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REFORMULATION OF THE M-STATIONARITY CONDITIONS AS A

SYSTEM OF DISCONTINUOUS EQUATIONS AND ITS SOLUTION

BY A SEMISMOOTH NEWTON METHOD∗

FELIX HARDER† , PATRICK MEHLITZ† , AND GERD WACHSMUTH†

Abstract. We show that the Mordukhovich-stationarity system associated with a mathemati-
cal program with complementarity constraints (MPCC) can be equivalently written as a system of
discontinuous equations which can be tackled with a semismooth Newton method. It will be demon-
strated that the resulting algorithm can be interpreted as an active set strategy for MPCCs. Local
fast convergence of the method is guaranteed under validity of an MPCC-tailored version of LICQ
and a suitable strong second-order condition. In case of linear-quadratic MPCCs, the LICQ-type
constraint qualification can be replaced by a weaker condition which depends on the underlying
multipliers. We discuss a suitable globalization strategy for our method. Some numerical results are
presented in order to illustrate our theoretical findings.
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M-stationarity, Nonlinear M-stationarity function, Semismooth Newton method
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1. Introduction. We aim for the numerical solution of so-called mathematical
programs with complementarity constraints (MPCCs for short) which are nonlinear
optimization problems of the form

(MPCC)

min
x

f(x)

s.t. g(x) ≤ 0, h(x) = 0,

G(x) ≥ 0, H(x) ≥ 0, G(x)⊤H(x) = 0.

Throughout the article, we assume that the data functions f : Rn → R, g : Rn → R
ℓ,

h : Rn → R
m, and G,H : Rn → R

p are twice continuously differentiable. Observ-
ing that most of the standard constraint qualifications fail to hold at the feasible
points of (MPCC) while the feasible set of it is likely to be (almost) disconnected,
complementarity-constrained programs form a challenging class of optimization prob-
lems. On the other hand, several real-world optimization scenarios from mechan-
ics, finance, or natural sciences naturally comprise equilibrium conditions which is
why they can be modeled in the form (MPCC). For an introduction to the topic
of complementarity-constrained programming, the interested reader is referred to the
monographs [27, 31]. In the past, huge effort has been put into the development
of problem-tailored constraint qualifications and stationarity notions which apply to
(MPCC), see e.g. [34, 39] for an overview. Second-order necessary and sufficient op-
timality conditions for (MPCC) are discussed in [13, 14, 34]. There exist several dif-
ferent strategies in order to handle the inherent difficulties of (MPCC) in the context
of its numerical solution. A common idea is to relax the complementarity constraints
and to solve the resulting standard nonlinear surrogate problems with a standard
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method, see e.g. [17] for an overview. Problem-tailored penalization approaches are
discussed e.g. in [18, 19, 26, 32]. Possible approaches for adapting the well-known
SQP method of nonlinear programming to (MPCC) are investigated in [1, 10, 28].
Active set strategies for the numerical solution of (MPCC) with affine complemen-
tarity constraints are under consideration in [11, 23]. In [21], the authors combine
a lifting approach as well as a globalized semismooth Newton-type method in order
to solve (MPCC). Furthermore, we would like to mention the paper [15] where the
authors reformulate different stationarity systems of (MPCC) as (over-determined)
nonlinear systems of equations subject to a polyhedron, and the latter systems are
solved via a Levenberg–Marquardt method.

Using so-called NCP-functions, where NCP abbreviates nonlinear complementar-
ity problem, complementarity restrictions can be transferred into systems of equa-
tions which are possibly nonsmooth. Recall that a function π : R2 → R is called
NCP-function whenever it satisfies

∀(a, b) ∈ R
2 : π(a, b) = 0 ⇐⇒ a, b ≥ 0 ∧ ab = 0.

Two popular examples of such NCP-functions are given by the minimum-function
πmin : R

2 → R as well as the Fischer–Burmeister-function πFB : R2 → R defined
below:

∀(a, b) ∈ R
2 : πmin(a, b) := min(a, b), πFB(a, b) :=

√

a2 + b2 − a− b.

A convincing overview of existing NCP-functions and their properties can be found
in [12, 24, 35]. We note that most of the established NCP-functions like πmin or πFB

are nonsmooth. Classically, NCP-function have been used to transfer Karush–Kuhn–
Tucker (KKT) systems of standard nonlinear problems with inequality constraints into
systems of equations which then are tackled with the aid of a Newton-type method
which is capable of handling the potentially arising nonsmoothness, see [4, 5, 7] for
an overview. Furthermore, these papers report on the differentiability of the function
π2

FB
which can be exploited in order to globalize the resulting Newton method. In

[22], the authors extended this idea to (MPCC) by interpreting it as a nonlinear
problem. Under reasonable assumptions, local quadratic convergence to so-called
strongly stationary points has been obtained and suitable globalization strategies
have been presented.

In this paper, we aim to reformulate Mordukhovich’s system of stationarity (the
so-called system of M-stationarity) associated with (MPCC) as a system of nonsmooth
equations which can be solved by a semismooth Newton method. Our study is moti-
vated by several different aspects. First, we would like to mention that the set

(1.1) M :=

{

(a, b, µ, ν) ∈ R
4

∣

∣

∣

∣

∣

0 ≤ a ⊥ b ≥ 0, aµ = 0, bν = 0,

(µν = 0 ∨ µ < 0, ν < 0)

}

,

which is closely related to the M-stationarity system of (MPCC), see Definition 2.4,
is closed. In contrast, the set

M̃ :=

{

(a, b, µ, ν) ∈ R
4

∣

∣

∣

∣

∣

0 ≤ a ⊥ b ≥ 0, a µ = 0, b ν = 0,

a = b = 0 ⇒ µ, ν ≤ 0

}

,

which similarly corresponds to the system of strongly stationary points associated
with (MPCC), is not closed. In fact, M is the closure of M̃ . Based on this topological
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observation, it is clear that searching for M-stationary points is far more promising
than searching for strongly stationary points as long as both stationarity systems
are transferred into systems of nonsmooth equations which can be solved by suitable
methods. In [15], the authors transferred the M-stationarity system of (MPCC) into
a smooth (over-determined) system of equations subject to a polyhedron, and they
solved it with the aid of a modified Levenberg–Marquardt method. It has been shown
that the resulting algorithm converges quadratically to an M-stationary point when-
ever an abstract error bound condition holds at the limit. Our aim in this paper is to
use a nonsmooth reformulation of the M-stationarity system which can be tackled with
a semismooth Newton method in order to ensure local fast convergence of the result-
ing algorithm under suitable assumptions, namely MPCC-LICQ, an MPCC-tailored
variant of the prominent Linear Independence Constraint Qualification (LICQ), and
MPCC-SSOC, an MPCC-tailored strong second-order condition, have to hold at the
limit point, see Definitions 2.5 and 2.6 as well as Theorem 4.2. Using a continuously
differentiable merit function, we are in position to globalize our method, see Section 5.
Observing that the strongly stationary points of (MPCC) can be found among its M-
stationary points, the resulting method may converge to strongly stationary points,
too. Let us mention that even in the absence of MPCC-LICQ, local fast convergence
of the method is possible if the linearly dependent gradients do not appear in the
Newton system, and, anyway, local slow convergence will be always guaranteed via
our globalization strategy. It will turn out that whenever the objective f of (MPCC)
is quadratic while the constraint functions g, h, G, and H are affine, then we actually
can replace MPCC-LICQ by a slightly weaker condition depending on the multipliers
at the limit point, see Section 6.

The manuscript is organized as follows: In Section 2, we summarize the essen-
tial preliminaries. Particularly, we recall some terminology from complementarity-
constrained programming and review the foundations of semismooth Newton methods.
Section 3 is dedicated to the reformulation of the M-stationarity system associated
with (MPCC) as a system of nonsmooth equations. In order to guarantee that a
Newton-type method can be applied in order to solve the resulting system, we first
motivate the general structure of this system. Afterwards, we introduce a so-called
nonlinear M-stationarity function whose roots are precisely the elements of the set
M from (1.1). Although the nonlinear M-stationarity function of our interest is non-
smooth and even discontinuous, we prove that it is Newton differentiable on the set
M . Based on this function, we construct a semismooth Newton method which solves
the M-stationarity system of (MPCC) in Section 4. Furthermore, we provide a local
convergence analysis which shows that our method ensures local superlinear conver-
gence under validity of MPCC-LICQ and MPCC-SSOC at the limit point. Local
quadratic convergence can be achieved if, additionally, the second-order derivatives
of f , g, h, G, and H are locally Lipschitz continuous. Moreover, we illustrate that
our Newton-type method can be interpreted as an active set strategy for (MPCC).
In Section 5, the globalization of the algorithm is discussed. We exploit the standard
idea to minimize a continuously differentiable merit function. In Section 6, we show
that it is possible to relax the requirement that MPCC-LICQ holds in the setting of
a linear-quadratic model problem (MPCC) while keeping all the desired convergence
properties. Numerical experiments are presented in Section 7. Some remarks close
the paper in Section 8.

2. Preliminaries.
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2.1. Notation. We introduce the index sets Iℓ := {1, . . . , ℓ}, Im := {1, . . . ,m},
and Ip := {1, . . . , p}. The component mappings of g, h, G, and H are denoted by gi
(i ∈ Iℓ), hi (i ∈ Im), Gi (i ∈ Ip), and Hi (i ∈ Ip), respectively.

We use 0 in order to denote the scalar zero as well as the zero matrix of appropriate
dimensions. For i ∈ {1, . . . , n}, we use ei ∈ R

n to represent the i-th unit vector. For a
vector v ∈ R

n and a set I ⊂ {1, . . . , n}, vI ∈ R
|I| denotes the vector which results from

v by deleting all entries corresponding to indices from {1, . . . , n} \ I. Similarly, for a
matrix V ∈ R

n×m, VI ∈ R
|I|×m denotes the matrix which is obtained by deleting all

those rows from V whose indices correspond to the elements of {1, . . . , n}\ I. If (row)
vectors vi, i ∈ I, are given, then [vi]I denotes the matrix whose rows are precisely the
vectors vi, i ∈ I. Finally, let us mention that for x ∈ R

n and ε > 0, Bε(x) represents
the closed ε-ball around x.

Lemma 2.1. Let A and B be matrices of suitable dimensions satisfying

A⊤λ+B⊤η = 0, λ ≥ 0 =⇒ λ = 0,

i.e., the rows of A are positive linearly independent from the rows of B. Then it holds

span{d ∈ R
n |Ad ≤ 0, Bd = 0} = {d ∈ R

n |Bd = 0}.
Proof. For brevity, let us set

C := {d ∈ R
n |Ad ≤ 0, Bd = 0} and Q := {d ∈ R

n |Bd = 0}.
Observing that these sets are polyhedral cones, we obtain

C◦ = {A⊤λ+B⊤η |λ ≥ 0} and Q◦ = B⊤
R

m

where X◦ := {y ∈ R
n | ∀x ∈ X : x⊤y ≤ 0} denotes the polar cone of a set X ⊂ R

n.
Clearly, it holds Q◦ ⊂ C◦ ∩ (−C◦). On the other hand, for v ∈ C◦ ∩ (−C◦), we find
vectors λ1, λ2 ≥ 0 and η1, η2 satisfying v = A⊤λ1 + B⊤η1 = −A⊤λ2 − B⊤η2. This
leads to

0 = A⊤(λ1 + λ2) +B⊤(η1 + η2).

The assumption of the lemma guarantees λ1 + λ2 = 0. The sign condition on λ1 and
λ2 yields λ1 = λ2 = 0, and v ∈ Q◦ follows.

