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Quality-Bayesian approach to inverse acoustic source problems

with partial data

Zhaoxing Li ∗ Yanfang Liu † Jiguang Sun ‡ Liwei Xu §

Abstract: A quality-Bayesian approach, combining the direct sampling method and the
Bayesian inversion, is proposed to reconstruct the locations and intensities of the unknown
acoustic sources using partial data. First, we extend the direct sampling method by con-
structing a new indicator function to obtain the approximate locations of the sources. The
behavior of the indicator is analyzed. Second, the inverse problem is formulated as a sta-
tistical inference problem using the Bayes’ formula. The well-posedness of the posterior
distribution is proved. The source locations obtained in the first step are coded in the pri-
ors. Then an Metropolis-Hastings MCMC algorithm is used to explore the posterior density.
Both steps use the same physical model and measured data. Numerical experiments show
that the proposed method is effective even with partial data.

Keywords: inverse source problem; Helmholtz equation; direct sampling method; Bayesian
inversion; Metropolis-Hastings algorithm

MSC 2010: 35R30, 62F15

1 Introduction

We consider the inverse problem to reconstruct the locations and intensities of the acoustic
sources from measured near-field or far-field partial data. The problem has importance in
various applications such as biomedical imaging and the identification of pollution sources [8,9].
We refer the readers to [2,3,9,13] and the references therein for different methods in literature.

Recently, a new quality-Bayesian approach, which combines the qualitative method and the
Bayesian inference, is proposed for the inverse scattering problem [12]. The method has two
steps. First, qualitative information of the obstacle such as the size and location is obtained
using the extended sampling method [13, 15]. Second, the inverse problem is formulated as a
statistical inference problem using the Bayes’ formula [11, 18]. Then a Markov chain Monte
Carlo (MCMC) algorithm is used to explore the posterior density. The information obtained in
the first step is coded in the priors. The method provides satisfactory results with partial data.
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In this paper, we extend the methodology in [12] to the inverse acoustic source problem with
partial data. In the first step, a direct sampling method (DSM) is employed to approximate
the locations of the sources. The DSM is a non-iterative method to reconstruct the unknown
scatterers [10,17]. Recently, the DSM was used in [1,20] to reconstruct the locations of multiple
multipolar sources from single-frequency measurement Cauchy data. Using multiple frequency
data, we construct a new indicator function for the inverse source problems. Similar to those
in [3,16,20], the indicator decays as the Bessel function when the sampling point moves away from
the source (see, e.g., [16]). The DSM has some attractive features: (i) it is easy to implement
and computationally cheap; (ii) the algorithm does not need a priori information of the sources;
and (iii) the method can provide us with an accurate and reliable location estimation of the
unknown sources; (iv) the method is robust for the noise data. These features make the DSM a
good candidate to obtain some rough information of the sources.

In the second step, for more detailed properties of the sources, we resort to the Bayesian
inversion. In Bayesian statistics, the parameters are viewed as random variables. The number
and locations of the sources obtained in the first step are coded in the priors. By using Bayes’
formula, a posterior distribution of the unknown parameters is obtained. The well-posedness
is proved and a Metropolis-Hastings (MH) MCMC algorithm is used to explore the posterior
density. Consequently, statistical estimates for the unknown parameters can be obtained. We
refer the readers to [11, 18] for the Bayesian inversion and [4, 6, 12, 14] for its applications to
inverse problems.

The rest of paper is organized as follows. In Section 2, we present the direct and inverse
source problems under investigation. In Section 3, we develop a DSM to obtain the approximate
locations of the unknown sources. In Section 4, the Bayesian method is employed to reconstruct
the details of the sources. In Section 5, numerical examples are presented to show the effective-
ness of the quality-Bayesian approach using complete or partial data. Finally, In Section 6, we
draw some conclusions.

2 Direct and Inverse Source Problems

Let F P L2pR2q denote the source with suppF Ă V , where V is a bounded domain of R2. The
time-harmonic acoustic wave u P H1

locpR2q radiated by F satisfies

∆u ` k2u “ F in R
2, (2.1a)

lim
rÑ8

?
r

ˆBu
Br ´ iku

˙

“ 0, r “ |x|, (2.1b)

where k is the wave number, (2.1a) is the Helmholtz equation and (2.1b) is the Sommerfeld
radiation condition. Recall that the fundamental solution of the Helmholtz equation is given by

Φkpx, yq “ i

4
H

p1q
0

pk|x ´ y|q,

where H
p1q
0

is the Hankel function of zeroth order and the first kind. It is well-known that
Φkpx, yq satisfies [7]

p∆ ` k2qΦkpx, yq “ ´δpx ´ yq, (2.2)
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where δ is the Dirac distribution. The solution u of (2.1) has the asymptotic expansion [7]

upx, kq “ ei
π
4?

