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GREEN’S FUNCTION FOR NONDIVERGENCE ELLIPTIC OPERATORS IN

TWO DIMENSIONS

HONGJIE DONG AND SEICK KIM

Abstract. We construct the Green function for second-order elliptic equations in
non-divergence form when the mean oscillations of the coefficients satisfy the Dini
condition. We show that the Green’s function is BMO in the domain and establish
logarithmic pointwise bounds. We also obtain pointwise bounds for first and
second derivatives of the Green’s function.

1. Introduction and main results

We consider a second-order elliptic operator in a bounded, connected, and open
setΩ in R2. Let L be an elliptic operator in non-divergence form given by

Lu =

2
∑

i, j=1

ai j(x)Di ju. (1.1)

Here, we assume (without loss of generality) that the coefficients ai j are symmetric
and defined on the entire space R2. We require that the matrix A = (ai j) satisfy the
uniform ellipticity condition, i.e., there exists a constant ν ∈ (0, 1] such that

ν|ξ|2 ≤
2

∑

i, j=1

ai jξiξ j ≤ ν
−1|ξ|2. (1.2)

We shall say that A = (ai j) are of Dini mean oscillation in Ω if the mean oscillation
function ωA : R+ → R defined by

ωA(r) := sup
x∈Ω

?
Ω(x,r)

|A(y) − ĀΩ(x,r)| dy, (1.3)

where

ĀΩ(x,r) :=

?
Ω(x,r)

A =
1

|Ω(x, r)|

∫

Ω(x,r)

A and Ω(x, r) = B(x, r) ∩Ω,

satisfies the Dini condition, i.e.,
∫ 1

0

ωA(t)

t
dt < +∞. (1.4)

In this article, we shall show that ifΩ is a bounded domain with regular bound-
ary and the coefficients A = (ai j) are of Dini mean oscillation inΩ, then the Green’s
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2 H. DONG AND S. KIM

function G(x, y) exists and has logarithmic pointwise bounds. In fact, we show
that G(·, y) is BMO in Ω and G(·, ·) is continuous on (Ω ×Ω) \ {(x, x) : x ∈ Ω}. We
shall also derive pointwise bounds for G(x, y) as well as its derivatives DxG(x, y)
and D2

xG(x, y).
It is well known that the elliptic operators in divergence form admit Green’s

functions that are comparable to those of the Laplace operator, even when the
coefficients are just measurable; see [29, 20, 25, 6]. There are also many papers
in the literature dealing with the existence and estimates of Green’s functions or
fundamental solutions of non-divergence form elliptic operators with measurable
or continuous coefficients; see e.g., [3, 4, 14, 16, 26]. In the case when the coefficient
matrix A is uniformly Hölder (or Dini) continuous, it is well known that a Green’s
function is continuous and satisfies the pointwise bound comparable to that of
Laplace operator; see e.g., [31, 35, 1]. For parabolic operators, we refer the reader
to [17] for the construction of fundamental solutions by the parametrix method,
and also [13, 8]. However, unlike the Green’s function for elliptic operators in
divergence form, in general, Green’s function for non-divergence form elliptic
operators do not necessarily have pointwise bounds, even if the domain is smooth
and the coefficients are uniformly continuous; see [2].

In a recent paper [22], it is shown that in three dimensions or higher, the Green’s
functions for non-divergence form elliptic operators have the pointwise bound
c|x−y|2−n if the coefficients of the operator have Dini mean oscillations. See also [30]
for a related result with coefficients satisfying “square” Dini condition. However,
the proof in [22] does not work in the two dimension, which is mostly due to
the failure of Sobolev embedding W1,2 ֒→ L2n/(n−2) when n = 2. It is worthwhile
to mention that even for the Laplace case, the behavior of Green’s functions is
different in two dimensions. As a matter of fact, there are quite a few papers
devoted to the study of two dimensional Green’s functions; see e.g. [12, 33, 36].

The adjoint operator L∗ is given by

L∗u =

2
∑

i, j=1

Di j(a
i j(x)u),

where the coefficient matrix A = (ai j) is the same as that of L and thus, it is of Dini
mean oscillation inΩ. It is known that if f ∈ Lp(Ω) with p ∈ (1,∞), then the unique
Lp solution (see, e.g., [15, Lemma 2]) of the problem

L∗u = f in Ω, u = 0 on Ω, (1.5)

is uniformly continuous in Ω; see Theorem 1.8 in [11]. The definitions of BMO(Ω),
‖·‖∗, H1 atom in Ω, etc. are given in the next section.

Now, we state our main results. In our first theorem, we shall assume, in place
of (1.3), that the L2 mean oscillation

ωA(r) := sup
x∈Ω

(?
Ω(x,r)

|A(y) − ĀΩ(x,r)|
2 dy

)
1
2

(1.6)

satisfies the Dini condition (1.4). In light of Hölder’s inequality, this assumption is
stronger than our hypothesis that A is of Dini mean oscillation. We will return to
the original definition (1.3) in our second theorem.
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Theorem 1.1. Let Ω be a bounded C1,1 domain in R2. Assume the coefficient A = (ai j)
of the operator L in (1.1) satisfies the uniform ellipticity condition (1.2) and that the L2

mean oscillation (1.6) of A satisfies the Dini condition (1.4). Then, there exists a Green’s
function G(x, y) (for any x, y ∈ Ω, x , y) and it is unique in the following sense: if u is
the unique adjoint solution of the problem (1.5), where f ∈ Lp(Ω) with p > 1, then u is
represented by

u(y) =

∫

Ω

G(x, y) f (x) dx. (1.7)

Also, G∗(x, y) = G(y, x) becomes the Green’s function for the adjoint operator L∗, which is

characterized as follows: for q > 1 and f ∈ Lq(Ω), if v ∈ W2,q(Ω) ∩W
1,q
0

(Ω) is the strong
solution of

Lv = f in Ω, v = 0 on ∂Ω, (1.8)

then, we have the representation formula

v(y) =

∫

Ω

G∗(x, y) f (x) dx =

∫

Ω

G(y, x) f (x) dx. (1.9)

The Green function G(x, y) satisfies the following estimates:

G(·, y) ∈ BMO(Ω) with ‖G(·, y)‖∗ ≤ C, y ∈ Ω, (1.10)

|G(x, y)| ≤ C

(

1 + log
diamΩ

|x − y|

)

, x , y ∈ Ω, (1.11)

|DxG(x, y)| ≤
C

|x − y|
, x , y ∈ Ω, (1.12)

|D2
xG(x, y)| ≤

C

|x − y|2
, y ∈ Ω, x ∈ B(y, dy/2) \ {y}, (1.13)

where dy = dist(y, ∂Ω) and C depends on ν,Ω, and the L2 mean oscillation ωA as in (1.6).

