
Scalable load balancing in networked systems:
A survey of recent advances*†

Mark van der Boor1, Sem C. Borst1,
Johan S.H. van Leeuwaarden,1,2 and Debankur Mukherjee3

1Eindhoven University of Technology, The Netherlands
2Tilburg University, The Netherlands

3Georgia Institute of Technology, Atlanta GA, USA

November 8, 2021

Abstract

In this survey we provide an overview of recent advances on scalable load balancing
schemes which provide favorable delay performance and yet require minimal implementa-
tion overhead. The basic load balancing scenario involves a single dispatcher where tasks
arrive that must immediately be forwarded to one of N single-server queues. The Join-
the-Shortest-Queue (JSQ) policy yields vanishing delays as N grows large, as in a central-
ized queueing arrangement, but involves a prohibitive communication burden. In contrast,
JSQ(d) schemes that assign an incoming task to a server with the shortest queue among
d servers selected uniformly at random require little communication, but lead to constant
delays. In order to examine this fundamental trade-off between delay performance and im-
plementation overhead, we discuss a body of recent research on JSQ(d(N)) schemes where
the diversity parameter d(N) depends on N and investigate the growth rate of d(N) re-
quired to match the optimal JSQ performance on fluid and diffusion scale.

Stochastic coupling techniques and scaling limits play an instrumental role in estab-
lishing this asymptotic optimality. We demonstrate how this methodology carries over
to infinite-server settings, finite buffers, multiple dispatchers, servers arranged on graph
topologies, and token-based load balancing schemes such as Join-the-Idle-Queue (JIQ), thus
providing a broad overview of the main trends in the field.

*This survey extends the short review presented at ICM 2018 [151], and Section 6 provides a synopsis of a
SIGMETRICS 2018 conference paper published in the Proceedings of the ACM on Measurement and Analysis of
Computing Systems [116]

†The work is partially supported by the National Science Foundation under Grant No. 2113027 and The Nether-
lands Organization for Scientific Research (NWO) [Gravitation Grant NETWORKS 024.002.003].

1

ar
X

iv
:1

80
6.

05
44

4v
2

 [
m

at
h.

PR
]

 4
 N

ov
 2

02
1

Contents

1 Introduction 3

2 Scalability spectrum 6
2.1 Basic model . 6
2.2 Asymptotic scaling regimes . 7
2.3 Basic load balancing algorithms . 8
2.4 Performance comparison . 11

3 Preliminaries, JSQ policy, and power-of-d algorithms 13
3.1 Definitions, limit sequences and convergence issues . 13
3.2 Fluid limit for JSQ(d) policies . 15
3.3 Fluid limit for JSQ policy . 16
3.4 Diffusion limit for JSQ policy . 17
3.5 JSQ(d) policies in heavy-traffic regime . 20

4 Universality of JSQ(d) policies 21
4.1 High-level outline of proof approach . 22
4.2 Extension to batch arrivals . 25

5 Blocking and infinite-server dynamics 26
5.1 Fluid limit for JSQ policy . 27
5.2 Diffusion limit for JSQ policy . 28
5.3 Universality of JSQ(d) policies in infinite-server dynamics 30

6 Load balancing in graph topologies 36
6.1 Asymptotic optimality criteria for deterministic graph sequences 40
6.2 Asymptotic optimality of random graph sequences . 43

7 Token-based load balancing 44
7.1 Fluid-level optimality of JIQ scheme . 44
7.2 Diffusion-level optimality of JIQ scheme . 45
7.3 Multiple dispatchers . 48
7.4 Joint load balancing and auto-scaling . 51

8 Redundancy policies and alternative scaling 55
8.1 Redundancy-d policies . 56
8.2 Conventional heavy traffic . 57
8.3 Non-degenerate slowdown . 58
8.4 Sparse-feedback regime . 58
8.5 Scaling of maximum queue length . 59

9 Extensions and future research directions 60
9.1 JSQ(d) policies with general service requirement distributions 61
9.2 Heterogeneous servers and knowledge of service requirements 62
9.3 Open problems and emerging research directions . 63

2

1 Introduction

In this survey we review scalable load balancing algorithms (LBAs) which achieve excellent de-
lay performance in large-scale systems and yet have a low implementation overhead. LBAs play
a critical role in distributing service requests or tasks (e.g. computing jobs, data base look-ups,
file transfers) among servers or distributed resources in parallel-processing systems. The anal-
ysis and design of LBAs has attracted significant attention in recent years, mainly spurred by
crucial scalability challenges arising in cloud networks and data centers with massive numbers
of servers. LBAs can be broadly categorized as static, dynamic, or some intermediate blend,
depending on the amount of feedback or state information (e.g. congestion levels) that is used
in allocating tasks. The use of state information naturally allows dynamic policies to achieve
better delay performance, but also involves higher implementation complexity and a substan-
tial communication burden. The latter issue is particularly pertinent in cloud networks and
data centers with immense numbers of servers handling a huge influx of service requests. In
order to understand the large-system characteristics, we examine scalability properties through
the prism of asymptotic scalings where the system size grows large, and identify LBAs which
strike a balance between delay performance and implementation overhead.

The most basic load balancing scenario consists of N identical parallel servers and a dis-
patcher where tasks arrive sequentially. Arriving tasks must immediately be forwarded to
one of the servers. Tasks are assumed to have unit-mean exponentially distributed service re-
quirements, and the service discipline at each server is supposed to be oblivious to the actual
service requirements. These assumptions, in conjunction with a Poisson arrival process, permit
a Markovian state description for the evolution of the queue length process. Moreover, the
symmetry arising from the homogeneity of tasks and exchangeability of the servers provides a
particularly convenient basis for stochastic coupling arguments and scaling limits. In the early
parts of this survey we will focus on this basic setup which has been prevalent in the literature,
but in later sections of the paper we will also discuss graph-based versions where the servers
are no longer statistically identical. In addition, we will touch on scenarios with heterogeneous
tasks, extensions to general service requirement distributions and situations where advance
knowledge of the service requirements is available.

In the above-described basic setup, the celebrated Join-the-Shortest-Queue (JSQ) policy has
several important stochastic optimality properties. In particular, the JSQ policy achieves the
minimum mean overall delay among all non-anticipating policies that do not have any advance
knowledge of the service requirements [34, 172]. In order to implement the JSQ policy however,
a dispatcher requires instantaneous knowledge of all the queue lengths, which may involve a
prohibitive communication burden with a large number of servers N. This poor scalability has
motivated consideration of JSQ(d) policies, where an incoming task is assigned to a server with
the shortest queue among d ≥ 2 servers selected uniformly at random. Note that this involves
an exchange of 2d messages per task, irrespective of the number of servers N. Seminal results
in [114, 163] imply that even sampling as few as d = 2 servers yields significant performance
enhancements over purely random assignment (d = 1) as N grows large, which is commonly
referred to as the power-of-two or power-of-choice effect. In particular, when tasks arrive at rate
λN, the queue length distribution at each individual server exhibits super-exponential decay
for any fixed λ < 1 as N grows large, a considerable improvement compared to exponential
decay for purely random assignment.

3

The diversity parameter d thus induces a fundamental trade-off between the amount of
communication overhead and the delay performance. Specifically, a random assignment policy
does not entail any communication burden, but the mean waiting time remains constant as N
grows large for any fixed λ > 0. In contrast, a nominal implementation of the JSQ policy
(without maintaining state information at the dispatcher) involves 2N messages per task, but
the mean waiting time vanishes as N grows large for any fixed λ < 1. Although JSQ(d) policies
with d ≥ 2 yield major performance improvements over purely random assignment while
reducing the communication burden by a factor O(N) compared to the JSQ policy, the mean
waiting time does not vanish in the limit. Hence, no fixed value of d will provide asymptotically
optimal delay performance. This is evidenced by powerful results [50, 51, 52] indicating that
in the absence of any memory at the dispatcher the communication overhead per task must
increase with N in order for any scheme to achieve a zero mean waiting time in the limit.

In the context of JSQ(d) policies, scalability specifically pertains to the intrinsic trade-off
between delay performance and communication overhead as governed by the diversity pa-
rameter d, in conjunction with the relative load λ. In this survey we review scaling results
which offer detailed insight in the latter trade-off in a regime where not only the overall task
arrival rate is assumed to grow with N, but also the diversity parameter is allowed to depend
on N. We write λ(N) and d(N) to explicitly reflect that, and provide a sketch of the analysis
in [119] which identifies the growth rate of d(N) required in order to achieve a zero mean wait-
ing time in the limit, depending on the scaling of λ(N). This involves both fluid-scaled and
diffusion-scaled versions of the queue length process in regimes where λ(N)/N → λ < 1 and
(N − λ(N))/

√
N → β > 0 as N → ∞, respectively, see Section 3.1 for definitions of these ob-

jects. As we will be discussed in detail there, the limiting processes are insensitive to the exact
growth rate of d(N), as long as the latter is sufficiently fast, and in particular coincide with the
limiting processes for the JSQ policy. This demonstrates that the optimality of the JSQ policy
can asymptotically be preserved while dramatically lowering the communication overhead.

As mentioned above, we will also consider network scenarios where the N servers are as-
sumed to be inter-connected by some underlying graph topology GN . Tasks arrive at the vari-
ous servers as independent Poisson processes of rate λ, and each incoming task is assigned to
whichever server has the shortest queue amongst the one where it appears and its neighbors in
GN . Such network scenarios are not only of theoretical interest, but also of major practical rel-
evance since they emerge in modeling so-called affinity relations and compatibility constraints
between tasks and servers. Such features are increasingly common in data centers and cloud
networks due to heterogeneity and data locality issues, and also relate to scalability consider-
ations, see Section 6 for a further discussion and specific literature pointers. In case GN is a
clique (fully connected graph), each incoming task is assigned to the server with the shortest
queue across the entire system, and the behavior is equivalent to that under the JSQ policy. The
stochastic optimality properties of the JSQ policy thus imply that the queue length process in
a clique will be ‘better’ than in an arbitrary graph GN . We will present sufficient conditions
formulated in [116] for the fluid-scaled and diffusion-scaled versions of the queue length pro-
cess in an arbitrary graph to be equivalent to the limiting processes in a clique as N → ∞. The
conditions demonstrate that the optimality of a clique can be asymptotically preserved while
dramatically reducing the number of connections, provided the graph GN is ‘suitably random’,
see Section 6 for a more formal statement.

4

While a zero waiting time can be achieved in the limit by sampling only d(N)� N servers,
the amount of communication overhead in terms of d(N) must still grow with N. This may be
explained from the fact that a large number of servers need to be sampled for each incoming
task to ensure that at least one of them is found idle with high probability. This can be avoided
by introducing memory at the dispatcher, in particular maintaining a record of vacant servers,
and assigning tasks to idle servers, if there are any. This so-called Join-the-Idle-Queue (JIQ)
scheme [11, 101] has gained huge popularity recently, and can be implemented through a sim-
ple token-based mechanism generating at most one message per task. The JIQ scheme is thus
quite appealing from a scalability perspective, which raises the question what the correspond-
ing delay performance is in large-scale systems. We will therefore also review results implying
that not only the fluid-scaled queue length process under the JIQ scheme asymptotically co-
incides with that under the JSQ policy as shown in [141], but that this equivalence property
extends to the diffusion-scaled queue length process as established in [118]. Thus, the use
of memory allows the JIQ scheme to achieve asymptotically optimal delay performance with
minimal communication overhead (at least in the idealized setting with statistically identical
servers and homogeneous tasks). In particular, ensuring that tasks are assigned to idle servers
whenever available is sufficient to achieve asymptotic optimality, and using any additional
queue length information yields no meaningful performance benefits on the fluid or diffusion
levels. It is worth pointing out though that the JIQ scheme is not optimal in certain asymptotic
regimes such as the non-degenerate slow-down (NDS) regime, see Section 2.2 for a formal def-
inition. In [73] it was shown that a minor modification of the JIQ scheme, called Idle-One-First,
which besides idle servers also keeps track of queues of length one is asymptotically optimal,
see Section 8.3 for a detailed discussion.