Due to Q◦ = C◦ ∩ (−C◦), polarization on both sides yields

Q = Q◦◦ = (C◦ ∩ (−C◦))◦ = cl(C◦◦ − C◦◦) = cl(C − C) = cl(spanC) = spanC

by the bipolar theorem, and this shows the claim.

The next two lemmas are classical.

Lemma 2.2 ([30, Lemma 16.1]). Consider the saddle-point matrix

C :=

[

A B⊤

B 0

]

,

where A and B are matrices of compatible sizes. If the constraint block B is surjective,
i.e., the rows of B are linearly independent, and if A is positive definite on the kernel
of B, i.e., x⊤Ax > 0 for all x ∈ ker(B) \ {0}, then C is invertible.

Lemma 2.3 ([25, p. 31]). Let the matrix A be invertible. Then there exist con-
stants ε > 0 and C > 0 such that

‖(A+ δA)−1‖ ≤ C

holds for all matrices δA with ‖δA‖ ≤ ε.
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2.2. MPCCs. Here, we briefly summarize the well-known necessary essentials
on stationarity conditions, constraint qualifications, and second-order conditions for
complementarity-constrained optimization problems. As mentioned earlier, most of
the standard constraint qualifications do not hold at the feasible points of (MPCC)
which is why stationarity notions, weaker than the KKT conditions, have been intro-
duced. Let us recall some of them. For that purpose, we first introduce the MPCC-
tailored Lagrangian L : Rn × R

ℓ × R
m × R

p × R
p → R associated with (MPCC) via

L(x, λ, η, µ, ν) := f(x) + λ⊤g(x) + η⊤h(x) + µ⊤G(x) + ν⊤H(x).

Furthermore, for a feasible point x̄ ∈ R
n of (MPCC), we will make use of the index

sets

Ig(x̄) := {i ∈ Iℓ | gi(x̄) = 0},
I+0(x̄) := {i ∈ Ip |Gi(x̄) > 0 ∧ Hi(x̄) = 0},
I0+(x̄) := {i ∈ Ip |Gi(x̄) = 0 ∧ Hi(x̄) > 0},
I00(x̄) := {i ∈ Ip |Gi(x̄) = 0 ∧ Hi(x̄) = 0}.

Clearly, {I+0(x̄), I0+(x̄), I00(x̄)} is a disjoint partition of Ip.

Definition 2.4. Let x̄ ∈ R
n be a feasible point of (MPCC). Then x̄ is said to be

(a) Mordukhovich-stationary (M-stationary) if there exist multipliers λ ∈ R
ℓ, η ∈

R
m, and µ, ν ∈ R

p which solve the system

∇xL(x̄, λ, η, µ, ν) = 0,(2.1a)

λIg(x̄) ≥ 0, λIℓ\Ig(x̄) = 0,(2.1b)

µI+0(x̄) = 0,(2.1c)

νI0+(x̄) = 0,(2.1d)

∀i ∈ I00(x̄) : µiνi = 0 ∨ (µi < 0 ∧ νi < 0),(2.1e)

(b) strongly stationary (S-stationary) if there exist multipliers λ ∈ R
ℓ, η ∈ R

m,
and µ, ν ∈ R

p which satisfy (2.1a)-(2.1d) and

(2.2) µI00(x̄) ≤ 0, νI00(x̄) ≤ 0.

Let us briefly note that there exist several more stationarity notions which apply
to (MPCC), see e.g. [39] for an overview. For later use, let ΛM(x̄) and ΛS(x̄) be the
sets of all multipliers which solve the system of M- and S-stationarity w.r.t. a feasible
point x̄ ∈ R

n of (MPCC), respectively.
In this paper, we will make use of a popular MPCC-tailored version of the Linear

Independence Constraint Qualification.

Definition 2.5. Let x̄ ∈ R
n be a feasible point of (MPCC). Then the MPCC-

tailored Linear Independence Constraint Qualification (MPCC-LICQ) is said to hold
at x̄ whenever the matrix









g′(x̄)Ig(x̄)

h′(x̄)
G′(x̄)I0+(x̄)∪I00(x̄)

H ′(x̄)I+0(x̄)∪I00(x̄)









possesses full row rank.
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It is a classical result that a local minimizer of (MPCC) where MPCC-LICQ holds
is S-stationary. Furthermore, the associated multipliers (λ, η, µ, ν), which solve the
system (2.1a)-(2.1d), (2.2) are uniquely determined in this case. It has been reported
in [9] that even under validity of mild MPCC-tailored constraint qualifications, local
minimizers of (MPCC) are M-stationary. Therefore, it is a reasonable strategy to
identify the M-stationary points of a given complementarity-constrained optimization
problem in order to tackle the problem of interest.

We review existing second-order optimality conditions addressing (MPCC) which
are based on S-stationary points. We adapt the considerations from [34]. For some
point x̄ ∈ R

n, we first introduce the so-called MPCC-critical cone

C(x̄) :=



































































δx ∈ R
n

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∇f(x̄)⊤δx ≤ 0

∇gi(x̄)⊤δx ≤ 0 i ∈ Ig(x̄)

h′(x̄)δx = 0

∇Gi(x̄)
⊤δx = 0 i ∈ I0+(x̄)

∇Hi(x̄)
⊤δx = 0 i ∈ I+0(x̄)

∇Gi(x̄)
⊤δx ≥ 0 i ∈ I00(x̄)

∇Hi(x̄)
⊤δx ≥ 0 i ∈ I00(x̄)

(∇Gi(x̄)
⊤δx)(∇Hi(x̄)

⊤δx) = 0 i ∈ I00(x̄)



































































.

We note that this cone is likely to be not convex if the index set I00(x̄) of biactive
complementarity constraints is nonempty. In case where x̄ is an S-stationary point of
(MPCC) and (λ, η, µ, ν) ∈ ΛS(x̄) is arbitrarily chosen, we obtain the representation

C(x̄) =



































































δx ∈ R
n

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∇gi(x̄)⊤δx = 0 i ∈ Ig(x̄), λi > 0

∇gi(x̄)⊤δx ≤ 0 i ∈ Ig(x̄), λi = 0

h′(x̄)δx = 0

∇Gi(x̄)
⊤δx = 0 i ∈ I0+(x̄) ∪ I00±R

(x̄, µ, ν)

∇Hi(x̄)
⊤δx = 0 i ∈ I+0(x̄) ∪ I00R±(x̄, µ, ν)

∇Gi(x̄)
⊤δx ≥ 0 i ∈ I0000 (x̄, µ, ν)

∇Hi(x̄)
⊤δx ≥ 0 i ∈ I0000 (x̄, µ, ν)

(∇Gi(x̄)
⊤δx)(∇Hi(x̄)

⊤δx) = 0 i ∈ I0000 (x̄, µ, ν)



































































by elementary calculations, see [29, Lemma 4.1] as well, where we used

I00±R
(x̄, µ, ν) := {i ∈ I00(x̄) |µj 6= 0},(2.3a)

I00R±(x̄, µ, ν) := {i ∈ I00(x̄) | νj 6= 0},(2.3b)

I0000 (x̄, µ, ν) := {i ∈ I00(x̄) |µj = νj = 0}.(2.3c)

If x̄ ∈ R
n is a local minimizer of (MPCC) where MPCC-LICQ holds, then the unique

multiplier (λ, η, µ, ν) ∈ ΛS(x̄) satisfies

∀δx ∈ C(x̄) : δx⊤∇2
xxL(x̄, λ, η, µ, ν)δx ≥ 0.

Let us note that necessary second-order conditions for (MPCC) which are based on
M-stationary points can be found in [14]. On the other hand, if x̄ is an arbitrary
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S-stationary point of (MPCC) where the so-called MPCC-tailored Second-Order Suf-
ficient Condition (MPCC-SOSC) given by

∀δx ∈ C(x̄) \ {0} ∃(λ, η, µ, ν) ∈ ΛS(x̄) : δx⊤∇2
xxL(x̄, λ, η, µ, ν)δx > 0

holds, then x̄ is a strict local minimizer of (MPCC). More precisely, the second-order
growth condition holds for (MPCC) at x̄.

Finally, we are going to state the second-order condition which we are going to
exploit for our convergence analysis. As we will see later, it generalizes a strong
second-order condition (SSOC) exploited in order to ensure local fast convergence
of semismooth Newton-type methods for the numerical solution of KKT systems as-
sociated with standard nonlinear programs, see [6, Section 5.2] which is based on
the theory from [33, Section 4]. Observe that the subsequent definition is based on
M-stationary points.

Definition 2.6. Let x̄ ∈ R
n be an M-stationary point of (MPCC). Further-

more, let (λ, η, µ, ν) ∈ ΛM(x̄) be fixed. Then the MPCC-tailored Strong Second-Order
Condition (MPCC-SSOC) is said to hold at x̄ w.r.t. (λ, η, µ, ν) whenever

∀δx ∈ S(x̄, λ, µ, ν) \ {0} : δx⊤∇2
xxL(x̄, λ, η, µ, ν)δx > 0

holds true. Here, the set S(x̄, λ, µ, ν) ⊂ R
n is given by

S(x̄, λ, µ, ν) :=



































δx

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∇gi(x̄)⊤δx = 0 i ∈ Ig(x̄), λi > 0

h′(x̄)δx = 0

∇Gi(x̄)
⊤δx = 0 i ∈ I0+(x̄) ∪ I00±R(x̄, µ, ν)

∇Hi(x̄)
⊤δx = 0 i ∈ I+0(x̄) ∪ I00

R±(x̄, µ, ν)

(∇Gi(x̄)
⊤δx)(∇Hi(x̄)

⊤δx) = 0 i ∈ I0000 (x̄, µ, ν)



































.

Fix a feasible point x̄ ∈ R
n of (MPCC) which is M-stationary and let an associated

multiplier (λ, η, µ, ν) ∈ ΛM(x̄) be given. Let us clarify that validity of MPCC-SSOC
at x̄ does not provide a sufficient optimality condition for (MPCC) in general since M-
stationarity does not rule out the presence of descent directions at the underlying point
of interest. Furthermore, the set S(x̄, λ, µ, ν) seems to be too large for the purpose of
being used in order to derive second-order necessary optimality conditions of (MPCC)
based on M-stationary points, see [14, Section 3]. For any set β ⊂ I0000 (x̄, µ, ν), we
define the complement β̄ := I0000 (x̄, µ, ν) \ β as well as

Sβ(x̄, λ, µ, ν) :=























δx ∈ R
n

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∇gi(x̄)⊤δx = 0 i ∈ Ig(x̄), λi > 0

h′(x̄)δx = 0

∇Gi(x̄)
⊤δx = 0 i ∈ I0+(x̄) ∪ I00±R

(x̄, µ, ν) ∪ β
∇Hi(x̄)

⊤δx = 0 i ∈ I+0(x̄) ∪ I00
R±(x̄, µ, ν) ∪ β̄























.

Then we have

S(x̄, λ, µ, ν) =
⋃

β⊂I00
00

(x̄,µ,ν)

Sβ(x̄, λ, µ, ν).