In our second theorem, we drop the extra assumption that A is of L2 Dini mean
oscillation but we shall instead assume thatΩ is a C2,α domain for some α > 0.

Theorem 1.2. LetΩ be a bounded C2,α domain in R2. Assume the coefficient A = (ai j) of
the operator L in (1.1) satisfies the uniform ellipticity condition (1.2) and is of Dini mean
oscillation in Ω. Then, all conclusions of Theorem 1.1 are valid. Moreover, we have

|D2
xG(x, y)| ≤ C|x − y|−2, x , y ∈ Ω, (1.14)

where C depends on ν, Ω, and the mean oscillation ωA as in (1.3).

Our last theorem is the key to the proof of Theorems 1.1 and 1.2, the statement
of which has its own interest.

Theorem 1.3. Let Ω ⊂ R2 and the coefficient A satisfy the conditions of Theorem 1.1
(resp. Theorem 1.2) with ωA given by the formula (1.6) (resp. (1.3)). Then, there exists a
constant N0 = N0(ν,Ω, ωA) such that if u is the adjoint solution of the problem

L∗u = a in Ω, u = 0 on ∂Ω,

where a is an H1 atom in Ω, then |u| ≤ N0.

The proof of the theorem heavily relies on the assumption that Ω ⊂ R2 and
cannot be applied to higher dimension. As a matter of fact, Theorem 1.3 is not
true in higher dimensions since otherwise it would imply that the Green’s function
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G(·, y) belongs to BMO(Ω), which is not true in higher dimensions. For example,
consider the Green’s function G(·, y) for Laplace operator in Ω = B(0, 1) ⊂ Rn with
n ≥ 3. It does not belong to Lp(Ω) for p ≥ n

n−2 and hence cannot belong to BMO(Ω).
We conclude the introduction with a few remarks. First of all, the Green’s

function G(x, y) is continuous on {(x, y) ∈ Ω × Ω : x , y}. Indeed, the proof of
Theorem 1.1 will show that L∗G(x, ·) = 0 in Ω \ B(x, r) for any r > 0 and thus by [11,
Theorem 1.8], we see that G(x, ·) is continuous away from x. On the other hand, it
is clear from (1.12) that G(·, y) is continuous away from y.

Next, it should be mentioned that Bauman [4] proved an estimate for the nor-

malized Green’s function G̃(x, y) = G(x, y)/G(x0, y):

G̃(x, y) ≃

∫ 1

|x−y|

r

w(B(y, r))
dr, (1.15)

where x, y ∈ B′, |x − y| ∈ (0, 1
2 ), x0 ∈ B \ B′, B′ ⋐ B are open balls,

w(E) =

∫

E

G(x0, y) dy,

and G is the Green’s function in B. Such result was obtained under the condition
that the coefficients are bounded and measurable in two dimensions,and uniformly
continuous in higher dimensions. Her proof uses the maximum principle. When
the coefficients are of Dini mean oscillation, by using the Harnack type inequality
[11, Lemma 4.2], we see that G(x0, y) ≃ 1 for any y away from x0 and the boundary
∂B, which together with (1.15) implies that

G(x, y) ≃ log
1

|x − y|
, x , y ∈ B, |x − y| < 1/2.

In view of the comparison principle, this result also holds for any bounded smooth
domain. Compared to [4], we prove a stronger result G(·, y) ∈ BMO(Ω), which gives
more information of the Green’s function and also implies (1.11). We also note that
our proof also works for elliptic systems satisfying the strong ellipticity condition
or the Legendre-Hadamard condition. More precisely, consider an elliptic system

N
∑

j=1

Li ju
j :=

N
∑

j=1

2
∑

α,β=1

A
αβ

i j
Dαβu

j − λui, i = 1, . . . ,N.

Suppose the coefficients A = (A
αβ

i j
) are bounded, satisfies the Legendre-Hadamard

condition
2

∑

α,β=1

N
∑

i, j=1

A
αβ

i j
ξαξβη

iη j ≥ ν|ξ|2|η|2.

Assume that λ is large enough to guarantee the solvability of Dirichlet problem

Li ju
j
= f i in Ω, ui

= 0 on ∂Ω.

See, for instance, [9, Theorem 8]. Then, under hypothesis of Theorem 1.1 (resp.
Theorem 1.2), there exists an N × N Green’s matrix G(x, y) = (Gi j(x, y)) that satisfy
the conclusions of Theorem 1.1 (resp. Theorem 1.2). The proof requires only
routine adjustment and is omitted.

Finally, we remark that in Theorems 1.1 and 1.2, the dependence of the constant
C on Ω is through the constant N0 in Theorem 1.3, the constant that is hidden
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in H1(Ω) and BMO(Ω) duality relation (2.2), and the constant that appears in
the W2,p estimates, which in turn may depend on the C1,1 characteristics of the
boundary flattening mappings and the diameter of Ω. The constant C in (1.14) of
Theorem 1.2 depends additionally on the C2,α bounds on the boundary flattening
mappings. As the proof of Theorem 1.3 reveals, the constant N0 depends on Ω
through the W2,p estimates, the diameter of Ω, and the C2,α characteristics of ∂Ω.
However, the C2,α regularity of the domain Ω is used only for the weak type-(1, 1)
estimate (4.25), which can be dispensed with if we assume the L2 mean oscillation
of A satisfies the Dini condition. In fact, in Theorem 1.1, where L2 Dini mean
oscillation condition is imposed on A, the C1,1 regularity condition on Ω can be
relaxed further. This condition is essentially used only for the W2,p-solvability of
(1.8) and the Lp-solvability of (1.5). The Lp-solvability of (1.5) follows from the W2,p-
solvability of (1.8) by using the duality argument in [14]. For the W2,p-solvability
of (1.8) in a bounded domain Ω ⊂ Rn, we only require Ω to be in C1,α, where
α > 1 − 1/max{n, p}. Thus, in our case by taking p = 2, it suffices to assume Ω to
be in C1,α, where α > 1/2. We cannot find an explicit reference for this result, so
we sketch a proof in Appendix. It should be mentioned that this argument uses
Alexandrov maximum principle and is not applicable to elliptic systems, that is,
C1,1 regularity requirement onΩ in Theorem 1.1 cannot be lifted for elliptic systems.
It is also worth noting that in the two dimensional case, the W2,p-solvability of (1.8)
is also available when p is close to 2 and Ω is a bounded convex domain; see, for
instance, [5]. Thus, Theorem 1.1 also hold when Ω is bounded and convex.

2. Notation

For x0 ∈ R
n and r > 0, we denote by B(x0, r) the Euclidean ball with radius r

centered at x0, and denote

Ω(x0, r) := Ω ∩ B(x0, r).

