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LINEAR SCHRODINGER EQUATION WITH AN ALMOST PERIODIC POTENTIAL

RICCARDO MONTALTO, MICHELA PROCESI

AsTrACT. We study the reducibility of a Linear Schrédinger equation subject to a small unbounded almost-
periodic perturbation which is analytic in time and space. Under appropriate assumptions on the smallness,
analiticity and on the frequency of the almost-periodic perturbation, we prove that such an equation is reducible
to constant coefficients via an anaytic almost-periodic change of variables. This implies control of both Sobolev
and Analytic norms for the solution of the corresponding Schrédinger equation for all times.
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1. INTRODUCTION

The problem of control of Sobolev norms for Linear Schrédinger operators on a torus with smooth time
dependent potential has been studied by various authors. Groundbreaking results were proved by Bourgain in
[Bou99a] in the case of quasi-periodic bounded potentials with a Diophantine frequency, then in [Bou99b] for
general time dependent potentials. The main result was an upper bound on the growth in time of the Sobolev
norm, respectively logaritmic and polynomial in time. Such results were generalized to unbounded potentials

in see [Dell0], [MR17], [Mon18], [BM18],[BGMR17|, [Mon19al, [MonI9bj, [BM19], [FMI9)].
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The main feature of such results is that they are very general, require little or no conditions on the time
dependence of the potential and can often be applied also in non-perturbative settings. At this level of
generality such results are in fact optimal as showed in [Bou99b|. See also [Mas18], [HM19] for examples of
growth.
A parallel point of view is to study the reducibility of Schrédinger operators with quasi-periodic potentials
by requiring stronger non-resonance conditions on the frequency, see [EK09]. We recall that a first order
differential equation is said to be reducible if there exists a (uniformly bounded) time dependent operator
which conjugates it to an equation whose vector field is diagonal (or block diagonal). Thus one gets a uniform
control in time of the Sobolev norms to the price of restricting to small quasi-periodic potentials with rather
involuted non-resonance conditions on the frequency. We remark that reducibility is a key argument in KAM
for non-linear PDEs. This is a strong motivation for studying reducibility for linear PDEs. Conversly many
KAM results can be adapted to the reducibility setting.
As can be expected the (block) diagonalization algorithm relies on lower bounds on the difference of distinct
eigenvalues (the spectral gaps) as well as on a strong control on their possible multiplicity. Indeed the first
results were for bounded potentials in the case of Dirichlet boundary conditions on [0, 7], where the eigenvalues
are simple (see for instance [Kuk87], [P5s89], [P96], [KP96], [Kuk98]). The last ten years have seen considerable
progress in this field, particularly in the case of unbounded potentials. The first results were in [IPT05] in
the case of periodic potentials and [BBM14], [BBMI16| for the quasi-periodic case. Regarding Schrodinger
equations we mention [FP14], [Feol5|,[Bam17],|[Baml8|. Note that all the preceding papers deal with Sobolev
stability; generalizing to the analytic case, especially in the case of unbounded potentials of order two and in
the context of a nonlinear KAM scheme, is not straightforward. A strategy was discussed in [CFP|,[EP]. While
the literature on reducibility of quasi-periodic potentials is quite extensive in the case of one space dimension,
the case of higher dimensional manifolds is still largely open. We mention [EK10], [BG16], [EGK16] and finally
[BGMRIS|, [FGMP19],[Mon19b|, [CM18]|, [BLM19] for an unbounded potential.
Common features of the reduction algorithms are : 1. they are perturbative, 2. they require complicated
non-resonance conditions depending on the potential, 3. they strongly depend on the number of frequencies.
In the present paper we study the reducibility of Schrédinger equations on the circle with a small unbouned
almost periodic potential of the form

Dpu = i(ag + sP(t))u,

1.1
b P(t) := Va(z, )02 + Vi(x,0)0r + Vo(2,t), €T :=R/(27Z),t €R.
Here Vp, V1,V are analytic (in an appropriate sense) almost periodic functions of time with frequency w which
is an infinite dimensional Diophantine vector in £>°(N,R) (see definitions[[3land (I1])). For small ¢ we prove
a reducibility result under the assumption that for any ¢ € R, the operator P(t) is L? self-adjoint and that w
belongs to some (explicit but convoluted) Cantor set of asymptotically full measure.

Of course the difficulty of such a result is strongly related to the regularity of the almost-periodic potential.
Indeed, by definition, an almost periodic function is the limit of quasi-periodic ones with an increasing number
of frequencies. If the limit is reached sufficiently fast, the most direct strategy is to diagonalize iteratively the
Schrédinger operators with quasi-periodic potentials, by considering at each step n the operator as a small per-
turbation of the one of the previous step. This procedure in fact works if one considers a sufficiently smoothing
and regular potentials but becomes very delicate in the case of unbounded potentials.

Good comparisons are: [P02] which studies a smoothing nonlinear Schrédinger equation with external param-
eters and proves existence of on almost-periodic solutions with superexponential decay in the Fourier modes.
[Bou05|, on almost-periodic solutions for a nonlinear Schrédinger equation with external parameters with
subexponential decay in the Fourier modes. In the first paper the very fast decay implies that at each KAM
step, one only needs to construct quasi-periodic solutions (with increasing number of frequencies) which is a
well known result; the only point is to show that they converge superexponentially to a non-trivial almost
periodic solution. In the second paper the author does not rely on quasi-periodic approximations, this requires
to completely revisit the KAM scheme but leads to solutions with much less regularity. In this paper we follow
the general point of view of [Bou05|, see also [BMP19], using the same infinite dimensional Diophantine vectors
and various technical lemmata (detailed proofs of all the technical Lemmata can ber found in [BMP]).

In order to give the precise statement of our Theorems, we introduce some notations and definitions.
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We define the parameter space of frequencies as a subset of ¢ (N, R), where we recall that
(N, R) := {w = (w;)jen € RY: [|wl|oo := sup |w;| < oo} .
JEN

More precisely, our set of frequencies is the infinite dimensional cube

N
(1.2) Ry = [1 , 2} .
We endow the space of parameters Rg with the > metric, namely we set

(13) doo(wl,wg) = ||W1 —WQHOO, Ywi,ws € Ry .

Furthermore, we endow Ry with the probability measure P induced by the product measure of the infinite-
dimensional cube Rg.

We now define the set of Diophantine frequencies. The following definition is a slight generalization of the one
given by Bourgain in [Bou035].

Definition 1.1. Given vy € (0,1), u > 1, we denote by D, the set of Diophantine frequencies

VeeZN 0 <Y || < oo

1
(1.4) Dy, = w€R0:|w-€|>’yH(1+|
JEN

o Gy’
In the following we shall fix ;1 = 2 and denote D := Dy 2.

For all > 1, Diophantine frequencies are typical in the set Ry in the sense of the following measure estimate,
proved in [Bou05| (see also [BMP]).

Lemma 1.2. For u > 1 the exists a positive constant C(u) > 0 such that
P(Ro\ D) < C(11)7 -

For n > 0, we define the set of infinite integer vectors with finite support
(1.5) Z® = {KEZN:M,, =571t <oo}.
JEN
Note that ¢; # 0 only for finitely many indices j € N.
Definition 1.3. Given w € D, and a Banach space X, || - || x, we say that F(t) : R — X is almost-periodic in

time with frequency w and analytic in the strip o > 0 if we may write it in totally convergent Fourier series
F(t) = Z ﬁ(g)eil-wt such that ﬁ(é) eX,WeZ¥* and Z ||ﬁ(£)HXeo|E|n < 0.
IS L€z
We shall be particularly interested in almost-periodic functions where X = H(T,)
H(T,) := {u = Zﬁneinz, ;€ C o ullyr,) = Z mnleoln\ < oo}
nez nez

is the space of analytic functions T, — C, where T, := {¢ € C: Re(p) € T, |Im(p)| < o} is the thickened
torus.

Now we are ready to state precisely our main result. We make the following assumptions.

e (H1) The functions Vg, V1, V4 are almost-periodic and analytic, in the sense of Definition [[3] for & > 0
and X = H(T?)
e (H2) We assume that

‘/Q(Iat):%(xvt)v V(Iat)ETXRa
(1.6) Vi(z,t) = 20, Va(z,t) — Vi(z,t), V(z,t) e TxR
Volt,x) = Vo(a,t) — OpVi(a,t) + OpgVal(a,t), V(z,t) € TxR.

This implies that the operator P(¢) in () is L? self-adjoint for ¢ € R. Here and in the following we
denote by B(E, F) the space of bounded linear operators from E to F.

'Here and in the follwing N does not contain {0}.
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Theorem 1.4 (Reducibility). Let & > 0 and assume the hypotheses (H1) and (H2). Then there exists
g0 € (0,1) small enough such that for any e € (0,2¢) there exists a subset Q. C Ro = [1,2]" satisfying

(1.7) lim P(Q.) = 1
e—0

such that the following holds. For anyw € Q, t € R, 0 < 0 < o’ <7/4, p > 0 there exists 6 = 6(0,0’) € (0,1)
such that if ey~ < & then there exists a unitary (in L*(T)) operator W, (t) = W (t;w) such that:
(1) Wao(t), Wao ()1 are almost periodic and analytic maps on the strip G /4 into X = B('H(Tg/), H(Tg))
(2) u(-,t) is a solution of the Schridinger equation ([LI) if and only if v(-,t) = Woo(t) " u(-,1)] is a
solution of the time independent equation
(1.8) 0yv = iDgov
where Dy s a linear, self-adjoint, time independent, 2 X 2 block-diagonal opemtmﬁ of order two such
that the commutator [Doo, Ozz] = 0.
(3) For any s > 0, the maps R — B(HS('I['), H (']T))), t = Wao (t)*! are bounded.

From the Theorem stated above, we can deduce the following Corollaries:

Corollary 1.5 (Asymptotics of the eigenvalues). The spectrum of the operator D, is given by

(1.9) spec(Dac) = {p0(w)} U {u$ (@), 187 ()} jeny C R,

A
1S () = Aag® 4+ oArj + dow) + a—lj(”)

rg
+ ]—’2 ,j>0
where Adg — 1, A1 ~ ¢ do not depend on w, while Ao, A—1,7] are Lipschitz w.r. to w and of order €. Finally 1o
is Lipschitz w.r. to w and of order €.

For compactness of notations we set uéﬂ = u(f) = lp.
Corollary 1.6 (Characterization of the Cantor set). The Cantor set €., given in Theorem is defined
explicitly in terms of the spectrum of the block diagonal operator Ds,. More precisely it is equal to the set
Qoo (7), v = €% for some a € (0,1), where

(1.10)
— . @ _ ) s 27 .\ o oo o / 3
Qoo(7) == qw €Dyt w4 py — gy |2d(£), V(l,5,5) €2 xNgxNg, j#3, o0 €{+, ~}
’ 2/}/ .
4l e s 2Ty 72\ {0}) x N ! -
|o.) +/1'J /1’3 |— d(€)<j>27 (7.7)6( * \{ })X 05 0,0 €{+7 }}
where

a(0) = [J A+ ")), Veez®.
neN

Corollary 1.7 (Dynamical consequences). Under the same assumptions of Theorem [1.4] the following holds

e Analytic stability. For any 0 < 0 <7/4, p > 0, ug € H(T#), the unique solution of the equation
LI) with initial datum u(x,0) = ue(x) satisfies the estimate ||u(-,t)||ly(r,) S |uolla(rs) uniformly
w.r. tot € R.

e Sobolev stability. For any s > 0, up € H*(T), the unique solution of the equation ([LII) with initial
datum u(x,0) = uo(x) satisfies the estimate ||u(-,t)|| s (my Ss ol gs(ry uniformly w.r. tot € R.

Remark 1.8. By Theorem[17), items (1) and (3), one gets boundedness properties of the maps Woo(t)=* both
on analytic and Sobolev spaces. This is the reason why in Corollary [L7, we get a stability result for both
analytic and Sobolev initial data, see Section [

2We recall that an operator L on a vector space V is d X d block diagonal if there exists a decomposition of V' = @V} such
that L maps each Vj in itself and all the Vj; have dimension at most d.
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Strategy of the Proof. The overall strategy of the proof is the one proposed in [BBM14] and consists
of two main steps: a regularization procedure and a KAM reduction scheme. The aim of the first step is to
conjugate (L)) to a simpler dynamical system where the vector field is space and time independent up to
a sufficiently smoothing remainder. Here one uses the fact that the linear operator in (LI has a pseudo-
differential structure.

In the second step one completes the reduction by applying a KAM scheme, which relies on the fact that the
eigenvalues are at most double, with a quantitative control on the differences.

In order to explain which are the main difficulties to overcome in order to deal with almost-periodic potentials
let us describe the strategy more in detail.

It is convenient to think of almost-periodic in time functions as restrictions functions on an infinite di-
mensional torus. To this purpose we define analytic functions of infinitely many angles as the class of totally
convergent Fourier series with a prescribed (and very strong) decay on the Fourier coefficients. We show that in
fact this definition coincides with the set of holomorphic functions on a thickened torus (see Appendix [A]) and
discuss properties of our set of functions which shall be needed in order to perform the reduction procedure.
The interesting point is that we work with functions on the thickened torus:

TS :={p=(pi)jen, #; €C: Re(p;) €T, [Im(p;)| <o(5)"}.
so not only we consider analytic functions but the radius of analiticity increases as j — oo. This is quite a
strong condition but it is not at all clear to us whether it may be weakened, even in apparently harmless ways
like requiring [Im(p;)| < olog(1+ (j))? with p > 1. In the description of the strategy we shall point out where
such a strong assumption is needed.

In the regularization procedure the first step is to reparameterize the x variable (z ~ x 4+ 8(z,wt)), in order
to remove the space dependence in the leading order term Vo of (LI). This induces an invertible linear
operator which acts on the dynamical system removing the x dependence from V5. Here the time behaves
as a parameter, so no condition on the time dependence of the potential is needed. Note however that this
change of variables mizes time and space. Namely if we start with a potential which is analytic in time but
only Sobolev in space, after the change of variables it will have finite regularity both in time and in space.
For this reason, since we need to preserve analiticity in time throughout our procedure, we require that our
potentials are analytic also in space.

In the second step one reparametrizes the variables ¢ € To° so as to remove the angle dependence in V5. Here
there are various non-trivial points to discuss, both in order to guarantee that the change of variables is well
defined and "invertible" and in order to describe the action on analytic functions.

Indeed even in the case of a finite number of angles, the regularization procedure is performed on C*° potentials
and working in the analytic class requires some extra care (see also [EP]).

In this step one uses the fact that w is Diophantine in the sense of (4] as well as the fact that the potentials
are analytic with growing radius of analiticity as j — oo.

The remaining steps in the regularization procedure do not introduce further problems w.r.t. the first two
steps. As is typical in this kind of results one could further push the regularization procedure up to an
arbitrarily smoothing remainder. We have chosen to regularize our problem up to order —2 because this is the
minimal action required in order to complete the successive KAM iterative procedure.
An interesting point is that all the regularization steps apart from the first three, do not mix the regularity of
time and space so that one could work with potentials that are only analytic in time. A simple consequence
is that if in (ITJ)) we assume that V5 and V;j are constant in time then we can require that Vp has only finite
regularity in space (but is still analytic in time).
Since we work with a perturbation which is a differential operator whose coefficients are analytic both in time
and space, we cannot apply as a black box the regularization procedure as in [BGMRI17]|, [Mon18|, which is
based on Egorov-type theorems and is developed for general pseudo-differential perturbations of class C*.
Indeed developing a general Egorov-type theorem in analytic class does not appear a straightforward question
(actually the quantitative estimates that we need might not hold true in a general setting).

Therefore we perform the regularization procedure in the class of analytic functions, with quantitative
estimates, see Sections .1l and @l The main feature which we exploit is that our perturbation P is a classical



6 RICCARDO MONTALTO, MICHELA PROCESI

pseudo-differential differential operator (i.e. it admits an expansion in homogeneous symbols of decreasing
order).

