher dimensional manifolds is still largely open. We mention [EK10], [BG16], [EGK16] and finally
[BGMR18], [FGMP19],[Mon19b], [CM18], [BLM19] for an unbounded potential.
Common features of the reduction algorithms are : 1. they are perturbative, 2. they require complicated
non-resonance conditions depending on the potential, 3. they strongly depend on the number of frequencies.

In the present paper we study the reducibility of Schrödinger equations on the circle with a small unbouned
almost periodic potential of the form

(1.1)
∂tu = i

(
∂2x + εP (t)

)
u ,

P (t) := V2(x, t)∂
2
x + V1(x, t)∂x + V0(x, t) , x ∈ T := R/(2πZ) , t ∈ R .

Here V0, V1, V2 are analytic (in an appropriate sense) almost periodic functions of time with frequency ω which
is an infinite dimensional Diophantine vector in ℓ∞(N,R) (see definitions 1.3 and (1.1)). For small ε we prove
a reducibility result under the assumption that for any t ∈ R, the operator P (t) is L2 self-adjoint and that ω
belongs to some (explicit but convoluted) Cantor set of asymptotically full measure.

Of course the difficulty of such a result is strongly related to the regularity of the almost-periodic potential.
Indeed, by definition, an almost periodic function is the limit of quasi-periodic ones with an increasing number
of frequencies. If the limit is reached sufficiently fast, the most direct strategy is to diagonalize iteratively the
Schrödinger operators with quasi-periodic potentials, by considering at each step n the operator as a small per-
turbation of the one of the previous step. This procedure in fact works if one considers a sufficiently smoothing
and regular potentials but becomes very delicate in the case of unbounded potentials.
Good comparisons are: [P0̈2] which studies a smoothing nonlinear Schrödinger equation with external param-
eters and proves existence of on almost-periodic solutions with superexponential decay in the Fourier modes.
[Bou05], on almost-periodic solutions for a nonlinear Schrödinger equation with external parameters with
subexponential decay in the Fourier modes. In the first paper the very fast decay implies that at each KAM
step, one only needs to construct quasi-periodic solutions (with increasing number of frequencies) which is a
well known result; the only point is to show that they converge superexponentially to a non-trivial almost
periodic solution. In the second paper the author does not rely on quasi-periodic approximations, this requires
to completely revisit the KAM scheme but leads to solutions with much less regularity. In this paper we follow
the general point of view of [Bou05], see also [BMP19], using the same infinite dimensional Diophantine vectors
and various technical lemmata (detailed proofs of all the technical Lemmata can ber found in [BMP]).
In order to give the precise statement of our Theorems, we introduce some notations and definitions.
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We define the parameter space of frequencies as a subset of1 ℓ∞(N,R), where we recall that

ℓ∞(N,R) :=
{
ω = (ωj)j∈N ∈ R

N : ‖ω‖∞ := sup
j∈N

|ωj | <∞
}
.

More precisely, our set of frequencies is the infinite dimensional cube

(1.2) R0 :=
[
1 , 2

]N
.

We endow the space of parameters R0 with the ℓ∞ metric, namely we set

(1.3) d∞(ω1, ω2) := ‖ω1 − ω2‖∞, ∀ω1, ω2 ∈ R0 .

Furthermore, we endow R0 with the probability measure P induced by the product measure of the infinite-
dimensional cube R0.
We now define the set of Diophantine frequencies. The following definition is a slight generalization of the one
given by Bourgain in [Bou05].

Definition 1.1. Given γ ∈ (0, 1), µ > 1, we denote by Dγ,µ the set of Diophantine frequencies

(1.4) Dγ,µ :=



ω ∈ R0 : |ω · ℓ| > γ

∏

j∈N

1

(1 + |ℓj|µ〈j〉µ)
, ∀ℓ ∈ Z

N : 0 <
∑

j∈N

|ℓj| <∞



.

In the following we shall fix µ = 2 and denote Dγ := Dγ,2.

For all µ > 1, Diophantine frequencies are typical in the set R0 in the sense of the following measure estimate,
proved in [Bou05] (see also [BMP]).

Lemma 1.2. For µ > 1 the exists a positive constant C(µ) > 0 such that

P
(
R0 \ Dγ,µ

)
≤ C(µ)γ .

For η > 0, we define the set of infinite integer vectors with finite support

(1.5) Z
∞
∗ :=

{
ℓ ∈ Z

N : |ℓ|η :=
∑

j∈N

jη|ℓj| <∞
}
.

Note that ℓj 6= 0 only for finitely many indices j ∈ N.

Definition 1.3. Given ω ∈ Dγ and a Banach space X, ‖ · ‖X , we say that F (t) : R → X is almost-periodic in
time with frequency ω and analytic in the strip σ > 0 if we may write it in totally convergent Fourier series

F (t) =
∑

ℓ∈Z∞

∗

F̂ (ℓ)eiℓ·ωt such that F̂ (ℓ) ∈ X , ∀ℓ ∈ Z
∞
∗ and

∑

ℓ∈Z∞

∗

‖F̂ (ℓ)‖Xe
σ|ℓ|η <∞.

We shall be particularly interested in almost-periodic functions where X = H(Tσ)

H(Tσ) :=
{
u =

∑

n∈Z

ûne
inx , ûj ∈ C : ‖u‖H(Tσ) :=

∑

n∈Z

|ûn|e
σ|n| <∞

}

is the space of analytic functions Tσ → C, where Tσ := {ϕ ∈ C : Re(ϕ) ∈ T, |Im(ϕ)| ≤ σ} is the thickened
torus.

Now we are ready to state precisely our main result. We make the following assumptions.

• (H1) The functions V0, V1, V2 are almost-periodic and analytic, in the sense of Definition 1.3, for σ > 0
and X = H(Tσ).

• (H2) We assume that

(1.6)

V2(x, t) = V2(x, t) , ∀(x, t) ∈ T× R ,

V1(x, t) = 2∂xV2(x, t)− V1(x, t) , ∀(x, t) ∈ T× R

V0(t, x) = V0(x, t)− ∂xV1(x, t) + ∂xxV2(x, t) , ∀(x, t) ∈ T× R .

This implies that the operator P (t) in (1.1) is L2 self-adjoint for t ∈ R. Here and in the following we
denote by B(E,F ) the space of bounded linear operators from E to F .

1Here and in the follwing N does not contain {0}.
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Theorem 1.4 (Reducibility). Let σ > 0 and assume the hypotheses (H1) and (H2). Then there exists
ε0 ∈ (0, 1) small enough such that for any ε ∈ (0, ε0) there exists a subset Ωε ⊂ R0 = [1, 2]N satisfying

(1.7) lim
ε→0

P(Ωε) = 1

such that the following holds. For any ω ∈ Ωε, t ∈ R, 0 < σ < σ′ ≤ σ/4, ρ > 0 there exists δ = δ(σ, σ′) ∈ (0, 1)
such that if εγ−1 ≤ δ then there exists a unitary (in L2(T)) operator W∞(t) ≡W∞(t;ω) such that:

(1) W∞(t),W∞(t)−1 are almost periodic and analytic maps on the strip σ/4 into X = B
(
H(Tσ′ ),H(Tσ)

)
.

(2) u(·, t) is a solution of the Schrödinger equation (1.1) if and only if v(·, t) = W∞(t)−1[u(·, t)] is a
solution of the time independent equation

(1.8) ∂tv = iD∞v

where D∞ is a linear, self-adjoint, time independent, 2× 2 block-diagonal operator2 of order two such
that the commutator [D∞, ∂xx] = 0.

(3) For any s ≥ 0, the maps R → B
(
Hs(T), Hs(T))

)
, t 7→ W∞(t)±1 are bounded.

From the Theorem stated above, we can deduce the following Corollaries:

Corollary 1.5 (Asymptotics of the eigenvalues). The spectrum of the operator D∞ is given by

spec(D∞) = {µ0(ω)} ∪ {µ
(+)
j (ω), µ

(−)
j (ω)}j∈N0

⊂ R ,(1.9)

µσ
j (ω) = λ2j

2 + σλ1j + λ0(ω) + σ
λ−1(ω)

j
+
rσj
j2
, j > 0

where λ2 − 1 , λ1 ∼ ε do not depend on ω, while λ0, λ−1, r
σ
j are Lipschitz w.r. to ω and of order ε. Finally µ0

is Lipschitz w.r. to ω and of order ε.

For compactness of notations we set µ
(+)
0 = µ

(−)
0 = µ0.

Corollary 1.6 (Characterization of the Cantor set). The Cantor set Ωε, given in Theorem 1.4, is defined
explicitly in terms of the spectrum of the block diagonal operator D∞. More precisely it is equal to the set
Ω∞(γ), γ = εa for some a ∈ (0, 1), where
(1.10)

Ω∞(γ) :=
{
ω ∈ Dγ : |ω · ℓ+ µ

(σ)
j − µ

(σ′)
j′ | ≥

2γ

d(ℓ)
, ∀(ℓ, j, j′) ∈ Z

∞
∗ × N0 × N0, j 6= j′, σ, σ′ ∈ {+,−}

|ω · ℓ+ µ
(σ)
j − µ

(σ′)
j | ≥

2γ

d(ℓ)〈j〉2
, ∀(ℓ, j) ∈ (Z∞

∗ \ {0})× N0, σ, σ′ ∈ {+,−}
}

where

d(ℓ) :=
∏

n∈N

(1 + |ℓn|
4〈n〉4), ∀ℓ ∈ Z

∞
∗ .

Corollary 1.7 (Dynamical consequences). Under the same assumptions of Theorem 1.4 the following holds

• Analytic stability. For any 0 < σ < σ/4, ρ > 0, u0 ∈ H(Tσ), the unique solution of the equation
(1.1) with initial datum u(x, 0) = u0(x) satisfies the estimate ‖u(·, t)‖H(Tσ) .σ,σ ‖u0‖H(Tσ) uniformly
w.r. to t ∈ R.

• Sobolev stability. For any s ≥ 0, u0 ∈ Hs(T), the unique solution of the equation (1.1) with initial
datum u(x, 0) = u0(x) satisfies the estimate ‖u(·, t)‖Hs(T) .s ‖u0‖Hs(T) uniformly w.r. to t ∈ R.

Remark 1.8. By Theorem 1.4, items (1) and (3), one gets boundedness properties of the maps W∞(t)±1 both
on analytic and Sobolev spaces. This is the reason why in Corollary 1.7, we get a stability result for both
analytic and Sobolev initial data, see Section 7.

2We recall that an operator L on a vector space V is d × d block diagonal if there exists a decomposition of V = ⊕Vj such

that L maps each Vj in itself and all the Vj have dimension at most d.
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Strategy of the Proof. The overall strategy of the proof is the one proposed in [BBM14] and consists
of two main steps: a regularization procedure and a KAM reduction scheme. The aim of the first step is to
conjugate (1.1) to a simpler dynamical system where the vector field is space and time independent up to
a sufficiently smoothing remainder. Here one uses the fact that the linear operator in (1.1) has a pseudo-
differential structure.
In the second step one completes the reduction by applying a KAM scheme, which relies on the fact that the
eigenvalues are at most double, with a quantitative control on the differences.
In order to explain which are the main difficulties to overcome in order to deal with almost-periodic potentials
let us describe the strategy more in detail.

It is convenient to think of almost-periodic in time functions as restrictions functions on an infinite di-
mensional torus. To this purpose we define analytic functions of infinitely many angles as the class of totally
convergent Fourier series with a prescribed (and very strong) decay on the Fourier coefficients. We show that in
fact this definition coincides with the set of holomorphic functions on a thickened torus (see Appendix A) and
discuss properties of our set of functions which shall be needed in order to perform the reduction procedure.
The interesting point is that we work with functions on the thickened torus:

T
∞
σ := {ϕ = (ϕj)j∈N , ϕj ∈ C : Re(ϕj) ∈ T , |Im(ϕj)| ≤ σ〈j〉η} .

so not only we consider analytic functions but the radius of analiticity increases as j → ∞. This is quite a
strong condition but it is not at all clear to us whether it may be weakened, even in apparently harmless ways
like requiring |Im(ϕj)| ≤ σ log(1+ 〈j〉)p with p≫ 1. In the description of the strategy we shall point out where
such a strong assumption is needed.

In the regularization procedure the first step is to reparameterize the x variable (x  x + β(x, ωt)), in order
to remove the space dependence in the leading order term V2 of (1.1). This induces an invertible linear
operator which acts on the dynamical system removing the x dependence from V2. Here the time behaves
as a parameter, so no condition on the time dependence of the potential is needed. Note however that this
change of variables mixes time and space. Namely if we start with a potential which is analytic in time but
only Sobolev in space, after the change of variables it will have finite regularity both in time and in space.
For this reason, since we need to preserve analiticity in time throughout our procedure, we require that our
potentials are analytic also in space.

In the second step one reparametrizes the variables ϕ ∈ T
∞
σ so as to remove the angle dependence in V2. Here

there are various non-trivial points to discuss, both in order to guarantee that the change of variables is well
defined and "invertible" and in order to describe the action on analytic functions.
Indeed even in the case of a finite number of angles, the regularization procedure is performed on C∞ potentials
and working in the analytic class requires some extra care (see also [FP]).
In this step one uses the fact that ω is Diophantine in the sense of (1.4) as well as the fact that the potentials
are analytic with growing radius of analiticity as j → ∞.

The remaining steps in the regularization procedure do not introduce further problems w.r.t. the first two
steps. As is typical in this kind of results one could further push the regularization procedure up to an
arbitrarily smoothing remainder. We have chosen to regularize our problem up to order −2 because this is the
minimal action required in order to complete the successive KAM iterative procedure.
An interesting point is that all the regularization steps apart from the first three, do not mix the regularity of
time and space so that one could work with potentials that are only analytic in time. A simple consequence
is that if in (1.1) we assume that V2 and V1 are constant in time then we can require that V0 has only finite
regularity in space (but is still analytic in time).

Since we work with a perturbation which is a differential operator whose coefficients are analytic both in time
and space, we cannot apply as a black box the regularization procedure as in [BGMR17], [Mon18], which is
based on Egorov-type theorems and is developed for general pseudo-differential perturbations of class C∞.
Indeed developing a general Egorov-type theorem in analytic class does not appear a straightforward question
(actually the quantitative estimates that we need might not hold true in a general setting).

Therefore we perform the regularization procedure in the class of analytic functions, with quantitative
estimates, see Sections 3.1 and 4. The main feature which we exploit is that our perturbation P is a classical
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pseudo-differential differential operator (i.e. it admits an expansion in homogeneous symbols of decreasing
order).

We remark that in the regularization procedure, one could impose much weaker analiticity conditions. One
sees that in fact the only condition needed here is that there exists ρ > 0 such that

(1.11) sup
ℓ∈Z∞

∗

∏

i∈N

(1 + 〈i〉2ℓ2i )e
−ρ

∑
j
〈j〉η |ℓj| <∞ .

If we choose different radii of analiticity, such as

T̂
∞
ρ := {ϕ = (ϕj)j∈N , ϕj ∈ C : Re(ϕj) ∈ T , |Im(ϕj)| ≤ ρF (j)} , F (j) ≥ 1 ,

condition (1.11) becomes

sup
ℓ∈Z∞

∗

∏

i∈N

(1 + 〈i〉2ℓ2i )e
−ρ

∑
j
|ℓj |F (j) <∞ .

and one can construct many examples where this holds.

In the KAM scheme most diffculties come from quantitative issues, particularly measure estimates. At a
purely formal level our scheme is essentially classical. At each step one considers a linear operator of the form
D + P(ϕ) where P is very small while D is time independent and block-diagonal with blocks of dimension at
most two. First we introduce an "ultraviolet cut-off" operator, so that ΠNP depends on finitely many angles
(depending on N), while the remainder (Id−ΠN )P is very small.
Then one applies a linear change of variables eF(ϕ) where F solves the homological equation

−ω · ∂ϕF + [iD,F ] + ΠNP = [P̂(0)] ,

where [P̂(0)] is the time-independent and block-diagonal part of P .
Direct computations show that (at least at a purely formal level) this change of variables conjugates D+P(ϕ)
to an operator of the form D+ + P+(ϕ) where P+(ϕ) ≪ P(ϕ). In order to ensure that a solution to the
homological equation exists and in order to give quantitative estimates, one restricts ω to a set where the
spectrum of the operator

(1.12) L(ϕ) 7→ −ω · ∂ϕL(ϕ) + [iD, L(ϕ)]

is appropriately bounded from below. Iterating this KAM step infinitely many times one reduces the operator
D + P(ϕ), for all ω in some implicitly defined set where the condition (1.12) holds througout the procedure.
The difficult part is to verify that the Melnikov conditions (1.10) are such that: 1. The Cantor set Ω∞(γ)
has positive measure; 2. for all ω ∈ Ω∞(γ) (1.12) holds at each KAM step with a quantitative control in the
solution of the homological equation; 3. the iterative scheme converges.
Here one needs not only for (1.11) to hold for all ρ > 0 but also that the supremum in (1.11) does NOT diverge
too badly when ρ→ 0. It is here that the special choice of analiticity comes into play, and it is not clear to us
if it can be weakened in any significant way.

The paper is organized as follows. In Section 2 we state the properties of the analytic functions on the infinite
dimensional torus that we need in our proofs. In Section 3, we provide some definitions and quantitative
estimates for the class of linear operators that we deal with. In particular we define the norms that we use in
Sections 4, 5 and their corresponding properties. In Section 4 we show that our equation can be reduced to
another one whose vector field is a two-smoothing perturbation of a diagonal one. This is enough to perform
the KAM reducibility scheme of Section 5. In Section 6 we provide the measure estimate of the non resonant
set of parameters Ω∞(γ) (see (1.10)) and in Section 7 we conclude the proofs of Theorem 1.4 and Corollary
1.7. Finally, in the appendices A, B and C we collect some technical proofs of some lemmas that we use along
our proofs.

Acknowledgements. Riccardo Montalto is supported by INDAM-GNFM. Michela Procesi is supported by
PRIN 2015, "Variational methods with applications to problems in Mathematical Physics and Geometry".
The authors wish to thank L. Biasco, J. Massetti and E. Haus for helpful suggestions.
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2. Analytic functions on an infinite dimensional torus

As is habitual in the theory of quasi-periodic functions we shall study almost periodic functions in the
context of analytic functions on an infinite dimensional torus. To this purpose, for η, σ > 0, we define the
thickened infinite dimensional torus T∞

σ as

ϕ = (ϕj)j∈N , ϕj ∈ C : Re(ϕj) ∈ T , |Im(ϕj)| ≤ σ〈j〉η .

Given a Banach space (X, ‖ · ‖X) we consider the space F of pointwise absolutely convergent formal Fourier
series T∞

σ → X

(2.1) u(ϕ) =
∑

ℓ∈Z∞

∗

û(ℓ)eiℓ·ϕ , û(ℓ) ∈ X

and define the analytic functions as follows.

Definition 2.1. Given a Banach space (X, ‖ · ‖X) and σ > 0, we define the space of analytic functions
T∞
σ → X as the subspace

H(T∞
σ , X) :=

{
u(ϕ) =

∑

ℓ∈Z∞

∗

û(ℓ)eiℓ·ϕ ∈ F : ‖u‖σ :=
∑

ℓ∈Z∞

∗

eσ|ℓ|η‖û(ℓ)‖X <∞
}
.

In the case H(T∞
σ ,C) se shall use the shortened notation H(T∞

σ )

Remark 2.2. We have chosen to work with an infinite torus T
∞
σ whose angles are ϕj with j ∈ N which in

our notations does NOT contain 0. Of course it would be completely equivalent to working on Tσ × T∞
σ with

angles θj with j ∈ N0 := N ∪ {0}.

To this purpose one just needs to define Ẑ∞
∗ := {k ∈ ZN0 : |k|η :=

∑
i∈N0

〈i〉η|ki| <∞} = Z×Z∞
∗ and consider

Fourier series

u =
∑

k∈Ẑ∞

∗

û(k)eik·θ such that
∑

k∈Ẑ∞

∗

|û(k)|eσ|k|η <∞.

This notation is useful when working with the space H(T∞
σ ,H(Tσ)) which can thus be identified with

H(Tσ × T∞
σ ,C) ≡ H(Tσ × T∞

σ ). Indeed u ∈ H(T∞
σ ,H(Tσ)) means

u =
∑

ℓ∈Z∞

∗

û(ℓ, x)eiℓ·ϕ =
∑

(ℓ,n)∈Z∞

∗
×Z

ûn(ℓ)e
iℓ·ϕ+inx =

∑

k∈Ẑ∞

∗

û(k)eik·θ

where θ = (x, ϕ) ∈ Tσ × T∞
σ and k = (n, ℓ).

With this definitions an almost-periodic function as in Definition 1.3 is the restriction of a function in
H(T∞

σ , X) to ϕ = ωt. Given F ∈ H(T∞
σ , X) we define f(t) = F(ωt). Note that the condition u ∈ H(T∞

σ , X)
implies that the series in (2.1) is totally convergent for ϕ ∈ T∞

σ .

2.1. Reformulation of the reducibility problem. In order to prove Thorem 1.4, we then consider analytic
ϕ-dependent families of linear operators R : T∞

σ → B(L2
0(Tx)), ϕ 7→ R(ϕ). Given a frequency vector ω ∈ R0

and two operators L,Φ : T∞
σ → B(L2

x), under the change of coordinates u = Φ(ωt)v, the dynamical system

∂tu = L(ωt)u

transforms into

(2.2) ∂tv = L+(ωt)u, L+(ϕ) ≡ (Φω∗)L(ϕ) := Φ(ϕ)−1L(ϕ)Φ(ϕ) − Φ(ϕ)−1ω · ∂ϕΦ(ϕ) ,

where 3

(2.3) ω · ∂ϕΦ :=
∑

ℓ∈Z∞

∗

i(ℓ · ω)Φ̂(ℓ)eiℓ·ϕ .

A direct calculation shows that if L(ωt) is skew-self adjoint and Φ(ωt) is unitary, then L+(ωt) is skew self-
adjoint too.