Thus, MPCC-SSOC holds at x̄ w.r.t. (λ, η, µ, ν) ∈ ΛM(x̄) if and only if the classical
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SSOC from [6, 33] is valid at x̄ along all the NLP branches of (MPCC) given by

min
x

f(x)

s.t. g(x) ≤ 0, h(x) = 0,

Gi(x) ≥ 0, Hi(x) = 0, i ∈ I+0(x̄) ∪ I00R±(x̄, µ, ν) ∪ β̄
Gi(x) = 0, Hi(x) ≥ 0, i ∈ I0+(x̄) ∪ I00±R

(x̄, µ, ν) ∪ β

for β ⊂ I0000 (x̄, µ, ν). Therefore, MPCC-SSOC provides a reasonable generalization of
the SSOC to (MPCC). Furthermore, due to Lemma 2.1, under validity of MPCC-
LICQ at x̄, we have Sβ(x̄, λ, µ, ν) = spanCβ(x̄, λ, µ, ν) where we used

Cβ(x̄, λ, µ, ν) :=























































δx ∈ R
n

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∇gi(x̄)⊤δx = 0 i ∈ Ig(x̄), λi > 0

∇gi(x̄)⊤δx ≤ 0 i ∈ Ig(x̄), λi = 0

h′(x̄)δx = 0

∇Gi(x̄)
⊤δx = 0 i ∈ I0+(x̄) ∪ I00±R(x̄, µ, ν) ∪ β

∇Hi(x̄)
⊤δx = 0 i ∈ I+0(x̄) ∪ I00

R±(x̄, µ, ν) ∪ β̄
∇Gi(x̄)

⊤δx ≥ 0 i ∈ β̄

∇Hi(x̄)
⊤δx ≥ 0 i ∈ β























































,

i.e., S(x̄, λ, µ, ν) is the finite union of the spans of polyhedral cones. Observing that

C(x̄) =
⋃

β⊂I00
00

(x̄,µ,ν)

Cβ(x̄, λ, µ, ν)

holds true provided x̄ is an S-stationary point while (λ, η, µ, ν) ∈ ΛS(x̄) holds, the set
S(x̄, λ, µ, ν) is closely related to the critical cone of (MPCC). Again, this underlines
that the name MPCC-SSOC in Definition 2.6 is quite reasonable. Further observe
that the inclusion C(x̄) ⊂ S(x̄, λ, µ, ν) holds for each S-stationary point x̄ and each
multiplier (λ, η, µ, ν) ∈ ΛS(x̄), i.e., MPCC-SSOC is slightly stronger than MPCC-
SOSC in this situation.

2.3. Semismooth Newton methods. In this section, we collect some theory
concerning the application of Newton methods for functions F : Rn → R

n which are
not continuously differentiable. In the finite-dimensional case, one typically utilizes
semismooth functions. Since semismooth functions are by definition locally Lipschitz
continuous, this theory is not applicable to discontinuous functions. Hence, we ex-
ploit the concept of Newton differentiability, which is used in infinite-dimensional
applications of Newton’s method, see [2, 16, 37, 20].

Definition 2.7. Let F : Rn → R
m and DF : Rn → R

m×n be given. The function
F is said to be Newton differentiable (with derivative DF ) on a set K ⊂ R

n if

F (x+ h)− F (x)−DF (x+ h)h = o(‖h‖) for h→ 0

holds for all x ∈ K. For α ∈ (0, 1], the function F is Newton differentiable of order
α, if

F (x+ h)− F (x) −DF (x+ h)h = O(‖h‖1+α) for h→ 0
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holds for all x ∈ K. Finally, F is said to be Newton differentiable of order ∞, if for
all x ∈ K there is εx > 0 such that

∀h ∈ Bεx(0) : F (x+ h)− F (x)−DF (x + h)h = 0.

Clearly, if F is continuously differentiable, then DF = F ′ is a Newton derivative. If
F ′ is locally Lipschitz continuous, then F is Newton differentiable of order 1.

In the following example, we discuss the Newton differentiability of the minimum
and maximum entry of a vector. Note that this particular choice for the Newton
derivative will be essential for our argumentation in the later parts of this paper.

Example 2.8. For the nonsmooth functions min,max: Rn → R, we establish the
following convention for choosing Newton derivatives at arbitrary points a ∈ R

n:

(2.4)
Dmin(a1, . . . , an) := e⊤i , i = min

{

j ∈ {1, . . . , n}
∣

∣ aj = min(a1, . . . , an)
}

,

Dmax(a1, . . . , an) := e⊤i , i = min
{

j ∈ {1, . . . , n}
∣

∣ aj = max(a1, . . . , an)
}

,

i.e., we give priority to variables that appear first in a min or max expression. Let us
verify that this choice ensures that min is indeed Newton differentiable of order ∞.
Similar arguments apply in order to show the same properties of max.

For arbitrary a ∈ R
n, we introduce I(a) := {j ∈ {1, . . . , n} | aj = min(a1, . . . , an)}.

Let i0 ∈ I(a) be fixed. By definition of the minimum there is some ε > 0 such that
we have

∀h ∈ R
n : ‖h‖ < ε =⇒ min(a1 + h1, . . . , an + hn) = min{aj + hj | j ∈ I(a)}.

Thus, for each h ∈ R
n satisfying ‖h‖ < ε, it holds Dmin(a1 + h1, . . . , an + hn) = e⊤ih

where ih ∈ {1, . . . , n} satisfies

ih = min{i ∈ {1, . . . , n} | ai + hi = min(a1 + h1, . . . , an + hn)}
= min{i ∈ I(a) | ai + hi = min{aj + hj | j ∈ I(a)}}
= min{i ∈ I(a) | ai0 + hi = min{ai0 + hj | j ∈ I(a)}}
= min{i ∈ I(a) |hi = min{hj | j ∈ I(a)}}

due to the above priority rule. On the other hand, for the same h, it holds

min(a1 + h1, . . . , an + hn)−min(a1, . . . , an) = min{aj + hj | j ∈ I(a)} − ai0

= min{hj | j ∈ I(a)}
= Dmin(a1 + h1, . . . , an + hn)h

due to the above arguments, i.e., min is indeed Newton differentiable of order ∞.

In order to find a solution x̄ of F (x̄) = 0 where F : Rn → R
n is a Newton

differentiable map, we use the iteration

(2.5) xk+1 := xk −DF (xk)
−1F (xk), k = 0, 1, . . .

for an initial guess x0 ∈ R
n. As usual, we call this iteration scheme semismooth New-

ton method but emphasize that it applies to mappings F which are not semismooth
in the classical sense.

Nowadays, the proof of the next theorem is classical, see, e.g., [2, proof of Theo-
rem 3.4].
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Theorem 2.9. Assume that F : Rn → R
n is Newton differentiable on K ⊂ R

n

with Newton derivative DF . Further assume that x̄ ∈ K satisfies F (x̄) = 0 and that
the matrices {DF (x) | x ∈ Bε(x̄)} are uniformly invertible for some ε > 0. Then there
exists δ > 0 such that the Newton-type iteration (2.5) is well defined for any initial
iterate x0 ∈ Bδ(x̄) while the associated sequence of iterates converges superlinearly. If
F is additionally Newton differentiable of order 1, the convergence is quadratic, and
we have convergence in one step if F is Newton differentiable of order ∞.

Proof. We choose δ > 0 and M > 0 such that

‖DF (x)−1‖ ≤M and ‖F (x)− F (x̄)−DF (x) (x − x̄)‖ ≤ 1

2M
‖x− x̄‖

hold for all x ∈ Bδ(x̄). For xk ∈ Bδ(x̄), we obtain

(2.6)
xk+1 − x̄ = xk −DF (xk)

−1F (xk)− x̄

= −DF (xk)−1
(

F (xk)− F (x̄)−DF (xk) (xk − x̄)
)

.

Thus, ‖xk+1 − x̄‖ ≤ ‖xk − x̄‖/2 follows. This shows that the iteration is well defined
for any x0 ∈ Bδ(x̄) and xk → x̄. Now, (2.6) together with the required order of
Newton differentiability of F implies

‖xk+1 − x̄‖ ≤M ‖F (xk)− F (x̄)−DF (xk) (xk − x̄)‖

=











O(‖xk − x̄‖2) differentiability of order 1,

0 differentiability of order ∞,

o(‖xk − x̄‖) else,

where δ may need to be reduced in the case where the order of Newton differentiability
equals ∞. This shows the claim.

If the assumptions of Theorem 2.9 are satisfied, one obtains the equivalence of the
known residuum ‖F (x)‖ and the unknown distance ‖x− x̄‖.

Corollary 2.10. In addition to the assumptions of Theorem 2.9, suppose that
the matrices {DF (x) | x ∈ Bε(x̄)} are bounded for some ε > 0. Then there exist
constants c, C, δ > 0 such that

∀x ∈ Bδ(x̄) : c ‖F (x)‖ ≤ ‖x− x̄‖ ≤ C ‖F (x)‖.

Proof. Due to the Newton differentiability of F , we have

F (x) = F (x) − F (x̄) = DF (x) (x − x̄) + o(‖x− x̄‖) for x→ x̄.

Exploiting the properties of DF and the postulated assumptions, there are δ > 0 and
C1, C2 > 0 such that we have

C1‖x−x̄‖ ≤ ‖DF (x)−1‖−1 ‖x−x̄‖ ≤ ‖DF (x) (x−x̄)‖ ≤ ‖DF (x)‖ ‖x−x̄‖ ≤ C2‖x−x̄‖

as well as ‖o(‖x − x̄‖)‖ ≤ C1

2 ‖x − x̄‖ for all x ∈ Bδ(x̄). The claim follows choosing
c := 2/C1 and C := 2/(C1 + 2C2).

For the reader’s convenience, we provide the following chain rule.
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Lemma 2.11. Suppose that f : Rn → R
m is Newton differentiable on K ⊂ R

n with
derivative Df and that g : Rm → R

p is Newton differentiable on f(K) with derivative
Dg. Further, we assume that Df is bounded on a neighborhood of K and that Dg is
bounded on a neighborhood of f(K). Then g ◦ f is Newton differentiable on K with
derivative given by x 7→ Dg(f(x))Df(x). If both f and g are Newton differentiable
of order α ∈ (0, 1] ∪ {∞}, then g ◦ f is Newton differentiable of order α.

Proof. We follow the proof of [3, Theorem 9.3]. We define the remainder term rf
of f via

rf (x;h) := f(x+ h)− f(x)−Df(x+ h)h.

Similarly, we define rg and rg◦f . The Newton differentiability of f together with the
boundedness of Df implies

f(x+ h)− f(x) = Df(x+ h)h+ o(‖h‖) = O(‖h‖) as h→ 0.

In particular, f(x+ h)− f(x) → 0 as h→ 0. Next, we have

rg◦f (x;h) = g(f(x+ h))− g(f(x))−Dg(f(x+ h))Df(x + h)h

= rg(f(x); f(x + h)− f(x))

+Dg(f(x+ h)) (f(x+ h)− f(x)−Df(x+ h)h)

= rg(f(x); f(x + h)− f(x)) +Dg(f(x+ h)) rf (x;h).

Now, the boundedness of Dg(f(x+ h)) implies

rg◦f (x;h) = o(‖f(x+ h)− f(x)‖) + ‖Dg(f(x+ h))‖ o(‖h‖) = o(‖h‖).

Similarly, if f and g are Newton differentiable of order α ∈ (0, 1], we get

rg◦f (x;h) = O(‖f(x+ h)− f(x)‖α) + ‖Dg(f(x+ h))‖O(‖h‖α) = O(‖h‖α).

Finally, if both functions are Newton differentiable of order ∞, we get rg◦f (x;h) = 0
if h is small enough.

Example 2.12. Exploiting Example 2.8 and Lemma 2.11, the absolute value func-
tion |·| : R → R is Newton differentiable of order ∞, since |x| = max(x,−x) for each
x ∈ R. Following the convention from Example 2.8, the associated Newton derivative
is given by

(2.7) ∀x ∈ R : D| · |(x) =
{

1 if x ≥ 0,

−1 if x < 0.

