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Abstract. The AAA algorithm has become a popular tool for data-driven rational approximation
of single variable functions, such as transfer functions of linear dynamical systems. In the setting of
parametric dynamical systems appearing in many prominent applications, the underlying (transfer)
function to be modeled is a multivariate function. With this in mind, we develop the AAA framework
for approximating multivariate functions where the approximant is constructed in the multivariate
barycentric form. The method is data-driven, in the sense that it does not require access to the full
state-space model and requires only function evaluations. We discuss an extension to the case of
matrix-valued functions, i.e., multi-input/multi-output dynamical systems, and provide a connection
to the tangential interpolation theory. Several numerical examples illustrate the effectiveness of the
proposed approach.
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1. Introduction. Many physical phenomena can be modeled as dynamical sys-
tems whose dynamics depend on one or several parameter values. These parameters
might represent material properties, boundary conditions, system geometry, etc. As
an example, consider an input-output system governed by a system of linear ordinary
differential equations (can be viewed as a semi-discretized time-dependent PDE)

(1.1) ẋ(t, p) = A(p)x(t, p) + bf(t); y(t, p) = c>x(t, p),

where p ∈ P ⊂ R represents the parametric variation in A(p) ∈ Rρ×ρ; b, c ∈ Rρ are
constant; f(t) ∈ R is the input (forcing term); y(t, p) ∈ R is the output (quantity
of interest); and x(t, p) ∈ Rρ is the state (internal degrees of freedom). Assuming
zero initial conditions, i.e., x(0) = 0, the output y(t, p) can be expressed using the
convolution integral

(1.2) y(t, p) =

∫ t

0

c>e(t−τ)A(p)bf(τ) dτ.

When the system dimension, ρ, is large, evaluating the quantity of interest y(t, p)
repeatedly for different parameter values becomes computationally demanding. One
remedy to this problem is to find a surrogate model of much smaller dimension, i.e.,
a reduced dynamical system, so that re-evaluations of the system are significantly
cheaper yet accurately captures y(t, p). This is the goal of parametric model order
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reduction (PMoR). Projection-based PMoR methods have been successfully developed
for systems with known internal description as in (1.1), i.e., the full-order operators
A(p),b and c are available; see, e.g., the recent survey papers and books [3, 7, 24,42]
for a detailed analysis of projection-based approaches to PMoR. However, in many
cases the internal description of a system is not accessible and only input/output
measurements are available. In our setting, for parametric dynamical systems such as
(1.1), input/output measurements/data will correspond to the samples of the transfer
function of (1.1), i.e., the samples of

(1.3) H(s, p) = c>(sI−A(p))−1b,

where H(s, p) is the Laplace transform of the convolution kernel h(t) = c>etA(p)b
in (1.2). Then, given the samples {H(si, pj)}, our goal is to build a function that
approximates this data in an appropriate measure. Even though our motivation comes
from approximating parametric dynamical systems, similar approximation problems
can also arise in modeling stationary PDEs, such as

uxx + puyy + zu = f(x, y) on Ω = [a, b]× [c, d],

with appropriately defined initial and boundary conditions. A spatial discretization
on Ω, yields

A(p, z)u = b.

Then, the samples of the function H(p, z) = A(p, z)−1b can be used to build an
approximation to the solution u(x, y). We visit two such problems in Section 4.2.
Assume, for the moment, that A(p) in (1.3) has an affine dependence on p, e.g.,
A(p) = A0 + pA1 where A0 and A1 are constant matrices. Then, both H(s, p)
and H(p, z) defined above are two-variable rational functions. That is, H(s, p) (and
similarly H(p, z)) can be expressed as a ratio of two-variable polynomials

H(s, p) =

∑k
i=0

∑q
j=0 β̃ijs

ipj∑k
i=0

∑q
j=0 α̃ijs

ipj
, α̃kq 6= 0 or β̃kq 6= 0.

We refer to the tuple (k, q) as the order of H(s, p). Further, we call H(s, p) proper if
α̃kq 6= 0 and β̃kq 6= 0 and strictly proper if α̃kq 6= 0 and β̃kq = 0. Even though in our
approach below we do not require H(s, p) to be a two-variable rational function in
(s, p) (and thus, we do not require A(p) to have an affine dependence on p), this form
motivates us to enforce a rational form in the approximant (as done in the classical
rational approximation of single-variable functions).

Consider a scalar-valued function H(s, p) of two variables and assume we only
have access to its samples:

H(si, pj) ∈ C for i = 1, . . . , N and j = 1, . . . ,M.

We assume that the sampling points are given and fixed, i.e., we are not investigating
how to pick si and pj . Our goal is, then, to find a two-variable rational function H̃(s, p)
that is a good approximation of H(s, p). We will specify later how we evaluate the
quality of our approximation. Even though our motivation is that H(s, p) represents
the transfer function of a parametric dynamical system and we consider the variable
s as frequency and p as the parameter, this is not restrictive and the approach can
be considered as rational approximation of a multivariate function from its samples.
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Additionally, since the proposed method will be purely based on function (H(s, p))
samples, there are no restrictions on the type of parameter dependence in the system
to approximate. Moreover, the parameter dependence can appear in other system
matrices besides A(p). In order to make the derivations clear, we first review, in
Section 2, three of the existing algorithms for data-driven rational approximation in
the single variable case: the Loewner framework [1,2], the vector fitting method [23],
and the AAA algorithm [40]. We highlight the similarities and differences among these
three approaches. In Section 3, we present the proposed method, the parametric
AAA algorithm (p-AAA), for data-driven modeling of parametric dynamical systems,
which extends the AAA algorithm [40] to the multivariate case. In Section 4 we show
how to apply the proposed methodology to matrix-valued functions. Throughout
Section 3 and Section 4, we use various examples to illustrate the success of the new
methodology.

2. Revisiting the single variable problem. In this section, we briefly revisit
three approaches for the single variable case that are pertinent to our work. The
single variable function to be approximated can be considered as the transfer function
of a non-parametric dynamical system, for example.

Consider a single variable function H(s) and assume access to its samples

(2.1) hi = H(si), si ∈ C, for i = 1, . . . , N.

The three methods we discuss will build a rational function H̃(s) that approximates
the given data by means of interpolation, least squares (LS) minimization, or a com-
bination of both. A key component in each case is the barycentric representation [11]
of a rational function, given by

(2.2) H̃(s) =
n(s)

d(s)
=

k∑
i=1

βi
s− σi

k∑
i=1

αi
s− σi

,

where σi ∈ C are the support (interpolation) points, a subset of the sampling points
{s1, . . . , sN}, and βi, αi ∈ C are the weights to be determined. The algorithms we
describe will differ from each other in how they choose σi’s, αi’s, and βi’s. Note that
multiplying the numerator and denominator of H̃(s) by

∏k
i=1(s − σi) reveals that

H̃(s) is indeed a rational function of degree k − 1.

2.1. The barycentric rational interpolant via Loewner matrices. Given
the data (samples) in (2.1), the Loewner approach [1,2] builds a rational function H̃(s)

in (2.2) such that H̃(si) = hi for all i = 1, . . . , N (assuming a rational function of

degree k−1 with this property exists). In this case we call H̃(s) a rational interpolant.
Partition the sampling points and the corresponding function values:

{s1, . . . , sN} = {σ1, . . . , σk} ∪ {σ̂1, . . . , σ̂N−k},
{h1, . . . , hN} = {g1, . . . , gk} ∪ {ĝ1, . . . , ĝN−k}.

Interpolation at {σ1, σ2, . . . , σk} is attained by choosing

(2.3) βi = giαi,
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provided αi’s are nonzero. For interpolation at σ̂i, for i = 1, 2, . . . , N − k, we set

H(σ̂i)− H̃(σ̂i) = ĝi −
n(σ̂i)

d(σ̂i)
= ĝi −

k∑
j=1

gjαj
σ̂i − σj

/
k∑
j=1

αj
σ̂i − σj

= 0.

Multiplying out with the denominator, we obtain

ĝi

k∑
j=1

αj
σ̂i − σj

−
k∑
j=1

gjαj
σ̂i − σj

=

k∑
j=1

(ĝi − gj)αj
σ̂i − σj

= e>i La = 0,

where ei ∈ RN−k denotes the ith unit vector, a> = [α1 · · ·αk], and L ∈ C(N−k)×k is
the Loewner matrix given by

(2.4) L =


ĝ1−g1
σ̂1−σ1

· · · ĝ1−gk
σ̂1−σk

...
. . .