3 If we set F (t) = Φ(ωt), since the series expansion for t ∈ R is totally convegent we have clearly ∂tF (t) = ω · ∂ϕΦ(ωt) .
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In conclusion our goal is to prove the existence of maps W ,W−1 ∈ H(T∞
σ̄/4,B(H(Tσ),H(Tσ′ )), such that

W (t) = W(ωt) and W (t) = W−1(ωt) which solve the reduction equation:

(2.4) W(ϕ)−1i(∂2x + εP(ϕ))W(ϕ)−W(ϕ)−1ω · ∂ϕW(ϕ) = iD∞

where the operator P(ϕ) ∈ H(T∞
σ ,B(H(Tσ),H(Tσ′ ))) is of the form P(ϕ) = V2(x, ϕ)∂

2
x+V1(x, ϕ)∂x+V0(x, ϕ)

with Vi ∈ H(T∞
σ ,H(Tσ)) and is such that P (t) = P(ωt). Note that for ϕ ∈ T∞, (∂2x + εP(ϕ)) is self-adjoint,

hence W(ϕ) is unitary. We remark that solving (2.4) is equivalent to diagonalizing the linear operator

iω · ∂ϕ + ∂2x + εP ∈ B(H(Tσ × T
∞
σ ,C),H(T∞

σ′ × Tσ′ ,C))

via a bounded change of variables with the special property that it is Töplitz in time.

2.2. Properties of analytic functions. We now discuss some fundamental properies of the space H(T∞
σ , X),

note that all the results hold verbatim for H(Tσ × T∞
σ , X). For completeness, in the appendix A, we discuss

another (equivalent) way of defining the space H(T∞
σ , X) by approximation with holomorphic functions of a

finite number of variables.

For any function u ∈ H(T∞
σ , X), given N > 0, we define the projector ΠNu as

(2.5) ΠNu(ϕ) :=
∑

|ℓ|η≤N

û(ℓ)eiℓ·ϕ and Π⊥
Nu := u−ΠNu .

the following Lemma holds:

Lemma 2.3. Let σ, ρ > 0, u ∈ H(T∞
σ+ρ, X). Then the following holds:

‖Π⊥
Nu‖σ ≤ e−ρN‖u‖σ+ρ .

Proof. One has

‖Π⊥
Nu‖σ =

∑

|ℓ|η>N

eσ|ℓ|η‖û(ℓ)‖X ≤ e−ρN
∑

ℓ∈Z∞

∗

e(σ+ρ)|ℓ|η‖û(ℓ)‖X

and the lemma follows. �

Lemma 2.4. Let σ > 0, u ∈ H(T∞
σ , X). Then ‖u‖L∞(T∞

σ ,X) ≤ ‖u‖σ.

Proof. For any ϕ ∈ T∞
σ , one has

‖u(ϕ)‖X ≤
∑

ℓ∈Z∞

∗

‖û(ℓ)‖Xe
σ|ℓ|η = ‖u‖σ .

�

Lemma 2.5. Assume that X is a Banach algebra and u, v ∈ H(T∞
σ , X). Then uv ∈ H(T∞

σ , X) and ‖uv‖σ ≤
‖u‖σ‖v‖σ.

Proof. One has

u(ϕ)v(ϕ) =
∑

ℓ,k∈Z∞

∗

û(ℓ− k)v̂(k)eiℓ·ϕ

and therefore, one obtains that

‖uv‖σ ≤
∑

ℓ,k∈Z∞

∗

eσ|ℓ|η‖û(ℓ− k)‖X‖v̂(k)‖X .

Using the triangular inequality |ℓ|η ≤ |ℓ− k|η + |k|η, one gets eσ|ℓ|η ≤ eσ|ℓ−k|ηeσ|k|η , implying that

‖uv‖σ ≤
∑

ℓ,k∈Z∞

∗

eσ|ℓ−k|η‖û(ℓ − k)‖Xe
σ|k|η‖v̂(k)‖X ≤ ‖u‖σ‖v‖σ .

�
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Lemma 2.6. Let u ∈ H(T∞
σ , X). Then

(2.6)

∫

T∞

u(ϕ) dϕ := lim
N→+∞

1

(2π)N

∫

TN

u(ϕ)dϕ1 . . . dϕN = û(0) .

Moreover, for any ℓ ∈ Z∞
∗ \ {0}:

(2.7) û(ℓ) =

∫

T∞

u(ϕ)e−iℓ·ϕ dϕ = lim
N→∞

1

(2π)N

∫

TN

u(ϕ)e−iℓ·ϕ .

Proof. Let ℓ ∈ Z∞
∗ \ {0} and let Nη ≤ |ℓ|η. Then surely ℓj = 0 for all j > N , thus

eiℓ·ϕ = eiℓ1ϕ1 . . . eiℓNϕN

implying that
1

(2π)N

∫

TN

eiℓ·ϕ dϕ1 . . . dϕN = 0 .

Hence

1

(2π)N

∫

TN

u(ϕ)dϕ1 . . . dϕN =
1

(2π)N

∫

TN

(
û(0) +

∑

0<|ℓ|η≤Nη

û(ℓ)eiℓ·ϕ +
∑

|ℓ|η>Nη

û(ℓ)eiℓ·ϕ
)
dϕ1 . . . dϕN

= û(0) +
1

(2π)N

∫

TN

∑

|ℓ|η>Nη

û(ℓ)eiℓ·ϕdϕ1 . . . dϕN .

Since u ∈ H(T∞
σ , X), the tail of the series

∑
|ℓ|η>Nη goes to zero as N → ∞. This proves (2.6).

Now let ℓ ∈ Z
∞
∗ \ {0}. Then we set

uℓ(ϕ) := u(ϕ)e−iℓ·ϕ =
∑

k∈Z∞

∗

û(k)ei(k−ℓ)·ϕ =
∑

h∈Z∞

∗

û(h+ ℓ)eih·ϕ .

By applying the claim (2.6) to the function uℓ and observing that ûℓ(0) = û(ℓ), the equality (2.7) follows. �

Given two Banach spaces X and Y , for any k ∈ N, we define the space Mk(X,Y ) of the k-linear and
continuous forms endowed by the norm

(2.8) ‖M‖Mk(X,Y ) := sup
‖u1‖X ,...,‖uk‖X≤1

‖M [u1, . . . , uk]‖Y , ∀M ∈ Mk(X,Y ) .

To shorthen notations, we denote ℓ∞ := ℓ∞(N,C), moreover for k ∈ N, we write Mk instead of Mk(ℓ
∞, X)

where X is an arbitrary Banach space.
Let us now discuss the differentiability of functions. We define for ϕ̂1, . . . , ϕ̂k ∈ ℓ∞

(2.9) dkϕu[ϕ̂1, . . . , ϕ̂k] :=
∑

ℓ∈Z∞

∗

ik
k∏

j=1

(ℓ · ϕ̂j)û(ℓ)e
iℓ·ϕ

Note that if u ∈ H(T∞
σ+ρ, X) for any ρ > 0 then the series in (2.9) is totally convergent on T∞

σ .

Lemma 2.7 (Cauchy estimates). Let σ, ρ > 0 and u ∈ H(T∞
σ+ρ, X). Then for any k ∈ N, the k-th

differential dkϕu satisfies the estimate

‖dkϕu‖H(T∞

σ ,Mk) .k ρ
−k‖u‖σ+ρ .

Proof. For any k ∈ N, ϕ ∈ T∞
σ , ϕ̂1, . . . , ϕ̂k ∈ ℓ∞, ‖ϕ̂j‖∞ ≤ 1 for any j = 1, . . . , k, one has by duality

|ℓ · ϕ̂| ≤ ‖ℓ‖1‖ϕ̂‖∞ ≤ |ℓ|η‖ϕ̂‖∞, and substituting in (2.9) one gets

‖dkϕu(ϕ)[ϕ̂1, . . . , ϕ̂k]‖σ ≤
∑

ℓ∈Z∞

∗

|ℓ|kηe
σ|ℓ|η‖û(ℓ)‖X ≤ sup

ℓ∈Z∞

∗

(
|ℓ|kηe

−ρ|ℓ|η
)
‖u‖σ+ρ .

A straightforward calculation shows that

sup
ℓ∈Z∞

∗

|ℓ|kηe
−ρ|ℓ|η ≤ sup

x≥0
xke−ρx = kkρ−ke−k .k ρ

−k

which implies the claimed estimate. �
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Remark 2.8. Note that if we endow the torus T∞
σ with the ℓ∞ metric , namely given two angles ϕ1 =

(ϕ1,j)j∈N ∈ T
∞
σ and ϕ2 = (ϕ2,j)j∈N ∈ T

∞
σ , we define

(2.10) d∞(ϕ1, ϕ2) := supj∈N

(
|Re(ϕ1,j − ϕ2,j)|mod 2π + |Im(ϕ1,j)− Im(ϕ2,j)|

)
.

then (2.9) is the k’th differential in the usual sense. Moreover the tangent space to T∞
σ is ℓ∞(C).

Given a frequency vector ω ∈ R0 and u ∈ Hσ(X), we define ω · ∂ϕu as in 2.3

(2.11) ω · ∂ϕu(ϕ) :=
∑

ℓ∈Z∞

∗

i(ω · ℓ)û(ℓ)eiℓ·ϕ = du(ϕ)[ω] .

If we set f(t) = u(ωt), since the series expansion for t ∈ R is totally convegent we have clearly ∂tf(t) =
ω · ∂ϕu(ωt) .

The following Lemma holds

Lemma 2.9. (i) Let σ, ρ > 0, u ∈ Hσ+ρ(X), ω ∈ R0. Then

‖ω · ∂ϕu‖σ . ρ
−1‖u‖σ+ρ .

Proof. The lemma follows by the formula (2.11) and by applying Lemma 2.7 in a straightforward way. �

Parameter dependence. Let Y be a Banach space and γ ∈ (0, 1). If f : Ω → Y , Ω ⊆ R0 := [1, 2]N is a
Lipschitz function we define

(2.12)

‖f‖supY := sup
ω∈Ω

‖f(ω)‖Y , ‖f‖lipY := sup
ω1,ω2∈Ω
ω1 6=ω2

‖f(ω1)− f(ω2)‖Y
‖ω1 − ω2‖∞

,

‖f‖
Lip(γ,Ω)
Y := ‖f‖supY + γ‖f‖lipY .

If Y = H(T∞
σ , X) we simply write ‖ · ‖supσ , ‖ · ‖lipσ , ‖ · ‖

Lip(γ,Ω)
σ . If Y is a finite dimensional space, we write

‖ · ‖sup, ‖ · ‖lip, ‖ · ‖Lip(γ,Ω).

The following result follows directly

Lemma 2.10. In Lemmata 2.3, 2.5,2.7, 2.9, if u(·;ω) is Lipschitz w.r. to ω ∈ Ω ⊆ R0, the same estimates

hold verbatim replacing ‖ · ‖σ by ‖ · ‖
Lip(γ,Ω)
σ .

As is tipical in KAM reduction schemes, a fundamental tool in reducibility is to solve the "homological
equation", i.e. to invert the operator ω · ∂ϕ.

Lemma 2.11 (Homological equation). Let σ, ρ > 0, f ∈ H(T∞
σ+ρ, X), ω ∈ Dγ,µ (see (1.4)). with f̂(0) = 0.

Then there exists a unique solution u := (ω · ∂ϕ)−1f ∈ H(T∞
σ , X) of the equation

ω · ∂ϕu = f

satisfying the estimates

(2.13) ‖u‖σ . exp
( τ

ρ
1
η

ln
(τ
ρ

))
‖f‖σ+ρ .

for some constant τ = τ(η, µ) > 0. If f(·;ω) ∈ H(T∞
σ+ρ, X) is Lipschitz w.r. to ω ∈ Ω ⊆ Dγ, then

‖u‖Lip(γ,Ω)
σ . exp

( τ

ρ
1
η

ln
(τ
ρ

))
‖f‖

Lip(γ,Ω)
σ+ρ .

for some constant τ(η, µ) > 0 (eventually larger than the one in (2.13)).

Proof. Since ω ∈ Dγ , the solution u of the equation ω · ∂ϕu = f is given by

u(ϕ) = (ω · ∂ϕ)
−1f(ϕ) =

∑

ℓ∈Z∞

∗
\{0}

f̂(ℓ)

iω · ℓ
eiℓ·ϕ .
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Hence, using that ω ∈ Dγ,µ

‖u‖σ ≤ γ−1
∑

ℓ∈Z∞

∗
\{0}

∏

i

(1 + 〈i〉µ|ℓi|
µ)‖f̂(ℓ)‖Xe

σ|ℓ|η

≤ γ−1 sup
ℓ∈Z∞

∗

(
e−ρ|ℓ|η

∏

i

(1 + 〈i〉µ|ℓi|
µ)
)
‖f‖σ+ρ .

and the claimed estimate follows by applying Lemma C.1-(i). Regarding the Lipschitz estimates we remark
that

u(ω1)− u(ω2) = −i
∑

ℓ∈Z∞

∗
\{0}

( f̂(ℓ, ω1)− f̂(ℓ, ω2)

(ω2 · ℓ)
− f̂(ℓ, ω1)

(ω1 − ω2) · ℓ

(ω2 · ℓ)(ω1 · ℓ)

)
eiℓ·ϕ

�

We conclude this section by discussing how the definition of H(T∞
σ , X) (or equivalently H(T∞

σ × Tσ, X))
depends on the coordinates on T∞

σ .

Definition 2.12. Recall ℓ∞ := ℓ∞(N,C). We say that a function a ∈ H(T∞
σ+ρ) is real on real if a(ϕ) ∈ R for

all ϕ ∈ T∞. Similarly, α ∈ H(T∞
σ+ρ, ℓ

∞) is real on real if αj(ϕ) ∈ R, for all ϕ ∈ T∞, j ∈ N.

Proposition 2.13 (Torus diffeomorphism). Let α ∈ H(T∞
σ+ρ, ℓ

∞) be real on real. Then there exists ε = ε(ρ)
such that if ‖α‖σ+ρ ≤ ε, then the map ϕ 7→ ϕ+α(ϕ) is an invertible diffeomorphism of the infinite dimensional
torus T∞

σ (w.r. to the ℓ∞-topology) and its inverse is given by the map ϑ 7→ ϑ+ α̃(ϑ), where α̃ ∈ H(T∞
σ+ ρ

2

, ℓ∞)

is real on real and satisfies the estimate ‖α̃‖σ+ ρ
2
. ‖α‖σ+ρ. Furthermore if α(·;ω) ∈ H(T∞

σ+ρ, ℓ
∞) is Lipschitz

w.r. to ω ∈ Ω ⊆ R0, then ‖α̃‖
Lip(γ,Ω)

σ+ ρ
2

. ‖α‖
Lip(γ,Ω)
σ+ρ .

Corollary 2.14. Given α ∈ H(T∞
σ+ρ, ℓ

∞) as in Theorem 2.13, the operators

Φα : H(T∞
σ+ρ, X) → H(T∞

σ , X), u(ϕ) 7→ u(ϕ+ α(ϕ)) ,(2.14)

Φα̃ : H(T∞
σ+ ρ

2

, X) → H(T∞
σ , X), u(ϑ) 7→ u(ϑ+ α̃(ϑ)

are bounded, satisfy

‖Φα‖
B
(
H(T∞

σ+ρ
,X),H(T∞

σ ,X)

), ‖Φα̃‖
B
(
H(T∞

σ+ρ
,X),H(T∞

σ ,X)

) ≤ 1 .

and for any ϕ ∈ T∞
σ , u ∈ H(T∞

σ+ρ, X), v ∈ H(T∞
σ+ ρ

2

, X) one has

Φα̃ ◦ Φαu(ϕ) = u(ϕ) , Φα ◦ Φα̃v(ϕ) = u(ϕ) .

In order to prove our result we shall proceed in steps, proving a series of technical lemmata.

Lemma 2.15. For σ, ρ > 0, let u ∈ H(T∞
σ+ρ, X) and α ∈ H(T∞

σ , ℓ
∞) with ‖α‖σ ≤ ρ. Then the function

f(ϕ) := u(ϕ + α(ϕ))) belongs to the space H(T∞
σ , X) and ‖f‖σ ≤ ‖u‖σ+ρ. As a consequence, the linear

operator

Φα : H(T∞
σ+ρ, X) → H(T∞

σ , X), u(ϕ) 7→ u(ϕ+ α(ϕ))

is bounded and satisfies ‖Φα‖
B
(
H(T∞

σ+ρ
,X),H(T∞

σ ,X)

) ≤ 1.

Proof. One has that

(2.15) f(ϕ) =
∑

ℓ∈Z∞

∗

û(ℓ)eiℓ·ϕeiℓ·α(ϕ) .

Moreover for any ℓ ∈ Z∞
∗ , one has

(2.16) eiℓ·α(ϕ) =
∑

n∈N

in

n!
(ℓ · α(ϕ))n =

∑

n∈N

∑

ℓ1,...,ℓn∈Z∞

∗

in

n!
(ℓ · α̂(ℓ1)) . . . (ℓ · α̂(ℓn))e

i(ℓ1+...+ℓn)·ϕ .
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By the formulae (2.15), (2.16) one then gets that

(2.17)

f(ϕ) =
∑

k∈Z∞

∗

f̂(k)eik·ϕ,

f̂(k) :=
∑

n∈N

in

n!

∑

ℓ+ℓ1+...+ℓn=k

(ℓ · α̂(ℓ1)) . . . (ℓ · α̂(ℓn))û(ℓ) .

Using that for k = ℓ+ ℓ1+ . . .+ ℓn, one has that eσ|k|η ≤ eσ|ℓ|ηeσ|ℓ1|η . . . eσ|ℓn|η , and |(ℓ · α̂(ℓi))| ≤ ‖ℓ‖1‖α̂(ℓi)‖∞
one gets that

(2.18)

‖f‖σ =
∑

k∈Z∞

∗

eσ|k|η‖f̂(k)‖X

≤
∑

n∈N

1

n!

∑

ℓ,ℓ1,...,ℓn∈Z∞

∗

(‖ℓ‖1)
neσ|ℓ|η‖û(ℓ)‖Xe

σ|ℓ1|η‖α̂(ℓ1)‖∞ . . . eσ|ℓn|η‖α̂(ℓn)‖∞

‖ℓ‖1≤|ℓ|η
≤

∑

ℓ∈Z∞

∗

eσ|ℓ|η‖û(ℓ)‖X
∑

n∈N

|ℓ|nη
n!

n∏

j=0

∑

ℓj∈Z∞

∗

eσ|ℓj |η‖α̂(ℓj)‖∞

≤
∑

ℓ∈Z∞

∗

eσ|ℓ|η‖û(ℓ)‖X
∑

n∈N

|ℓ|nη‖α‖
n
σ

n!

≤
∑

ℓ∈Z∞

∗

eσ|ℓ|η‖û(ℓ)‖Xexp
(
|ℓ|η‖α‖σ

)

‖α‖σ≤ρ

≤
∑

ℓ∈Z∞

∗

e(σ+ρ)|ℓ|η‖û(ℓ)‖X = ‖u‖σ+ρ .

�

For α ∈ H(T∞
σ+ρ, ℓ

∞) we now consider the map

(2.19) Ψα(u)(ϕ) := −α(ϕ+ u(ϕ))

which, by Lemma 2.15 (with σ  σ + ρ
2 and ρ ρ

2 ) is well defined Bσ+ ρ
2
(0, R) → H(T∞

σ+ ρ
2

, ℓ∞), where

u ∈ Bσ(0, R) :=
{
u ∈ H(T∞

σ , ℓ
∞) : ‖u‖σ ≤ R

}
.

provided R < ρ
2 .

Lemma 2.16. Let α ∈ H(T∞
σ+ρ, ℓ

∞). Then there exists ε = ε(ρ) such that if ‖α‖σ+ρ ≤ ε, there exists a unique
solution u ∈ H(T∞

σ+ ρ
2

, ℓ∞) of the fixed point equation u = Ψα(u) satisfying the estimate ‖u‖σ+ρ
2
≤ ‖α‖σ+ρ. If

α(·;ω) ∈ H(T∞
σ+ρ, ℓ

∞), ω ∈ Ω ⊆ R0 = [1, 2]N is Lipschitz, then ‖u‖
Lip(γ,Ω)
σ . ‖α‖

Lip(γ,Ω)
σ+ρ .

Proof. To start with we show the following claim.

• Claim. There exist ε = ε(ρ), R = R(ρ) > 0 such that if ‖α‖σ+ρ ≤ ε, then the map 2.19 is a contraction
on

Bσ(0, R) :=
{
u ∈ H(T∞

σ , ℓ
∞) : ‖u‖σ ≤ R

}
.

Proof of the claim. By taking R = R(ρ) sufficiently small, by applying Lemma 2.15, one gets that for any
u ∈ Bσ+ ρ

2
(0, R), Ψα(u) ∈ H(T∞

σ+ ρ
2

, ℓ∞) and ‖Ψα(u)‖σ+ ρ
2
≤ ‖α‖σ+ρ. Then, if ‖α‖σ+ρ ≤ ε ≤ R, one has that

Ψα : Bσ+ ρ
2
(0, R) → Bσ+ ρ

2
(0, R). Now, given u1, u2 ∈ Bσ+ ρ

2
(0, R), we want to bound ‖Ψα(u1)−Ψα(u2)‖σ. By

the mean value thoerem, one has

(2.20) Ψα(u1)−Ψα(u2) =

∫ 1

0

dϕα
(
ϕ+ tu1(ϕ) + (1 − t)u2(ϕ)

)
[u2 − u1] dt .
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Since ‖u1‖σ+ ρ
2
, ‖u2‖σ+ ρ

2
≤ R, by taking R ≤ ρ

4 , by Lemmata 2.7 and 2.15 one has the estimate

(2.21)
‖Ψα(u1)−Ψα(u2)‖σ+ ρ

2
≤ ‖dϕα‖H(T∞

σ+
3ρ
2

,M1)‖u1 − u2‖σ+ ρ
2

. ρ−1‖α‖σ+ρ‖u1 − u2‖σ+ ρ
2

Hence by taking ‖α‖σ+ρ ≤ ε(ρ) small enough, one gets that the map Ψα is a contraction and by recalling
Lemma 2.15 the unique solution of the fixed point equation satisfies ‖u‖σ+ρ

2
≤ ‖α‖σ+ρ. Now assume that

α(·;ω), ω ∈ Ω is Lipschitz w.r. to ω. Recalling the definition (2.19) and using the fixed point equation
u = Ψα(u), one computes for any ω1, ω2 ∈ Ω

∆ω1ω2
u(ϕ) = α(ϕ + u(ϕ;ω1);ω1)− α(ϕ+ u(ϕ;ω2);ω2)

= α(ϕ + u(ϕ;ω1);ω1)− α(ϕ+ u(ϕ;ω1);ω2)

+ α(ϕ + u(ϕ;ω1);ω2)− α(ϕ + u(ϕ;ω2);ω2) .