8kπ

eikr?
r

"

u8px̂, kq ` O

ˆ

1

r

˙*

as r Ñ 8,

where x̂ “ x{|x| P S, S :“ t|x̂| “ 1 : x̂ P R
2u. The function u8px̂, kq, x̂ P S, is the far field

pattern of upx, kq. The solution u to (2.1) and its far-field u8 can be written as [7]

upx, kq “
ż

V

Φkpx, yqF pyqdy, (2.3)

u8px̂, kq “
ż

V

Φ8
k px̂, yqF pyqdy, (2.4)

where
Φ8
k px̂, yq “ exp p´ikx̂ ¨ yq, (2.5)

is the far-field pattern of Φkpx, yq.
The inverse source problem (ISP) of interest is to determine F from one of the following

data sets:

i) tupx, kq : x P Γ, k P rkm, kM su;

ii) tu8px̂, kq : x̂ P S Ă S, k P rkm, kM su;

where Γ is a measurement curve outside V , and km ă kM are two fixed wave numbers. By
complete data, we mean that Γ is a simple closed curve with V inside, or S “ S. Otherwise, the
measured data is partial.

In this paper, we consider two F ’s for (2.1). The first one is the combination of monopole
and dipole sources (see, e.g., [20])

Fjpxq “ pλj ` ξj ¨ ∇qδpx ´ zjq, j “ 1, . . . , J, (2.6)

where J is the number of sources, zj’s represent the source locations, λj’s and ξj’s are the scalar
and vector intensities such that |λj |`|ξj | ‰ 0 and |λjξj| “ 0. The second one is the combination
of

Fjpxq “
J

ÿ

j“1

λj expp´ξj|x ´ zj |2q, j “ 1, . . . , J, (2.7)

where both λj’s and ξj ’s are the scalar intensities. For simplicity, we write

F px; z,λ, ξq “
J

ÿ

j“1

Fjpx; zj , λj , ξjq, suppFjpx; zj , λj , ξjq Ă Vj, (2.8)

where λ “ pλ1, . . . , λJq, ξ “ pξ1, . . . , ξJq, Vj Ă V .
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3 Direct Sampling Method

Given the measured far-field or near-field data, we propose a direct sampling method (DSM)
to reconstruct the number and locations of the sources. The method only involves numerical
integrations and thus is very fast in general. Moreover, it is robust for noisy partial data, which
makes it a good candidate to obtain some qualitative information.

Let D be the sampling domain such that V Ă D. Let n be the unit outward normal to
BD. Denote by A :“ tkiuNi“1

Ă rkm, kM s a finite set of discrete wave numbers. We define two
functions

Ipzpq “
ÿ

kiPA

ż

Γ

upx, kiqΦ̄kipx, zpqdspxq, zp P D, (3.1)

I8pzpq “
ÿ

kiPA

ż

S

u8px̂, kiqΦ̄8
ki

px̂, zpqdspx̂q, zp P D, (3.2)

where Φ̄kipx, zpq and Φ̄8
ki

px̂, zpq are the conjugates of Φkipx, zpq and Φ8
ki

px̂, zpq, respectively.

3.1 Near-field Indicator

For near-field data, inserting (2.3) into (3.1) and changing the order of integration, we have that

Ipzpq “
ÿ

kiPA

ż

Γ

ż

V

Φkipx, yqF pyqdyΦ̄kipx, zpqdspxq

“
ÿ

kiPA

ż

V

ż

Γ

Φkipx, yqΦ̄kipx, zpqdspxqF pyqdy.
(3.3)

From (2.2), for Φkipx, yq and Φ̄kipx, zpq, it holds that
ż

D

p∆Φkipx, yq ` k2Φkipx, yqqΦ̄kipx, zpqdx “ ´Φ̄kipy, zpq, (3.4)

ż

D

p∆Φ̄kipx, zpq ` k2Φ̄kipx, zpqqΦkipx, yqdx “ ´Φkipy, zpq. (3.5)

Using (3.4), (3.5), the Green’s formula and the Sommerfeld radiation condition, we derive