...
ĝN−k−g1
σ̂N−k−σ1

· · · ĝN−k−gk
σ̂N−k−σk

 .
Hence to enforce interpolation at {σ̂1, σ̂2, . . . , σ̂N−k}, the unknown coefficient vector
a> = [α1 · · ·αk] is obtained by solving the linear system

(2.5) La = 0

for a 6= 0. In particular, a can be chosen as a singular vector associated with a zero
singular value of L (assuming such a singular value exists). Here, we skip the details
for the conditions on L and its null space to guarantee the existence and uniqueness
of a degree k − 1 rational interpolant of the form (2.2) and refer the reader to [2, 3]
for details. A simple case to consider is when N = 2k − 1. In this case, the Loewner
matrix is L ∈ C(k−1)×k, with, at least, a one-dimensional nullspace. Considering the
fact that a proper rational function of degree k−1 has 2k−1 degrees of freedom (after
normalization of the highest coefficient in the denominator), choosing N = 2k−1 will
yield a unique rational interpolant (under certain conditions [2, 3]). By introducing
the notion of the shifted Loewner matrix, in [35] the Loewner approach has been
extended to a state-formulation where the rational interpolant can be directly written
in a state-space form, as in (1.3), without forming the barycentric form. However,
for the parametric problems, the barycentric formulation is the key and we refer
the reader to [3, 5, 35] and the references therein for the state-space based Loewner
construction for modeling dynamical systems without parameter dependencies.

2.2. Vector fitting for rational least-squares approximation. Instead of
constructing a rational interpolant, one can also consider building a rational approxi-
mant by fitting the data in a least-squares (LS) sense. Thus, given the samples (2.1),

the goal is now to construct a rational function H̃(s) that solves the LS problem

min
αj ,βj

N∑
i=1

|H̃(si)− hi|2.

There are various approaches to solving rational LS approximation from measured
data; see, e.g., [10, 13, 19, 23, 25, 26, 33, 37, 43] and the references therein. Due to its
close connection to the barycentric form we consider here, we briefly review the vector
fitting (VF) method of [23].
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VF starts with a slightly revised version of H̃(s) with the form

(2.6) H̃(s) =
n(s)

d(s)
=

k∑
i=1

βi
s− σi

1 +

k∑
i=1

αi
s− σi

+ d1 + se1.

A fundamental difference from the interpolation framework of Section 2.1 is that {σi}
in (2.6) are not a subset of sampling points, are chosen independently, and in VF
are updated at every step. The choice of {σi} in (2.6) will be clarified later. The

additional “1” in the denominator guarantees that the first term in H̃(s) is strictly
proper. The term d1 + se1, if needed, allows polynomial growth around s =∞, which
could be necessary in approximating transfer functions corresponding to differential
algebraic equations [9, 22, 36]. These details are not fundamental to the focus of this
paper; therefore we skip those and assume d1 = e1 = 0. For details, we refer the
reader to [21,23].

Using (2.6), the LS error can be written as

N∑
i=1

|H̃(si)− hi|2 =

N∑
i=1

1

|d(si)|2
|n(si)− d(si)hi|2.

This is a nonlinear LS problem. Starting with an initial guess d(0)(s), Sanathanan and
Koerner [43] converts this nonlinear LS problem into a sequence of weighted linear
LS problems, which we will call the SK iteration:

min
n(j+1),d(j+1)

N∑
i=1

∣∣∣∣n(j+1)(si)− d(j+1)(si)hi
d(j)(si)

∣∣∣∣2 , j = 0, 1, 2, . . . .

Note that the problem is now linear in the unknowns n(j+1)(s) and d(j+1)(s). The SK
iteration uses the polynomial basis for n(s) and d(s). VF, instead, uses the barycentric
form (2.6), which proves to be the crucial step since it allows updating {σi} in each
step. VF updates {σi} as the zeros of the denominator d(j)(s) from the previous iter-

ation, i.e., d(j)(σ
(j+1)
i ) = 0. This updating procedure for {σi} and a proper rescaling

result in a sequence of unweighted linear LS minimization problems of the form

min
a(j+1)

∥∥∥A(j)a(j+1) − h
∥∥∥
2
,

where h = [h1 · · · hN ]
>

, a = [β1 · · · βk α1 · · · αk]
>

, and A(j) is given by

A(j) =


1

s1−σ(j)
1

1

s1−σ(j)
2

· · · 1

s1−σ(j)
k

−h1

s1−σ(j)
1

−h1

s1−σ(j)
2

· · · −h1

s1−σ(j)
k

1

s2−σ(j)
1

1

s2−σ(j)
2

· · · 1

s2−σ(j)
k

−h2

s2−σ(j)
1

−h2

s2−σ(j)
2

· · · −h2

s2−σ(j)
k

...
...

...
...

...
...

...
...

1

sN−σ(j)
1

1

sN−σ(j)
2

· · · 1

sN−σ(j)
k

−hN

sN−σ(j)
1

−hN

sN−σ(j)
2

· · · −hN

sN−σ(j)
k

 .

Note that the Loewner matrix L appearing in the interpolation setting of Section 2.1
is now replaced with A(j), which consists of a Cauchy and a diagonally-scaled Cauchy
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matrix. Despite dependence on the barycentric form, there is a fundamental differ-
ence from the Loewner framework of Section 2.1: The coefficients {αi} and {βi} in
the barycentric form are chosen independently to minimize the LS error. This is in
contrast to the Loewner setting where one sets βi = hiαi to enforce interpolation.
Moreover, the points {σi} are updated at every step.

Convergence of VF is an open question. Even though one can construct examples
where the iteration does not converge [32], its behavior in practice is more robust.
When initial set {σi} is chosen appropriately, the algorithm usually converges quickly.
As VF converges, due to the updating scheme of {σi}, the denominator d(k)(s) con-

verges to 1 and one obtains a pole-residue formulation for H̃(s). However, this is not

needed. The algorithm can be terminated early with H̃(s) having the barycentric
form as in (2.6).

2.3. The AAA algorithm. Given the samples {H(si)}Ni=1, we have seen two

frameworks for constructing H̃(s): the barycentric rational interpolation via Loewner
matrices (Section 2.1) and the rational LS approximation via VF (Section 2.2). Both
methods depend on the barycentric form and differ in how they choose the variables
in this representation. The Adaptive Anderson-Antoulas (AAA) algorithm developed
by Nakatsukasa et al. [40] is an iterative algorithm that elegantly integrates these two
frameworks (interpolation and LS) combining their strengths, leading to a powerful
framework for rational approximation.

As in Section 2.1, we partition the sampling points {si} and the samples {hi}
into two disjoint data sets:

sampling points: {s1, . . . , sN}={ σ1, . . . , σk }∪{ σ̂1, . . . , σ̂N−k }
def

==={ σ ∪ σ̂ },
sampled values:{h1, . . . , hN}= { g1, . . . , gk } ∪ { ĝ1, . . . , ĝN−k }

def
==={ g ∪ ĝ }.

(2.7)

This partitioning will be clarified later. Assume the barycentric form for H̃(s) as in
(2.2), which we repeat here:

(2.2) H̃(s) =
n(s)

d(s)
=

k∑
i=1

βi
s− σi

/
k∑
i=1

αi
s− σi

.

Now assume that, we want to enforce interpolation at the points σ. Therefore,
in (2.2) we set βi = giαi for i = 1, 2, . . . , k, as we did in Section 2.1. However, as
opposed to enforcing interpolation on σ̂ as well, AAA chooses the coefficients {αi} to
minimize the LS error over the remaining sampling points σ̂.

As in Section 2.2, the LS problem over the sampling points σ̂ is nonlinear due to
dependence on the denominator d(s). VF algorithm used the SK-iteration to convert
this nonlinear LS problem to a sequence of linearized LS problems. AAA uses a
different linearization. More precisely, for the point σ̂i, AAA uses the linearization

H(σ̂i)− H̃(σ̂i) = ĝi −
n(σ̂i)

d(σ̂i)
=

1

d(σ̂i)
(ĝid(σ̂i)− n(σ̂i))(2.8)

 ĝid(σ̂i)− n(σ̂i) =

k∑
j=1

(ĝi − gj)αj
σ̂i − σj

= e>i La,(2.9)

where L is the Loewner matrix defined as in (2.4) and a = [α1 · · · αk]>. This means
we simply drop the term 1/d(σ̂i) in order to compute the coefficient vector a via the
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linear LS problem (over σ̂), namely

(2.10) min
‖a‖2=1

‖La‖2 .

Before elaborating on how AAA partitions the data set for interpolation and LS, we
point out the difference between (2.5) and (2.10) in determining a. In the interpolation
case, assuming that there exists an underlying degree k − 1 rational interpolant, the
Loewner matrix has a null space and thus we solve La = 0. On the other hand, in
the case of linearized LS problem in AAA, such a rational interpolant does not exist
(consider it as too many data points and not enough degrees of freedom), and one
solves the minimization problem (2.10) by choosing a as the right singular vector
corresponding to the smallest singular value of L.

AAA iteratively partitions the data using a greedy search at each step. Let H̃(s)
denote the AAA approximant at step k corresponding to the interpolation/LS data
partitioning in (2.7). The next sampling point, σk+1, to be added to interpolation set
σ, is determined by finding σ̂i for which the current error is maximum, i.e.,

σk+1 = arg max
i=1,...,N−k

∣∣∣H(σ̂i)− H̃(σ̂i)
∣∣∣ .