On a methodological note, it is worth observing that a direct derivation of the fluid limits and
diffusion limits in the above scenarios is quite challenging. Instead, the asymptotic equivalence
results in [116, 118, 119] are derived by relating the relevant system occupancy processes to
the corresponding processes under a JSQ policy, and showing that the deviation between these
processes is asymptotically negligible on either fluid scale or diffusion scale under suitable
assumptions on d(N) or GN . The known fluid and diffusion limits for the JSQ policy thus yield
the corresponding limit process for the JSQ(d(N)) policy, a load balancing graph GN and the
JIQ scheme as by-products.

In this survey we highlight the stochastic coupling techniques that played an instrumental
role in proving the asymptotic equivalence results in [116, 118, 119]. Although the stochastic
coupling concepts provide an effective and overarching approach, they defy a systematic recipe
and involve some degree of ingenuity and customization. Indeed, the specific coupling argu-
ments that were developed in [116, 118, 119] are different from those that were originally used
in establishing the stochastic optimality properties of the JSQ policy. Moreover, the specific
coupling approaches differ in sometimes subtle but critical ways between a JSQ(d(N)) policy,
a load balancing graph GN and the JIQ scheme, which all require the arguments to be suitably
tailored. We also review further stochastic coupling constructions that were devised in [120]
for scenarios with infinite-server dynamics.

While the results for load balancing graphs illustrate that the stochastic coupling techniques
can be applied in ‘asymmetric’ situations, it is fair to say that this approach is at its strongest in
scenarios where all the servers are exchangeable, and the evolution of the system occupancy can

5

be represented in terms of a density-dependent Markov process. In these cases, the approach
is particularly powerful in analyzing the system occupancy process on fluid or diffusion scale,
where for many policies the behavior can be shown to asymptotically coincide with that of JSQ,
for which fairly explicit characterizations are known.

Stochastic coupling does not seem to provide a directly useful approach for other functionals
of the system occupancy process, such as the the maximum queue length, where asymptotic
equivalence with JSQ on fluid or diffusion scale does not provide any information, and in fact
even asymptotically the behavior for many schemes is different. Applying stochastic coupling
techniques in highly heterogeneous settings is also difficult since the lack of symmetry tends
to break its underpinnings, and establishing scaling results for such scenarios remains as a
particularly challenging subject for further research, as further discussed in Section 9.

A final caveat is in order. Load balancing is a broad subject which has been actively pursued
for decades and has been investigated from a variety of perspectives in several communities
(algorithm design, applied probability, complexity theory, performance evaluation). While this
survey aims to touch on many of these aspects, reflect historical developments and connect
various threads, it is impossible to exhaustively cover the load balancing literature in full detail.
Rather than provide an encyclopedic overview, we therefore focus on scalability in terms of
delay performance and implementation overhead in large-scale systems as the overarching
theme, and highlight the combined power of stochastic coupling methods and scaling limits.

The survey is organized as follows. In Section 2 we discuss various LBAs and evaluate their
scalability properties. In Section 3 we introduce some useful preliminary concepts, and then
review fluid and diffusion limits for the JSQ policy as well as JSQ(d) policies with a fixed value
of d. In Section 4 we discuss the trade-off between delay performance and communication
overhead as a function of the diversity parameter d, in conjunction with the relative load. In
particular, we formulate asymptotic universality properties for JSQ(d) policies, which are ex-
tended to systems with server pools and network scenarios in Sections 5 and 6, respectively.
Section 7 is devoted to asymptotic optimality properties for the JIQ scheme. We discuss some-
what related redundancy policies and alternative scaling regimes and performance metrics in
Section 8. The survey is concluded in Section 9 with a discussion of yet further extensions and
several open problems and emerging research directions.

2 Scalability spectrum

In this section we review a wide spectrum of LBAs and examine scalability properties in terms
of their delay performance vis-a-vis associated implementation overhead in large-scale systems.

2.1 Basic model

Throughout this section and most of the paper, we focus on a basic scenario with N parallel
single-server infinite-buffer queues and a single dispatcher where tasks arrive as a Poisson
process of rate λ(N), as depicted in Figure 1. Arriving tasks cannot be queued at the dispatcher,
and must immediately be forwarded to one of the servers. This canonical setup is commonly
dubbed the supermarket model, in loose analogy with the daily-life situation of choosing between
parallel check-out lanes in supermarkets. Tasks are assumed to have unit-mean exponentially

6

λ(N)

1

2

3

...

N
10987654321

← Q1 = 10
← Q2 = 10

·
·
·

← Q6 = 7
·
·
·

Figure 1: Tasks arrive at the dispatcher as a
Poisson process of rate λ(N), and are for-
warded to one of the N servers according to
some specific load balancing algorithm.

Figure 2: The value of Qi represents the
width of the i-th row, when the servers are
arranged in non-descending order of their
queue lengths.

distributed service requirements, and the service discipline at each server is supposed to be
oblivious to the actual service requirements.

When tasks do not get served and never depart but simply accumulate, the above setup cor-
responds to a so-called balls-and-bins model, and we will further elaborate on the connections
and differences with work in that domain in Section 8.5.

2.2 Asymptotic scaling regimes

An exact analysis of the delay performance is quite involved, if not intractable, for all but the
simplest LBAs. Numerical evaluation or simulation are not straightforward either, especially
for high load levels and large system sizes. A common approach is therefore to consider various
limit regimes, which not only provide mathematical tractability and illuminate the fundamental
properties, but are also natural in view of the typical conditions in which cloud networks and
data centers operate. One can distinguish several asymptotic scalings that have been used for
these purposes:

(i) In the classical heavy-traffic regime, λ(N) = λN with a fixed number of servers N and a
relative load λ that tends to one in the limit.

(ii) In the conventional large-capacity or many-server regime, the relative load λ(N)/N ap-
proaches a constant λ < 1 as the number of servers N grows large.

(iii) The popular Halfin-Whitt regime, named after the authors of the seminal paper [74] where
this was introduced and first analyzed, combines heavy traffic with a large capacity, with

N − λ(N)√
N

→ β > 0 as N → ∞, (2.1)

so the relative capacity slack behaves as β/
√

N as the number of servers N grows large.

(iv) The so-called non-degenerate slow-down regime [8, 73] involves N − λ(N) → γ > 0, so
the relative capacity slack shrinks as γ/N as the number of servers N grows large.

7

The term non-degenerate slow-down refers to the fact that in the context of a centralized
multi-server queue (where load balancing between servers occurs implicitly), the mean waiting
time in regime (iv) tends to a strictly positive constant as N → ∞, and is thus of similar
magnitude as the mean service requirement. In contrast, in regimes (ii) and (iii), the mean
waiting time in a multi-server queue decays exponentially fast in N or is of the order 1/

√
N,

respectively as N → ∞, while in regime (i) the mean waiting time grows arbitrarily large
relative to the mean service requirement.

In the context of a centralized M/M/N queue, scalings (ii), (iii) and (iv) are commonly
referred to as Quality-Driven (QD), Quality-and-Efficiency-Driven (QED) and Efficiency-Driven
(ED) regimes. These terms reflect that (ii) offers excellent service quality (vanishing waiting
time), (iv) provides high resource efficiency (utilization approaching one), and (iii) achieves a
combination of these two, providing the best of both worlds.

In the remainder of the paper we will focus on scalings (ii) and (iii), and refer to these as fluid
and diffusion scalings, since it is natural to analyze the relevant system occupancy processes
on fluid scale (1/N) and diffusion scale (1/

√
N) in these regimes, respectively. In line with

the central theme of this survey, we will not provide a detailed account of scalings (i) and (iv),
which do not capture the large-scale perspective and do not allow for low delays, respectively.
However, we will briefly mention some results for these regimes in Sections 8.2 and 8.3.

2.3 Basic load balancing algorithms

2.3.1 Random assignment: N independent M/M/1 queues

One of the most basic LBAs is to assign each arriving task to a server selected uniformly at
random. In that case, the various queues collectively behave as N independent M/M/1 queues,
each with arrival rate λ(N)/N and unit service rate. In particular, at each of the queues, the
total number of tasks in stationarity has a geometric distribution with parameter λ(N)/N. By
virtue of the PASTA property, the probability that an arriving task incurs a non-zero waiting
time is λ(N)/N. The mean number of waiting tasks (excluding the possible task in service) at
each of the queues is λ(N)2

N(N−λ(N))
, so the total mean number of waiting tasks is λ(N)2

N−λ(N)
, which

by Little’s law implies that the mean waiting time is λ(N)
N−λ(N)

. In particular, when λ(N) = Nλ,
the probability that a task incurs a non-zero waiting time is λ, and the mean waiting time of a
task is λ

1−λ , independent of N, reflecting the independence of the various queues.
As we will see later, a broad range of queue-aware LBAs can deliver a probability of a

non-zero waiting time and a mean waiting time that vanish asymptotically. While a random
assignment policy is evidently not competitive with such queue-aware LBAs, it still plays a
relevant role due to the strong degree of mathematical tractability. For example, the queue
process under purely random assignment can be shown to provide an upper bound (in a
stochastic majorization sense) for various more involved queue-aware LBAs for which even
stability may be difficult to establish directly, yielding conservative performance bounds and
stability guarantees.

A slightly better LBA is to assign tasks to the servers in a Round-Robin manner, dispatching
every N-th task to the same server. In the fluid regime (ii), the inter-arrival time of tasks at
each given queue will then converge to a constant 1/λ as N → ∞. Thus each of the queues will
behave as a D/M/1 queue in the limit, and the probability of a non-zero waiting time and the

8

mean waiting time will be somewhat lower than under purely random assignment. However,
both the probability of a non-zero waiting time and the mean waiting time will still tend to
strictly positive values and not vanish as N → ∞.

2.3.2 Join-the-Shortest Queue (JSQ)

Under the Join-the-Shortest-Queue (JSQ) policy, each arriving task is assigned to the server
with the currently shortest queue (ties are broken arbitrarily). In the basic model described
above, the JSQ policy has several stochastic optimality properties, and yields the ‘most balanced
and smallest’ queue process among all non-anticipating policies that do not have any advance
knowledge of the service requirements [34, 172].

2.3.3 Join-the-Smallest-Workload (JSW): centralized M/M/N queue

Under the Join-the-Smallest-Workload (JSW) policy, each arriving task is assigned to the server
with the currently smallest workload. Note that this is an anticipating policy, since it requires
advance knowledge of the service requirements of all the tasks in the system. Further observe
that this policy (myopically) minimizes the waiting time for each incoming task, and mimicks
the operation of a centralized N-server queue with a FCFS discipline. The equivalence with a
centralized N-server queue with a FCFS discipline yields an additional optimality property of
the JSW policy: The vector of joint workloads at the various servers observed by each incoming
task is smaller in the Schur convex sense than under any alternative admissible policy [43].