We remark that in the regularization procedure, one could impose much weaker analiticity conditions. One
sees that in fact the only condition needed here is that there exists p > 0 such that

(1.11) sup H(l + <i>2€%)e_l72j<j>"|€j| < 00,

If we choose different radii of analiticity, such as

T :={p = (¢;)jen, ©;j €C: Re(p;) €T, |Im(p;)| < pF(j)}, F(j) > 1,
condition (LIT]) becomes

sup H(l + (i)202)e P 2516170 < o0,
LeZ¥ jenN

and one can construct many examples where this holds.

In the KAM scheme most diffculties come from quantitative issues, particularly measure estimates. At a
purely formal level our scheme is essentially classical. At each step one considers a linear operator of the form
D + P(yp) where P is very small while D is time independent and block-diagonal with blocks of dimension at
most two. First we introduce an "ultraviolet cut-off" operator, so that IIxyP depends on finitely many angles
(depending on N), while the remainder (Id — IIx)P is very small.

Then one applies a linear change of variables e” (¥) where F solves the homological equation

—w - 0, F + [iD, F] + IIyP = [P(0)],

where [P(0)] is the time-independent and block-diagonal part of P.

Direct computations show that (at least at a purely formal level) this change of variables conjugates D + P (i)
to an operator of the form Dy + P4 (¢) where Py(¢) < P(p). In order to ensure that a solution to the
homological equation exists and in order to give quantitative estimates, one restricts w to a set where the
spectrum of the operator

(1.12) L(p) = —w - 9, L(p) + [iD, L()]

is appropriately bounded from below. Iterating this KAM step infinitely many times one reduces the operator
D + P(p), for all w in some implicitly defined set where the condition (I.I2)) holds througout the procedure.
The difficult part is to verify that the Melnikov conditions (ILI0) are such that: 1. The Cantor set Qs ()
has positive measure; 2. for all w € Qo (y) (LI2) holds at each KAM step with a quantitative control in the
solution of the homological equation; 3. the iterative scheme converges.

Here one needs not only for (III]) to hold for all p > 0 but also that the supremum in (I.TI]) does NOT diverge
too badly when p — 0. It is here that the special choice of analiticity comes into play, and it is not clear to us
if it can be weakened in any significant way.

The paper is organized as follows. In Section [2] we state the properties of the analytic functions on the infinite
dimensional torus that we need in our proofs. In Section B] we provide some definitions and quantitative
estimates for the class of linear operators that we deal with. In particular we define the norms that we use in
Sections M [l and their corresponding properties. In Section d] we show that our equation can be reduced to
another one whose vector field is a two-smoothing perturbation of a diagonal one. This is enough to perform
the KAM reducibility scheme of Section Bl In Section [6] we provide the measure estimate of the non resonant
set of parameters Qoo () (see (II0)) and in Section [ we conclude the proofs of Theorem [[4] and Corollary
[[7 Finally, in the appendices [Al [Bl and [C] we collect some technical proofs of some lemmas that we use along
our proofs.
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The authors wish to thank L. Biasco, J. Massetti and E. Haus for helpful suggestions.



LINEAR SCHRODINGER EQUATION WITH AN ALMOST PERIODIC POTENTIAL 7

2. ANALYTIC FUNCTIONS ON AN INFINITE DIMENSIONAL TORUS

As is habitual in the theory of quasi-periodic functions we shall study almost periodic functions in the
context of analytic functions on an infinite dimensional torus. To this purpose, for n,0 > 0, we define the
thickened infinite dimensional torus TS as

¢ =(pjlien, ©; €C: Re(p;) €T, [Im(p;)| <o(5)".
Given a Banach space (X, || - ||x) we consider the space F of pointwise absolutely convergent formal Fourier
series To® — X

(2.1) ulp) = Y a(0)ee, () e X
ez
and define the analytic functions as follows.

Definition 2.1. Given a Banach space (X,|| - ||x) end o > 0, we define the space of analytic functions
T — X as the subspace

HTE, X) = {ulp) = D @O e F i Julloi= Y e a(@)x < oo}
Lere LETLR

In the case H(T°,C) se shall use the shortened notation H(TS)

Remark 2.2. We have chosen to work with an infinite torus Tg® whose angles are ¢; with j € N which in
our notations does NOT contain 0. Of course it would be completely equivalent to working on Ty x TS with
angles 8; with j € No :==NU{0}.

To this purpose one just needs to define Z2° = {k € ZNo - lklp ="
Fourier series

i€Ng (1)Mk;| < o0} = Z X ZP and consider

u= Z a(k)e*?  such that Z |ﬂ(k)|e"|k|” < 0.
keZg keZx

This notation is useful when working with the space H(TS°, H(T,)) which can thus be identified with
H(Ty x TP, C) = H(T, x TL). Indeed u € H(TL, H(T,)) means

U= Z a(& x)ew"" _ Z an(é)eil-¢+inx — Z a(k>eik~0
LeELX (€,n)ELX XZ keZge
where 0 = (z,¢) € T, x TS and k = (n, £).

With this definitions an almost-periodic function as in Definition is the restriction of a function in
H(TP, X) to ¢ = wt. Given F € H(T, X) we define f(t) = F(wt). Note that the condition v € H(T, X)
implies that the series in (Z)) is totally convergent for ¢ € T2°.

2.1. Reformulation of the reducibility problem. In order to prove Thorem [[.4], we then consider analytic
¢-dependent families of linear operators R : TS — B(LZ(T:)), ¢ — R(p). Given a frequency vector w € Ro
and two operators £, ® : TS® — B(L2), under the change of coordinates u = ®(wt)v, the dynamical system

Ou = L(wt)u
transforms into
(2:2) 00 = Li(wtu, Li(p) = (Pusr)L(p) = 0(p) T L(9)P(p) — B(p) w0, P()
where [i
(2.3) WD, ® =Y i(f-w)B(0)e ¥
ez

A direct calculation shows that if £(wt) is skew-self adjoint and ®(wt) is unitary, then £ (wt) is skew self-
adjoint too.

3 If we set F(t) = ®(wt), since the series expansion for t € R is totally convegent we have clearly 8;F(t) = w - 8y ®(wt) .
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In conclusion our goal is to prove the existence of maps W, W~! € H(T54, B(H(To), H(To)), such that
W(t) = W(wt) and W (t) = W~ (wt) which solve the reduction equation:
(2.4) W) "Hi(9; +eP(9))W(g) = W(p) w0, W(p) = iDu
where the operator P(¢) € H(T®, B(H(T,), H(T,))) is of the form P(¢) = Va(z, )02 + Vi (2, 9)0x + Vo (2, ¢)
with V; € H(T, H(T,)) and is such that P(t) = P(wt). Note that for ¢ € T, (92 + eP(yp)) is self-adjoint,
hence W(yp) is unitary. We remark that solving (2.4 is equivalent to diagonalizing the linear operator

iw- 0, + 02+ eP € B(H(T, x TS, C), H(TX x Tyr, C))

via a bounded change of variables with the special property that it is Téplitz in time.

2.2. Properties of analytic functions. We now discuss some fundamental properies of the space H (TS, X),
note that all the results hold verbatim for H (T, x TS, X). For completeness, in the appendix [A] we discuss
another (equivalent) way of defining the space H(TS°, X) by approximation with holomorphic functions of a
finite number of variables.

For any function u € H(TS°, X), given N > 0, we define the projector I yu as
(2.5) Myu(p) = Z a(0)e*? and Myu:=u—yu.
[eln<N
the following Lemma holds:
Lemma 2.3. Let o,p >0, u € H(Tg‘jrp, X). Then the following holds:
Myulle < e *lullo, -
Proof. One has

Myulle = > eMMla@)x < e Y M) x
€], >N LeZLe

and the lemma follows. O
Lemma 2.4. Let 0 > 0, u € H(T, X). Then ||ul|poo(re x) < [Jullo-

Proof. For any ¢ € T2, one has

lu(@llx < Y @@]xe” = Jfull, -

Le7
O

Lemma 2.5. Assume that X is a Banach algebra and u,v € H(T®,X). Then uv € H(T®, X) and ||luv|, <
[ullo[lv]lo-

Proof. One has

and therefore, one obtains that

luvlle < > e lface — k)|l x[|5(k)] x -

£,kezee
Using the triangular inequality |¢|,, < |¢ — k|, + |k|,,, one gets e?¥ln < eolé=Flueolkln implying that

=Ky (1 JAITPN
luvlle < > e Fnlfce — k)| xe ™ [B(k) | x < ullolvllo-
£,keZ
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Lemma 2.6. Let u € H(T°, X). Then

(2.6) | werde = Jim e [ we)den .. don = 2(0).

Moreover, for any £ € Z3° \ {0} :

(27) a(f) = /Do u(sp)e—w'tp dQD = lim # ‘/H‘N u(go)e—i@ga )

N—o0 (27T)N
Proof. Let £ € Z° \ {0} and let N < |¢|,,. Then surely ¢; = 0 for all j > N, thus
elt? = gllivr | plfnen

implying that

1 it _
G~ /TNe dpy...dpn =0.
Hence
1 1 ~ PO il
L ANu(@)dwl...dwN:WAN (u(O)—i— E a(0)et e + E u(f)eg“’)dcpl...dcpjv

0<[e],<N7 |€],>N"
1 .
=3(0) + —— A0 Pdp; ... doy .

Since u € H(TZ®, X), the tail of the series 3, - v goes to zero as N — oo. This proves (2.6).
Now let £ € Z$° \ {0}. Then we set

wilp) = (@) = 3 k)0 = 37 A+ )
kezZe heZoe
By applying the claim (2.6) to the function uy and observing that @,(0) = u(¢), the equality ([2.7)) follows. O

Given two Banach spaces X and Y, for any k£ € N, we define the space My(X,Y) of the k-linear and
continuous forms endowed by the norm

(2.8) 1M p, (x.y) = sup IMIus, ... ullly, VM € My(X,Y).

llwall x o lluk | x <1

To shorthen notations, we denote £*° := ¢*°(N, C), moreover for k € N, we write M, instead of M (£, X)
where X is an arbitrary Banach space.
Let us now discuss the differentiability of functions. We define for @1, ...,y € £

k
(2.9) diul@r, .. @] = Y T gpaete

Leze =1

Note that if u € H(T52 ,, X) for any p > 0 then the series in ([2.3) is totally convergent on T5°.

Lemma 2.7 (Cauchy estimates). Let 0,p > 0 and u € H(T3 ,, X). Then for any k € N, the k-th
differential d’;u satisfies the estimate

HdZ“HH(’Jl‘gO,Mk) Sk P_k||u||a+p'
Proof. For any k € N, ¢ € TP, @1,...,0k € £, ||Zjllooc < 1 for any j = 1,...,k, one has by duality
10- 2] < 1211 1Plloc < 1€]5]1@]|oo, and substituting in (29) one gets
ldu(@)Br - Bullo < 3 Jelbea)lx < sup (Ielhe) ulo, .
tez terz
A straightforward calculation shows that

sup |€|§e‘p|é|” <supzfe P =kFpFe Tk < p7k
ez x>0

which implies the claimed estimate. ([
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Remark 2.8. Note that if we endow the torus TS® with the £°° metric , namely given two angles 1 =
(p1,5)jen € T and p2 = (¢2,5)jen € TS, we define

(2.10) doo(p1,92) = 5D IRe(@1,5 = 92,) poaar + T(P15) — Im(2,)]) -
then (29) is the k’th differential in the usual sense. Moreover the tangent space to TS is £>°(C).

Given a frequency vector w € Rg and u € H?(X), we define w - dyu as in

(2.11) w - Opu(p) == Z i(w- Oa)e? = du(p)w] .

(€7

If we set f(t) = u(wt), since the series expansion for ¢ € R is totally convegent we have clearly 0, f(t) =
w - Opu(wt).

The following Lemma holds
Lemma 2.9. (i) Let o,p >0, u € H°"(X), w € Rg. Then
o - dpulle < P~ lullotp-
Proof. The lemma follows by the formula ([2I1]) and by applying Lemma 2.7 in a straightforward way. O

Parameter dependence. Let Y be a Banach space and vy € (0,1). If f: Q — Y, Q CRg := [1,2]¥
Lipschitz function we define

li
A" = sup [f@)lly, Il = sup

ILf(w1) = flwa)lly ,

(212) we w;iu;ffzﬂ ||w1 - w2||oo
Lip(7,2) li
LFIPO D = 15 + A 1P
If Y = H(T, X) we simply write || - |5, || - ||LP, || - ||Llp " If Y is a finite dimensional space, we write

[, -, - e,

The following result follows directly

Lemma 2.10. In Lemmata 23, 2327, 29, if u(-;w) is Lipschitz w.r. to w € Q C Rg, the same estimates

hold verbatim replacing || - ||» by || - ||§ip(7’9).

As is tipical in KAM reduction schemes, a fundamental tool in reducibility is to solve the "homological
equation", i.e. to invert the operator w - 0.

Lemma 2.11 (Homological equation). Let o,p >0, f € H(TS, ,, X), w €D, (see (LA)). with f(0) =
Then there exists a unique solution u := (w - d,) " f € H(TX, X) of the equation

w-O0pu=f
T
(2.13) lulle < exp( +In

i ()1l

for some constant T = 7(n, 1) > 0. If f(:;w) € H(T5S ,, X) is Lipschitz w.r. tow € Q C D, then
i Li ,Q
Jully? < exp( - tn () IS
pn
for some constant T(n, ) > 0 (eventually larger than the one in (ZI3))).

satisfying the estimates

Proof. Since w € D, the solution u of the equation w - d,u = f is given by

ulp) = (- 0,) o) = > %eig'w-
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Hence, using that w € D, ,

lullo <7 - T+ @ larNF@)lxe

tez2\{0} i

<~ ' sup (e Pl 1+ @)H6;|" otp .
<7t s I (@) 161)) 11l

and the claimed estimate follows by applying Lemma [C1}H(i). Regarding the Lipschitz estimates we remark
that

u(wy) — u(ws) =

B fllw) = Fllws) 5, (@i —w) LY
KEZ;{O} (w2 - 0) fllen) (w2 - £) (w1 'f))

O

We conclude this section by discussing how the definition of H(TS°, X) (or equivalently H(T® x T,, X))
depends on the coordinates on T°.

Definition 2.12. Recall £>° := (*°(N,C). We say that a function a € H(TgS, ) is real on real if a(p) € R for

all p € T Similarly, o € (T ,,€°) is real on real if aj(p) € R, for all ¢ € T*,j € N.

Proposition 2.13 (Torus diffeomorphism). Let a € H(TgS, ,,£°) be real on real. Then there exists e = (p)
such that if [|a]|o+, < €, then the map ¢ — p+a(p) is an invertible diffeomorphism of the infinite dimensional
torus TS (w.r. to the £>°-topology) and its inverse is given by the map ¥ — ¥+ a (), where & € H(T> o8 )

is real on real and satisfies the estimate ||allg1 s < [|ellg4p. Furthermore if a(;w) € H(TS ,,£%°) is Lipschitz
w.r. tow € Q C Ry, then |\~||L‘P 7D < | |LPO-)

o+p
Corollary 2.14. Given o € H(T5S ,,€°) as in Theorem[213, the operators
(2.14) Dot H(TG,, X) = H(TT, X)), ulp) = ule + alp)),

st H(TS, . X) = HTT. X),  u(®)  uld + &(0)

are bounded, satisfy
[@all ([ @all <1.
B(H(T;’ip, ),H(T?,X)) (H(THP,X)H(T?,X))

and for any ¢ € T, uw € H(T X),v e H(T® ,,X) one has

00
o+p? O-+Pa

D 0 Pau(p) =u(p), Pao Pav(p) =ulp).
In order to prove our result we shall proceed in steps, proving a series of technical lemmata.

