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A STRANGE VERTEX CONDITION COMING FROM NOWHERE*

FRANK ROSLERT

Abstract. We prove norm-resolvent and spectral convergence in L? of solutions to the Neumann
Poisson problem —Aus = f on a domain . perforated by Dirichlet holes and shrinking to a 1-
dimensional interval. The limit u satisfies an equation of the type —u” + pu = f on the interval
(0,1), where p is a positive constant. As an application we study the convergence of solutions in
perforated graph-like domains. We show that if the scaling between the edge neighborhood and the
vertex neighborhood is chosen correctly, the constant p will appear in the vertex condition of the
limit problem. In particular, this implies that the spectrum of the resulting quantum graph is altered
in a controlled way by the perforation.
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1. Introduction. Let N > 3, and consider an open subset 2. of RY of the
form Q. = eQy x (0,1) (see section 2 for precise definitions). Let us introduce a
perforation of this domain by removing periodically distributed spherical holes of
distance 6. € (0,¢) (cf. Figure 2.1). On this domain we consider the Poisson equation
with Dirichlet boundary conditions on the holes of radius r. < é.. We ask the
question whether the solutions u. to this equation converge in a meaningful sense to a
function u on the interval (0,1) and whether u is the solution of a reasonable “limit”
differential equation.

Homogenization problems of a similar type have been studied extensively for a
long time [CM97, RT75, MK64] and recently gained more attention (cf. [Zhi00, Pas06]
for perforated domains of fixed size with Neumann boundary conditions, [MS10] for
perforated domains with periodic boundary conditions, and [BCD16] for domains
perforated along a curve. Advances towards operator norm and spectral convergence
in perforated domains have been made in [Pas06, BCD16, CDR17, KP17]). A result
by Cioranescu and Murat gives a positive answer to the question of convergence of
solutions in the case where the size of €). remains constant but the holes shrink and
concentrate. In fact, they showed that the solutions of —Au. = f converge strongly
in L2(2) to the solution u € H}(Q) of (—=A + ji)u = f, where ji > 0 is a constant
related to the harmonic capacity of the unit ball. The constant x (which was dubbed
a “strange term coming from nowhere” in [CM97]) will appear frequently in later
sections of this article, and we will henceforth refer to p as the strange term.

The general idea of coupling thin geometry with a highly oscillating boundary
of the domain has also gained interest during the last decade. Indeed, elliptic prob-
lems on a thin domain whose boundary is given as the graph of a rapidly oscillating
function G¢ have been studied in [AP10, AV14, AV16]. The more specific situation
of a perforated thin domain was the object of study in [MP10, MP12] (see also the
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Fic. 2.1. A sketch of the thin perforated domain in 3d.

references therein). The effects of perforations in thin domains on spectral gaps have
been studied in [Naz10].

The present article differs from these works in several ways. First, the geometric
situation is different in the sense that the radius of the holes does not have the same
scaling as the distance between the holes or the thickness of the domain. Second,
the boundary conditions we consider on the surface of the holes are Dirichlet (rather
than Neumann), which changes the analysis of the problem completely and ultimately
leads to the appearance of the strange term g in the limiting equation. Moreover,
the emphasis of the present work differs from those mentioned in the last two para-
graphs. We take an operator theoretic point of view and prove that the operators
involved converge in norm-resolvent sense, i.e., the resolvents of the operator family
indexed by e converge in the uniform operator topology. This notion of convergence is
stronger than that of strong convergence, which is more commonly studied in classical
homogenization theory. In particular, norm-resolvent convergence implies a number
of physically interesting consequences like local convergence of spectra (cf. section 7)
or convergence of the associated semigroups. Finally, our results are applied to so-
called graph-like domains in section 8, where the additional challenge of determining
vertex conditions for the limiting equation is present. This situation is similar to that
in [Pos06]; however, there the author did not consider the effect of perforations.

This article is organized as follows. In section 2, we give a precise description
of the geometric situation at hand and the resulting boundary value problem in the
perforated thin domain. Section 3 contains the statements of our main theorems
and relevant corollaries. Sections 4, 5, and 6 are devoted to the proof of our main
theorem. In section 7 we prove local convergence of spectra as a corollary of norm-
resolvent convergence. Finally, in section 8 we apply our results to perforated graph-
like domains and obtain vertex conditions for the limiting problem on the underlying
metric graph.

2. Geometric setting. In this article we consider the following homogenization
problem. Let N > 3 and Q¢ € RY~! be a bounded open set with 08 of class C?, and
let 2 := Qg x (0,1). For & >0, let §. < ¢, and define the set 7. := ;o525 Br. (i),

where r, = 55/“\'72). We consider the domain Q. := Qg x (0, 1), perforated by the
B,_(i) and shrinking towards a thin rod as e — 0.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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To this end, define the subset of lattice points which are sufficiently far from the
boundary L. := {i € 26.Z" : dist(i,0(Q)) > .} and the corresponding “holes”
T. = U,cy. Br.(i). Finally, define the perforated domain

QP =0\ TL.

In order to compare functions defined on different domains Q. and (0,1) we define
the operator family

U. : Ll((O, 1)) — Ll(QE),
Uetp = |eQ0| "2 6%,

where ¢* denotes the extension of ¢ to a constant on every slice {t} xeQg. Restrictions
of U, to subspaces of L'(€.) will also be denoted U.. Note that the scaling |eQq|~ 2
in the definition of U. was chosen such that for ¢ € L?((0,1)) the norm U0 12 0.y

is of order 1 as € = 0. On the domain QP we consider the following problem:

(A +2)u. = f.  in QP,
(2].) Ue = 0 on 8T&‘7
Oyu. =0 on 0f).,

where z > 0 and f. € L*(€) is a family such that ||f. — U.f| r2(.) — 0 for some
f € L?((0,1)). This problem can easily be seen to possess a unique solution for each
fixed € > 0 by virtue of the Lax—Milgram theorem.

Moreover, let H. := H'(£2.) and

HY = {¢la. : ¢ € CF (RN \ T%) },

where the closure is taken in the H!(€.)-norm (this is the space of functions vanishing
on the holes). For a function u € H? we will not distinguish in notation between u
and its extension by zero to 2. (which belongs to H.).

Finally, the following notation will be used frequently. For z € ). we write
r = (Z,xy), where T € £Qg and x5 € (0,1). Accordingly, we denote by V the
gradient with respect to Z and by Jyn the partial derivative with respect to . The
transversally constant extension of a function ¢ from (0,1) to Q. will be denoted
¢*(Z,xN) := ¢(xn). A variable in (0,1) will often be denoted by .

3. Main results. In the above setting, we are going to prove the following
results.

THEOREM 3.1. The solutions u. of (2.1) converge to a function u € H'((0,1))
in the sense that
llue — UEUHL?(QE) —0

as € = 0 and u solves the ordinary differential equation
(- +z+u)u=7 inO0),
(3.1) ’
w=0 ond(0,1),
where = 2N SN (N — 2), Sy being the surface area of the unit sphere in RN,

The above theorem can be understood as strong operator convergence —Agqe 2

7% + p. The next result shows that even a stronger type of convergence holds.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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THEOREM 3.2. The above convergence even holds in the norm-resolvent sense.

The meaning of “convergence in the norm-resolvent sense” will be made precise
in section 6 (see Theorem 6.3). An important corollary of norm-resolvent convergence
is convergence of spectra.