Then, the algorithm proceeds by updating the interpolation and LS data partition, set-
ting βk+1 = gk+1αk+1, and by solving (2.10) for the updated coefficient vector. AAA is
terminated when either a pre-specified error tolerance or an order is achieved. We re-
fer the reader to the original source [40] for details. We also note that a similar greedy
search for computing interpolation points was proposed in [14,17] in projection-based
interpolatory model reduction and in [31] in Loewner-based interpolatory modeling.

As AAA proceeds, a new column is added to L at every step. Therefore, assuming
large number of data points N , the matrix L in AAA is tall and skinny, and thus
generically does not have a null space. However, if L happens to have a nullspace
after a certain iteration index, the AAA approximant will interpolate the full data set
and coincide with the rational interpolant of Section 2.1, assuming a unique solution.

Remark 2.1. Adding 1/d(s) as a weight. It was pointed out in [40, §10] that one
can introduce weighted norms in the LS problem in every step of AAA by scaling the
rows of the Loewner matrix. Inspired by the SK iteration and VF, another type of
weighting can be introduced by modifying the linearization step (2.9) in AAA as

H(σ̂i)− H̃(σ̂i) =
1

d(σ̂i)
(ĝid(σ̂i)− n(σ̂i)) 

1

d−(σ̂i)
(ĝid(σ̂i)− n(σ̂i)) ,

where d−(s) denotes the denominator of the AAA approximation from the previous
step, thus keeping the error still linear in the variables n(s) and d(s) to be computed.
Then, the coefficient vector a can be found by solving the weighted linear LS problem
min‖a‖2=1 ‖∆La‖2, where ∆ is a k × k diagonal matrix with the diagonal elements
∆ii = 1/d−(σ̂i). In our numerical experiments, this revised implementation applied
to various examples did not result in a significant advantage. The only improvement
we observed, and only in some cases, was a reduction by one unit in the order of
the rational approximation corresponding to the same error tolerance. Due to these
numerical observations, we do not investigate this further here or in the multivariate
case below. Note that this weighting strategy by 1/d(s) focuses on adding weighting
during AAA. In two recent works [18, 41] in the setting of rational minimax approx-
imation, AAA is followed by the Lawson algorithm [30], an iteratively weighed LS
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iteration, yielding the AAA-Lawson method. The weighting in AAA-Lawson appears
in the Lawson step, not in AAA.

The AAA algorithm has proved very successful and has been employed in many
applications including nonlinear eigenvalue problems [34], rational minimax approxi-
mation [18], and rational approximations over disconnected domains [40]. Our goal,
in the following sections, is to extend AAA to approximating parametric (dynamical)
systems from their samples.

3. p-AAA: AAA for parametric dynamical systems. In this section, we in-
troduce the parametric AAA (p-AAA) algorithm, which extends AAA to multi-variable
problems appearing in the modeling of (the transfer function of) parametric dynam-
ical systems. We start with the two-variable case first and illustrate its performance
on various examples. Then, we briefly discuss how p-AAA can be applied to functions
with more than two variables followed by an application to such an example. In this
section, to simplify the initial discussion, we only focus on scalar-valued functions.
The p-AAA for matrix valued functions is discussed in Section 4.

3.1. p-AAA for the two-parameter case. We consider the problem of rational
approximation of a multivariate function H(s, p) from data. We assume only access
to the samples of H(s, p), i.e., we have

(3.1) hij = H(si, pj) ∈ C for i = 1, . . . , N and j = 1, . . . ,M.

Analogously to the single-variable case, we express the rational approximant H̃(s, p)
in its two-variable barycentric form

(3.2) H̃(s, p) =
n(s, p)

d(s, p)
=

k∑
i=1

q∑
j=1

βij
(s− σi)(p− πj)

/ k∑
i=1

q∑
j=1

αij
(s− σi)(p− πj)

,

where {σi} and {πj} are to-be-determined points, subsets of {si} and {pj}, respec-
tively; and βij and αij are scalar coefficients to be chosen based on the interpolation
and LS conditions to be enforced on the data (3.1). Similar to the single variable case

multiplying n(s, p) and d(s, p) by
∏k
i=1

∏q
j=1(s− σi)(p− πj) reveals that H̃(s, p) is a

two-variable rational function of order (k− 1, q− 1). The number of points, k, in the
variable-s and q in the variable-p will be automatically determined by the algorithm.

We start by partitioning the data (3.1):

{s1, . . . , sN} = {σ1, . . . , σk} ∪ {σ̂1, . . . , σ̂N−k}
def

=== {σ ∪ σ̂},

{p1, . . . , pM} = {π1, . . . , πq} ∪ {π̂1, . . . , π̂M−q}
def

=== {π ∪ π̂}, and[
[H(σi, πj)] [H(σi, π̂j)]

[H(σ̂i, πj)] [H(σ̂i, π̂j)]

]
def

===

[
Dσπ Dσπ̂

Dσ̂π Dσ̂π̂

]
,

(3.3)

where [H(σi, πj)] = Dσπ denotes the k × q matrix whose (i, j)th entry is H(σi, πj);
and similarly for other quantities such as [H(σi, π̂j)] = Dσπ̂. We use Dσπ to denote
the sampled data corresponding to the sampling points (σ,π) (and similarly for other
samples) as opposed to Hσπ since H(s, p) will be used in Section 4 to denote matrix-
valued (transfer) functions. How data is partitioned as in (3.3) will be clarified later.
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Interpolation of the sampled data Dσπ. In accordance with the partitioning
of the data in (3.3), first we enforce interpolation at (σ,π), i.e., on the (1,1) block
Dσπ, of the sampled data. This is achieved by setting, in (3.2),

(3.4) βij = H(σi, πj)αij ,

assuming αij 6= 0. This follows from the fact that, as in the single variable case,

the barycentric form H̃(s, p) in (3.2) has a removable singularity at (σi, πj) with

H̃(σi, πj) = βij/αij [4], and the choice (3.4) leads to interpolation of the data in

Dσπ. This determines βij . What remains to fully specify H̃(s, p) is the choice of αij .

LS fit for the uninterpolated data. The rational approximant H̃(s, p) in (3.2)
with the choice (3.4), interpolates the data Dσπ. Next, we show how to chose αij so

that H̃(s, p) minimizes the LS error in the remaining sampled data set in Dσπ̂, Dσ̂π,
and Dσ̂π̂, i.e., to minimize

(3.5) ‖ε‖2 =

∥∥∥∥∥∥
ε1ε2
ε3

∥∥∥∥∥∥
2

def
===

∥∥∥∥∥∥∥
vec(Dσπ̂)
vec(Dσ̂π)
vec(Dσ̂π̂)

−
vec(H̃(σ, π̂))

vec(H̃(σ̂,π))

vec(H̃(σ̂, π̂))


∥∥∥∥∥∥∥
2

.

As in the single variable case, the resulting LS problem is nonlinear and we will
linearize it similarly. To illustrate this more clearly, we rewrite the error for a sample
(σ̂, π̂) in the set (σ̂, π̂) corresponding to a component in ε3 in (3.5) as

H(σ̂, π̂)− H̃(σ̂, π̂) = H(σ̂, π̂)− n(σ̂, π̂)

d(σ̂, π̂)

=
1

d(σ̂, π̂)
(H(σ̂, π̂)d(σ̂, π̂)− n(σ̂, π̂))

 H(σ̂, π̂)d(σ̂, π̂)− n(σ̂, π̂) (linearization)

= H(σ̂, π̂)

k∑
i=1

q∑
j=1

αij
(σ̂ − σi)(π̂ − πj)

−
k∑
i=1

q∑
j=1

H(σi, πj)αij
(σ̂ − σi)(π̂ − πj)

=

k∑
i=1

q∑
j=1

(H(σ̂, π̂)−H(σi, πj))αij
(σ̂ − σi)(π̂ − πj)

= e>σ̂π̂ Lσ̂π̂ a,

where

(3.6) a> = [α11 · · ·α1q | · · · | αk1 · · ·αkq] ∈ Ckq,
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Lσ̂π̂ ∈ C(N−k)(M−q)×(kq) is the 2D Loewner matrix1 defined by

Lσ̂π̂ =


H(σ̂1,π̂1)−H(σ1,π1)
(σ̂1−σ1)(π̂1−π1)

· · · H(σ̂1,π̂1)−H(σ1,πq)
(σ̂1−σ1)(π̂1−πq)

· · ·
...

H(σ̂N−k,π̂M−q)−H(σ1,π1)
(σ̂N−k−σ1)(π̂M−q−π1)

· · · H(σ̂N−k,π̂M−q)−H(σ1,πq)
(σ̂N−k−σ1)(π̂M−q−πq)

· · ·

· · · H(σ̂1,π̂1)−H(σk,π1)
(σ̂1−σk)(π̂1−π1)

· · · H(σ̂1,π̂1)−H(σk,πq)
(σ̂1−σk)(π̂1−πq)

...