Lemma 2.15. For o,p > 0, let u € H(T3, ,, X) and o € H(T?, L) with ||al, < p. Then the function
flo) == ule + a(p))) belongs to the space H(TP, X) and ||fllo < ||ullo4p- As a consequence, the linear
operator

Do H(TY, ,, X) = H(TFE, X),  ulp) = ule + ale))

is bounded and satisfies || Pyl <1
(H('Jl‘(r+p X),H(Ts,X)
Proof. One has that
(2.15) flo)= > a(f)eteeta®),
LeZLP

Moreover for any ¢ € Z$°, one has

(2.16) eit-ale) — Z 1_ Z Z f(g CQ(01)) . (€ QL)) et ) e

nen nENLy,...,0, €L
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By the formulae [2I5), (2.16) one then gets that

= 3 Fleyete,

keze
(2.17)

in

FRy=3" = 3 (-a)...(-al))a.

neN A4l 4. 4, =k

Using that for k = £+ £;+...4£,, one has that e?¥ln < eoltnealliln  eolenln and |(£-a(6;))] < [1€]]1]|@(4:)] oo
one gets that

Iflle = - e *mlf(k)lx

keZe
<y = 2 (e @l xe @) o - e @) |
neN L l,..., Ln €L
el <lely . .
< D e Z H > ehac)l
LEZ® neN : j=0¢;€L
(2.18) i el
< Z e? i uo)l| x Z T
LeL> neN
< 7 e xexp( |l lal, )
A
llallo<p ~
<Y LT aO]|x = ullosp-
L€
O
For o € H(T55, ,,£>°) we now consider the map
(2.19) Vo (u) () = —a(p + uly))

which, by Lemma 18] (with o ~ o + § and p ~ £ ) is well defined B, (0, R) — H(T +p,€ ), where
u e By(0,R) = {u € H(T=,02) : [lufls < R} .

provided R < §

Lemma 2.16. Let a € H(TgS ,, ). Then there exists € = €(p) such that if ||a|ls+, < €, there exists a unique
solution uw € H(T> g £2°) of the fized point equation u = Vo (u) satisfying the estimate |[ull, 42 < |[allotp. If

a(w) € H(TY,,,07), w € Q SRy = [1,2]" is Lipschitz, then ||u||LllD 7 < [l ||£f,()7’m.

Proof. To start with we show the following claim.
e CLAIM. There exist € = ¢(p), R = R(p) > 0 such that if ||a|| 54, < €, then the map2I9lis a contraction
on
B,(0,R) = {u € H(T=, %) : ||ull, < R}.
PROOF OF THE CLAIM. By taking R = R(p) sufficiently small, by applying Lemma [2.T5] one gets that for any
u € Byy2(0,R), Vo(u) € H(T g+p,€°°) and [[Wa(u)llo42 < |l@flg4p Then, if [[afs4, < & < R, one has that

Vo :Byys(0,R) = B,y 2(0,R). Now, given ui, uz € By 2 (0, R), we want to bound ||[Wa(u1) — Wa(u2)l|s. By
the mean value thoerem, one has

1
(2.20) Uo(ur) — Uulu) = /0 dg,a(cp + tuy (o) + (1 — t)uQ(cp)) [ug — uq] dt.
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. . o .
Since [lu1l[o4 2, [luzlloq 2 < R, by taking R < 4, by Lemmata 2.7 and 2.T5] one has the estimate

[Wa(ur) = Va(u2)llorg < ldpllrre= , myllur —uzllorg
(2.21) » T
S llallorpllur — ullorg

Hence by taking |la|ls1, < €(p) small enough, one gets that the map ¥, is a contraction and by recalling
Lemma the unique solution of the fixed point equation satisfies [lull,1 2 < [[af/o4,. Now assume that
a(;w), w € Q is Lipschitz w.r. to w. Recalling the definition (2I9) and using the fixed point equation
u = U,(u), one computes for any wy,ws €

Ay u(p) = alp + u(p;wr);wr) — ae + u(p; we); ws)
= a(p +u(p;wi);wi) — e +u(p;wr);wa)
+ a(p +u(p;wi);we) — alp + u(p; we);wa) -

By taking R = R(p) small enough, using the mean value Theorem, the Cauchy estimates of Lemma 27 and
the composition Lemma .15 one gets

HAwlmu”a-i-g < 1 Awiwellorp + Cp) Slelg ”0‘(';w)”der”AwlmuHo-i-g :
w

Hence, by taking C(p) sup,,cq [|a(-;w)|ls4p < %, one gets that [Awiwtllore < 2| Auiw,@flo+p and the claimed

Lipschitz estimate follows. (I

Proof of Proposition [213. Clearly the map ¢ — ¢+ a(yp) is invertible by taking ||@||s+, < € small enough. By
applying Lemma 2.16 there exists a unique & € H(TgS ,, ¢>°) with [|aflo1 2 < [[aflo4, satisfying the equation
2

a(9) + a(¥ + &) =0

for 9 € T7° ,. The same holds exchanging ¥ ~ ¢ and a ~ a for ¢ € TZ°. Hence ¢ — 9 + a(19) is the inverse
2
of ¢ — ¢ + a(yp) and viceversa and the proof is concluded. ([l

3. LINEAR OPERATORS
Given a linear operator R : L2(T) — L?(T), we identify it with its matrix representation (Rf )z pcz with

respect to the exponential basis where

/ 1 - .

RY = —/’R[e‘k ek gy
27 T
Clearly given R as above, the adjoint w.r.t the standard hermitian product in L?(C) is given by
* k' =k

We may also give a block-matrix decomposition by grouping together the matrix-Fourier indices with the
same absolute values. More precisely, we define for any j € Ny the space E; as
Ej := span{l},
(3.2) o )
E; :=span{e’*, e7 7"}, VjeN

and we define the corresponding projection operator II; as
o : LX(T) = L*(T), u(x) =Y _a(j)e"" = Mou(x) = @(0),
JEL
I : LX(T) = LX(T),  ul2) =) a(j)e’ = Mju(z) := a(j)e +a(—j)e ¥, jeN.
JEZ
The following properties follow directly from the definitions 3.2)), (B3):
H§:HJ7 VjENOa HJHJ’:Oa VjvjleNOa j#.jlv

(3.4) Z I, =1d, L*(T) = Pjen, Ej .
j€Ng

(3.3)
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Hence, any linear operator R : L?(T) — L?(T) can be written in 2 x 2 block-decomposition
(3.5) R= Y ILRIL.
J»4"€No

where j, j* € Ny the operator II;RII; is a linear operator in B(E;/, E;). If j, j € N, the operator II;RIL;; can
be identified with the 2 x 2 matrix defined by

j —j
(3.6) <77;J Za‘_ j,> .
—J —J
The action of any linear operator M € B(E;/, E;), j,j’ € N is given by
(3.7) Mu(x)= > MFaE)e*, YueEy, wu(w)=a(j")e’ " +a(—j)e ",
k=dj
K =%

The operator IIpRIly € B(Eq, Ep) is identified with the multiplication operator by the matrix element RJ and
if 4,7" € N, the operators II;RIIy, IIyRIIL; are identified with the vectors

RO g
(ROJ_) and (R} ,R,”).
—J
We denote by [R] the block-diagonal part of the operator R, namely

(3.8) [R] := ZjeN I1;RIT; .

If II;RII;; = 0, for any j # j’, we have R = [R] and we refer to such operators as 2 x 2 block-diagonal
operators. Note that for any j, j € No, the adjoint operator M* € B(E;, E;/) is thus defined asf

(3.9) (M) = M.

We denote by S(E;) the space of self-adjoint matrices in B(E;, E;).
For any j,j' € Ny, we endow B(E;/, E;) with the Hilbert-Schmidt norm

(3.10) Xl = VIROXX) = (0 IXE?)7

|k|=3
|k'|=4"

For any o > 0, m € R we define the class of linear operators of order m (densely defined on L*(T)) B%™ as

= : — : Bom < 00 where
Bo™ R : L3(T) = L*(T) : |R h

IR || 7m := sup D~ eI~ I RIL [lus ()~

7'€No jen,

(3.11)

The following monotonicity properties hold:
(3.12) IRlsem < [Rllgorns o< 0", [Rlgom < [Rlgrr, m' <m.

As a notation, if m = 0, we write B instaead of B%?. Note that a direct consequence of the definition is that
if R € B®™ then (recall that D = —id,,)

(313) ||R||Bd,7n - ||R<D>_m||80 .
Note that B? is contained in the set of bounded linear operators B(H(T,), H(T,)) as shown in the following.

Lemma 3.1. Let o >0 and ® € B°. Then

(@) 1@l Ber(T) 1)) < I1@llBe
(i) For any s > 0, ||®||g(#s (1), 155 (1)) Ss 0 °[|®|| 5o

4f j,5' € N, A € B(Eo, Eo), B € B(E;,Eo), C € B(Eo, E;), then
(A)] =43, (B =B, k=+j, (C=C) k==xj.
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Proof. PROOF OF (i) Let ® € B?. According to (8.3)), (B.5), given u € H(T), we write Qu(z) = >, oy, I PILy I u].

Then, using that for any j,j’ € Ny, e?ll < e"'j_j/|e‘7‘j/|, one gets the chain of inequalities

||(I)u||o_ = Z ea\j\H Z qu)Hj/[Hj/u]HL2

€Ny §'€Np
< X eVl (Y e 100 s
7'€Ng J€No

- @&ID
< sup (3 VL0, fus) ulls < [ @llse [l

i
7'€No  jeNg

PROOF OF (ii). Let s > 0 and uw € H*(T). Then, using that for any j, 5’ € No, (j) S )+ G -3 S GHG-7),
one gets that

||q>u||§p:z<j>2SHZHJ@HJ-I[HJ- = S 5 armenymylf),

IS\ 7"€Ng jeNg  j'€Np
< (G ) I L] )
JjE€No  j’€Ng

Moreover, by using the Cauchy-Schwartz inequality, one gets

IPulfre <o D G IMrullza Y (G — 42011 |

j’€No Jj€Ng
GEID
Ss sup (KXY @ 5o [|ul e o 071D |lul| are
keNy
which proves the claimed estimate. (I

Further properties of B%™ can be found in the appendix [B.2l

3.1. To6plitz in time linear operators. We now consider p-dependent families of linear operators on Lo (T)
i.e. absolutely convergent Fourier series T3® — L3(T).

Definition 3.2. For o >0, m € R we consider R € H(T°,B7™). We define the decay norm

(3.14) Rlom =Y e IR0
e

Moreover, given v € (0,1) and if R = R(p;w) depends on the parameter w € ), we define
i 1i
RIS = sup [R() o+ VR 5

3.15 . " Cn
Y |R|2,pm+2 ‘= sup [Riwy) (w2)]o,m-+2 -
w1,w2EQ ||w1 — (,L;2||OO
w1Fwa

If m = 0 we write |- |, instead of | - |4,m. By recalling (3:12), one can easily see that the following properties
hold:

(3 16) | ' |U,m S | : |<7’,m7 | |L1p i Q | ° |23?7$L%Q) VO' S O'I7
' | ’ |o,m < | ! |a,m’v | |Llp 7 | : |§)i£l(7’ﬂ) vm/ <m.

Definition 3.3. We say that R € H(T®, B>™) is self-adjoint (resp. skew self-adjoint or unitary) if for all
@ € T, the operato R(p) € BZ™ is self-adjoint (resp. skew self-adjoint or unitary ).

Lemma 3.4. Let N,o,p >0, m,m' € R R € H(T;",B7™), Q € H(T,

(i) The product operator RQ € H (T, BT+ ™) with |RQ|omim' <m 07" Rlom|Qlotpms- If R(w), Q(w)
Lip(v,9) < p—(\m|+2)|R|gi%(mQ)|Q|Lip('yﬂ)

om+m/ ~ o+p,m’ *

Botem'y,

depend on o parameter w € @ C Ry, then |[RQ)|
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(i4) The projected operator |IIxRlom < € PV |Rlotpm- If R(w) depends on a parameter w € Q C Ry, then the
same statement holds by replacing | - |o.m with | - {;%%Q).
(15i) The mean value |[7€(O)]|Gm < |Rlo,m- Moreover, if R = R(w) depends on a parameter w €  C Ry, then

the same statement holds by replacing | - |5 m with | - Ef%”’ﬂ).

Proof. PROOF OF (i). We write

> R —k)Q(k)e .

£,kEL
Using that by triangular inequality, for any £, k € Z2°, !t < eolt=Flnealkly
|RQ|0m+m/ S Z cr|£ k|"60|k|"”R(€ k) ( )||Ba m+m/

£,k€L
Lemmm—(i) R .
e Y el e R — k) | QK)o
£,kELX
S P_Im‘|R|d,m|Q|d+p,m’ .
Now we prove the Lipschitz estimate. Given wy,ws € Rg, we use the notation Ay, f = f(w1) — f(wa).
One has that
AW1W2 (RQ) = (Awlsz)Q(wl) + R(WQ)(AWM& Q) :
Hence by the previous estimate one gets

|Aw1w2 (RQ)|d,m+m’+2 Sm p_‘m|_2|Aw1w2R|o,m+2|Q(w1)|m’,d+p + p_lm‘ |R|o,m|Aw1w2 Q|m’+2,a+p

\m|+2)|'R|L1p 7,9) |Q|{:'ii}-)p’y7‘r§} [wi — wal|so -

N

The claimed statement then follows.
PROOF OF (ii). The proof is the same as the one of Lemma
PROOF OF (iii). By recalling the definitions (8.8)), (8.14), (BIH), one obtains that

[[R(0)]]o,m = sup [ITI;R(O)IL;{| (7)™

J€Ng
R0 SUPw; w su H»Awwﬁo IL||(5) ™2,
RO = 5Py e i 0D T (A, RO L)

Hence, one has that |[R(0)]]e.m < |R|e.m and |[7€(0)]|5Fm+2 < |R|gf)m+2 which implies the claimed statement.
]

Iterating the estimate of Lemma [3.4}(7), one has that if R € H7t?(BT7™)  then there exists a constant
Co(m) > 0 such that for any N > 1, RN € H?(B>™V) and

N—-1
RN gy < (Com)p™ ™ [Rlospm) Rl

(RN LG < (Cym)N = o RIEPOD) T

(3.17)

Lemma 3.5. Let T, x T — C, (x,¢) — a(z, ) be in H(Toy,x T2 ). Then the multplication operator M,

o+p
u — au satisfies IMqylo < pHallotp. If a(z, p;w), w € Q C Ro is Lipschitz w.r. to w, then |Ma|§‘p(”’9) S
P lall 2.
+p

Proof. We write
alp,) = Y a(t, e
tez
and consequently

M(p) = Z ./\//\la(é)ew'“" where ./\//\la(é) = Ma,.) -
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Therefore

Lem

Malo = Y e Ma(6)]5- Pt Y I o S 7 lallop -

Lere LeZ
Given wi,ws € Rg, arguing as above, one can estimate A, M, = MAWWQQ in terms of A, w,a, therefore
the Lipschitz estimate follows. O

Let m € Z. We recall that the operator J)* is defined by setting
(3.18) Or] =0, P[] =1im"el" j#£0.
Lemma 3.6. Let 0,p >0, m,m' € Z, a € H(Toy, x ']I‘a+p)
(i) We have 87ad™ € H(TX, B ™) and |07 |gmim < p~ ™ |allosp. If a(-;w), w € Q is Lipschitz
w.r. to w, then |Oadl |I;15112/) < p ™ ||I(;f,(77 ),
(i) For any N € N

(3.19) oM ad” = Z Ciom (0L0)0T ™ =1 + Ry (a)

where the remainder Ry (a) satisfies the estimate

(3.20) RN (@)]omtm —N Sm,N p_(2N+|m‘+1)HaHU+p'
Moreover, one has co.;m =1, ¢1,m =m. If a(;w), w € Q is Lipschitz w.r. to w, then

Lip(y,0 m Lip(y,0
(3.21) IRy (a)| p(7,92) SN P —(2N+|m|+1) lla || p(’Y )_

om+m/—N ~m
(119) Let b(;w) € H(Toyp ><'H‘U+p) w e Q and set A = ad™, B := b7 . Then AB € H(T, B>™™) satisfies,
for any N > 1, the expansion
N—-1 . ‘
(3.22) AB = abdt™ + mab 07T T 4> ¢ mal(05b)0TT™ T+ Ry (a, b)),
i=2
where ¢y, € R for anyi=2,...,N — 1, the remainder Rn(a,b) satisfies the estimate

Li Q K Li Q) Lip(v,Q
(3.23) R (a,0)[EP0D S o lal[5PGD o) SR

for some constant k = k(m,m’, N) > 0. As a consequence for any N > 1, the commutator [A, B|, admits the
eTpansion

N—-1
[A,B] = (maby — m'a,b)07 ™ 1+ 3" (e ,ia(9Lb) — e i (05a)b) O™ 1+ Ry (a,b) — R (b, a).
=2

Proof. PROOF OF (i). It follows by Lemmata [34] and using that for any p € Z, 0 > 0, |92|,, =
P[5 <

PROOF OF (ii). Let R := 97"ad?". Then R(p) = Y ez R(£)e“?, where for any ¢ € Z2°, the operator R(¢)

admits the matrix representation (R} (£)); ez

(3.24) RY(0) =" mae, - 3™, Vi e 2\ {0}

We write the Taylor expansion
N-1

(3.25) Jm =" m NG =) 4 Y emnd™ G = 5+ rn () 5)
k=2

where the remainder ry(j, ') is given by

1
(3.26) mUJw:wmA<u¢W*o+ﬂWﬂ»mNmu—n
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By using the Petree inequality, one has that

G+ =YY .
jm=N SN (J —]/>N+|m‘ .