Φkipy, zpq ´ Φ̄kipy, zpq “
ż

Γ

"BΦkipx, yq
Bn Φ̄kipx, zpq ´ BΦ̄kipx, zpq

Bn Φkipx, yq
*

dspxq

«
ż

Γ

pikiΦkipx, yqΦ̄kipx, zpq ` ikiΦ̄kipx, zpqΦkipx, yqqdspxq,
(3.6)

which implies
ż

Γ

kiΦkipx, yqΦ̄kipx, zpqdspxq « ImpΦkipy, zpqq. (3.7)

For y P V and zp P D, define the kernel function for (3.3)

Hpy, zpq “
ż

Γ

Φkipx, yqΦ̄kipx, zpqdspxq, ki P A. (3.8)
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Thus,

Hpy, zpq 9 1

ki
J0pki|y ´ zp|q, ki P A, (3.9)

where J0 is the zeroth order Bessel function and 9 means “proportional to”.
Due to (3.3) and (3.9), Ipzpq is a superposition of the Bessel functions. From the asymptotic

property of J0ptq [7]

J0ptq “ sin t ` cos t?
πt

"

1 ` O

ˆ

1

t

˙*

, as t Ñ 8, (3.10)

Ipzpq decays similarly when zp moves away from y.
Now we define the indicator for near-field data

IDSMpzpq “

ˇ

ˇ

ˇ

ř

kiPA

xupx, kiq,Φkipx, zpqyL2pΓq

ˇ

ˇ

ˇ

ř

kiPA

}upx, kiq}L2pΓq}Φkipx, zpq}L2pΓq
, @zp P D, (3.11)

where the inner product x¨, ¨yL2pΓq is defined as

xupx, kiq,Φkipx, zpqyL2pΓq “
ż

Γ

upx, kiqΦ̄kipx, zpqdspxq.

3.2 Far-field Indicator

Substituting (2.4) into (3.2), and changing the order of integration, we have that

I8pzpq “
ÿ

kiPA

ż

S

ż

V

Φ8
ki

px̂, yqF pyqdyΦ̄8
ki

px̂, zpqdspx̂q

“
ÿ

kiPA

ż

V

ż

S

e´ikix̂¨yeikix̂¨zpdspx̂qF pyqdy.
(3.12)

For y P V and zp P D, define the kernel function

H8py, zpq “
ż

S

eikix̂¨pzp´yqdspx̂q, ki P A. (3.13)

By Funk-Hecke formula [7],

H8py, zpq “ 2πJ0pki|y ´ zp|q, ki P A. (3.14)

Due to (3.10), I8pzpq is large when zp P V and decays when zp Ñ 8. Consequently, we define
the indicator for far-field data as

I8
DSMpzpq “

ˇ

ˇ

ˇ

ř

kiPA

xu8px̂, kiq,Φ8
ki

px̂, zpqyL2pSq

ˇ

ˇ

ˇ

ř

kiPA

}u8px̂, kiq}L2pSq}Φ8
ki

px̂, zpq}L2pSq
, (3.15)

where

xu8px̂, kiq,Φ8
ki

px̂, zpqyL2pSq “
ż

S

u8px̂, kiqΦ̄8
ki

px̂, zpqdspx̂q.

The algorithm to approximate the locations of the unknown sources is as follows.

DSM for ISP
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1. Collect the data upx, kiq on Γ (or u8px̂, kiq on S) for ki P A.

2. Generate sampling points for D.

3. Calculate IDSMpzpq (or I8
DSMpzpq) for all sampling points zp P D.

4. Find the local maximizers zDSM ’s of IDSM pzpq (or I8
DSM pzpq).

The DSM provides the number and locations of the sources. Such qualitative information is
integrated into the priors for the following Bayesian inversion.

4 Bayesian Inversion

In this section, we present the Bayesian inversion for the inverse acoustic source problem using
the near-field data. The far-field case is similar. Let φ “ pλ, ξ, z1, . . . , zJ qT . Define the forward
operator K : RN Ñ L2pΓq as follows

Kpφq :“
ż

V

Φkpy, xqF px;φqdx.