By taking R = R(ρ) small enough, using the mean value Theorem, the Cauchy estimates of Lemma 2.7 and
the composition Lemma 2.15, one gets

‖∆ω1ω2
u‖σ+ ρ

2
≤ ‖∆ω1ω2

α‖σ+ρ + C(ρ) sup
ω∈Ω

‖α(·;ω)‖σ+ρ‖∆ω1ω2
u‖σ+ ρ

2
.

Hence, by taking C(ρ) supω∈Ω ‖α(·;ω)‖σ+ρ ≤ 1
2 , one gets that ‖∆ω1ω2

u‖σ+ ρ
2
≤ 2‖∆ω1ω2

α‖σ+ρ and the claimed
Lipschitz estimate follows. �

Proof of Proposition 2.13. Clearly the map ϕ 7→ ϕ+α(ϕ) is invertible by taking ‖α‖σ+ρ ≤ ε small enough. By
applying Lemma 2.16 there exists a unique α̃ ∈ H(T∞

σ+ ρ
2

, ℓ∞) with ‖α̃‖σ+ ρ
2
. ‖α‖σ+ρ satisfying the equation

α̃(ϑ) + α(ϑ+ α̃(ϑ)) = 0

for ϑ ∈ T∞
σ+ ρ

2

. The same holds exchanging ϑ ϕ and α α̃ for ϕ ∈ T∞
σ . Hence ϑ 7→ ϑ+ α̃(ϑ) is the inverse

of ϕ 7→ ϕ+ α(ϕ) and viceversa and the proof is concluded. �

3. Linear operators

Given a linear operator R : L2(T) → L2(T), we identify it with its matrix representation (Rk′

k )k,k′∈Z with
respect to the exponential basis where

Rk′

k :=
1

2π

∫

T

R[eik
′x]e−ikx dx .

Clearly given R as above, the adjoint w.r.t the standard hermitian product in L2(C) is given by

(3.1) (R∗)k
′

k = R
k

k′ .

We may also give a block-matrix decomposition by grouping together the matrix-Fourier indices with the
same absolute values. More precisely, we define for any j ∈ N0 the space Ej as

(3.2)
E0 := span{1} ,

Ej := span{eijx, e−ijx}, ∀j ∈ N

and we define the corresponding projection operator Πj as

(3.3)

Π0 : L2(T) → L2(T), u(x) =
∑

j∈Z

û(j)eijx 7→ Π0u(x) := û(0) ,

Πj : L
2(T) → L2(T), u(x) =

∑

j∈Z

û(j)eijx 7→ Πju(x) := û(j)eijx + û(−j)e−ijx , j ∈ N .

The following properties follow directly from the definitions (3.2), (3.3):

(3.4)

Π2
j = Πj , ∀j ∈ N0, ΠjΠj′ = 0, ∀j, j′ ∈ N0, j 6= j′ ,
∑

j∈N0

Πj = Id, L2(T) = ⊕j∈N0
Ej .
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Hence, any linear operator R : L2(T) → L2(T) can be written in 2× 2 block-decomposition

(3.5) R =
∑

j,j′∈N0

ΠjRΠj′ .

where j, j′ ∈ N0 the operator ΠjRΠj′ is a linear operator in B(Ej′ ,Ej). If j, j′ ∈ N, the operator ΠjRΠj′ can
be identified with the 2× 2 matrix defined by

(3.6)

(
Rj′

j R−j′

j

Rj′

−j R−j′

−j

)
.

The action of any linear operator M ∈ B(Ej′ ,Ej), j, j
′ ∈ N is given by

(3.7) Mu(x) =
∑

k=±j
k′=±j′

Mk′

k û(k
′)eikx , ∀u ∈ Ej′ , u(x) = û(j′)eij

′x + û(−j′)e−ij′x .

The operator Π0RΠ0 ∈ B(E0,E0) is identified with the multiplication operator by the matrix element R0
0 and

if j, j′ ∈ N, the operators ΠjRΠ0, Π0RΠj are identified with the vectors
(

R0
j

R0
−j

)
and

(
Rj′

0 ,R
−j′

0

)
.

We denote by [R] the block-diagonal part of the operator R, namely

(3.8) [R] :=
∑

j∈N0

ΠjRΠj .

If ΠjRΠj′ = 0, for any j 6= j′, we have R = [R] and we refer to such operators as 2 × 2 block-diagonal
operators. Note that for any j, j′ ∈ N0, the adjoint operator M∗ ∈ B(Ej,Ej′) is thus defined as 4

(3.9) (M∗)k
′

k :=Mk
k′ .

We denote by S(Ej) the space of self-adjoint matrices in B(Ej,Ej).
For any j, j′ ∈ N0, we endow B(Ej′ ,Ej) with the Hilbert-Schmidt norm

(3.10) ‖X‖HS :=
√
Tr(XX∗) =

( ∑

|k|=j
|k′|=j′

|Xk′

k |2
) 1

2

.

For any σ > 0, m ∈ R we define the class of linear operators of order m (densely defined on L2(T)) Bσ,m as

(3.11)

Bσ,m :=
{
R : L2(T) → L2(T) : ‖R‖Bσ,m <∞

}
where

‖R‖Bσ,m := sup
j′∈N0

∑

j∈N0

eσ|j−j′|‖ΠjRΠj′‖HS〈j
′〉−m .

The following monotonicity properties hold:

(3.12) ‖R‖Bσ,m ≤ ‖R‖Bσ′,m , σ < σ′ , ‖R‖Bσ,m ≤ ‖R‖Bσ,m′ , m′ ≤ m.

As a notation, if m = 0, we write Bσ instaead of Bσ,0. Note that a direct consequence of the definition is that
if R ∈ Bσ,m then (recall that D = −i∂x)

(3.13) ‖R‖Bσ,m = ‖R〈D〉−m‖Bσ .

Note that Bσ is contained in the set of bounded linear operators B(H(Tσ),H(Tσ)) as shown in the following.

Lemma 3.1. Let σ > 0 and Φ ∈ Bσ. Then
(i) ‖Φ‖B(H(Tσ),H(Tσ)) ≤ ‖Φ‖Bσ

(ii) For any s ≥ 0, ‖Φ‖B(Hs(T),Hs(T)) .s σ
−s‖Φ‖Bσ .

4If j, j′ ∈ N, A ∈ B(E0,E0), B ∈ B(Ej′ ,E0), C ∈ B(E0,Ej), then

(A∗)00 := A0

0
, (B∗)0k = Bk

0
, k = ±j′, (C∗)k0 = C0

k
, k = ±j .
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Proof. Proof of (i) Let Φ ∈ Bσ. According to (3.3), (3.5), given u ∈ H(Tσ), we write Φu(x) =
∑

j,j′∈N0
ΠjΦΠj′ [Πj′u].

Then, using that for any j, j′ ∈ N0, e
σ|j| ≤ eσ|j−j′|eσ|j

′|, one gets the chain of inequalities

‖Φu‖σ =
∑

j∈N0

eσ|j|
∥∥∥
∑

j′∈N0

ΠjΦΠj′ [Πj′u]
∥∥∥
L2

≤
∑

j′∈N0

eσ|j
′|‖Πj′u‖L2

( ∑

j∈N0

eσ|j−j′|‖ΠjΦΠj′‖HS
)

≤ sup
j′∈N0

( ∑

j∈N0

eσ|j−j′|‖ΠjΦΠj′‖HS
)
‖u‖σ

(3.11)
≤ ‖Φ‖Bσ‖u‖σ .

Proof of (ii). Let s ≥ 0 and u ∈ Hs(T). Then, using that for any j, j′ ∈ N0, 〈j〉 . 〈j′〉+〈j−j′〉 . 〈j′〉〈j−j′〉,
one gets that

‖Φu‖2Hs =
∑

j∈N0

〈j〉2s
∥∥∥
∑

j′∈N0

ΠjΦΠj′ [Πj′u]
∥∥∥
2

L2
≤
∑

j∈N0

∥∥∥
∑

j′∈N0

〈j〉sΠjΦΠj′ [Πj′u]
∥∥∥
2

L2

.s

∑

j∈N0

( ∑

j′∈N0

〈j′〉s〈j − j′〉s‖ΠjΦΠj′‖HS‖Πj′u‖L2

)2

Moreover, by using the Cauchy-Schwartz inequality, one gets

‖Φu‖2Hs .s

∑

j′∈N0

〈j′〉2s‖Πj′u‖
2
L2

∑

j∈N0

〈j − j′〉2(s+1)‖ΠjΦΠj′‖
2
HS

(3.11)

.s sup
k∈N0

〈k〉2(s+1)e−σ|k|‖Φ‖Bσ‖u‖Hs .s σ
−s‖Φ‖Bσ‖u‖Hs

which proves the claimed estimate. �

Further properties of Bσ,m can be found in the appendix B.2.

3.1. Töplitz in time linear operators. We now consider ϕ-dependent families of linear operators on L2(T)
i.e. absolutely convergent Fourier series T∞

σ → L2
0(T).

Definition 3.2. For σ > 0, m ∈ R we consider R ∈ H(T∞
σ ,B

σ,m). We define the decay norm

(3.14) |R|σ,m :=
∑

ℓ∈Z∞

∗

eσ|ℓ|η‖R̂(ℓ)‖Bσ,m .

Moreover, given γ ∈ (0, 1) and if R = R(ϕ;ω) depends on the parameter ω ∈ Ω, we define

(3.15)

|R|Lip(γ,Ω)
σ,m := sup

ω∈Ω
|R(ω)|σ,m + γ|R|lipσ,m+2 ,

|R|lipσ,m+2 := sup
ω1,ω2∈Ω
ω1 6=ω2

|R(ω1)−R(ω2)|σ,m+2

‖ω1 − ω2‖∞
.

If m = 0 we write | · |σ instead of | · |σ,m. By recalling (3.12), one can easily see that the following properties
hold:

(3.16)
| · |σ,m ≤ | · |σ′,m, | · |Lip(γ,Ω)

σ,m ≤ | · |
Lip(γ,Ω)
σ′,m ∀σ ≤ σ′ ,

| · |σ,m ≤ | · |σ,m′ , | · |Lip(γ,Ω)
σ,m ≤ | · |

Lip(γ,Ω)
σ,m′ ∀m′ ≤ m.

Definition 3.3. We say that R ∈ H(T∞
σ ,B

σ,m) is self-adjoint (resp. skew self-adjoint or unitary) if for all
ϕ ∈ T∞, the operato R(ϕ) ∈ Bσ,m is self-adjoint (resp. skew self-adjoint or unitary ).

Lemma 3.4. Let N, σ, ρ > 0, m,m′ ∈ R R ∈ H(T∞
σ ,B

σ,m), Q ∈ H(T∞
σ+ρ,B

σ+ρ,m′

).

(i) The product operator RQ ∈ H(T∞
σ ,B

σ,m+m′

) with |RQ|σ,m+m′ .m ρ−|m||R|σ,m|Q|σ+ρ,m′ . If R(ω),Q(ω)

depend on a parameter ω ∈ Ω ⊆ R0, then |RQ|
Lip(γ,Ω)
σ,m+m′ .m ρ−(|m|+2)|R|

Lip(γ,Ω)
σ,m |Q|

Lip(γ,Ω)
σ+ρ,m′ .
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(ii) The projected operator |Π⊥
NR|σ,m ≤ e−ρN |R|σ+ρ,m. If R(ω) depends on a parameter ω ∈ Ω ⊆ R0, then the

same statement holds by replacing | · |σ,m with | · |
Lip(γ,Ω)
σ,m .

(iii) The mean value |[R̂(0)]|σ,m ≤ |R|σ,m. Moreover, if R = R(ω) depends on a parameter ω ∈ Ω ⊆ R0, then

the same statement holds by replacing | · |σ,m with | · |
Lip(γ,Ω)
σ,m .

Proof. Proof of (i). We write

R(ϕ)Q(ϕ) =
∑

ℓ,k∈Z∞

∗

R̂(ℓ− k)Q̂(k)eiℓ·ϕ .

Using that by triangular inequality, for any ℓ, k ∈ Z∞
∗ , eσ|ℓ|η ≤ eσ|ℓ−k|ηeσ|k|η

|RQ|σ,m+m′ ≤
∑

ℓ,k∈Z∞

∗

eσ|ℓ−k|ηeσ|k|η‖R̂(ℓ− k)Q̂(k)‖Bσ,m+m′

LemmaB.3−(i)

. ρ−|m|
∑

ℓ,k∈Z∞

∗

eσ|ℓ−k|ηeσ|k|η‖R̂(ℓ − k)‖Bσ,m‖Q̂(k)‖Bσ+ρ,m′

. ρ−|m||R|σ,m|Q|σ+ρ,m′ .

Now we prove the Lipschitz estimate. Given ω1, ω2 ∈ R0, we use the notation ∆ω1ω2
f := f(ω1) − f(ω2).

One has that

∆ω1ω2
(RQ) = (∆ω1ω2

R)Q(ω1) +R(ω2)(∆ω1ω2
Q) .

Hence by the previous estimate one gets

|∆ω1ω2
(RQ)|σ,m+m′+2 .m ρ−|m|−2|∆ω1ω2

R|σ,m+2|Q(ω1)|m′,σ+ρ + ρ−|m||R|σ,m|∆ω1ω2
Q|m′+2,σ+ρ

(3.15)

.m ρ−(|m|+2)|R|Lip(γ,Ω)
σ,m |Q|

Lip(γ,Ω)
σ+ρ,m′ ‖ω1 − ω2‖∞ .

The claimed statement then follows.
Proof of (ii). The proof is the same as the one of Lemma 2.3.
Proof of (iii). By recalling the definitions (3.8), (3.14), (3.15), one obtains that

|[R̂(0)]|σ,m = sup
j∈N0

‖ΠjR̂(0)Πj‖〈j〉
−m ,

|[R̂(0)]|lipσ,m+2 = supω1,ω2∈R0
ω1 6=ω2

1

‖ω1 − ω2‖∞
sup
j∈N0

‖Πj

(
∆ω1ω2

R̂(0)
)
Πj‖〈j〉

−m−2 .

Hence, one has that |[R̂(0)]|σ,m ≤ |R|σ,m and |[R̂(0)]|lipσ,m+2 ≤ |R|lipσ,m+2 which implies the claimed statement.
�

Iterating the estimate of Lemma 3.4-(i), one has that if R ∈ Hσ+ρ(Bσ+ρ,m), then there exists a constant
C0(m) > 0 such that for any N ≥ 1, RN ∈ Hσ(Bσ,mN) and

(3.17)
|RN |σ,mN ≤

(
C0(m)ρ−|m||R|σ+ρ,m

)N−1

|R|σ,m ,

|RN |
Lip(γ,Ω)
σ,mN ≤

(
C0(m)N−1ρ−(|m|+2)|R|

Lip(γ,Ω)
σ+ρ,m

)N−1

|R|Lip(γ,Ω)
σ,m .

Lemma 3.5. Let Tσ×T∞
σ → C, (x, ϕ) 7→ a(x, ϕ) be in H(Tσ+ρ×T∞

σ+ρ). Then the multplication operator Ma :

u 7→ au satisfies |Ma|σ . ρ−1‖a‖σ+ρ. If a(x, ϕ;ω), ω ∈ Ω ⊆ R0 is Lipschitz w.r. to ω, then |Ma|
Lip(γ,Ω)
σ .

ρ−1‖a‖
Lip(γ,Ω)
σ+ρ .

Proof. We write

a(ϕ, ·) =
∑

ℓ∈Z∞

∗

â(ℓ, ·)eiℓ·ϕ

and consequently

Ma(ϕ) =
∑

ℓ∈Z∞

∗

M̂a(ℓ)e
iℓ·ϕ where M̂a(ℓ) := Mâ(ℓ,·) .
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Therefore

|Ma|σ =
∑

ℓ∈Z∞

∗

eσ|ℓ|η‖M̂a(ℓ)‖Bσ

LemmaB.4
. ρ−1

∑

ℓ∈Z∞

∗

eσ|ℓ|η‖â(ℓ, ·)‖σ+ρ . ρ
−1‖a‖σ+ρ .

Given ω1, ω2 ∈ R0, arguing as above, one can estimate ∆ω1ω2
Ma = M∆ω1ω2

a in terms of ∆ω1ω2
a, therefore

the Lipschitz estimate follows. �

Let m ∈ Z. We recall that the operator ∂mx is defined by setting

(3.18) ∂mx [1] = 0, ∂mx [eijx] = imjmeijx j 6= 0 .

Lemma 3.6. Let σ, ρ > 0, m,m′ ∈ Z, a ∈ H(Tσ+ρ × T∞
σ+ρ).

(i) We have ∂mx a∂
m′

x ∈ H(T∞
σ ,B

σ,m+m′

) and |∂mx a∂
m′

x |σ,m+m′ . ρ−|m|‖a‖σ+ρ. If a(·;ω), ω ∈ Ω is Lipschitz

w.r. to ω, then |∂mx a∂
m′

x |
Lip(γ,Ω)
σ,m+m′ . ρ−|m|‖a‖Lip(γ,Ω)

σ+ρ .

(ii) For any N ∈ N

(3.19) ∂mx a∂
m′

x =

N−1∑

i=0

ci,m(∂ixa)∂
m+m′−i
x +RN (a)

where the remainder RN (a) satisfies the estimate

(3.20) |RN (a)|σ,m+m′−N .m,N ρ−(2N+|m|+1)‖a‖σ+ρ .

Moreover, one has c0,m = 1, c1,m = m. If a(·;ω), ω ∈ Ω is Lipschitz w.r. to ω, then

(3.21) |RN (a)|
Lip(γ,Ω)
σ,m+m′−N .m,N ρ−(2N+|m|+1)‖a‖

Lip(γ,Ω)
σ+ρ .

(iii) Let b(·;ω) ∈ H(Tσ+ρ×T∞
σ+ρ), ω ∈ Ω and set A = a∂mx , B := b∂m

′

x . Then AB ∈ H(T∞
σ ,B

σ,m+m′

) satisfies,
for any N ≥ 1, the expansion

(3.22) AB = ab∂m+m′

x +mabx∂
m+m′−1
x +

N−1∑

i=2

ci,ma(∂
i
xb)∂

m+m′−i
x +RN (a, b) ,

where cm,i ∈ R for any i = 2, . . . , N − 1, the remainder RN (a, b) satisfies the estimate

(3.23) |RN (a, b)|
Lip(γ,Ω)
σ,m+m′−N .m,m′,N ρ−κ‖a‖

Lip(γ,Ω)
σ+ρ ‖b‖

Lip(γ,Ω)
σ+ρ

for some constant κ = κ(m,m′, N) > 0. As a consequence for any N ≥ 1, the commutator [A,B], admits the
expansion

[A,B] = (mabx −m′axb)∂
m+m′−1
x +

N−1∑

i=2

(
cm,ia(∂

i
xb)− cm′,i(∂

i
xa)b

)
∂m+m′−i
x +RN (a, b)−RN (b, a) .

Proof. Proof of (i). It follows by Lemmata 3.4, 3.5 and using that for any p ∈ Z, σ > 0, |∂px|σ,p =

|∂px|
Lip(γ,Ω)
σ,p ≤ 1.

Proof of (ii). Let R := ∂mx a∂
m′

x . Then R(ϕ) =
∑

ℓ∈Z∞

∗

R̂(ℓ)eiℓ·ϕ, where for any ℓ ∈ Z∞
∗ , the operator R̂(ℓ)

admits the matrix representation (R̂j′

j (ℓ))j,j′∈Z

(3.24) R̂j′

j (ℓ) = im+m′

jmâ(ℓ, j − j′)j′m
′

, ∀j, j′ ∈ Z \ {0} .

We write the Taylor expansion

(3.25) jm = j′m +mj′m−1(j − j′) +
N−1∑

k=2

cm,kj
′m−k(j − j′)k + rN (j, j′)

where the remainder rN (j, j′) is given by

(3.26) rN (j, j′) := cN,m

∫ 1

0

(1− τ)N−1(j′ + τ(j − j′))m−N dτ(j − j′)N .
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By using the Petree inequality, one has that

(j′ + τ(j − j′))m−N

j′m−N
.m,N 〈j − j′〉N+|m| .

This latter inequality, implies that

(3.27) |rN (j, j′)| .m,N 〈j′〉m−N 〈j − j′〉2N+|m| .

By the definition (3.24) and using the expansion (3.24), we get the the operator R can be expanded as

R(ϕ) = a∂m+m′

x +m(∂xa)∂
m+m′−1
x +

N−1∑

i=2

cm,i(∂
i
xa)∂

m+m′−i
x +RN (ϕ)

where the operator RN (ϕ) =
∑

ℓ∈Z∞

∗

R̂N (ℓ)eiℓ·ϕ and for any ℓ ∈ Z∞
∗ , the operator R̂N (ℓ) admits the matrix

representation

(3.28) (R̂N (ℓ))j
′

j := im+m′

â(ℓ, j − j′)rN (j, j′)j′m
′

, j, j′ ∈ Z \ {0} .

By (3.27), using that â(ℓ, ·) ∈ H(Tσ+ρ), one gets the estimate

(3.29) |R̂j′

j (ℓ)| . 〈j − j′〉2N+|m|e−(σ+ρ)|j−j′|〈j′〉m+m′−N‖â(ℓ, ·)‖σ+ρ .

Furthermore, using that

〈j − j′〉2N+|m|e−
ρ
2
|j−j′| .N,m ρ−(2N+|m|),

one gets the estimate

(3.30) |R̂j′

j (ℓ)| . ρ
−(2N+|m|)e−(σ+ ρ

2
)|j−j′|〈j′〉m+m′−N‖â(ℓ, ·)‖σ+ρ .