We define BMO(Ω) as the set of functions u such that

‖u‖∗ := sup

{?
Ω(x0,r)

|u − ūx0,r| : x0 ∈ Ω, r > 0

}

is finite, where we set

ūx0 ,r :=















0 if r ≥ dist(x0, ∂Ω)>
Ω(x0,r)

u if r < dist(x0, ∂Ω).
(2.1)

We shall say that a bounded measurable function a is an atom forΩ if a is supported

in Ω(x0, r) for some x0 ∈ Ω and r > 0 and satisfies

‖a‖L∞(Ω) ≤
1

|Ω(x0, r)|
and āx0,r = 0.

Notice that the latter condition requires
>
Ω(x0,r)

a = 0 only if r < dist(x0, ∂Ω). A

function f is in the atomic Hardy space H1(Ω) if there is a sequence of atoms {ai}
∞
i=1

and a sequence of real numbers {λi} ∈ ℓ1 so that f =
∑∞

i=1 λiai. We define the norm
on this space by

‖ f ‖H1(Ω) = inf















∞
∑

i=1

|λi| : f =

∞
∑

i=1

λiai















.
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We note that the expression

sup

{∫

Ω

au dy : a is an atom for Ω

}

(2.2)

gives an equivalent norm on BMO(Ω) and that BMO(Ω) may be identified with the
dual of the atomic Hardy space H1(Ω). It may seem that our definition of BMO(Ω)
differs from those in other literatures [7, 23, 32, 36] but since we assume that Ω is
at least a C1,α or a bounded convex domain, it is the same. In particular, BMO(Ω)

can be identified with the subspace { f ∈ BMO(R2) : supp f ⊂ Ω}, with equivalent
norms.

We say thatΩ is a C1,α (resp. C2,α) domain if each point on∂Ωhas a neighborhood
in which ∂Ω is the graph of a C1,α (resp. C2,α) function for some α ∈ (0, 1].

3. Proof of Theorems 1.1 and 1.2

In dimension three and higher, the strategy of [21] was used in [22] to construct
Green’s function but it does not work in two dimensions. Here we follow a duality
argument in [36].

For y ∈ Ω and ǫ > 0, let v = Gǫ(·, y) ∈ W2,2(Ω) ∩W1,2
0

(Ω) be a unique strong
solution of the problem

Lv =
1

|Ω(y, ǫ)|
χΩ(y,ǫ) in Ω, v = 0 on ∂Ω. (3.1)

Since A is uniformly continuous inΩwith its modulus of continuity controlled by
ωA (see [22, Appendix]), the unique solvability of the problem (3.1) is a consequence
of standard Lp theory. Next, for an H1 atom a in Ω, consider the adjoint problem

L∗u = a in Ω, u = 0 on ∂Ω.

By [15, Lemma 2], there exists a unique adjoint solution u in L2(Ω), and we have?
Ω(y,ǫ)

u =

∫

Ω

aGǫ(·, y).

Then, by Theorem 1.3, we have
∣

∣

∣

∣

∣

∫

Ω

Gǫ(x, y)a(x) dx

∣

∣

∣

∣

∣

≤ N0.

Therefore, by the H1 and BMO duality, we find that the BMO norm of Gǫ(·, y) is
uniformly bounded, i.e.,

‖Gǫ(·, y)‖∗ ≤ C0 (3.2)

for some constant C0 depending only onν,Ω, andωA. The Banach-Alaoglu theorem
gives that for each y, there is a sequence {ǫ j} with lim j→∞ ǫ j = 0 and a function
G(·, y) ∈ BMO(Ω) so that Gǫ j

(·, y) converges to G(·, y) in the weak-∗ topology of
BMO(Ω). Let us fix a f ∈ Lp(Ω) with p > 1 and let u be the unique adjoint solution
of (1.5). Then we have ?

Ω(y,ǫ)

u(x) dx =

∫

Ω

Gǫ(x, y) f (x) dx. (3.3)

Since u is continuous inΩ by [11, Theorem 1.8], the left- hand side of (3.3) converges
to u(y). Since Lp(Ω) ⊂ H1(Ω) for all p > 1, we obtain the representation (1.7). This
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gives us that G(·, y) is the Green’s function with pole at y. Therefore, by using (3.2),
we obtain (1.10).

If we choose any sequence {ǫk} with limk→∞ ǫk = 0, the above argument gives
a subsequence of Gǫk

(·, y) which converges to a Green’s function. As the Green’s
function is unique, the limit must be the function G(·, y). This implies that the entire
family {Gǫ(·, y)}ǫ converges to G(·, y) in the weak-∗ topology of BMO(Ω). By the W2,p

estimate for non-divergence form elliptic equations with continuous coefficients,
we see from (3.1) that Gǫ(·, y) satisfies

‖Gǫ(·, y)‖W2,2(Ω\Ω(y,r)) ≤ C(r), r > 2ǫ.

This estimate will also hold for the limit and we see that G(·, y) ∈ W2,2(Ω \ B(y, r))
and LG(·, y) = 0 in Ω \ B(y, r) for any r > 0. Moreover, we have G(·, y) = 0 on ∂Ω.

Next, we show the pointwise bound (1.11). For x0 , y ∈ Ω, we set

r := 1
2 |x0 − y|.

In the case when r ≥ dist(x0, ∂Ω), we can find a point x̂0 ∈ ∂Ω such that

Ω(x0, r) ⊂ Ω(x̂0, 2r) ⊂ Ω \ {y}.

Since LG(·, y) = 0 inΩ(x̂0, 2r) and G(·, y) vanishes on ∂Ω∩B(x̂0, 2r), by the local W2,p

estimate, the Sobolev embedding theorem, and a standard iteration argument, we
see that the local L∞ estimate is available for G(·, y), i.e.,

|G(x0, y)| .

?
Ω(x̂0,2r)

|G(x, y)| dx. (3.4)

Then by (1.10), we have

|G(x0, y)| .

?
Ω(x̂0 ,2r)

|G(x, y)| dx . ‖G(·, y)‖∗ . 1,

which clearly yields the bound (1.11). In the case when r < dist(x0, ∂Ω), consider a
chain of domains Ω j = Ω(x0, 2 jr) for j = 0, . . . ,N so that 2Nr ≥ diamΩ. Notice that
N can be chosen so that

N . log
diamΩ

|x0 − y|
+ 1. (3.5)

Since G(·, y) is in BMO(Ω), we have
∣

∣

∣

∣

∣

∣

?
Ω j

G(x, y) dx−

?
Ω j+1

G(x, y) dx

∣

∣

∣

∣

∣

∣

. ‖G(·, y)‖∗ . 1

and by the choice of N, we have?
ΩN

|G(x, y)| dx =

?
Ω

|G(x, y)| dx . ‖G(·, y)‖∗ . 1.