3. M-Stationarity as a nonlinear system of equations.

3.1. Preliminary considerations. As stated before, we want to reformulate
the M-stationarity system (2.1) as an equation. To this end, we need to encode the
complementarity conditions (2.1b) and the conditions (2.1c)–(2.1e), which depend on
index sets, as the zero level set of a suitable function. For clarity of the presentation,
we temporarily consider the simplified MPCC problem

(MPCC1)
min
x

f(x)

s.t. 0 ≤ H(x) ⊥ G(x) ≥ 0,



12 F. HARDER, P. MEHLITZ, G. WACHSMUTH

with G,H : Rn → R, i.e., there is only one complementarity constraint. This sim-
plification will also ease notation in this section. The results of this section will be
transferred to the problem (MPCC) with p many complementarity conditions in Sec-
tion 4. The M-stationarity system for (MPCC1) is given by

∇xL(x, µ, ν) = 0,(3.1a)

0 ≤ H(x) ⊥ G(x) ≥ 0,(3.1b)

G(x)µ = 0,(3.1c)

H(x)ν = 0,(3.1d)

(µ < 0 ∧ ν < 0) ∨ µν = 0.(3.1e)

We want to find a function ϕ : R4 → R
k such that (3.1) can be equivalently rewritten

as F (x, µ, ν) = 0 where F : Rn+1+1 → R
n+k has the form

F (x, µ, ν) :=

[

∇xL(x, µ, ν)
ϕ(G(x), H(x), µ, ν)

]

.

Since we want to apply a Newton method, we require k = 2. We also need that the
associated Newton matrices DF (·) are invertible in a neighborhood of the solution of
the system F (x, µ, ν) = 0. This invertibility will be guaranteed by certain properties
of the Newton derivative Dϕ.

3.2. A nonlinear M-stationarity function. Recall that the set M from (1.1)
corresponds to the M-stationarity conditions (3.1). We define ψ1, ψ2, ψ3, ϕ1 : R

4 → R

via

ψ1(a, b, µ, ν) := max(−a, |b|, |µ|),(3.2a)

ψ2(a, b, µ, ν) := max(−b, |a|, |ν|),(3.2b)

ψ3(a, b, µ, ν) := max(|a|, |b|, µ, ν),(3.2c)

ϕ1(a, b, µ, ν) := min
i=1,2,3

ψi(a, b, µ, ν).(3.2d)

Next, we show that M is precisely the zero level set of ϕ1. To this end, we note that

M = {(a, b, µ, ν) ∈ R
4 | a ≥ 0, b = µ = 0} ∪ {(a, b, µ, ν) ∈ R

4 | b ≥ 0, a = ν = 0}
∪ {(a, b, µ, ν) ∈ R

4 | a = b = 0, µ ≤ 0, ν ≤ 0},

i.e., M can be written as the union of three convex, closed sets.

Lemma 3.1. Let (a, b, µ, ν) ∈ R
4 be given. Then (a, b, µ, ν) ∈M holds if and only

if ϕ1(a, b, µ, ν) = 0 is valid.

Proof. It is clear that ϕ1(a, b, µ, ν) ≥ 0. Hence, ϕ1(a, b, µ, ν) = 0 if and only if
one of the functions ψ1, ψ2, and ψ3 vanishes at (a, b, µ, ν).

Now, we observe the equivalencies

ψ1(a, b, µ, ν) = 0 ⇔ −a ≤ 0, b = µ = 0,

ψ2(a, b, µ, ν) = 0 ⇔ −b ≤ 0, a = ν = 0,

ψ3(a, b, µ, ν) = 0 ⇔ a = b = 0, µ, ν ≤ 0.

Thus, ϕ1(a, b, µ, ν) = 0 holds if and only if one of the left hand sides is true and
(a, b, µ, ν) ∈ M if and only if one of the right hand sides is true. This shows the
claim.
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We remark that ϕ1 describes the distance of a point (a, b, µ, ν) to the set M in the
ℓ∞-norm. This follows from the above representation of M and the fact that each of
ψ1, ψ2, ψ3 is the distance to one of the three convex subsets of M .

We choose the Newton derivative Dϕ1 of ϕ1 according to the conventions estab-
lished in (2.4) and (2.7) together with the application of the chain rule. This choice
for Dϕ1 is fixed for the remainder of the article. It implies that

(3.3) Dϕ1(a, b, µ, ν) ∈
{

±e⊤1 ,±e⊤2 ,±e⊤3 ,±e⊤4
}

holds for all (a, b, µ, ν) ∈ R
4.

Let us introduce the other component ϕ2 : R
4 → R, which is defined via

(3.4) ϕ2(a, b, µ, ν) :=



















min(|b|, |ν|) if Dϕ1(a, b, µ, ν) = ±e⊤1 ,
min(|a|, |µ|) if Dϕ1(a, b, µ, ν) = ±e⊤2 ,
|b| if Dϕ1(a, b, µ, ν) = ±e⊤3 ,
|a| if Dϕ1(a, b, µ, ν) = ±e⊤4 ,

where the cases are exhaustive due to (3.3). For the prospective Newton derivative
Dϕ2 of ϕ2 we again use the convention established in (2.4) as well as (2.7) and use
the same distinction of cases as in (3.4). The Newton differentiability of ϕ2 will be
shown in Lemma 3.3 below. Finally, let ϕ : R4 → R

2 be the function with components
ϕ1 and ϕ2. The rows of the Newton derivative Dϕ of ϕ are given by Dϕ1 and Dϕ2.
Motivated by our arguments from Subsection 3.1, we call ϕ a nonlinear M-stationarity
(NMS) function, see Lemma 3.3 below as well.

In the next lemma, we will look at the possible values of the Newton derivative
of ϕ at points from M . This will be an important result in order to show that the
Newton matrix DF (·) is invertible in a neighborhood of M , see Theorem 4.1. If ϕ2 is
chosen differently, one might obtain less tight estimates for the Newton matrices Dϕ,
and this would result in more restrictive assumptions for the semismooth Newton
method below, cf. the proof of Theorem 4.1. Furthermore, we would like to point
the reader’s attention to the fact that the upcoming result is based on the precise
conventions from (2.4) and (2.7) for the Newton derivative of maximum, minimum,
and absolute value as well as the chain rule from Lemma 2.11. More precisely, an
alternative strategy for the choice of the Newton derivatives in Examples 2.8 and 2.12
is likely to cause the next lemma to be false. For brevity of notation, we define the
sets of matrices

∀i, j ∈ {1, . . . , 4} : Ji,j :=

{[

±e⊤i
±e⊤j

]}

∪
{[

±e⊤j
±e⊤i

]}

⊂ R
2×4.

Lemma 3.2. Let w̄ = (ā, b̄, µ̄, ν̄) ∈M be given. Then there exists ε > 0 such that
for all w = (a, b, µ, ν) ∈ Bε(w̄), we have

ā > 0 ⇒ Dϕ(w) ∈ J2,3,(3.5a)

b̄ > 0 ⇒ Dϕ(w) ∈ J1,4,(3.5b)

µ̄ 6= 0 ⇒ Dϕ(w) ∈ J1,2 ∪ J1,4,(3.5c)

ν̄ 6= 0 ⇒ Dϕ(w) ∈ J1,2 ∪ J2,3,(3.5d)

w̄ = 0 ⇒ Dϕ(w) ∈ J1,2 ∪ J2,3 ∪ J1,4.(3.5e)
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Proof. Due to the definition of ϕ2, the possible values for Dϕ(w) can only be in
J1,2 ∪ J2,3 ∪ J1,4 for all w ∈ R

4. Clearly, the implication (3.5e) follows immediately.
Suppose that ā > 0 holds. Then we have b̄ = µ̄ = 0. Therefore, there exists

ε > 0 such that max(|b|, |µ|) < a holds for all w = (a, b, µ, ν) ∈ Bε(w̄). It follows that
ϕ1 = ψ1 < min(ψ2, ψ3) holds on Bε(w̄). Thus we obtain Dϕ1(w) ∈ {±e⊤2 ,±e⊤3 }. If
we again consider that |µ| < |a| then the implication (3.5a) follows. The implication
(3.5b) can be shown in a similar way.

Let us consider the case µ̄ 6= 0 and ν̄ 6= 0. Then we have ā = b̄ = 0 and also
µ̄, ν̄ < 0. Therefore, there exists ε > 0 such that max(|a|, |b|) < min(−µ,−ν) holds for
all w = (a, b, µ, ν) ∈ Bε(w̄). It follows that ϕ1 = ψ3 < min(ψ1, ψ2) holds on Bε(w̄).
Thus we obtain Dϕ1(w) ∈ {±e⊤1 ,±e⊤2 }. If we consider that |a| < |µ| and |b| < |ν|
then Dϕ(w) ∈ J1,2 follows.

Next, we consider the case that µ̄ 6= 0 but ν̄ = b̄ = 0. Then we have ā = 0.
Therefore, there exists ε > 0 such that max(|a|, |b|, |ν|) < |µ| holds for all points
w = (a, b, µ, ν) ∈ Bε(w̄). It follows that ϕ1 < ψ1 holds on Bε(w̄). By a distinction of
cases we can obtain that Dϕ1(w) ∈ {±e⊤1 ,±e⊤2 ,±e⊤4 }. If we consider (3.4) and that
|a| < |µ| then Dϕ(w) ∈ J1,2 ∪ J1,4 follows.

For the case that µ̄ 6= 0, ν̄ = 0, but b̄ > 0 we already know from (3.5b) that
Dϕ(w) ∈ J1,2 ∪ J1,4 holds as well. If we combine the previous cases, then we obtain
(3.5c). The implication (3.5d) can be shown in a similar way.

We continue with some notable properties of ϕ. The first property is important
because it allows us to characterize M-stationarity points as the solution set of a
(nonsmooth) equation, and this is the essential property of an NMS-function.

Lemma 3.3.
(a) We have ϕ(a, b, µ, ν) = 0 if and only if (a, b, µ, ν) ∈M .
(b) The function ϕ is Newton differentiable of order ∞ on M .
(c) The function ϕ is not continuous in any open neighborhood of M .
(d) The function ϕ is calm at every point w̄ = (ā, b̄, µ̄, ν̄) ∈ M with calmness

modulus 1, i.e., there is a neighborhood U of w̄ such that

∀w ∈ U : ‖ϕ(w)− ϕ(w̄)‖ ≤ ‖w − w̄‖.

(e) If the sequence (wk)k∈N ⊂ R
4 satisfies ϕ(wk) → 0 and wk → w̄ ∈ R

4, then
ϕ(w̄) = 0.

Proof. We start with part (a). Lemma 3.1 shows (a, b, µ, ν) ∈ M if and only
if ϕ1(a, b, µ, ν) = 0. Thus, it remains to show that ϕ2(a, b, µ, ν) = 0 for all points
(a, b, µ, ν) ∈M . Let (a, b, µ, ν) ∈M be given. We consider the case that a > 0. Then
b = µ = 0 follows. Due to (3.5a) we have Dϕ1(a, b, µ, ν) ∈ {±e⊤2 ,±e⊤3 }, which implies
ϕ2(a, b, µ, ν) = 0. For the case that b > 0 we can argue similarly. For the remaining
case a = b = 0 the property ϕ2(a, b, µ, ν) = 0 follows directly from the definition of
ϕ2.

For part (b), let us fix a point w̄ = (ā, b̄, µ̄, ν̄) ∈ M . For ϕ1, the Newton differ-
entiability of order ∞ follows from the chain rule Lemma 2.11. Due to ϕ2(w̄) = 0, it
suffices to show that

(3.6) ϕ2(w) = Dϕ2(w)(w − w̄)

holds in a neighborhood of w̄. Let ε > 0 from Lemma 3.2 be given and consider
w = (a, b, µ, ν) ∈ Bε(w̄). In case Dϕ2(w) = ±e⊤1 , (3.5a) implies ā = 0 and from the
definition of Dϕ2, we get ϕ2(w) = ±a. Hence, (3.6) follows. In case Dϕ2(w) = ±e⊤3 ,
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(3.5c) implies µ̄ = 0 and from the definition of Dϕ2, we get ϕ2(w) = ±µ. Again, (3.6)
follows. The remaining cases follow analogously.