Now if j, j′ ∈ N0, using the for any δ > 0, e−δ|j+j′| ≤ e−δ|j−j′|, the latter estimate implies also the estimate

on the 2× 2 block ΠjR̂N (ℓ)Πj′ of the form

(3.31) ‖ΠjR̂N (ℓ)Πj′‖ .m,N ρ−(2N+|m|)e−(σ+ ρ
2
)|j−j′|〈j′〉m+m′−N‖â(ℓ, ·)‖σ+ρ, ∀j, j′ ∈ N0 .

Then for any j′ ∈ N0, one has that
∑

j∈N0

eσ|j−j′|‖ΠjR̂N (ℓ)Πj′‖〈j
′〉N−(m+m′) .m,N ρ−(2N+|m|)‖â(ℓ, ·)‖σ+ρ

∑

j∈N0

e−
ρ
2
|j−j′|

.m,N ρ−(2N+|m|+1)‖â(ℓ, ·)‖σ+ρ

which implies that

‖R̂N (ℓ)‖Bσ,m+m′
−N .m,N ρ−(2N+|m|+1)‖â(ℓ, ·)‖σ+ρ .

By using this latter estimate one gets that

|RN |σ,m+m′−N .m,N ρ−(2N+|m|+1)
∑

ℓ∈Z∞

∗

eσ|ℓ|η‖â(ℓ, ·)‖σ+ρ .m,N ρ−(2N+|m|+1)‖a‖σ+ρ

which is exactly the claimed estimate (3.20).

If a depends on the parameter ω ∈ Ω ⊆ R0, given ω1, ω2 ∈ Ω, one expands the operator ∂mx (∆ω1ω2
a)∂m

′

x as
in (3.19) where a is replaced by ∆ω1ω2

a and the remainder RN (∆ω1ω2
a) is estimated in term of ∆ω1ω2

a. The
Lipschitz estimate then follows.
Proof of (iii). The claimed expansion (3.22) follows by a repeated application of the item (i). The estimates
of the remainder RN (a, b) follows by using the estimates of the items (i) and (ii) and by using the composition
Lemma 3.4. The expansion of the commutator follows easily by expanding AB and BA. �

Lemma 3.7 (Exponential map). Let σ > 0, ρ ∈ (0, 1), m ≥ 0 and R(ω) ∈ H(T∞
σ+ρ,B

σ+ρ,−m), ω ∈ Ω ⊆ R0

and assume that

(3.32) ρ−2|R|
Lip(γ,Ω)
σ+ρ ≤ δ

for some δ ∈ (0, 1) small enough. Then, for any N ≥ 1, the map ΦN := exp(R)−
∑N−1

n=0
Rn

n! ∈ H(T∞
σ ,B

σ,−Nm)
with

(3.33) |ΦN |
Lip(γ,Ω)
σ,−Nm .

(
C0ρ

−(|m|+2)|R|σ+ρ,−m

)N
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As a consequence exp(R) ∈ H(T∞
σ ,B

σ) and

(3.34) |exp(R)|Lip(γ,Ω)
σ ≤ 1 + Cρ−(|m|+2)|R|

Lip(γ,Ω)
σ+ρ,−m

for some constant C > 0.

Proof. In order to simplify notations for any n ∈ R, we write | · |σ,n instaed of | · |
Lip(γ,Ω)
σ,n . Let Φ := exp(R).

Then Φ − Id =
∑

n≥1
Rn

n! . By (3.16), one has that since R ∈ H(T∞
σ ,B

σ,−m), then R ∈ H(T∞
σ ,B

σ) and

|R|σ ≤ |R|σ,−m . By using the estimate (3.17), one obtains that for any integer n ≥ 1, Rn ∈ H(T∞
σ ,B

σ) and

(3.35) |Rn|σ ≤
(
C0ρ

−2|R|σ+ρ

)n−1

|R|σ

for some constant C0 > 0. Now, we write

ΦN =
∑

n≥N

Rn

n!
=
∑

k≥0

Rk

(k +N)!
RN .

By using the estimate (3.35), one gets that
∑

k≥0
Rk

(k+N)! ∈ H(T∞
σ ,B

σ) and

(3.36)

∣∣∣
∑

k≥0

Rk

(k +N)!

∣∣∣
σ
≤ 1 +

∑

k≥1

1

k!

(
C0ρ

−2|R|σ+ρ

)k−1

|R|σ
(3.32)
≤ C1

for some constant C1 > 0. By applying Lemma 3.4, one has that RN ∈ H(T∞
σ ,B

σ,−Nm) and ΦN =∑
k≥0

Rk

(k+N)!R
N ∈ H(T∞

σ ,B
σ,−Nm) and using also the estimate (3.36), one obtains that

(3.37) |ΦN |σ,−Nm . ρ
−2|RN |σ+ ρ

2
,−Nm .

The claimed estimate (3.33) then follows by applying (3.17). The estimate (3.34) follows by triangular in-
equality and by applying the estimate (3.33) for N = 1. �

4. Normal form

As we said in the introduction we want to conjugate to constant coefficients the Schödinger equation
∂tu = L(ωt)u where

L(ϕ) := i(1 + εV2(x, ϕ))∂xx + εiV1(x, ϕ)∂x + εiV0(x, ϕ) .

We assume that the functions V0,V1,V2 ∈ H(T∞
σ̄ × Tσ̄), for some σ̄ > 0 satisfy the condition (1.6), so that

L(ϕ) is an L2 skew selfadjoint linear operator.

4.1. Normalization of the x-dependence of the highest order term. We consider an operator induced
by an analytic diffeomorphism of the torus

(x, ϕ) 7→ (x + β(x, ϕ), ϕ)

where β is a real on real analytic function on the infinite dimensional torus that will be determined later. We
make tha ansatz that

(4.1) β ∈ H(Tσ1
× T

∞
σ1
), ‖β‖σ .σ1,σ̄ δ, ∀0 < σ1 < σ̄ .

By Proposition 2.13, for any 0 < σ1 < σ̄ there exists δ0(σ1, σ̄) such that for any δ ≤ δ0, the map (x, ϕ) 7→

(x+ β(x, ϕ), ϕ) is invertible, with inverse given by (y, ϕ) 7→ (y + β̃(y, ϕ), ϕ) and

(4.2) β̃ ∈ H(Tσ2
× T

∞
σ2
), ‖β̃‖σ2

.σ1,σ2
‖β‖σ1

, ∀σ2 < σ1 < σ̄ .

We now define the operator

(4.3) Φ(1)(ϕ)[u] :=
√
1 + βx(x, ϕ)u(x+ β(x, ϕ)) .

A direct calculation shows that this map is unitary and, if β is appropriately small, invertible with inverse
given by

(4.4) Φ(1)(ϕ)−1[u] :=

√
1 + β̃y(y, ϕ)u(y + β̃(y, ϕ)) .
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for ϕ ∈ T∞
σ with σ < σ2. Note that one has the relation

(4.5) 1 + β̃y(y, ϕ) =
1

1 + βx(y + β̃(y, ϕ), ϕ)
, 1 + βx(x, ϕ) =

1

1 + β̃y(x+ β(x, ϕ), ϕ)
.

The following lemma holds.

Lemma 4.1. For any σ < σ′ < σ̄, there exists δ ≡ δ(σ, σ′, σ) ∈ (0, 1) such that if ε ∈ (0, δ) the following
holds. Define

(4.6)

m2(ϕ) :=
( 1

2π

∫

T

dx√
1 + εV2(x, ϕ)

dx
)−2

β(x, ϕ) := ∂−1
x

[ √
m2(ϕ)√

1 + εV2(x, ϕ)
− 1
]
.

(i) the map T∞
σ → B(H

(
Tσ′),H(Tσ)

)
, ϕ 7→ Φ(1)(ϕ)±1 is bounded.

(ii) For any s ≥ 0, the map T∞ → B(Hs(T), Hs(T)
)
, ϕ 7→ Φ(1)(ϕ)±1 is bounded.

(iii) Φ(1)(ϕ) transforms the operator L(ϕ) into

(4.7) L(1)(ϕ) := (Φ
(1)
ω∗ )L(ϕ) = im2(ϕ)∂

2
x + a1(x, ϕ)∂x + a0(x, ϕ) .

where the functions m2 ∈ H(T∞
σ ), β, β̃, a1, a0 ∈ H(Tσ × T∞

σ ) are independent of the parameter ω and satisfy
the estimates

(4.8) ‖m2 − 1‖σ, ‖β‖σ, ‖β̃‖σ , ‖a1‖σ, ‖a0‖σ .σ,σ̄ ε .

Finally L(1) is kew self-adjoint, hence m2(ϕ), a1(x, ϕ) are real on real while a0 = −a0 + ∂xa1.

Proof. The proof of the item (i) follows by the definitions (4.3), (4.4), by using the estimates on β, β̃ (4.8) and
by applying Lemmata 2.5, 2.15.

To prove the item (ii) we argue as follows. Since β and β̃ are analytic, then for any ϕ ∈ T
∞ one has

β(ϕ, ·), β̃(ϕ, ·) ∈ C∞(T) and supϕ∈T∞ ‖β(ϕ, ·)‖Cs(T) , supϕ∈T∞ ‖β̃(ϕ, ·)‖Cs(T) < ∞ for any s ≥ 0. A direct

calculation then shows that supϕ∈T∞ ‖Φ(ϕ)‖B(Hs(T),Hs(T)) ≤ C
(
supϕ∈T∞ ‖β(ϕ, ·)‖Cs(T)

)
and

sup
ϕ∈T∞

‖Φ(ϕ)−1‖B(Hs(T),Hs(T)) ≤ C
(

sup
ϕ∈T∞

‖β̃(ϕ, ·)‖Cs(T)

)

and the result follows.
In order to prove (iii) we remark that the map Φ(1)(ϕ) satisfies the following conjugation rules:

(4.9)

Φ(1)(ϕ)−1 ◦ a(x, ϕ) ◦Φ(1)(ϕ) = a(y + β̃(y, ϕ), ϕ) ,

Φ(1)(ϕ)−1 ◦ ∂x ◦ Φ(1)(ϕ) = (1 + βx(y + β̃(y, ϕ), ϕ))∂y +
1

2
(1 + β̃y(y, ϕ))βxx(y + β̃(y, ϕ), ϕ) ,

Φ(1)(ϕ)−1ω · ∂ϕΦ
(1)(ϕ) = ω · ∂ϕβ(y + β̃(y, ϕ), ϕ)∂y +

1

2
(1 + β̃y(y, ϕ))ω · ∂ϕβx(y + β̃(y, ϕ), ϕ) .

Then, recalling (2.2), the transformed operator is

(4.10)

L(1)(ϕ) = ia2(y, ϕ)∂
2
y + a1(y, ϕ)∂y + a0(y, ϕ) ,

a2 :=
(
(1 + εV2)(1 + βx)

2
)
x=y+β̃(y,ϕ)

,

a1 :=
(
2i(1 + εV2)βxx + εiV1(1 + βx)− ω · ∂ϕβ

)
x=y+β̃(y,ϕ)

,

a0 := i

√
1 + β̃y

(
(1 + εV2)∂xx

√
1 + βx

)∣∣∣
x=y+β̃(y,ϕ)

+
1

2
i(1 + β̃y)

(
εV1βxx + ω · ∂ϕβx

)∣∣∣
x=y+β̃(y,ϕ)

+ εV0(y, ϕ+ β̃(y, ϕ)) .

By the definitions of the functions β(x, ϕ) and m2(ϕ) given in (4.6) one gets

(4.11) a2(x, ϕ) = m2(ϕ), namely (1 + εV2)(1 + βx)
2 = m2(ϕ)
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hence the operator L(1)(ϕ) in (4.10) takes the form (4.7). Since Φ(1) is unitary, by construction L(1) is skew
self-adjoint.

Since V2 ∈ Hσ̄
x,ϕ, by applying Lemma B.6, (applied to the analytic function f(u) = 1√

1+u
, |u| ≤ 1

2 ) and by

the definition (4.6), one gets that for ε small enough, β ∈ H(Tσ1
× T∞

σ1
), m2 ∈ H(T∞

σ1
) for any 0 < σ1 < σ̄.

Using tha mean value theorem, one gets the estimate, ‖β‖σ1
, ‖m2 − 1‖σ1

.σ1,σ̄ ε. The ansatz (4.1) is then
proved. The ansatz (4.2), follows by Proposition 2.13. Finally, by applying Lemmata B.6, 2.15, 2.7, and using
that V2,V1,V0 ∈ H(Tσ × T∞

σ ), one deduces the claimed properties on the functions a0 and a1. �

4.2. Reduction to constant coefficients of the highest order term. Our next purpose is to eliminate
the ϕ-dependence from the highest order coefficient m2(ϕ)∂xx of the operator L(1)(ϕ) in (4.7). To achieve this
we conjugate the equation ∂tu = iL(1)(ωt)u by means of a reparametrization of time t 7→ t+α(ωt), where α is
a suitable analytic function which has to be determined. More precisely we consider the change of varialbles

(4.12) u(t, x) = Φ(2)v(t, x) := v(x, t + α(ωt)), (x, t) ∈ T× R

We assume that α(ϕ) is real on real and satisfies the ansatz

(4.13) α ∈ H(T∞
σ1
), ‖α‖σ1

.σ1,σ̄ δ, ∀0 < σ1 < σ̄ .

By applying Proposition 2.13, for any σ2 < σ̄ there exists δ0 = δ0(σ2, σ1, σ̄) small enough such that if δ ≤ δ0,
the map ϕ 7→ ϕ+ ωα(ϕ) is invertible with inverse given by ϑ 7→ ϑ+ ωα̃(ϑ) and

(4.14) α̃ ∈ H(T∞
σ2
), ‖α̃‖σ2

.σ1,σ2
‖α‖σ1

, ∀σ2 < σ1 < σ̄ .

The inverse of the map Φ(2) in (4.12) is then given by

(4.15) (Φ(2))−1u(x, τ) := u(x, τ + α̃(ωτ)) .

Remark 4.2. If u(x) is a function independent of the ϕ, then (Φ(2))±1u = u.

The following lemma holds.

Lemma 4.3. Let ω ∈ Dγ . For any σ < σ̄ there exists δ(σ, σ̄) > 0 such that if εγ−1 ≤ δ, then, setting

(4.16) λ2 := m̂2(0) =

∫

T∞

m2(ϕ) dϕ , α := (ω · ∂ϕ)
−1
[m2

λ2
− 1
]
,

then Φ(2) transforms the operator L(1)(ϕ) in

(4.17) L(2)(ϑ) = iλ2∂
2
x + b1(ϑ, x)∂x + b0(ϑ, x)

The constant λ2 ∈ R is independent of ω. For all ω ∈ Dγ the functions α(·;ω), α̃(·;ω) ∈ H(T∞
σ ), b1(·;ω), ib0(·;ω) ∈

H(Tσ × T∞
σ ) are well defined and real on real. Furthermore, for any Ω ⊆ Dγ the following estimates hold:

|λ2 − 1|, ‖b0‖
Lip(γ,Ω)
σ , ‖b1‖

Lip(γ,Ω)
σ . ε , ‖α‖Lip(γ,Ω)

σ , ‖α̃‖Lip(γ,Ω)
σ . εγ−1 .

Proof. A direct calculation shows that formula (2.2) reads

(4.18) L(2)(ϑ) := (Φ
(2)
ω∗ )L

(1)(ϕ) =
1

ρ(ϑ)
L(1)(ϑ+ ωα̃(ϑ)) , ρ(ϑ) := 1 + ω · ∂ϕα(ϑ+ ωα̃(ϑ)) .

Note that, since L(1)(ωt) is skew self-adjoint then also L(2)(ωt) is skew self-adjoint. By (4.18), one has

(4.19)

L(2)(ϑ) = ib2(ϑ)∂
2
x + b1(ϑ, x)∂x + b0(ϑ, x) ,

b2(ϑ) :=
[ m2

1 + ω · ∂ϕα

]∣∣∣
ϕ=ϑ+ωα̃(ϑ)

,

b1(ϑ, x) :=
[ a1
1 + ω · ∂ϕα

]∣∣∣
ϕ=ϑ+ωα̃(ϑ)

,

b0(ϑ, x) :=
[ a0
1 + ω · ∂ϕα

]∣∣∣
ϕ=ϑ+ωα̃(ϑ)

.

By the definitions of α(ϕ) and λ2 ∈ R given in (4.16), one obtains that

(4.20) b2(ϑ) = λ2, namely
m2(ϕ)

1 + ω · ∂ϕα(ϕ)
= λ2
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and therefore the linear operator L(2)(ϕ) defined in (4.19) takes the form given in (4.17). Note that the function
m2(ϕ) defined in (4.6) is independent of ω and therefore also λ2 does not depend on ω. By applying Lemma 4.1,
by the definition (4.16) and by Lemmata 2.11-(ii), 2.13, one gets that |λ2 − 1| . ε and that for any 0 < σ < σ̄,

for εγ−1 ≤ δ, for some δ = δ(σ, σ̄) small enough, α, α̃ ∈ H(T∞
σ ) with ‖α‖

Lip(γ,Ω)
σ , ‖α̃‖

Lip(γ,Ω)
σ .σ,σ̄ εγ−1.

Finally, recalling the definitions (4.19), using the properties on a0 and a1 stated in Lemma 4.1 and by applying
Lemmata B.6 (with f(u) = 1

1+u , |u| ≤ 1
2 ), 2.15, 2.9-(ii), we can deduce the claimed properties on b0 and b1.

�

4.3. Elimination of the x-dependence from the first order term. The next aim is to eliminate the
dependence on x from the first order term in (4.17). To this aim, we conjugate the vector field L(2)(ϕ) by
means of a multiplication operator

(4.21) Φ(3)(ϕ) : u 7→ eip(x,ϕ)u

where p is an analytic real on real function which has to be determined. The following lemma holds.

Lemma 4.4. Let ω ∈ Dγ. For any 0 < σ < σ̄ there exists δ(σ, σ̄) > 0 such that if εγ−1 ≤ δ, the following
holds. Define

(4.22) m1(ϕ) :=
1

2π

∫

T

b1(x, ϕ) dx , p(x, ϕ) :=
∂−1
x [b1(x, ϕ)−m1(ϕ)]

2λ2
.

(i) the map T∞
σ → B(H

(
Tσ),H(Tσ)

)
, ϕ 7→ Φ(3)(ϕ)±1 is bounded.

(ii) For any s ≥ 0, the map T∞ → B(Hs(T), Hs(T)
)
, ϕ 7→ Φ(3)(ϕ)±1 is bounded.

(iii) the operator Φ(3)(ϕ) transforms L(2)(ϕ) in

(4.23) L(3)(ϕ) = iλ2∂xx +m1(ϕ)∂x + c0(x, ϕ)

where the functions p(·;ω), ic0(·;ω) ∈ H(Tσ ×T∞
σ ), m1(·;ω) ∈ H(T∞

σ ) are real on real, well defined for ω ∈ Dγ

and satisfy for Ω ⊆ Dγ the estimates

(4.24) ‖p‖Lip(γ,Ω)
σ , ‖c0‖

Lip(γ,Ω)
σ , ‖m1‖

Lip(γ,Ω)
σ .σ,σ̄ ε .

Proof. Item (i) follows by the definition (4.21), by Lemmata 2.5, B.6 and by the estimates (4.24) on p, which
are a straightforward computation.
(ii) Since p is analytic, then p(ϕ, ·) ∈ C∞(T) for any ϕ ∈ T∞ and M(s) := supϕ∈T∞ ‖p(ϕ, ·)‖Cs(T) <∞ for any
s ≥ 0. A direct calculation shows that

supϕ∈T∞ ‖Φ(3)(ϕ)±1‖B(Hs(T)) ≤ supϕ∈T∞ ‖exp(ip)‖Cs(T) ≤ exp(M(s)). The latter estimate proves item (ii).
(iii) A direct calculation shows that

(4.25)
L(3)(ϕ) := (Φ

(3)
ω∗ )L

(2)(ϕ) = Φ(3)(ϕ)−1L(2)(ϕ)Φ(3)(ϕ)− Φ(3)(ϕ)−1ω · ∂ϕΦ
(3)(ϕ)

= iλ2∂xx + c1(x, ϕ)∂x + c0(x, ϕ)

where

(4.26)
c0 := −iλ2p

2
x − λ2pxx + ib1px − iω · ∂ϕp+ b0 ,

c1 := −2λ2px + b1 .

The definions of p and m1 given in (4.22) allow to solve the equation

(4.27) − 2λ2px(x, ϕ) + b1(x, ϕ) = m1(ϕ) .

Therefore, the operator L(3)(ϕ) in (4.25)takes the form (4.23).
Note that the skew self-adjoint structure guarantees that im1(ϕ) is a real function (meaning that it is real

on real). The claimed properties on the functions p and m1 follow by their definitions (4.22) and by applying
Lemma 4.3. The claimed properties on the function c0 defined in (4.26) follow by Lemma 4.3 and by applying
Lemmata 2.7-(ii), 2.9-(ii). �
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4.4. Reduction to constant coefficients of the first order term. In order to reduce to constant coeffi-
cients the first order term in (4.23), we consider the transformation

(4.28) Φ(4)(ϕ) : u(x) 7→ u(x+ q(ϕ))

where q is an analytic function on T∞
σ to be determined. Clearly, the inverse of Φ(4)(ϕ) is given by

Φ(4)(ϕ)−1 : u(x) 7→ u(x− q(ϕ)) .

Lemma 4.5. Let ω ∈ Dγ . For any σ < σ̄ there exists δ(σ, σ̄) > 0 such that if εγ−1 ≤ δ, and define

(4.29) λ1 :=

∫

T∞

m1(ϕ) dϕ = m̂1(0), q(ϕ) := (ω · ∂ϕ)
−1[m1(ϕ)− λ1] .

(i) the map T∞
σ → B(H

(
Tσ),H(Tσ)

)
, ϕ 7→ Φ(4)(ϕ)±1 is bounded.

(ii) For any s ≥ 0, the map T∞ → B(Hs(T), Hs(T)
)
, ϕ 7→ Φ(4)(ϕ)±1 is bounded.