Since L(G(·, y) − c) = LG(·, y) = 0 in Ω0 = B(x0, r) ⊂ Ω for any c ∈ R, similar to (3.4),
we have the local L∞ estimate

|G(x0, y) − c| .

?
Ω0

|G(x, y)− c| dx, ∀c ∈ R. (3.6)

Then by taking c =
>
Ω0

G(x, y) dx and using (1.10), we have
∣

∣

∣

∣

∣

∣

G(x0, y) −

?
Ω0

G(x, y) dx

∣

∣

∣

∣

∣

∣

. ‖G(·, y)‖∗ . 1.
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Therefore, by telescoping and using (3.5), we obtain the bound (1.11).
Now, we turn to the gradient estimate (1.12). In the case when r ≥ dist(x0, ∂Ω),

similar to (3.4), we have the local gradient bound

|DxG(x0, y)| .
1

r

?
Ω(x̂0,2r)

|G(x, y)| dx

and in the case when r < dist(x0, ∂Ω), similar to (3.6) we have

|DxG(x0, y)| .
1

r

?
Ω(x0,r)

|G(x, y)− c| dx, ∀c ∈ R.

In both cases, we get (1.12).
Finally, we prove the second derivative estimate (1.14). In the case when r <

dist(x0, ∂Ω), we use the interior C2 estimate (see [10, Theorem 1.6]), W2,p estimate for
elliptic equations with continuous coefficients, and a standard iteration argument
to get

|D2
xG(x0, y)| .

1

r2

?
Ω(x0,r)

|G(x, y)− c| dx, ∀c ∈ R.

In the case when r ≥ dist(x0, ∂Ω) andΩ is a C2,α domain, we apply the C2 estimate
near the boundary in [11] (see Lemma 2.18 there), the boundary W2,p estimate for
elliptic equations with continuous coefficients, and a standard iteration argument
to get

|D2
xG(x0, y)| .

1

r2

?
Ω(x̂0,2r)

|G(x, y)| dx.

Therefore, we get (1.13) and (1.14).
Finally, we prove that G∗(x, y) := G(y, x) becomes the Green’s function for the

adjoint operator L∗. For x0 , y ∈ Ω and ρ > 0, let u = G∗ρ(·, x0) ∈ L2(Ω) be a unique

solution of the adjoint problem

L∗u =
1

|Ω(x0, ρ)|
χΩ(x0,ρ) in Ω, u = 0 on ∂Ω.

Notice that we have ?
Ω(y,ǫ)

G∗ρ(x, x0) dx =

?
Ω(x0,ρ)

Gǫ(x, y) dx.

By [11, Theorem 1.8], we know that G∗ρ(·, x0) is continuous in Ω. Since Gǫ(·, y) →

G(·, y) in weak-∗ topology of BMO(Ω), by taking the limit ǫ→ 0, we have

G∗ρ(y, x0) =

?
Ω(x0,ρ)

G(x, y) dx.

Therefore, we find
lim
ρ→0

G∗ρ(y, x0) = G(x0, y). (3.7)

We note that argument around (3.4) – (3.6) shows that

|G∗ρ(y, x0)| =

∣

∣

∣

∣

∣

∣

?
Ω(x0,ρ)

G(x, y) dx

∣

∣

∣

∣

∣

∣

≤ C

(

1 + log
diamΩ

|x0 − y|

)

, ∀ρ > 0. (3.8)

For f ∈ Lq(Ω) with q ∈ (1,∞), let v ∈W2,q(Ω) ∩W
1,q

0
(Ω) be the strong solution of

Lv = f in Ω, v = 0 on ∂Ω.
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Then, we have ?
Ω(x0 ,ρ)

v(x) dx =

∫

Ω

G∗ρ(x, x0) f (x) dx,

and thus, by taking the limit, we also get

v(x0) = lim
ρ→0

∫

Ω

G∗ρ(x, x0) f (x) dx.

Therefore, by (3.7), (3.8), and Lebesgue dominated convergence theorem, we obtain
the representation formula (1.9), which means G∗(x, y) = G(y, x) is the Green’s
function for L∗. �

4. Proof of Theorem 1.3

We first consider the case when the L2 mean oscillation (1.6) of A satisfies the
Dini condition and the domain is C1,1, which is assumed in Theorem 1.1. The other
case will be treated at the end of the proof.

Suppose that a is supported in Ω(y0,R) so that ‖a‖L∞ . 1/R2. For x0 ∈ Ω and
r > 0, we define

ux0 ,r =















0 if r > 2 dist(x0, ∂Ω)>
Ω(x0,r)

u if r ≤ 2 dist(x0, ∂Ω)

and set

φ(x0, r) :=

?
Ω(x0 ,r)

|u − ux0 ,r|. (4.1)

Note that ux0 ,r in the above is slightly different from ūx0,r defined in (2.1). Let us
define the adjoint operator L∗

0
with constant coefficients

L∗0u :=

2
∑

i, j=1

Di j(ā
i ju), where āi j

=

?
Ω(x0,r)

ai j,

and split u = v(r) + w(r) + w̃(r), where w = w(r) is the weak solution of

L∗0w = a in Ω(x0, r), w = 0 on ∂Ω(x0, r),

and w̃ = w̃(r) is the L2 adjoint solution of

L∗0w̃ =

2
∑

i, j=1

Di j

(

(āi j − ai j)uχΩ(x0,r)

)

in Ω, w̃ = 0 on ∂Ω.

By the L2 theory for adjoint equations, we have1

(∫

Ω(x0,r)

|w̃|2
)1/2

≤

(∫

Ω

|w̃|2
)1/2

.

(∫

Ω(x0 ,r)

|Ā − A|2
)1/2

‖u‖L∞(Ω(x0 ,r)).

By Hölder’s inequality, we then have
?
Ω(x0 ,r)

|w̃| .

(?
Ω(x0 ,r)

|A − Ā|2
)1/2

‖u‖L∞(Ω(x0 ,r)) . ωA(r) ‖u‖L∞(Ω(x0 ,r)). (4.2)

1As remarked in the introduction, here we can relax the assumption that Ω is a C1,1 domain to an

assumption thatΩ is a C1,α domain for some α > 1
2 or thatΩ is a bounded convex domain.
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Now we turn to the decay estimate of φ(x0, r). Let κ ∈ (0, 1
4 ) be fixed. Note that

v = v(r) = u − w(r) − w̃(r) satisfies

L∗0v = 0 in Ω(x0, r), v = u = 0 in ∂Ω ∩ B(x0, r).