It is worth observing that the above optimality properties in fact do not rely on Poisson
arrival processes or exponential service requirement distributions. At the same time, these
optimality properties do not imply that the JSW policy minimizes the mean stationary waiting
time. In our setting with Poisson arrivals and exponential service requirements, however, it
can be shown through direct means that the total number of tasks under the JSW policy is
stochastically smaller than under the JSQ policy. Indeed, in view of the equivalence with a
centralized M/M/N queue, the total service completion rate under the JSW policy is given
by min{L, N} when there are L tasks in total in the system, while under the JSQ policy the
total service completion rate is at most equal to min{L, N}, and may be lower than that when
some servers are idle while tasks are queued up at other servers. Even though the JSW policy
requires a similar excessive communication overhead, aside from its anticipating nature, the
above-mentioned equivalence in fact means that the total number of tasks behaves as a birth-
death process, which renders it far more tractable than the JSQ policy. Specifically, it follows
from textbook results for the centralized M/M/N queue that, given that all the servers are busy,
the total number of waiting tasks is geometrically distributed with parameter λ(N)/N. The
total mean number of waiting tasks is then ΠW(N, λ(N)) λ(N)

N−λ(N)
, and the mean waiting time

is ΠW(N, λ(N)) 1
N−λ(N)

, with ΠW(N, λ(N)) denoting the probability of the total occupancy in
an M/M/N queue being N or larger, i.e., the probability of all servers being occupied and a
task incurring a non-zero waiting time. The probability ΠW(N, λ(N)) can be obtained from
the stationary distribution of the birth-death process representing the system occupancy, and is
described by the so-called Erlang-C formula as function of the load and number of servers. The
latter function can be expressed in semi-explicit well approximated ‘closed form’ in terms of
a normalizing constant which is the sum of an explicit infinite series. Standard results for the

9

M/M/1 queue imply that the mean waiting time is λ(N)
N−λ(N)

for the random assignment policy
considered in Section 2.3.1. Thus it can immediately be concluded that the mean waiting time
under the JSW policy is smaller by at least a factor λ(N).

In the fluid regime λ(N) = Nλ, it can be shown that the probability ΠW(N, λ(N)) of a
non-zero waiting time decays exponentially fast in N, see for instance [74], and hence so does
the mean waiting time. The pivotal results in [74] further demonstrate that in the diffusion
regime (2.1), the probability ΠW(N, λ(N)) of a non-zero waiting time converges to a finite
constant Π∗W(β). This implies that the mean waiting time of is of the order 1/

√
N, and hence

vanishes as N → ∞.

2.3.4 Power-of-d load balancing (JSQ(d))

We have seen that the Achilles heel of the JSQ policy is its excessive communication overhead in
large-scale systems. This poor scalability has motivated consideration of so-called JSQ(d) poli-
cies, where an incoming task is assigned to a server with the shortest queue among d servers
selected uniformly at random. The seminal results in [114, 163] demonstrate that in the fluid
regime (ii), the stationary probability that there are i or more tasks at a given queue is pro-
portional to λ(di−1)/(d−1) as N → ∞, and thus exhibits super-exponential decay as opposed to
exponential decay for the random assignment policy considered in Section 2.3.1.

As alluded to in Section 1, the diversity parameter d thus induces a fundamental trade-off be-
tween the amount of communication overhead and the performance in terms of queue lengths
and delays. A rudimentary implementation of the JSQ policy (d = N, without replacement)
involves O(N) communication overhead per task, but it can be shown that the probability of
a non-zero waiting time and the mean waiting vanish as N → ∞ in both the fluid and the
diffusion regime, see Sections 3.3 and 3.4. Although JSQ(d) policies with a fixed parameter
d ≥ 2 yield major performance improvements over purely random assignment as implied by
the results in [114, 163], these results at the same time show that even in the fluid regime, the
probability of a non-zero waiting time and the mean waiting time do not vanish as N → ∞.

2.3.5 Token-based mechanisms: Join-the-Idle-Queue (JIQ)

While a zero waiting time can be achieved in the limit by sampling only d(N) � N servers,
the amount of communication overhead in terms of d(N) must still grow with N. This can
be countered by introducing memory at the dispatcher, in particular maintaining a record of
vacant servers, and assigning tasks to idle servers as long as there are any, or to a uniformly
at random selected server otherwise. This so-called Join-the-Idle-Queue (JIQ) scheme [11, 101]
has received keen interest recently, and can be implemented through a simple token-based
mechanism. Specifically, idle servers send tokens to the dispatcher to advertise their availability,
and when a task arrives and the dispatcher has tokens available, it assigns the task to one of
the corresponding servers (and disposes of the token). Note that a server only issues a token
when a task completion leaves its queue empty, thus generating at most one message per task.
Surprisingly, the mean waiting time and the probability of a non-zero waiting time vanish
under the JIQ scheme in both the fluid and the diffusion regime, as we will further discuss in
Section 7. Thus, the use of memory allows the JIQ scheme to achieve asymptotically optimal
delay performance with minimal communication overhead.

10

0 50 100 150 200

2

4

6

8

10

0 50 100 150 200

0.2

0.4

0.6

0.8

1.0

0 50 100 150 200

2

4

6

8

10

0 50 100 150 200

0.2

0.4

0.6

0.8

1.0

Figure 3: Simulation results for mean waiting time E[WN] and probability of a non-zero waiting
time pN

wait, for both a fluid and a diffusion regime.

2.4 Performance comparison

We now present some simulation results to compare the above-described LBAs in terms of
delay performance. Specifically, we evaluate the mean waiting time and the probability of a
non-zero waiting time in both a fluid regime (λ(N) = 0.9N) and a diffusion regime (λ(N) =

N −
√

N). The simulations are conducted for N = 10, 20, . . . , 200 servers, and run for 10000
time units. Each simulation starts with an empty system, but only jobs that leave after 2500
time units are counted in order to avoid transient effects. The probability of waiting and mean
waiting time are computed using the empirical averages over all jobs that leave after 2500 time
units. This procedure is repeated 20 times, and the results in Figure 3 show the mean waiting
time and probability of waiting averaged across these 20 runs. An overview of the asymptotic
delay performance and overhead associated with various LBAs is provided in Table 1.

We are specifically interested in distinguishing two classes of LBAs – the ones delivering
a mean waiting time and probability of a non-zero waiting time that vanish asymptotically,
and the ones that fail to do so – and relating that dichotomy to the associated communication
overhead and memory requirement at the dispatcher. We give these classifications for both the
fluid and the diffusion regime.

JSQ, JIQ, and JSW. As mentioned earlier, JSQ, JIQ and JSW have vanishing mean waiting
times in both the fluid and the diffusion regime, and this is supported by the figures, which
further reflect the optimality of JSW in terms of mean waiting time. We can also observe a
crucial difference, however, between JSW and JSQ/JIQ. Somewhat surprisingly, the probability
of a positive wait does not vanish for JSW in the diffusion regime, while it does vanish for

11

Scheme Queue length
Waiting time
(fixed λ < 1)

Waiting time
(1− λ ∼ 1/

√
N)

Overhead
per task

Random q?i = λi λ
1−λ Θ(

√
N) 0

JSQ(d) q?i = λ(di−1)/(d−1) Θ(1) Ω(log N) 2d

d(N) → ∞ same as JSQ same as JSQ ?? 2d(N)

d(N)√
N log(N)

→ ∞ same as JSQ same as JSQ same as JSQ 2d(N)

JSQ q?1 = λ, q?2 = o(1) o(1) Θ(1/
√

N) 2N

JIQ same as JSQ same as JSQ same as JSQ ≤ 1

Table 1: Queue length distribution, waiting times, and communication overhead for vari-
ous LBAs.

JSQ/JIQ. Since the mean waiting time for JSW is smaller than for JSQ/JIQ, this implies that the
mean of all non-zero waiting times (i.e., the mean waiting time conditional on having to wait)
is an order-of-magnitude larger in JSQ/JIQ compared to JSW. This difference can be explained
from the fact that JSW uses knowledge of the service requirements, whereas JSQ/JIQ do not.
Indeed, when a task is placed in a queue under JSQ/JIQ, it will need to wait for a ‘normal’
residual service time, whereas JSW exploits knowledge of that residual service time being
relatively short among all N queues. Or taking the equivalent view of JSW as a centralized
M/M/N queue, a task that needs to wait may find several tasks ahead of it in the queue, but
this queue is served by N servers combined, whereas in JSQ/JIQ each queue is handled by just
a single server. Conversely, when there are N or more tasks in the system in total, an arriving
task will need to wait under JSW, while in JSQ/JIQ some of the servers may have several tasks
in queue, and the arriving task may still find an idle server with high probability. We will
revisit the comparison between JSQ and a centralized M/M/N queue in Section 3.4.

Random and Round-Robin. The mean waiting time does not vanish for Random and Round-
Robin in the fluid regime, as already mentioned in Section 2.3.1. Moreover, the mean waiting
time grows without bound in the diffusion regime for these two schemes. This is because
the system can still be decomposed into single-server queues, and the loads of the individual
M/M/1 and D/M/1 queues tend to 1.

JSQ(d) policies. Three versions of JSQ(d) are included in Figure 3; d(N) = 2, d(N) =

blog(N)c → ∞ and d(N) = N2/3 for which d(N)√
N log(N)

→ ∞. Note that the graph for JSQ(log(N)),
where the diversity parameter grows logarithmically in N, shows kneepoints due to the slow
growth rate of log(N) and the fact that the actual integer value d(N) = blog(N)c occasionally
jumps by 1. As can be seen in Figure 3, the choices for which d(N) → ∞ have vanishing wait
in the fluid regime, while d = 2 has not. Overall, we see that JSQ(d) policies clearly outperform
Random and Round-Robin dispatching, while JSQ, JIQ, and JSW are better in terms of mean
wait.

12

3 Preliminaries, JSQ policy, and power-of-d algorithms

In this section we first introduce some notation and preliminary concepts, and then review
fluid and diffusion limits for the JSQ policy as well as JSQ(d) policies with a fixed value of d.

3.1 Definitions, limit sequences and convergence issues

We continue to focus on the basic scenario where all the servers are homogeneous, the service
requirements are exponentially distributed, and the service discipline at each server is oblivious
of the actual service requirements. Moreover, most of the LBAs under consideration do not
distinguish between servers with equal queue lengths. Consequently, the queue-length process
is Markov on an enlarged filtration, allowing for random draws to resolve ties. In order to
obtain a Markovian state description, it therefore suffices to only track the number of tasks,
and in fact we do not need to keep record of the number of tasks at each individual server, but
only count the number of servers with a given number of tasks. Specifically, we represent the
state of the system by a vector

Q(t) := (Q1(t), Q2(t), . . .)

with Qi(t) denoting the number of servers with i or more tasks at time t, including the possible
task in service, i = 1, 2 Note that if we represent the queues at the various servers as
(vertical) stacks, and arrange these from left to right in ascending order, then the value of Qi

corresponds to the width of the i-th (horizontal) row, as depicted in the schematic diagram in
Figure 2.

In order to examine the fluid and diffusion limits in regimes where the number of servers N
grows large, we consider a sequence of systems indexed by N, and attach a superscript N
to the associated state variables. The fluid-scaled occupancy state is denoted by qN(t) :=
(qN

1 (t), qN
2 (t), . . .), with qN

i (t) = QN
i (t)/N representing the fraction of servers in the N-th sys-

tem with i or more tasks as time t, i = 1, 2, Let

S =
{

q ∈ [0, 1]∞ : qi ≤ qi−1 ∀i = 2, 3, . . . , and
∞

∑
i=1

qi < ∞
}

be the set of all possible fluid-scaled states equipped with the `1 topology. Any (weak) limit
q(·) of the sequence of processes {qN(t)}t≥0 in the conventional large capacity regime (ii) as
N → ∞ (in a suitable topology on the space of functions on [0, T] taking values in S) is called
a fluid limit. In some frameworks in the literature this is also commonly referred to a mean-field
limit when the occupancy process is viewed as the (density-dependent) state evolution of a
population of randomly interacting nodes or particles [15, 32, 91, 92]. Whenever we consider
fluid limits, we assume the sequence of initial states is such that qN(0)→ q∞ ∈ S as N → ∞.