COROLLARY 3.3 (spectral convergence). Choose z =1, and let A, and Ay, denote
the kth eigenvalues of problem (2.1) and (3.1), respectively. There exist a constant
C > 0 and a function a(e) with a(e) — 0 as € — 0 such that

(M) " =AM £ Cale)  VEEN,

where C' is independent of € and k.

This corollary will be proved in section 7. The appearance of the additive term
pu in (3.1) has been first observed in the classical situation of a perforated domain
QO of fixed size by [MK64, CM97] and has been dubbed a “strange term coming from
nowhere.” We will in the following refer to p as the strange term.

Graph-like domains. The above results will be applied to graph-like domains in
section 8. In particular, we will show that for a graph-like domain in which the volumes
of the fattened edges and the fattened vertices have the same scaling as ¢ — 0, the
limit will be a quantum graph with vertex conditions of Robin type with parameter
w. For details, see section 8.4.

4. General convergence results on €2.. In the following sections we will prove
Theorem 3.1. We start with some general lemmas about convergence in shrinking
domains.

DEFINITION 4.1. A sequence ¢. € H. is said to strongly converge to ¢ € H((0,1))

(we write ¢ H—1> o) if
[pe = UetllT2(a.) +€°[IVPe = VU120, + 108 P — ONUedll72(q,) — 0

as € — 0. Strong convergence in L? is defined analogously, for which we will write
b 5 0.

DEFINITION 4.2. A sequence u. € H. is said to be weakly convergent in H' to
ue HY((0,1)) (we write ue L u) if for all ¢. € Ho with ¢, LN ¢ one has

(e, de) 20y + €(Vue, Vde) r2(0.) + (Onte, Onde) 120y — (U, @) 1 ((0,1))-

2
Weak convergence in L? is defined analogously, for which we will write ¢, L ¢.

It can easily be seen that in the above sense strong convergence implies weak
convergence.

Remark 4.3. (i) We remark that the concepts of convergence introduced in Def-
initions 4.1 and 4.2 are not new. Indeed, convergence of sequences in varying
Banach spaces has been studied for several decades, and Definitions 4.1 and
4.2 are special cases of what is known as discrete convegrence (cf. [Stu70]).
Properties of discretely converging sequences of vectors have been studied in
the classical works [Stu70, Stu72, Vai81]. In fact, Proposition 4.4(i) below is a
consequence of [Vai81, Prop. 1.5]. We nevertheless chose to include these defi-
nitions and proofs in our article in order to keep the presentation as clear and
self-contained as possible.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.



Downloaded 07/05/21 to 131.251.254.197. Redistribution subject to STAM license or copyright; see https://epubs.siam.org/page/terms

3102 FRANK ROSLER

(ii) The convergence of operators defined on varying spaces has also been studied in
[Stu70, Stu72, Vai8l1] to a certain extent. Classical results include various condi-
tions for the strong discrete convergence of bounded operators (and strengthened
versions thereof). Let us stress again that in our situation we are dealing with
unbounded operators for which we are studying the stronger notion of opera-
tor norm convergence. For more recent results on the convergence (especially
spectral convergence) of unbounded operators on varying Hilbert spaces, the
interested reader may consult [Pos06, MNP13] and [Boel?7, Boel$].

The next proposition shows that compact embeddings also generalize to shrinking
domains.

PROPOSITION 4.4. Let u. € H. be a sequence, and let there exist a C' > 0 such
that
(4.1) [ucll72a.) + 2 VuelF2 .y + 10Nu 72y < C

for alle > 0. Then

1
(i) there exists a subsequence (still denoted by u.) such that u. ELEN for some
u € HY(0,1));
(i) if in addition 52||Vu5||%2(95) — 0, then one has |[ue — Usull 2.y — 0.

Proof. We use scaling in order to keep the domain fixed. Let @ : Q@ — R, a.(z) :=
ue(eZ,zy). By the usual dilation formula and chain rule we find
lucll7z o) =™ HlaclZ2 )
10N uel|Fe o) = ™ ONT:] T2 (g

IVuelZao,) = ¥ 2 Vae| 7z o)-

Our assumption (4.1) immediately yields EN_1||1]EH%{1(Q) < C. Thus, there exists a
subsequence £ @, — 1 in HY(Q) (in the usual sense).

Now let ¢. € H. with ¢, ELEN ¢ € H'((0,1)). By scaling arguments similar to
the above, one immediately obtains that denoting ¢.(x) := ¢-(eZ,xn) and ¢*(z) :=
¢(xn) one has

N—-1 ~

€72 ¢. — ¢* strongly in H'(Q).
Consequently,

N iie, Ge) iy — (i, 6% m1(q)-
Undoing the scaling this can be written as
(4.2)

(Ue, be)r2 (0. +E° (Ve, Vde)rz o)+ (Onte, Onde)rz ) — (@, &™)

:</’[L((E,)df,¢> )
Q H1((0,1))

where the last equality holds because ¢* is independent of . Hence, we have shown
1
that u. —— u with u(t) = [, u(z,t) dz, which concludes the proof of (i).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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To see (ii), we first use the compact embedding H'(Q) < L2*(Q2) to see that

||5¥115 - ﬁ||L2(Q) — 0, for a subsequence, and note that [|[Vic| 2@ — 0 by as-
sumption. It follows that Vi = 0, that is, 4(z) = ¢ - u(zy). A simple calculation

shows ¢ = |Qg|~!. Reversing the scaling, this proves (ii). O
In the same way as above one can prove the existence of weakly convergent sub-
sequences in L2(€).).
PROPOSITION 4.5. Let f. € L*(Q.) and ||f-|12(q.) uniformly bounded. Then
there exists a subsequence for with fo £, f for some f € L?((0,1)) as &’ — 0.

Proof. L?-boundedness in the scaled domain 2 yields weak convergence of &’ — fer

in L?(Q.). Scaling back as in the proof of Proposition 4.4 yields the assertion. d
5. Proof of Theorem 3.1.

5.1. Auxiliary results. In the following, our discussion will be along the lines
of the classical proof from [CM97] with the necessary modifications. We define an
auxiliary function w, as follows. Let P7 denote a cube of edge length 24, centered at
i € L., and let w. be the solution to

w. =0 in B, (i),
Aw, =0 in Bs_(i)\ By_(7),

5.1
(51) we=1in PF\ By, ().
We continuous.
Requiring that w. = 1 outside the union of all P7 we obtain a function w. €

WL (RN) for every ¢ > 0. In fact, exploiting radial symmetry, one can derive
the explicit expression
F2-N _ 2-N
we(r) = W
in polar coordinates (cf. [CM97, eq. (2.2)]). Note that in particular w. = 1 in the
small cubes C5 of edge length M\/ﬁés centered at the corners of the P? (cf. [CM97,
Fig. 2]).
LEMMA 5.1. Denote C; := UjeLE C5. The characteristic function xc. converges
to a constant o weakly* in L in the sense that for all p € L*((0,1)) and p. € L' ()
such that [eQo| " pe — ¢* ||l 112.) — 0 as € — 0, one has

1
€00~ (X e) 1e.in > @ / o(z) dz
0

(recall the convention ©*(Z,xn) = @(xN)).

Proof. We use the shorthand x. := xc.. We first prove the statement for smooth
. The general statement will then follow by a density argument. To this end, let
¢ € C*((0,1)), and assume |eQ0| ™ |loc — ¢*||11(.) = 0. Then

BN / Xewe di = e / Xew" i+ 69| / Xelipe — %) da

=

=: ‘EQO|71/ Xep” dx + I..