(iii) The map Φ(4)(ϕ) transforms the operator L(3)(ϕ) as

(4.30) L(4)(ϕ) = iλ2∂xx + λ1∂x + d0(x, ϕ)

where the constant λ1 ∈ R does not depend on ω and q(·;ω) ∈ H(T∞
σ ), id0(·;ω) ∈ H(Tσ ×T∞

σ ) are real on real
functions defined for ω ∈ Dγ. Furthermore, the following bounds hold for any Ω ⊆ Dγ

(4.31) ‖q‖Lip(γ,Ω)
σ , ‖d0‖

Lip(γ,Ω)
σ .σ,σ̄ ε , |λ1| . ε .

Proof. Items (i)-(ii) follow as the corresponding ones of Lemma 4.1, by using the estimate (4.31) on the
function q(ϕ), which is a direct computation.

(iii) A direct calculation shows that

(4.32)
L(4)(ϕ) := (Φ

(4)
ω∗ )L

(3)(ϕ) = iλ2∂xx +
(
− ω · ∂ϕq(ϕ) +m1(ϕ)

)
∂x + d0(x, ϕ) .

d0(x, ϕ) := c0(x, ϕ − q(ϕ)) .

By the definition (4.29), we solve the equation

(4.33) − ω · ∂ϕq(ϕ) +m1(ϕ) = λ1 .

Then, the operator L(4) defined in (4.32) takes the form given in (4.30). We now show that λ1 is independent
of ω. By (4.22), (4.29), one has that

λ1 =
1

2π

∫

T∞

∫

T

b1(ϑ, x) dx dϑ

where by (4.19) and using the properties (B.15), one has that

b1(ϑ, x) =
[ a1
1 + ω · ∂ϕα

]∣∣∣
ϕ=ϑ+ωα̃(ϑ)

= a1(ϑ+ ωα̃(ϑ), x)
(
1 + ω · ∂ϑα̃(ϑ)

)
.

By expanding a1(x, ϕ) in Fourier series, i.e. a1(x, ϕ) =
∑

j∈Z

∑
ℓ∈Z∞

∗

â1(ℓ, j)e
iℓ·ϕeijx one has that

λ1 =
1

2π

∫

T∞

∫

T

b1(ϑ, x) dx dϑ

=
∑

j∈Z

∑

ℓ∈Z∞

∗

â1(ℓ, j)

∫

T

eijx dx

∫

T∞

eiℓ·(ϑ+ωα̃(ϑ))
(
1 + ω · ∂ϑα̃(ϑ)

)
dϑ

=
∑

ℓ∈Z∞

∗

â1(ℓ, 0)

∫

T∞

eiℓ·(ϑ+ωα̃(ϑ))
(
1 + ω · ∂ϑα̃(ϑ)

)
dϑ

LemmaB.5
= â1(0, 0) =

1

2π

∫

T

∫

T∞

a1(x, ϕ) dϕdx

By Lemma 4.1, the function a1 does not depend on ω and therefore also λ1 is independent of ω.
The estimates on λ1, q, d0 given in (4.32), (4.29) follow by applying Lemmata 4.4, 2.15, 2.11-(ii). �
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4.5. Elimination of the x-dependence from the zero-th order term. In order to eliminate the x-
dependence from the zero-th order term in the operator L(4)(ϕ) in (4.32), we conjugate using (2.2), by a
transformation

(4.34) Φ(5)(ϕ) := exp(V(ϕ)) where V(ϕ) :=
1

2

(
v(x, ϕ) ◦ ∂−1

x + ∂−1
x ◦ v(x, ϕ)

)
.

where v(x, ϕ) is a real on real function to be determined. Note that for real values of the angle ϕ ∈ T∞, one
has that V(ϕ) = −V(ϕ)∗, implying that Φ(5)(ϕ) is a unitary operator.

Lemma 4.6. Let ω ∈ Dγ. For any 0 < σ < σ̄ there exists δ(σ, σ̄) > 0 such that if εγ−1 ≤ δ, the following
holds. Define

(4.35) v :=
1

2iλ2
∂−1
x

(
〈d0〉x − d0

)
.

(i) the map T∞
σ → B(H

(
Tσ),H(Tσ)

)
, ϕ 7→ Φ(5)(ϕ)±1 is bounded.

(ii) For any s ≥ 0, the map T∞ → B(Hs(T), Hs(T)
)
, ϕ 7→ Φ(5)(ϕ)±1 is bounded.

(iii) The map Φ(5)(ϕ) transforms the operator L(4)(ϕ) in

(4.36) L(5)(ϕ) := (Φ
(5)
ω∗ )L

(4)(ϕ) = iλ2∂xx + λ1∂x + 〈d0〉x(ϕ) + e−1(x, ϕ)∂
−1
x +R(5)(ϕ)

and the functions v(·;ω) ∈ H(Tσ × T∞
σ ) and the operator R(5)(ω) ∈ H

(
T∞
σ ,B

σ,−2
)

defined for ω ∈ Dγ satisfy
the estimates

(4.37) ‖v‖Lip(γ,Ω)
σ , ‖e−1‖

Lip(γ,Ω)
σ , |R(5)|

Lip(γ,Ω)
σ,−2 .σ,σ̄ ε .

Proof. By the definition (4.35), using the estimates on d0 given in Lemma 4.5, one gets that v satisfies the
estimate (4.37). By Lemma 3.6, one has that the operator V(ϕ) admits an expansion of the form

(4.38) V(ϕ) = v(x, ϕ)∂−1
x −

1

2
vx(x, ϕ)∂

−2
x + c−3vxx∂

−3
x +RV(ϕ)

where c−3 ∈ R is a constant and for any 0 < σ < σ̄, RV ∈ H
(
T∞
σ ,B

σ,−4
)

and

(4.39) |V|
Lip(γ,Ω)
σ,−1 , |RV |

Lip(γ,Ω)
σ,−4 .σ,σ̄ ε .

By (4.34), (4.39), Lemma 3.6-(i) and the estimate (3.34), there exists δ = δ(σ, σ) ∈ (0, 1) such that if εγ−1 ≤ δ,
|(Φ(5))±1|σ .σ,σ 1. Items (i)-(ii) then follow by applying Lemmata 2.4, 3.1.
(iii) A direct calculation shows that

(4.40)

L(5)(ϕ) := (Φ
(5)
ω∗ )L

(4)(ϕ) = Φ(5)(ϕ)−1L(4)(ϕ)Φ(5)(ϕ)− Φ(5)(ϕ)−1ω · ∂ϕΦ
(5)(ϕ)

= iλ2∂xx + λ1∂x + d0(x, ϕ) + [iλ2∂xx + λ1∂x,V(ϕ)]

− Φ(5)(ϕ)−1ω · ∂ϕΦ
(5)(ϕ) +R(I)(ϕ)

where the remainder R(I)(ϕ) is given by

(4.41)

R(I)(ϕ) :=

∫ 1

0

(1− t)exp(−τV(ϕ)) [[iλ2∂xx + λ1∂x,V(ϕ)],V(ϕ)] exp(τV(ϕ)) dτ

+

∫ 1

0

e−τV(ϕ)[d0,V(ϕ)]e
τV(ϕ) dτ .

By recalling (4.38), (4.39), by applying Lemma 3.6 and using that λ2 = 1 +O(ε) and λ1 = O(ε), one obtains
that

[iλ2∂xx + λ1∂x,A(ϕ)] = 2iλ2vx(x, ϕ) + a(−1)
v (x, ϕ)∂−1

x +R(II)(ϕ)

where for any 0 < σ < σ̄, a
(1)
v ∈ H(Tσ × T∞

σ ), R(II) ∈ H
(
T∞
σ ,B

σ,−2
)

with

(4.42) ‖a(−1)
v ‖Lip(γ,Ω)

σ , |R(II)|
Lip(γ,Ω)
σ,−2 .σ ε

and

(4.43)

[[iλ2∂xx + λ1∂x,V ],V ] ∈ H(T∞
σ ,B

σ,−2) ,
∣∣∣[[iλ2∂xx + λ1∂x,V ],V ]

∣∣∣
Lip(γ,Ω)

σ,−2
.σ,σ̄ ε .
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Moreover, using the estimate on d0 provided in Lemma 4.5 and by applying again Lemma 3.6, one gets that

(4.44) [d0,V ] ∈ H(T∞
σ ,B

σ,−2), |[d0,V ]|
Lip(γ,Ω)
σ,−2 .σ,σ̄ ε .

By applying Lemma 3.4, using Lemma 3.7 and the estimate (4.39) to bound exp(±τV(ϕ)) and by applying
the estimates (4.43), (4.44), one obtains that

(4.45) R(I) ∈ H
(
T
∞
σ ,B

σ,−2
)
, |R(I)|

Lip(γ,Ω)
σ,−2 .σ,σ̄ ε .

Moreover, recalling the definition of the operator Φ(5) given in (4.34), using (4.38), (4.39) and by applying
Lemmata 3.6, 3.7, one obtains that

(4.46)
− Φ(5)(ϕ)−1ω · ∂ϕΦ

(5)(ϕ) = −ω · ∂ϕv(x, ϕ)∂
−1
x +R(III)(ϕ),

R(III)(ϕ) ∈ H
(
T
∞
σ ,B

σ,−2
)
, |R(III)|

Lip(γ,Ω)
σ,−2 .σ,σ̄ ε , ∀0 < σ < σ̄ .

and therefore by (4.40) one gets

(4.47)
L(5)(ϕ) = λ2∂xx + λ1∂x + d0 + 2λ2vx + e−1(x, ϕ)∂

−1
x +R(5)(ϕ) ,

e−1(x, ϕ) := a(−1)
v (x, ϕ) − ω · ∂ϕv(x, ϕ) , R(5)(ϕ) := R(I)(ϕ) +R(II)(ϕ) +R(III)(ϕ) .

The claimed statement then follows since d0 + 2iλ2vx = 〈d0〉x (see (4.35)), by the estimate (4.37) on v, the

estimate (4.42) on a
(−1)
v and the estimates (4.42), (4.45), (4.46) on R(I),R(II),R(III). �

4.6. Elimination of the x dependence from the order −1. In order to eliminate the x-dependence from
the term of order −1 in the operator L(5) given in (4.36), We conjugate such an operator by means of a
transformation

(4.48) Φ(6)(ϕ) := exp(G(ϕ)) where G(ϕ) :=
i

2

(
g(x, ϕ) ◦ ∂−2

x + ∂−2
x ◦ g(x, ϕ)

)
.

and g(x, ϕ) is a real on real function to be determined. Note that for real values of the angle ϕ ∈ T∞, one has
that G(ϕ) = −G(ϕ)∗, implying that Φ(6)(ϕ) is unitary.

Lemma 4.7. Let ω ∈ Dγ. For any σ < σ̄ there exists δ(σ, σ̄) > 0 such that if εγ−1 ≤ δ, the following holds.
Define

(4.49) g(x, ϕ) :=
1

2λ2
∂−1
x

[
e−1(x, ϕ)− 〈e−1〉x(ϕ)

]
.

(i) the map T∞
σ → B(H

(
Tσ),H(Tσ)

)
, ϕ 7→ Φ(6)(ϕ)±1 is bounded.

(ii) For any s ≥ 0, the map T∞ → B(Hs(T), Hs(T)
)
, ϕ 7→ Φ(6)(ϕ)±1 is bounded.

(iii) The map Φ(6)(ϕ) transform the operator L(5)(ϕ) as

(4.50) L(6)(ϕ) = (Φ
(6)
ω∗ )L

(5)(ϕ) = λ2∂xx + λ1∂x + 〈d0〉x(ϕ) + 〈e−1〉x(ϕ)∂
−1
x +R(6)(ϕ)

where the function g(·;ω) ∈ H(Tσ × T∞
σ ) is real on real and the operator R(6)(ω) ∈ H

(
T∞
σ ,B

σ,−2
)

is skew
self-adjoint. Moreover they are defined ω ∈ Dγ and satisfy for all Ω ⊆ Dγ , the estimates

(4.51) ‖g‖Lip(γ,Ω)
σ , |R(6)|

Lip(γ,Ω)
σ,−2 .σ,σ̄ ε .

Proof. By the definition (4.49), using the estimates on e−1 given in Lemma 4.6, one gets that g satisfies the
estimate (4.51). By Lemma 3.6 and by the estimate on g one has that for any 0 < σ < σ̄,

(4.52) G ∈ H
(
T
∞
σ ,B

σ,−2
)
, |G|

Lip(γ,Ω)
σ,−2 .σ ε .

The above estimate and Lemma 3.7, using that ω · ∂ϕΦ
(6) = ω · ∂ϕ(Φ

(6) − Id), imply that for any 0 < σ < σ̄

(4.53) sup
τ∈[0,1]

|exp(±τG)|Lip(γ,Ω)
σ .σ,σ̄ 1, |ω · ∂ϕ(Φ

(6))|
Lip(γ,Ω)
σ,−2 .σ,σ̄ ε .
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Items (i)-(ii) follow by the estimate (4.53) and by applying Lemmata 2.4, 3.1.
(iii) A direct calculation shows that

(4.54)

L(6)(ϕ) := (Φ
(6)
ω∗ )L

(5)(ϕ) = Φ(6)(ϕ)−1L(5)(ϕ)Φ(6)(ϕ)− Φ(6)(ϕ)−1ω · ∂ϕΦ
(6)(ϕ)

= iλ2∂xx + λ1∂x + 〈d0〉(ϕ) + e−1(x, ϕ)∂
−1
x + [iλ2∂xx + λ1∂x,G(ϕ)]

+R(I)(ϕ)

where the remainder R(ϕ) is given by

(4.55)

R(I)(ϕ) :=

∫ 1

0

(1− t)exp(−τG(ϕ)) [[iλ2∂xx + λ1∂x,G(ϕ)],G(ϕ)] exp(τG(ϕ)) dτ

+

∫ 1

0

e−τG(ϕ)
(
[〈d0〉x + e−1∂

−1
x ,G(ϕ)]

)
eτG(ϕ) dτ − Φ(6)(ϕ)−1ω · ∂ϕΦ

(6)(ϕ) .

By recalling the estimate of Lemma 4.5 on d0, the estimate of Lemma 4.6 on e−1, the estimate (4.52) on G, by
applying Lemmata 3.6, 3.4 and using that λ2 = 1+O(ε) and λ1 = O(ε), one obtains that for any 0 < σ < σ̄

(4.56)

[[λ2∂xx + λ1∂x,G(ϕ)],G(ϕ)] , [〈d0〉x + e−1∂
−1
x ,G(ϕ)] ∈ H

(
T
∞
σ ,B

σ,−2
)
,

∣∣∣[[λ2∂xx + λ1∂x,G(ϕ)],G(ϕ)]
∣∣∣
Lip(γ,Ω)

σ,−2
,
∣∣∣[〈d0〉x + e−1∂

−1
x ,G(ϕ)]

∣∣∣
Lip(γ,Ω)

σ,−2
.σ,σ̄ ε .

Therefore, the estimates (4.56), (4.53) and Lemma 3.4 imply that the remainder R(I) defined in (4.55) satisfies

(4.57) R(I) ∈ H
(
T
∞
σ ,B

σ,−2
)
, |R(I)|

Lip(γ,Ω)
σ,−2 .σ,σ̄ ε, ∀0 < σ < σ̄ .

Recalling the definition of G, using the estimate (4.51) on g, by applying Lemma 3.6 and using that λ2 =
1 +O(ε), λ1 = O(ε), one gets that

(4.58) [iλ2∂xx + λ1∂x,G(ϕ)] = −2λ2gx∂
−1
x +R(II)(ϕ)

where for any 0 < σ < σ̄,

(4.59) R(II) ∈ H
(
T
∞
σ ,B

σ,−2
)
, |R(II)|

Lip(γ,Ω)
σ,−2 .σ,σ̄ ε .

Therefore by (4.54), one gets

(4.60)
L(6)(ϕ) = λ2∂xx + λ1∂x + 〈d0〉x +

(
− 2λ2gx + e−1

)
∂−1
x +R(6)(ϕ) ,

R(6)(ϕ) := R(I)(ϕ) +R(II)(ϕ) .

The claimed statement then follows since e−1−2λ2gx = 〈e−1〉x (see (4.49)) and by recalling (4.57), (4.59). �

4.7. Reduction to constant coefficients up to order −2. In the last step of our regularization procedure,
we eliminate the ϕ-dependence from the term 〈d0〉x(ϕ) + 〈e−1〉(ϕ)∂−1

x . To achieve this purpose, we consider
the map

(4.61) Φ(7)(ϕ) := exp(F(ϕ)), F(ϕ) := diagj∈Z
fj(ϕ)

where for any j ∈ Z, fj are analytic functions to be determined which are purely imaginary for any real value
of the angle ϕ. We prove the following lemma.

Lemma 4.8. Let ω ∈ Dγ. For any 0 < σ < σ̄ there exists δ(σ, σ̄) > 0 such that if εγ−1 ≤ δ, the following
holds. Define

(4.62)
λ0 :=

1

i
〈d0〉x,ϕ, λ−1 := 〈e−1〉x,ϕ ,

F(ϕ) := (ω · ∂ϕ)
−1[〈d0〉x − iλ0] + (ω · ∂ϕ)

−1[e−1 − λ−1]∂
−1
x .

(i) the map T∞
σ → B(H

(
Tσ),H(Tσ)

)
, ϕ 7→ Φ(7)(ϕ)±1 is bounded.

(ii) For any s ≥ 0, the map T∞ → B(Hs(T), Hs(T)
)
, ϕ 7→ Φ(7)(ϕ)±1 is bounded.

(iii) The map Φ(7)(ϕ) transform the operator L(6)(ϕ) in

(4.63) L(7)(ϕ) := (Φ
(7)
ω∗ )L

(6)(ϕ) = iλ2∂xx + λ1∂x + iλ0 + λ−1∂
−1
x +R(7)(ϕ)
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where λ0, λ−1 ∈ R and the operator R(7) ∈ H
(
T∞
σ ,B

σ,−2
)

satisfy the estimates

(4.64) |λ0|
Lip(γ,Ω), |λ−1|

Lip(γ,Ω) . ε , |R(7)|
Lip(γ,Ω)
σ,−2 .σ,σ̄ ε .

Proof. Since the operator F(ϕ) is a diagonal operator, one has that [F(ϕ), ∂kx ] = 0 for any k ∈ Z and a direct
calculation shows that

(4.65) Φ(7)(ϕ)−1ω · ∂ϕΦ
(7)(ϕ) = ω · ∂ϕF(ϕ) .

Therefore, by the definition (4.62), we solve the homological equation

(4.66) − ω · ∂ϕF(ϕ) + 〈d0〉x + 〈e−1〉x∂
−1
x = iλ0 + λ−1∂

−1
x .

By the estimates (4.31) on d0 and (4.37) on e−1 one gets that |λ0|Lip(γ,Ω), |λ−1|Lip(γ,Ω) . ε and by applying
Lemmata 2.11, 3.6 one obtains that for any 0 < σ < σ̄,

(4.67) F ∈ H(T∞
σ ,B

σ), |F|Lip(γ,Ω)
σ .σ,σ̄ εγ

−1 .

The latter estimate, together with Lemma 3.7 imply that

(4.68) (Φ(7))±1 ∈ H(T∞
σ ,B

σ), |(Φ(7))±1|Lip(γ,Ω)
σ ≤ 1 + C(σ, σ̄)εγ−1

for some constant C(σ, σ̄) > 0. Hence, one obtains that

(4.69)
L(7)(ϕ) = (Φ

(7)
ω∗ )L

(6)(ϕ) = iλ2∂xx + λ1∂x − ω · ∂ϕF(ϕ) + 〈d0〉x + 〈e−1〉x∂
−1
x +R(7)(ϕ) ,

R(7)(ϕ) := Φ(7)(ϕ)−1R(6)(ϕ)Φ(7)(ϕ) .

The estimate (4.64) on the operator R(7), defined in (4.69), follows by the composition Lemma 3.4, by the
estimate (4.51) on R(6) and by the estimate (4.68) on (Φ(7))±1. �

5. The KAM reducibility scheme

In this section we carry out the reducibility of the equation ∂tu = L0(ωt)u where the operator L0 ≡ L(7) is
given in Lemma 4.8. We fix

(5.1) σ0 :=
σ̄

2
.

The operator L0(ϕ) ≡ L0(ϕ;ω) defined for ω ∈ Dγ , has the form

(5.2) L0(ϕ) = iD0 + P0(ϕ)

where for all Ω ∈ Dγ

(5.3)

D0 := λ2∂xx +
1

i
λ1∂x + λ0 +

1

i
λ−1∂

−1
x ,

λ2, λ1, λ0, λ−1 ∈ R, |λ2 − 1|, |λ1|, |λ0|
Lip(γ,Ω), |λ−1|

Lip(γ,Ω) . ε ,

|P0|
Lip(γ,Ω)
σ0,−2 .σ0

ε .

Note that, as we pointed out in the previous section, the real constants λ2, λ1 do not depend on the parameter
ω. The linear operator D0 is a 2 × 2 block diagonal operator D0 = diagj∈N0

D0(j) where for any j ∈ N0, the
2× 2 block D0(j) is given by

(5.4)
D0(j) :=

(
µ
(0)
j 0

0 µ
(0)
−j

)
,

µ
(0)
j := −λ2j

2 + λ1j + λ0 − λ−1j
−1 , µ

(0)
−j := −λ2j

2 − λ1j + λ0 + λ−1j
−1 .

In order to state our reducibility Theorem, we fix some other constants. For n ≥ 1, we set

(5.5) χ ∈ (1, 2), σn = σ0

(
1−

1

4π

n∑

j=1

1

j2

)
, Nn = 〈n〉3χnN0

and to shorten notation, we set

(5.6) d(ℓ) :=
∏

n∈N

(1 + |ℓn|
4〈n〉4), ∀ℓ ∈ Z

∞
∗ .
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Theorem 5.1 (Reducibility). Let γ ∈ (0, 1). Then there exists δ ∈ (0, 1) small enough such that if εγ−1 ≤ δ,
for any n ≥ 0, the following holds.
(S1)n There exists a linear skew self-adjoint vector field

(5.7) Ln(ϕ) = iDn + Pn(ϕ)

where Dn is a 2 × 2 self-adjoint block diagonal operator Dn = diagj∈N0
Dn(j), Pn ∈ H

(
T∞
σn
,Bσn,−2

)
is skew

self-adjoint, moreover both are defined for ω ∈ Ωn(γ), where Ω0(γ) := Dγ and for any n ≥ 1

(5.8)

Ωn(γ) :=
{
ω ∈ Ωn−1(γ) : ‖On−1(ℓ, j, j

′)−1‖Op ≤
d(ℓ)

γ
, ∀(ℓ, j, j′) ∈ Z

∞
∗ × N0 × N0,

j 6= j′ and ‖On−1(ℓ, j, j)
−1‖Op ≤

d(ℓ)j2

γ
∀(ℓ, j) ∈ (Z∞

∗ \ {0})× N0, |ℓ|η ≤ Nn−1

}
.