For F given by (2.6), N “ 5J . For F given by (2.7), N “ 4J .
The statistical modal for (2.1) can be written as

Y “ Kpφq ` Z,

where Y is the noisy measurement of upx, kq and Z is the Gaussian noise, i.e., Z „ N p0, γ2Iq.
Denote by µY pdφq “ Ppdφ|Y q the posterior measure and by µ0pdφq “ Ppdφq the prior

measure for φ. The statistical inverse problem is to find the posterior measure µY pdφq. Assume
that µY is absolutely continuous with respect to µ0, i.e., µ

Y ! µ0. By Bayes’ formula,

dµY

dµ0

pφq “ 1

LpY q exp p´Gpφ;Y qq , (4.1)

where expp´Gpφ;Y qq is the likelihood such that

Gpφ;Y q :“ 1

2γ2
}Y ´ Kpφq}2L2pΓq, (4.2)

and

LpY q :“
ż

RN

exp p´Gpφ;Y qqdµ0pφq , (4.3)

is the normalizing constant of µY .
In the rest of this section, we show the well-posedness of the posterior measure following [18].

We first analyze the forward operator K.

Lemma 1 (Page 441 of [19]) Let z P C and Repzq ą 0. Then the following Nicholson’s formula
holds

J2

ν pzq ` Y 2

ν pzq “ 8

π2

ż 8

0

K0p2z sinh tq coshp2νtqdt, (4.4)

where

K0pzq “
ż 8

0

e´z cosh tdt,

Jνpzq and Yνpzq are the ν-th order Bessel function and Neumann function, respectively.
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Using Nicholson’s formula (4.4), the following property holds for K.

Lemma 2 There exist a constant C, such that

}Kpφq}L2pΓq ď C|φ|8, (4.5)

where C depends on Γ and V .

Proof. According to (2.3),

upx, kq “
ż

V

i

4
H

p1q
0

pk|x ´ y|qF pyqdy. (4.6)

Let
τ˚ “ mint|x ´ y| : x P Γ, y P V u and τ “ |x ´ y|.

By (4.4),

|Hp1q
ν pkτq|2 “ J2

ν pkτq ` Y 2

ν pkτq

“ 8

π2

ż 8

0

K0p2kτ sinh tq coshp2νtqdt

ď 8

π2

ż 8

0

K0p2kτ˚ sinh tq coshp2νtqdt

“ |Hp1q
ν pkτ˚q|2.

(4.7)

Combining (4.6) and (4.7), we obtain that

|upx, kq| “
ˇ

ˇ

ˇ

ˇ

ż

V

i

4
H

p1q
0

pk|x ´ y|qF pyqdy
ˇ

ˇ

ˇ

ˇ

ď 1

4

ż

V

|Hp1q
0

pkτ˚q||F pyq|dy

ď |V |
4

|Hp1q
0

pkτ˚q|}F pyq}8.

(4.8)

Since k ě km, it holds that

}upx, kq}L2pΓq ď |V |
4

|Hp1q
0

pkmτ˚q|}F pyq}8 ď C
|V |
4

|Hp1q
0

pkmτ˚q||φ|8. (4.9)

This completes the proof. ˝

Corollary 3 There exists a constant C, such that

}Kpφ1q ´ Kpφ2q}L2pΓq ď C|φ1 ´ φ2|8, (4.10)

where C depends on Γ and V .

Let µ1 and µ2 denote two probability measures. Assume that µ1 and µ2 are both absolutely
continuous with respect to a third measure µ.

7



Definition 4 The Hellinger and total variation metrics between µ1 and µ2 are, respectively,
defined as

dHpµ1, µ2q “
ˆ

1

2

ż

´

a

dµ1{dµ ´
a

dµ2{dµ
¯

2

dµ

˙

1{2

, (4.11)

and

dTV pµ1, µ2q “ 1

2

ż

|dµ1{dµ ´ dµ2{dµ| dµ. (4.12)

Both Hellinger and total variation metrics are independent of the choice of the measure µ. If
µ1 and µ2 are both absolutely continuous with respect to µ, then Hellinger and total variation
metrics are equivalent (see, e.g., Lemma 6.36 of [18]).

Theorem 5 Assume that µ0 is a Borel probability measure on R
N . Let µY and µY 1

be the
measures defined by (4.1) for Y and Y 1 P C, respectively. Suppose µY and µY 1

are both abso-
lutely continuous with respect to µ0. Then the Bayesian inverse problem (4.1) is well-posed in
both Hellinger and total variational metrics, i.e., there exist a constant M “ Mprq ą 0 with
maxt|Y |, |Y 1|u ă r, such that

dHpµY , µY 1q ď M}Y ´ Y 1}8 and dTV pµY , µY 1q ď M}Y ´ Y 1}8. (4.13)

Proof. Define the normalizing constant

LpY q “
ż

RN

exp

ˆ

´ 1

2γ2
}Y ´ Kpφq}2L2pΓq

˙

dµ0pφq. (4.14)

Clearly,
0 ď LpY q ď 1.