=

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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We have
1| < lIxellso - [€920] 7 loe — ©* L1 (0
— 0,

by assumption on ¢.. Denote by z5 the centers of the cubes C}, and consider the
remaining term

Q0] 1/9 xe do = Q0| 12/ ) dz + 0] 12/ o — " (a)) du
=160 Y (o +ZF

J
The total volume of C; is asymptotically
N-1
Cl =305~ (£) 0 =le%l
J

—_——————

number of cubes volume

Thus
DI < el D IG5 lle™ = 7 (35) llz=(ep)
j J
< Csup [|o* = 9" (25) o= (c5)
J
—0 (e = 0),

where the last statement follows from the smoothness of ¢. Putting the pieces back
together we have

|5Qo|*1/Q Nee dz = 690|137 (55) + o(1).
& J

Note that the volumes |C5| ~ §Y do not depend on j, and so

IEQoIJ/Q Xepeda = o/ NN o (a5) +o(1)

€ J

for some constant o/. Next we use the fact that all x5 lie in planes {z,, = const} and
that ¢ is constant in Z. Thus all terms ¢*(z5) in the above sum with (z5)n = (27)n

are equal and lead to a factor (i)N . Denoting ¢5, ..., ], the projection of x5 onto

the Nth coordinate we obtain

n

N-1
— _ 5 €
R (5) D lt) +o(1)
€ € m=1
= a Y dplts) +o(1)
m=1

—>a/01<p(t)dt

for some constant a. The last statement holds because ¢ is Riemann integrable.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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Finally we prove the statement for all ¢ € L1((0,1)). This follows by a standard
density argument, though some care is required to deal with the technical difficulties
posed by the varying function spaces. Let ¢ € L'((0,1)) be arbitrary, and let ¢. €
L'(€.) such that [eQo|™ ¢ — ¢*||L1(0.) — 0. Next, let § > 0, and use density of
C*°((0,1)) in L'((0,1)) to choose n € C°°((0,1)) with [l¢_n|lL1(0,1)) < 0, and let
n. € L'(Qc) be such that [eQo|™*|n. — n*||L1(0.) — 0. We first note that ¢, and 7.
are necessarily close in the limit:

(5.2)
limsup [eQo| ™ lz — el 21 (0. < lmsup Q0] ([lpe — ¢* L1y + 9™ = n"llL1con)
e—0 e—0

+In* = nellia))

< limsup [eQo| ' [[¢* — n* || L1(a0)
e—0

=l - 77HL1((0,1))
(5.3) <4,

where the second line follows from the assumptions on 7. and ¢. and the third line
follows from the definition of ¢* and n*. Next, we estimate

1
o6l v —a [ o) dt| < 10 xe, e — 2]
0

1
+

0~ )~ [ (e dt\
0

1
+lof / In(t) — (1) di
0
< Ixellole0] 0z — 726y

1
0l ) — 0 [ (e dt\
0

+ |aé.

+

Finally, using (5.3), together with the facts that ||xc|lco < 1 and |eQo|™*{xe,n:) —
a fol n(t) dt, we conclude that

1
0l e )~ [ () dt] < (14 [a])3.
0

lim sup
e—0

Since § > 0 was arbitrary, it follows that

1
0l )~ [l dt\ 0. 0
0

lim sup
e—=0

LEMMA 5.2. For the function ||~ 2 w., with w. defined in (5.1), one has [eQq|~ 2
We AN 1.

Proof. Tt follows by a straightforward modification of the argument in [CM97] that
€|~ 2w, satisfies the bound (4.1) and even the stronger condition (i) in Proposition
4.4. Thus, by Proposition 4.4 there exists a subsequence |€QO\*%wE N w for some

2
w e H((0,1)) and e~ 2w, L w. Tt remains to show w = 1. This will be done
by applying Lemma 5.1.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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2
Claim. Tf ¢. 2 ¢, then [eQ0| ™ ||we|eQ0[? ¢ — w || 1 g,y = 0-
Proof of claim. By the triangle inequality we have

[eQo|™ HwE|EQO\ e

LY(Q:)

< |€Qo H’UJE|EQ()| (]SE L) + ‘690|71Hw8¢* _ w*¢*||L1(Q )

‘€QO|§¢E -

S |EQO|_1HU)EHL2(QE) LQ(QE) We _w*HLQ(QE)

= (el e 2,y (162 = Ul o))
+ (‘€QO|7%”¢*”L2(QE)) (Hléﬂo Tw, — U w‘

— 0.

o)

2
To prove w = 1, note that w.xc. = xc.. Hence, for ¢. L, ¢, Lemma 5.1 (with
1 .
ve = we|eQo|2 @) gives

_1 _ 1
Qo] 2/ wexe. e dr = Q0] 1/ we Q|2 de x 0. dx
Q. —_——

QE
str. in L1

1
— a/ wo dx.
0

On the other hand, also by Lemma 5.1,

‘EQO|_%/ Xc. Pe dz = [eQ0]™ 1/
Q.
— a/ ¢ dx.

Since ¢ € L*((0,1)) was arbitrary, we conclude w = 1. |

dzx

2
From Lemma 5.2 we conclude that |eQo| ™2 Vw, Lo (note that this is the full
gradient and not merely V), i.e., we have

(5.4) / |€Q()|_%VwE “p.dr — 0

=

whenever [|¢, — U9 2(q. )~ — 0 for some ¥ € L2((0,1))"

5.2. Convergence of solutions.

LEMMA 5.3. Let u. be a weak solution of (2.1) with right-hand side f. L—2> I
Then the a priori bound

(5.5) Hu6||%2(§25) + ||vu5||L2(Q ) S OHf”L?((O 1))
holds.
Proof. The weak formulation of (2.1) yields for arbitrary § > 0

/|Vu8|2dx—|—z/ |u5|2dx:/ feue dx
QE QE QE

) _
< 5””6”%2(95) +(20) 7Y £l 22y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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Choosing, e.g., § := z, this yields
z _
(5.6) ||Vue||%2(ﬂs) + 5”“5”%2(95) < (22) 1||fs||%2(szs)~

Next, without loss of generality, choose e small enough such that || f6||2L2(QE) -
Hf||2L2((071))| < ||f||2LQ((071)). We obtain from (5.6) that

z —
IVue|Z2q.) + §||Ue||2L2(QE) < ()7 + ) 11720,y

and hence

(22)71+1
}||f\|%2((o,1))~ o

2 2
V|| 7200) + luelliz .y < min{1, 72}

Note that this a priori bound actually proves that case (ii) of Proposition 4.4 is
satisfied by the solutions wu., since ||Vu.||z2(q.) is uniformly bounded. Thus there

1 2
exists u € H*((0,1)) such that u,. 2w and Ug L 4. We will show that u satisfies
the weak version of (3.1). Let ¢ € H'((0,1)), and consider the weak formulation of
(2.1) with test function w, - U.¢:

/Q Vue - V(w.U.¢) dz + z/

HEwEqude:/ ?EwEquSda:.
Qe Qe

Expanding the product rule in the first term gives

(5.7)

/ (U.¢) Vu.-Vw, dx +/
QE

w:Vue-V(U.¢p) dx + z/
Q.