For any (ℓ, j, j′) ∈ Z∞
∗ × N0 × N0, the operators On−1(ℓ, j, j

′) : B(Ej′ ,Ej) → B(Ej′ ,Ej) are defined by

(5.9) On−1(ℓ, j, j
′) := ω · ℓ Id +ML(Dn−1(j))−MR(Dn−1(j

′)) .

For any j ∈ N0,

(5.10) ‖Dn(j)−D0(j)‖
Lip(γ,Ωn)
HS

. ε .

and

(5.11) |Pn|
Lip(γ,Ωn)
σn,−2 ≤ C∗εe

−χn

for some constant C∗ > 0.

For n ≥ 1, there exists a map Φn(ϕ) := exp(Fn(ϕ)), where Fn ∈ H
(
T∞

σn−1+σn

2

,B
σn−1+σn

2

)
is skew self adjoint

and defined for ω ∈ Ωn(γ), which satisfies

(5.12) Ln(ϕ) = (Φn)ω∗Ln−1(ϕ) .

The operator Fn satisfies the estimate

(5.13) |Fn|
Lip(γ,Ωn)
σn−1+σn

2

. εγ−1e−
χn−1

2

(S2)n For any j ∈ N0 there exists a Lipschitz extension of the function Dn(j; ·) : Ωn(γ) → S(Ej) to the set

Dγ, denoted by D̃n(j; ·) : Dγ → S(Ej) that, for any n ≥ 1, satisfies the estimate

(5.14)
sup
ω∈Dγ

‖D̃n(j;ω)− D̃n−1(j;ω)‖HS . 〈j〉−2εe−χn−1

,

‖D̃n(j)− D̃n−1(j)‖
lip
HS
. εγ−1e−χn−1

5.1. Proof of Theorem 5.1. Proof of (Si)0, i = 1, 2. The claims hold by recalling the properties of the
operator L0 listed in (5.2)-(5.4).

(S2)0 holds, since the constants λ2 and λ1 are independent of ω and λ0, λ−1 are already defined on Dγ .

5.1.1. The reducibility step. Proof of (S1)n+1. We now describe the inductive step, showing how to define a
symplectic transformation Φn+1 := exp(Fn+1) so that the transformed vector field Ln+1(ϕ) = (Φn+1)ω∗Ln(ϕ)
has the desired properties. We write Πn instead of ΠNn

to denote the projector on the Fourier modes |ℓ|η ≤ Nn,
where Nn is defined in (5.5). A direct calculation shows that

(5.15)

Ln+1(ϕ) = (Φn+1)ω∗Ln(ϕ) = Φn+1(ϕ)
−1Ln(ϕ)Φn+1(ϕ) − Φn+1(ϕ)

−1ω · ∂ϕΦn+1(ϕ)

= iDn − ω · ∂ϕFn+1 + [iDn,Fn+1] + ΠnPn +Π⊥
nPn

+

∫ 1

0

(1− τ)e−τFn+1[[iDn,Fn+1],Fn+1]e
τFn+1 dτ

+

∫ 1

0

e−τFn+1[Pn,Fn+1]e
τFn+1 dτ

−

∫ 1

0

(1− τ)e−τFn+1[ω · ∂ϕFn+1,Fn+1]e
τFn+1 dτ
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Our next aim is to solve the Homological equation

(5.16) − ω · ∂ϕFn+1 + [iDn,Fn+1] + ΠnPn = [P̂n(0)]

where the diagonal part of the operator P̂n(0) is defined according to (3.8).

Lemma 5.2. For all ω ∈ Ωn+1(γ) (see (5.8)), there exists a unique solution Fn+1 ∈ H
(
T∞
σn−ρ,B

σn−ρ
)

with
ρ > 0, σn − ρ > 0 of the Homological equation (5.16) satisfying the bound

(5.17) |Fn+1|
Lip(γ,Ωn+1)
σn−ρ . γ−1exp

( τ

ρ
1
η

ln
(τ
ρ

))
|Pn|

Lip(γ,Ωn)
σn,−2

for some appropriate constant τ > 1.

Proof. In order to simplify notations in this proof, we drop the index n and we write + instead of n + 1.
Passing to the 2 × 2 block representation of operators and taking the Fourier transform w.r. to ϕ, one gets
that the equation (5.16) is equivalent to

(5.18)

i
(
− ω · ℓΠjF̂+(ℓ)Πj′ + D(j)ΠjF̂+(ℓ)Πj′ −ΠjF̂+(ℓ)Πj′D(j′)

)
+ΠjP̂(ℓ)Πj′ = 0

∀(ℓ, j, j′) ∈ Z
∞
∗ × N0 × N0, (ℓ, j, j′) 6= (0, j, j), |ℓ|η ≤ N,

and ΠjF̂+(0)Πj = 0, ∀j ∈ N0 .

According to the definition given in (5.9), for any ω ∈ Ω+(γ) ≡ Ωn+1(γ), since the operator

(5.19) O(ℓ, j, j′) := ω · ℓ Id−ML(D(j)) +MR(D(j′))

is invertible, one defines F+ as

(5.20) ΠjF̂+(ℓ)Πj′ :=

{
−iO(ℓ, j, j′)−1ΠjP̂(ℓ)Πj′ , ∀(ℓ, j, j′) 6= (0, j, j)

0 ∀(ℓ, j, j′) = (0, j, j) .

For any (ℓ, j, j′) 6= (0, j, j), j 6= j′, |ℓ| ≤ N one obtains that

(5.21) ‖ΠjF̂+(ℓ)Πj′‖HS ≤
d(ℓ)

γ
‖ΠjP̂(ℓ)Πj′‖HS

and for ℓ 6= 0, |ℓ|η ≤ N ,

(5.22) ‖ΠjF̂+(ℓ)Πj‖HS ≤
d(ℓ)〈j〉2

γ
‖ΠjP̂(ℓ)Πj‖HS .

Let σ ≡ σn. By recalling the definition (3.11), the estimates (5.21), (5.22) imply that for any ℓ ∈ Z∞, |ℓ|η ≤ N

(5.23) ‖F̂+(ℓ)‖Bσ−ρ ≤ d(ℓ)γ−1‖P̂(ℓ)‖Bσ,−2 .

Hence in view of the definition (3.14), one obtains that

(5.24)

|F+|σ−ρ ≤ γ−1
∑

ℓ∈Z∞

∗

d(ℓ)e(σ−ρ)|ℓ|η‖P̂(ℓ)‖Bσ,−2 ≤ γ−1
(

sup
ℓ∈Z∞

∗

d(ℓ)e−ρ|ℓ|η
)
|P|σ,−2

LemmaC.1
≤ γ−1exp

( τ

ρ
1
η

ln
(τ
ρ

))
|P|σ,−2 .

Now we show the Lipschitz estimate. Let ω1, ω2 ∈ Ω+(γ). Then for any (ℓ, j, j′) 6= (0, j, j′), |ℓ|η ≤ N ,

(5.25)
∆ω1ω2

(
ΠjF̂+(ℓ)Πj′

)
= −iO(ℓ, j, j′;ω1)

−1∆ω1ω2

(
ΠjP̂(ℓ)Πj′

)

+ iO(ℓ, j, j′;ω1)
−1
(
∆ω1ω2

O(ℓ, j, j′)
)
O(ℓ, j, j′;ω2)

−1ΠjP̂(ℓ;ω2)Πj′ .

By (B.7), (5.3), (5.4), (5.10), one obtains that

(5.26)
‖∆ω1ω2

O(ℓ, j, j′)‖Op ≤ ‖ω1 − ω2‖∞|ℓ|η + 2 sup
j∈N0

‖∆ω1ω2
D(j)‖HS

. (1 + |ℓ|η)‖ω1 − ω2‖∞ .
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Hence since ω1, ω2 ∈ Ω+(γ), the formula (5.25) and the estimate (5.26) imply that for any ℓ ∈ Z∞
∗ , j 6= j′,

|ℓ|η ≤ N

(5.27)

‖∆ω1ω2

(
ΠjF̂+(ℓ)Πj′

)
‖HS .

d(ℓ)2

γ2
(1 + |ℓ|η)‖ΠjP̂(ℓ;ω2)Πj′‖HS

+
d(ℓ)

γ
‖∆ω1ω2

(
ΠjP̂(ℓ)Πj′

)
‖HS

and for any ℓ ∈ Z∞
∗ \ {0}, j ∈ N0, |ℓ|η ≤ N ,

(5.28)

‖∆ω1ω2

(
ΠjF̂+(ℓ)Πj

)
‖HS .

d(ℓ)2〈j〉4

γ2
(1 + |ℓ|η)‖ΠjP̂(ℓ;ω2)Πj‖HS‖ω1 − ω2‖∞

+
d(ℓ)〈j〉2

γ
‖∆ω1ω2

(
ΠjP̂(ℓ)Πj

)
‖HS .

Recalling the definition (3.11) and using the estimates (5.27), (5.28), one obtains that

(5.29)

‖∆ω1ω2
F̂+(ℓ)‖Bσ−ρ,2 .

d(ℓ)2

γ2
(1 + |ℓ|η)‖P̂(ℓ;ω2)‖Bσ,−2‖ω1 − ω2‖∞

+
d(ℓ)

γ
‖∆ω1ω2

P̂(ℓ)‖Bσ .

Hence, recalling the definition (3.14), one gets

(5.30)

|∆ω1ω2
F+|σ−ρ,2 . γ

−2
(

sup
ℓ∈Z∞

∗

d(ℓ)2e−ρ|ℓ|η(1 + |ℓ|η)
)
‖ω1 − ω2‖∞ sup

ω∈Ω
|P(ω)|σ,−2

+ γ−1
(

sup
ℓ∈Z∞

∗

d(ℓ)e−ρ|ℓ|η
)
|∆ω1ω2

P|σ

LemmaC.1
. γ−2exp

( τ

ρ
1
η

ln
(τ
ρ

))(
‖ω1 − ω2‖∞ sup

ω∈Ω
|P(ω)|σ,−2 + γ|∆ω1ω2

P|σ
)

for some τ > 0. The bounds (5.24), (5.30), together with the definition (3.15) imply the claimed bound. �

By the formula (5.15) and using that the operator Fn+1 solves the homological equation (5.16), one obtains
that

(5.31)

Ln+1(ϕ) := iDn+1 + Pn+1(ϕ) ,

Dn+1 := Dn + Zn, Zn :=
1

i
[P̂n(0)] ,

Pn+1 := Π⊥
nPn +

∫ 1

0

(1− τ)e−τFn+1[[P̂n(0)]−ΠnPn,Fn+1]e
τFn+1 dτ

+

∫ 1

0

e−τFn+1[Pn,Fn+1]e
τFn+1 dτ .

The new block-diagonal part Dn+1. Since by the inductive hypothesis the operator Pn(ϕ) is skew self-

adjoint, then also the 2×2 block-diagonal operator [P̂n(0)] = diagj∈N0
ΠjP̂n(0)Πj is skew self-adjoint, therefore

the 2 × 2 block diagonal operator Zn := 1
i [P̂n(0)] is self-adjoint. Hence using the induction hypothesis, one

gets that Dn+1 is a 2× 2 self-adjoint block diagonal operator. We then set

(5.32) Dn+1(j) := ΠjDn+1Πj := Dn(j) + Zn(j), Zn(j) := ΠjZnΠj , ∀j ∈ N0 .

By the inductive estimate (5.11), one gets that for any σ ≤ σn

(5.33) |Zn|
Lip(γ,Ωn)
σ,−2 = |Dn+1 −Dn|

Lip(γ,Ωn)
σ,−2 ≤ |Pn|

Lip(γ,Ωn)
σn,−2 . εe−χn

.
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The latter estimate, implies that

(5.34)

sup
ω∈Ωn(γ)

‖Zn(j;ω)‖HS . εe
−χn

〈j〉−2 ,

sup
ω1,ω2∈Ωn(γ)

ω1 6=ω2

‖Zn(j;ω1)−Zn(j;ω2)‖HS
‖ω1 − ω2‖∞

. εγ−1e−χn

uniformly w.r. to j ∈ N0. The estimate (5.9) at the step n + 1 then follows by applying (5.33), using a
telescoping argument.

The new remainder Pn+1. By applying Lemma 3.4-(ii), one obtains the estimates

(5.35) |Π⊥
nPn|

Lip(γ,Ωn)
σn+1,−2 ≤ e−Nn(σn−σn+1)|Pn|

Lip(γ,Ωn)
σn,−2 .

Furthermore, by applying iteratively Lemma 3.4-(i), (iii) one obtains that if ρ > 0 satisfies σn+1 + 3ρ < σn

(5.36)

∣∣∣e−τFn+1[Pn,Fn+1]e
τFn+1

∣∣∣
Lip(γ,Ωn+1)

σn+1,−2
+
∣∣∣e−τFn+1[[P̂n(0)]−ΠnPn,Fn+1]e

τFn+1

∣∣∣
Lip(γ,Ωn+1)

σn+1,−2

. ρ−a

(
sup

τ∈[0,1]

|e±τFn+1|
Lip(γ,Ωn+1)
σn+1+3ρ

)
|Pn|

Lip(γ,Ωn)
σn,−2 |Fn+1|

Lip(γ,Ωn+1)
σn+1+2ρ .

for some constant a > 0.
Now we want to use Lemma 3.7 in order to estimate supτ∈[0,1] |e

±τFn+1|
Lip(γ,Ωn+1)
σn+1+3ρ . We fix ρ := σn−σn+1

8 so

that σn+1 + 4ρ = σn+1 +
σn−σn+1

2 = σn+σn+1

2 < σn. With this choice of ρ, by applying Lemma 5.2 and the
inductive estimate (5.11) on Pn, one obtains that

(5.37)

|Fn+1|
Lip(γ,Ωn+1)
σn+σn+1

2

= |Fn+1|
Lip(γ,Ωn+1)
σn+1+4ρ . γ−1exp

( τ

(σn − σn+1)
1
η

ln
( τ

σn − σn+1

))
|Pn|

Lip(γ,Ωn)
σn,−2

. εγ−1exp
( τ

(σn − σn+1)
1
η

ln
( τ

σn − σn+1

)
− χn

)

. εγ−1e−
χn

2

using that, by (5.5), one has

sup
n∈N

{
exp
( τ

(σn − σn+1)
1
η

ln
( τ

σn − σn+1

)
−
χn

2

)}
<∞ .

The estimate (5.37) proves the estimate (5.13) at the step n+ 1. Furthermore,

(5.38)
1

(σn − σn+1)2
|Fn+1|

Lip(γ,Ωn+1)
σn+σn+1

2

≤ δ

for some δ ∈ (0, 1) small enough by taking εγ−1 small enough and using that by (5.5)

lim
n→∞

1

(σn − σn+1)2
e−

χn

2 = 0 .

The smallness condition (3.32) of Lemma 3.7 is verified and therefore we get the estimate

(5.39) sup
τ∈[0,1]

|e±τFn+1|
Lip(γ,Ωn+1)
σn+3ρ . 1 .

The estimates (5.35), (5.36), (5.37), (5.39) (recalling the definition of the remainder Pn+1 given in (5.31)) lead
to the inductive estimate

(5.40)

|Pn+1|
Lip(γ,Ωn+1)
σn+1,−2 ≤ e−Nn(σn−σn+1)|Pn|

Lip(γ,Ωn)
σn,−2

+ Cγ−1 1

(σn − σn+1)a
exp
( τ

(σn − σn+1)
1
η

ln
( τ

σn − σn+1

))
(|Pn|

Lip(γ,Ωn)
σn,−2 )2
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where C > 0 is a positive constant and a > 0 is the constant appearing in the estimate (5.36). The latter

estuimate, together with the inductive estimate (5.11) on |Pn|
Lip(γ,Ωn)
σn,−2 imply that

(5.41)

|Pn+1|
Lip(γ,Ωn+1)
σn+1,−2 ≤ e−Nn(σn−σn+1)C∗εe

−χn

+ Cγ−1 1

(σn − σn+1)a
exp
( τ

(σn − σn+1)
1
η

ln
( τ

σn − σn+1

))
C2

∗ε
2e−2χn

≤ C∗εe
−χn+1

provided

(5.42)

sup
n∈N

{
exp
(
χn(χ− 1)−Nn(σn − σn+1)

)}
≤

1

2
,

CC∗εγ
−1 sup

n∈N

{ 1

(σn − σn+1)a
exp
( τ

(σn − σn+1)
1
η

ln
( τ

σn − σn+1

)
− (2− χ)χn

)}
≤

1

2
.

The first condition in (5.42) holds by recalling (5.5) and by taking N0 > 0 large enough. The second condition
in (5.42) holds by recalling (5.5) and by taking εγ−1 small enough.

Proof of (S2)n+1. By recalling the estimate (5.34), for any j ∈ N0, the function Ωn+1(γ) → S(Ej),
ω 7→ Zn(j;ω) = Dn+1(j;ω) − Dn(j;ω) is a Lipschitz function. Hence by using the Kirszbraun Theorem

there exists a Lipschitz extension Z̃n(j; ·) : Dγ → S(Ej) of Zn(j) preserving the sup norm and the Lipschitz

seminorm, namely supω∈Dγ ‖Z̃n(j;ω)‖HS . supω∈Ωn+1(γ) ‖Zn(j;ω)‖HS, ‖Z̃n(j)‖
lip
HS
. ‖Zn(j)‖

lip
HS

. Therefore,

using the bounds (5.34) and defining D̃n+1(j) := D̃n(j) + Z̃n(j), the claimed statement follows.

5.2. Convergence. Final blocks. By applying Theorem 5.1-(S2)n the sequence of the Lipschitz functions

D̃n(j; ·) : Dγ → S(Ej), j ∈ N0 is a Cauchy sequence w.r. to the norm ‖ · ‖Lip(γ,Ω0) and therefore, we can define
the final blocks

(5.43) D∞(j) := lim
n→∞

D̃n(j), ∀j ∈ N0 .

By using a telescoping argument one obtains that for any j ∈ N0, for any n ∈ N, the following estimates hold

(5.44)
sup
ω∈Dγ

‖D∞(j;ω)− D̃n(j;ω)‖HS . 〈j〉−2εe−χn

,

‖D∞(j)− D̃n(j)‖
lip
HS
. εγ−1e−χn

Then, recalling the definition of the norm | · |
Lip(γ,Ω)
σ,m given in (3.15), if we define the 2 × 2 block diagonal

operators

(5.45) D̃n := diagj∈N0
D̃n(j), ∀n ∈ N , D∞ := diagj∈N0

D∞(j)

one gets that for any σ > 0, n ∈ N and Ω ∈ Dγ

(5.46) |D∞ − D̃n|
Lip(γ,Ω)
σ,−2 . εe−χn

.

Final Cantor set. For any ℓ ∈ Z∞
∗ , j, j′ ∈ N0, we define the linear operator O∞(ℓ, j, j′) : B(Ej′ ,Ej) →

B(Ej′ ,Ej)

(5.47) O∞(ℓ, j, j′) := ω · ℓ Id−ML(D∞(j)) +MR(D∞(j′))

and we define the set

(5.48)

Ω∞(γ) :=
{
ω ∈ Dγ : ‖O∞(ℓ, j, j′)−1‖Op ≤

d(ℓ)

2γ
, ∀(ℓ, j, j′) ∈ Z

∞
∗ × N0 × N0,

j 6= j′ and ‖O∞(ℓ, j, j)−1‖Op ≤
d(ℓ)j2

2γ
∀(ℓ, j) ∈ (Z∞

∗ \ {0})× N0

}
.

The following lemma holds

Lemma 5.3. One has that

Ω∞(γ) ⊆ ∩n∈N0
Ωn(γ) .
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Proof. We proceed by induction. By definition Ω∞(γ) ⊆ Dγ . Now assume that Ω∞(γ) ⊆ Ωn(γ) for some n ≥ 0
and let us show that Ω∞(γ) ⊆ Ωn+1(γ). Let ω ∈ Ω∞(γ). Since by the induction hypothesis ω ∈ Ωn(γ), the

2× 2 blocks Dn(j;ω), j ∈ N0, are well defined and Dn(j;ω) = D̃n(j;ω) on such set. By the estimates (5.44),
recalling the property (B.7), one obtains that

‖ML

(
D∞(j)−Dn(j)

)
)‖Op , ‖MR

(
D∞(j)−Dn(j)

)
)‖Op . ε〈j〉

−2e−χn

and using that

On(ℓ, j, j
′)−O∞(ℓ, j, j′) = −ML(Dn(j)− D∞(j)) +MR(Dn(j

′)−D∞(j′)),

the latter estimate implies that for any ℓ ∈ Z
∞
∗ , |ℓ|η ≤ Nn, j, j′ ∈ N0, j 6= j′

(5.49) ‖On(ℓ, j, j
′)−O∞(ℓ, j, j′)‖Op . εe

−χn

and for any ℓ ∈ Z∞
∗ \ {0}, |ℓ|η ≤ Nn, j ∈ N0

(5.50) ‖On(ℓ, j, j)−O∞(ℓ, j, j)‖Op . εe
−χn

〈j〉−2 .