· · · H(σ̂N−k,π̂M−q)−H(σk,π1)
(σ̂N−k−σk)(π̂M−q−π1)

· · · H(σ̂N−k,π̂M−q)−H(σk,πq)
(σ̂N−k−σk)(π̂M−q−πq)

 ,

(3.7)

and eσ̂π̂ ∈ R(N−k)(M−q) is the unit vector with 1 in the entry corresponding to the
sample (σ̂, π̂). Therefore, the linearized error ε3 is given by Lσ̂π̂ a. Note that Lσ̂π̂

has a nested structure that takes the differences of all combinations of samples into
consideration. The entries are explicitly given by:

Lσ̂π̂(̂+ (M − q)(̂ı− 1), j + q(i− 1)) =
H(σ̂ı̂, π̂̂)−H(σi, πj)

(σ̂ı̂ − σi)(π̂̂ − πj)
,

for ̂ = 1, . . . ,M − q, ı̂ = 1, . . . , N − k, j = 1, . . . , q, and i = 1, . . . , k.
The procedure follows similarly for the other blocks in (3.5). First note that

H̃(σi, π̂`) =

q∑
j=1

βij
π̂` − πj

/
q∑
j=1

αij
π̂` − πj

.

This expression together with the definition of βij in (3.4) allow us to write the error
corresponding to a sample (σi, π̂`) in ε1 in (3.5) as

H(σi, π̂`)− H̃(σi, π̂`) =

 q∑
j=1

H(σi, π̂`)−H(σi, πj)

π̂` − πj
αij

/ q∑
j=1

αij
π̂` − πj

 
q∑
j=1

H(σi, π̂`)−H(σi, πj)

π̂` − πj
αij (linearization)

= e>` Lσiai,

where a>i = [αi1 · · ·αiq] ∈ Cq is the ith row block of a, e` ∈ CM−q is the `th unit
vector, and Lσi

∈ C(M−q)×q is the regular (1D) Loewner matrix corresponding to the
data in the ith row of [Dσπ Dσπ̂], i.e.,

(3.8) (Lσi)`,j =
H(σi, π̂`)−H(σi, πj)

π̂` − πj
for ` = 1, 2, . . . ,M − q and j = 1, 2, . . . , q.

Similar to [27], define

(3.9) Lσπ̂ = diag(Lσ1
, . . . ,Lσk

) ∈ C(k(M−q))×(kq).

1Similar to the single-variable case, the Loewner matrices appearing in p-AAA here also appear
in the parametric Loewner framework [4, 27] where one aims to interpolate the full data set. We
revisit these connections in Remark 3.2.
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Then, the linearized error corresponding to ε1 in (3.5) is given by Lσπ̂a. Similarly, we
can linearize and rewrite the error for the ε2-block in (3.5) as Lσ̂πa where Lσ̂π is an
assembly of all 1D Loewner matrices Lπj

corresponding to the data in each column

of

[
Dσπ

Dσ̂π

]
. Putting all three together, after linearization, minimizing the LS error

(3.5) in p-AAA becomes

(3.10) min
‖a‖2=1

‖L2a‖2 where L2 =
[
L>σπ̂ L>σ̂π L>σ̂π̂

]> ∈ C(MN−kq)×kq.

We summarize this analysis in a corollary.

Corollary 3.1. Consider the data (3.3) and let the corresponding barycentric

rational approximant H̃(s, p) have the form in (3.2).
(a) If (3.4) holds, then

H̃(σi, πj) = H(σi, πj), i = 1, . . . , k, j = 1, . . . , q.

(b) Assume (3.4) holds. Choose the indices αij using

(3.11) [α11 · · ·α1q | · · · | αk1 · · ·αkq] = a? where a? = arg min
‖a‖2=1

‖L2a‖2,

where L2 is as defined in (3.10), with Lσ̂π̂ is as given by (3.7), Lσπ̂ by (3.9)
and (3.8), and Lσ̂π is defined as

Lσ̂π =

 Lπ1e1 Lπ1
ek

. . . · · ·
. . .

Lπq
e1 Lπq

ek

∈ C(q(N−k))×(kq),

where

Lπj
(̂ı, i) =

H(σ̂ı̂, πj)−H(σi, πj)

σ̂ı̂ − σi
, ı̂ = 1, . . . , N − k, i = 1, . . . , k,(3.12)

and ei ∈ Ck is the ith unit vector. Then, the two-variable barycentric approx-
imant minimizes the linearized LS error

H̃ = arg min
Ĥ=n/d

∑
i,j

|H(si, pj)d(si, pj)− n(si, pj)|2

for the samples (si, pj) corresponding to the error ε in (3.5), i.e., for the data
in {Dσπ̂,Dσ̂π,Dσ̂π̂}.

Choosing the interpolated vs LS-fitted data. The last component of p-AAA
is determining how to choose the data to be interpolated and the data to be fitted in
the LS sense. Let H̃(s, p) in (3.2) be the current p-AAA approximant corresponding
to the interpolation/LS partitioning in (3.3). Note that the order of the current
approximation is (k − 1, q − 1) and these orders need not be equal. Then, we select
the next frequency-parameter tuple (σk+1, πq+1) by means of the greedy search

(3.13) (sı̂, p̂) = arg max
(i,j)

|H(si, pj)− H̃(si, pj)|.
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We do not simply set (σk+1, πq+1) = (sı̂, p̂) since one of the entries might already be
in the previous interpolation data. In other words, sı̂ might already be in the set σ
or p̂ might already be in the set π in (3.3). We note that this cannot occur for sı̂
and p̂ simultaneously since we impose interpolation on the selected tuples. In other
words, if the tuple (sı̂, p̂) was already in the interpolated data, we would have had

H(sı̂, p̂)− H̃(sı̂, p̂) = 0, which means the whole data set is interpolated. If the point
p̂ is already in the set π in (3.3), then the order in the variable-p remains unchanged
as q − 1 and the set π is not altered. On the other hand, the point sı̂ is added to set
σ in (3.3) and the order in the variable-s is increased to k. Conversely, p̂ is added
to π and sı̂ is not added to σ if the point sı̂ is already in the set σ. This allows
updating the orders in each variable independently, giving the algorithm flexibility to
make the decision automatically. Once the data partitioning (3.3) (and the orders)
are updated, p-AAA computes the new coefficients βij as in (3.4), and then solves the
LS problem (3.10) for the updated coefficient vector a. The process is repeated until
either a pre-specified error tolerance or desired orders in (s, p) are achieved. We give a
brief sketch of p-AAA in Algorithm 3.1. We use the notation [xij ] to denote a matrix
whose (i, j)th entry is xij .

Algorithm 3.1 p-AAA

1: Given {si}, {pj}, and {hij} = {H(si, pj)}
2: Initialize: k = 0 and q = 0

3: Define H̃ = average(hij) and set error ← ‖[hij ]−[H̃]‖∞
‖[hij ]‖∞

4: while error > desired tolerance do
5: Select (sı̂, p̂) by the greedy search (3.13)
6: Update the data partitioning (3.3):
7: if sı̂ was not selected at a previous iteration then
8: k ← k + 1
9: σk ← sı̂

10: end if
11: if p̂ was not selected at a previous iteration then
12: q ← q + 1
13: πq ← p̂
14: end if
15: Build L2 as in (3.10)
16: Solve min ‖L2a‖2 s.t. ‖a‖2 = 1

17: Use a to update the rational approximant H̃(s, p) with (3.2)–(3.4)

18: error ← ‖[hij ]−[H̃(si,pj)]‖∞
‖[hij ]‖∞

19: end while
20: return H̃

Remark 3.2. Parametric Loewner framework. As in the single-variable case dis-
cussed in Section 2.1, one can choose to construct an approximation that interpolates
the full-data (3.1) as done in [4, 27]. In this case, based on the ranks of Loewner
matrices, the orders k and q are chosen large enough so that, unlike in p-AAA, the
matrix L2 has a null space and thus one chooses the coefficient vector a by solving
the linear system L2a = 0. Therefore, the parametric Loewner framework [4, 27]
interpolates the full data in contrast to p-AAA, which greedily chooses a subset of
data to interpolate and performs LS fit on the rest. When the orders k and q are
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not chosen large enough, the parametric Loewner framework no longer yields an in-
terpolant, and instead a Loewner approximant is obtained. For details we refer the
reader to [3–5, 27]. Even though this situation is more similar to the case of p-AAA,
the major difference lies in the fact that p-AAA is an iterative algorithm and chooses
the interpolation data with a greedy search while performing LS fit on the rest. In
other words, p-AAA decides the data-partitioning (3.3) automatically using a greedy
search with an appropriately defined criterion. On the other hand, the parametric
Loewner framework is a one-step algorithm and how to partition the data is not yet
fully understood. Even though there have been recent efforts in this direction for
the single-variable case [16, 28, 29], this is still an open question, especially in the
multivariate case. It will be worthwhile to investigate how the final data partitioning
from p-AAA affects the parametric Loewner construction and whether it improves the
conditioning-issues, appearing, at times, in the (one-step) Loewner framework.