The diffusion-scaled occupancy state is defined as Q̄N(t) = (Q̄N
1 (t), Q̄N

2 (t), . . .), with

Q̄N
1 (t) = −

N −QN
1 (t)√

N
, Q̄N

i (t) =
QN

i (t)√
N

, i = 2, 3, . . . , (3.1)

where we include a minus sign in the definition of Q̄N
1 (t) so as to adhere to the notation

adopted in [36] which is the basis for the results that will be presented in Section 3.4. Any

13

(weak) limit Q(·) of the sequence of processes {QN(t)}t≥0 in the Halfin-Whitt heavy-traffic
regime (iii) as N → ∞, once again in a suitable topology, is called a diffusion limit. Note that
−Q̄N

1 (t) corresponds to the number of vacant servers, normalized by
√

N. The reason why
QN

1 (t) is centered around N while QN
i (t), i = 2, 3, . . . , are not, is that for the scalable LBAs

we consider the fraction of servers with exactly one task tends to one, whereas the fraction of
servers with two or more tasks tends to zero as N → ∞. For convenience, we will assume that
each server has an infinite-capacity buffer, but all the results extend to the finite-buffer case,
see for instance [36, 117, 118, 119, 120].

We conclude this subsection with a discussion of two important convergence issues associ-
ated with the above-defined scaling limits.

Accuracy of asymptotic approximations. A critical issue in the context of scaling limits is
the rate of convergence and the accuracy for finite-size systems. Some interesting results for
the accuracy of mean-field approximations for interacting-particle systems including load bal-
ancing models may be found in [62, 175, 176]. These results can be leveraged to develop
refined approximations and improve the accuracy by adding expansion terms as demonstrated
in [63, 64, 65].

Global asymptotic stability, stationary distributions, and interchange of limits. A further
crucial issue in the context of scaling limits is whether limit processes that arise as N → ∞ itself
have (unique) subsequential limits or limiting distributions as t → ∞, and if so, how the sta-
tionary distributions of the pre-limit processes (assuming that exists) relate to those limits. For
fluid limits, which are usually described in terms of a system of differential equations, the first
question translates to the existence of a unique invariant point (fixed point) of these equations.
While in most cases of practical interest such a unique invariant point tends to exist, this may
be non-trivial to prove, and the existence of multiple invariant points can not a priori be ruled
out in general. In fact, existence of multiple invariant points has been shown in specific scenar-
ios, and is an indication of oscillatory behavior and so-called bi-stability issues in the original
stochastic process for large N [66, 109]. Even when it can be established that a unique invari-
ant point exists, the next question pertains to global attraction or global asymptotic stability.
Specifically, the invariant point is said to be a global attractor, or globally asymptotically stable,
if the fluid limit process converges to this point for any initial condition. Global asymptotic
stability has been established for various particular model instances, including the supermar-
ket model with JSQ(d) load balancing strategies [114, 154, 163]. Common proof methodologies
involve Lyapunov constructions [26, 47, 61], monotonicity properties [113, 145, 154, 163] and
reversibility concepts [93], but there is no systematic recipe available, and the specific proof
arguments tend to be highly tailored to the particular system under consideration. If global
asymptotic stability of the invariant point can be established, then along with tightness this
ensures that the sequence of stationary distributions of the pre-limit process (assuming these
exist) converge to this point, see for instance [16], with some of the key ideas and results dat-
ing back to much earlier work [79, 170]. This provides justification for an interchange of the
large-scale (N → ∞) and stationary (t→ ∞) limits, indicating that the invariant point provides
a suitable approximation for the stationary distribution of the original stochastic process for

14

sufficiently large values of N. In addition, the interchange of limits tends to furnish asymptotic
independence among any finite subset of the queues [69]. Related results, convergence rates
and error probabilities are established in [104, 108]. Somewhat similar issues and observations
apply for diffusion limits [53, 88].

3.2 Fluid limit for JSQ(d) policies

We first consider the fluid limit for JSQ(d) policies with an arbitrary but fixed value of d as
characterized by the seminal results in [113, 163]. The result below is paraphrased from [113,
163].

Fluid limit for JSQ(d). The sequence of processes {qN(t)}t≥0 has a weak limit {q(t)}t≥0 that satis-
fies the system of differential equations

dqi(t)
dt

= λ(qd
i−1(t)− qd

i (t))− (qi(t)− qi+1(t)), i = 1, 2, . . . , (3.2)

with q0(t) ≡ 1 for all t ≥ 0. The fluid-limit equations may be interpreted as follows. The
first term represents the rate of increase in the fraction of servers with i or more tasks due to
arriving tasks that are assigned to a server with exactly i− 1 tasks. Note that the latter occurs
in fluid state q ∈ S with probability qd

i−1 − qd
i , i.e., the probability that all d sampled servers

have i− 1 or more tasks, but not all of them have i or more tasks. The second term corresponds
to the rate of decrease in the fraction of servers with i or more tasks due to service completions
from servers with exactly i tasks, and the latter rate is given by qi − qi+1. The system in (3.2)
characterizes the functional law of large numbers (FLLN) behavior of systems in regime (ii)
under the JSQ(d) scheme. Weak convergence of the diffusion-scaled variation around the fluid-
limit path to a certain Ornstein-Ulenbeck process in the same load regime (both the transient
behavior and in steady state) was shown in [70], establishing a functional central limit theorem
(FCLT) result. Strong approximations for systems under the JSQ(d) scheme on any finite time
interval by the deterministic system in (3.2), a certain infinite-dimensional jump process, and a
diffusion approximation were established in [107].

Now, assume λ ∈ (0, 1) for ergodicity of the queue-length process. When the derivatives
in (3.2) are set equal to zero for all i, the unique fixed point for any d ≥ 2 is obtained as
[113, 163]

q∗i = λ
di−1
d−1 . i = 1, 2, (3.3)

It can be shown that the fixed point is asymptotically stable in the sense that q(t) → q∗ as
t → ∞ for any initial fluid state q∞ with ∑∞

i=1 q∞
i < ∞. As mentioned earlier, the fixed point

reveals that the stationary queue length distribution at each individual server exhibits super-
exponential decay as N → ∞, as opposed to exponential decay for a random assignment policy.
As described above, this involves an interchange of the many-server (N → ∞) and stationary
(t→ ∞) limits. The justification is provided by the asymptotic stability of the fixed point along
with a few further technical conditions.

15

3.3 Fluid limit for JSQ policy

We now turn to the fluid limit for the ordinary JSQ policy, which rather surprisingly was
not rigorously established until fairly recently in [119], leveraging martingale functional limit
theorems and time-scale separation arguments [80].

In order to state the fluid limit starting from an arbitrary fluid-scaled occupancy state, we
first introduce some additional notation. For any fluid state q ∈ S , denote by m(q) = min{i ≥
0 : qi+1 < 1} the minimum queue length among all servers. Now if m(q) = 0, then define
p0(q) = 1 and pi(q) = 0 for all i = 1, 2, Otherwise, in case m(q) > 0, define

pi(q) =

min

{
(1− qm(q)+1)/λ, 1

}
for i = m(q)− 1,

1− pm(q)−1(q) for i = m(q),

0 otherwise.

(3.4)

The fluid-limit result below is paraphrased from [119].

Fluid limit of JSQ. For λ ∈ (0, 1), the weak limit of the sequence of processes {qN(t)}t≥0 is given
by a deterministic system {q(t)}t≥0 that satisfies the system of differential equations

d+qi(t)
dt

= λpi−1(q(t))− (qi(t)− qi+1(t)), i = 1, 2, . . . , (3.5)

where d+/dt denotes the right-derivative. The reason we have used derivative in (3.2), and right-
derivative in (3.5) is that the limiting trajectory for the JSQ policy may not be differentiable
at all time points. In fact, one of the major technical challenges in proving the fluid limit for
the JSQ policy is that the drift of the process is not continuous, which leads to non-smooth
limiting trajectories, see [119] for further details. The uniqueness of the above weak limit was
not established in [119], but follows from the recent result in [19, Theorem 2.1].

The fluid-limit trajectory in (3.5) can be interpreted as follows. The coefficient pi(q) repre-
sents the instantaneous fraction of incoming tasks assigned to servers with a queue length of
exactly i in the fluid state q ∈ S . Note that a strictly positive fraction 1− qm(q)+1 of the servers
have a queue length of exactly m(q). Clearly the fraction of incoming tasks that get assigned
to servers with a queue length of m(q) + 1 or larger is zero: pi(q) = 0 for all i = m(q) + 1,
Also, tasks at servers with a queue length of exactly i are completed at (normalized) rate
qi − qi+1, which is zero for all i = 0, . . . , m(q)− 1, and hence the fraction of incoming tasks that
get assigned to servers with a queue length of m(q)− 2 or less is zero as well: pi(q) = 0 for all
i = 0, . . . , m(q)− 2. This only leaves the fractions pm(q)−1(q) and pm(q)(q) to be determined.
Now observe that the fraction of servers with a queue length of exactly m(q) − 1 is zero. If
m(q) = 0, then clearly the incoming tasks will join an empty queue, and thus, pm(q) = 1, and
pi(q) = 0 for all i 6= m(q). Furthermore, if m(q) ≥ 1, since tasks at servers with a queue
length of exactly m(q) are completed at (normalized) rate 1− qm(q)+1 > 0, incoming tasks can
be assigned to servers with a queue length of exactly m(q)− 1 at that rate. We thus need to dis-
tinguish between two cases, depending on whether the normalized arrival rate λ is larger than
1− qm(q)+1 or not. If λ < 1− qm(q)+1, then all the incoming tasks can be assigned to a server
with a queue length of exactly m(q)− 1, so that pm(q)−1(q) = 1 and pm(q)(q) = 0. On the other
hand, if λ > 1− qm(q)+1, then not all incoming tasks can be assigned to servers with a queue

16

length of exactly m(q)− 1 active tasks, and a positive fraction will be assigned to servers with
a queue length of exactly m(q): pm(q)−1(q) = (1− qm(q)+1)/λ and pm(q)(q) = 1− pm(q)−1(q).

In case λ ∈ (0, 1), the unique fixed point q? = (q?1 , q?2 , . . .) of the dynamical system in (3.5)
is given by

q∗i =

{
λ, i = 1,
0, i = 2, 3,

(3.6)

Note that the fixed point naturally emerges when d→ ∞ in the fixed point expression (3.3) for
fixed d. However, the process-level results in [114, 163] for fixed d cannot be readily used to
handle joint scalings of d and N, and do not yield the entire fluid-scaled sample path for arbi-
trary initial states as given by (3.5). The fixed point in (3.6), in conjunction with an interchange
of limits argument, indicates that in stationarity the fraction of servers with a queue length of
two or larger under the JSQ policy is negligible as N → ∞.

3.4 Diffusion limit for JSQ policy

We next describe the diffusion limit for the JSQ policy in the Halfin-Whitt heavy-traffic regime
(2.1), as derived in [36]. The statement below is paraphrased from [36]. Recall the centered and
diffusion-scaled processes in (3.1).

Diffusion limit for JSQ. For suitable initial conditions, the sequence of processes
{

Q̄N(t)
}

t≥0 con-
verges weakly to the limit

{
Q̄(t)

}
t≥0, where (Q̄1(t), Q̄2(t), . . .) is the unique solution to the following

system of SDEs

dQ̄1(t) =
√

2dW(t)− βdt− Q̄1(t) + Q̄2(t)− dU1(t),

dQ̄2(t) = dU1(t)− Q̄2(t),
(3.7)

and Q̄i(t) = 0, i ≥ 3, for t ≥ 0, where W is standard Brownian motion and U1 is the unique continuous
non-decreasing non-negative process satisfying

∫ ∞
0 1[Q̄1(t)<0]dU1(t) = 0 and U1(0) = 0.