Since ω ∈ Ω∞(γ) ⊆ Ωn(γ), we can write

On(ℓ, j, j
′) = O∞(ℓ, j, j′) +On(ℓ, j, j

′)−O∞(ℓ, j, j′)

= O∞(ℓ, j, j′)
(
Id +O∞(ℓ, j, j′)−1

[
On(ℓ, j, j

′)−O∞(ℓ, j, j′)
])

and using the estimates (5.49), (5.50), we get for any (ℓ, j, j′) 6= (0, j, j), |ℓ|η ≤ Nn, the bound

(5.51)

‖O∞(ℓ, j, j′)−1
[
On(ℓ, j, j

′)−O∞(ℓ, j, j′)
]
‖Op . εγ

−1e−χn

sup
|ℓ|η≤Nn

d(ℓ)

LemmaC.2
. εγ−1e−χn

(1 +Nn)
C(η,µ)N

1
1+η
n

. εγ−1 sup
n∈N

exp
(
− χn + C(η)N

1
1+η
n ln(1 +Nn)

)
.

By the choice of Nn provided in (5.5), one obtains that

sup
n∈N

exp
(
− χn + C(η, µ)N

1
1+η
n ln(1 +Nn)

)
<∞

implying that for εγ−1 small enough

‖O∞(ℓ, j, j′)−1
[
On(ℓ, j, j

′)−O∞(ℓ, j, j′)
]
‖Op ≤

1

2
.

Hence by Neumann series On(ℓ, j, j
′) is invertible and ω ∈ Ωn+1(γ). �

KAM transformations
For every n ≥ 1, we define the transformation Ψn as

(5.52) Ψn := Φ1 ◦ . . . ◦ Φn .

where for any n ≥ 1, the transformation Φn = exp(Fn) is constructed in Theorem 5.1. Note that for any
n ∈ N, the map Ψn is invertible and the inverse is given by

(5.53) Ψ−1
n := Φ−1

n ◦ . . . ◦ Φ−1
1 .

We now show the convergence of the sequence of transformations (Ψn)n∈N, in the space H
(
T∞

σ0
2

,B
σ0
2

)
.

Lemma 5.4. (i) The sequence of transformation (Ψn)n∈N converges to an invertible transformations Ψ∞, for

ω ∈ Ω∞(γ) w.r. to the norm | · |
Lip(γ,Ω∞(γ))
σ0
2

. Furthermore the following bounds hold: ,

|Ψ∞ − Id|
Lip(γ,Ω∞(γ))
σ0
2

, |Ψ−1
∞ − Id|

Lip(γ,Ω∞(γ))
σ0
2

. εγ−1 .

(ii) For any 0 < σ ≤ σ0

2 , for any s ≥ 0, the maps T∞
σ → B(H(Tσ),H(Tσ)), ϕ 7→ Ψ∞(ϕ)±1 and T∞ →

B(Hs(T), Hs(T)), ϕ 7→ Ψ∞(ϕ)±1 are bounded.
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Proof. Proof of (i). For any n ≥ 1, one has that

Ψn+1 = Ψn ◦ Φn+1 =⇒ Ψn+1 −Ψn = Ψn ◦ (Φn+1 − Id) .

We estimate now |Ψn+1 − Ψn|
Lip(γ,Ω∞(γ))
σn+1

. Fix ρ := σn−σn+1

4 such that σn+1 < σn+1 + 2ρ = σn+σn+1

2 . By
applying Lemma 3.4-(i), one has that

(5.54) |Ψn+1 −Ψn|
Lip(γ,Ω∞(γ))
σn+1

. ρ−2|Ψn|
Lip(γ,Ω∞(γ))
σn+1

|Φn+1 − Id|
Lip(γ,Ω∞(γ))
σn+1+ρ .

Moreover, since Φn+1 = exp(Fn+1), using the estimate (5.13) (at the step n+ 1) and by applying Lemma 3.7
one gets

(5.55)
|Φn+1 − Id|

Lip(γ,Ω∞(γ))
σn+1+ρ . ρ−2|Fn+1|σn+1+2ρ

σn+1+2ρ=
σn+σn+1

2

. (σn − σn+1)
−2|Fn+1|

Lip(γ,Ω∞(γ))
σn+σn+1

2

. (σn − σn+1)
−2εγ−1e−

χn

2 . εγ−1

Thus, the estimates (5.54), (5.55) imply that

(5.56)
|Ψn+1 −Ψn|

Lip(γ,Ω∞(γ))
σn+1

. (σn − σn+1)
−4εγ−1e−

χn

2 |Ψn|
Lip(γ,Ω∞(γ))
σn+1

. εγ−1e−
χn

3 |Ψn|
Lip(γ,Ω∞(γ))
σn

where in the last inequality we have used that σn+1 < σn and

sup
n∈N

{
(σn − σn+1)

−4e−
χn

2
+χn

3

}
<∞

and by triangular inequality

(5.57) |Ψn+1|
Lip(γ,Ω∞(γ))
σn+1

≤ |Ψn|
Lip(γ,Ω∞(γ))
σn

(
1 + Cεγ−1e−

χn

3

)

for some constant C > 0. By iterating the latter bound one obtains that

(5.58) |Ψn+1|
Lip(γ,Ω∞(γ))
σn+1

≤
n∏

j=0

(
1 + Cεγ−1e−

χj

3

)
.

Passing to the logarithm in the above inequality and using that the series
∑

j≥0 e
−χj

3 is convergent, one obtains
that

(5.59) C0 := sup
n∈N

|Ψn|
Lip(γ,Ω∞(γ))
σn

<∞ .

Now let n, k ≥ 1. One has that

(5.60) |Ψn+k −Ψn|
Lip(γ,Ω∞(γ))
σ0
2

≤
∑

j≥n

|Ψj+1 −Ψj |
Lip(γ,Ω∞(γ))
σj+1

(5.56),(5.59)

. εγ−1
∑

j≥n

e−
χj

3 . εγ−1e−
χn

3 .

Hence (Ψn)n∈N is a Cauchy sequence w.r. to the norm | · |
Lip(γ,Ω∞(γ))
σ0
2

and hence it coverges to Ψ∞ with a

bound

|Ψ∞ −Ψn|
Lip(γ,Ω∞(γ))
σ0
2

. εγ−1e−
χn

3 , ∀n ∈ N .

Similarly one shows that also the sequence (Ψ−1
n )n∈N converges to a transformation Γ∞ w.r. to the norm

| · |
Lip(γ,Ω∞(γ))
σ0
2

with the same rate of convergence. Furthermore since ΨnΨ
−1
n = Ψ−1

n Ψn = Id, passing to the

limit one obtains that Γ∞ = Ψ−1
∞ . The claimed statement has then been proved.

Proof of (ii). The claimed statement follows by the item (i) and by applying Lemmata 2.4, 3.1. �

Final normal form
We now show the following

Lemma 5.5. For any ω ∈ Ω∞(γ) and for any ϕ ∈ T∞
σ0/3

, the operator L0(ϕ;ω) defined in (5.2) is congugated

to the 2× 2 block diagonal operator iD∞ (see (5.43), (5.45)), namely (Ψ∞)ω∗L0(ϕ;ω) = iD∞(ω)
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Proof. By applying Theorem 5.1, by recalling the definition (5.52) of the maps Ψn, n ∈ N and using that by
Lemma 5.3, Ω∞(γ) ⊆ ∩n≥0Ωn(γ), one gets that for any n ∈ N

(5.61) iDn(ω) + Pn(ϕ;ω) = Ln = (Ψn)ω∗L0(ϕ;ω), ∀ω ∈ Ω∞(γ) .

By (5.2), (5.3) and by Lemmata 5.4, 2.9, one has
(5.62)

|ω · ∂ϕ(Ψ∞ −Ψn)|
Lip(γ,Ω∞(γ))
σ0
2
−ρ

. ρ−1|Ψ∞ −Ψn|
Lip(γ,Ω∞(γ))
σ0
2

→ 0 as n→ ∞, and |L0|
Lip(γ,Ω∞(γ))
σ0,−2 . 1

for ρ > 0 so that σ0

2 − ρ > 0. Therefore, by recalling the definition (2.2), by the estimates (5.62) and by
applying Lemma 3.4-(i), one gets that

(5.63) lim
n→∞

|(Ψn)ω∗L0 − (Ψ∞)ω∗L0|
Lip(γ,Ω∞(γ))
σ0
3

= 0 .

By the estimates (5.11), (5.46), (5.63) and passing to the limit in (5.61) one obtains the claimed statement. �

6. Measure estimates

It remains only to estimate the measure of the set Ω∞(γ), defined in (5.48).In order to do this, let us start
with some preliminary considerations. For any j ∈ N0, the 2 × 2 block D∞(j;ω), ω ∈ Dγ is self-adjoint and
depends in a Lipschitz way on the parameter ω. By (5.43), (5.44) and by recalling (5.3), (5.4), for any j ∈ N,
we can write that

(6.1) D∞(j) = λ2j
2Id +R∞(j;ω)

where the self-adjoint 2× 2 block R∞(j;ω) satisfies the estimate

(6.2) sup
ω∈Dγ

‖R∞(j;ω)‖HS . ε〈j〉 , ‖R∞(j)‖lip
HS
. εγ−1 .

By applying Lemma B.2, one then obtains that for any j ∈ N,

spec(D∞(j;ω)) = {µ
(+)
j (ω), µ

(−)
j (ω)}, spec(R∞(j;ω)) = {r

(+)
j (ω), r

(−)
j (ω)}

where µ
(±)
j and r

(±)
j depend in a Lipschitz way on the parameter ω ∈ Dγ and they satisfy

(6.3)
µ
(±)
j (ω) = λ2j

2 + r
(±)
j (ω) ,

|λ2 − 1| . ε , sup
ω∈Dγ

|r
(±)
j (ω)| . ε〈j〉, |r

(±)
j |lip . εγ−1 .

If j = 0 one has |µ0|Lip(γ,Dγ) . ε. For compactness of notations we set µ
(+)
0 = µ

(−)
0 = µ0. By applying

Lemmata B.1 and B.2-(ii) one then obtains that the set Ω∞(γ) can be written as
(6.4)

Ω∞(γ) =
{
ω ∈ Dγ : |ω · ℓ + µ

(σ)
j − µ

(σ′)
j′ | ≥

2γ

d(ℓ)
, ∀(ℓ, j, j′) ∈ Z

∞
∗ × N0 × N0, j 6= j′, σ, σ′ ∈ {+,−}

|ω · ℓ+ µ
(σ)
j − µ

(σ′)
j | ≥

2γ

d(ℓ)〈j〉2
, ∀(ℓ, j) ∈ (Z∞

∗ \ {0})× N0, σ, σ′ ∈ {+,−}
}
,

where we recall

d(ℓ) :=
∏

n∈N

(1 + |ℓn|
4〈n〉4), ∀ℓ ∈ Z

∞
∗ .

In the remaining part of this section we prove the following Proposition.

Proposition 6.1. Assume that µ > 3. For εγ−1 and γ small enough one has that P
(
R0 \ Ω∞(γ)

)
. γ.

We note that

(6.5) P

(
R0 \ Ω∞(γ)

)
≤ P

(
R0 \ Dγ

)
+ P

(
Dγ \ Ω∞(γ)

)
.

In [BMP], it is proved that

(6.6) P

(
R0 \ Dγ

)
. γ ,
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therefore, we need to estimate the set Dγ \ Ω∞(γ). In order to shorten notations, we define

(6.7) Z1 :=
{
(ℓ, j, j′) ∈ Z

∞
∗ × N0 × N0 : j 6= j′

}
, Z2 := (Z∞

∗ \ {0})× N0 .

One has that

(6.8) Dγ \ Ω∞(γ) =
( ⋃

(ℓ,j,j′)∈Z1

Rℓjj′ (γ)
)⋃( ⋃

(ℓ,j)∈Z2

Qℓj(γ)
)

where for any (ℓ, j, j′) ∈ Z1, we define

(6.9) Rℓjj′ (γ) :=
⋃

σ,σ′∈{+,−}

{
ω ∈ Dγ : |ω · ℓ+ µ

(σ)
j − µ

(σ′)
j′ | <

2γ

d(ℓ)

}

and for any (ℓ, j) ∈ Z2, we define

(6.10) Qℓj(γ) :=
⋃

σ,σ′∈{+,−}

{
ω ∈ Dγ : |ω · ℓ+ µ

(σ)
j − µ

(σ′)
j | <

2γ

d(ℓ)〈j〉2

}
.

Lemma 6.2. (i) Let (ℓ, j, j′) ∈ Z1. If Rℓjj′ (γ) 6= ∅, then |j2 − j′2| ≤ C|ℓ|1 and P(Rℓjj′ (γ)) .
γ

d(ℓ) .

(ii) Let (ℓ, j) ∈ Z2. If Qℓj(γ) 6= ∅, then P(Qℓj(γ)) .
γ

〈j〉2d(ℓ) .

Proof. We prove item (i). The proof of the item (ii) can be done arguing in a similar fashion. Let j, j′ ∈ N0,
j 6= j′ and σ, σ′ ∈ {+,−}. By (6.3) one has that for some constant C > 0,

|µ
(σ)
j − µ

(σ′)
j′ | ≥ |λ2||j

2 − j′2| − Cε(j + j′)− Cε .

Using that λ2 = 1 +O(ε) and that |j + j′| ≤ |j2 − j′2| one obtains that for ε small enough

(6.11) |µ
(σ)
j − µ

(σ′)
j′ | ≥

1

2
|j2 − j′2|

implying that R0jj′ (γ) = ∅ for any j 6= j′. Hence if (ℓ, j, j′) ∈ Z1 and Rℓjj′ (γ) 6= ∅ one has that ℓ 6= 0.
Furthermore if ω ∈ Rℓjj′ (γ) 6= ∅ one has that by using (6.11), one obtains that

(6.12)
1

2
|j2 − j′2| ≤ |µ

(σ)
j − µ

(σ′)
j′ | ≤

2γ

d(ℓ)
+ |ω · ℓ| . 1 + ‖ω‖∞‖ℓ‖1 . 1 + ‖ℓ‖1 .

Now let
s := min{n ∈ N : ℓn 6= 0}, S := max{n ∈ N : ℓn 6= 0} .

and e
(s) = (e

(s)
n )n∈N the vector whose n-th component is 0 if n 6= s and 1 if n = s. Similarly we define the

vector e
(S). Let

ψ(t) := (ω + te(s)) · ℓ+ µσ
j (ω + te(s))− µ

(σ′)
j′ (ω + te(s)) .

By using the estimate (6.3), for εγ−1 small enough, one has that

|ψ(t1)− ψ(t2)| ≥ |t1 − t2||ℓs| − Cεγ−1|t1 − t2| ≥
1

2
|t1 − t2| .

The latter estimate implies that
∣∣∣
{
t : ω + te(s) ∈ Rℓjj′ (γ), |ψ(t)| <

2γ

d(ℓ)

}∣∣∣ . γ

d(ℓ)
.

Since Rℓjj′ (γ) is a cylinder with at most S − s components, one obtains the desired bound.
�

Proof of Proposition 6.1. By recalling (6.8) and by applying Lemma 6.2, one gets the estimate

P
(
Dγ \ Ω∞(γ)

)
.

∑

(ℓ,j,j′)∈Z1

|j2−j′2|≤‖ℓ‖1

γ

d(ℓ)
+

∑

(ℓ,j)∈Z2

γ

〈j〉2d(ℓ)

. γ
( ∑

ℓ∈Z∞

∗

‖ℓ‖21
d(ℓ)

+
∑

ℓ∈Z∞

∗

1

d(ℓ)

∑

j∈N0

1

〈j〉2

) LemmaC.3
. γ .

The claimed statement then follows by recalling (6.5), (6.6).
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7. Proof of Theorem 1.4 and Corollary 1.7

Let γ := εa, a ∈ (0, 1). Then the smallness condition εγ−1 ≤ δ is fullfilled by taking ε ∈ (0, ε0) with ε0
small enough. By setting Ωε := Ω∞(γ), the Proposition 6.1 implies (1.7). For any ω ∈ Ωε, we define

(7.1) W∞(ϕ) := Φ(1)(ϕ) ◦ Φ(2) ◦ . . . ◦ Φ(7)(ϕ) ◦Ψ∞(ϕ) ϕ ∈ T
∞
σ/4

where the maps Φ(1), . . . ,Φ(7) are constructed in Section 4 and the map Ψ∞ is given in Lemma 5.4. The
properties (1) and (2) on the maps W∞(ϕ)±1 stated in Theorem 1.4 are easily deduced from Lemmata 4.1,
4.3, 4.4, 4.5, 4.6, 4.7, 4.8, 5.4-(ii) and from remark 4.2. Furthermore, by the same Lemmata and 5.5 one obtains
that u(t, x) is a solution of (1.1) if and only if v(·, t) := W∞(ωt)−1u(·, t), ω ∈ Ωε solves the time independent
equation ∂tv = iD∞v where D∞ is the 2× 2 time independent self-adjoint block-diagonal operator defined in
(5.43)-(5.45). The proof of Theorem 1.4 is then concluded.
Proof of Corollary 1.7. Since D∞ is a 2× 2 block diagonal self-adjoint operator, the general solution of
the equation ∂tv = iD∞v can be written as

v(x, t) =
∑

j∈N0

eitΠjD∞Πj [Πjv0] .

Since ΠjD∞Πj : Ej → Ej is self-adjoint (recall (3.2)), one has that
∥∥eitΠjD∞Πj [Πjv0]

∥∥
L2 = ‖Πjv0‖L2 for

any j ∈ N0. This implies that both analytic and Sobolev norms are preserved, namely for any σ > 0,
‖v(·, t)‖σ = ‖v0‖σ and for any s ≥ 0, ‖v(·, t)‖Hs = ‖v0‖Hs . Hence, by using the properties (1) and (2) stated
in Theorem 1.4, one obtains that for any ω ∈ Ωε, the solution u(·, t) := W∞(ωt)v(·, t) of (1.1) satisfies the
desired bounds both in analytic and Sobolev norms. The proof of the Corollary is therefore concluded.

Appendix A. Holomorphic functions on the infinite dimensional torus

We start by proving that, just as in the finite dimensional case, H(T∞
σ , X) is a space of holomorphic functions

in the following sense.
Endow the thickened torus T∞

σ with any topology such that the restriction to a finite dimensional subtorus
is a metric, i.e. any topology which is finer that the product topology. Denote by Bσ(X), the space of the
bounded, continuous functions u : T∞

σ → X equipped with the sup norm ‖ · ‖Bσ(X). For N ∈ N, define the

space H(TN
σ , X) as the space of holomorphic functions from the N -dimensional torus TN

σ :=
∏N

i=1 Tσ〈i〉η with

values in X . Finally let H̃(T∞
σ , X) be the closure of ∪N∈NHσ

N (X) in Bσ(X) w.r. to ‖ · ‖Bσ(X).

Proposition A.1. For all σ, ρ > 0 one has H(T∞
σ , X) ⊆ H̃(T∞

σ , X) ⊆ H(T∞
σ+ρ, X) with the bounds

‖u‖H̃(T∞

σ ,X) ≤ ‖u‖σ . exp
( τ

ρ
1
η

ln
(τ
ρ

))
‖u‖H̃(T∞

σ+ρ
,X)

Proof. Given N ∈ N, we define the set

Z∞
N :=

{
ℓ ∈ Z

N : ℓi = 0, ∀i > N
}
.

Given a function u : T∞
σ → X , for any N ∈ N we define the truncated function

SNu(ϕ) :=
∑

ℓ∈Z∞

N

û(ℓ)eiℓ·ϕ .

Let us show that u ∈ H(T∞
σ , X) is the limit of SNu in Bσ(X). If ℓ ∈ Z∞ \ Z∞

N , then there exists |i| > N
such that ℓi 6= 0 and hence by the definition of |ℓ|η one has |ℓ|η > Nη. Therefore

sup
ϕ∈T∞

σ

‖u(ϕ)− SNu(ϕ)‖X = sup
ϕ∈T∞

σ

∥∥∥
∑

ℓ∈Z
∞

∗
\Z∞

N

û(ℓ)ei(ϕ·ℓ)
∥∥∥
X

≤
∑

ℓ∈Z
∞

η :|ℓ|η>Nη

‖û(ℓ)‖Xe
σ|ℓ|η

The right hand side of the above inequality tends to 0 as N → ∞, since it is the tail of an absolutely convergent

series. To prove the second inclusion we consider u ∈ H̃(T∞
σ+ρ, X). By definition there exists a sequence (uk)k∈N

with uk ∈ H(TNk

σ+ρ, X), such that uk → u w.r. to ‖ · ‖Bσ(X). Since uk is an analytic function of the finite

dimensional torus T
Nk

σ+ρ, we can apply the Cauchy estimate, namely

(A.1) ‖ûk(ℓ)‖X ≤ e−(σ+ρ)|ℓ|η‖uk‖H(T
Nk
σ+ρ

,X)
, ∀ℓ ∈ Z

∞
Nk
.
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Let ℓ ∈ Z∞
∗ with |ℓ|η < ∞, then there exists an N > 0 such that ℓ ∈ Z∞

N
. Then for any k ≥ k0, one has

ℓ ∈ Z∞
Nk

. For any k ≥ m ≥ k0 one has

(A.2) ‖ûk(ℓ)− ûm(ℓ)‖X ≤ e−(σ+ρ)|ℓ|η‖uk − um‖H(T
Nk
σ+ρ

,X)
,

implying that the sequence (ûk(ℓ))k∈N is a Cauchy sequence. We define

û(ℓ) := lim
k→∞

ûk(ℓ)

and passing to the limit for k → ∞ in (A.2), one obtains that

(A.3) ‖ûm(ℓ)− û(ℓ)‖X ≤ e−(σ+ρ)|ℓ|η‖uk − u‖H̃(T∞

σ+ρ
,X).

Clearly, passing to the limit in (A.1), one has

(A.4) ‖û(ℓ)‖X ≤ e−(ρ+σ)|ℓ|η‖u‖H̃(T∞

σ+ρ
,X)) .

Let v(ϕ) :=
∑

ℓ∈Z∞

∗

û(ℓ)eiℓ·ϕ. We show that u = v by estimating ‖u(ϕ) − v(ϕ)‖X pointwise for any ϕ ∈ T∞
σ .