We continue with part (c). Any open neighborhood of M contains the point
wt := (2t, 2t, t, 0) for some t > 0. It can be shown that

ϕ2(2t, 2t, t, 0) = t 6= 0 = lim
s↓0

ϕ2(2t− s, 2t, t, 0)

holds. Hence ϕ2 is not continuous at wt.
In order to show part (d), we can utilize part (b), which implies that

ϕ(w) − ϕ(w̄) = Dϕ(w)(w − w̄)

holds for all w in a neighborhood of w̄. Since ‖Dϕ(w)‖ = 1 holds in a neighborhood
of w̄ due to Lemma 3.2, we get ‖ϕ(w)− ϕ(w̄)‖ ≤ ‖Dϕ(w)‖‖w − w̄‖ = ‖w − w̄‖.

For part (e), we first use the continuity of ϕ1 to obtain ϕ1(w̄) = 0, i.e., w̄ ∈ M ,
see Lemma 3.1. From part (a) we conclude ϕ(w̄) = 0.

The following lemma will be useful in order to interpret the semismooth Newton
method as an active set strategy for (MPCC).

Lemma 3.4. Let w = (a, b, µ, ν) and δw = (δa, δb, δµ, δν) be given. Then we have
the equivalence

Dϕ(w) δw = −ϕ(w) ⇔











δb = −b, δµ = −µ if Dϕ(w) ∈ J2,3,

δa = −a, δν = −ν if Dϕ(w) ∈ J1,4,

δa = −a, δb = −b if Dϕ(w) ∈ J1,2.

Proof. We first consider Dϕ(w) ∈ J2,3. The set J2,3 contains exactly the eight
matrices

(

0 1 0 0
0 0 1 0

)

,

(

0 1 0 0
0 0 −1 0

)

,

(

0 −1 0 0
0 0 1 0

)

,

(

0 −1 0 0
0 0 −1 0

)

,

(

0 0 1 0
0 1 0 0

)

,

(

0 0 −1 0
0 1 0 0

)

,

(

0 0 1 0
0 −1 0 0

)

,

(

0 0 −1 0
0 −1 0 0

)

.

We discuss the case that Dϕ(w) coincides with the second matrix, i.e., Dϕ1(w) = e⊤2
andDϕ2(w) = −e⊤3 . The crucial point of this proof is the following: Since the function
ϕ1 is composed by a composition of min and max, we can utilize Dϕ1(w) = e⊤2 to
obtain ϕ1(w) = b (recall that Dϕ1 is chosen according to the convention established
in Example 2.8 and the chain rule). Hence, we find

Dϕ1(w) δw = −ϕ1(w) ⇔ e⊤2 δw = −b ⇔ δb = −b.

Similarly, from Dϕ2(w) = −e⊤3 we obtain ϕ2(w) = −µ and, thus,

Dϕ2(w) δw = −ϕ2(w) ⇔ −e⊤3 δw = µ ⇔ −δµ = µ.

This finishes the proof for this particular case. The remaining 23 cases follow simi-
larly.

4. Application of a semismooth Newton method. Using the NCP-function
πmin : R

2 → R as well as the NMS-function ϕ : R4 → R
2 constructed in Section 3, we
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introduce F : Rn × R
ℓ × R

m × R
p × R

p → R
n × R

ℓ × R
m × R

2p via

(4.1) F (x, λ, η, µ, ν) :=









∇xL(x, λ, η, µ, ν)
[πmin(−gi(x), λi)]Iℓ

h(x)
[ϕ(Gi(x), Hi(x), µi, νi)]Ip









.

Clearly, by Lemma 3.3, a point x ∈ R
n is M-stationary for (MPCC) if and only if

there is a quadruple (λ, η, µ, ν) such that F (x, λ, η, µ, ν) = 0 holds. In this case, it
holds (λ, η, µ, ν) ∈ ΛM(x). Observing that all the data functions f , g, h, G, and H are
twice continuously differentiable, Lemmas 2.11 and 3.3 guarantee that F is Newton
differentiable on the set of its roots. Thus, we may apply the semismooth Newton
method from Subsection 2.3 in order to find the roots of F , i.e., M-stationary points
of (MPCC).

In order to guarantee convergence of the Newton method to an M-stationary
point x ∈ R

n of (MPCC) with associated multiplier (λ, η, µ, ν) ∈ ΛM(x), we have to
guarantee that the Newton derivative of F is uniformly invertible in a neighborhood
of z := (x, λ, η, µ, ν). Abstractly, we have

DF (z) =









∇2
xxL(z) g′(x)⊤ h′(x)⊤ G′(x)⊤ H ′(x)⊤

A1(z) A2(z) 0 0 0
h′(x) 0 0 0 0
A3(z) 0 0 A4(z) A5(z)









for the Newton derivative of F at z were we used

A1(z) := [−Daπmin(−gi(x), λi)∇gi(x)⊤]Iℓ ,

A2(z) := [Dbπmin(−gi(x), λi)e⊤i ]Iℓ ,

A3(z) := [Daϕ(Gi(x), Hi(x), µi, νi)∇Gi(x)
⊤ +Dbϕ(Gi(x), Hi(x), µi, νi)∇Hi(x)

⊤]Ip ,

A4(z) := [Dµϕ(Gi(x), Hi(x), µi, νi)e
⊤
i ]Ip ,

A5(z) := [Dνϕ(Gi(x), Hi(x), µi, νi)e
⊤
i ]Ip .

Theorem 4.1. Let x̄ ∈ R
n be an M-stationary point of (MPCC) where MPCC-

LICQ holds. Furthermore, assume that MPCC-SSOC holds at x̄ w.r.t. the multipliers
(λ̄, η̄, µ̄, ν̄) ∈ ΛM(x̄). Set z̄ := (x̄, λ̄, η̄, µ̄, ν̄) and observe that this point solves F (z̄) = 0.
Then there exist ε > 0 and C > 0 such that ‖DF (z)−1‖ ≤ C for all z ∈ Bε(z̄).

Proof. First, we provide a result for a linear system associated with the solution
z̄. To this end, let matrices Pi ∈ R

1×2, Qj ∈ R
2×4 for i ∈ Iℓ, j ∈ Ip be given such

that

(4.2)



















Pi ∈
{(

1 0
)

,
(

0 1
)}

Qj ∈ J1,2 ∪ J2,3 ∪ J1,4
gi(x̄) < 0 ⇒ Pi =

(

0 1
)

, λ̄i > 0 ⇒ Pi =
(

1 0
)

,

Gj(x̄) > 0 ⇒ Qj ∈ J2,3, Hj(x̄) > 0 ⇒ Qj ∈ J1,4,

µ̄j 6= 0 ⇒ Qj ∈ J1,2 ∪ J1,4, ν̄j 6= 0 ⇒ Qj ∈ J1,2 ∪ J2,3

holds for all i ∈ Iℓ, j ∈ Ip, cf. (3.5). Associated with this choice of Pi, Qj, we define
the index sets

Iℓ1 :=
{

i ∈ Iℓ
∣

∣Pi =
(

1 0
)}

, Iℓ2 :=
{

i ∈ Iℓ
∣

∣Pi =
(

0 1
)}

,
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Ip1,2 := {j ∈ Ip | Qj ∈ J1,2}, Ip1,4 := {j ∈ Ip | Qj ∈ J1,4},
Ip2,3 := {j ∈ Ip | Qj ∈ J2,3}.

Now, we consider the linear system with unknowns δz = (δx, δλ, δη, δµ, δν)

∇2
xxL(z̄) δx+ g′(x̄)⊤ δλ+ h′(x̄)⊤ δη

+G′(x̄)⊤ δµ+H ′(x̄)⊤ δν = r,(4.3a)

Pi

(

−∇gi(x̄)⊤δx
δλi

)

= si ∀i ∈ Iℓ,(4.3b)

h′(x̄) δx = t,(4.3c)

Qj









∇Gj(x̄)
⊤δx

∇Hj(x̄)
⊤δx

δµj

δνj









=

(

uj
vj

)

∀j ∈ Ip,(4.3d)

where r ∈ R
n, s ∈ R

ℓ, t ∈ R
m, and u, v ∈ R

p form a given right-hand side. Let us
inspect the block (4.3b). In case i ∈ Iℓ2, this block is equivalent to δλi = si. Hence, we
can eliminate these variables. Now, we consider the last block (4.3d). In case j ∈ Ip1,2,
i.e., Qj ∈ J1,2, we can assume w.l.o.g. that

Qj =

(

1 0 0 0
0 1 0 0

)

.

Hence, the jth component of the last block is equivalent to

∇Gj(x̄)
⊤δx = uj and ∇Hj(x̄)

⊤δx = vj .

For j ∈ Ip1,4, the last block is w.l.o.g. equivalent to

∇Gj(x̄)
⊤δx = uj and δνj = vj

and for j ∈ Ip2,3 we get

∇Hj(x̄)
⊤δx = vj and δµj = uj.

Thus, the values δνj for j ∈ Ip1,4 and δµj for j ∈ Ip2,3 can be eliminated in the above
system. With the index sets

Ipµ := Ip \ Ip2,3, Ipν := Ip \ Ip1,4

we arrive at the reduced saddle-point system

∇2
xxL(z̄) δx+ g′(x̄)⊤Iℓ

1

δλIℓ
1
+ h′(x̄)⊤ δη +G′(x̄)⊤Ip

µ
δµIp

µ
+H ′(x̄)⊤Ip

ν
δνIp

ν
= r̃,

−g′(x̄)Iℓ
1
δx = sIℓ

1
,

h′(x̄) δx = t,

G′(x̄)Ip
µ
δx = uIp

µ
,

H ′(x̄)Ip
ν
δx = uIp

ν
.
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Therein, the modified right-hand side r̃ results from the elimination of some of the
multipliers. It can be bounded by r, s, u, and v. Note that this reduced system is
symmetric. Furthermore, it clearly holds

{i ∈ Ig(x̄) | λ̄i > 0} ⊂ Iℓ1 ⊂ Ig(x̄),(4.4a)

I0+(x̄) ∪ I00±R(x̄, µ̄, ν̄) ⊂ Ipµ ⊂ I0+(x̄) ∪ I00(x̄),(4.4b)

I+0(x̄) ∪ I00
R±(x̄, µ̄, ν̄) ⊂ Ipν ⊂ I+0(x̄) ∪ I00(x̄)(4.4c)

by definition of these index sets. Additionally, we have Ipµ∪Ipν = Ip due to Lemma 3.2.
By MPCC-LICQ, the constraint block of the reduced system is surjective and from
MPCC-SSOC we get that the matrix ∇2

xxL(z̄) is positive definite on the kernel of
the constraint block. Now, Lemma 2.2 implies the invertibility of the system. By
undoing the elimination of some of the multipliers, we find that the system (4.3) is
invertible, i.e., there is a constant c > 0, such that the unique solution δz of (4.3)
satisfies ‖δz‖ ≤ c (‖r‖+‖s‖+‖t‖+‖u‖+‖v‖). Note that the constant c might depend
on the matrices Pi and Qj . However, since there are only finitely many choices for
the matrices Pi and Qj , we can choose c large enough, such that this estimate holds
for all values of Pi and Qj satisfying (4.2).