This latter inequality, implies that

(3.27) [ (G, 3 S GG = 2L
By the definition ([24]) and using the expansion [B:24)), we get the the operator R can be expanded as
N-1
R(¢) = ad ™™ +m(0,0)00 ™ 1+ Y € i(02a)07 T T+ Ry ()
i=2

where the operator Rx(¢) = > ez R (0)ei# and for any ¢ € Z2°, the operator Ry (£) admits the matrix
representation

(3.28) Ry (O)] =1""a(t, G = j)rw (G.305™ . 5.4" € Z\{0}.
By (B.21), using that a(¢,-) € H(Ts4,), one gets the estimate
(3.29) RS (O S (G — )N Hmlem =Gy mam =N @t )| o, -

Furthermore, using that
<] _j/>2N+\m|e—§|J—J | SN,m p—(QN-HmD’

one gets the estimate
(3.30) RS ()] S p~ CNHImDem (@ DI=T (G mEm =N [G(0, ) g -

Now if 5,/ € Ny, using the for any § > 0, e 9li+i'l < ¢=0li=3"l_ the latter estimate implies also the estimate
on the 2 x 2 block IT; R n (¢)IL; of the form

(3.31) LR (T | Sy p~ N HmDe= (4 )li=3" [ (jrymbm’ =N Gg (|, 5,5 € Ny .
Then for any j' € Np, one has that
S el LR A (OTL [ YY) S 97 CYFD G gy S e 817
J€Ng IS\

Sy p” BNV (e, )l

which implies that
IRN (Ol gomsm—x S p” ENFEDNG(, ][5

By using this latter estimate one gets that

RN st Sy p” ENHPED N = el @(e, )|t S p~ V™Y a5
teze

which is exactly the claimed estimate (3:20).

If a depends on the parameter w € 2 C Ry, given wy,ws € €2, one expands the operator 8;”(Awlw2a)8;"/ as
in (3I9) where a is replaced by A, ,,a and the remainder Ry (A, w,a) is estimated in term of A, ,,a. The
Lipschitz estimate then follows.

PROOF OF (ii4). The claimed expansion ([3:22)) follows by a repeated application of the item (z). The estimates
of the remainder Ry (a, b) follows by using the estimates of the items (¢) and (¢7) and by using the composition
Lemma [3.4 The expansion of the commutator follows easily by expanding AB and B.A. O

Lemma 3.7 (Exponential map). Let o > 0, p € (0,1), m > 0 and R(w) € H(T; ,, B ™), w € Q C Ry
and assume that

(3.32) PRI <8

for some § € (0,1) small enough. Then, for any N > 1, the map O := exp(’R)—Zg:_Ol 7}; € H(TL, Bo—Nm)
with

. N
(3.33) @l S (Cop™ " OIR g, m)

o,—Nm ~
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As a consequence exp(R) € H(T,B7) and
(3.34) lexp(R)|LPOD) <1 4 Cp(ImFD|R[PTS)
for some constant C > 0.

Proof. In order to simplify notations for any n € R, we write | - |5, instaed of | - {;,irpl(%m. Let ® := exp(R).
Then & —Id = > -4 RTT By (3I0), one has that since R € H(T®,B7~™), then R € H(T,B7) and
R|c < |R|s,—m - By using the estimate (317, one obtains that for any integer n > 1, R™ € H(T3°,B7) and
n—1
(3.35) R"|, < (Oop’2|R|g+p) Rls
for some constant Cy > 0. Now, we write
R™ RF
On=) — =) TR
v=D nl =2 (k+ N)!
n>N k>0

By using the estimate (3.35)), one gets that >, % € H(T, B7) and

1 _ k-1 E32)
<1+Y = (CorRlowy) Rl = €y
E>1

RE
(3.36) } ];J Gr)ls

for some constant C; > 0. By applying Lemma [B.4) one has that RY € H(T®,B% V™) and &y =
Zk>0 k+N) ‘RN € H(TS®, B%~N™) and using also the estimate ([3.36), one obtains that

(3.37) PN o, —Nm S P 2|R |a+” —Nm
The claimed estimate (333) then follows by applying BIT7). The estimate (B34) follows by triangular in-
equality and by applying the estimate ([B.33]) for N = 1. O

4. NORMAL FORM
As we said in the introduction we want to conjugate to constant coefficients the Schédinger equation
Oyu = L(wt)u where
ﬁ((p) = 1(1 + €V2(x7 (p))amm +eiVy (LL', (p)aiﬂ + EiVO(CE, 90) :

We assume that the functions Vo, Vi, Ve € H(TZ x T5), for some > 0 satisfy the condition (I6), so that
L(p) is an L? skew selfadjoint linear operator.

4.1. Normalization of the z-dependence of the highest order term. We consider an operator induced
by an analytic diffeomorphism of the torus

(@, ¢) = (z + Bz, 0), )

where [ is a real on real analytic function on the infinite dimensional torus that will be determined later. We
make tha ansatz that

(4.1) BEH(Ty xTZ), [|Bllo Sors 0 YO< o1 <0

By Proposition T3] for any 0 < o1 < & there exists dg(o1,5) such that for any § < §p, the map (z,¢) —
(z + B(x, ), p) is invertible, with inverse given by (y, ) — (y + B(y, ¢), ») and

(4.2) BE H(T,, x ng), ”EHUz Sor,o0 1Bller, Voa <01 <G
We now define the operator
(4.3) O ()[u] == 1+ Bo (2, p)u(z + Bz, ¢)) -

A direct calculation shows that this map is unitary and, if 8 is appropriately small, invertible with inverse
given by

(4.4) W () u] == \/1+ By (y, @)uly + By, ¢)) -
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for ¢ € Ty® with 0 < 02. Note that one has the relation

_ 1 1
4.5 14+ B8y(y, ) = = , 1+ Bz, 0) = = .
45) y(5: ) L+ Be(y + By, 9), ¢) (&) 1+ By(x + Bz, ¢), 0)

The following lemma holds.
Lemma 4.1. For any 0 < o’ < &, there exists 6 = §(0,0’,7) € (0,1) such that if ¢ € (0,8) the following

holds. Define
1 dx -2
m =— | —————dx
2(%) (QW/T T+ V(@ 9) )

Bla.g) =07} |2 +’Z§igw -1].

i) the map T — B(H(To), H(T5)), ¢ — @M () is bounded.
i1) For any s >0, the map T> — B(H*(T), H*(T)), ¢ — @M (p)*! is bounded.
iii) ®M () transforms the operator L(y) into

7) L0 (p) = (BLL(p) = ima(@)0] + 01(2, )z + a0(,0) -

where the functions mg € H(T), B, ﬁ,al,ao € H(T, x T) are independent of the parameter w and satisfy
the estimates

(4.8) lm2 = 1o, [1Bllo: 1Bl llarlle, laollo Sos €

Finally LY s kew self-adjoint, hence ma(p),a1(x, @) are real on real while ag = —ag + yaq.

Proof. The proof of the item (i) follows by the definitions (@3), (@), by using the estimates on 3, 3 @) and
by applying Lemmata [2.5] N
To prove the item (i) we argue as follows. Since § and 8 are analytic, then for any ¢ € T one has

B(cp,-),g(cp,-) € C®(T) and sup,ere [|B(%;)lles (1) » SUPLer= ||§(30,-)||C5(1-) < oo for any s > 0. A direct
calculation then shows that sup,eqee [|®(9) |5 (1), 125 (T)) < C(supwﬂm 1B, .)||Cs(rﬂ-)) and

(4.6)

(
(i
(i
(4.

sup [ @() ™" ls(azs(my 112y < C( sup 118, v )
@peT> peT>

and the result follows.
In order to prove (iii) we remark that the map ®() () satisfies the following conjugation rules:

oMW () o a(z,¢) 0 V() = aly + By, ¢), ),

49) 2D (p) 00 0M () = (14 B:(y + By, ). 9))0y + %(1 + By (4, 9))Bax (y + By, 0), )

- 5 1 > >
()" w - 0,00 () =w - 0,8y + By, 9). )0y + 5(1+ By (Y, 0))w - 0puly + Bly, 0). ).
Then, recalling ([2.2)), the transformed operator is
LD () = iaz(y, ©)3; + ar(y, )y + aoly, ¥) ,

ag 1= ((1 —I—EVz)(l —l—ﬂz) )

=y+B(yp)
a1 == (21(1 Vo) Ban + V(1 + Ba) — w - ag,/s)

ap :=1y/1+ By((l +&V2)022 /1 + ﬂm)
+ li(1 +By) (evlﬁm +w- &aﬂm)

2 e=y+B(y.)
By the definitions of the functions S(z, ¢) and ma(p) given in ([&G) one gets

(4.11) as(z, ) = ma(p), mamely (1+eVo)(1+ B:)° = ma(p)

(4.10) r=y+B(y.0)

r=y+5(y,¢)

+eVo(y, ¢ + By, 9)) -
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hence the operator £ (y) in [@I0) takes the form @T). Since &) is unitary, by construction £ is skew
self-adjoint.

Since V» € HJ ,, by applying Lemma [B.6, (applied to the analytic function f(u) = \/11+—u, lu| < 1) and by
the definition (46), one gets that for € small enough, 8 € H(T,, x T3?), mo € H(TY) for any 0 < o1 < 0.
Using tha mean value theorem, one gets the estimate, ||8||s,, [|[m2 — 1|0y Sov,5 €. The ansatz (@) is then
proved. The ansatz [£2)), follows by Proposition 213l Finally, by applying Lemmata [B.6l B-T5] B-7] and using
that Va2, V1,V € H(T# x TZ), one deduces the claimed properties on the functions ag and a;. (|

4.2. Reduction to constant coefficients of the highest order term. Our next purpose is to eliminate
the p-dependence from the highest order coefficient mg(p)d,, of the operator LM () in [@7T). To achieve this
we conjugate the equation dyu = iL™M) (wt)u by means of a reparametrization of time t — t + a(wt), where « is
a suitable analytic function which has to be determined. More precisely we consider the change of varialbles

(4.12) u(t,z) = ®@o(t, z) == v(z,t + a(wt)), (z,t) e TxR
We assume that a(yp) is real on real and satisfies the ansatz
(4.13) acH(TY), lale, Soved, Y0<o1<0.

By applying Proposition 2.13] for any o2 < & there exists g = dp(02,01,5) small enough such that if § < o,
the map ¢ — ¢ + wa(yp) is invertible with inverse given by ¥ — ¢ + wa(?¥) and

(4.14) & EHTL), Ndllos Sovs lallos, Vo <1 <.

The inverse of the map ®® in (#I12) is then given by

(4.15) (@) u(z, 1) == u(x, 7+ a(wr)).

Remark 4.2. If u(x) is a function independent of the o, then (®))*ly = u.
The following lemma holds.

Lemma 4.3. Let w € D.,. For any o < & there exists 6(0,5) > 0 such that if ey~ < 8, then, setting
. _.[m
(4.16) Ao =2 (0) = [ ma(@)dy, a:=(w-d,) [—2 - 1]
Toe )\2
then ®?) transforms the operator LM () in
(4.17) LP(9) = iXa02 + by (9, ), + bo(V, )

The constant Ay € R is independent of w. For allw € Dy the functions a(-;w), a(-;w) € H(TY), b1 (-;w),ibo(-;w) €
H(Ty x TS) are well defined and real on real. Furthermore, for any Q C D., the following estimates hold:

Az = 1, [Bolls™ D, [ba]|5P0 P S ey algPO g S eyt
Proof. A direct calculation shows that formula ([2Z2]) reads

(4.18) L) = (@ LD (p) = — LD W +wa(¥)), p0) =1+ w - dpa(V + wa(d)).

1
p(0)
Note that, since £(!) (wt) is skew self-adjoint then also £ (wt) is skew self-adjoint. By ([@IS), one has

L2 (9) = ibg(9)0? + b1 (0, )y + bo (9, ) ,

ba(¥) = {1+w 19) a”@ I+wa(d
(4.19) b (9, 1) = {1—|—w 9 Oz”sa I+wa(d
bo (¥, ) := [14_57?5%@} ‘¢:ﬂ+wa(19).

By the definitions of a(¢) and A2 € R given in (L.I6]), one obtains that

ma(p)
4.20 ba () = namely ————— =
( ) 2(V) = Az, e 1 w-@wa(cp) A2
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and therefore the linear operator £2)(¢) defined in ([ZI9) takes the form given in (@IT). Note that the function
ma(p) defined in ([@.6) is independent of w and therefore also A2 does not depend on w. By applying Lemma [£.1]

by the definition (@I6) and by Lemmata 2TT}H(i7), 213] one gets that A2 — 1| < € and that for any 0 < o < 7,

or ey - < 0, tor some 0 = 0(0,0) small enough, o, € wit ag. ’ ,ag' ’ o5 €Y .
f L <6, f 5=6 i h, o,@ € H(T®) with o 5P |a|5r0® < L

Finally, recalling the definitions (£19), using the properties on ag and a; stated in Lemma Il and by applying
Lemmata [B.Gl (with f(u) = o, ul < 3), 28 23 (é4), we can deduce the claimed properties on by and b;.
O

4.3. Elimination of the z-dependence from the first order term. The next aim is to eliminate the
dependence on x from the first order term in (@IZ). To this aim, we conjugate the vector field £)(y) by
means of a multiplication operator

(4.21) BB () s u s eP@P)y
where p is an analytic real on real function which has to be determined. The following lemma holds.