We have ‖u(ϕ)− v(ϕ)‖X = limk→∞ ‖uk(ϕ)− v(ϕ)‖X and we estimate

‖uk(ϕ)− v(ϕ)‖X ≤ ‖
∑

ℓ∈Z∞

Nk

ûk(ℓ)e
iℓ·ϕ −

∑

ℓ∈Z∞

∗

û(ℓ)eiℓ·ϕ‖X

≤
∑

ℓ∈Z∞

Nk

‖ûk(ℓ)− û(ℓ)‖X +
∑

ℓ∈Z∞

∗
\Z∞

Nk

‖û(ℓ)‖X

≤
∑

ℓ∈Z∞

Nk

‖ûk(ℓ)− û(ℓ)‖X +
∑

|ℓ|η≥Nk

‖û(ℓ)‖X

(A.2),(A.3)
≤

∑

ℓ∈Z∞

Nk

e−(σ+ρ)|ℓ|η‖uk − u‖Hσ+ρ(X) +
∑

|ℓ|η>Nk

e−(ρ+σ)|ℓ|η‖u‖Hσ+ρ(X) .

The first term converges to zero since
∑

ℓ∈Z∞

∗

e−(σ+ρ)|ℓ|η is convergent and ‖uk − u‖Hσ+ρ(X) → 0. The second

term converges to zero since it is the tail of a convergent series and Nk → ∞. It remains to estimate ‖u‖σ.
We have

‖u‖σ =
∑

ℓ∈Z∞

∗

eσ|ℓ|η‖û(ℓ)‖X
(A.4)
≤ ‖u‖Hσ+ρ(X)

∑

ℓ∈Z∞

∗

e−ρ|ℓ|η .

�

Appendix B. technical lemmata

B.1. Linear operators in finite dimension. Given an operator A ∈ B(Ej), we define its trace as

(B.1)
Tr(A) := A0

0, A ∈ B(E0),

Tr(A) := Aj
j +A−j

−j , A ∈ B(Ej), j ∈ N .

It is easy to check that if A,B ∈ B(Ej), then

(B.2) Tr(AB) = Tr(BA) .

For all j, j′ ∈ N0, the space B(Ej′ ,Ej) is a Hilbert space5 equipped by the inner product given for any
X,Y ∈ B(Ej′ ,Ej) by

(B.3) 〈X,Y 〉 := Tr(XY ∗) .

This scalar product induces the L2-norm ‖ · ‖HS defined in (3.10).
Given a linear operator L : B(Ej′ ,Ej) → B(Ej′ ,Ej), we denote by ‖L‖Op its operatorial norm, when the space
B(Ej′ ,Ej) is equipped by the L2-norm (3.10), namely

(B.4) ‖L‖Op := sup
{
‖L(M)‖HS :M ∈ B(Ej′ ,Ej) , ‖M‖HS ≤ 1

}
.

5Actually all the norms on the finite dimensional space B(Ej′ ,Ej) are equivalent.
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For any operator A ∈ B(Ej) we denote by ML(A) : B(Ej′ ,Ej) → B(Ej′ ,Ej) the linear operator defined for
any X ∈ B(Ej′ ,Ej) as

(B.5) ML(A)X := AX .

Similarly, given an operator B ∈ B(Ej′), we denote by MR(B) : B(Ej′ ,Ej) → B(Ej′ ,Ej) the linear operator
defined for any X ∈ B(Ej′ ,Ej) as

(B.6) MR(B)X := XB .

The following elementary estimates hold:

(B.7) ‖ML(A)‖Op ≤ ‖A‖HS , ‖MR(B)‖Op ≤ ‖B‖HS .

We denote by S(Ej), the set of the self-adjoint operators form Ej onto itself, namely

(B.8) S(Ej) :=
{
A ∈ L(Ej) : A = A∗

}
.

Furthermore, for any A ∈ B(Ej) denote by spec(A) the spectrum of A. The following Lemma can be proved
by using elementary arguments from linear algebra, hence the proof is omitted.

Lemma B.1. Let j, j′ ∈ N0, A ∈ S(Ej), B ∈ S(Ej′ ), then the following holds:
(i) The operators ML(A), MR(B) defined in (B.5), (B.6) are self-adjoint operators with respect to the scalar
product defined in (B.3).
(ii) Let j, j′ ∈ N, A ∈ S(Ej), B ∈ S(Ej′ ). The spectrum of the operator ML(A)±MR(B) satisfies

spec
(
ML(A)±MR(B)

)
=
{
λ± µ : λ ∈ spec(A) , µ ∈ spec(B)

}
.

(iii) Let j ∈ N, A ∈ S(Ej) and B ≡ λ0 ∈ S(E0). Then, the spectrum of the operators ML(A) ±MR(λ0) ≡
ML(A) ± λ0Id : B(E0,Ej) → B(E0,Ej) and ML(λ0) ±MR(A) ≡ λ0Id ±MR(A) : B(Ej,E0) → B(Ej,E0)
satisfy

spec
(
ML(A)± λ0Id

)
= spec

(
λ0Id±MR(A)

)
=
{
λ± λ0 : λ ∈ spec(A)

}
.

We finish this Section by recalling some well known facts concerning linear self-adjoint operators on finite
dimensional Hilbert spaces. Let H be a finite dimensional Hilbert space of dimension n equipped by the inner
product (· , ·)H. For any self-adjoint operator A : H → H, we order its eigenvalues as

(B.9) spec(A) :=
{
λ1(A) ≤ λ2(A) ≤ . . . ≤ λn(A)

}
.

Lemma B.2. Let H be a Hilbert space of dimension n. Then the following holds:
(i) Let A1, A2 : H → H be self-adjoint operators. Then their eigenvalues, ordered as in (B.9), satisfy the
Lipschitz property

|λk(A1)− λk(A2)| ≤ ‖A1 −A2‖B(H) , ∀k = 1, . . . , n .

(ii) Let A = yIdH +B, where y ∈ R, IdH : H → H is the identity and B : H → H is selfadjoint. Then

λk(A) = y + λk(B) , ∀k = 1, . . . , n .

(iii) Let A : H → H be self-adjoint and assume that spec(A) ⊂ R \ {0}. Then A is invertible and its inverse
satisfies

‖A−1‖B(H) =
1

mink=1,...,n |λk(A)|
.

B.2. properties of Bσ,m.

Lemma B.3. Let σ, ρ > 0, m,m′ ∈ R R ∈ Bσ,m,Q ∈ Bσ+ρ,m′

. Then RQ ∈ Bσ,m+m′

and ‖RQ‖Bσ,m+m′ .m

ρ−|m|‖R‖Bσ,m‖Q‖Bσ+ρ,m′ .

Proof. Proof of (i) By using the 2 × 2 block representation of linear operators, one has that the operator
C := RQ admits the representation C =

∑
j,j′∈N0

ΠjCΠj′ where

(B.10) ΠjCΠj′ =
∑

k∈N0

(ΠjRΠk)(ΠkQΠj′) , ∀j, j′ ∈ N0 .
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Using that by triangular inequality eσ|j−j′| ≤ eσ|j−k|eσ|k−j′|, for any j′ ∈ Z

(B.11)∑

j∈N0

eσ|j−j′|‖ΠjCΠj′‖HS〈j
′〉−(m+m′) ≤

∑

j,k∈N0

eσ|j−j′|‖ΠjRΠk‖HS‖ΠkQΠj′‖HS〈j
′〉−(m+m′)

≤
∑

j,k∈N0

eσ|j−k|‖ΠjRΠk‖HS〈k〉
−meσ|k−j′|‖ΠkQΠj′‖HS〈j

′〉−m′

〈k〉m〈j′〉−m .

Using that

〈k〉m〈j′〉−m .m 1 + 〈k − j′〉|m| .m 〈k − j′〉|m|

the inequality (B.11) implies that
(B.12)∑

j∈N0

eσ|j−j′|‖ΠjCΠj′‖HS〈j
′〉−(m+m′) .m

∑

j,k∈N0

eσ|j−k|‖ΠjRΠk‖HS〈k〉
−meσ|k−j′|〈k − j′〉|m|‖ΠkQΠj′‖HS〈j

′〉−m′

.m sup
k∈N0

( ∑

j∈N0

eσ|j−k|‖ΠjRΠk‖HS〈k〉
−m
) ∑

k∈N0

eσ|k−j′|〈k − j′〉|m|‖ΠkQΠj′‖HS〈j
′〉−m′

.m ‖R‖Bσ,m

∑

k∈N0

e(σ+ρ)|k−j′|〈k − j′〉|m|e−ρ|k−j′|‖ΠkQΠj′‖HS〈j
′〉−m′

.

Using that

sup
x≥0

x|m|e−ρx .m ρ−|m|

one gets
∑

k∈N0

e(σ+ρ)|k−j′|〈k − j′〉|m|e−ρ|k−j′|‖ΠkQΠj′‖HS〈j
′〉−m′

.m ρ−|m|‖Q‖Bσ+ρ,m′

and then the claimed statement follows. �

Lemma B.4. Let σ > 0, a ∈ H(Tσ+ρ). Then the multiplication operator Ma : u(x) 7→ a(x)u(x) is in Bσ and
‖Ma‖Bσ . ρ−1‖a‖σ+ρ.

Proof. One easily see that the multiplication operator Ma admits the 2 × 2 block representation Ma =∑
j,j′∈N0

ΠjMaΠj′ where for any j, j′ ∈ N0, the operator ΠjMaΠj′ is represented by the matrices

(
â(j − j′) â(j + j′)
â(−j − j′) â(−j + j′) ,

)
j, j′ ∈ N ,

(
â(j)
â(−j)

)
j ∈ N ,

(
â(j′), â(−j′)

)
j′ ∈ N .

Using that a ∈ H(Tσ+ρ), one obtains that

|â(j − j′)|, |â(−j + j′)| ≤ ‖a‖σ+ρe
−(σ+ρ)|j−j′| ,

|â(j + j′)|, |â(−j − j′)| ≤ ‖a‖σ+ρe
−(σ+ρ)|j+j′| .

Using that for any j, j′ ∈ N0, e
−(σ+ρ)|j+j′| ≤ e−(σ+ρ)|j−j′|, one gets that

‖ΠjMaΠj′‖HS . ‖a‖σ+ρe
−(σ+ρ)|j−j′|, ∀j, j′ ∈ N0 .

Therefore for any j′ ∈ N0,

∑

j∈N0

eσ|j−j′|‖ΠjMaΠj′‖HS . ‖a‖σ+ρ

∑

j∈N0

e−ρ|j−j′| . ρ−1‖a‖Hσ+ρ
x

.

The thesis then follows by recalling the definition (3.11). �
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B.3. Properties of torus diffeomorphisms. In Subsection 4.2, we have considered diffeomorphisms of the
form

(B.13) ϕ 7→ ϕ+ ωα(ϕ)

where α ∈ H(T∞
σ+ρ), σ, ρ > 0 and ω ∈ Dγ . By Lemma 2.13, for ε = ε(ρ) small enough, if ‖α‖Hσ+ρ ≤ ε, then

the diffeomorphism (B.13) is invertible and its inverse has the form

(B.14) ϑ 7→ ϑ+ ωα̃(ϑ)

where α̃ ∈ H(T∞
σ ) and ‖α̃‖σ . ‖α‖σ+ρ. Note that by (B.13), (B.14), one can easily deduce the formulae

(B.15)

1 + ω · ∂ϑα̃(ϑ) =
1

1 + ω · ∂ϕα(ϑ+ ωα̃(ϑ))
,

1 + ω · ∂ϕα(ϕ) =
1

1 + ω · ∂ϑα̃(ϕ+ ωα(ϕ))
.

The following lemma will be used in the reduction procedure of Section 4, in order to show that some averages
do not depend on the parameter ω ∈ Ω.

Lemma B.5. The following holds:
Let ω ∈ Dγ be a Diophantine frequency and let a be a function in H(T∞

σ ). Then
∫
T∞

ω · ∂ϑa(ϑ) dϑ = 0. As a
consequence one has

(B.16)

∫

T∞

(
1 + ω · ∂ϑα̃(ϑ)

)
dϑ = 1

and for any ℓ ∈ Z∞
∗ \ {0},

(B.17)

∫

T∞

eiℓ·
(
ϑ+ωα̃(ϑ)

)(
1 + ω · ∂ϑα̃(ϑ)

)
dϑ = 0 .

Proof. Let N ∈ N. Then We split

ω · ∂ϑa(ϑ) =
∑

ℓ 6=0 , |ℓ|η≤N

iω · ℓâ(ℓ)eiℓ·ϑ +
∑

|ℓ|η>N

iω · ℓâ(ℓ)eiℓ·ϑ .

Since a is an analytic function, the second term on the right hand side goes to zero as N → +∞. Moreover∫

TN

∑

ℓ 6=0 , |ℓ|η≤N

iω · ℓâ(ℓ)eiℓ·ϑ dϑ =
∑

ℓ 6=0 , |ℓ|η≤N

iω · ℓâ(ℓ)

∫

TN

eiℓ·ϑ dϑ = 0 .

Therefore one deduces that∫

T∞

a(ϑ) dϑ = lim
N→∞

1

(2π)N

∫

TN

∑

|ℓ|η>N

iω · ℓâ(ℓ)eiℓ·ϑ dϑ = 0 .

The equality (B.16) follows immediately by the previous claim. The equality (B.17), follows observing that
since ℓ ∈ Z∞

∗ \ {0} and ω is Diophantine, one has that

eiℓ·
(
ϑ+ωα̃(ϑ)

)(
1 + ω · ∂ϑα̃(ϑ)

)
=

1

iω · ℓ
ω · ∂ϑ

(
eiℓ·
(
ϑ+ωα̃(ϑ)

))

hence the result follows by applying the first claim. �

Lemma B.6 (Moser composition lemma). Let f : BR(0) → C be an holomorphic function defined in a
neighbourhood of the origin BR(0) of the complex plane C. Then the composition operator F (u) := f ◦ u is a
well defined non linear map H(T∞

σ ) → H(T∞
σ ).

Proof. Clearly, since f(z) =
∑

n≥0 anz
n is analytic, for any z ∈ C, |z| < R, the series

∑
n≥0 |an||z|

n is

convergent. Moreover, Let u ∈ H(T∞
σ ) with ‖u‖σ ≤ r < R. By applying Lemma 2.5, for any n ≥ 1,

un ∈ H(T∞
σ ) and ‖un‖σ ≤ ‖u‖nσ ≤ rn. The series

∑
n≥0 anu

n is absolutely convergent w.r. to ‖ · ‖σ. Indeed ,
one has ∥∥∥

∑

n≥0

anu
n
∥∥∥
σ
≤
∑

n≥0

|an|‖u‖
n
σ ≤

∑

n≥0

|an|r
n <∞ .

this implies that F (u) =
∑

n≥0 anu
n belongs to the space H(T∞

σ ) and the proof of the lemma is concluded. �
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Appendix C. some estimates of constants

Lemma C.1. (i) Let µ1, µ2 > 0. Then

sup
ℓ∈Z

∞

∗

|ℓ|η<∞

∏

i

(1 + 〈i〉µ1 |ℓi|
µ2)e−ρ|ℓ|η ≤ exp

( τ

ρ
1
η

ln
(τ
ρ

))

for some constant τ = τ(η, µ1, µ2) > 0.

(ii) Let ρ > 0. Then
∑

ℓ∈Z∞

∗

e−ρ|ℓ|η . exp
(

τ

ρ
1
η

ln
(

τ
ρ

))
, for some constant τ = τ(η) > 0.

Proof. Proof of (i). We remark that the left hand side can be expressed as

exp
(∑

i

−ρ〈i〉η|ℓi|+ ln
(
1 + 〈i〉µ1 |ℓi|

µ2
))

=: exp(
∑

i

fi(|ℓi|))

where

(C.1) fi(x) := ln
(
1 + 〈i〉µ1xµ2

)
− ρ〈i〉ηx .

then the result follows essentially word by word from Lemma 7.2 of [BMP] where it is proved in the special
case µ1 = 2 + q, µ2 = 2. Since fi(0) = 0, it is enough to estimate maxx≥1fi(x), in order to bound the series∑

i fi(|ℓi|). One has that for any x ≥ 1

fi(x) ≤ ln(2〈i〉µ1xµ2)− ρ〈i〉ηx ≤ C0(µ1) ln(〈i〉) + µ2 ln(x)− ρ〈i〉ηx =: gi(x)

for some constant C0(µ1) > 0 and hence

maxx≥1fi ≤ maxx≥1gi .

Using that ln(x) ≤ x for any x ≥ 1, one has that

gi(x) ≤ C0(µ1) ln(〈i〉) −
ρ〈i〉η

2
x, ∀i ≥

(2µ2

ρ

) 1
η

.

Furthermore,

C0(µ1) ln(〈i〉)−
ρ〈i〉η

2
x ≤ 0, ∀i ≥

(2C0(µ1)

ηρ

) 1
η

and hence

gi(x) ≤ 0, ∀i ≥
(C1

ρ

) 1
η

, C1 ≡ C1(µ1, µ2, η) := max{
2C0(µ1)

η
, 2µ2} .

If i ≤ C1

ρ
1
η

, a direct calculation shows that the maximum of gi is achieved at the point xi =
µ2

ρ〈i〉η and

gi(xi) = C0 ln(〈i〉) + µ2 ln
( µ2

ρ〈i〉η

)
− µ2 ≤

C0

η
ln
(C1

ρ

)
+ µ2 ln

(µ2

ρ

)
≤ C2 ln

(C2

ρ

)

for some constant C2 = C2(η, µ1, µ2) > 0 large enough. Thus
∑

i

fi(x) ≤
∑

i≤C1ρ
−

1
η

gi(x) ≤
C1

ρ
1
η

C2 ln
(C2

ρ

)

Proof of (ii). By Lemma 4.1 of [BMP], one has
∑

ℓ∈Z∞

∗

∏

i

1

1 + 〈i〉2|ℓi|2
≤ C0 <∞ .

Therefore ∑

ℓ∈Z∞

∗

e−ρ|ℓ|η =
∑

ℓ∈Z∞

∗

∏

i

1

1 + 〈i〉2|ℓi|2
e−ρ〈i〉η|ℓi|(1 + 〈i〉2|ℓi|

2
)

. sup
ℓ∈Z∞

∗

(∏

i

e−ρ〈i〉η |ℓi|(1 + 〈i〉2|ℓi|
2
))
.

The claimed statement then follows by item (i) with µ1 = µ2 = 2.
�
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Lemma C.2 (Small divisor estimate). Let µ1, µ2 ≥ 1. We have the following estimate for N ≫ 1

(C.2) sup
ℓ∈Z∞

∗
: |ℓ|η<N

∏

i

(1 + 〈i〉µ1 |ℓi|
µ2) ≤ (1 +N)C(η,µ1,µ2)N

1
1+η

for some constant C(η, µ1, µ2) > 0.

Proof. For ℓ fixed, let us denote by k the number of non-zero components of ℓ. We claim that k .η N
1

1+η ,
indeed

N ≥ |ℓ|η =

k∑

j=1

〈ij〉
η|ℓij | ≥

k∑

j=1

〈ij〉
η ≥

k∑

j=1

jη ≃η k
1+η

and the claim follows. Now if η ≥ 1 we have 〈i〉|ℓi| ≤ 〈i〉η|ℓi| ≤ N and setting µ := max{µ1, µ2}

sup
ℓ∈Z∞

∗
: |ℓ|η≤N

∑

i

ln(1 + 〈i〉µ1 |ℓi|
µ2) .η N

1
1+η ln(1 +Nµ) .η,µ N

1
1+η ln(1 +N).

otherwise if η ≤ 1 one has 〈i〉|ℓi| ≤ (〈i〉η|ℓi|)
1
η ≤ N

1
η and again

sup
ℓ∈Z∞

∗
: |ℓ|η≤N

∑

i

ln(1 + 〈i〉µ1 |ℓi|
µ2) .η N

1
1+η ln(1 +N

µ
η ) .η,µ N

1
1+η ln(1 +N).

�

Lemma C.3. For µ1, µ2 > 3, one has that
∑

ℓ∈Z∞

∗

‖ℓ‖2
1

d(ℓ) <∞ where d(ℓ) :=
∏

i∈N
(1 + 〈i〉µ1 |ℓi|

µ2).

Proof. The proof is very similar to the one of the measure estimate Lemma 4.1 of [BMP]. For ℓ ∈ Z
∞
∗ let

s = s(ℓ) be the smallest index i such that ℓi 6= 0 and S = S(ℓ) be the biggest. Recalling
∏

n∈N

1

(1 + |ℓn|µ1nµ2)
=

∏

s(ℓ)≤n≤S(ℓ)

1

(1 + |ℓn|µ1 |n|µ2)

Now
∑

ℓ∈Z∞

∗

‖ℓ‖21
d(ℓ)

≤
∑

s∈N

∑

ℓ:s(ℓ)=S(ℓ)=s

|ℓs|2

(1 + |ℓs|µ1 |s|µ2)
(C.3)

+
∑

S∈N

∑

0<s<S

(S − s)2
∑

ℓ:s(ℓ)=s,
S(ℓ)=S

∏

s≤n≤S

〈ℓn〉2

(1 + |ℓn|µ1 |n|µ2)
.(C.4)

Now for µ1 > 3
∞∑

h=1

h2

(1 + hµ1 |n|µ2)
≤

∞∑

h=1

1

hµ1−2|n|µ2
≤
c(µ1)

|n|µ2

hence ∑

h∈Z

〈h〉2

(1 + |h|µ1 |n|µ2+p)
≤ 1 +

c(µ1)

|n|µ2
.

Consequently for µ2 > 1, (C.3) is bounded by

c(µ1)
∑

s>0

|s|−µ2 ≤ c3(µ1, µ2)γ.

Regarding (C.4), we have

∑

ℓ:s(ℓ)=s,
S(ℓ)=S

∏

s≤n≤S

〈ℓn〉2

(1 + |ℓn|µ1 |n|µ2)
≤

c(µ1)
2

|s|µ2 |S|µ2

∏

s<n<S

(1 +
c(µ1)

|n|µ2
) =

c(µ1)
2

|s|µ2 |S|µ2
exp

( ∑

s<n<S

ln(1 +
c(µ1)

|n|µ2
)
)
≤

c(µ1)
2

|s|µ2 |S|µ2
exp

(∑

n∈N

c(µ1)

|n|µ2

)
≤

c1(µ1)

|s|µ2 |S|µ2
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consequently (C.4) is bounded by

∑

S∈N

∑

0<s<S

(S − s)2
c1(µ1)

|s|µ2 |S|µ2
<∞

provided that µ2 > 3. �
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