At this point of the proof, we have shown the following: There is a constant c,
such that the linear system (4.3) is uniformly invertible for any choice of matrices Pi,
Qj satisfying (4.2).

It remains to prove the uniform invertibility of the Newton matrix DF (z) for
all z in a neighborhood of z̄. First, we can utilize Lemma 3.2 and the continu-
ity of g, G, and H to obtain ε > 0 such that Pi := Dπmin(−gi(x), λi) and Qj :=
Dϕ(Gj(x), Hj(x), µj , νj) satisfy (4.2) for all i ∈ Iℓ, j ∈ Ip, and z ∈ Bε(z̄). Note that
we still use x̄, λ̄, µ̄, and ν̄ in (4.2). Thus, the Newton matrix DF (z) is a pertur-
bation of the system matrix from (4.3) for this particular choice of the matrices Pi

and Qj . Since f , g, h, G, and H are assumed to be twice continuously differentiable,
the perturbation can be made arbitrarily small (by reducing ε if necessary). Thus,
Lemma 2.3 ensures that we get a uniform bound for DF (z)−1 for all z ∈ Bε(z̄).

Now, we are in position to state a local convergence result for our nonsmooth
Newton method based on the map F from (4.1). Its proof simply follows by combining
Theorems 2.9 and 4.1.

Theorem 4.2. Let x̄ ∈ R
n be an M-stationary point of (MPCC) where MPCC-

LICQ holds. Furthermore, assume that MPCC-SSOC holds at x̄ w.r.t. the multipliers
(λ̄, η̄, µ̄, ν̄) ∈ ΛM(x̄). Set z̄ := (x̄, λ̄, η̄, µ̄, ν̄). Then there exists δ > 0 such that the
nonsmooth Newton method from Subsection 2.3 applied to the mapping F from (4.1) is
well defined for each initial iterate from Bδ(z̄) while the associated sequence of iterates
converges superlinearly to z̄. If, additionally, the second-order derivatives of the data
functions f , g, h, G, and H are locally Lipschitz continuous, then the convergence is
quadratic.

Remark 4.3. In addition to the assumptions of Theorem 4.2, assume that the
cost function f is quadratic while the constraint mappings g, h, G, and H are affine
in (MPCC). Then Example 2.8, Lemma 2.11, and Lemma 3.3 guarantee that the
mapping F from (4.1) is Newton differentiable of order ∞ on M . Thus, Theorem 2.9
guarantees one-step convergence for the associated nonsmooth Newton method if the
initial iterate is sufficiently close to the reference point z̄.

We note that the example from [10, Section 7.3] satisfies our assumptions MPCC-
LICQ and MPCC-SSOC at the origin which is an S-stationary point of the under-
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lying complementarity-constrained optimization problem. Due to Theorem 4.2, local
superlinear convergence of our nonsmooth Newton method is guaranteed. On the
other hand, the SQP-method suggested in [10] only converges linearly to the point of
interest. Next, we want to compare Theorem 4.2 with the convergence results from
[15] where a Levenberg–Marquardt method has been used to find stationary points of
(MPCC). In [15, Theorem 4.2], local quadratic convergence of the method has been
shown under validity of an abstract error bound condition. However, the paper does
not present any assumptions in terms of initial problem data which ensure the pres-
ence of the error bound condition. Even worse, the authors admit in [15, Section 5]
that sufficient conditions for the validity of this error bound condition, which are well
known from the literature, are likely to be violated in their special setting. Some toy
examples are provided where validity of the error bound condition can be shown via
some reduction arguments. In this regard, a qualitative comparison with the method
from [15] is not possible. For a quantitative comparison, we refer the interested reader
to Section 7.

We mention that it is possible to interpret the Newton method as an active set
strategy. To this end, one has to utilize Lemma 3.4. If the current iterate is denoted by
zk = (xk, λk, ηk, µk, νk), the next iterate zk+1 = (xk+1, λk+1, ηk+1, µk+1, νk+1) solves
the symmetric linear system

∇xL(zk) +∇2
xxL(zk) (xk+1 − xk)

+ g′(xk)
⊤
Iℓ
1

(λk+1 − λk)Iℓ
1
+ h′(xk)

⊤ (ηk+1 − ηk)

+G′(xk)
⊤
Ip
µ
(µk+1 − µk)Ip

µ
+H ′(xk)

⊤
Ip
ν
(νk+1 − νk)Ip

ν
= 0,

g(xk)Iℓ
1
+ g′(xk)Iℓ

1
(xk+1 − xk)Iℓ

1
= 0, (λk+1)Iℓ\Iℓ

1
= 0,

h(xk) + h′(xk) (xk+1 − xk) = 0,

G(xk)Ip
µ
+G′(xk)Ip

µ
(xk+1 − xk)Ip

µ
= 0, (µk+1)Ip\Ip

µ
= 0,

H(xk)Ip
ν
+H ′(xk)Ip

ν
(xk+1 − xk)Ip

ν
= 0, (νk+1)Ip\Ip

ν
= 0.

Here, the index sets Iℓ1, I
p
µ, and Ipν are constructed similarly as in the proof of Theo-

rem 4.1.
Let us briefly compare our algorithm with [22, Alg. 2.2]. Therein, the authors

use an identification procedure to obtain the active sets I+0(x̄), I0+(x̄), and I00(x̄)
and, afterwards, x̄ is approximated by an active set strategy. This approach is very
similar to our suggestion. For the convergence theory they presume validity of MPCC-
LICQ and MPCC-SOSC at a given local minimizer of (MPCC) which, thus, is an
S-stationary point (observe that MPCC-SOSC is called piecewise SOSC in [22], and
take notice of [22, pages 1006-1007]). Recall that MPCC-SOSC is slightly weaker than
MPCC-SSOC, which is required in our Theorem 4.2. However, the algorithm from
[22] is designed for the computation of S-stationary points and cannot approximate
M-stationary points (which are not already strongly stationary).

5. Globalization. A possible idea for the globalization of the nonsmooth New-
ton method from Subsection 2.3 is to exploit the squared residual of F as a merit func-
tion. Unfortunately, it can be easily checked that the resulting map z 7→ 1

2‖F (z)‖2 is
not smooth. Exploiting the well-known fact that the square of the Fischer–Burmeister
function πFB is smooth, see, e.g., [7, Proposition 3.4], we are, however, in position to
construct a smooth merit function. Therefore, let us first mention that the function
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ϕ1 has the equivalent representation

θ1(a, b, µ, ν) := |min(a, b)|,(5.1a)

θ2(a, b, µ, ν) := min(|a|, |µ|),(5.1b)

θ3(a, b, µ, ν) := min(|b|, |ν|),(5.1c)

θ4(a, b, µ, ν) := max(0,min(µ, |ν|),min(ν, |µ|)),(5.1d)

ϕ1(a, b, µ, ν) = max
i=1,...,4

θi(a, b, µ, ν).(5.1e)

Indeed, one can check that the zeros of θ(a, b, µ, ν) := maxi=1,...,4 θi(a, b, µ, ν) coincide
with the set M and, by construction, θ is 1-Lipschitz continuous w.r.t. the ℓ∞-norm.
Based on these observations and an elementary distinction of cases, it is now possible
to exploit the particular structure of θ in order to show that this function equals
the ℓ∞-distance to M . Noting that ϕ1 from (3.2d) has the same property, θ and ϕ1

actually need to coincide. This motivates the definition of

θ1,FB(a, b, µ, ν) := |πFB(a, b)|,(5.2a)

θ2,FB(a, b, µ, ν) := πFB(|a|, |µ|),(5.2b)

θ3,FB(a, b, µ, ν) := πFB(|b|, |ν|),(5.2c)

θ4,FB(a, b, µ, ν) :=

{

0 if µ, ν ≤ 0,

πFB(|µ|, |ν|) else,
(5.2d)

θFB(a, b, µ, ν) := [θi,FB(a, b, µ, ν)]i=1,...,4.(5.2e)

Now, we introduce FFB : Rn ×R
ℓ ×R

m ×R
p ×R

p → R
n ×R

ℓ ×R
m ×R

4p, a modified
residual, as stated below for arbitrary x ∈ R

n, λ ∈ R
ℓ, η ∈ R

m, and µ, ν ∈ R
p:

(5.3) FFB(x, λ, η, µ, ν) :=









∇xL(x, λ, η, µ, ν)
[πFB(−gi(x), λi)]Iℓ

h(x)
[θFB(Gi(x), Hi(x), µi, νi)]Ip









.

In the next lemma, we show that the squared residuals of F and FFB are, in some
sense, equivalent.

Lemma 5.1. There exist constants c, C > 0 with

c ‖FFB(x, λ, η, µ, ν)‖2 ≤ ‖F (x, λ, η, µ, ν)‖2 ≤ C ‖FFB(x, λ, η, µ, ν)‖2

for all x ∈ R
n, λ ∈ R

ℓ, η ∈ R
m, and µ, ν ∈ R

p.

Proof. Throughout the proof, w := (a, b, µ, ν) ∈ R
4 is arbitrarily chosen. Due to

[36, Lemma 3.1], the functions πmin and πFB are equivalent in the sense

(5.4)
2

2 +
√
2
|πmin(a, b)| ≤ |πFB(a, b)| ≤ (2 +

√
2) |πmin(a, b)|.

Thus, keeping in mind the definitions of F and FFB from (4.1) and (5.3), we only
need to show the equivalence of ϕ and θFB.

The relation (5.4) yields

2

2 +
√
2
|θi(w)| ≤ |θi,FB(w)| ≤ (2 +

√
2) |θi(w)|



A NEWTON METHOD FOR THE M-STATIONARITY SYSTEM 21

for i = 1, . . . , 4. Together with the estimate

ϕ1(w) = max
i=1,...,4

θi(w) ≤
(

4
∑

i=1

θ2i (w)

)1/2

≤ 2ϕ1(w),

we get equivalence of the functions |ϕ1| and ‖θFB‖.
In order to complete the proof, we only need to show

(5.5) |ϕ2(w)| ≤ |ϕ1(w)|

for all w since this already yields the equivalence of ϕ and θFB. Let us distinguish
some cases. If we have Dϕ1(w) ∈ {±e⊤1 ,±e⊤2 }, then it clearly holds

|ϕ2(w)| ≤ max(θ2(w), θ3(w)) ≤ max
i=1,...,4

θi(w) = ϕ1(w).

Now, suppose that Dϕ1(w) = ±e⊤3 holds. The Newton derivative of ϕ1 is evaluated
based on the representation of ϕ1 given in (3.2d), and thus we obtain the relation
ϕ1(w) = min(ψ1(w), ψ3(w)) = |µ|. This implies

ϕ2(w) = |b| ≤ min(ψ1(w), ψ3(w)) = ϕ1(w).

The case Dϕ1(w) = ±e⊤4 can be handled analogously. This shows (5.5) for arbitrary
w and the proof is complete.

For the globalization of our nonsmooth Newton method, we make use of the merit
function ΦFB : Rn × R

ℓ × R
m × R

p × R
p → R given by

ΦFB(z) :=
1

2
‖FFB(z)‖2

for all z = (x, λ, η, µ, ν) ∈ R
n × R

ℓ × R
m × R

p × R
p. This function is continu-

ously differentiable: First, recall that the square of the function πFB is continuously
differentiable. The gradient of (a, b) 7→ πFB(a, b)

2 vanishes on the complementar-
ity angle {(a, b) | 0 ≤ a ⊥ b ≥ 0}. This implies the continuous differentiability
of (a, b) 7→ πFB(|a|, |b|)2. Similar arguments can be used to check the continuous
differentiability of the function θ24,FB

.
Now, we can utilize the globalization idea from [5, Section 3] and [22, Algo-

rithm 3.2]: If the Newton step dk can be computed and satisfies

(5.6)
ΦFB(zk + dk)

ΦFB(zk)
≤ q

(with a fixed parameter q ∈ (0, 1)), we perform the Newton step zk+1 = zk+dk. If the
Newton system is not solvable or if its solution dk violates an angle test, we instead
use dk := −∇ΦFB(zk). Afterwards, we use an Armijo line search to obtain the step
length αk and update the iterate via zk+1 = zk + αk dk. This globalization strategy
is described in Algorithm 5.1.