Now we show that LpY q is strictly positive. From Lemma 2 and (4.14), it follows that

LpY q ě
ż

BpRq
exp

ˆ

´ 1

γ2
p}Y }2L2pΓq ` }Kpφq}2L2pΓq

˙

dµ0pφq

ě
ż

BpRq
expp´Mqdµ0pφq

“ expp´Mqµ0pBpRqq,

(4.15)

where BpRq denotes a ball with a large enough radius R.
We conclude that µ0pBpRqq ą 0. To see this, consider the disjoint sets An :“ tu|n ´

1 ď }u} ă nu, @n P N. Then tAnu are measurable and
ř8

n“1
µ0pAnq “ µ0pŤ8

n“1
Anq “ 1.

Consequently, there exist at least one of An P tAnu8
n“1

satisfies µ0pAnq ‰ 0. Combining with
(4.15), it holds that LpY q ą 0.

Using the mean value theorem and Lemma 2, we have

|LpY q ´ LpY 1q| ď
ż

RN

expp´Gpφ;Y qq
ˇ

ˇGpφ;Y q ´ Gpφ;Y 1q
ˇ

ˇ dµ0pφq

ď
ż

RN

1

2γ2

ˇ

ˇ

ˇ
}Y ´ Kpφq}2L2pΓq ´ }Y 1 ´ Kpφq}2L2pΓq

ˇ

ˇ

ˇ
dµ0pφq

ď M}Y ´ Y 1}8.

(4.16)
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By the definition of dH ,

d2HpµY , µY 1q

“ 1

2

ż

RN

#

ˆ

expp´Gpφ;Y qq
LpY q

˙1{2

´
ˆ

expp´Gpφ;Y 1qq
LpY 1q

˙1{2
+2

dµ0pφq

“ 1

2

ż

RN

#

ˆ

expp´Gpφ;Y qq
LpY q

˙1{2

´
ˆ

expp´Gpφ;Y 1qq
LpY q

˙1{2

`
ˆ

expp´Gpφ;Y 1qq
LpY q

˙

1{2

´
ˆ

expp´Gpφ;Y 1qq
LpY 1q

˙

1{2
+

2

dµ0pφq

ď LpY q´1

ż

RN

"

exp

ˆ

´1

2
Gpφ;Y q

˙

´ exp

ˆ

´1

2
Gpφ;Y 1q

˙*

2

dµ0pφq

`
ˇ

ˇ

ˇ
LpY q´1{2 ´ LpY 1q´1{2

ˇ

ˇ

ˇ

2
ż

RN

exp
`

´Gpφ;Y 1q
˘

dµ0pφq.

(4.17)

Again, using the mean value theorem and Lemma 2, we have that

ż

RN

"

exp

ˆ

´1

2
Gpφ;Y q

˙

´ exp

ˆ

´1

2
Gpφ;Y 1q

˙*

2

dµ0pφq

ď
ż

RN

expp´Gpφ;Y qq
ˇ

ˇ

ˇ

ˇ

1

2
Gpφ;Y q ´ 1

2
Gpφ;Y 1q

ˇ

ˇ

ˇ

ˇ

2

dµ0pφq

ď
ż

RN

1

16γ4
ˇ

ˇ}Y ´ Kpφq}2 ´ }Y 1 ´ Kpφq}2
ˇ

ˇ

2
dµ0pφq

ď M}Y ´ Y 1}28.

(4.18)

According to the boundedness of LpY q and LpY 1q, it holds that
ˇ

ˇ

ˇ
LpY q´1{2 ´ LpY 1q´1{2

ˇ

ˇ

ˇ

2

ď M max
`

LpY q´3, LpY 1q´3
˘ ˇ

ˇLpY q ´ LpY 1q
ˇ

ˇ

2

ď M}Y ´ Y 1}28.

(4.19)

Combining (4.15)-(4.19) we obtain

dHpµY , µY 1q ď M}Y ´ Y 1}8.

Due to Lemma 6.36 of [18], it also holds that

dTV pµY , µY 1q ď M}Y ´ Y 1}8.