Lemma 4.4. Let w € D,. For any 0 < o < & there exists §(0,5) > 0 such that if ey~' < 4, the following
holds. Define

(4.22) ma(p) = o /T b0y dr,  plr.g) = & [bl(x,;i); mi(9)]

:27T

(i) the map T® — B(H(T,), H(T,)), ¢ — 2@ (p)*! is bounded.
(i1) For any s > 0, the map T> — B(H*(T), H*(T)), ¢ — ®® (p)*! is bounded.
(i3i) the operator ®B) () transforms L3 () in

(

4.23) L () = iA0ys +m1(9)s + colz, ©)

where the functions p(-;w),ico(-;w) € H(Ty X TL), mi(;w) € H(TY) are real on real, well defined for w € D,
and satisfy for ) C Dy the estimates

(4.24) IpIIE™ ) fleol 5P, flma [§P0D <o e

Proof. Ttem (i) follows by the definition (£2I]), by Lemmata 23] and by the estimates ({24 on p, which
are a straightforward computation.
(49) Since p is analytic, then p(p,-) € C*°(T) for any ¢ € T° and M (s) := sup,eqe [|P(¢;*)llcs(T) < 0o for any
s > 0. A direct calculation shows that

SUD, e 23 () E | g (y) < Sup e |lexp(ip)flcs(ry < exp(M(s)). The latter estimate proves item (i7).
(i4i) A direct calculation shows that

£O(p) := (@)L (0) = 27 () LA (2)2P) () — 2D () - 2,2 (o)

(4.25) ,
= iXoOps + €1 (I, Sﬁ)az + 00(113, 90)
where
(4 26) Co = _i)‘2pi — AoPze +ib1py — iw - 890]9 +bo,

C1 = —2)\2pm + bl .
The definions of p and m; given in (A.22) allow to solve the equation

(4.27) — 2Xapa(, ) + b1z, 0) = ma(p).

Therefore, the operator £ () in [@E2H)takes the form (Z23).

Note that the skew self-adjoint structure guarantees that ims(¢) is a real function (meaning that it is real
on real). The claimed properties on the functions p and m; follow by their definitions ([@22]) and by applying
Lemma[L3l The claimed properties on the function ¢y defined in ([#24]) follow by Lemma A3 and by applying
Lemmata 277 (42), Z9F(i4). O
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4. Reduction to constant coefficients of the first order term. In order to reduce to constant coeffi-
cients the first order term in ([@.23), we consider the transformation

(4.28) W (p) : ulx) = ulz +q(p))

where ¢ is an analytic function on T to be determined. Clearly, the inverse of ®*)(¢) is given by
W ()7t u(@) = ulz —a(p)).

Lemma 4.5. Let w € D.,. For any o < & there exists 6(0,5) > 0 such that if ey~ <6, and define

(4.29) A= | malp)de =ma(0), ale) = (w- )~ [ma(p) — Al

(i) the map T — B(H(Ts), H(T,)), ¢ — @D (p)*! is bounded.

(i1) For any s > 0, the map T> — B(H*(T), H*(T)), ¢ — O () is bounded.

(iii) The map ®™ () transforms the operator L) (p) as

(4.30) LB () = iAgDpa + M2 + do(x, @)

where the constant A1 € R does not depend on w and q(-;w) € H(TL),ido(;w) € H(Ty x TS°) are real on real
functions defined for w € D. Furthermore, the following bounds hold for any 2 C D,

(4.31) g5 dollgP7 Y Sop e, Ml Se.

Proof. Ttems (i)-(i7) follow as the corresponding ones of Lemma ], by using the estimate (£31)) on the
function ¢(y), which is a direct computation.
(i4i) A direct calculation shows that

L0 () == (DLDLD () = Modhaa + (— w - Dpa(p) + m1(9))0s + do(,0) .
do(z, ) == colz, 0 — q(p)) -

By the definition ([@29), we solve the equation

(4.33) —w - 9,q(p) + mu(p) = A1

Then, the operator £*) defined in (@32 takes the form given in [@30). We now show that A; is independent
of w. By [@22)), (£29), one has that
1
:_/ /bl(ﬂ,x)dxdﬂ
7T oo JT

where by ([@I9) and using the properties (B.13]), one has that
bl (19, ,T) = [

(4.32)

Trw gl
1+ w- Opallo=gtwa()

— a9+ w&(ﬁ),x)(l tw- aﬂa(ﬁ)) .

By expanding a1 (, ¢) in Fourier series, i.e. a1(z,¢) = ;072 ez @1 (¢,7)e!“#el7® one has that

Z Z a(4,7) / ijo d:E/ elt- (I +wald (1—|—w (%04(19)) dd

JEL LELS®

> 31(5,0)/

L€z
emma- o~ 1
feamaallEd a1(0,0) = —// a1 (z, @) dp dx
27T T oo

By Lemma 1] the function a; does not depend on w and therefore also \; is independent of w.
The estimates on A1, ¢, dy given in (@32), (£29) follow by applying Lemmata 4] ZT5] 2TTH(4z). O

il (O+wd(9)) (1 tw- 819&(19)) dv

oo
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4.5. Elimination of the z-dependence from the zero-th order term. In order to eliminate the z-
dependence from the zero-th order term in the operator £ (p) in ([@32), we conjugate using 22), by a
transformation

1
(4.34) DO (p) ;= exp(V(p)) where V(p):= E(U(I’ @) o, + 0, ou(z,p)).
where v(z, ) is a real on real function to be determined. Note that for real values of the angle p € T, one
has that V(¢) = —V(p)*, implying that ®©)(p) is a unitary operator.

Lemma 4.6. Let w € D,. For any 0 < o < & there exists §(0,5) > 0 such that if ey~' < 4, the following
holds. Define

(4.35) V= m S (< o) —do).

(i) the map T — B(H(T,), H(T,)), ¢ — 2O (p)*! is bounded.

(i1) For any s > 0, the map T> — B(H*(T), H*(T)), ¢ — ®®)(p)*! is bounded.

(i3i) The map ®O) (@) transforms the operator L™ (@) in

(4.36) LO(p) = (BTN LD () = iAo0ia + M0y + (do)a(9) + e1(2,0)0; "+ RE) ()

and the functions v(+w) € H(To x T) and the operator R®) (w) € H(TF, B~2) defined for w € D satisfy
the estimates

(4.37) [P D, e llP0D, ROGES? Sop e

)

Proof. By the definition (#.35), using the estimates on dy given in Lemma [L5] one gets that v satisfies the
estimate (437). By Lemma [3.0] one has that the operator V(¢) admits an expansion of the form

1
(4.38) V(p) = v(@,9)0; " = S0a(,0)07 % + 50220, + Ru(¢)
where c_35 € R is a constant and for any 0 < 0 < 7, Ry € H(T‘x’ 307*4) and
<4.39> VST 1Ry 1o S0

, (£39), Lemma[3.6} (i) and the estimate ([3.34), there exists § = §(c,7) € (0, 1) such that if ey~! <4,
|(<I>(5 )i1|g <oz 1. Items (i)-(ii) then follow by applying Lemmata 2.4 311
(#41) A direct calculation shows that
£0(p) := (BL)LW () = 27 () LD (2)27) () = 2 () N 2,2 (o)
(4.40) = iXo0z + A0y + do( @) + [IX20pa + M102, V(9)]
— () w- 9,29 () + R (p)

where the remainder R (y) is given by

R (p) = / (1 = t)exp(=7V()) [[(A20z0 + A0z, V(©)], V(9)] exp(TV () dT
(4.41) 0

1
+/ e_TV(“’)[dO,V(cp)]eTV(“’) dr .
0

By recalling (A38)), (£39), by applying Lemma [3.0] and using that Ay =14 O(g) and Ay = O(e), one obtains
that
[Mzam + M0y, A(9)] = 2ivs(a, @) + al (2, 0)8, 1 + RED ()
where for any 0 < o < 7, al”) € H(Ty x TF), RUD € H (T, B2) with
(442) N L

and
[A20ze + M10:, V], V] € H(TT, 30’72) )

4.43 Lip(7,92)
( ) [[1)\28mm +A181,V],V] o 5015 €.

o,—2
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Moreover, using the estimate on dy provided in Lemma and by applying again Lemma [3.0] one gets that
_ Lip(v,Q
(4.44) [do, V) € H(T, B772),  [[do, Vg5 Sous €

By applying Lemma B4 using Lemma [B7] and the estimate ([€39) to bound exp(£7V(p)) and by applying
the estimates (£.43]), (£44)), one obtains that

(4.45) RU € (T, B772), |R(”|§fﬁ(§’m Sos €.

Moreover, recalling the definition of the operator ®©®) given in ([@34)), using [@38), @39) and by applying

Lemmata 3.6l B.7] one obtains that
(446 — () 1w 0,80 (p) = —w - Dpu(x, )0, + RV (),
' RUID () € H(TF,B772), [RUIDLPOD < o wo<o<a.

and therefore by (£40) one gets
5(5) (90) = >\28mm + A181 + dO + 2)\21)1 + 6,1(.@, <P)8;1 + R(5) (‘P) )
e-1(@,¢) = al T (2,0) —w-Bpv(z,9),  RO(p) := R (p) + RUD (9) + RIID(p).

The claimed statement then follows since do + 2iAav, = (do), (see (£3H)), by the estimate [@3T) on v, the
estimate ([@42]) on al™" and the estimates (EZ), [@Z5), @ZG) on R RUD RUID, O

(4.47)

4.6. Elimination of the x dependence from the order —1. In order to eliminate the xz-dependence from
the term of order —1 in the operator £ given in ([@36), We conjugate such an operator by means of a
transformation

(4.48) 0 (p) := exp(G(p)) where G(gp) = %(g(l’, )00, + 0,7 0 glx,0)).

and g(z, ) is a real on real function to be determined. Note that for real values of the angle ¢ € T, one has
that G(¢) = —G()*, implying that & () is unitary.

Lemma 4.7. Let w € D,. For any o < & there exists 6(c,5) > 0 such that if ey~ < §, the following holds.
Define

(4.49) o(z, @) == 2—La;1 le-1(z,0) — (e_1)a(9)]

1) the map — ), o)), p 18 bounded.
(i) th T — B(H(T,), H(Ts)), ¢ — 2O (p)*! is bounded
11) For any s > 0, the map — , , O 1s bounded.
(ii) F 0, th T — B(H*(T), H*(T)), ¢ — @O (p)*! is bounded
(iii) The map ®©)(p) transform the operator LO)(p) as
(

4.50) LO(p) = (@)L () = XoBaa + M0y + (do)a () + (e-1)a ()5 + RO ()

where the function g(-;w) € H(T, x T) is real on real and the operator R (w) € H(TF, B>~2) is skew
self-adjoint. Moreover they are defined w € D and satisfy for all Q C D, the estimates

(4.51) gl 5P [ |RO LD < e

Proof. By the definition ([£49), using the estimates on e_; given in Lemma LGl one gets that g satisfies the
estimate (@51). By Lemma and by the estimate on g one has that for any 0 < o < 7,

(4.52) G e H(TX,B772), |glkP0 ) <, .
The above estimate and Lemma 3.7 using that w - 8@@)(6) =w-0, (®©) —1d), imply that for any 0 < 0 < &

(4.53) sup |exp(£7G)[FPOD 01, fw - 90O < e
T€[0,1]



26 RICCARDO MONTALTO, MICHELA PROCESI

Items (i)-(i7) follow by the estimate (53] and by applying Lemmata 24 311
(71) A direct calculation shows that
£O(p) = (2L () = 2O (9) ' LO ()20 (0) = 2 () ' - 0,2 ()
(4.54) = i\a0ys + M0y + (do) () + e—1(x, )05 " + [Nz + MOz, G(9)]
+RW(g)
where the remainder R(y) is given by

1
RO (p) = / (1 = 1)exp(—=7G(¢)) [[MaBuz + M, G()], G(0)] exp(7G () dr
(4.55) 0

1
+ / e 79 ([{do)s + €10, G()]) 79 dr — 2O () - 9,00 ().
0

By recalling the estimate of Lemma L5 on dy, the estimate of LemmalL.8on e_1, the estimate ([£52) on G, by
applying Lemmata [3.6] B4 and using that A2 = 1+ O(e) and Ay = O(e), one obtains that for any 0 < o < &

[[)‘28mm + A0z, g((p)]v g((p)] ) [<d0>w + 6_1(9;1, g((p)] € H(Tgov 807_2) )

(4.56) Lip(v,Q) Lip(v,Q)

D20 + M0, GG 7 [[dode +e-10,6(2)| " Soae
Therefore, the estimates [@50), (E53) and Lemma B34 imply that the remainder R defined in ([@55) satisfies
(4.57) R e #(TX,B772), [ROEPTY < o W<o<a.

Recalling the definition of G, using the estimate (L35I]) on g, by applying Lemma and using that Ao =
14 0(e), A1 = O(e), one gets that

(4.58) [(A20s0 + X102, G(9)] = 2290, " + RUD ()
where for any 0 < 0 < 7,
(4.59) RUD € H (T, B52), [RUDEPGD < e

Therefore by (£54]), one gets

LO() = \aBua + M0y + (do)e + (— 2009, + €1)0; " + RO (p)

RO (p) =RV (p) + R ().

The claimed statement then follows since e_1 — 2X\2g, = (e_1), (see ([@49)) and by recalling (L57), @59). O

(4.60)

4.7. Reduction to constant coefficients up to order —2. In the last step of our regularization procedure,
we eliminate the (-dependence from the term (do).(¢) + (e—1)(p)d; *. To achieve this purpose, we consider
the map

(4.61) M (p) == exp(F(p)), F(p) = diag;ecsfi(¢)

where for any j € Z, f; are analytic functions to be determined which are purely imaginary for any real value
of the angle ¢. We prove the following lemma.

Lemma 4.8. Let w € D,. For any 0 < o < & there exists 6(0,5) > 0 such that if ey~ < §, the following
holds. Define

)\O = %<d0>w,</)7 )\—1 = <e—1>;ﬂ,g07
F(p) = (w - 8p) {do)s — iXo] + (w-8p) e — Aa]0; "

i) the map T — B(H(T,), H(Ts)), ¢ — @V (p)E! is bounded.
ii) For any s >0, the map T — B(H*(T), H*(T)), ¢ — &7 (p)*! is bounded.
iii) The map ®7)(p) transform the operator L) () in

4.63) LD () = (DN LO () = iXaDpe + My + 1ho + X195 + R ()

(4.62)

(
(
(
(
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where Ao, \_1 € R and the operator R(") e H(T?,B”*’Q) satisfy the estimates
i - Lip(7.,0
(4.64) [Po PO, Ay MR S g [RMZEDD < 5 e

Proof. Since the operator F (i) is a diagonal operator, one has that [F(¢),d%] = 0 for any k € Z and a direct
calculation shows that

(4.65) () Mw - 9,87 (p) = w- D, F ().
Therefore, by the definition ([@62]), we solve the homological equation
(4.66) —w- (94/,.7:(90) + <d0>m + <€—1>m6m_1 =1i\o + )\_18;1 .

By the estimates @3I) on dy and [@37) on e_; one gets that |Ao|MP |X_;|MP(2) < ¢ and by applying
Lemmata 2171, one obtains that for any 0 < o < &,

(4.67) FeH(TE,B), |FIgPOD o0t
The latter estimate, together with Lemma B.7 imply that
(4.68) (@M)F e H(TF,B%), [(@T)FPID <1+ C(0,0)ey ™

for some constant C(c,d) > 0. Hence, one obtains that
£0(p) = (BENLO (@) = halaa + X10r —w- 0T () + (o) + (e-1)20; " +RD ().
RO (p) := 2D ()" REO ()2 ().

The estimate ([@64) on the operator R("), defined in ([@BY), follows by the composition Lemma [3:4] by the
estimate (E51) on R(® and by the estimate [@B8) on (®(M)*!, O

(4.69)

5. THE KAM REDUCIBILITY SCHEME

In this section we carry out the reducibility of the equation d;u = Lo(wt)u where the operator Lo = £(7) is
given in Lemma [£.8 We fix

(5.1) oo =

no| Qi

The operator Lo(¢) = Lo(¢;w) defined for w € D, has the form
(5.2) Lo(p) = iDo + Po(¢)
where for all 2 €D,

1 1
DO e Azazz + T/\laz + >\0 + €A718m_1 ’

(5.3) A2, A, A0, Amt € R, g — 1, [ A, [Ao|MPOD AL MR < o
|«PO|L1P(’%Q) < .