Due to Corollary 2.10 and Lemma 5.1 and the proof of Theorem 2.9, the ratio test
(5.6) is satisfied (and, consequently, the Newton steps are performed) for all zk in the
neighborhood of solutions satisfying the assumptions of Theorem 4.1. Consequently,
the convergence guarantees of Algorithm 5.1 follow along the lines of [5, Section 3],
[22, Thms. 3.4, 3.5]:
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Data: parameters q, τabs, ρ, σ, β ∈ (0, 1), starting point z0 ∈ R
n+ℓ+m+2p

Set k = 0;
while ‖F (zk)‖ > τabs do

Solve DF (zk)dk = −F (zk) for dk;
if dk is well defined and ratio test (5.6) is satisfied then

Set zk+1 = zk + dk;
else

if dk is not well defined or ∇ΦFB(zk)
⊤dk > −ρ‖dk‖‖∇ΦFB(zk)‖ then

Set dk = −∇ΦFB(zk);
end

Determine zk+1 = zk + αkdk using an Armijo line search for ΦFB, i.e.,
αk = βik , where ik ∈ N0 is the smallest non-negative integer with
ΦFB(zk + βik dk) ≤ ΦFB(zk) + σ βik ∇ΦFB(zk)

⊤dk;

end

Set k = k + 1;

end

Algorithm 5.1: Globalization of the semismooth Newton method.

Theorem 5.2. Let the sequence (zk)k∈N be given by Algorithm 5.1.
(a) If (5.6) is satisfied infinitely often, then ΦFB(zk) → 0. In this case, any

accumulation point of (zk)k∈N is a primal-dual M-stationary tuple.
(b) All accumulation points of (zk)k∈N are stationary points of ΦFB.
(c) If an accumulation point z̄ of (zk)k∈N satisfies the assumptions of Theo-

rem 4.1, then the entire sequence converges superlinearly towards z̄. If, addi-
tionally, the second-order derivatives of the data functions f , g, h, G, and H
are locally Lipschitz continuous, then the convergence is quadratic.

Proof. Statement (a) follows immediately since the sequence (ΦFB(zk))k∈N is de-
creasing.

Let us prove statement (b). In case where the assumption from statement (a)
holds, this is clear. Otherwise, by considering the tail of the sequence, we may assume
that (5.6) is never satisfied. Now, Algorithm 5.1 reduces to a line-search method and
the search directions satisfy the angle condition.

For a convergent subsequence zkl
→ z∗, we will show that z∗ is a stationary point

of ΦFB. To this end, we will distinguish three cases.
Case 1, lim inf l→∞‖dkl

‖ = 0: By selecting a further subsequence (without rela-
beling), we have dkl

→ 0. In every step of the algorithm, we have

DF (zkl
) dkl

= −F (zkl
) or dkl

= −∇ΦFB(zkl
).

If the second equation holds infinitely often, we immediately get ∇ΦFB(z
∗) = 0.

Otherwise, the first equation holds infinitely often. The convergence zkl
→ z∗ implies

that the Newton derivatives DF (zkl
) are bounded. This gives F (zkl

) → 0 (along a
subsequence). Thus, F (z∗) = 0, see Lemma 3.3 (e), and therefore Lemma 5.1 implies
ΦFB(z

∗) = 0 which yields ∇ΦFB(z
∗) = 0.

Case 2, lim inf l→∞ αkl
‖dkl

‖ > 0: The sequence (ΦFB(zk))k∈N is decreasing and
bounded from below by zero, therefore it converges. The Armijo condition en-
sures αk ∇ΦFB(zk)

⊤dk → 0. In every step of the algorithm, the angle condition
∇ΦFB(zk)

⊤dk ≤ −ρ ‖∇ΦFB(zk)‖ ‖dk‖ is satisfied, thus we get αk ‖∇ΦFB(zk)‖ ‖dk‖ →
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0. From the condition of Case 2, this implies ∇ΦFB(zkl
) → 0 and, therefore, the sta-

tionarity of z∗.
Case 3, lim inf l→∞‖dkl

‖ > 0 and lim inf l→∞ αkl
‖dkl

‖ = 0: By picking a further
subsequence (without relabeling), we get αkl

‖dkl
‖ → 0. Since ‖dkl

‖ is bounded away
from zero, this also yields αkl

→ 0. In particular, for l large enough, β−1 αkl
violates

the Armijo condition, i.e.,

ΦFB(zkl
+ β−1 αkl

dkl
)− ΦFB(zkl

) > σ β−1 αkl
∇ΦFB(zkl

)⊤dkl
.

Using the mean value theorem on the left-hand side, we get ξl ∈ (0, β−1 αkl
) such

that

(5.7) β−1 αkl
∇ΦFB(zkl

+ ξl dkl
)⊤dkl

> σ β−1 αkl
∇ΦFB(zkl

)⊤dkl
.

Note that ξl dkl
→ 0. The continuous function ∇ΦFB is uniformly continuous on

compact neighborhoods of z∗. Thus, for every ε > 0, there is L ∈ N such that

∀l ≥ L : ‖∇ΦFB(zkl
)−∇ΦFB(zkl

+ ξl dkl
)‖ ≤ ε.

Using this inequality in (5.7), we get

(1− σ)∇ΦFB(zkl
)⊤dkl

+ ε ‖dkl
‖ > 0

for all l large enough. Exploiting the angle condition once more yields

ε > (1− σ) ρ ‖∇ΦFB(zkl
)‖

for all l large enough. Since ε > 0 was arbitrary, this gives ‖∇ΦFB(zkl
)‖ → 0 and,

therefore, z∗ is a stationary point of ΦFB.
Finally, we show statement (c). From the proof of Theorem 2.9 in conjunction

with Corollary 2.10 and Lemma 5.1, we obtain an ε > 0 such that (5.6) as well as
‖(zk + dk) − z̄‖ ≤ ‖zk − z̄‖ are satisfied for all zk ∈ Bε(z̄). This means that the
semismooth Newton step is accepted and the next iterate zk+1 = zk +dk also belongs
to Bε(z̄). Consequently, Algorithm 5.1 becomes a semismooth Newton method and
the assertion follows from Theorem 2.9.

Clearly, every primal-dual M-stationary tuple z̄ is a stationary point of ΦFB since
ΦFB(z̄) = 0. However, giving assumptions under which the converse implication is
true seems to be challenging, see also Subsection 7.3. For the solution of NCPs, this
question has been adressed in [4, Section 4].

6. Convergence for linear-quadratic problems beyond MPCC-LICQ.

We consider the linear-quadratic case, i.e., we assume that the function f is quadratic
and that the mappings g, h, G, and H are affine. Due to the complementarity
constraints, the solution of (MPCC) is still very challenging. On the other hand, it
follows from [8, Theorem 3.5, Proposition 3.8] that local minimizers of the associated
problem (MPCC) are M-stationary without further assumptions. This makes the
search for M-stationary points even more attractive. Our goal is to verify that one-
step convergence of a modification of our Newton method is possible under a weaker
constraint qualification than MPCC-LICQ.

Let an M-stationary point x̄ ∈ R
n of (MPCC) with multiplier (λ̄, ρ̄, µ̄, ν̄) ∈ ΛM(x̄)
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be given and set z̄ = (x̄, λ̄, η̄, µ̄, ν̄). We require that the matrix

(6.1)











g′(x̄)Ig
+
(x̄,λ̄)

h′(x̄)
G′(x̄)I0+(x̄)∪I00

±R
(x̄,µ̄,ν̄)

H ′(x̄)I+0(x̄)∪I00
R±

(x̄,µ̄,ν̄)











possesses full row rank, where we used the multiplier-dependent index sets from (2.3)
and

Ig+(x̄, λ̄) := {i ∈ Ig(x̄) | λ̄i > 0}.

Clearly, this condition is, in general, weaker than MPCC-LICQ. Further, we assume
that MPCC-SSOC holds at x̄ w.r.t. (λ̄, η̄, µ̄, ν̄).

Let (x, λ, η, µ, ν) denote the current iterate. We will assume that it is close to the
solution (x̄, λ̄, η̄, µ̄, ν̄). Then arguing as in the proof of Theorem 4.1, using the active-
set interpretation from the end of Section 4 as well as the linear-quadratic structure
of the problem, the next iterate (x+, λ+, η+, µ+, ν+) is given by solving the linear
system

∇xL(x+, λ+, η+, µ+, ν+) = 0,(6.2a)

g(x+)Iℓ
1
= 0, (λ+)Iℓ\Iℓ

1
= 0,(6.2b)

h(x+) = 0,(6.2c)

G(x+)Ip
µ
= 0, (µ+)Ip\Ip

µ
= 0,(6.2d)

H(x+)Ip
ν
= 0, (ν+)Ip\Ip

ν
= 0.(6.2e)

Here, the index sets Iℓ1, I
p
µ, and Ipν are constructed similarly as in the proof of Theo-

rem 4.1 and satisfy (4.4).
In the following, we argue that the index sets Iℓ1, I

p
µ, and Ipν can be modified such

that z̄ = (x̄, λ̄, η̄, µ̄, ν̄) is the unique solution of (6.2). For arbitrary index sets Iℓ1, I
p
µ,

and Ipν , we have the implications

the sets Iℓ1, I
p
µ, Ipν satisfy (4.4) ⇒ z̄ solves (6.2),(6.3a)

Ig+(x̄, λ̄) = Iℓ1

I0+(x̄) ∪ I00±R
(x̄, µ̄, ν̄) = Ipµ

I+0(x̄) ∪ I00R±(x̄, µ̄, ν̄) = Ipν











⇒ (6.2) is uniquely solvable.(6.3b)

Note that (6.3b) follows from the assumption that (6.1) has full row rank.
In particular, system (6.2) is, in general, not uniquely solvable. If the system has

multiple solutions, Lemma 2.2 and MPCC-SSOC imply that the matrix

(6.4)









g′(x̄)Iℓ
1

h′(x̄)
G′(x̄)Ip

µ

H ′(x̄)Ip
ν









does not possess full row rank. Note that this matrix might possess more rows than
(6.1).
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We will see that it is possible to remove one index from one of the index sets Iℓ1,
Ipµ, Ipν such that the inclusions (4.4) are still satisfied, as long as (6.2) is not uniquely
solvable. Thus, (6.3) will imply that we can find the solution z̄ using this strategy
repeatedly.

We can filter out the linearly dependent rows from the knowledge of our current
iterate. The possible linearly dependent rows in (6.4) correspond to the index sets

(6.5) Iℓ1 \ Ig+(x̄, λ̄), Ipµ \
(

I0+(x̄)∪ I00±R(x̄, µ̄, ν̄)
)

, Ipν \
(

I+0(x̄) ∪ I00R±(x̄, µ̄, ν̄)
)

.