The proof is complete. ˝

The solution to the Bayesian inverse problem is the posterior distribution µY . To explore µY ,
we resort to the Markov Chain Monte Carlo (MCMC) method. The basic idea is to construct an
ergodic Markov chain with µY as the stationary distribution. Based on the samples generated
by MCMC, various statistical estimates such as maximum a posteriori (MAP) and conditional

9



mean (CM) can be obtained. In this paper, we employ the preconditioned Crank-Nicolson (pCN)
Metropolis-Hastings (MH) algorithm for MCMC [5].

pCN-MH for ISP

1. Set n Ð 0 and choose an initial value φ0.

2. Propose a move according to

λ̃j,n “
`

1 ´ β2
˘1{2

λj,n ` βWn, Wn „ N p0, 1q,
ξ̃j,n “

`

1 ´ β2
˘1{2

ξj,n ` βWn, Wn „ N p0, 1qpor N p0, I2ˆ2qq
z̃j,n “ zDSM `

?
σWn, Wn „ N pzDSM

j , I2ˆ2q.

3. Compute

αpφn, φ̃nq “ min
!

1, exp
´

G
`

F px;φnq;Y
˘

´ GpF px; φ̃nq;Y
˘

¯)

.

4. Draw α̃ „ Up0, 1q. If αpφn, φ̃nq ě α̃, set φn`1 “ φ̃n. Else, φn`1 “ φn.

5. When n “ MaxIt, the maximum sample size, stop.
Otherwise, set n Ð n ` 1 and go to step 2.

5 Numerical Examples

We present four numerical examples to show the performance of the proposed quality-Bayesian
approach. Let V “ r´4, 4sˆr´4, 4s. For point sources (2.6), the solution to the forward problem
(2.1) is computed directly using the formula in Section 4.1 of [20]. For extended sources (2.7),
the solution to (2.1) is approximated using (2.3) or (2.4) as follows. Generate a triangular mesh
T for V with mesh size h. For example, for x̂ :“ pcos θ, sin θq, θ P r0, 2πq, and a fixed wave
number k, the far-field data is approximated by

u8px̂; kq «
ÿ

TPT

e´ikx̂¨yTF pyT q|T |, (5.1)

where T P T is a triangle, yT is the center of T , and |T | denotes the area of T . The synthetic
data is computed using a mesh with h « 0.06. Then 5% random noise is added

umpx, kq :“ upx, kq ` 0.05pZ̃1 ` iZ̃2qmax |u|,

where Z̃1, Z̃2 „ N p0, 1q. Note that, in the sampling stage, a different relatively coarse mesh is
used to compute the solution of the forward problem (2.1).

Examples 1 and 3 use the near field data, which are measured on a circle with radius R “ 6.5
and centered at zero. Examples 2 and 4 use the far-field data. Define

S1 :“ r0, 2πq, S2 :“ r0, πq, S3 :“ rπ{8, 5π{8q.

The near-field data are

tupx; kjq|x “ pR cos θ,R sin θq, θ P Si, i “ 1, 2, 3, j “ 1, . . . , Nk.u
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The far-field data are

tu8px̂; kjq|x̂ “ pcos θ, sin θq, θ P Si, i “ 1, 2, 3, j “ 1, . . . , Nk.u

The aperture S1 represents complete data and S2, S3 represent partial data. Equally spaced
measurement angles are used: 80 for S1, 40 for S2 and 20 for S3. The Nk wave numbers in
rkm, kM s are given by

kj “ km ` pj ´ 1qpkM ´ kmq{pNk ´ 1q, j “ 1, ¨ ¨ ¨ , Nk. (5.2)

The sampling domain for DSM is chosen to be the same as V and is divided into 201 ˆ 201
uniformly distributed sampling points.

5.1 Example 1

Let F pxq “
ř

3

j“1
λjδpx ´ zjq with

tλju3j“1 “ t6, 5, 7u, tzju3j“1 “ tp2, 2q, p´2, 2q, p0,´2qu.

Let km “ 5, kM “ 10 and Nk “ 10. In Fig. 1, we plot the indicator functions using data
associated with S1, S2, S3 by DSM. The reconstructed locations tzDSM

j u3j“1
are

Fig 1: Plots of the indicators of the DSM. Left: S1. Middle: S2. Right: S3.

S1 : tp2.00, 2.00q, p´2.00, 2.00q, p0.00,´2.00qu,
S2 : tp2.00, 2.00q, p´2.00, 2.00q, p0.00,´2.00qu,
S3 : tp2.00, 2.00q, p´2.00, 2.00q, p0.00,´2.00qu.

For monopole sources, the locations are accurate even for partial data, although the plots of the
indicators in Fig. 1 are quite different.