Tw: Uz dx :/ waEUsqﬁd:E.
Q. Q.

We will consider the convergence all four terms separately.

Right-hand side. Since ¢ € H*((0,1)) we have ||¢||z < C|¢| m1((0,1)) uniformly
in €, by Morrey’s inequality. Thus w.U.¢ converges strongly in L? to ¢. Indeed, we
have

HweUsﬁb - Us(b”L?(QE) < ||U5¢H00Hwe - 1||L2(QE)
= (¢l | le620] 2wz = U (1)

— 0.

L2(Qe)

. L?
Since f. — f we can conclude

/Q FowUebdr — /0 Fods.

Third term on the left-hand side. By the same reasoning as above, one has u. — u
and w.U.¢ — ¢ strongly in L? and thus

1
z/ ewUcpdr — z/ ugpdz.
Q. 0

Second term on the left-hand side. By the same reasoning as above, w.V(Ue¢) =
w:U.¢' converges strongly in L? to ¢'. Since Vu. converges weakly in L2, the whole

integral converges to j;)l '’ dt.
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First term on the left-hand side. First, we rewrite the term

(5.8) / (U-¢) Vu, - Vw.dx = (—Awe,ugUE@H_l,Hé — / uVw, - V(U:0) dx.
Qe

€

The second term on the right-hand side of (5.8) converges to 0 by (5.4). Indeed,
since v and VU.¢ are uniformly bounded in L*°, by Morrey’s inequality, we have

2
VU EE u¢'. The last remaining term is treated in the following lemma.

LEMMA 5.4. One has

1
<_Aw6auEUE¢>H*1,Hé — ,U,/ U¢dta
0

where p was defined Theorem 3.1.

Proof. The proof is only a small variation of that of [CM97, Lem. 2.3]. We give
it here nevertheless for the sake of self-containedness. First, note that by partial
integration and boundary conditions, we have

N-2 _
<7Awsaus¢e> = 1_752 < <Sq;7usUe¢>7

where S? is the Dirac measure on 0Bs_(i): (S§, ) = faBg (i) # dS. Moreover, let us
define the function g. as the unique solution of the Neumann problem

—Ag. = N in Bs_(i),
0y,q. =  on OBs_(i)

satisfying ¢. = 0 on 0B;,_ (7). Extending g. by zero to all of ). we can easily see that
ge — 0 in WH(R¥Y). Consequently,

<_AQE7 905) = / Ve - Ve dx
Qe

<IVelloo - llpellzr.)
—0

for every sequence with |l¢.|[z1(q.) bounded. On the other hand, one has —Agq. =
NXG.Bs. (1)~ > icr. 055 . Thus, we can take the limit in the following equation:

<_AQE7905> = / Pe dz + Z 65 Pe ds.

U; Bs, (3) €Le 9B;_(i)

The first term on the right-hand side converges to u fol u¢ dt as can be seen by the
same argument as in the proof of Lemma 5.1. We obtain the equality

1
lim Oe / wedS:u/ wdt.
0

e—0
1€L, aBsi (Z)

The assertion now follows by choosing . = u.U.¢ in the above equation (note that
lucUed||L1(qr.) is uniformly bounded). d
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This settles the convergence of the last remaining term in (5.7) and leads to the
limit problem

1 1 1
(5.9) /Omb dt+(u+z)/0 ﬁq&dt:/o fodt,

which is nothing but the weak formulation of (3.1). Since it has already been shown
that u. satisfies hypothesis (ii) of Proposition 4.4 and thus converges strongly in L?,
the proof of Theorem 3.1 is completed.

Remark 5.1. We note that our assumption on the spherical shape of the holes
was made for the sake of definiteness; however, our results easily generalize to more
general geometries as detailed in [CM97, Thm. 2.7]. Moreover, our results are also
valid for more general elliptic operators div(AV) with continuous coefficients A (cf.
[CM97, Ex. 2.16]).

6. Norm-resolvent convergence. In this section we will take a more operator
theoretic point of view and prove operator norm convergence for the resolvent. To
this end, let us first introduce some notation. We define the following operators in
L2

A= —A, D(A.) = {u € HO N H?(QP) : d,ulan. = 0},
A= o5t D(A) = {ue H*((0,1)) : «'(0) = u'(1) = 0},

where D(-) denotes the domain of the relevant operator. Furthermore, we define the
two identification operators between the domains:

Us - L2((0,1)) = L*(QP),  (Ueg)(z) = e 2g(an),
(6.2)

Ue: L(QP) = L2((0,1)),  (U=f)(t) = |eQ0] 2 Qﬂm)df,

where f denotes extension of f by 0 into the holes. Note that IUe |l £e22((0,1)),L2(02))

HZ/?E||£(L2(Qg)’L2((O’1))) are uniformly bounded in ¢.
Now, let us go back to (5.7) and observe that the right-hand side will still converge
if f. is only weakly convergent in L. We deduce the following lemma.

LEMMA 6.1. Let (ge) C L%((0,1)), and assume that g. — g weakly in L*((0,1)).
Then for any z > 0 one has

(A +2) " Uege —U(A+ 2) gl L2 (az) = 0
in L2((0,1)).
2
Proof. By the above comment, it is enough to show that U, g. ECN g in the sense

of Definition 4.2. To this end, let ¢. € L*(QP), and assume ¢ z, ¢ for some
¢ € L?((0,1)). We have

(Uege, ¢5>L2(Q§) = <u€gs7u€¢>L2(Qg) + (Uege, pe — us¢>L2(QEP)
= <u€gavua¢>L2(QE) + <u€ga7u€¢>L2(Tz) + (U9, b — u£¢>L2(Q§)
= (9, ¢>L2((0,1)) + <u€gsau8¢>L2(T€) + (U ge, P — us¢>L2(Q§’)~
2
The last term goes to 0 since ¢, L, ¢, whereas the second term on the right-hand

side converges to 0 because [e71T.| — 0. Finally, the first term on the right-hand side
converges to (g, ) 2((0,1)) by assumption, which concludes the proof. O
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Lemma 6.1 shows that using U, as an identification operator, the convergence
of solutions of (2.1) is uniform in the right-hand side. We will now prove a similar
statement for U..

2
LEMMA 6.2. Let f. € L*(QP) be a sequence with f. ECN f and u. be the sequence
of solutions to (2.1). Then one has

Ucue —u  in Hl((O, 1)),

where u solves the limit problem (5.9).