Using (4.4), these indices are contained in

Ig0 (x̄, λ̄) := Ig(x̄) \ Ig+(x̄, λ̄),
I000R(x̄, µ̄, ν̄) := I00(x̄) \ I00±R

(x̄, µ̄, ν̄),

I00
R0(x̄, µ̄, ν̄) := I00(x̄) \ I00

R±(x̄, µ̄, ν̄),

respectively. Now, we use the following procedure: First, we sort the indices

i ∈ Iℓ1 according to λi

j ∈ Ipµ according to max(|µj |, |Hj(x)|)
j ∈ Ipν according to max(|νj |, |Gj(x)|)

in increasing order. If the current iterate is sufficiently close to the solution, the
above list will contain the problematic indices from (6.5) at the top. Then we can
remove the indices one-by-one from the corresponding index sets, until the system
(6.2) becomes uniquely solvable. Note that this modification of the index sets ensures
that (4.4) stays valid. Hence, the solution z̄ remains to be a solution of (6.2), cf.
(6.3a). Since the matrix (6.1) has full row rank, this process stops if all indices from
(6.5) are removed (or earlier).

Example 6.1. We consider the classical example [34, Example 3] with a quadratic
regularization term. That is, we have n = 3, ℓ = 2, m = 0, as well as p = 1, and the
functions are given by

f(x) = x1 + x2 − x3 +
c

2
‖x‖2, g(x) =

(

−4 x1 + x3
−4 x2 + x3

)

, G(x) = x1, H(x) = x2,

where c > 0 is the regularization parameter. The global minimizer is x̄ = 0, and this
point is M-stationary with multipliers λ̄ = (3/4, 1/4), µ̄ = 2, ν̄ = 0. An alternative
set of multipliers is λ̃ = (1/4, 3/4), µ̃ = 0, ν̃ = 2. Since all four constraints are active
in x̄, MPCC-LICQ cannot be satisfied. However, the matrix (6.1) is given by

[

g′(x̄){1,2}
G′(x̄)

]

=





−4 0 1
0 −4 1
1 0 0





and this matrix possesses full row rank. Since ∇2f(x̄) is positive definite, MPCC-
SSOC holds as well. Hence, the above theory applies and we obtain one-step conver-
gence if the initial guess is sufficiently close to (x̄, λ̄, µ̄, ν̄), see Remark 4.3 as well.

The application of this idea to problems which are not linear-quadratic is subject
to future research. We expect that the above idea can be generalized easily to problems
with affine constraints. In this situation, every local minimizer is M-stationary. Hence,
it is suitable to solve such problems with an algorithm capable to find M-stationary
points.
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7. Numerical results.

7.1. Implementation and parameters. Numerical experiments were carried
out using MATLAB (R2020a). Therefore, we implemented Algorithm 5.1 with the
modifications discussed in Section 6. These modifications allow us to solve the system
DF (zk)dk = −F (zk) if DF (zk) is not invertible but zk is near the solution in the case
of linear-quadratic MPCCs. For the parameters in Algorithm 5.1, we chose q = 0.999,
τabs = 10−11, ρ = 10−3, and σ = β = 1/2.

We also implemented [15, Algorithm 4.1]. Since we are interested in M-stationary
points, we chose F and W according to [15, (16), (17)]. We used the parameters σ = 1
and η = 1/10, which are the same as in [15, Section 6], but changed the termination
condition from min(‖F (wk)‖, ‖dk‖) ≤ 10−6 to min(‖F (wk)‖, ‖dk‖) ≤ 10−11 in order
to have greater similarity with the termination condition in Algorithm 5.1. The
quadratic program in [15, Algorithm 4.1] was solved using quadprog in MATLAB,
with tolerances ConstraintTolerance, OptimalityTolerance and StepTolerance

set to 10−13, in order to achieve greater accuracy.
For both algorithms, we used random starting points z0 = (x0, λ0, η0, µ0, ν0) ∈

R
n+ℓ+m+2p, which were chosen from a uniform distribution on [−n, n]n+ℓ+m+2p, with

the exception of choosing λ0 ∈ [0, n]ℓ for [15, Algorithm 4.1] in order to guarantee that
the starting point is feasible. Similarly, we used a uniform distribution on [0, n] for
the initialization of the slack variables in [15, Algorithm 4.1]. Unless stated otherwise,
we executed 1000 runs of each algorithm for a problem. In each of the runs, both
algorithms were initialized with the same random starting point, which was chosen
independently across the runs. Each run was aborted if it had not finished within
1000 iterations.

7.2. A toy example. As a first small toy example we consider the linear-
quadratic MPCC from Example 6.1 with the choice c = 1/10 for the regularization
parameter. Recall that this MPCC has a local minimizer at x̄ = (0, 0, 0), which is an
M- but not an S-stationary point. As discussed previously, the matrix (6.1) possesses
full row rank and MPCC-SSOC holds, too. Thus, our assumptions for Algorithm 5.1
and its modifications discussed in Section 6 are satisfied.

We performed numerical tests for this MPCC as described in Subsection 7.1. For
Algorithm 5.1, the termination criterion was always reached and the average euclidean
distance of the calculated solution to x̄ was 5.6 · 10−17. We could also observe the
local one-step convergence that we expected from Remark 4.3. The average number
of iterations was 7.19, and each run took 0.007 seconds in average.

We also performed numerical tests for this toy problem with [15, Algorithm 4.1].
Here, the termination criterion was always reached and the average euclidean distance
of the calculated solution to x̄ was 2.2 · 10−7. In all runs the termination criterion
was met because the norm of the search direction dk became sufficiently small (and
not because ‖F (wk)‖ was sufficiently small). The average number of iterations was
15.04, and each run took 0.026 seconds in average.

7.3. Convergence towards non-M-stationary points. For each parameter
ε ≥ 0, we consider the two-dimensional problem

min
x

1
2 ‖x− bε‖2

s.t. x1 ≥ 0, x2 ≥ 0, x1 x2 = 0,

where bε = (1,−ε). We denote the corresponding merit function from Section 5 by
Φε

FB
. The unique global minimizer of the MPCC is x̄ = (1, 0) (independent of ε ≥ 0)
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and this point is strongly stationary. In case ε > 0, there is no further M-stationary
point, but for ε = 0, the point x̃ = (0, 0) is M-stationary. By attaching the unique
multipliers, we obtain that the point z̃ = (0, 0, 1, 0) is an isolated local minimizer of
Φ0

FB
and Φ0

FB
(z̃) = 0 since z̃ is an M-stationary primal-dual tuple. Hence, it can be

expected that Φε
FB

still has a local minimizer in the neighborhood of z̃ for a small
perturbation ε > 0, but this local minimizer cannot be M-stationary. The same
argument can be applied to the function θ from [15, (21)].

For the numerical computations, we chose ε = 0.2. We executed 1000 runs for
both algorithms. In 659 cases, Algorithm 5.1 converged towards a non-M-stationary
primal-dual tuple, whereas this happened in 250 runs of [15, Algorithm 4.1]. In all
the other cases, the global solution x̄ has been found. One should bear in mind that
these numbers strongly depend on the random distribution of the initial points, see
Subsection 7.1 for our choice.

We expect that this instability of M-stationary points w.r.t. perturbations will
also impede the convergence of similar algorithms which try to compute M-stationary
points.

7.4. Optimal control of a discretized obstacle problem. We consider a
discretized version of the optimization problem from [38, Section 6.1]. This is an
infinite dimensional MPCC for which strong stationarity does not hold at the uniquely
determined minimizer. We will see that the same property holds for its discretization.

Let us fix a discretization parameter N ∈ N. The optimization variable x ∈ R
3N

is partitioned as x = (y, u, ξ). The discretized problem uses the data functions

f(x) = 1
2 ‖y‖

2 + e⊤y + 1
2 ‖u‖

2, g(x) = −u, h(x) = Ay − u+ ξ,

G(x) = −y, H(x) = ξ,

where e := (1, . . . , 1) ∈ R
N is the all-ones vector and the matrix A is given entrywise:

∀i, j ∈ {1, . . . , N} : Ai,j :=











2 if i = j,

−1 if i = j ± 1,

0 else.

Up to the scaling, this matrix arises from the finite-difference discretization of the
one-dimensional Laplacian.

One can check that x̄ = 0 is the unique global minimizer. Since all constraints
are affine, x̄ is an M-stationary point of this program. Furthermore, there are no
weakly stationary points (i.e., feasible points satisfying (2.1a)–(2.1d)) different from
x̄. The M-stationary multipliers (λ, η, µ, ν) associated with x̄ are not unique. Indeed,
for every diagonal matrix D ∈ R

N×N with diagonal entries from {0, 1}, one can check
that the solution of the system

[

A I
I −D D

] [

ν
µ

]

=

[

e
0

]

, ν = −η = λ

yields M-stationary multipliers, and all multipliers are obtained by this construc-
tion. Let us mention that none of these multipliers solves the associated system of
S-stationarity since for each i ∈ N, either µi or νi is positive. Thus, x̄ is not an
S-stationary point. For all these multipliers, the matrix (6.1) possesses full row rank.
On the other hand, MPCC-LICQ is clearly violated at x̄ since this point is a local
minimizer of the given MPCC which is not S-stationary. Finally, one can check that
MPCC-SSOC is valid at x̄ w.r.t. all the multipliers characterized above.
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We performed numerical tests as described in Subsection 7.1 with the discretiza-
tion parameter N = 256. For Algorithm 5.1, the solution has been found in every run,
with an average error of 6.7 ·10−31 (measured in the euclidean distance). The average
number of iterations was 13.38, and each run took 2.36 seconds in average. Again, we
could also observe the local one-step convergence that we expected from Remark 4.3.
The associated multipliers differed from run to run. That behavior, however, had to
be expected since the associated multiplier set ΛM(x̄) is not a singleton.

In comparison, [15, Algorithm 4.1] did not converge within 1000 iterations in each
run (we only executed 10 runs of the algorithm instead of the usual 1000 runs due
to the long runtime). Each run took 7298 seconds in average, and the average of the
error ‖x1000 − x̄‖ of the final iterate x1000 was 4538. One reason for the long runtime
of [15, Algorithm 4.1] is that a quadratic program in 14N = 3584 dimensions needs
to be solved in each iteration.

We also conducted numerical tests for a very coarse discretization with N = 4.
Here, [15, Algorithm 4.1] performed significantly better. In all runs, the termination
criterion was met because the search direction dk became sufficiently small (and not
because ‖F (wk)‖ was sufficiently small). The average euclidean distance of the cal-
culated solution to x̄ was 7.8 · 10−4. The average number of iterations was 41.75, and
each run took 0.149 seconds in average.

For this coarse discretization (with N = 4), Algorithm 5.1 also performed reason-
ably well. In all runs, the termination criterion was met and the average euclidean
distance of the calculated solution to x̄ was 6.9 · 10−16. The average number of itera-
tions was 2.91, and each run took 0.003 seconds in average.

8. Conclusion and outlook. We demonstrated that the M-stationarity system
of a mathematical problem with complementarity constraints can be reformulated as
a system of nonsmooth and discontinuous equations, see Section 3. It has been shown
that this system can be solved with the aid of a semismooth Newton method. Local
fast convergence to M-stationary points can be guaranteed under validity of MPCC-
SSOC and MPCC-LICQ, see Theorem 4.2, where the latter assumption can be weak-
ened in case of linear-quadratic problems, see Section 6. Furthermore, we provided a
reasonable globalization strategy, see Section 5. There is some hope that similar to
Section 6, it is possible to weaken MPCC-LICQ in the setting of nonlinear constraints
if only validity of a suitable constant rank assumption can be guaranteed. Clearly, the
fundamental ideas of this paper are not limited to mathematical programs with com-
plementarity constraints but can be adjusted in order to suit other problem classes
from disjunctive programming such as vanishing-constrained, switching-constrained,
or cardinality-constrained programs, see [29] for an overview. It remains an open ques-
tion to what extent the theory of this paper can be generalized to infinite-dimensional
complementarity-constrained optimization problems.
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