In the Bayesian inversion stage, we take β “ 0.03 and σ “ 0.0004. The maximum number
of samples is set to be 10000. The first 3000 samples are discarded and the condition mean of
posterior density for each parameter is computed. The results are shown in Table 1, where ¨‹
represents the condition mean. The reconstructed parameters are close to the exact ones.
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j
Exact Parameters Reconstructed parameters for S1

λj zj λ‹

j z‹

j

1 6 (2, 2) 5.8528 (1.9980, 1.9967 )
2 5 (-2, 2) 5.0681 (-2.0026, 2.0040)
3 7 (0, -2) 6.9588 (-0.0003, -1.9982)

j
Reconstructed parameters for S2 Reconstructed parameters for S3

λ‹

j z‹

j λ‹

j z‹

j

1 5.9798 (2.0000, 1.9954) 6.2389 (2.0103, 1.9990)
2 5.0730 (-2.0017, 2.0087) 4.8071 (-1.9949, 1.9938)
3 6.9029 (-0.0100, -1.9934) 6.9066 (0.0259, -2.0054)

Table 1: Exact and reconstructed parameters for Example 1.

5.2 Example 2

Let F pxq “ ř

3

j“1
pλj ` ξj ¨ ∇qδpx ´ zjq with

tλju3j“1 “ t0, 9, 0u,
tξju3j“1 “ tp

?
2,´

?
2q, p0, 0q, p2, 0qu,

tzju3j“1 “ tp2, 0q, p´2, 2q, p´2,´2qu.

Again, let km “ 5, kM “ 10 and Nk “ 10. In Fig. 2, we plot the indicator functions for S1, S2, S3.
The locations of sources tzDSM

j u3j“1
reconstructed by the DSM are

Fig 2: Indicator plots of DSM. Left: S1. Middle: S2. Right: S3.

S1 : tp2.00, 0.00q, p´2.00, 2.00q, p´2.00,´2.00qu,
S2 : tp2.00,´0.02q, p´2.00, 2.04q, p´2.00,´2.02qu,
S3 : tp1.98, 0.00q, p´2.00, 2.00q, p´2.20,´1.94qu.

For partial data, the reconstructed locations are not as accurate, but still satisfactory.
In the Bayesian inversion stage, we set β “ 0.05 and σ “ 0.0004. Then 20000 samples are

drawn from the prior distribution and the first 5000 samples are discarded. The inversion results
of the MCMC algorithm are shown in Table 2. In particular, for partial data, the reconstructed
locations are improved in general.
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j
Exact Parameters Reconstructed parameters for S1

λj ξj zj λ‹

j ξ‹

j z‹

j

1 - p
?
2,´

?
2q (2, 0) - (1.4886, -1.4727) (1.9936, -0.0019)

2 9 - (-2, 2) 8.9373 - (-1.9863, 2.0037)
3 - (2, 0) (-2, -2) - (1.9696, -0.0350) (-2.0030, -1.9970)

j
Reconstructed parameters for S2 Reconstructed parameters for S3

λ‹

j ξ‹

j z‹

j λ‹

j ξ‹

j z‹

j

1 - (1.4087, -1.4573 ) (1.9948, -0.0111) - (1.4073, -1.1819) (2.0037, 0.0072)
2 8.9656 - (-2.0077, 2.0116) 7.7530 - (-1.9899, 2.0016)
3 - (1.7725, 0.0003) (-2.0022, -2.0173) - (1.7091, 0.0544) (-2.1487, -1.9156)

Table 2: Exact and reconstructed parameters for Example 2.

5.3 Example 3

Let F pxq “ ř

2

j“1
λj expp´ξj}x ´ zj}2q with

tλju2j“1 “ t3,´4u,
tξju2j“1 “ t2.5, 1u,
tzju2j“1 “ tp2, 2q, p´1.5,´1.5qu.

Set rkm, kM s “ r2, 7s and Nk “ 10. In Fig. 3, we plot the indicator functions for S1, S2, S3. The

Fig 3: Indicator plots of DSM. Left: S1. Middle: S2. Right: S3.

reconstructed locations tzDSM
j u2j“1

by the DSM are

S1 : tp2.00, 2.00q, p´1.52,´1.52qu,
S2 : tp2.00, 1.96q, p´1.52,´1.44qu,
S3 : tp2.04, 2.04q, p´1.52,´1.56qu.