By an interior and boundary estimate for elliptic equations with constant coeffi-
cients, we have (recall vx0,r = 0 if B(x0, r/2) intersects ∂Ω)?

Ω(x0,κr)

|v − vx0,κr| ≤ 2κr‖Dv‖L∞(Ω(x0 ,r/3)) ≤ C0κ

?
Ω(x0,r)

|v − vx0,r|. (4.3)

Here, C0 is a constant depending only on ν and Ω. By using the decomposition
u = v + w + w̃ and (4.3), we obtain?

Ω(x0,κr)

|u − ux0,κr| ≤

?
Ω(x0,κr)

|v − vx0,κr| + 2

?
Ω(x0,κr)

|w| + 2

?
Ω(x0,κr)

|w̃|

≤ C0κ

?
Ω(x0,r)

|u − ux0,r| + C(κ−2
+ 1)

?
Ω(x0,r)

(|w| + |w̃|) .

Here, we used the obvious facts that

ux0,r = vx0,r + wx0,r + w̃x0,r, |wx0,r| ≤

?
Ω(x0 ,r)

|w|, |w̃x0,r| ≤

?
Ω(x0,r)

|w̃|.

Therefore, by (4.2), we have

φ(x0, κr) ≤ C0κφ(x0, r) + C(κ−2
+ 1)ωA(r) ‖u‖L∞(Ω(x0,r)) + C(κ−2

+ 1)

?
Ω(x0,r)

|w|.

Now we fix a κ = κ(ν,Ω) ∈ (0, 1
4 ) sufficiently small so that C0κ ≤ 1/2. Then, we

obtain

φ(x0, κr) ≤
1

2
φ(x0, r) + CωA(r) ‖u‖L∞(Ω(x0,r)) + C

?
Ω(x0,r)

|w(r)|. (4.4)

By iterating, for j = 1, 2, . . ., we get

φ(x0, κ
jr) ≤ 2− jφ(x0, r) + C‖u‖L∞(Ω(x0,r))

j
∑

i=1

2−iωA(κ j−ir) + Cψ j(x0, r), (4.5)

where we set

ψ j(x0, t) :=

j
∑

i=1

2−i

?
Ω(x0 ,κ j−ir)

|w(κ j−ir)|. (4.6)

Note that

∞
∑

j=1

j
∑

i=1

2−iωA(κ j−ir) =

∞
∑

i=1

∞
∑

j=i

2−iωA(κ j−ir) =

∞
∑

i=1

2−i
∞
∑

j=0

ωA(κ jr)

=

∞
∑

j=0

ωA(κ jr) .

∫ r

0

ωA(t)

t
dt. (4.7)

Lemma 4.1. We have
∞
∑

j=1

ψ j(x0, r) . 1, ∀x0 ∈ Ω, 0 < ∀r < diamΩ. (4.8)
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Take the lemma for granted now. Then from (4.5) and (4.7) we find that

∞
∑

j=0

φ(x0, κ
jr) . φ(x0, r) + ‖u‖L∞(Ω(x0 ,r))

∫ r

0

ωA(t)

t
dt + 1. (4.9)

Since we have

|ux0,κr − ux0,r| ≤ |u(x)− ux0 ,r| + |u(x) − ux0,κr|,

by taking average over x ∈ Ω(x0, κr), we obtain

|ux0,κr − ux0 ,r| ≤ φ(x0, κr) + φ(x0, r).

Then, by iterating, we get

|ux0,κir − ux0,r| ≤ 2

i
∑

j=0

φ(x0, κ
jr). (4.10)

By Theorem 1.8 in [11], we find that u is continuous in Ω, and thus we see that

lim
i→∞

ux0,κir = u(x0). (4.11)

Therefore, by taking i→ ∞ in (4.10) and using (4.9), we get

|u(x0) − ux0,r| . φ(x0, r) + ‖u‖L∞(Ω(x0,r))

∫ r

0

ωA(t)

t
dt + 1, (4.12)

which implies that

|u(x0)| . r−2‖u‖L1(Ω(x0 ,r)) + ‖u‖L∞(Ω(x0 ,r))

∫ r

0

ωA(t)

t
dt + 1. (4.13)

Now, taking the supremum for x0 ∈ Ω(x, r), where x ∈ Ω, we have

‖u‖L∞(Ω(x,r)) ≤ C

(

r−2‖u‖L1(Ω(x,2r)) + ‖u‖L∞(Ω(x,2r))

∫ r

0

ωA(t)

t
dt + 1

)

.

We fix r0 <
1
3 such that for any 0 < r ≤ r0,

C

∫ r

0

ωA(t)

t
dt ≤

1

32
.

Then, we have for any x ∈ Ω and 0 < r ≤ r0 that

‖u‖L∞(Ω(x,r)) ≤ 3−2‖u‖L∞(Ω(x,2r)) + Cr−2‖u‖L1(Ω(x,2r)) + C.

For k = 1, 2, . . ., denote rk = 3 − 21−k. Note that rk+1 − rk = 2−k for k ≥ 1 and r1 = 2.
Without loss of generality, let us assume that 0 ∈ Ω. For x ∈ Ωrk

= Ω(0, rk) and

r ≤ 2−k−2, we have B(x, 2r) ⊂ Brk+1
. We take k0 ≥ 1 sufficiently large such that

2−k0−2 ≤ r0. It then follows that for any k ≥ k0,

‖u‖L∞(Ωrk
) ≤ 3−2‖u‖L∞(Ωrk+1

) + C22k‖u‖L1(Ω3) + C.

By multiplying the above by 3−2k and then summing over k = k0, k0 + 1, . . ., we
reach

∞
∑

k=k0

3−2k‖u‖L∞(Ωrk
) ≤

∞
∑

k=k0

3−2(k+1)‖u‖L∞(Ωrk+1
) + C‖u‖L1(Ω3) + C.
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Since we assume that u ∈ L∞(Ω), the summations on both sides are convergent.
Therefore, we have

3−2k0‖u‖L∞(Ωrk0
) ≤ C‖u‖L1(Ω3) + C,

which in turn implies (recall 2 < rk0
)

‖u‖L∞(Ω2) . ‖u‖L1(Ω3) + 1. (4.14)

Lemma 4.2. We have

‖u‖L1(Ω) . 1.

Proof. For any f ∈ L∞(Ω), let v ∈ W2,2(Ω) ∩W1,2
0

(Ω) be the unique solution of the
problem

Lv = f in Ω, v = 0 on ∂Ω.