Remark 3.3. Real state-space realization. When working with dynamical systems,
it is often desirable to have access to system matrices that constitute a state-space form
similar to the one presented in (1.1). The system matrices are typically real-valued,
a desirable property to retain in the rational approximant as well. As outlined in
Appendix A, real state-space representations based on two-variable barycentric forms
can be computed if all samples in the p and s-variables are real valued [27]. In the
dynamical system setting the parameter samples are generically real valued whereas
the frequency are usually complex-valued. In order to ensure realness in the complex
case, the frequencies need to be sampled in complex-conjugate pairs. This means
that if si ∈ C is sampled, we also sample si. Then, if sı̂ in Step 7 of Algorithm 3.1
is a complex frequency, we also add sı̂ to the interpolation data set and Line 8 of
Algorithm 3.1 becomes k ← k+ 2. We follow this approach in the examples discussed
in Subsections 3.2.2 and 3.3.1. Algorithmic details are explained in Appendix A.

Remark 3.4. An important property of the single-variable AAA algorithm is that
either one obtains an approximant with a desired accuracy or an interpolant of min-
imal order. Although p-AAA has similar properties, the interpolant may not be of
minimal order. (This is illustrated in the numerical example of Section 3.2.1.) We
emphasize that this is only an issue for small synthetic examples as we consider in
Section 3.2.1 where the underlying model is a low-order multi-parameter rational
function to begin with. In most practical situations of interest (indeed for all the
other examples we have considered), we obtain an approximant; not an exact recov-
ery. A post-processing routine which ensures minimal order of interpolants (in case
they occur) is presented in Appendix B.

3.2. Numerical Examples. Next, we illustrate the performance of p-AAA on
three numerical examples.

3.2.1. Synthetic Transfer Function. We use a simple model from [27], which
is a low-order rational function in two variables. Consider

H(s, p) =
1

1 + 25(s+ p)2
+

0.5

1 + 25(s− 0.5)2
+

0.1

p+ 25
.

We sample this transfer function at H(si, pj) for N = M = 21 frequency and parame-
ter points linearly spaced in si ∈ [−1, 1] and pj ∈ [0, 1]. This is a rational function with
order (4, 3). p-AAA terminates after 7 iterations. Table 1 shows the greedy search se-
lection at each iteration step. Additionally, quantities related to the post-processing
step presented in Appendix B are shown. Note that the p-AAA approximation H̃
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iter. greedy selection σk πq (k, q) dim kerL2

1 (0, 0) 0 0 (1,1) 0
2 (−1, 0) -1 (2,1) 0
3 (0.1, 0) 0.1 (3,1) 0
4 (0, 1) 1 (3,2) 0
5 (−1, 0.6) 0.6 (3,3) 0
6 (−0.6, 0.1) -0.6 0.1 (4,4) 0
7 (0.6, 0.55) 0.6 0.55 (5,5) 2
post-processing as in Appendix B (5,4) 1

Table 1
Example 3.2.1 p-AAA samples selected at each iteration

(without the post-processing) would have been of order (k − 1, q − 1) = (4, 4), as
opposed to (4, 3) of the original model. This is due to the greedy search selecting
frequencies and parameters to interpolate as tuples hence allowing for repetition. In
Table 1 we see exactly how this happened for this example. During iterations 2 and 3,
no parameters are added for interpolation while during iterations 4 and 5, no frequen-
cies are added for interpolation. Upon convergence, for this simple example where
the underlying function is a low-order rational function itself, p-AAA exactly recovers
it. In other words, after step 7, all the data is interpolated. This shows another
flexibility of p-AAA. If the underlying order is low enough, the LS component is au-
tomatically converted to a full interpolation, thus, in this special example, giving the
same approximant as the parametric Loewner approach [27].

We present in Figure 1 the evolution of the p-AAA approximant at various itera-
tions: first, third, and last (seventh). As Figure 1 shows that, upon convergence, the
proposed algorithm captures the full model exactly.
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Fig. 1. Example 3.2.1: p-AAA approximation at various iterations

3.2.2. A beam model. In this example, we consider the finite element model of
a one-dimensional Euler-Bernoulli beam with a string attached near its left boundary
and an input force applied at its right boundary, as shown in Figure 2. As for the
output y(t), we measure the displacement at the right boundary where the forcing is
applied. We take the stiffness coefficient of the spring as the parameter and obtain
the parametric dynamical system

Mẍ(t, p) + Gẋ(t, p) + K(p)x(t, p) = bf(t), y(t, p) = c>x(t, p),
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f(t)

Fig. 2. Example 3.2.2: Visualization of an Euler-Bernoulli beam
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Fig. 3. Example 3.2.2: p-AAA approximation for various parameter values and Loewner ap-
proximation with the same order as p-AAA.

with the corresponding transfer function

H(s, p) = c>(s2M + sG + K(p))−1b,

where M and G are, respectively, the mass and damping matrices; K(p) is the para-
metric stiffness matrix; and b and c are, respectively, the input-to-state and the state-
to-output mappings. We measure the transfer function at H(si, pj) for N = 3000
frequency points {si} in the interval [0, 2π × 103]ı where ı2 = −1 and for M = 3
parameter values p1 = 0.2, p2 = 0.4, and p3 = 1. p-AAA yields an approximant with
orders (k, q) = (19, 2). Out of three parameter samples, p-AAA chooses p2 = 0.4 and
p3 = 1 for interpolation. Using the same parameter and frequency samples, we also
construct the parametric Loewner approximant [27]. Figure 4 shows the amplitude
frequency responses of the original transfer function H(s, p), and the p-AAA and para-
metric Loewner approximants for various parameter values, including values that did
not enter into p-AAA or parametric Loewner construction (p = 0.8 and p = 15 in Fig-
ure 4). Both p-AAA and parametric Loewner yield highly accurate approximations,
capturing the peaks in the frequency response accurately. To check the accuracy of
the p-AAA and parametric Loewner approximants further, we perform an exhaustive
search over the parameter domain by computing, for 50 linearly spaced p̂ ∈ [0, 1], the

worst-case frequency domain error, i.e., maxs | H(s, p̂)− H̃(s, p̂) | where s = ıω with
ω ∈ [0, 2π × 103]. We use 3000 ω samples to approximate the maximum error. The
results in Figure 3 show that p-AAA is accurate throughout the full parameter domain
and, for this example, outperforms the parametric Loewner approach.
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Fig. 4. Example 3.2.2: p-AAA and Loewner approximations in the s-interval sampled.
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Fig. 5. Example 3.2.3: Convergence of AAA compared with p-AAA.

3.2.3. p-AAA convergence behaviour. In this section we demonstrate the
convergence behavior of p-AAA using a general multivariate function, not related to
dynamical systems. To do so we consider an example from [40] where the goal is to
approximate the function tan(ps). We take N = 1000 equispaced sample points on
the unit circle for the s variable and a set of 9 parameter samples {20, 21, . . . , 28}. For
a comparison, (the single variable) AAA has been executed for p = 4, 16, 64, 256 We
note that AAA has been run for every p value separately. This is in contrast to p-AAA
where p-AAA is run only once and the resulting parametric approximant can be used
for any given parameter value. For both algorithms a relative error tolerance of 10−13

was used. The parametric rational approximant computed by p-AAA after 73 itera-
tions is of order (70, 8). In Figure 5 we illustrate the differences in the convergence
behaviour of AAA and p-AAA implementations. The left-hand side plot in Figure 5
depicts maximum errors over all sampled s-variables during individual (single vari-
able) AAA runs for the four parameter choices of p = 4, 16, 64, 256. The right-hand
side plot in Figure 5 shows the maximum error with respect to all sampled s and p
values, denoted by the legend “max{pj}” (corresponding to the error in Line 18 of
Algorithm 3.1 used as a convergence criterion). During the p-AAA implementation,
we also monitor the maximum s-errors corresponding to the p = 4, 16, 64, 256 samples.
We emphasize that these errors values for specific p values are not part of the p-AAA
stopping criterion. p-AAA only monitors the maximum error over all the s and p
samples. These are computed here only for comparison purposes. Figure 5 illustrates
that AAA convergence speed varies with the magnitude of p (faster convergence for
the smaller p values) whereas in p-AAA errors decrease uniformly across the param-
eter set mainly dictated by the hardest case. Overall, p-AAA needs more iterations
to converge than AAA for a given fixed parameter. However, as mentioned above, we
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need to run the parametric algorithm only once in order to obtain a single approx-
imating function for all four rational functions computed by individual AAA runs.
This example demonstrates that p-AAA is a viable choice in the general multivariate
rational approximation setting and by no means restricted to the approximation of
system dynamics in the frequency domain.