00,—2 ~00
Note that, as we pointed out in the previous section, the real constants A, A1 do not depend on the parameter
w. The linear operator Dy is a 2 x 2 block diagonal operator Dy = diagjeNO’Do(j) where for any j € Ny, the
2 x 2 block Dy(j) is given by

(0)
. s 0
Do(j):=1["" ,
(5.4) 0 u?

p = =X Mg+ do = At p) = =i = Mg+ Ao+ AT

In order to state our reducibility Theorem, we fix some other constants. For n > 1, we set

1 1 N
(5.5) X € (1,2), an=00(1—ﬂzj—2), Ny, = (n)3X" Ny
j=1
and to shorten notation, we set
(5.6) a0) = [T+ [ea*(n)*), Veez.
neN
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Theorem 5.1 (Reducibility). Lety € (0,1). Then there exists § € (0,1) small enough such that if ey~ <6,
for any n > 0, the following holds.
(S1), There exists a linear skew self-adjoint vector field

(5.7) Ln(¢) =Dy + Pul(e)

where Dy, is a 2 x 2 self-adjoint block diagonal operator D, = diag;cy,Dn(j), Pn € ’H('H‘O"l Bon— ) is skew
self-adjoint, moreover both are defined for w € Q, (), where Qo(7y) := Dy and for any n > 1

o 4(¢ . o
mww—@wﬂnmwwalﬂdw>wms%%,vwﬁﬂez*xmxwm

o a0)°

j#3" and ||On-1(£,5,5) " lop < (£, j) € (ZZ\{0}) x No,  [£]y < anl}-

For any (0,7,5') € Z° x No x Ny, the operators O,—1(¢,j,5") : BE;,E;) — B(E;/,E;) are defined by

(5.9) On-1(£,4,5") == w - L1d + M1 (Dp—1(j)) — Mr(Dpn-1(j")).
For any j € Ny,

(5.10) 1D (i) = Do()llss™ " Se.

and

(5.11) P50 < Cree "

for some constant C, > 0.
on_1ton
Forn > 1, there exists a map ®,(p) := exp(Fp(p)), where F, € 'H(Too 1on Bz ) is skew self adjoint

and defined for w € Q, (), which satisfies

(5.12) Ln(0) = (Pn)wsLn-1(p) .
The operator F, satisfies the estimate

(5.13) | Fp |[LPO ) < o=l

Tp—1ton ~
-2

(S2)n For any j € Ny there exists a Lipschitz extension of the function Dy (j;-) : Qn(y) — S(E;) to the set
D,, denoted by Dy(j;-) : Dy — S(E;) that, for any n > 1, satisfies the estimate

~ . =~ . N . n—1
sup || Dn(j;w) — Dno1(jiw)|lus < (5) 2ee™
(5.14) weD,

—1

1D (§) = Dua (Gl S ey le™

5.1. Proof of Theorem [5.Il PROOF OF (Si)o, 1 = 1,2. The claims hold by recalling the properties of the

operator Lo listed in (52)-(G.4).

(S2), holds, since the constants A2 and A; are independent of w and \g, A_; are already defined on D,.

5.1.1. The reducibility step. PROOF OF (S1), ,,. We now describe the inductive step, showing how to define a
symplectic transformation ®,,1 := exp(Fp4+1) so that the transformed vector field L£,,11(¢) = (Prt1)weLn(®)
has the desired properties. We write II,, instead of ITy,, to denote the projector on the Fourier modes |¢|,, < N,
where N, is defined in (B5). A direct calculation shows that

‘Cn-i-l(SD) = (q)n-‘rl)w*‘cn(@) =, (‘P)_I‘Cn(‘P)(I)n-i-l (‘P) - ‘I)n-'rl((P)_lw : aga(l)n-l-l (90)

=iD,, — w0y Fni1 + [iDny Fni1] + I, Py + 1P,
1
+ (1- 7')677-]:"+1[[1Dn,.7:n+1],‘/—"n+1]67-f"+1 dr

(5.15)

1
(1- 7')e_Tf"+1 [w- O0pFnt1, ]-"nle]eTF’"”+1 dr

J
1
+ / e I [Py, Frgale™ i dr
0
)
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Our next aim is to solve the Homological equation
(5.16) — w0y F i1+ [(Dn, Far] + 11, Py = [Pr(0)]
where the diagonal part of the operator P, (0) is defined according to ().

Lemma 5.2. For all w € Qn1(7) (see B8)), there exists a unique solution F,y1 € H(T _,,B7"°) with
p >0, o, —p >0 of the Homological equation [B.I6) satisfying the bound

(5.17) Fonale %) 9 e (Tt (7)) 1Pl 2005
p'rl

for some appropriate constant T > 1.

Proof. In order to simplify notations in this proof, we drop the index n and we write + instead of n + 1.
Passing to the 2 x 2 block representation of operators and taking the Fourier transform w.r. to ¢, one gets
that the equation (510 is equivalent to

i( —w ML F L (OTLy + DG Fy (01T, - ij+(f)ﬂj'9(j')) +T,P(OTL; =0
(5.18) V(t,5.5') € ZF x No xNo,  (£,5,5") # (0,5.5), |ty <N,
and T, F,(0)II; =0, VjeNp.
According to the definition given in (59), for any w € Q4 (v) = Q,41(7), since the operator
(5.19) O((,j,j') = w - L1d = M(D(j)) + Mr(D(j"))

is invertible, one defines F as

N o coon—1 "\ , .y ..

(5.20) ILF, (O, = 10(&‘7_,3./) PO, (¢, 5,5') #(0,5:7)

0 V(44,5 =1(0,4,7).
For any (¢,4,7") # (0,4,5), j # j', || < N one obtains that

N ae N

(5.21) 1T, 2 (0T s < %nnﬂwmj/nas
and for £ # 0, (|, < N,

~ d(0){5)? ~
(5.22) T, 2 (0T, s < %nmmmuﬂs.

Let 0 = 0,,. By recalling the definition (8.I1]), the estimates (0.21), (5:22)) imply that for any ¢ € Z*°, |¢|, < N
(5.23) IF+(Ollga-0 < a0y HPO)lle-2 -
Hence in view of the definition ([BI4)), one obtains that

Filop <374 30 @O PO)]50-2 <77 sup a(@)e ) P,
€15

5.24 fen
( ' ) Lemma 1 T T
< ~~ exp(—lln (—))|’P|0)_2.
pﬁ P

Now we show the Lipschitz estimate. Let wi,ws € Q4 (). Then for any (¢, j,j") # (0,4,5'), [¢|, < N,
Awro (IGFL (O = =04, 5,55 01) ™ Ay (PO

+ io(évjaj/;wl)il(Awlu&o(&jvj/))o(gajvj/;w2)71Hj7/5(€; WQ)HJ" :
By (B1), B3), G4), (5I10), one obtains that

[ Auw1w> O, 35 7 ) op < lwr — wallool €]y + 2 sup [[Aw,w, D(5) s
(5.26) j€No
S (1 + ) llwr — walloo -

(5.25)
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Hence since wy,ws € Q4(7), the formula (525) and the estimate (5.206]) imply that for any ¢ € Z$°, j # 7/,
[ty < N

~ da()? ~
1A (I, F 4 (OT1) s < (72 (1 4+ 61T P(6: o)Ly s

o104 ~
n (T)HAM (PO s

(5.27)

and for any ¢ € Z* \ {0}, j € No, |[¢|, <N,

A T (DI < d()* ()" ¢ Dy )

wiwo ] ¥ ~ 2 n J ) J S
[ (I P (O1L) las S ——5=— (1 + [€]) | TL;P (£ w2 )T, sl — w2 ]|
(5.28)

A\ 2 ~

Recalling the definition (BI1)) and using the estimates (5.27)), (528, one obtains that

~ da(0)? ~
[Awrwe Fs (Ol go-r2 S E/") (L + [P w2) [ o2 [lwr — walloo

d(¢ ~
T %nAwmmnBo.

(5.29)

Hence, recalling the definition (3I4]), one gets

[BuresFilopz £777( sup A6 11014 [£]y)) or = walloe sup [P()]o, -2
we

JAYAS
(530) + ’7_1(ES€1%I:O)O d(f)e_p|é|”>|Aw1w2'P|o
Lemma

_ T T
S v %en( T (D)) (e - walloe Sup [PE)lo—2 + 71 AurwsPlo )
pn P wER
for some 7 > 0. The bounds (5.24), (&.30), together with the definition (3I5) imply the claimed bound. O

By the formula (G.15]) and using that the operator F,, 11 solves the homological equation (5I6), one obtains
that
Lrt1(p) :=1Dni1 + Pryi(e),

Dpy1:=Dp+ 2, 2Z,:= [7/5 ( )]

)_.|,_.

1
(5.31) Ppi1 = Hi’])ﬂ _|_/ (1 _ T)e*Tfn#»l[[Pn(O)] _ anmfnJrl]eT]:nH dr
0

1
+ / e TP, Frle™ m dr .
0

The new block-diagonal part D, ;. Since by the inductive hypothesis the operator P, (¢) is skew self-
adjoint, then also the 2 x 2 block-diagonal operator [P, (0)] = diag;cy,IL;Pn(0)11; is skew self-adjoint, therefore

the 2 x 2 block diagonal operator Z, := %[73”(0)] is self-adjoint. Hence using the induction hypothesis, one
gets that D, 41 is a 2 x 2 self-adjoint block diagonal operator. We then set

(5.32) Dpi1() i= I, Dy 111 := Dy (§) + Z0(j),  Zn(j) :=1,; 2,10, VjeNy.

By the inductive estimate (15]:[[), one gets that for any o < o,

n

(5.33) |Zal5 PG = [Dpgr = DalSP ) < [P [P0 < eem

On,—2
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The latter estimate, implies that

sup | 25 (j3w)lles S ee" ()72,

wER, ()
5.34 Z,.(j: _z,
( ) sup 12045 w1) (75 w2)llms < 57_1e_X
wi,w2 € (7) flwr — walloo
w1 Fwa2

uniformly w.r. to j € Ny. The estimate (5.9) at the step n + 1 then follows by applying (5.33)), using a
telescoping argument.

The new remainder P,,;1. By applying Lemma [3.4}(i7), one obtains the estimates

(535) |HTJL_7D |L1P(’Y Q) < e—Nn(G'n_O'7l+l)|’P |L1P R )

Ont1,—2 On,—2

Furthermore, by applying iteratively Lemma [34}(¢), (i4i) one obtains that if p > 0 satisfies 0,41 + 3p < o,

Lip(7,Qn+1) Lip(7,Qn+1)
APy e | e (B ) = Py Fe | T
(5.36) Tnt1,™ Ont1,—
_ Lip(7,2n ip(v,Q Lip(7,92n
S sup [ E T PO ) (P O |

T€[0,1]

for some constant a > 0.

: : Lip(v,Q e
Now we want to use Lemma [3.7 in order to estimate sup, o |eiTF"+1|aii(j+3Z“). We fix p := 22— 50

that o1 +4p = opg1 + gt = U"+20"“ < op. With this choice of p, by applying Lemma and the
inductive estimate (L.I1) on P, one obtains that

Lip(7,n Lip(vy,Qn _ T T Lip(7,Qn
Pl = 1l S o e i Gy Pela
Op — Onp41)" n n
(5.37) < E’y_lexp( T +In ( T ) — x")
On — O'nJrl)n On = On+l

using that, by (51, one has
n

T T X
sup{exp( 11n( )——)}<oo.
neN (Un _Un-i-l); On — Onp+41 2

The estimate (B.31) proves the estimate ([B.I3) at the step n 4+ 1. Furthermore,
1

- . \F Lip(7,92n41) 5
(Un_Un+ ) | 71+1|

on+on+1 >

(5.38)

for some § € (0,1) small enough by taking ey~! small enough and using that by (5.5)

. 1 _xr
hm 726 2 =0.
n—00 (gn — anJrl)

The smallness condition ([332)) of Lemma [3.7] is verified and therefore we get the estimate

(539) sup |ei7'-7:n+1|{;lp(’§pﬂn+1) < 1.
T7€[0,1] nt

The estimates (0.39), [.30), (.31), (-39) (recalling the definition of the remainder P, 11 given in (5.31))) lead
to the inductive estimate

Lip(7,Qn+41) ~Nn(on—0nt1) Lip(7,Qn)
R P L

1 I

(5.40) (
exX
(Uﬂ - Uﬂ+1)a P (0’ n — On+41

T

+ Cv‘l

n — On+1



32 RICCARDO MONTALTO, MICHELA PROCESI

where C' > 0 is a positive constant and a > 0 is the constant appearing in the estimate (2.36). The latter

estuimate, together with the inductive estimate (511 on |P, |I(;lpj2Q ) imply that

Lip(v,n _ _ _
|Pn+1| p(y +1) <e Ny, (on an+1)0*€e x™

Un+1,72
1
(5.41) + oyt aexp( T i ln( T ))02 2,-2x"
(Un _Un-i-l) (O'n_o'n—i-l); On — On+41
< C'*ae_xn+1
provided
1
Sug {GXP(X"(X - 1) - Nn(on - Un-l—l))} S 5 )
(5.42) "e ) . . 1
CCyeyt sup{ exp( - In ( ) —(2- X)Xn)} <-.
neN (Un - Un-i—l)a (Un — U,H_l)? On — On+1 2

The first condition in (5.42]) holds by recalling (B.5]) and by taking Ny > 0 large enough. The second condition
in (5.42) holds by recalling (5.5) and by taking ey~! small enough.