Proof. First, note that HZ:{EUEHH1((O71)) is uniformly bounded in . Indeed, we can

compute
B 1 . 1
||Ugu5||§{1((071)):/ |€Qo|7§/ Us(i‘,t) di’ dt +/
0 EQO 0

Qo
1 1
g// |u5(a:~,t)|2dgzdt+// Onu (2, 1)? dzdt
0 JeQo 0 JeQo

< uelF2 ey + ||Vus||%2(ﬂg)
< CllfellZ2(arys

where we have used Jensen’s inequality in the second line and the a priori bound (5.5)
in the last line. The right-hand side remains bounded as € — 0 since (f:) converges
weakly. Hence there exists a H!-weakly convergent subsequence (again denoted by
U.u.) with U.ue — v for some v € H'((0,1)). By the Rellich-Kondrachov theorem
one has U.u. — v strongly in L2((0,1)). Tt remains to show that v = u. This will be
done in two steps. Step 1: Because f. — f, every term in the weak formulation (5.7)

2 2

|€QO‘7% 8Nu5(i,t) dzr| dt

1
converges, that is, u. RN (and thus strongly in L?) in the sense of Definition 4.2,
where u solves the limit problem (5.9). Step 2: compute

2
dt

|5Q0|_%/ ue(Z,t) dz — \5QO|—%U(1§)
eQo

1
[ete — ul2 0.1y, = /

1
= / |eQo| ™2 / (us(Z,t) — |eQo| "2 u(t)) dz
0 eQo

1
</
0 eQo

2
= C'lue — UEUHH(QE)

2
dt

2
e (1) — |EQO|—%u(t)’ dz di

— 0,

where the third line follows from Jensen’s inequality, and thus .u. — u in L2((0,1))
which implies v = u and concludes the proof. 0

We are now able to state the main result of this section.
THEOREM 6.3. Let A., A and U.,U. be defined as in (6.1) and (6.2). Then one

has

(6.3) |(Ae +2) "' U —U(A + 2 — 0,

-1
) Hc(L2((o,1)),L2(sz§))

(6.4) ‘ Uo(Ae+2)" ' — (A+2) 0

L(L?(92),L2((0,1)))
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Proof. We first prove (6.3). Let (g-) be any bounded sequence in L?((0,1)). Then
there exists a weakly convergent subsequence g, — g for some g € L?((0,1)). Now
compute

H (AE’ + Z)_lus’ge’ - Z/{E/ (A + Z)_lgs’

| L2(QP)

< H(Ae’ +2) Uerger — U (A + Z)_19HL2(Q§/)+ HUE/(A +2)7 Mg - gE')HLZ(QEP,).

The first term on the right-hand side converges to 0 by Lemma 6.1. The second
term converges to 0 too, because g — ¢, (A + z)_1 is a compact operator and
IUell £(22((0,1)),2(0py) is uniformly bounded. Next, choose (g.) with [|ge|L2((0,1)) <1
in such a way that

sup  [|((Ae +2) 71U —U(A+2) 7| ey — €
HhHL2((o,1))§1

<Az +2) 7 Uege = U(A+2)7 e o)

By the above, the right-hand side of this equation converges to 0 for a suitable sub-
sequence ('), so taking the limit &’ — 0 on both sides yields

lim sup sup H ((AEI +2) U —U(A+ z)_l)hHLz(Qp, <0.

&=0 |hllL2(0.1)) <1 )
Applying this reasoning to every subsequence of (A, + 2) U, — U (A + 2z)~! yields
the claim for the whole sequence and concludes the proof of (6.3).

To prove (6.4), let f. € L*(®) be a sequence with || f¢|| 12 (qr) uniformly bounded.
Then there exist f € L?((0,1)) and a weakly convergent subsequence (f./) such that

~ 2 ~
fer EEEN f in the sense of Definition 4.2 (where f. denotes extension by 0 from QP to
). In particular we have

1
Pl dz — / follopde — / fo.dt
Q@ 0

Qs’

as ¢/ — 0. The left-hand side of this equation can be rewritten in terms of U fe:

1 ~
/Qg feU-ddx :/0 /er |eQo| ™2 fo(Z,t) dT P(t) dt
1

= /0 (U f2) ¢ dt.

Hence we have U for — f in L2((0,1)). The rest of the proof is entirely analogous to
that of (6.3), using compactness of (A + z)~! and Lemma 6.2. |

7. Spectral convergence. In this section we will prove Corollary 3.3. Let us
first note that, since the domains QP and (0, 1) are bounded, the domains D(A.), D(A)
are compactly embedded in L?, and hence A, and A have compact resolvent and their
spectra are discrete. Let us denote by (A;) (resp., (Ax)) the eigenvalues of A, + id
(resp., A +id) labeled in increasing order. We will use a theorem from [I0S89] to
prove the convergence of spectra.
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THEOREM 7.1 ([I0S89, Thm. IIL.1.4]). Assume that the following hypotheses
are satisfied:
(H1) One has |Uegll 202y = llgllz2(0,1)) for all g € L*((0,1)).
(H2) The operators (Ac +id)~1, (A+id)~! are positive, compact, and self-adjoint,
and ||(Ac 4+id) " £ (r2(ap)) is uniformly bounded in €.
(H3) For any g € L*((0,1)) one has ||(Ac +id) "' U.g — U (A +id) " gl 2 (qpy) = 0
as € — 0.
(H4) For each f. € L*(Q®) with || fe||r2(or) uniformly bounded there exists a subse-
quence for and some g € L*((0,1)) such that ||(Ao +id) =t for — Uergllr2ar,) —
0 ase’ — 0.
Then there exists C > 0 such that

(71) |AD T =M <C sup |[(Ae +id) T Ueg — U(A+id) T
gell‘“]iﬁ;(AOQi\k)
gllp2=

ch L2(QB))

We remark that the constant C' in (7.1) can be given explicitly in terms of the
Ak. This more precise version of (7.1) can be found in [I0S89, eq. (II1.1.13)].

We will now show that (H1)—(H4) are satisfied for A., A, and U.. First, note
that (H2) is obvious from the preceding discussion and the a priori estimate (5.5).
Furthermore, (H3) follows directly from Theorem 6.3. (H4) can be seen as follows.

2
If ||foll2op)y < C, there exists a subsequence fe L, f for some f € L?((0,1)).
Now go back to the weak formulation (5.7) and note that the right-hand side term
fQ , ferwerUer d dx only requires weak convergence of f. in order to yield the desired

limit. This shows (H4) with g = ( — j—; +1+ u)_lf. Finally, let us prove (H1). We
have

Wty = [ 100l oo ds
= [ el gtwn ot [ el gten) s
= [Coopas [ oo e
%/O lg(t)|? dt.

N—-1 2N
Indeed, one has e 1T ~ e NN e = 6772 5 0 as e — 0.

Thus, all hypotheses are satisfied and Theorem 7.1 applies. From (7.1) we imme-
diately obtain

(72) |()\Z) 1’ < CH A +Z) 1(/{ Ll (A+Z 1H£ ((0,1)),L2(QR))

Clearly, denoting a(e) := ||(Az + 2) " 'U. — U (A + 2)~
Corollary 3.3.

1 o
Hﬁ(L2((O,1)),L2(Q§))’ this proves

Remark 7.1. Let us note that all the above results also hold in two dimensions
with minor modifications in the definition of the function w. which are detailed in
[CM9T]. We have excluded this case merely to simplify the presentation.
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8. Graph-like domains. In this section we extend our analysis towards do-
mains approximating not merely an interval, but a finite connected graph. That is,
the perforated domain consists of “fattened edges” of the form E. := Qg x (0,¢)
which are connected by “fattened vertices” of the form V. := R, -V, with some open,
bounded set V' C RY and a scale parameter R. — 0 for ¢ — 0. This geometric
configuration has been studied in [KZ03, EP05] who proved spectral convergence for
the operator —A with Neumann boundary conditions. The nature of the limit spec-
trum depends on the relative scaling of the edge neighborhoods F. and the vertex
neighborhoods V..