3.3. p-AAA for more than two parameters. The p-AAA algorithm extends
analogously to the cases with more than two variables. To keep the discussion concise,
we briefly highlight the three-variable case.

In this case, the underlying (transfer) function to approximate, H(s, p, z), is a
function of the three variables, s, p, and z, and we assume access to the sampling data

(3.14) hij` = H(si, pj , z`) ∈ C for i = 1, . . . , N, j = 1, . . . ,M, and ` = 1, . . . , O.

The approximant H̃(s, p, z) is represented in the barycentric form given by
(3.15)

H̃(s, p, z) =

k∑
i=1

q∑
j=1

o∑
`=1

βij`
(s− σi)(p− πj)(z − ζ`)

/ k∑
i=1

q∑
j=1

o∑
`=1

αij`
(s− σi)(p− πj)(z − ζ`)

,

where {σi}, {πj}, and {ζ`} are to-be-determined sampling points, subsets of {si},
{pj}, and {z`}, respectively. As in the two-variable case, βij` will be chosen to enforce
interpolation in a subset of the data and αij` to minimize a linearized LS error in the
remaining data.

In accordance with the data (3.14) and the approximant H̃(s, p, z), partition the
sampling points:

[s1, . . . , sN ] = [σ1, . . . , σk] ∪ [σ̂1, . . . , σ̂N−k] = [σ | σ̂],

[p1, . . . , pM ] = [π1, . . . , πq] ∪ [π̂1, . . . , π̂M−q] = [π | π̂], and

[z1, . . . , zO] = [ζ1, . . . , ζo] ∪ [ζ̂1, . . . , ζ̂O−o] = [ζ | ζ̂].

(3.16)

Then, p-AAA imposes interpolation on the samples {σ,π, ζ} by setting

(3.17) βij` = H(σi, πj , ζ`)αij`, for i = 1, . . . , k, j = 1, . . . , q, and, ` = 1, . . . , o.

Based on the partitioning (3.16), consider the data as a three-dimensional tensor.
We enforce interpolation in the (1, 1, 1) block of this tensor with the choice in (3.17).
Then, p-AAA minimizes the linearized LS error in the rest of the data by choosing the
remaining coefficients a = [α111 · · ·α11o|α121 · · ·α12o| · · · |αkq1 · · ·αkqo]> via the linear
LS problem min

‖a‖2=1
‖L3a‖2 where L3 is the 3D Loewner matrix, which plays the same

role the 2D Loewner matrix L2 played in Section 3.1. Partioning of the data in (3.16)
is automatically established via the greedy search in every step.

Generalization to functions of more than three variables follows analogously. We
skip those details due to cumbersome notation. However the potential computational
difficulties with the increasing number of variables is worth elaborating. Assume that
at the current step of p-AAA, we have the approximant H̃(s, p, z) as in (3.15). Given
the sampling data in (3.14), this will result in L3 having NMO − kqo rows and kqo
columns. Therefore computing the coefficient vector a becomes more expensive as
the number of variables (and the orders in each variable) increase. For functions with
many variables, if the coefficient matrix becomes prohibitively large to compute a via
direct methods, one might revert to well-established iterative approaches. For the
numerical examples we considered in this paper, these computational complications
did not arise and direct methods were readily available to apply.
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3.3.1. Parameterized Gyroscope Model. In this section, we use p-AAA to
approximate the dynamics of a microelectromechanical system (MEMS) gyroscope.
The benchmark is available through [44] and further information regarding the back-
ground as well as the the operation principle of the MEMS gyroscope are discussed
in [39]. Similar to the example in Section 3.2.2, the time-domain description of the
system is given by the second-order model

M(p)ẍ(t, p, z) + G(p, z)ẋ(t, p, z) + K(p)x(t, p, z) = b, y(t, p, z) = c>x(t, p, z),

where the mass matrix M(p) = M1 + pM2, damping matrix G(p, z) = z(G1 +
pG2) and stiffness matrix K(p) = K1 + 1

pK2 + pK3 are defined with respect to the
structural parameter p and the rotation velocity z. We use p-AAA to approximate
the corresponding three-variable transfer function

H(s, p, z) = c>(s2M(p) + sG(p, z) + K(p))−1b,

in the operating frequency range of the device, which corresponds to s ∈ [2π ×
0.025, 2π×0.25]ı. For this example we chose to sample 100 linearly spaced frequencies
in the aforementioned interval as well as 10 linearly spaced points in [1, 2] for the p
parameter and 10 logarithmically spaced points in [10−7, 10−5] for the z parameter.
After 33 iterations of p-AAA we obtain an approximant with order (k, q, o) = (62, 7, 9)
and a maximum relative error of 8.9×10−4 throughout the sampled domain. Figure 6
depicts the transfer function H(s, p, z) for multiple unsampled parameter values. The
frequency response drastically varies for different parameters, thus making it a func-
tion which is difficult to approximate. This may partially be due to the non-linear
parameter dependence of the matrix K(p). In spite of these difficulties, p-AAA is able
to produce good approximations for most parameters in the intervals of interest.
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Fig. 6. Example 3.3.1: p-AAA approximation of gyroscope model for various parameter combi-
nations.

4. p-AAA for matrix-valued functions. So far, we have considered approxi-
mating scalar-valued functions H(s, p). In this section, we discuss p-AAA for approxi-
mating matrix-valued functions instead. This is a common situation, especially arising
in the case of dynamical systems where the underlying system has multiple-inputs and
multiple-outputs (MIMO), leading to matrix-valued transfer functions. Motivated by
our interest in approximating dynamical systems, we will call the resulting method
MIMO p-AAA. To keep the notation concise, we will present the discussion for the two-
variable case. But as in Section 3.3, the results similarly extend to higher-dimensional
parametric problems.
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Let H(s, p) denote the underlying MIMO (transfer) function with nin inputs and
nout outputs. Therefore, for the sampling points {si}Ni=1 and {pj}Mj=1, we have access
to the matrix-valued sampling data:

(4.1) Hij = H(si, pj) ∈ Cnin×nout for i = 1, . . . , N and j = 1, . . . ,M.

From the data (4.1), the goal is to construct a high-fidelity, matrix-valued approximant

H̃(s, p) to H(s, p).

4.1. Transformation to scalar-valued data. For the single-variable (non-
parametric case), one solution to handle the matrix-valued data in AAA is to vectorize
every sample and replace the scalar data forming the Loewner matrix L with the vec-
torized data. This is closely related to the approach proposed in Lietaert et al. [34] for
using AAA in nonlinear eigenvalue problems. It is also analogous to how VF handles
MIMO problems. One potential disadvantage of this approach is that, in the case of
large number of inputs and outputs, the resulting Loewner matrix will have large di-
mensions, leading to a computational expensive LS step. Exploiting the fact that only
certain rows and columns of the underlying Loewner matrix change in every step, [34]
partially alleviates this computational complexity. However, for the parametric prob-
lems we consider here, dimension growth due to vectorization is more prominent and
we will adopt another approach introduced by [15] for the nonparametric case, which
transforms the MIMO data to a scalar one, and apply AAA to this scalar-valued data.
We will extend this approach to parametric problems and establish what it means,
for MIMO p-AAA, in terms of interpolation and the LS minimization.

As in the scalar case, assume the partitioning of the data in (4.1) as follows:

{s1, . . . , sN} = {σ1, . . . , σk} ∪ {σ̂1, . . . , σ̂N−k}
def

=== {σ ∪ σ̂},

{p1, . . . , pM} = {π1, . . . , πq} ∪ {π̂1, . . . , π̂M−q}
def

=== {π ∪ π̂}, and[
[H(σi, πj)] [H(σi, π̂j)]

[H(σ̂i, πj)] [H(σ̂i, π̂j)]

]
def

===

[
Dσπ Dσπ̂

Dσ̂π Dσ̂π̂

]
.

(4.2)

This partitioning will be determined by applying p-AAA to a scalar data set described
below. In accordance with this partitioning, we want to construct H̃(s, p) with the
matrix-valued barycentric form

(4.3) H̃(s, p) =
N(s, p)

d(s, p)
=

k∑
i=1

q∑
j=1

Bij

(s− σi)(p− πj)

/ k∑
i=1

q∑
j=1

α̃ij
(s− σi)(p− πj)

,

where Bij ∈ Cnin×nout and α̃ij ∈ C are to be determined.
Motivated by [15] for the nonparametric case, we convert the matrix-valued data

(4.1) to the scalar one by picking two random unit vectors w ∈ Cnout and v ∈ Cnin ,
and computing

(4.4) hij = w>H(si, pj)v for i = 1, . . . , N and j = 1, . . . ,M.