The diffusion-limit characterization in (3.7) may be interpreted as follows. First of all, recall
that −Q̄1 corresponds to the number of vacant servers (normalized by

√
N), and observe that

this number is governed by the number of arriving tasks on the one hand (as long as the number
of vacant servers is non-zero), with associated exponential rate λ(N), and on the other hand
the number of service completions at servers with exactly one task, with associated exponential
rate QN

1 −QN
2 . Noting that (N− λ(N))/

√
N → β, Q̄N

1 = −(N−QN
1)/
√

N and Q̄N
2 = QN

2 /
√

N,
we recognize that these dynamics are reflected in the equation for dQ̄1(t), with

√
2dW(t) an

additional diffusion term corresponding to the variation in the number of arrivals and service
completions around the drift terms and dU1(t) a reflection term accounting for the fact that
the number of vacant servers cannot be negative. More specifically, the term dU1(t) tracks the
number of arriving tasks assigned to busy servers when there are no vacant servers, which
explains why the derivative can only be positive when Q̄1 < 0. Now observe that, for suitable
initial conditions, since β < 0, it is highly unlikely for all servers to have two or more tasks, and
the number of servers with three or more tasks is negligible on diffusion scale, as reflected in
the fact that Q̄i = 0, i ≥ 3. Also, the dynamics of the number of servers with two or more tasks
are governed by the assignment of tasks to busy servers captured by the term dU1(t) and the

17

service completions at servers with exactly two tasks, which is equal to Q̄2 on diffusion scale
since the number of servers with three or more tasks is negligible, explaining the equation for
dQ̄2(t).

The above convergence of the scaled occupancy measure was established in [36] only for
any finite time interval. The tightness of the sequence of diffusion-scaled steady-state occu-
pancy measures {(Q̄N

1 (∞), Q̄N
2 (∞))}N≥1, the ergodicity of the limiting diffusion process (3.7),

and hence the interchange of limits were open until [24] further established that the weak-
convergence result extends to the steady state as well, i.e., Q̄N(∞) converges weakly to the
random variable (Q̄1(∞), Q̄2(∞), 0, 0, . . .) as N → ∞, where (Q̄1(∞), Q̄2(∞)) has the stationary
distribution of the process (Q̄1, Q̄2). Thus, the steady state of the diffusion process in (3.7) is
proved to capture the asymptotic behavior of large-scale systems under the JSQ policy.

In [24] a Lyapunov function is obtained via a generator expansion framework using Stein’s
method, which establishes exponential ergodicity of (Q̄1, Q̄2). Although this approach gives a
good handle on the rate of convergence to stationarity, it sheds little light on the form of the
stationary distribution of the limiting diffusion process (3.7) itself. In two companion papers
[13, 14] the authors perform a detailed analysis of the steady state of this diffusion process.
Using a classical regenerative process construction of the diffusion process in (3.7), [13] estab-
lishes that Q̄1(∞) has a Gaussian tail, and the tail exponent is uniformly bounded by constants
which do not depend on β, whereas Q̄2(∞) has an exponentially decaying tail, and the coeffi-
cient in the exponent is linear in β. More precisely, for any β > 0 there exist positive constants
C1, C2, D1, D2 not depending on β and positive constants Cl(β), Cu(β), Dl(β), Du(β), CR(β),
DR(β) depending only on β such that

Cl(β)e−C1x2 ≤ P(Q̄1(∞) < −x) ≤ Cu(β)e−C2x2
, x ≥ CR(β)

Dl(β)e−D1βy ≤ P(Q̄2(∞) > y) ≤ Du(β)e−D2βy, y ≥ DR(β).
(3.8)

It was further shown in [13] that there exists a positive constant C∗ not depending on β such
that almost surely along any sample path:

−2
√

2 ≤ lim inf
t→∞

Q̄1(t)√
log t

≤ −1,

1
β
≤ lim sup

t→∞

Q̄2(t)
log t

≤ 2
C∗β .

Notice that the width of fluctuation of Q̄1 does not depend on the value of β, whereas that of
Q̄2 is linear in β−1.

Since the N-th system is ergodic and its arrival rate is N − β
√

N, it is straightforward to
see that E(Q̄N

1 (∞)) = −β for all N, and hence, it can also be derived from the evolution of
the limiting diffusion process that E(Q̄1(∞)) = −β. Thus, intuitively, for large enough β, the
system has mostly many idle servers, and the number of servers with queue length at least two
diminishes. But the manner Q̄2(∞) scales as β becomes large, is highly non-trivial. Specifically,
it was shown in [14] that there exists β0 ≥ 1 and positive constants C1, C2, D1, D2 such that for

18

all β ≥ β0,

e−C1β2 ≤ E (Q̄2(∞)) ≤ e−C2β2
,

P
(

Q̄2(∞) ≥ e−eD1β2)
≤ e−D2β2

,
(3.9)

i.e., the steady-state mean is of order e−Cβ2
, but most of the steady-state mass concentrates

at a much smaller scale e−eD1β2
. This suggests intermittency in the behavior of the Q̄2 process,

namely, Q̄2 is typically of order e−eD1β2
, but during rare events when it achieves higher values, it

takes a long time to decay. However, for small enough β, the behavior is qualitatively different.
Since E(Q̄1(∞)) = −β, the system is expected to become more congested as β becomes smaller.
As a result, intuitively, Q̄2 should increase in the distributional sense. In this regime as well,
Q̄2 exhibits some striking behavior. Specifically, it was shown in [14] that there exist positive
constants β∗, M1 and M2 such that for all β ≤ β∗

M1

β
≤ E(Q̄2(∞)) ≤ M2

β
. (3.10)

Comparison with M/M/N queue. The M/M/N queue in the Halfin-Whitt heavy-traffic regime
has been studied quite extensively (see [46, 48, 49, 74, 155, 156, 157], and the references therein).
In this case, the centered and scaled total number of tasks in the system (S̄N(t)− N)/

√
N con-

verges weakly to a diffusion process {S̄(t)}t≥0 [74, Theorem 2] with

dS̄(t) =
√

2dW(t)− βdt− dS̄(t)1[S̄(t)≤0], (3.11)

where W is the standard Brownian motion. As reflected in (3.7) and (3.11), the JSQ policy
and the M/M/N system share some striking similarities in terms of the qualitative behav-
ior of the total number of tasks in the system. In particular, both the number of idle servers
and the number of waiting tasks are of the order Θ(

√
N). This shows that despite the dis-

tributed queueing operation a suitable load balancing policy can deliver a similar combination
of excellent service quality and high resource utilization efficiency in the QED (Quality-and-
Efficiency-Driven) regime (recall from Section 2.2) as in a centralized queueing arrangement.
Moreover, the interchange of limits result in [24] implies that for systems under the JSQ policy,
Q̄N

tot(∞) := ∑∞
i=1 QN

i (∞) converges weakly to Q̄1(∞) + Q̄2(∞), which has an exponential upper
tail (large positive deviation) and a Gaussian lower tail (large negative deviation), see (3.8). This
is again reminiscent of the corresponding tail asymptotics for the M/M/N queue. Note that
since S̄(·) is a simple combination of a Brownian motion with a negative drift (when all servers
are fully occupied) and an Ornstein Uhlenbeck (OU) process (when there are idle servers), the
steady-state distribution S̄(∞) can be computed explicitly, and is indeed a combination of an
exponential distribution and a Gaussian distribution.

There are, however, some clear differences between the diffusion in (3.7) and (3.11):

(i) Observe that in case of M/M/N systems, whenever there are waiting tasks (equivalent
to Q2 being positive in our case), the queue length has a constant negative drift towards
zero. This leads to the exponential upper tail of S̄(∞), by comparing with the station-
ary distribution of a reflected Brownian motion with constant negative drift. In the JSQ

19

case, however, the rate of decrease of Q2 is always proportional to itself, which makes it
somewhat counter-intuitive that its stationary distribution has an exponential tail.

(ii) In the M/M/N system, the number of idle servers can be non-zero only when the number
of waiting tasks is zero. Thus, the dynamics of both the number of idle servers and the
number of waiting tasks are completely captured by the one-dimensional process S̄N and
by the one-dimensional diffusion S̄ in the limit. But in the JSQ case, Q̄2 is never zero, and
the dynamics of (Q̄1, Q̄2) are truly two-dimensional (although the diffusion is non-elliptic)
with Q̄1 and Q̄2 interacting with each other in an intricate manner.

(iii) From (3.7) we see that Q̄2 never hits zero. Thus, in steady state, there is no mass at Q̄2 = 0,
and the system always has waiting tasks. This is in sharp contrast with the M/M/N case,
where the system has no waiting tasks in steady state with positive probability.

(iv) In the M/M/N system, a positive fraction of the tasks incur a non-zero waiting time
as N → ∞, but a non-zero waiting time is only of length 1/(β

√
N) in expectation. In

contrast, in the JSQ case, it is easy to see that Q̄1 (the limit of the scaled number of idle
servers) spends zero time at the origin, i.e., in steady state the fraction of arriving tasks
that find all servers busy vanishes in the large-N limit (in fact, this is of order 1/

√
N,

see [24]). However, such tasks will have to wait for the duration of a residual service time,
implying that a non-zero waiting time is of the order O(1) and does not vanish.

(v) As β→ 0, [74, Proposition 2] implies that βS̄(∞) for the M/M/N queue converges weakly
to a unit-mean exponential distribution. In contrast, results in [14] show that β(Q̄1(∞) +

Q̄2(∞)) converges weakly to a Gamma(2) random variable. This indicates that despite
similar order of performance, due to the distributed operation, in terms of the number
of waiting tasks JSQ is a factor 2 worse in expectation than the corresponding centralized
system.

3.5 JSQ(d) policies in heavy-traffic regime

Finally, we briefly discuss the behavior of JSQ(d) policies with a fixed value of d in the Halfin-
Whitt heavy-traffic regime (2.1). While a complete characterization of the occupancy process
for fixed d has remained elusive so far, significant partial results were obtained in [35]. In order
to describe the transient asymptotics, introduce the following rescaled processes

Q̄N
i (t) :=

N −QN
i (t)√

N
, i = 1, 2, (3.12)

Note that in contrast to (3.1), in (3.12) all components are centered by N. Also note that the
sign of the first coordinate in (3.12) is the opposite of that in (3.1). The statement below is
paraphrased from [35].

Process-level limit of JSQ(d) policy in Halfin-Whitt regime. Assuming that the initial states
converge with respect to the product topology under the above scaling, [35, Theorem 2] establishes that
on any finite time interval, Q̄N(·) converges weakly to a deterministic system Q̄(·) that satisfies the

20

system of ODEs

dQ̄i(t) = −d(Q̄i(t)− Q̄i−1(t)) + Q̄i+1(t)− Q̄i(t), i = 1, 2, . . .

with the convention that Q̄0(t) ≡ 0. It is noteworthy that the scaled occupancy process loses its
diffusive behavior for fixed d. It is further shown in [35] that with high probability the steady-
state fraction of queues with length at least logd(

√
N/β)− o(1) tasks approaches unity, which

in turn implies that with high probability the steady-state delay is at least logd(
√

N/β)−O(1)
as N → ∞. The diffusion approximation of the JSQ(d) policy in the Halfin-Whitt regime (2.1),
starting from a different initial state, has been studied in [27].