See, for instance, §11.3 in [27]. By the Sobolev embedding and the W2,2 theory, we

have v ∈ C(Ω) and

‖v‖L∞(Ω) ≤ C‖v‖W2,2(Ω) ≤ C‖ f ‖L2 (Ω) ≤ C‖ f ‖L∞(Ω),

where C = C(ν, ωA,Ω).2 Since
∫

Ω

u f dx =

∫

Ω

av dx,

and ‖a‖L1(Ω) ≤ 1, we find
∣

∣

∣

∣

∣

∫

Ω

u f dx

∣

∣

∣

∣

∣

≤ C‖ f ‖L∞(Ω),

which implies that ‖u‖L1(Ω) ≤ C. �

By Lemma 4.2 and (4.14), we have (recalling that 0 ∈ Ω is an arbitrary choice)

‖u‖L∞(Ω) . 1

as desired. The proof of the theorem is complete once we prove Lemma 4.1.

Proof of Lemma 4.1. Let Gr(x, y) denote the Green’s function for the constant coeffi-
cient operator L∗0 =

∑

Di jā
i j =

∑

āi jDi j in Ω(x0, r). Then we have

w(r)(x) =

∫

Ω(x0,r)

Gr(x, y)a(y) dy, ∀x ∈ Ω(x0, r).

We shall use the following estimates for Green’s function Gr(x, y):

|Gr(x, y)| ≤ C

(

1 + log
2r

|x − y|

)

, (4.15)

|Gr(x, y)− Gr(x, y
′)| ≤ C

|y − y′|

|x − y|
. (4.16)

2Here, we only need that Ω is a bounded C1,1 domain. In the scalar case, by using Alexandrov

estimate, one can bypass the W2,2 estimate and directly get ‖v‖L∞(Ω) ≤ C‖ f ‖L2 (Ω) ≤ C‖ f ‖L∞(Ω), and thus

only boundedness of Ω is needed.
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Since L0 is a constant coefficients operator, the above estimates are widely known.

We remark that (4.16) may not be sharp if |y − y′| > 1
2 |x − y| but it is still a legit-

imate estimate, which can be seen by telescoping: choose a sequence of points

y0, y1, . . . , yN in Ω such that3

y0 = y, yN = y′, |yi− yi−1| ≤
1

2
|x− y|, |x− y| ≤ |x− yi|, and

N
∑

i=1

|yi− yi−1| ≃ |y− y′|.

Then, we have

|G(x, y)− G(x, y′)| ≤
N

∑

i=1

|G(x, yi−1) − G(x, yi)| .

N
∑

i=1

|yi−1 − yi|

|x − yi|
.
|y − y′|

|x − y|
,

which establishes (4.16).
To estimate w(r), we consider two cases: |x0 − y0| ≤ 2R and |x0 − y0| > 2R.
Case 1. Let us first consider the case when |x0 − y0| ≤ 2R. If r ≤ 3R, we use the

size condition of a and (4.15) to estimate w(r)(x) for x ∈ Ω(x0, r) as follows:

|w(r)(x)| ≤

∫

Ω(x0,r)

|Gr(x, y)| |a(y)| dy .
1

R2

∫

Ω(x0,r)∩Ω(y0,R)

(

1 + log
2r

|x − y|

)

dy

.
1

R2

∫

B(x,2r)

(

1 + log
2r

|x − y|

)

dy .
r2

R2
. (4.17)

Therefore, we have ?
Ω(x0,r)

|w(r)| .
r2

R2
when r ≤ 3R. (4.18)

If r > 3R, we have Ω(x0, r) ⊃ Ω(y0,R). In the case when R < dist(y0, ∂Ω), we use
the cancellation property of a to find that

w(r)(x) =

∫

Ω(x0 ,r)

Gr(x, y)a(y) dy =

∫

Ω(y0,R)

(

Gr(x, y)− Gr(x, y0)
)

a(y) dy.

Then by the estimate (4.16) and using the symmetry, we have

|w(r)(x)| ≤

∫

Ω(y0,R)

|Gr(x, y) − Gr(x, y0)| |a(y)| dy

.
1

R

∫

B(y0,R)

min

(

1

|x − y|
,

1

|x − y0|

)

dy.

In the case when |x − y0| ≤ R, we estimate

|w(r)(x)| .
1

R

∫

B(y0,R)

1

|x − y|
dy .

1

R

∫

B(x,2R)

1

|x − y|
dy . 1.

In the case when |x − y0| > R, we estimate

|w(r)(x)| .
1

R

∫

B(y0,R)

1

|x − y0|
dy .

R

|x − y0|
.

Note that for x ∈ Ω(x0, r), we have

|x − y0| ≤ |x − x0| + |x0 − y0| ≤ r + 2R < 2r.

3This is always available whenΩ is, for example, a bounded Lipschitz domain.
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Combining these together, we have?
Ω(x0,r)

|w(r)(x)| dx .
1

r2

(∫

B(y0,R)

|w(r)(x)| dx+

∫

B(y0,2r)\B(y0,R)

|w(r)(x)| dx

)

.
1

r2

(
∫

B(y0,R)

dx +

∫

B(y0,2r)

R

|x − y0|
dx

)

.
R2

r2
+

R

r
.

R

r
.

In the case when R ≥ dist(y0, ∂Ω), we can find y′ ∈ ∂Ω(x0, r) such that |y′ − y0| ≤ R.
Therefore, we have

w(r)(x) =

∫

Ω(x0,r)

Gr(x, y)a(y) dy =

∫

Ω(y0,R)

(

Gr(x, y)− Gr(x, y
′)
)

a(y) dy.

Notice that Ω(y0,R) ⊂ Ω(y′, 2R). Then, by repeating the above argument with y′

in place of y0, we get the same conclusion. Therefore, we have?
Ω(x0 ,r)

|w(r)(x)| dx .
R

r
when r > 3R. (4.19)

Now, let us look into ψ j(x0, r), which is defined in (4.6). Let ℓ be the largest

integer satisfying κℓr > 3R. In the case when ℓ < 0, we have r ≤ 3R, and thus by
(4.18),

ψ j(x0, r) =

j
∑

i=1

2−i

(

κ j−ir

R

)2

. 2− j r2

R2
. 2− j.

In the case when 0 ≤ ℓ < j, we have by (4.18) and (4.19) that

ψ j(x0, r) =

j−ℓ−1
∑

i=1

2−i

(

κ j−ir

R

)2

+

j
∑

i= j−ℓ

2−i R

κ j−ir

.

(

κℓr

R

)2

2ℓ− j
+

(

R

κℓr

)

2ℓ− j
. 2ℓ− j,

where we used κℓr ≃ R, which follows from the choice of ℓ. Finally, in the case
when ℓ ≥ j, we have by (4.19) that

ψ j(x0, r) = R

j
∑

i=1

2−i R

κ j−ir
.

R

κ jr
=

R

κℓr
κℓ− j
. κℓ− j.