We apply p-AAA to the scalar data (4.4) to obtain the scalar-valued rational approx-
imation, as in (3.2):

(4.5) H̃(s, p) =
n(s, p)

d(s, p)
=

k∑
i=1

q∑
j=1

(
w>H(σi, πj)v

)
αij

(s− σi)(p− πj)

/ k∑
i=1

q∑
j=1

αij
(s− σi)(p− πj)

.
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Note that βij = w>H(σi, πj)vαij . Then, the final matrix-valued approximant H̃(s, p)
is obtained by setting α̃ij = αij and Bij = αijH(σi, πj) in (4.3), resulting in

(4.6) H̃(s, p) =
N(s, p)

d(s, p)
=

k∑
i=1

q∑
j=1

Hijαij
(s− σi)(p− πj)

/ k∑
i=1

q∑
j=1

αij
(s− σi)(p− πj)

.

As in the scalar p-AAA case, by construction, our choice of Bij guarantees inter-
polation of the data for the samples {σ,π} in (4.2). However, the (linearized) LS
minimization is different. We summarize these results next.

Proposition 4.1. Given the sampling data (4.1), let H̃(s, p) in (4.6) be the result-
ing approximant obtained via MIMO p-AAA with αij 6= 0 and with the corresponding

data partitioning (4.2). Then, H̃(s, p) interpolates the data in Dσπ corresponding to
the samples {σ,π}, i.e.,

(4.7) H̃(σi, πj) = H(σi, πj) for i = 1, . . . , k and j = 1, . . . , q.

Furthermore, H̃(s, p) minimizes an input/output weighted linearized LS measure,
namely

(4.8) H̃ = arg min
Ĥ=N/d

∑
i,j

∣∣w>(H(si, pj)d(si, pj)−N(si, pj)
)
v
∣∣2

for the data in {Dσπ̂,Dσ̂π,Dσ̂π̂}, not selected by the greedy search, i.e., correspond-
ing to the sampling pairs (si, pj) ∈

{
{σ̂,π} ∪ {σ, π̂} ∪ {σ̂, π̂}

}
.

Proof. Interpolation property (4.7) follows analogous to the scalar case, by ob-

serving that for αij 6= 0, H̃(s, p) has a removable pole at each (σi, πj) with

H̃(σi, πj) =
Bij

αij
.

Then, the choice Bij = αijHij proves (4.7).

To prove (4.8), first recall that H̃(s, p) in (4.4) is obtained by applying (scalar-
valued) p-AAA to the data (4.4). Therefore, by Corollary 3.1,

(4.9) H̃ = arg min
Ĥ=d/n

∑
i,j

| w>H(si, pj)vd(si, pj)− n(si, pj) |2 .

Using (4.5) and (4.6), we have H̃(s, p) = n(s,p)
d(s,p) = w>H̃(s, p)v = w>N(s,p)v

d(s,p) . Therefore,

w>H(si, pj)vd(si, pj)− n(si, pj) = w>
(
H(si, pj)d(si, pj)−N(si, pj)

)
v.

Inserting this last equality into (4.9) proves (4.8).

Remark 4.2. Proposition 4.1 states that for MIMO p-AAA, interpolation holds
analogously to the scalar case. However, the LS minimization differs from the scalar
case in that what is minimized is a weighted LS measure. More precisely, in terms of
the LS aspect of MIMO p-AAA, the linearization is performed on the weighted error
w>(H(s, p)− H̃(s, p))v.

Remark 4.3. When the internal description of the underlying (transfer) func-
tion is available, as in (1.1) and (1.3), projection-based approaches are commonly
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used to construct interpolatory parametric approximants [3, 6, 8]. In this setting,
for MIMO systems, one usually does not enforce full matrix interpolation. Instead,
interpolation is enforced along selected tangential directions. In other words, one
picks vectors wi ∈ Cnout and vi ∈ Cnin such that H(σi, πj)vi = H̃(σi, πj)vi and/or

w>i H(σi, πj) = w>i H̃(σi, πj). This is called tangential interpolation. Tangential vec-
tors usually vary with the sampling points. At this point, it is not clear, at least to
us, how to achieve tangential interpolation using the barycentric form (4.3). However,
inspired by this concept, instead of choosing two fixed vectors w and v, one could pick
different vectors wi, and vi for each sample σi, for example and apply MIMO p-AAA
to the data w>i Hijvi to build the MIMO approximation (4.6) as above. The resulting

model H̃(s, p) would still interpolate the data Dσπ and minimize the LS error along
varying weighted directions. In our experiments (see Section 4.2), fixed vectors w
and v provided accurate approximations and therefore we do not pursue the idea of
choosing different vectors here. The interpolatory parametric-Loewner approach [27]
handles the vector-valued problems, i.e., H(si, pj) ∈ Cnout×1, in a similar manner by
choosing w as vector of ones (and v = 1 since nin = 1). Moreover, recently [20] de-
veloped the block-AAA algorithm, which uses a generalized barycentric formula with
matrix-valued weights. Further extending that theory to parametric problems could
offer different avenues to handle the parametric matrix-valued problems. Extending
the framework of [38] to parametric MIMO problems might also provide potential
directions. These issues will be investigated in future works.

4.2. Numerical Examples: Stationary PDEs. We consider two examples
from [12]. First is the following stationary PDE, briefly mentioned in Section 1:

uxx + puyy + zu = 10 sin(8x(y − 1)) on Ω = [−1, 1]× [−1, 1],(4.10)

with homogeneous Dirichlet boundary conditions. The solution u(x, y) depends on
two the parameters (p, z) and is independent of time. Therefore, the model is not
a dynamical system, unlike our previous examples, yet this does not matter for our
formulation since we simply view the solution as a function of two-variables. The truth
model is obtained via a spectral Chebyshev collocation approximation with 49 nodes
in each direction. We choose to approximate u(x, y) on the whole domain Ω; thus the
output is the full solution, leading to a two-variable vector-valued function to sample
H(p, z) ∈ R2401×1. For our MIMO p-AAA terminology, we interpret this as a model
with nin = 1 and nout = 2401. We take N = M = 10 linearly spaced measurements
of H(p, z) in the parameter space [0.1, 4] × [0, 2]. In (4.4), we set w = w̃/‖w̃‖2
where the entries of w̃ ∈ R2401 result from a standard normal distribution. Also,
v = 1 in this example. The usual projection-based approaches to PMoR would form
a global basis from these samples and project the truth model into a low-dimensional
space. However, we do not assume access to the truth model; but only its samples
via black-box simulation, and construct our approximation directly from samples.
MIMO p-AAA leads to an approximation with orders q = 3 in p and o = 3 in z. To
judge the quality of the approximation, we perform a parameter sweep in the full
parameter domain and find the worst case scenario in terms of the maximum error
between the truth model and the MIMO p-AAA approximation over Ω. The worst-case
approximation occurs for p = 1.7545 and z = 2, with an error of 3.11× 10−2, showing
that the MIMO p-AAA approximant is accurate even in the worst-case. This worst
case scenario is depicted in the left-pane of Figure 7 where the top-plot shows the
truth model, the middle one the MIMO p-AAA approximation, and the bottom one
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the error plot. As the figure illustrates, MIMO p-AAA is able to recover the solution
on the whole domain accurately.

We also apply MIMO p-AAA to a slightly revised PDE from [12]:

(1 + px)uxx + (1 + zy)uyy = e4xy on Ω = [−1, 1]× [−1, 1].(4.11)

The set-up is the same as above: Dirichlet boundary conditions and the truth model
obtained via Chebyshev collocation, with 49 nodes in each direction, leading to a two-
variable vector-valued function to sample H(p, z) ∈ R2401×1. We sample H(p, z) at
N = M = 10 linearly spaced points in the parameter domain (p, z) ∈ [−0.99, 0.99]×
[−0.99, 0.99] and apply MIMO p-AAA. We set w = w̃/‖w̃‖2 where the entries of w̃
result from a uniform random distribution. As stated in [12], this problem is harder to
approximate than the first one due to near singularities at the corners of the parameter
domain. This is automatically reflected in the approximation orders MIMO p-AAA
chooses: q = 5 in p and o = 6 in z. As for the first PDE, we perform a parameter sweep
in the full parameter domain to find the worst-case performance. In this case, the
worst approximation occurs for p = 0.95 and z = 0.99, with an error of 7.28× 10−2,
an accurate approximation even in the worst case. We show the results from this
worst case in the right-pane of Figure 7 where the top-plot shows the truth model,
the middle one the MIMO p-AAA approximation, and the bottom one the error plot.
As in the previous case, MIMO p-AAA accurately captures the full solution.

5. Conclusions. We have presented a data-driven modeling framework for ap-
proximating parametric (dynamical) systems by extending the AAA algorithm to mul-
tivariate problems. The method does not require access to an internal state-space
description and works with function evaluations. We have discussed the scalar-valued
problem as well as the matrix-valued ones. Various numerical examples have been
used to illustrate the effectiveness of the proposed approach.
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[37] P. Mlinarić and S. Gugercin, L2-optimal reduced-order modeling using parameter-separable
forms, arXiv preprint arXiv:2206.02929, (2022).