In [176] a broad framework involving Stein’s method was introduced to analyze the rate of
convergence of the stationary distribution under the JSQ(2) policy, in a heavy-traffic regime,
where (N − λ(N))/η(N) → β > 0 as N → ∞, with η(N) a positive function diverging to
infinity as N → ∞. Note that the case η(N) =

√
N corresponds to the Halfin-Whitt heavy-

traffic regime (2.1). Using this framework, it was proved that when η(N) = Nα with some
4/5 < α ≤ 1,

E
(∞

∑
i=1

∣∣∣qN
i (∞)− qN,?

i

∣∣∣) ≤ 1
N2α−1−ξ

, where qN,?
i =

(λ(N)

N

)2i−1
, (3.13)

and ξ > 0 is an arbitrarily small constant. Equation (3.13) not only shows that asymptotically
the stationary occupancy measure concentrates at qN,?, but also provides the rate of conver-
gence.

4 Universality of JSQ(d) policies

In this section we will further explore the trade-off between delay performance and commu-
nication overhead as a function of the diversity parameter d, in conjunction with the relative
load. The latter trade-off will be examined in an asymptotic regime where not only the total
task arrival rate λ(N) grows with N, but also the diversity parameter depends on N, and we
write d(N) to explicitly reflect this dependence. We will specifically investigate what growth
rate of d(N) is required, depending on the scaling behavior of λ(N), in order to asymptotically
match the optimal performance of the JSQ policy and achieve a zero mean waiting time in the
limit. The results presented in the remainder of the section are based on [119] where also the
full proofs are provided, unless specified otherwise.

Theorem 4.1 (Universality of fluid limit for JSQ(d(N))). If d(N) → ∞ as N → ∞, then any fluid
limit of the JSQ(d(N)) scheme coincides with that of the ordinary JSQ policy, and in particular, satisfies
the system of differential equations in (3.5). Consequently, the stationary occupancy states converge to
the unique fixed point as in (3.6).

Theorem 4.2 (Universality of diffusion limit for JSQ(d(N))). If d(N)/(
√

N log N)→ ∞ as N →
∞, then for suitable initial conditions the weak limit of the sequence of processes

{
Q̄N(t)

}
t≥0, under

the JSQ(d(N)) policy, coincides with that of the ordinary JSQ policy, and in particular, is given by the
system of SDEs in (3.7).

21

The above universality properties indicate that the JSQ overhead can be lowered by almost
a factor O(N) and O(

√
N/ log N) while retaining fluid- and diffusion-level optimality, respec-

tively. In other words, Theorems 4.1 or 4.2 reveal that it is sufficient for d(N) to grow at any
rate, or faster than

√
N log N, in order to observe similar scaling benefits as in a pooled system

with N parallel single-server queues on fluid scale and diffusion scale, respectively. The stated
conditions are in fact close to necessary, in the sense that if d(N) is uniformly bounded or
d(N)/(

√
N log N) → 0 as N → ∞, then respectively, the fluid-limit and diffusion-limit paths

under the JSQ(d(N)) scheme differ from those under the ordinary JSQ policy. In particular, if
d(N) is uniformly bounded, the mean steady-state delay does not vanish as N → ∞.

Remark 4.3. One implication of Theorem 4.1 is that in the subcritical regime any growth rate
of d(N) is enough to achieve asymptotically vanishing steady-state probability of wait. This
result is complemented by the results in [25, 97], where the steady-state analysis is extended
in the heavy-traffic regime with Nα(1 − λ(N)/N) → β > 0 as N → ∞ with α ∈ (0, 1/2).
Note that the system approaches heavy traffic as the number of servers N grows large but
that the load is lighter than that in the Halfin-Whitt regime, which corresponds to α = 1/2.
Specifically, it is established in [97] that the steady-state probability of wait for the JSQ(d(N))
policy with d(N) ≥ 1

β Nα log N vanishes as N → ∞. The results of [25] imply that when β = 1
and d(N) = bNγc with α, γ ∈ (0, 1], k = d(1− α)/γe, and 2α + γ(k− 1) > 1, with probability
tending to 1 as N → ∞, the proportion of queues with queue length equal to k is at least
1− 2N−1+α+(k−1)γ and there are no longer queues. A crucial distinction between the result
stated in Theorem 4.2 and the results in [25, 97] is that the former analyzes the system on
diffusion scale (and describes its behavior in terms of a limiting diffusion process), whereas
[25, 97] analyze the system on fluid-scale (and characterize its behavior in terms of limiting
fluid-scaled occupancy state). Much less is known when the asymptotic load is higher than the
Halfin-Whitt regime, that is, when Nα(1− λ(N)/N) → β > 0 as N → ∞ with α ∈ (1/2, 1).
This is also known as the super-Halfin-Whitt regime. In this regime, when the system has a
finite buffer capacity, [96] identifies a broad class of load balancing policies including the JSQ
policy, idle-one-first (I1F) policy, and the JSQ(d(N)) policy with d(N) ≥ Nα log2 N, for which,
in steady state, E(QN

2 (∞)) is O
(

Nα log N
)

and E(QN
3 (∞)) is O

(
N−r(1−α)−1), where r > 0 can

be any constant independent of N. Further, [179] analyzes the process-level and steady-state
limits of the occupancy process under the JSQ policy in the super-Halfin-Whitt regime and in
particular, shows that QN

2 (∞)/Nα converges weakly to a Gamma(2, β) distribution (sum of two
independent Exponential(β) distributions). Results in [19] allow for arbitrary growth rate of
d(N) in the analysis of JSQ(d(N)) policy in the heavy-traffic regime. In this paper, the authors
establish a process-level diffusion limit of the occupancy process under the JSQ(d(N)) policy
for certain ranges of λ(N) that depend on d(N). In particular, they include an alternative proof
of the universality result in Theorem 4.2.

4.1 High-level outline of proof approach

The proofs of both Theorems 4.1 and 4.2 rely on a stochastic coupling construction to bound
the difference in the queue length processes between the JSQ policy and a scheme with an
arbitrary value of d(N). This coupling is then exploited to obtain the fluid and diffusion limits
of the JSQ(d(N)) policy, along with the associated fixed point, under the conditions stated in
Theorems 4.1 and 4.2. Moreover, we will also allow the possibility that the servers have a finite

22

buffer capacity B. In that case, whenever a task is assigned to a server that has B tasks in the
queue (including the one currently in service), that task is lost forever. For an LBA Π, we will
denote the total number of tasks lost up to time t by LΠ(t).

A direct comparison between the JSQ(d(N)) scheme and the ordinary JSQ policy is not
straightforward, which is why the CJSQ(n(N)) class of schemes is introduced as an intermedi-
ate scenario to establish the universality results. Just like the JSQ(d(N)) scheme, the schemes
in the class CJSQ(n(N)) may be thought of as “sloppy” versions of the JSQ policy, in the sense
that tasks are not necessarily assigned to a server with the shortest queue length but to one of
the n(N) + 1 lowest ordered servers, as graphically illustrated in Figure 4a. In particular, for
n(N) = 0, the class only includes the ordinary JSQ policy. Note that the JSQ(d(N)) scheme is
guaranteed to identify the lowest ordered server, but only among a randomly sampled subset
of d(N) servers. In contrast, a scheme in the CJSQ(n(N)) class only guarantees that one of
the n(N) + 1 lowest ordered servers is selected, but across the entire pool of N servers. It is
worthwhile to note that CJSQ(n(N)) is a class of policies, and that any policy which ensures
that tasks are always assigned to one of the n(N) + 1 lowest ordered servers, no matter what
the exact mechanism of the policy is, belongs to this class. The proof of the universality re-
sults in Theorems 4.1 and 4.2 has two parts, as further described below. The proof strategy is
schematically represente in Figure 4b.

Step 1. Performance of schemes in CJSQ(n(N)) class. The first step is to show that for suf-
ficiently small n(N), any scheme from the class CJSQ(n(N)) is still ‘close’ to the ordinary JSQ
policy. To achieve this, another type of sloppiness will be introduced. Let MJSQ(n(N)) be a par-
ticular scheme that always assigns incoming tasks to precisely the (n(N)+ 1)-th ordered server.
Notice that this scheme is effectively the JSQ policy when the system always maintains n(N)

idle servers, or equivalently, uses only N − n(N) servers, and MJSQ(n(N)) ∈ CJSQ(n(N))1.
For brevity, we will often suppress n(N) in the notation where it is clear from the context. We
call any two systems S-coupled, if they have synchronized arrival clocks and departure clocks of
the k-th longest queue, for 1 ≤ k ≤ N (‘S’ in the name of the coupling stands for ‘Server’). Note
that the S-coupling between two systems with identical arrival and service rates always exists.
Indeed, since tasks have identically and exponentially distributed service time requirements,
synchronizing the departure clocks of the k-th longest queue, for k = 1, . . . , N, preserves the
marginal dynamics of each system. Consider three S-coupled systems following respectively
the JSQ policy, any scheme from the class CJSQ, and the MJSQ scheme. Recall that QΠ

i (t) is
the number of servers with at least i tasks at time t and LΠ(t) is the total number of lost tasks
up to time t, for the schemes Π = JSQ, CJSQ, MJSQ. The following proposition provides a
stochastic ordering for any scheme in the class CJSQ with respect to the ordinary JSQ policy
and the MJSQ scheme.

Proposition 4.4. Fix any N ≥ 1, 1 ≤ B ≤ ∞ and 0 ≤ n(N) ≤ N − 1. Then, in the joint probability
space constructed by the S-coupling of the three systems under respectively JSQ, MJSQ, and any scheme
from the class CJSQ, the following ordering is preserved almost surely throughout the sample path: for
all 1 ≤ m ≤ B and t ≥ 0,

(i)
{

∑B
i=m QJSQ

i (t) + LJSQ(t)
}

t≥0
≤
{

∑B
i=m QCJSQ

i (t) + LCJSQ(t)
}

t≥0
,

1Reviewer: The sentence ‘Notice . . . when the system always maintains n(N) idle servers . . . ’ is ambiguous
and unclear.

23

10987654321

n(N) + 1

(a) CJSQ(n(N)) scheme

JSQ(n(N),d(N)) CJSQ(n(N))

JSQ(d(N)) JSQ

Suitable
n
(
N

)

Su
it

ab
le

d
(
N

)

Belongs to
the class

(b) Asymptotic equivalence relations

Figure 4: (a) High-level view of the CJSQ(n(N)) class of schemes, where as in Figure 2, the
servers are arranged in nondecreasing order of their queue lengths, and the arrival must be
assigned through the green shaded region on the left. (b) The equivalence structure is de-
picted for various intermediate load balancing schemes to facilitate the comparison between
the JSQ(d(N)) scheme and the ordinary JSQ policy.

24

(ii)
{

∑B
i=m QCJSQ

i (t) + LCJSQ(t)
}

t≥0
≤
{

∑B
i=m QMJSQ

i (t) + LMJSQ(t)
}

t≥0
,

provided the inequalities hold at time t = 0.

Corollary 4.5. Under the conditions of Proposition 4.4, for all 1 ≤ m ≤ B and t ≥ 0,

(i) QCJSQ
m (t) ≥ ∑B

i=m QJSQ
i (t)−∑B

i=m+1 QMJSQ
i (t) + LJSQ(t)− LMJSQ(t),

(ii) QCJSQ
m (t) ≤ ∑B

i=m QMJSQ
i (t)−∑B

i=m+1 QJSQ
i (t) + LMJSQ(t)− LJSQ(t),

provided the inequalities hold at time t = 0.