Therefore, we have
∞
∑

j=0

ψ j(x0, r) .

∞
∑

j=0

(

2− j[ℓ < 0] + 2ℓ− j[0 ≤ ℓ < j] + κℓ− j[ℓ ≥ j]
)

.

∞
∑

j=0

2− j
+

∞
∑

j=ℓ

2ℓ− j
+

ℓ
∑

j=0

κℓ− j
. 1. (4.20)

This completes the proof of (4.8) in the case when |x0 − y0| ≤ 2R.
Case 2. Next, we turn to the proof of (4.8) in the case when |x0 − y0| > 2R. We

first consider the case when Ω(y0,R) 1 Ω(x0, r). Instead of (4.17), we estimate

|w(r)(x)| ≤

∫

Ω(x0 ,r)

|Gr(x, y)| |a(y)| dy .
1

R2

∫

Ω(x0,r)∩Ω(y0,R)

|Gr(x, y)| dy. (4.21)
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IfΩ(x0, r) ∩Ω(y0,R) = ∅, then the above integral is zero. Therefore, we have
?
Ω(x0,r)

|w(r)(x)| dx = 0 when Ω(x0, r) ∩Ω(y0,R) = ∅. (4.22)

If Ω(x0, r) ∩Ω(y0,R) , ∅, then for y ∈ Ω(x0, r) ∩Ω(y0,R), we can find y′ ∈ ∂Ω(x0, r)
such that |y − y′| ≤ 2R (recall Ω(y0,R) 1 Ω(x0, r)). Then, by the Green’s function
estimate (4.16), we have

|Gr(x, y)| = |Gr(x, y)− Gr(x, y
′)| .

R

|x − y|
.

Hence by (4.21), we obtain

|w(r)(x)| .
1

R

∫

Ω(x0,r)∩Ω(y0,R)

1

|x − y|
dy.

In the case when |x − y0| > 2R, we have |x − y| > R, and thus

|w(r)(x)| .
1

R2

∫

B(y0,R)

dy . 1.

In the case when |x − y0| ≤ 2R, we have B(y0,R) ⊂ B(x, 3R), and thus

|w(r)(x)| .
1

R

∫

B(x,3R)

1

|x − y|
dy . 1.

In both cases, we have

?
Ω(x0 ,r)

|w(r)(x)| dx . 1

when Ω(y0,R) 1 Ω(x0, r) and Ω(x0, r) ∩Ω(y0,R) , ∅. (4.23)

In the case when Ω(y0,R) ⊂ Ω(x0, r), we have r > 3R (recall |x0 − y0| > 2R) and
similar to (4.19), we have ?

Ω(x0,r)

|w(r)(x)| dx .
R

r
. (4.24)

Since we assume |x0 − y0| > 2R, there exists the smallest integer ℓ satisfying

Ω(x0, κ
ℓr) ∩Ω(y0,R) = ∅.

Then, by the choice of ℓ,

Ω(x0, κ
ℓ−1r) ∩Ω(y0,R) , ∅,

and thus κℓ−1r > |x0 − y0| − R > R. Also, since κ < 1
4 , we note that

Ω(y0,R) ⊂ Ω(x0, 2R + κℓ−1r) ⊂ Ω(x0, κ
ℓ−2r).

In the case when ℓ ≤ 1, then by (4.22) and (4.23), we have

ψ j(x0, r) = 2− j

?
Ω(x0,r)

|w(r)| . 2− j.
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In the case when 1 < ℓ ≤ j, then by (4.22), (4.23), and (4.24), we have

ψ j(x0, r) = 2−( j−ℓ+1)

?
Ω(x0 ,κℓ−1r)

|w(κℓ−1r)| +

j
∑

i= j−ℓ+2

2−i

?
Ω(x0 ,κ j−ir)

|w(κ j−ir)|

. 2ℓ− j
+

j
∑

i= j−ℓ+1

2−i R

κ j−ir
. 2ℓ− j

+
R

κℓ−1r
2ℓ− j
. 2ℓ− j.

In the case when ℓ > j, then by (4.23) we have

ψ j(x0, r) =

j
∑

i=1

2−i

?
Ω(x0,κ j−ir)

|w(κ j−ir)| .

j
∑

i=1

2−i R

κ j−ir
.

R

κ jr
=

R

κℓ−1r
κℓ−1− j

. κℓ− j.

Therefore, similar to (4.20), we obtain

∞
∑

j=0

ψ j(x0, r) .

∞
∑

j=0

(

2− j[ℓ ≤ 1] + 2ℓ− j[1 < ℓ ≤ j] + κℓ− j[ℓ > j]
)

. 1

as desired. �

Now, we consider the other case when and A is of Dini mean oscillation and
Ω is a C2,α domain. We note that L2 mean oscillation (1.6) is used to obtain the
estimate (4.2), which seems no longer available with L1 mean oscillation (1.3). We
shall derive an estimate which substitutes (4.2) as follows. Since L∗

0
has constant

coefficients and ∂Ω is of C2,α, we have weak type-(1, 1) estimate4 (see e.g., [11,
Lemma 2.4])

|{x ∈ Ω : |w̃(x)| > t}| .
1

t

∫

Ω

∣

∣

∣(Ā − A)uχΩ(x0,r)

∣

∣

∣ ≤
1

t

(∫

Ω(x0,r)

|Ā − A|

)

‖u‖L∞(Ω(x0,r)),

(4.25)
which implies that for any p ∈ (0, 1) we have

∫

Ω(x0,r)

|w̃|p =

∫ τ

0

+

∫ ∞

τ

ptp−1 |{x ∈ Ω(x0, r) : |w̃(x)| > t}| dt

. |Ω(x0, r)|

∫ τ

0

ptp−1 dt + |Ω(x0, r)|ωA(r) ‖u‖L∞(Ω(x0,r))

∫ ∞

τ

ptp−2 dt

= |Ω(x0, r)|τp
+

p

1 − p
|Ω(x0, r)|ωA(r) ‖u‖L∞(Ω(x0,r))τ

p−1.

By taking τ = ωA(r) ‖u‖L∞(Ω(x0 ,r)) in the above, we obtain

(?
Ω(x0 ,r)

|w̃|p
)1/p

. ωA(r) ‖u‖L∞(Ω(x0,r)),

which substitutes (4.2). For the sake of definiteness, we shall take p = 1
2 in the

above and get
(?
Ω(x0,r)

|w̃|
1
2

)2

. ωA(r) ‖u‖L∞(Ω(x0 ,r)). (4.26)

4Here, we use the assumption thatΩ is a bounded C2,α domain for some α > 0.
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Also, instead of (4.3), we have the following: First note that for any κ ∈ (0, 1
4 ), we

always have

(?
Ω(x0,κr)

|v − vx0,κr|
1
2

)2

≤ 2κr‖Dv‖L∞(Ω(x0,κr)) ≤ 2κr‖Dv‖L∞(Ω(x0 ,r/3)),

for if B(x0, κr/2) intersects ∂Ω and we have v − vx0,κr = v − 0 = v − v(x̄) for some
x̄ ∈ ∂Ω ∩ B(x0, κr/2).