(i) If |VZ|/|E:] — 0, the limit spectrum is that of the graph Laplacian with
Neumann—Kirchhoff vertex conditions.
(ii) If |VL|/|E<| — oo, the different edges decouple in the limit and the limit, spec-
trum will be the union of the Dirichlet spectra of all individual edges.
(iii) If|VL|/|E:| = q > 0, the spectrum converges to the solution (u, A) of the problem

(8.1) {u” = \u on each edge e,

Y ese Ue(v) = Aqu(v)  at each vertex v,

where the sum is over all edges e ending on v and u, (v) = lim,_,, zee @' (z). Since
the spectral parameter \ appears in the vertex condition, this is a generalized
eitgenvalue problem.
The notion of norm-resolvent convergence in the cases (i), (i), and (iii) has been
studied in [Pos12].
In the following we will apply our above results to study the influence of perfora-
tions on fattened graphs.

8.1. Building the fattened graph. Let us first describe in detail how the
fattened graph is defined. Let I be a finite, connected metric graph embedded in R¥.
We will give a local description of its fattened analogue around an arbitrary vertex
v € I'. Denote by ey, ..., e,, all edges in I' incident to v, and let ¢4,...,¢,, denote
their lengths. Every e; is canonically isometric to the line segment {0} x (0,¢;) C
RY~! x R via an orthogonal transformation ©; that is unique up to rotation around
e;, followed by a shift by v. To build the fattened edges, let 2y be as in section 2 with
0 € Qq, and, for every i € {1,...,n,}, fix an orthogonal transformation ©; as just
described. For ¢ > 0, we call the sets E ; := ©,;(e2 % (0,4;)) + v edge neighborhoods.
For simplicity we take the same set {2y for all edges here. Similarly, in appropriately
shifted coordinates in which v = 0, we choose a connected, open, bounded set V' C RV
with C! boundary such that 0 € V. We call the scaled set R.V a vertex neighborhood
of v. For technical reasons we make the additional assumption that for all ¢ > 0, V.
intersects each edge “only once,” i.e., for all j € {1,...,n,} the implication

(8.2) ree\V. = yé¢V.Vyce; with|y—v|> |z — ]

holds. We note that the set V may be different for every vertex v € T', while the
scaling factor R. is assumed to be global.

In the case R. ~ ¢, we make the additional assumption that 9V contains n, flat
copies {Fi, ..., Fy,} of Qg such that FjNe; = ©;(Q x {t}) +v for some ¢t > 0 (these
will serve as “docking sites” for the edge neighborhoods). In all other cases, where
¢/R. — 0, this last assumption on V is unnecessary, since the edge neighborhoods can
be attached to V; via small collars, as the following lemma shows.
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Ve
B ;
e diam(€p)
o |
_, < Redam(V)

Fic. 8.1. Sketch of collar for e < Re.

LEMMA 8.1. Let ¢/r. — 0, and let V. = R.V, where V is a connected, open,
bounded set V. C RN with C' boundary. If ¢ is small enough, then for each edge
neighborhood E. ; there exists a O(R.) shift n.; € RN and a collar domain B, ;
joining E. j + . j to V. such that (E. j +ne,;) NVz =0 and the length d. ; of B. ; is
bounded by

(8.3) de; < R. diam(V)

(cf. Figure 8.1). In particular d. ; — 0 as € — 0 for any j.

Proof. Without loss of generality, assume that R, diam(V) < min{¢y,...,¢,, }.
Let 7. ; denote the minimizer of the set {|77| f n parallel to e; and V.N(E. ;+7) = (Z)}.
Then, clearly, |1, ;| < diam(V.) = R. diam(V).

A collar B, ; can now be defined as B, ; = (0,(¢Q x (0,]7¢,,])) +v) \ Vz. By
construction the length of B, ; is bounded by |7, ;|. Finally, note that by our assump-
tions on Vz, we have that (E. ; + 7. ;) NV. = () for ¢ small enough. This follows from
(8.2) and the fact that ¢/r. — 0. ad

Similar methods of flattening or attaching collars to the vertex neighborhoods
have been used in the literature (cf. [EP05, sect. 6], [KZ03, sect. 3.2]). In the following
sections, we will assume that such collars B, ; are used to define the fattened graph
whenever ¢/R. — 0. To streamline notation, we define B, ; := () for all j when R, ~ €.

DEFINITION 8.1. Given a finite, connected graph I', by a fattened analogue we
shall mean a family of open subsets of RN (indeved by ¢ > 0), consisting of edge
neighborhoods E. ; and vertex meighborhoods V., which are linked according to the
connection rules of I', using the techniques described above. For every edge E;, there

will be two collars, Béj (attached at Qo x {0}) and BL ; (attached at eQo x {{;}).

Remark 8.2. (i) According to Lemma 8.1, the fattened edges and vertices have
to be slightly moved with respect to their original counterparts. We will ignore
this in our notation in the following, since all equations considered are invariant
under shifts. That is, instead of E. ; 4+ n. ; we simply write E. ;, etc.
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(ii) When building the fattened graph via Lemma 8.1, the shifts 7, ; will in general
change the angles between the edges. This does not affect the results in the fol-
lowing sections, because the graph Laplacians defined in (8.9), (8.17), and (8.21)
depend only on the metric graph structure of I' (that is, the connection rules
and the lengths of the edges) and are independent of the particular embedding
in RV,

8.2. Small vertex neighborhoods. Let us first consider the situation in which
IVel/|E.| — 0. To be precise, we assume in this section that

N—-1

e<R.=o(c ™).

The lower bound on R, ensures that the diameter of V, scales at least as the diameter
of the E, ;, i.e., the edge neighborhoods do not overlap as ¢ — 0.
Let T" be a finite, connected metric graph, and denote by ). a fattened analogue.
Let v be a vertex of I" and ey, ..., e, be all edges incident to v with lengths ¢1,...,/¢,.
As discussed in section 8.1, after suitable changes of coordinates the vertex neigh-

borhood is of the form V. = R.-V with j—i_vl — 0 as € — 0, and the fattened edges
are of the form E.; = (¢Q) x (0, ;). Introducing a periodic perforation T, as shown
in Figure 8.2 defines a domain QP.

Remark 8.3. On each edge neighborhood we choose the perforation to be aligned
with the corresponding edge, in order to be able to apply the results of section 5. The
perforation of the vertex neighborhood can be chosen with arbitrary orientation with-
out affecting the limit. This follows from the fact that the classical homogenization
results hold for arbitrary domains (cf. [CM97]).

Note that we do not perforate the collars Bé’; On this domain we consider the
Poisson equation with Dirichlet boundary conditions on the holes:

(A +2)us = fo  in QP
(84) Ue = 0 on aTEv
O,u. =0 on 09,

for z > 0 and f. € L*(Q.) with || f| £2(q.) uniformly bounded.

o
o
E. 5
© 1
o
o Ba,‘z
5 o
€2 ®
o
o o o o o
o
PO\
o o o o o o o c ° E.o ~ £
5 o ¢
o o o o O o o0 O o S @
v ey o ©°
0
o
~ R. o o o o V.o o o o

€3

Fic. 8.2. Sketch of graph-like perforated domain. The relative scaling between Re and € is
different in each subsection.
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This new geometric situation requires new identification operators to be defined.
To this end, let L*(T) := @?;1 L?%(ej), where {e; }ie ) is the set of edges of I', and let
H'(T') denote the space of continuous functions ¢ on I' such that for every edge e;
the restriction |, is in H'(e;). Moreover, let us define