2 It can be shown that if n(N)/N → 0 as N → ∞, then the MJSQ(n(N)) scheme has the
same fluid limit along any subsequence as the ordinary JSQ policy, whenever the latter exists.
Corollary 4.5 then implies that as long as n(N)/N → 0, any scheme from the class CJSQ(n(N))

has the same fluid limit along any subsequence as the ordinary JSQ policy, whenever the latter
exists.

Step 2. JSQ(d(N)) has same limit as a particular scheme in CJSQ(n(N)). The next step is to
prove that for sufficiently large d(N) relative to n(N), one can construct a scheme belonging
to the CJSQ(n(N)) class, which differs ‘negligibly’ from the JSQ(d(N)) scheme. Specifically,
consider the JSQ(n(N), d(N)) scheme with n(N), d(N) ≤ N, which is an intermediate blend
between the CJSQ(n(N)) schemes and the JSQ(d(N)) scheme. At its first step, just as in the
JSQ(d(N)) scheme, the JSQ(d(N), n(N)) scheme first chooses the shortest of d(N) random
candidates but only sends the arriving task to that server’s queue if it is one of the n(N) + 1
shortest queues. If it is not, then at the second step it picks any of the n(N) + 1 shortest
queues uniformly at random and then sends the task to that server’s queue. Note that by
construction, JSQ(d(N), n(N)) is a scheme in CJSQ(n(N)). Consider two S-coupled systems
with a JSQ(d(N)) and a JSQ(n(N), d(N)) scheme. Assume that at some specific arrival epoch,
the incoming task is dispatched to the k-th ordered server in the system under the JSQ(d(N))
scheme. If k ∈ {1, 2, . . . , n(N) + 1}, then the system under the JSQ(n(N), d(N)) scheme also
assigns the arriving task to the k-th ordered server. Otherwise, it dispatches the arriving task
uniformly at random amongst the first (n(N) + 1) ordered servers.

Next, it is established that if d(N) → ∞, then for some n(N) with n(N)/N → 0, the
JSQ(d(N)) scheme and the JSQ(n(N), d(N)) scheme have the same fluid limit. Theorem 4.1
then follows by Step 1 and observing that the JSQ(n(N), d(N)) scheme belongs to the class
CJSQ(n(N)).

The proof of Theorem 4.2 follows the same arguments, but uses the candidate n(N)/
√

N →
0 (instead of n(N)/N → 0) in Step 1, and the candidate d(N)/(

√
N log(N)) → ∞ (instead of

d(N)→ ∞) in Step 2.

4.2 Extension to batch arrivals

Consider an extension of the model in which tasks arrive in batches. We assume that the
batches arrive as a Poisson process of rate λ(N)/`(N), and have fixed size `(N) > 0, so that

2Reviewer: I would personally make inequalities (i) and (ii) of Prop 4.4 into one big inequality, but this is a
matter of personal taste. It is true that it is awkward to do similarly with inequalities (i) and (ii) of Cor 4.5.

25

the effective total task arrival rate remains λ(N). We will show that for any growing batch size
fluid-level optimality can be achieved with O(1) communication overhead per task. For that, we
define the JSQ(d(N)) scheme adapted for batch arrivals: When a batch arrives, the dispatcher
samples d(N) ≥ `(N) servers without replacement, and assigns the tasks to the `(N) servers
with the smallest queue lengths among the sampled servers.

Theorem 4.6 (Batch arrivals). Consider the batch arrival scenario with growing batch size `(N)→ ∞
and λ(N)/N → λ < 1 as N → ∞. For the JSQ(d(N)) scheme with d(N) ≥ `(N)/(1− λ − ε)

for any fixed ε > 0, if qN
1 (0) → q1(0) ≤ λ, and qN

i (0) → 0 for all i ≥ 2, then any (subsequential)
weak limit of the sequence of processes

{
qN(t)

}
t≥0 coincides with that of the ordinary JSQ policy, and

in particular, is given by the system in (3.5).

Observe that for a fixed ε > 0, the communication overhead per task is on average given
by (1− λ− ε)−1 which is O(1). Thus Theorem 4.6 ensures that in case of batch arrivals with
growing batch size, fluid-level optimality can be achieved with O(1) communication overhead
per task. The result for the fluid-level optimality in stationarity can also be obtained indirectly
by exploiting the fluid-limit result in [177]. Specifically, it can be deduced from the result
in [177] that for batch arrivals with growing batch size, the JSQ(d(N)) scheme with suitably
growing d(N) yields the same fixed point of the fluid limit as described in (3.6).

5 Blocking and infinite-server dynamics

3

The basic scenario that we have focused on so far involved single-server queues. In this
section we turn attention to a system with parallel server pools, each with a fixed number
B servers, where B can possibly be either finite or infinite. As before, tasks arrive at a single
dispatcher and must immediately be forwarded to one of the server pools, but also directly
start execution or be discarded otherwise. As before, under the JSQ(d) policy, at each task
arrival, the dispatcher selects d random server pools and assigns the task to the one with the
least number of active tasks. When B is finite, a task that happens to land on a server pool
with B active tasks is lost forever. In that case, the maximum total rate at which tasks can be
processed in the system is BN, which we assume to be higher than the total arrival rate λ(N).
In other words, when λ(N)/N = λ ∈ R+, we assume λ < B. The execution times are assumed
to be exponentially distributed, and do not depend on the number of other tasks receiving
service simultaneously. In order to distinguish it from the single-server queueing dynamics
as considered earlier, the current scenario will henceforth be referred to as the ‘infinite-server
dynamics’.

As it turns out, the JSQ policy has similar stochastic optimality properties as in the case of
single-server queues, and in particular stochastically minimizes the cumulative number of dis-
carded tasks [82, 111, 112, 139]. However, the JSQ policy also suffers from a similar scalability
issue due to the excessive communication overhead in large-scale systems, which can be mit-
igated through JSQ(d) policies. Results in [147] and the more recent papers [89, 124, 127, 173]
indicate that JSQ(d) policies provide similar power-of-choice gains for loss probabilities. It may

3Reviewer: The terminology ‘infinite-server’ is misleading; more appropriately, ‘many-server loss’.

26

be shown though that the optimal performance of the JSQ policy cannot be matched for any
fixed value of d.

Motivated by these observations, we explore the trade-off between performance and com-
munication overhead for infinite-server dynamics. We will demonstrate that the optimal perfor-
mance of the JSQ policy can be asymptotically retained while drastically reducing the commu-
nication burden, mirroring the universality properties described in Section 4 for single-server
queues. The results presented in the remainder of the section are extracted from [120] where
also the complete proofs are provided, unless indicated otherwise.

5.1 Fluid limit for JSQ policy

Analogous to the single-server case, we represent the state of the N-th system by the vec-
tor QN(t) := (QN

1 (t), QN
2 (t), . . .) with QN

i (t) denoting the number of server pools with i or
more active tasks at time t, and the fluid-scaled occupancy state is denoted by qN(t) :=
(qN

1 (t), qN
2 (t), . . .), with qN

i (t) = QN
i (t)/N for i ≥ 1. Also, as in Subsection 3.3, for any fluid

state q ∈ S , denote by m(q) = min{i ≥ 0 : qi+1 < 1} the minimum number of active tasks
among all server pools with the convention that qB+1 = 0 if B < ∞. Now if m(q) = 0, then
define p0(q) = 1 and pi(q) = 0 for all i = 1, 2, Otherwise, in case m(q) > 0, define

pi(q) =

min

{
m(q)(1− qm(q)+1)/λ, 1

}
for i = m(q)− 1,

1− pm(q)−1(q) for i = m(q),

0 otherwise.

(5.1)

Any weak limit of the sequence of processes {qN(t)}t≥0 is given by a deterministic system {q(t)}t≥0

satisfying the following of differential equations

d+qi(t)
dt

= λpi−1(q(t))− i(qi(t)− qi+1(t)), i = 1, 2, . . . , B (5.2)

where d+/dt denotes the right-derivative.
Equations (5.1) and (5.2) are to be contrasted with Equations (3.4) and (3.5). While the form

of the evolution equations (5.2) of the limiting dynamical system remains similar to (3.5), the
rate of decrease of qi is now i(qi − qi+1), reflecting the infinite-server dynamics.

Let K := bλc and f := λ − K denote the integral and fractional parts of λ, respectively.
Assuming λ < B, the unique fixed point of the dynamical system in (5.2) is given by

q?i =

1 i = 1, . . . , K
f i = K + 1
0 i = K + 2, . . . , B,

(5.3)

and thus ∑B
i=1 q?i = λ. This is consistent with the results in [124, 127, 173] for fixed d, where

taking d → ∞ yields the same fixed point. However, the results in [124, 127, 173] cannot be
directly used to handle joint scalings, and do not yield the universality of the entire fluid-
scaled sample path for arbitrary initial states. The fixed point in (5.3), in conjunction with an
interchange of limits argument, indicates that in stationarity the fraction of server pools with
at least K + 2 and at most K− 1 active tasks is negligible as N → ∞.

27

5.2 Diffusion limit for JSQ policy

As it turns out, the diffusion-limit results may be qualitatively different, depending on whether
f = 0 or f > 0, and we will distinguish between these two cases accordingly. Observe that
for any assignment scheme, in the absence of overflow events, the total number of active tasks
evolves as the number of jobs in an M/M/∞ system with arrival rate λ(N) and unit service
rate, for which the diffusion limit is well-known [135]. For the JSQ policy we can establish, for
suitable initial conditions, that the total number of server pools with K − 2 or less and K + 2
or more tasks is negligible on the diffusion scale. If f > 0, the number of server pools with
K − 1 tasks is negligible as well, and the dynamics of the number of server pools with K or
K + 1 tasks can then be derived from the known diffusion limit of the total number of tasks
mentioned above. In contrast, if f = 0, the number of server pools with K − 1 tasks is not
negligible on the diffusion scale, and the limiting behavior is qualitatively different, but can
still be characterized.

5.2.1 Diffusion-limit results for non-integral λ

We first consider the case f > 0, and define f (N) := λ(N)− KN. Based on the above observa-
tions, we define the following centered and scaled processes:

Q̄N
i (t) = N −QN

i (t) ≥ 0 for i ≤ K− 1,

Q̄N
K (t) :=

N −QN
K (t)

log(N)
≥ 0,

Q̄N
K+1(t) :=

QN
K+1(t)− f (N)
√

N
∈ R,

Q̄N
i (t) := QN

i (t) ≥ 0 for i ≥ K + 2.

(5.4)

Theorem 5.1 (Diffusion limit for JSQ policy; f > 0). Assume Q̄N
i (0) converges to Q̄i(0) in R,

i ≥ 1, and λ(N)/N → λ > 0 as N → ∞. Then

(i) limN→∞P
(

supt∈[0,T] Q̄N
K−1(t) ≤ 1

)
= 1, and

{
Q̄N

i (t)
}

t≥0 converges weakly to
{

Q̄i(t)
}

t≥0,

where Q̄i(t) ≡ 0, provided limN→∞P
(
Q̄N

K−1(0) ≤ 1
)
= 1, and Q̄N

i (0)
P−→ 0 for i ≤ K− 2.

(ii)
{

Q̄N
K (t)

}
t≥0 is a stochastically bounded sequence of processes.

(iii)
{

Q̄N
K+1(t)

}
t≥0 converges weakly to

{
Q̄K+1(t)

}
t≥0, where Q̄K+1(t) is given by the Ornstein-

Uhlenbeck process satisfying the following stochastic differential equation:

dQ̄K+1(t) = −Q̄K+1(t)dt +
√

2λdW(t),

where W(t) is the standard Brownian motion, provided Q̄N
K+1(0) converges to Q̄K+1(0) in R.

(iv) For i ≥ K + 2,
{

Q̄N
i (t)

}
t≥0 converges weakly to

{
Q̄i(t)

}
t≥0, where Q̄i(t) ≡ 0, provided Q̄N

i (0)
converges to 0 in R.