PrOOF OF (S2),,,. By recalling the estimate (5.34), for any j € Ny, the function Qn41(v) — S(E;),

w = Z,(j;w) = Dpi1(J;w) — Dp(j;w) is a Lipschitz function. Hence by using the Kirszbraun Theorem

there exists a Lipschitz extension Z,(j;-) : Dy — S(E;) of Z,(j) preserving the sup norm and the Lipschitz
1i 1i

i 120G @lis, 12068 S 120 ()llid- Therefore,

using the bounds (5.34) and defining Dy 11(j) := Dn(j) + Zn(j), the claimed statement follows.

seminorm, namely sup,,ep, 120 (s w)llas < SUP,eq

5.2. Convergence. Final blocks. By applying Theorem (.1}(S2), the sequence of the Lipschitz functions
D,(ji-) : D, — S(E,), j € Ny is a Cauchy sequence w.r. to the norm || - [|MP(¥:%%0) and therefore, we can define
the final blocks

(5.43) Doo(j) := lim D,(j), VjeNy.

n—oo

By using a telescoping argument one obtains that for any j € Ny, for any n € N, the following estimates hold

SUp || Do (j; ) — Do (j; w)llas < () 2ee™ X",
(5.44) WED,
. ]1 P )
Do (§) — Du(f) s S ey te

Then, recalling the definition of the norm | - [¥2Y given in (3IH), if we define the 2 x 2 block diagonal
operators

(5.45) D,, = diag;en,Dn(j), Vn €N, Dy = diag;en,Poo(d)

one gets that for any 0 > 0, n € N and Q2 €D,

(5.46) Doe — Dy |52 S eeX"

Final Cantor set. For any ¢ € Z2°, j,j' € Ny, we define the linear operator O (¢,74,j') : B(E;,E;) —
B(E;,E;)

(5.47) Ox(l,4,7") i=w-L1d — M (Do (j)) + Mr(Des(5"))

and we define the set

S d(e . 00
oo (7) := {w €D, : [|0a(?,5,5) Hop < 2(—7), V(£,4,5") € Z° x Ng x Ny,
(5.48) )
o o d(¢)42 . -
j#3 and 0x(td. ) on < B vy € @\ o)) x o}

The following lemma holds

Lemma 5.3. One has that
Qoo (7) € Nueng () -
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Proof. We proceed by induction. By definition Q. () C D,,. Now assume that Q. (y) C 2, () for some n > 0
and let us show that Qoo () C Qpt1(7). Let w € Qoo(y). Since by the induction hypothesis w € Q,(7), the
2 x 2 blocks D, (j;w), j € No, are well defined and Dy, (j;w) = Dy (j;w) on such set. By the estimates (5.44),
recalling the property (B.7)), one obtains that

||ML(DOO(j) - Dn(j)))HOpa ||MR(D00(J) - Dn(j)))”Op S 5<j>7267X

n

and using that
the latter estimate implies that for any ¢ € Z$°, |¢|,, < Ny, j,j' € Ng, j #j’

(5.49) 10 (4,4, 5") — Oco (€, 5, 7 )lop S e X"
and for any £ € Z° \ {0}, |¢],, < Ny, j € Ngy
(5.50) 100 (€,5,5) = Oso (€, 5, §)llop S ce™X" ()2,

Since w € Qoo () € N (7y), we can write
On(€,5,5') = Osc (£, 4, 5") + On(l,4,5') — Oco (£, 4, 5")
= Onc(£:5 ) (1 + O (6,5, 7) 7 [On(6,3,3') = O(.5.7)])
and using the estimates (5.49), (5.50), we get for any (¢, 5, ') # (0,74, 7), [¢|5 < Ny, the bound

10w (€,5.5) 7 [On(t,3,57) = Onc(£,3,7)] lop S &7 ™" sup a(0)

[eln<Nn
emmd(C.2] 1
(5.51) S 1) (1 4 N, )N T
1
ey tsup exp( —x"+C(n)N;,"" In(1+ Nn)) .

neN
By the choice of N,, provided in (&.0]), one obtains that

_1
supexp( = X" + Cln, )N (1 + Ny) ) < o0
neN

implying that for ey~!

small enough
10 (t,3,3") " [Onll. 5. 7) = Oncl£:,5)] o <

Hence by Neumann series O, (¢, j, j') is invertible and w € Q,41(7). O

N =

KAM transformations
For every n > 1, we define the transformation ¥,, as

(5.52) U, :=®;0...09,.

where for any n > 1, the transformation ®, = exp(F,) is constructed in Theorem [EIl Note that for any
n € N, the map VU, is invertible and the inverse is given by

(5.53) Url=0, 0. 0d .
We now show the convergence of the sequence of transformations (¥, )nen, in the space H(T%j ,B GTO)
2

Lemma 5.4. (i) The sequence of transformation (V,)nen converges to an invertible transformations Vo, for
Lip(7,Qc0 (7))
o0

w € Qoo (y) w.r. to the norm | - | . Furthermore the following bounds hold: ,

|\IJoo _ Id|1ip(%9m(’)’)) |\I}O—ol _ Id|%p(%ﬂoo(7)) S E’}/_l )
2 2

)

(ii) For any 0 < o < 2, for any s > 0, the maps T — B(H(To), H(Ts)), ¢ — PYoolp)*! and T —

B(H*(T), H*(T)), ¢+ ¥so(p)t! are bounded.
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Proof. PROOF OF (i). For any n > 1, one has that
\I]n+1 = \I] o (I)n_;,_l — \I/n+1 — \I/n = \I/n 9 ((I)n+1 — Id) .

We estimate now |¥,, 11 — ¥, |I;:i? L) Fix p = In=gntl guch that 0,41 < 0pp1 + 2p = 25 By
applying Lemma [34}(7), one has that

Lip(7,900 —2 Lip(7,00 Lip(7,00
(5.54) [Wois = W20 < =2 W, [0 Oy — TP~

Moreover, since ®,,11 = exp(Fp+1), using the estimate (EI3) (at the step n 4+ 1) and by applying Lemma [B.7]
one gets

Ont1+2p=

Li Qoo — Li Qoo
|‘I)n+1 - Id|af+?+p o) 5 p 2|]'—n+1|an+1+2p 5 (Un - UnJrl) 2|]:"+ |Ulnp+7’n+1 o)

onton41
2

(5.55)

S (o0 —ong1) 2oy e Sey

Thus, the estimates (.54]), (555) imply that

v, v, {;IP’YQ oo (7)) <
(5.56) [Wotr = Wulo, (

-1

eyl f—|\1, |L1pwﬂ 0o (7))

On — 0n+1) Ont1

-1, X" Lip(v,Q
<eyle s |\I,n|glpv oo (7))

where in the last inequality we have used that ¢,,4+1 < 0, and

4 Xn X'Vl
sup {(on —Ont1)” e_TJFT} < 00
neN

and by triangular inequality

(5.57) Wy [HPOr () < |, LR (O () (1 4 Cmflef%)
for some constant C' > 0. By iterating the latter bound one obtains that
(5:58) W[ 200 < TT (14 eyt ).

Jj=0

J
Passing to the logarithm in the above inequality and using that the series > >0 e~ 5 is convergent, one obtains
that -

5.59 C = su \I/n Lip(7,Q200 (7)) < 0.
(5.59) 0 pVals)
neN

Now let n,k > 1. One has that

(5.60)  [Wnik — W[ < 7wy — w00 ST oy LN o g oyl
2

Oj+1
i>n j>n

Hence (U, )nen is a Cauchy sequence w.r. to the norm | - [5P(=(7)
2

bound

and hence it coverges to Vo, with a

[Woo — W, |HPOH 22 () < =15 yp e N,
2

Similarly one shows that also the sequence (¥, !),en converges to a transformation I'n, w.r. to the norm

. %ip(%ﬂ o) with the same rate of convergence. Furthermore since \I’n\I’ 1= v 1\I/n = Id, assing to the
2

limit one obtains that 'y, = W !. The claimed statement has then been proved.
PROOF OF (i%). The claimed statement follows by the item (¢) and by applying Lemmata 241 BTl O

Final normal form
We now show the following

Lemma 5.5. For any w € Qoo () and for any ¢ € T3 /3 the operator Lo(p;w) defined in (B2) is congugated
to the 2 x 2 block diagonal operator iDs (see (BA3), (BAH) ), namely (¥oo)wsLo(p;w) = iDoo (w)
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Proof. By applying Theorem 5] by recalling the definition (5.52) of the maps ¥,,, n € N and using that by
Lemma 53] Qoo () € Np>02n (), one gets that for any n € N

(5.61) iDp(w) + Pr(p;w) = L = (Uy)weLo(p;w), Yw € Qoo (7).
By (52), (53) and by Lemmata 5.4 29 one has
(5.62)
|w - D (Vo — \I,n)|gp£'zﬂao(7)) < P_1|\I’oo _ \I,n|gp(mﬂao(7)) -0 as n— oo, and |Eo|{;:)p(jg’ﬂ°°(7)) <1
2 2 ’

for p > 0 so that %> — p > 0. Therefore, by recalling the definition (Z2)), by the estimates (5.62) and by
applying Lemma [3.4} (i), one gets that

(563) lim |(\I/n)w*50 - (\I/oo)w*ﬁoﬁ_tp(mﬂm(w) =0.
3

n—r oo

By the estimates (5.11]), (546]), (B.63) and passing to the limit in (E.61]) one obtains the claimed statement. [

6. MEASURE ESTIMATES

It remains only to estimate the measure of the set Qo (), defined in (548]).In order to do this, let us start
with some preliminary considerations. For any j € Ny, the 2 x 2 block Do (j;w), w € D, is self-adjoint and
depends in a Lipschitz way on the parameter w. By ([@43), (5:44) and by recalling (53), (&4)), for any j € N,
we can write that
(6.1) Doo(j) = X2j?1d + Reo (j; w)
where the self-adjoint 2 x 2 block R (j;w) satisfies the estimate

) , i -
(6.2) SUp [ Roc (i w)lles S () (| Boo (i)l < €7 t
wely

By applying Lemma [B.2] one then obtains that for any j € N,

spec(Doo(j;w)) = {1V (), 1 (W)}, spec(Ros(j3w)) = {7 (), {7 (@)}

where ug-i) and r§-i) depend in a Lipschitz way on the parameter w € D, and they satisfy
+ . +
H5 7 w) = Aog? + i (W),
6.3 . i _
03 ha-1Se, swpPwIsel), FEIP g,
If j = 0 one has |u0|Lip(7’D7) < e. For compactness of notations we set uéﬂ = u(f) = up. By applying
Lemmata [BJ] and [B.2}(47) one then obtains that the set Qo () can be written as
(6.4)
o o 2 .. oo . .
Qoo(7) = {w €Dyt |w- b+l —u§)) > fZ)’ V(l,5,5") € 2T x No x No,  j #j', 0,0 € {+,~}
1~ > 2 ) € (2°\ {0}) x N / -
|w +/L] ey |_d(f)<j>2, (7])6( * \{})X 0, O',O'E{—I—, } )

where we recall
a0) = [T+ [ea*(n)"), Veez.
neN
In the remaining part of this section we prove the following Proposition.

Proposition 6.1. Assume that p > 3. For ey~ and ~ small enough one has that ]P(RO \ Qoo(’y)) <.

We note that
(6.5) P(Ro \ 2uc(7)) < P(Ro\ D, ) + P (D, \ (7))
In [BMP], it is proved that

(6.6) P(Ro\D,) S,
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therefore, we need to estimate the set D \ Qoo(7y). In order to shorten notations, we define

(6.7) Z = {(e,j,j’) € 7% x Ng x N : j ;éj’}, Zy = (2°\ {0}) x Np .
One has that

(6.8) D\ %= U RumU( U 2m)

(4,53 )€21 (£,5)E22
where for any (4, j,j') € Z;, we define
2y
(6.9) Rejjr () == U {w €Dy |w- €+u§- - ,uj | < (ﬂ)}
o,0'e{+,—}
and for any (¢, j) € Z5, we define
2y
(6.10) o= U {w€D7:|w-€+u§ — i < ,2}.
o,0'e{+,—} (€)<j>

Lemma 6.2. (i) Let (¢,5,j') € Z1. If Rejj (7) # 0, then |52 — 5| < Cl|1 and P(Rejj (7)) S %.
(i) Let (£,) € Za. If Quy() # 0, then P(Quj(1)) S mrr-
Proof. We prove item (7). The proof of the item (ii) can be done arguing in a similar fashion. Let j, j’ € Ny,
j#j and 0,0’ € {+,—}. By (63) one has that for some constant C > 0,
157 = 1) = ol = 2| = Ce(j + ') = Ce.
Using that Ay = 1+ O(e) and that |j + j'| < [j% — j’2| one obtains that for ¢ small enough

(6.11) 17— ) = 2| 2 -7

() for any j # j'. Hence if (¢,7,5') € 21 and Ry () # 0 one has that ¢ # 0.
) # 0 one has that by using (6.I1]), one obtains that

implying that R,/ (y) =
Furthermore if w € Ry (v

1 -
(6.12) 1% =57 < Wl —

5 ol ST+ wlosollelly S 1T+ 11€] -

)l 2y
0]

Now let
s:=min{n e N: ¢, #0}, S:=max{neN:{, #0}.

and e®) = (egf))neN the vector whose n-th component is 0 if n # s and 1 if n = s. Similarly we define the
vector ). Let
P(t) = (w + te®) - £+ pZ(w + te®) — 17 (w + te).

1

By using the estimate ([G.3]), for ey~" small enough, one has that

_ 1
[W(t1) = P(t2)| > [t1 — to|[€s] = Cey™Htr — to| > it —ta].
The latter estimate implies that

{i:wt1e® € Rz (), [0l < d2(Z)H S35

Since Ryjj(7y) is a cylinder with at most S — s components, one obtains the desired bound.

PROOF OF PROPOSITION [6.1] By recalling (6.8) and by applying Lemma [6.2] one gets the estimate

PO\ 2()) S D 7f+ X TR

(€,5,5 )€ 21 (€.5) 622
5% =3"21<I1€llx
Mh emrdC
AL i+ T aw X o) v
EGZ"O j

The claimed statement then follows by recalling (G.5]), (IE)
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7. ProoF oF THEOREM [1.4] AND COROLLARY [I.7]

Let v := &% a € (0,1). Then the smallness condition ey~! < § is fullfilled by taking ¢ € (0,2¢) with &g
small enough. By setting . := Qs (7), the Proposition [6.1] implies (7). For any w € Q., we define

(7.1) Waol(p) := @D () 0 @@ 0. . 0 ®D(p) 0 Uyo(p) o€ T34

where the maps &), ... & are constructed in Section H and the map W, is given in Lemma [5.4l The
properties (1) and (2) on the maps Wa(p)*! stated in Theorem [[4 are easily deduced from Lemmata ET]
A3 4 @5 (40 A7 18 5.4 (i) and from remark L2l Furthermore, by the same Lemmata and [5.5lone obtains
that u(t,x) is a solution of (L) if and only if v(+,t) := Wao(wt) "tu(:, t), w € Qe solves the time independent
equation 0yv = iDyov where Dy, is the 2 x 2 time independent self-adjoint block-diagonal operator defined in
(E43)-(E43). The proof of Theorem [[4]is then concluded.

ProOF OoF COROLLARY [[L7l Since D, is a 2 x 2 block diagonal self-adjoint operator, the general solution of
the equation 0;v = iDov can be written as

_ Z eitHjDoon [Hj'UO] )

J€Ng
Since II;DoI1; : E; — E; is self-adjoint (recall 3.2)), one has that ||e™P=Ti[I1;v0]|,, = [T vollz> for
any j € Ny. This implies that both analytic and Sobolev norms are preserved, namely for any o > 0,
lv(-,t)|ls = ||vollo and for any s > 0, ||v(-,t)|| g = ||vo|lm=- Hence, by using the properties (1) and (2) stated
in Theorem [[4] one obtains that for any w € €, the solution u(-,t) := Wao(wt)v(-,t) of () satisfies the
desired bounds both in analytic and Sobolev norms. The proof of the Corollary is therefore concluded.