Next, in the case when r ≤ 2 dist(x0, ∂Ω), the interior estimates for equations
with constant coefficients yield

‖Dv‖L∞(Ω(x0 ,r/3)) .
1

r

(?
Ω(x0 ,r/2)

|v − c|
1
2

)2

.
1

r

(?
Ω(x0,r)

|v − c|
1
2

)2

, ∀c ∈ R,

for v − c satisfies L∗
0
(v − c) = 0 in Ω(x0, r/2) = B(x0, r/2) and D(v − c) = Dv. In the

case when r > 2 dist(x0, ∂Ω), by the boundary estimate we have

‖Dv‖L∞(Ω(x0 ,r/3)) .
1

r

(?
Ω(x0,r)

|v|
1
2

)2

.

Combining these together, we conclude that

(?
Ω(x0,κr)

|v − vx0,κr|
1
2

)2

≤ C0κ

(?
Ω(x0 ,r)

|v − c|
1
2

)2

, (4.27)

where c = 0 when r > 2 dist(x0, ∂Ω) and c ∈ R is arbitrary otherwise.
We recall the facts that for all a, b ≥ 0, we have

(a + b)
1
2 ≤ a

1
2 + b

1
2 , (a + b)2 ≤ 2(a2

+ b2),

and

‖ f + g‖L1/2 ≤ 2
(

‖ f ‖L1/2 + ‖g‖L1/2

)

.

By using the decomposition u = v+w+ w̃, the above facts, and (4.27), we obtain

(?
Ω(x0,κr)

|u − vx0,κr|
1
2

)2

≤ 2

(?
Ω(x0,κr)

|v − vx0,κr|
1
2

)2

+ 2

(?
Ω(x0,κr)

|w + w̃|
1
2

)2

≤ 2C0κ

(?
Ω(x0 ,r)

|v − c|
1
2

)2

+ 2κ−4

(?
Ω(x0,r)

|w + w̃|
1
2

)2

≤ 4C0κ

(?
Ω(x0 ,r)

|u − c|
1
2

)2

+ (4C0κ + 2κ−4)

(?
Ω(x0,r)

|w + w̃|
1
2

)2

≤ 4C0κ

(?
Ω(x0 ,r)

|u − c|
1
2

)2

+ (C0 + 2κ−4)ωA(r) ‖u‖L∞(Ω(x0 ,r))

+ (C0 + 2κ−4)

?
Ω(x0,κr)

|w|,

where we used (4.26) and Hölder’s inequality in the last step.
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Therefore, in place of (4.1), if we set

φ(x0, r) :=



































inf
c∈R

(?
Ω(x0 ,r)

|u − c|
1
2

)2

if r ≤ 2 dist(x0, ∂Ω)

(?
Ω(x0,r)

|u|
1
2

)2

if r > 2 dist(x0, ∂Ω),

then we still obtain (4.4) and (4.9). Moreover, if we set qx0 ,r ∈ R to be a number
such that

φ(x0, r) =

(?
Ω(x0,r)

|u − qx0,r|
1
2

)2

,

then instead of (4.10), (4.11), and (4.12), we have

|qx0,κir − qx0 ,r| ≤ 4

i
∑

j=0

φ(x0, κ
jr),

lim
i→∞

qx0,κir = u(x0),

|u(x0) − qx0,r| . φ(x0, r) + ‖u‖L∞(Ω(x0 ,r))

∫ r

0

ωA(t)

t
dt + 1,

respectively. Also, by averaging the inequality

|qx0,r|
1
2 ≤ |u(x) − qx0 ,r|

1
2 + |u(x)|

1
2

over x ∈ Ω(x0, r), taking the square, and using Hölder’s inequality, we get

|qx0,r| ≤ 2φ(x0, r) + 2

(?
Ω(x0,r)

|u|
1
2

)2

.

?
Ω(x0,r)

|u|.

By combining these inequalities, we have (4.13). The rest of proof is the same.

5. Appendix

We sketch the proof of the W2,p-solvability of (1.8) in a bounded C1,α domain
Ω ⊂ Rn with α > 1 − 1/max{n, p}, which enable us to relax the C1,1 condition of Ω
in Theorems 1.1 to C1,α, where α > 1/2. Recall the regularized distance function
ψ on Ω introduced in [28] is such that ψ(x) is comparable to dist (x, ∂Ω) near the

boundary and ψ ∈ C1,α(Ω) ∩ C∞(Ω). Without loss of generality, we assume 0 ∈ ∂Ω
and the xn-direction is the normal direction at 0. Taking a small constant r > 0, we
flatten the boundary ∂Ω near 0 by making the change of variables

x ∈ Ωr := Ω(0, r)→ y ∈ Rn
+, yi(x) = xi, i = 1, . . . , n − 1, yn(x) = ψ(x).

In the y-variables, the equation becomes

ãklDyk yl
u + b̃Dyn

u = f in ψ(Ωr) ⊂ R
n
+

with the Dirichlet boundary condition u = 0 on {yn = 0}, where

ãkl = ai jDxi
ykDx j

yl, b̃ = ai jDxix j
ψ.

Sinceψ ∈ C1,α(Ω), ãkl is uniformly continuous in ψ(Ωr). It follows from [34, Lemma
2.4] that |b(y)| ≤ Cy1−α

n . In particular, b ∈ Lmax{n,p}+ε(ψ(Ωr)) for some ǫ > 0 provided
that α > 1−1/max{n, p}. By using the boundary W2,p-estimate for elliptic equation,
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Gerhardt’s inequalities (cf. [18] or [24, Lemma 1 (ii)]), and a standard iteration
argument, we conclude that for any W2,p-solution u,

‖u‖W2,p(Ωr/2) ≤ C‖ f ‖Lp (Ωr) + C‖u‖Lp(Ωr).

It then follows from a partition of unity argument and the corresponding interior
estimate that

‖u‖W2,p(Ω) ≤ C‖ f ‖Lp (Ω) + C‖u‖Lp(Ω).

Now by the proof of [19, Lemma 9.17], using a compactness argument and the
Alexandrov maximum principle, we have

‖u‖W2,p(Ω) ≤ C‖ f ‖Lp (Ω),

which also gives the uniqueness of solutions. Finally, the existence of solutions
follows from an approximation and bootstrap argument. See the proof of [19,
Theorem 9.15].
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