U LAT) = L* (),

(8.5) ot) fz=(z,t)eE:;, je{l,...,ne},

0 if 2 € V.UUl 0,501 B

€37

UL p(x) = |eQ0| 7% - {

where (Z, t) are understood to mean local coordinates running along the fattened edge,
that is, T € e, t € (0,£;), as described in section 8.1. In the union Ueﬁv é;
include either B ; or B ;, depending on which end of e; meets v. In other words, the
union is over all collars that meet V.. Problem (8.4) immediately yields the a priori

bound

(8.6) IVuellia g,y < CllfNZ2q.)-

A proof analogous to that of Proposition 4.4 shows that there exists a subsequence
(again denoted by u.) such that |Ju. —UL u|12(q.) — 0 for some u € H'(T'). Note that
the fact that |V.|/|E;| — 0 ensures the convergence on the vertex neighborhoods.
We are now going to derive an equation on I' that identifies the limit . To this
end, we define a second identification operator VI' which preserves H! regularity. Let

we

VI HYT) — HY(Q.),

ot) ifx=(z,t)€ E.;, jE{l,...,ne},

VEQZ)(.’E) = |€QO‘7% . . r
p(v) ifxe VEUU{J':%B”} Bé:j'

Let w. now be defined as in (5.1) (w. = 1 on the Bé;), and consider the weak

formulation of this problem with test function w.V! ¢ for arbitrary ¢ € H'(T'). Note
that w. V¢ € HY(Q.) with w.Vl'¢ = 0 on the holes and is therefore a valid test
function for the perforated domain problem. The weak formulation of (8.4) now
reads

Vue - V(wEng)) dr = / fewEVEFqS dx.
QP 975

Decomposing into the different components of QP we obtain

(8.7)
Z/ V. - V(w. Vo) dx—i—Z/ Vue - V(w Vi ¢) da
i=1Y Eei i=1 " Bl

s,iUB;,i
—G—Z/ W-V(wEVE@ dx—l—zZ/ Tow VY ¢ da
j=17Ves i=1" Pei

Ny
Tew VY ¢ da + ZZ/ Tew VY ¢ dx
; j=1"VY

e,1 e, €,

:nC - . . Ne
;/Esyifswevm x+§_;/3

s,iUB;,i

fow V¢ de + Z/ fow V¢ dx
j=1"Veu

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.



Downloaded 07/05/21 to 131.251.254.197. Redistribution subject to STAM license or copyright; see https://epubs.siam.org/page/terms

A STRANGE VERTEX CONDITION COMING FROM NOWHERE 3117

for all ¢ € HY(T"), where n,, n, denote the number of edges and vertices of T', respec-
tively. Let us next show that all integrals over the collars Bé’i U B{; do not contribute

to the limit. First, note that all the terms [pi.r Ve - V(w: V! @) d vanish identically,

. 1
because w.V!'¢ is constant on B_". Moreover, the terms
;

Ne

z E / ﬂgwEVEQS dx
. Bl,'r
=1 £,i

from the second line of (8.7) can be estimated as follows:

/ Hawsvgcé dx
Bl

€,1

< ||u€||L2(Bi«’:)‘|V£¢HL2(BQ;)

_1
= ||u5||L2(B‘z€,’S)|EQO‘ 2 H(ZS(U)”LZ’(BQ”;‘)
—1 Lr|z
< el gy o0l ()] B

where we have used the fact that w, = 1 on Bé: in the first line. Note that the

measure ‘Béﬂ is equal to |eQq| - d. ; (recall the definition of d. ; from Lemma 8.1).
Thus, we get

_1

1 1
[ e VEoda| < e ool H o)l -

£,1

1
= ||u5||L2(Bi,‘:)|¢(v)|d§,j.

Since d.; — 0 as ¢ — 0, by Lemma 8.1, and ||u. ) is bounded, we conclude

lz2cs;
that | Bhr dewVE¢pdr — 0 for all i as ¢ — 0. An analogous argument shows that
Silg g fewVEigdr — 0ase — 0.

Next we turn to the integrals over the E.; and V; ;. Since every fattened edge

is of the form E. ; = (¢Q) x (0,4;), we can immediately conclude from the proof of
Theorem 6.3 that

f: Vu - V(wVE¢) do — Z/ W~v¢dt+ui/ ugdt  and
i=1" % i=1"¢

i=1"Fie

Ne

(8.8) > / FfowVEi¢de — ) / Todt,
i=1" Fie i=1"¢i
ZZ/ ﬂEwEVEQde — ZZ/ ug dt
i=1" Bie i=1"7ei

2
whenever f. L f on each edge. It remains to study the integrals over V; ;. To treat
the gradient term, let j € {1,...,n,}, and compute

Vue - V(w VL ¢) do
Vs,j

Vu - Vu(VE¢)dz + | Vu. - V(Y ¢) w. do
Ve,j Ve

Vu. - Vw. (VL ¢) do
Vayj

—N+1

< CHVUEHLZ(VgJ) HE#VQ‘UEHL2(VE,].)|¢(U)|
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—N+1
< Cll el lle ™ Vane | oy, I6(0)
—N+1

< CH@ 2 Vw,

(PR
where we have used (8.6) in the fourth line. An explicit computation shows that

—N+41
HE 2 Vw,

RN
H2L2(VE,,-) < 051\/76—1'

Thus, the term fv , VuEV(wEVEF (b) dx converges to 0 as € — 0. Similarly, we compute

— —N+1
Fewe Vigdu < ||fellr2ald(0)le ™= lwell v, )
Vej
! —N+1

<CeTmo |Vl
—0

as € — 0. Finally, we have

—N+1
z <zl fellze@ol@(@)le ™7 lwellL2(v. )

/ Tew: V! ¢ dx
VE

2

N+1

< 20T |Voyl®
—0

as ¢ — 0. Since the vertex v; was arbitrary in the above procedure, we conclude that
the limit u solves the problem

(8.9) /FWVgédtJr(eru)/Fﬂqﬁdt:/FﬁSdt Vo € HY(I),

which is nothing but the sesquilinear form of the operator —A + p on L?(T") with
Neumann—Kirchhoff boundary conditions at each vertex. Since we only used weak
L2-convergence of f., we can argue as in the proof of Lemma 6.1 to obtain a norm-
resolvent convergence statement. More precisely, if we define

Al = — A D(AL) = {u € H*(®) : d,ulsqn, = 0 and ulor, = 0},
(8.10) AV = A+, DAY = {u € H*(T): Zu’e(v) = 0 at all vertices v}
edv

(where H2(T') is a defined as C(I') N @}, H?(e;)), then we have the following.

RN
=t — 0 ase — 0, then

THEOREM 8.2. If

€

(AL +2) Ul —ul (A" + = -0

-1
)" e .oy
as e — 0.

It is easily seen that the conditions for Theorem 7.1 are also satisfied by the pair
(AL UL, which allows us to conclude the following.