APPENDIX A. HOLOMORPHIC FUNCTIONS ON THE INFINITE DIMENSIONAL TORUS

We start by proving that, just as in the finite dimensional case, H(T%°, X) is a space of holomorphic functions
in the following sense.
Endow the thickened torus TS® with any topology such that the restriction to a finite dimensional subtorus
is a metric, i.e. any topology which is finer that the product topology. Denote by B?(X), the space of the
bounded, continuous functions u : Tg® — X equipped with the sup norm || - ||z (x). For N € N, define the
space H(TY, X) as the space of holomorphic functions from the N-dimensional torus 7 := HZ 1 To(syn with

values in X. Finally let H(T2°, X) be the closure of UyenH% (X) in B(X) w.r. to || - l| 3o (x)-

Proposition A.1. For all o,p > 0 one has H(T®, X) C ﬁ(']l‘oo X) CH(TS,, X) with the bounds

lllre 0y < lullo S exp(; tn (7))l e, )
Proof. Given N € N, we define the set
7% = {éeZNzéi:O, Vi>N}.
Given a function u : T3® — X, for any NV € N we define the truncated function
Snu(p) = > ().
ey

Let us show that u € H(TS®, X) is the limit of Syu in B7(X). If ¢ € Z*° \ Z$, then there exists |i| > N
such that ¢; # 0 and hence by the definition of |€|n one has |€|77 > N". Therefore

sup [lu(p) = Svule)lx = swp | X w@SI|| < 3T fa)xenh
‘PGT?’ @GT“’ EGZOO\ZOO EGZS,O:M"U>NW

The right hand side of the above inequality tends to 0 as N — oo, since it is the tail of an absolutely convergent
series. To prove the second inclusion we consider u € H(T23 ,, X). By definition there exists a sequence (u)gen

o+p?
with uy € H(Tf,vjp,X), such that up — u w.r. to || - ||g-(x). Since uy is an analytic function of the finite

dimensional torus TY* _ we can apply the Cauchy estimate, namely

O'+p’

(A1) lan (0| x < e*("”)'e'"||Uk||H(Tf,VjP,X Ve € LR,

) Y
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Let ¢ € Z$° with |¢], < oo, then there exists an N > 0 such that ¢ € Z%. Then for any k > ko, one has
{ e Z}’vok. For any k > m > kg one has

(A2) [80) = T (Ollx < O~
implying that the sequence (U (€))ren is a Cauchy sequence. We define
u(f) := lim ug(0)
k—o0

and passing to the limit for &k — oo in (A-2)), one obtains that

(A.3) [ () = a(0)]|x < e HPn fluy — ull 7z, )
Clearly, passing to the limit in (A]), one has
) i < e~ (pt+a)l4 . i

(A.4) [@E)x < Mol

Let v(p) := ZéeZ“’ u(£)e*?. We show that u = v by estimating ||u(p) — v(¢)|x pointwise for any ¢ € T°.
We have [Ju(p) — v(9)|lx = limg_eo ||ur(¢) — v(p)]|x and we estimate

uk(p) —v(p)llx < Z ak(é)ew"f’ — Z a(g)eiew”X

CELy, ez
< Y law@-a@lx+ > laelx
LeLy, CELFN\LY,
< Y a0 -a@lx+ Y la@lx
LT, [€] >Ny,
@E2) &3
< Z ~EO g, — | pgoto(xy + Z e~ e || 3ot x)
LT, [€]n> Ny

The first term converges to zero since Y ,cz. €~ ("¢ is convergent and |luj, — ul[3o+s(x) — 0. The second

term converges to zero since it is the tail of a convergent series and N — oco. It remains to estimate ||ul|,-
We have

_ @GD _
lulle = D e M@@x < llullrioxy Do e

Lez LeL>

APPENDIX B. TECHNICAL LEMMATA
B.1. Linear operators in finite dimension. Given an operator A € B(E;), we define its trace as
Tr(A) := A), A€ B(Eo),
Tr(A) —AJ +A,§, Ae B(Ej), jeN.
It is easy to check that if A, B € B(E;), then
(B.2) Tr(AB) = Tr(BA).

For all j,5' € Ny, the space B(E;,E;) is a Hilbert spaceﬁ equipped by the inner product given for any
XY € B(E;, Ej) by

(B.3) (X,Y) :=Tr(XY™).
This scalar product induces the L?-norm || - ||gs defined in (B.10).

Given a linear operator L : B(E;/, E;) — B(E;/, E;), we denote by ||L||op its operatorial norm, when the space
B(E;/, E;) is equipped by the L?-norm (3.I0), namely

(B.4) ILllop := sup { |L(M)[lss : M € B(E;1,E;), [ Mllss <1}

(B.1)

5Actually all the norms on the finite dimensional space B(Ej/ ,E;) are equivalent.
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For any operator A € B(E;) we denote by M (A) : B(E;,E;) — B(E;/,E;) the linear operator defined for
any X € B(E;,E;) as
(B.5) Mp(A)X = AX.
Similarly, given an operator B € B(E;:), we denote by Mg(B) : B(E;/,E;) — B(E;/, E;) the linear operator
defined for any X € B(E;/, E;) as
(B.6) Mgr(B)X :=XB.
The following elementary estimates hold:
(B.7) [ML(A)llop < |Alles,  [[Mr(B)llop < [ Bllas -
We denote by S(E;), the set of the self-adjoint operators form E; onto itself, namely

(B.8) S(E,) == {A €LE): A= A*} .

Furthermore, for any A € B(E;) denote by spec(A) the spectrum of A. The following Lemma can be proved
by using elementary arguments from linear algebra, hence the proof is omitted.

Lemma B.1. Let j,j' € Ng, A € S(E;), B € S(Ej), then the following holds:
(1) The operators Mr(A), Mgr(B) defined in (BA), (BE) are self-adjoint operators with respect to the scalar
product defined in (B.3)).

(13) Let j,j' € N, A€ S(E;), B € S(Ej/). The spectrum of the operator My (A) £ Mgr(B) satisfies
spec(ML(A) + MR(B)) = {/\ +p:Aespec(d), pe spec(B)} .
(13) Let j € N, A € S(E;) and B = \g € S(Eo). Then, the spectrum of the operators Mr(A) £ Mr(Xo) =
ML(A) + \old : B(EQ,Ej) — B(EQ,E]‘) and ML()\()) + MR(A) = Mold £+ MR(A) : B(Ej,Eo) — B(Ej,EQ)
satisfy
spec (ML(A) + /\OId) = spec()\old + MR(A)) = {/\ X A€ spec(A)} .
We finish this Section by recalling some well known facts concerning linear self-adjoint operators on finite

dimensional Hilbert spaces. Let H be a finite dimensional Hilbert space of dimension n equipped by the inner
product (-, -)3. For any self-adjoint operator A : H — H, we order its eigenvalues as

(B.9) spec(A) := {A1(4) < X2 (A) < ... < N (A)}.

Lemma B.2. Let H be a Hilbert space of dimension n. Then the following holds:
(1) Let Ay, As : H — H be self-adjoint operators. Then their eigenvalues, ordered as in (B9), satisfy the
Lipschitz property
|)\k(A1)—)\k(A2)|§ ||A1_A2||B(H)a Vk=1,...,n.
(i) Let A =yldy + B, where y € R, Idy : H — H is the identity and B : H — H is selfadjoint. Then
Me(A) =y + M (B), Vk=1,...,n.

(7i1) Let A :H — H be self-adjoint and assume that spec(A) C R\ {0}. Then A is invertible and its inverse
satisfies

At = — .
1A 5y W O\
B.2. properties of B7™.

Lemma B.3. Let 0,p >0, m,m’ € R R € B>™, Q € B°t»™ . Then RQ € B> and |RQ|| gormim' Som
PR o | Qll g g -

Proof. PROOF OF (i) By using the 2 x 2 block representation of linear operators, one has that the operator

C := RQ admits the representation C = 3, . .y II;CII;; where

(B.10) ILCI, = (I RIL) (I QL) , Vi, 5" € No.
keNg
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Using that by triangular inequality e?l7=3'l < eoli=Fleolk=i'l ‘for any j' € Z

(B.11)
D e VIO ()~ < 3 eV N RIL s [T QILy ")~
JE€ENp J,k€Ng
< D7 eI RIL s (k) L QUL s )~ (k)™ ()
7,k€Ng
Using that

RGN S L (= )™ S (e = 7)™
the inequality (B.I1)) implies that
(B.12)
> eI lus () ) S D eV RIT [lus () e (ke — )T, QT lus (5) ™

J€ENo J,k€Ng

Smsp (3 e THIGRIG o)) 3 e (k= 7)™ T QI s ()
keNo * jeng keNo

S (IRl Y el TPl (g — jryImle=elh=3" | 1T, QT s () ~™ .

keNy
Using that
Supxlm\e*pr <m p*\ml
x>0
one gets
S elrtolb=dlggs — gyl e=re= 1 T QT s (7)™ S o™ Qe
keNy
and then the claimed statement follows. O

Lemma B.4. Let 0 >0, a € H(Toy,). Then the multiplication operator M, : u(x) — a(x)u(x) is in B and
IMallse < P~ Hlallotp-

Proof. One easily see that the multiplication operator M, admits the 2 x 2 block representation M, =
Ej /€N, IT; M, I1;, where for any 7, j' € Ny, the operator IT;,M,I1;: is represented by the matrices

a( =74y ali+j") o a(j) ; SN Y
<a(_] — ) al=j+4) 7) J,J €N, (a(_j)) JjeN, (a(j ), a(—j )) J eN.

Using that a € H(Ts4,), one obtains that
@i = 3, [a(=j + 3" < llalloype™ 8=,
@ + ) [a(=3 = 3| < llallopeHHL
Using that for any j,j/ € Ny, e~ (o t0liti'| < ¢=(e+0)li=i"l one gets that
T Mol [lss S [lallospe 1, 5,5 € N .

Therefore for any j’ € Ny,

s — s 4! —
Z el ‘||HjMaHj/||Hs < llallo+p Z eI S p 1||a||"rzg+"'
jE€Ny j€Ny

The thesis then follows by recalling the definition (3IT)). O
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B.3. Properties of torus diffeomorphisms. In Subsection [£.2] we have considered diffeomorphisms of the
form

(B.13) @ = o+ wa(p)

where a € H(T55, ), 0,p > 0 and w € D,. By Lemma XT3, for ¢ = £(p) small enough, if |[a|[30+, < €, then
the diffeomorphism (B3] is invertible and its inverse has the form

(B.14) Y = 0 + wa(d)
where & € H(T®) and ||@]|s < ||@llo+p. Note that by (B.13), (B.14), one can easily deduce the formulae
1
1 —|— w 8196&(19) = ~ )
(B.15) 1+w- 6¢a(119+wa(19))
14+w-0ya(yp)

Tltw- Aya(p +walp))
The following lemma will be used in the reduction procedure of Section ] in order to show that some averages
do not depend on the parameter w € ).

Lemma B.5. The following holds:

Let w € Dy be a Diophantine frequency and let a be a function in H(T®). Then [r. w-dya(P)dd =0. As a
consequence one has

(B.16) / (1 tw- 819&(19))d19 -1

and for any ¢ € 2 \ {0},

(B.17) / it (i) (14 - 9,6(9)) i = 0.

Proof. Let N € N. Then We split
w-dga() = Y iw-La()e + Y iw- La)et’ .
(£0,, 0], <N |€lg>N

Since a is an analytic function, the second term on the right hand side goes to zero as N — +o00. Moreover
/ iw-Lae’dy = Y iw- @) / eV dy =0.
™ e20, 161, <N 0£0,1€],<N ™
Therefore one deduces that
. 1 : 09 79 _
/ma(ﬂ)dﬁ_]\}gnoow/w D iw-La(0)e? dy =0.
[€ln>N
The equality (B.IG) follows immediately by the previous claim. The equality (B.I7), follows observing that

since ¢ € Z2° \ {0} and w is Diophantine, one has that

eil-(19+w&(19)) (1 tw- 819&(19)) _ iWl. o 0, (eie-(ﬂer&(ﬂ)))

hence the result follows by applying the first claim. (I

Lemma B.6 (Moser composition lemma). Let f : Br(0) — C be an holomorphic function defined in a
neighbourhood of the origin Br(0) of the complex plane C. Then the composition operator F(u) := fow is a
well defined non linear map H(TP) — H(TX).

Proof. Clearly, since f(z) = 3, 5gan2" is analytic, for any 2z € C, [2| < R, the series > (lan[|z|" is
convergent. Moreover, Let v € H(T) with ||lu|l, < r < R. By applying Lemma 25 for any n > 1,

u™ € H(T) and ||u™||e < ||lul|} <™. The series ), -, a,u™ is absolutely convergent w.r. to || - ||o. Indeed ,
one has
H S g <3 fanlllulz < 3 fanlr < oc.
n>0 7 u>0 n>0

this implies that F'(u) = ano anu™ belongs to the space H(TS°) and the proof of the lemma is concluded. O
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APPENDIX C. SOME ESTIMATES OF CONSTANTS

Lemma C.1. (i) Let p1,pu2 > 0. Then

sup H (14 (i) ]]2)e Pl < exp(— In (T))
ez pn P

for some constant T = T(n, u1, p2) > 0.
(i) Let p> 0. Then Y ,cpe e Pl < exp(Ll In (%)), for some constant T = 7(n) > 0.
2 0%

Proof. PROOF OF (i). We remark that the left hand side can be expressed as
exp (2 =p(i)"[6] + In (14 (04 6]2) ) = exp(> filla]))
where
(C.1) fil@) == In (1+ (iy2) — pli)7a
then the result follows essentially word by word from Lemma 7.2 of [BMP] where it is proved in the special

case w1 = 2+ ¢, pz = 2. Since f;(0) = 0, it is enough to estimate max,>1fi(z), in order to bound the series
>, fi(l¢;]). One has that for any x > 1

filw) <I(2()" 2#2) = p(i)"x < Co(pa) (i) + p2 In(x) — p(i)"x = gi(x)
for some constant Cy(u1) > 0 and hence
maxz>1 fi < maxy>16; -

Using that In(z) < z for any = > 1, one has that

i(w) < Couny () — 200, vi > (22)7,

p
Furthermore,
)1 2C %
Cotun) () - 2% <0, v > (2lealys
2 np
and hence )
) Ci\n 2C
gi(r) <0, Vi> (71) ' Cy=C(pa, pa,m) = max{% y 242}
Ifi < C—j, a direct calculation shows that the maximum of g; is achieved at the point z; = pé‘# and

B

gi(x;) = CoIn((2)) +u21n(p/<i,2>n) po < %ln(c ) + 2111( P ) < Cgln(ff)

for some constant Co = Ca(n), i1, pi2) > 0 large enough. Thus
C C
Zfl(:zr) < Z gi(z) < _iCQ In (_2)

P P

i<Cipn
PROOF OF (ii). By Lemma 4.1 of [BMP], one has

1
D e s o< oo

LeLX i
Therefore
ezeplfln:ZH1+ |£|2 (>|€|(1+<>|g|)
€7 L7 i
—p(i)" €] 1_|_ [
~£§;130(H6 (1+ 216R) ).

The claimed statement then follows by item (i) with pq = pe = 2.
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Lemma C.2 (Small divisor estimate). Let u1,pue > 1. We have the following estimate for N > 1

_1
(C.2) sup [+ (@ jal2) < (1 + N)ClnmmuN T
LELL: £l y<N ™

for some constant C(n, p1,u2) > 0.

Proof. For £ fixed, let us denote by k the number of non-zero components of . We claim that k <, N ﬁ,

indeed
k k k
N > |ty = (i), | > Z<ij>" > Zj" S
= , 4
and the claim follows. Now if n > 1 we have (¢)|¢;| < (i ) |€ | <N and setting p := max{p1, ua}

sup g In(1 + (@)*1]6;]12) <, NTH In(1+ N*) <, N In(1+ N).
ez |4, <N
1

otherwise if n <1 one has (i)[¢;] < ((§)"|¢; |)% N7 and again

sup Zln (14 @H))*2) <, N T In(1+ N"n) ,”LNHN In(1+ N).
tez=: €], <N

Lemma C.3. For uy,po > 3, one has that ), 0 Uﬂ;{ < 00 where d(£) 1= [,cn(1 + (5)# [€;]#2).

Proof. The proof is very similar to the one of the measure estimate Lemma 4.1 of [BMP]. For ¢ € Z2° let
s = s({) be the smallest index ¢ such that ¢; # 0 and S = S(£) be the biggest. Recalling

1 1
11 (1 + [en]rrnm) — 1] (1 + |€n#2]n]r=)

neN s(0)<n<S(0)

€11 |45
©3 2 oan <, 2 W

L€z SEN £:5(0)=5(0)=s

(C4) IDIDINCED DS W

SeN0<s<S £:s(0)=s, s<n<S
S()=S

Now for p1 > 3

5 e St
(1 + htt|p|re) — h#1=2|p|k2 = |n|He
h=1 h

hence

Z : (h)? <14 C(/Ll)'

2 T ey < e
Consequently for us > 1, (C3) is bounded by

c(pa) Y187 < es(p, p2)y-
s>0

Regarding (C.4)), we have
c(m)? c(p1) c(p)? c(p1)
< 1 = In(1 <
Z 11 1+|e |m|n|m>—|s|u2|5|m IT 0+ 5 = g e (2 W+ 150) <

=s,s<n<S s<n<S s<n<S
S(l):S

e(p)? c(p1) c1(p)
<
[s[nz| Sl P (% |n|u2) = sz S
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consequently (C4) is bounded by

Z Z (5—5)2%<w

SeN0<s<S

provided that ps > 3. |
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