[38] L. Monzón, W. Johns, S. Iyengar, M. Reynolds, J. Maack, and K. Prabakar, A multi-
function aaa algorithm applied to frequency dependent line modeling, in 2020 IEEE Power
& Energy Society General Meeting (PESGM), IEEE, 2020, pp. 1–5.

[39] C. Moosmann, ParaMOR - Model Order Reduction for parameterized MEMS applications,
PhD thesis, Albert-Ludwigs-Universität Freiburg, 2007.
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Appendix A. State-space realization. First, we recall the formulae derived
in [27], which allow for computing state-space realizations based on a given two-
variable barycentric form. In the following, assume that the barycentric form (3.2)
computed by the p-AAA algorithm is given. Define the parameter dependent terms

α̂i(p) =

q+1∑
j=1

αij
p− πj

and β̂i(p) =

q+1∑
j=1

βij
p− πj

,

as well as the system matrices

sÊ− Â(p) =


s− σ1 σ2 − s

...
. . .

s− σ1 σk − s
α̂1(p) α̂2(p) . . . α̂k(p)

 , b̂ =


0
...
0
1

 , ĉ(p) =


β̂1(p)

β̂2(p)
...

β̂k(p)

 .
An equivalent representation to the barycentric form (3.2) is then given by

H̃(s, p) = ĉ(p)>(sÊ− Â(p))−1b̂.

For a detailed discussion regrading the connection between the matrix pencil sÊ−Â(p)
and the barycentric form we refer the reader to [27]. Note, that the presented matrices,
their dimensions and the type of parameter dependence are not unique. For example,
an equivalent realization without parameter dependence in ĉ(p) but larger matrices
was derived in [4].

Real system matrices. Whenever complex-valued frequencies are used for generat-
ing transfer function samples, the matrix Â(p) as well as ĉ(p) are also complex-valued.
In [27] the authors demonstrate that under the condition that interpolated complex
frequencies exclusively appear as complex conjugate pairs, real-valued system ma-
trices can be computed. Note that H(s, p) = H(s, p) since the underlying system
is assumed to be real. This reveals that we can obtain samples from conjugates of
complex frequencies without having to compute or measure additional values. Con-
sider the partitioning (3.3) and relabel the frequencies according to the previously
mentioned condition:

(A.1) {s1, . . . , sN} = {σ1, . . . , σr, σr+1, σr+1, . . . , σr+c, σr+c} ∪ {σ̂1, . . . , σ̂N−k},

where σ1, . . . , σr are real-valued, σr+1, . . . , σr+c are complex-valued and k = r + 2c.
First, as done in [27], consider the case r ≥ 1 in (A.1) and define the matrices

J =
1√
2

[
1 1
−i i

]
, U =

 Ir−1
Ic ⊗ J

1

 , V =

[
Ir

Ic ⊗ J

]
.

A realization consisting only of real matrices is then given by b̂r = Ub̂ = b̂, ĉr = ĉV∗

and sÊr − Âr(p) = sUÊV∗ −UÂ(p)V∗, such that

H̃(s, p) = ĉr(p)
>(sÊr − Âr(p))

−1b̂r.

Following [27], one can write the real system matrices explicitly as

ĉ>r =
[
β̂1(p), . . . , β̂r(p),Re(β̂r+1(p)),− Im(β̂r+1(p)), . . . ,Re(β̂r+c(p)),− Im(β̂r+c(p))

]
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and

sÊr − Âr(p) =



s− σ1 σ2 − s
...

. . .

s− σ1 σr − s
f gr+1
...

. . .

f gr+c
α̂1(p) α̂2(p) · · · α̂r(p) γr+1(p) · · · γr+c(p)


,

where f =

[
s− σ1

0

]
, gi =

[
Reσi − s − Imσi

Imσi Reσi − s

]
and γ>i =

[
Re α̂i(p)
− Im α̂i(p)

]
.

In our dynamical system examples, we have r = 0 in (A.1), i.e., we do not have a
real frequency sample. We now provide some modifications to handle this case. For
r = 0, we define the vector ` = 1√

2

[
1 · · · 1

]
⊗
[
−1 0

]
and

U0 =


i√
2

`> Ic−1 ⊗ J
1

 .
We then obtain

sÊc − Âc(p) = sU0ÊV∗ −U0Â(p)V∗ =


f̃0
f̃ g2
...

. . .

f̃ gc
γ1(p) γ2(p) · · · γc(p)

 ,

where f̃
>
0 =

[
Im(σ1)

Re(σ1)− s

]
and f̃ =

[
s− Re(σ1) Im(σ1)

0 0

]
. Using ĉr(p) and b̂r

from the previously discussed case we obtain the real state-space form

H̃(s, p) = ĉr(p)
>(sÊc − Âc(p))

−1b̂r.

Appendix B. Minimal order interpolant. A key result in [27] reveals that
the minimal order of a two-variable rational interpolant is given by (k∗, q∗), where

(B.1) k∗ = max
j=1,...,M

rankLpj and q∗ = max
i=1,...,N

rankLsi ,

and the 1D Loewner matrices Lpj and Lsi are defined in (3.12) and (3.8), respectively.
Moreover, any partitioning as in (3.3) with k > k∗ and q > q∗ yields a rational
function that interpolates all function samples. In other words, one could compute
a priori upper bounds for the order of the approximant by computing M +N SVDs
of 1D Loewner matrices and avoid constructing non-minimal interpolants when using
the p-AAA algorithm. Note that for large data sets this is a potentially expensive
task. Instead, we propose an approach, which computes a minimal interpolant via a
post-processing procedure. First, we answer the question of how we can tell whether
the output from Algorithm 3.1 is a non-minimal interpolant or not without computing
k∗ and q∗ as in (B.1).
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Lemma B.1. Consider the data (3.3) and let the corresponding barycentric ra-

tional approximant H̃(s, p) have the form in (3.2). Furthermore, for at least one
p̃ ∈ {pj} and s̃ ∈ {si} satisfying k∗ = rankLp̃ and q∗ = rankLs̃, we assume that all
k∗ × k∗ submatrices of Lp̃ and q∗ × q∗ submatrices of Ls̃ have full rank. Then

dim kerL2 ≥ 1 if and only if k > k∗ and q > q∗.

In addition, if dim kerL2 ≥ 1, then dim kerL2 = (k − k∗)(q − q∗).
Proof. We will only show the first implication (⇒) and refer the reader to [27] for

the proof of the other direction (⇐). Let dim kerL2 ≥ 1 and assume that k ≤ k∗ or

q ≤ q∗. First, dim kerL2 ≥ 1 implies that H̃(s, p) interpolates all data in (3.3) (this
follows from the error formula derived in Corollary 4.3 in [27]). Let p̃ be a parameter
where the first expression in (B.1) attains its maximum. In other words k∗ = rankLp̃.
Further, assume that all k∗ × k∗ submatrices of Lp̃ have full rank. These conditions
imply that a rational interpolant of the values H(si, p̃) for i = 1, . . . , N has to be at

least of order k∗ [3]. However, H̃(s, p̃) interpolates all these points and is of order
k∗ − 1 or less. A similar contradiction can be shown in the case that q ≤ q∗ yielding
that k > k∗ and q > q∗. Based on this result, we can apply Theorem 4.2. from [27]
which implies that rankL2 = kq−(k−k∗)(q−q∗). Since L2 has kq columns we obtain
dim kerL2 = (k − k∗)(q − q∗).

Algorithmic implications. Lemma B.1 reveals a connection between the nullity of
L2 and the minimal order of an interpolant, based on uniform rank conditions of 1D
Loewner matrices that are typically satisfied in practice [3]. If dim kerL2 = d = 1 we
have k = k∗ + 1 and q = q∗ + 1 and the interpolant is of minimal order. If d > 1 it
must be that k > k∗ + 1 or q > q∗ + 1 and the interpolant is of non-minimal order.
Assuming that we compute the SVD of L2 using direct methods, d is available in each
step of the algorithm without the need for additional computations. Our proposed
post-processing procedure, which can be used after Line 16 of Algorithm 3.1 if d > 1,
is as follows:

1. If q ≤ k compute q∗ based on (B.1) and if k < q compute k∗ based on (B.1).
2. Lemma B.1 implies that k∗ = k − d/(q − q∗) and q∗ = q − d/(k − k∗). From

the first step we either obtain k∗ or q∗. In the former case we compute
q∗ = q−d/(k−k∗) whereas in the latter case we compute k∗ = k−d/(q− q∗)
in order to obtain the order of the minimal interpolant (k∗, q∗).

3. Update the partitioning (3.3) such that k = k∗ + 1 and q = q∗ + 1 and use it

to compute H̃ based on Lines 16 and 17 of Algorithm 3.1.
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