COROLLARY 8.3. Choose z = 1, and let A, and Ay denote the kth eigenvalues
of AL and AY, respectively. There exist a constant C > 0 and a function a(e) with
a(e) = 0 as e — 0 such that

[A) ' =AY £ Cale)  VEkEeEN,

where C' is independent of € and k.
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8.3. Large vertex neighborhoods. Next, we study the case of large vertex
neighborhoods, i.e., |V;|/|E:] — oco. In other words, we assume V. = R. -V for

some open, bounded set V as in section 8.1, where j—éjl — o0 as € — 0. Here
the situation is different from that in the previous subsection because the vertex
neighborhoods cannot be neglected in the limit anymore. In particular, spectral
convergence will not follow straightforwardly in this case, since (U!') does not satisfy
(H4) in Theorem 7.1 for large vertex neighborhoods. Indeed, spectral convergence in
a narrow sense is expected to fail, as this is already the case in the classical situation
(without perforation). This is easily seen from the fact that the Neumann Laplacians
on the graph-like domain all have 0 as an eigenvalue, whereas the limit operator (a
decoupled Dirichlet Laplacian) does not. In the classical case this fact is circumvented
by considering dilated versions of the operators involved in order to reintroduce the
0 eigenvalue on the graph (see, for instance, [EP05, sect. 6, 7]). The question to
what extent those methods can be applied to the perforated case will be studied in
future work, but here we shall content ourselves with proving only strong convergence.
Similar comments apply to the borderline case which is studied in the next section.
To prove strong convergence, let f € L?(T), and consider the equation

(8.11) (Ac + 2)u. = UL f

on {).. As a preparation, note that from the a priori estimate (8.6) we obtain a bound
for u. on the vertex neighborhoods

(8.12) Vue|lL2vy < Cllfllz2ry-
A blow-up argument as in the proof of Proposition 4.4 shows that for any vertex v
there exists a constant u, such that HuE — |V€|_I/2UUHL2(V) — 0. We will show that

necessarily u,, = 0. Owing to the new scale |V.| present in this case, we introduce the
extension operator

WL HYT) — H'(9.),

ot) ifx=(z,t)€E.;, je{l,...,ne},

¢(v) if 2 € V.UU e, 501 BE,

where the same comments as below (8.5) apply to the union (J (e, 50} Big and the

notation (z,t) € E. ;. To this end, let ¢ € H*(T') and z # —pu, and use w. WL ¢ as a
test function in the weak formulation of (8.11):

/ Vute - V(w W 6) di + 2 / e W i = / U fyw.(WE ) dx

GBI ) = v {

(8.14) =Y [ @Eneanteds
i=1"Fie

where in the last line we used the fact that Ul f = 0 on V.U U{j:eﬁv} Bé; As in
Lemmas 5.2 and 5.4 one shows that for any j € {1,...,n,},

/ V. - V(wVE6) do — pug, 6(v;),
Ve,

z/ ucwWE g da — 2u,, ¢(v;).
Q.

Moreover, all integrals over the edge neighborhoods E; . converge to 0 by our choice

of scaling in (8.13). Similarly, the integrals over the collars Bi’; vanish in the limit
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by a similar calculation to that after (8.7) (with |e€|~2 replaced by V. ;|~2), using
again Lemma 8.1. Therefore, passing to the limit in (8.14) leads to

(8.15) pyd(v) + zuyp(v) =0 for any vertex v € T

Since ¢ € H!(I') was chosen arbitrarily and 2z # u we conclude from (8.15) that
u, = 0 for all vertices v.

Moving on to identifying the limiting equation, we note that it follows from the
a priori estimate (8.6) that on each edge (a subsequence of) u.|g, . converges to a
function in H'(e;). We conclude that there exists a function u € @, H'(e;) such that
lue — Uullz2(0.) — 0. To conclude, we note that since ||Vue|/r2(q.) is uniformly
bounded and u. — 0 at each vertex, we must have up, € Hj(E; ) for all i.

Finally, we identify the limit equation by letting ¢ € Hg(T') and using w. VX ¢ as
a test function in the weak formulation of (8.11) to obtain

(8.16) /Q VuE-V(wEVEFq&)derz/ uswevggz)dx:/ UL Hlw.(VE¢) d.

Qe Qe

By the choice of ¢, all integrals over vertex neighborhoods and collars are zero, while
the integrals over the edge neighborhoods are treated exactly as in the case of small
vertex neighborhoods (cf. (8.8)). Passing to the limit in (8.16) we conclude that

/FWV¢dt+(z+u)/Fﬁ¢dt:/F7¢>dt v¢e€BH§(e).

ecl
To summarize, we have shown the following.

THEOREM 8.4. If ﬁ—éjl — 00, then for every f € L*(T') one has
= _UEPUHLZ(QE) —0

as € = 0, where u. denotes the solution of (8.11) and u € @, . H}(e) denotes the
solution to the decoupled family of Dirichlet problems

(8.17) {(—A+u+z)u—f on e,

u=0 onde

for all edges e € T.

8.4. The borderline case |V:l/|E.| — ¢ > 0. Let us now study the case in
which the volume of the edge and the vertex neighborhoods decay at the same rate.
In other words, we assume V. = R, - V for some open, bounded set V' as in section

8.1, where without loss of generality jgl — 1 as € — 0. We study again problem
(8.4) on the corresponding perforated domain.

The discussion before (8.6) carries over verbatim to the present situation, and it
only remains to study the integrals over the vertex neighborhoods and collars. As in
section 8.2, we have

/VTEV(wEVEF(z))dx:/ VTE-vu;g(vgqs)der/ Vu. - V(VI¢) w. dz
V5 VE VE

(8.18) = [ Vu. Vw.(VL¢)dx
VE
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for any fattened vertex V. and
(8.19) Z / V. - V(wVE¢) dr =0
BL ,UBT;

(since V¢ is constant on V. and w. = 1 on the Bl T), whereas now the right-hand
side of (8.18) does not converge to zero. As noted in the discussion around (8.1),
the spectral parameter enters the boundary condition in this case. Hence, the limit
operator is not the resolvent of an operator on L?(T"), and the notion of norm-resolvent
convergence makes no sense. Therefore, as in the last subsection, we shall content
ourselves with proving strong convergence here. This is readily obtained as follows.
The proof of Lemma 5.4 immediately implies that
V]

| Yz v (56) do - o))
V. 2l

for any vertex neighborhood V.. Finally, we have

z/ ﬂgwe]};qﬁdac dx — mzu(v)qﬁ(v).
V. €2

This follows from the facts that Hus fVEFuHLQ(VE) — 0 and ||w5VEF¢7V£¢||L2(VE) — 0.

Since |V;| ~ |E; |, the proofs are entirely analogous to those in section 5.2. Hence
the weak limit u satisfies the equation

(8.20)
\4

/Vuv¢dt+(z+u)/uqbdt+(z-HL)ﬁ )qb(v):/rf¢dt Vo € HY(T).

This is nothing but the sesquilinear form for the Laplacian with Robin boundary
conditions. We summarize our results in the following theorem.

N
THEOREM 8.5. If j—il — 1 as e — 0, then the solutions u. of (8.4) satisfy
|ue — VEU’HLZ(Q ) =0, where u € HY(T') solves

(—A+z+pu=7f on I,
Zesv () ( +M)|‘QVO

In particular, the strange term p enters the vertex condition of the limit problem.

(8.21)

||u(v) at each vertex v.

9. Conclusion. We have shown that the classical result by [CM97] also holds in
a thin domain shrinking towards an interval or a graph. Furthermore, norm-resolvent
convergence holds in the sense of Theorem 6.3 and convergence of eigenvalues. Several
generalizations naturally arise. First, the author believes that the norm convergence
result generalizes to unbounded domains (that is, when the limit domain is an un-
bounded interval). A suitable modification of the argument in [CDR17] or [KP17]
seems like a reasonable approach.

Second, the curious effect of the “strange term” u appearing in the vertex condi-
tion observed in section 8.4 requires further study. Spectral convergence and abstract
operator estimates will be the subject of future work.
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