The locations are satisfactory. However, the results deteriorate for partial data.
In the Bayesian inversion stage, set β “ 0.03 and σ “ 0.004. 15000 samples are drawn

and the first 3000 samples are discarded. The inversion results are shown in Table 3. Overall,
the reconstructions are satisfactory. Again, the Bayesian inversion significantly improves the
reconstructed locations.
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j
Exact Parameters Reconstructed parameters for S1

λj ξj zj λ‹

j ξ‹

j z‹

j

1 3 2.5 (2, 2) 3.0458 2.5154 (1.9894, 2.0094)
2 -4 1 (-1.5, -1.5) -4.0901 1.0202 (-1.5012, -1.5128)

j
Reconstructed parameters for S2 Reconstructed parameters for S3

λ‹

j ξ‹

j z‹

j λ‹

j ξ‹

j z‹

j

1 2.8525 2.4827 (2.0098, 1.9999) 3.0494 2.3827 (2.0211, 1.9951)
2 -4.1944 1.0136 (-1.5002, -1.5067) -3.9265 1.0216 (-1.5064, -1.4779)

Table 3: Exact and reconstructed parameters for Example 3.

5.4 Example 4

Let F pxq “
ř

4

j“1
λj expp´ξj}x ´ zj}2q with

tλju4j“1 “ t2, 4,´3, 2.5u,
tξju4j“1 “ t2, 3, 2, 1u,
tzju4j“1 “ tp2, 2q, p´2, 2q, p´2,´2q, p2,´2qu.

Let rkm, kM s “ r1.5, 8s and Nk “ 15. In Fig. 4, we plot the indicator functions for S1, S2, S3.

Fig 4: Indicator plots of DSM. Left: S1. Middle: S2. Right: S3.

The reconstructed locations of sources tzDSM
j u4j“1

by the DSM are

S1 : tp2.04, 2.04q, p´2.00, 2.00q, p´2.00,´2.00q, p1.96,´2.00qu,
S2 : tp2.04, 2.04q, p´2.00, 2.00q, p´2.00,´1.84q, p1.96,´2.20qu,
S3 : tp2.00, 1.64q, p´1.96, 2.12q, p´2.08,´2.16q, p2.04,´1.64qu.

Similarly, the results deteriorate when data becomes less.
In the Bayesian inversion stage, β “ 0.03 and σ “ 0.004. 20000 samples are drawn and the

first 5000 samples were discarded. The inversion results are shown in Table 4.

6 Conclusions

A new quality-Bayesian approach is proposed to reconstruct the locations and intensities of
the unknown acoustic sources. First, a direct sampling method is developed to approximate the
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j
Exact Parameters Reconstructed parameters for S1

λj ξj zj λ‹

j ξ‹

j z‹

j

1 2 2 (2, 2) 2.2408 2.2712 (2.0392, 1.9954)
2 4 3 (-2, 2) 3.9250 2.9601 (-2.0023, 2.0165)
3 -3 2 (-2, -2) -3.1428 2.1598 (-1.9885, -2.0034)
4 2.5 1 (2, -2) 2.5928 1.0771 (1.9531, -2.0413)

j
Reconstructed parameters for S2 Reconstructed parameters for S3

λ‹

j ξ‹

j z‹

j λ‹

j ξ‹

j z‹

j

1 2.1579 2.1221 (2.0347, 1.9412) 1.9819 1.5675 (2.0824, 1.7697 )
2 3.8821 2.8849 (-1.9937, 2.0028) 4.1515 2.9813 (-2.0566, 2.0335 )
3 -2.8060 2.0517 (-2.0167, -1.9650) -3.2017 1.7718 (-2.0677, -2.1082)
4 2.3755 0.9439 (1.9904, -2.1102) 2.2924 0.8748 (1.9733, -1.7340)

Table 4: Exact and reconstructed parameters for Example 4.

locations of the sources. Second, the Bayesian inversion is used to get more detailed information.
The locations of the sources obtained in the first step are coded in the priors. A Metropolis-
Hastings (MH) MCMC algorithm is employed to explore the posterior density.

The DSM is fast for the qualitative information of the sources, while the Bayesian method
is effective for the quantitative information. The approximate locations of the sources by the
DSM are critical to the convergence of the MCMC method. The two steps are based on the
same physical model and use the same measured data. The new approach inherits the merits of
both steps. In particular, when the locations by the DSM for partial data is not accurate, the
results are significantly improved by the Bayesian inversion. Numerical examples show that the
proposed method is effective, in particular, when the measurement data is partial.
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