Theorem 5.1 implies that for suitable initial states, for large N, there will be almost no server
pool with K − 2 or less tasks and K + 2 or more tasks on any finite time interval. Also, the

28

number of server pools having fewer than K tasks is of order log(N), and there are f N +

OP(
√

N) server pools with precisely K + 1 active tasks. Below we present some high-level
intuition behind the scaling limits in Theorem 5.1.

High-level proof idea. Observe that ∑K
i=1(N −QN

i (·)) increases by one at rate

K

∑
i=1

i(Qi(t)−Qi+1(t)) =
K

∑
i=1

(Qi(t)−QK+1(t)) ≈ K(1− f)N,

which is when there is a departure from some server pool with at most K active tasks, and if
positive, decreases by one at constant rate λ(N) = (K + f)N + o(N), which is whenever there
is an arrival. Thus, ∑K

i=1(N − QN
i (·)) roughly behaves as a birth-and-death process with birth

rate K(1− f)N and death rate (K + f)N. Since f > 0, we have K + f > K(1− f), and on any
finite time interval the maximum of such a birth-and-death process scales as log(N).

Similar to the argument above, the process ∑K−1
i=1 Q̄N

i (·) increases by one at rate

K−1

∑
i=1

i(QN
i (t)−QN

i+1(t)) =
K−1

∑
i=1

QN
i (t)− (K− 1)QN

K (t)

≤ (K− 1)(N −QN
K (t)) = O(log(N)),

which is when there is a departure from some server pool with at most K − 1 active tasks,
and if positive, decreases by one at rate λ(N), which is whenever there is an arrival. Thus,
∑K−1

i=1 Q̄N
i (·) roughly behaves as a birth-and-death process with birth rate O(log(N)) and death

rate O(N). This leads to the asymptotic result for ∑K−1
i=1 Q̄N

i (·), and in particular for Q̄N
K−1(·).

This completes the proof of Parts (i) and (ii) of Theorem 5.1.
Furthermore, since λ < K + 1, the number of tasks that are assigned to server pools with at

least K + 1 tasks converges to zero in probability and this completes the proof of Part (iv) of
Theorem 5.1.

Finally, all the above combined also means that on any finite time interval the total number
of tasks in the system behaves with high probability as the total number of jobs in an M/M/∞
system. Therefore with the help of the diffusion limit result for the M/M/∞ system in [135,
Theorem 6.14], we conclude the proof of Part (iii) of Theorem 5.1.

5.2.2 Diffusion-limit results for integral λ

We now turn to the case f = 0, and assume that

KN − λ(N)√
N

→ β ∈ R as N → ∞, (5.5)

which can be thought of as an analog of the Halfin-Whitt regime in (2.1). We now consider the
following scaled quantities:

ζN
1 (t) :=

1√
N

K

∑
i=1

(N −QN
i (t)), ζN

2 (t) :=
QN

K+1(t)√
N

. (5.6)

29

Theorem 5.2. Assuming the convergence of initial states, the process
{
(ζN

1 (t), ζN
2 (t))

}
t≥0 converges

weakly to the process
{
(ζ1(t), ζ2(t))

}
t≥0 governed by the system of SDEs

dζ1(t) =
√

2KdW(t)− (ζ1(t) + Kζ2(t)) + βdt + dV1(t)

dζ2(t) = dV1(t)− (K + 1)ζ2(t),

where W is the standard Brownian motion, and V1(t) is the unique continuous non-decreasing process
satisfying

∫ t
0 1[ζ1(s)>0]dV1(s) = 0 and V1(0) = 0.

Unlike the f > 0 case, the above theorem says that if f = 0, then over any finite time
horizon, there will be OP(

√
N) server pools with fewer than K or more than K active tasks,

and hence most of the server pools have precisely K active tasks. The proof of Theorem 5.2
uses the reflection argument developed in [36]. Indeed, the proof follows by observing that the
dynamics of

{
(ζN

1 (t), ζN
2 (t))

}
t≥0 resembles the dynamics of the JSQ policy in the Halfin-Whitt

regime.

5.3 Universality of JSQ(d) policies in infinite-server dynamics

As in Section 4, we now further explore the trade-off between performance and communication
overhead as a function of the diversity parameter d(N), in conjunction with the load. We will
specifically investigate what growth rate of d(N) is required, depending on the scaling behavior
of λ(N), in order to asymptotically match the optimal performance of the JSQ policy.

Theorem 5.3 (Universality of fluid limit for JSQ(d(N)) and infinite-server dynamics). If d(N)→
∞ as N → ∞, then any (subsequential) fluid limit of the JSQ(d(N)) scheme coincides with that of the or-
dinary JSQ policy, and in particular, satisfies the system of differential equations in (5.2). Consequently,
the stationary occupancy states converge to the unique fixed point as in (5.3).

In order to state the universality result on diffusion scale, define in case f > 0,

Q̄d(N)
i (t) :=

N −Qd(N)
i (t)√
N

≥ 0, i ≤ K,

Q̄d(N)
K+1 (t) :=

Qd(N)
K+1 (t)− f (N)
√

N
∈ R,

Q̄d(N)
i (t) :=

Qd(N)
i (t)√

N
≥ 0, for i ≥ K + 2,

(5.7)

and otherwise, if f = 0,

Q̂d(N)
K−1 (t) :=

K−1

∑
i=1

N −Qd(N)
i (t)√
N

≥ 0,

Q̂d(N)
K (t) :=

N −Qd(N)
K (t)√
N

≥ 0,

Q̂d(N)
i (t) :=

Qd(N)
i (t)√

N
≥ 0, for i ≥ K + 1.

(5.8)

30

The scaling in Equations (5.7) and (5.8) should be contrasted with Equations (5.4) and (5.6),
respectively.

Theorem 5.4 (Universality of diffusion limit for JSQ(d(N)) and infinite-server dynamics). As-
sume d(N)/(

√
N log N)→ ∞. Under suitable initial conditions

(i) If f > 0, then Q̄d(N)
i (·) converges to the zero process for i 6= K + 1, and Q̄d(N)

K+1 (·) converges
weakly to the Ornstein-Uhlenbeck process satisfying the SDE

dQ̄K+1(t) = −Q̄K+1(t)dt +
√

2λdW(t),

where W(t) is the standard Brownian motion.

(ii) If f = 0, then Q̂d(N)
K−1 (·) converges weakly to the zero process, and (Q̂d(N)

K (·), Q̂d(N)
K+1 (·)) converges

weakly to (Q̂K(·), Q̂K+1(·)), described by the unique solution of the system of SDEs

dQ̂K(t) =
√

2KdW(t)− (Q̂K(t) + KQ̂K+1(t)) + βdt + dV1(t)

dQ̂K+1(t) = dV1(t)− (K + 1)Q̂K+1(t),

where W is the standard Brownian motion, and V1(t) is the unique continuous non-decreasing
process satisfying

∫ t
0 1[Q̂K(s)≥0]dV1(s) = 0 and V1(0) = 0.

Having established the asymptotic results for the JSQ policy in Sections 5.1 and 5.2, the
proofs of the asymptotic results for the JSQ(d(N)) scheme in Theorems 5.3 and 5.4 involve
establishing a universality result which shows that the limiting processes for the JSQ(d(N))

scheme are ‘asymptotically equivalent’ to those for the ordinary JSQ policy for suitably large
values of d(N). The notion of asymptotic equivalence between different schemes is formalized
in the next definition.

Definition 5.5. Let Π1 and Π2 be two schemes parameterized by the number of server pools N. For
any positive function g : N → R+, we say that Π1 and Π2 are ‘g(N)-alike’ if there exists a common
probability space, such that for any fixed T ≥ 0, for all i ≥ 1,

sup
t∈[0,T]

(g(N))−1|QΠ1
i (t)−QΠ2

i (t)| P−→ 0 as N → ∞.

Intuitively speaking, if two schemes are g(N)-alike, then in some sense, the associated system
occupancy states are indistinguishable on g(N)-scale. For brevity, for two schemes Π1 and Π2

that are g(N)-alike, we will often say that Π1 and Π2 have the same process-level limits on
g(N)-scale. The next theorem states a sufficient criterion for the JSQ(d(N)) scheme and the
ordinary JSQ policy to be g(N)-alike, and thus, provides the key vehicle in establishing the
universality result.

Theorem 5.6. Let g : N → R+ be a function diverging to infinity. Then the JSQ policy and the
JSQ(d(N)) scheme are g(N)-alike, with g(N) ≤ N, if

(i) d(N)→ ∞, for g(N) = O(N), (5.9)

(ii) d(N)

(
N

g(N)
log
(

N
g(N)

))−1

→ ∞, for g(N) = o(N). (5.10)

31

Theorem 5.6 yields the next two immediate corollaries.

Corollary 5.7. If d(N)→ ∞ as N → ∞, then the JSQ(d(N)) scheme and the ordinary JSQ policy are
N-alike.

Corollary 5.8. If d(N)/(
√

N log(N))→ ∞ as N → ∞, then the JSQ(d(N)) scheme and the ordinary
JSQ policy are

√
N-alike.

Observe that Corollaries 5.7 and 5.8 together with the asymptotic results for the JSQ policy
in Sections 5.1 and 5.2 imply Theorems 5.3 and 5.4. The rest of the section will be devoted to
the proof of Theorem 5.6. The proof crucially relies on a novel coupling construction, which
will be used to (lower and upper) bound the difference of occupancy states of two arbitrary
schemes.

The coupling construction. Throughout the description of the coupling, we fix N, and sup-
press the superscript N in the notation. Let QΠ1

i (t) and QΠ2
i (t) denote the number of server

pools with at least i active tasks at time t in two systems following schemes Π1 and Π2, respec-
tively. With a slight abuse of terminology, we occasionally use Π1 and Π2 to refer to systems
following schemes Π1 and Π2, respectively. To couple the two systems, we synchronize the ar-
rival epochs and maintain a single exponential departure clock with instantaneous rate at time
t given by M(t) := max

{
∑B

i=1 QΠ1
i (t), ∑B

i=1 QΠ2
i (t)

}
. We couple the arrivals and departures in

the various server pools as follows:
Arrival: At each arrival epoch, assign the incoming task in each system to one of the server
pools according to the respective schemes.
Departure: Define

H(t) :=
B

∑
i=1

min
{

QΠ1
i (t), QΠ2

i (t)
}

and

p(t) :=

H(t)
M(t)

, if M(t) > 0,

0, otherwise.

At each departure epoch tk (say), draw a uniform[0, 1] random variable U(tk). The departures
occur in a coupled way based upon the value of U(tk). In either of the systems, assign an
active task index (i, j), if it is the j-th task (in the order of arrival) of the i-th ordered server
pool. Let A1(t) and A2(t) denote the set of all task indices present at time t in systems Π1

and Π2, respectively. Color the indices (or tasks) in A1 ∩ A2, A1 \ A2 and A2 \ A1, green,
blue and red, respectively, and note that |A1 ∩ A2| = H(t). Define a total order on the set of
indices as follows: (i1, j1) < (i2, j2) if i1 < i2, or i1 = i2 and j1 < j2. Now, if U(tk) ≤ p(tk−),
then select one green index uniformly at random and remove the corresponding tasks from
both systems. Otherwise, if U(tk) > p(tk−), then choose one integer m, uniformly at random
from all the integers between 1 and M(t) − H(t) = M(t)(1 − p(t)), and remove the tasks
corresponding to the m-th smallest (according to the order defined above) red and blue indices
in the corresponding systems. If the number of red (or blue) tasks is less than m, then do
nothing in the corresponding system.

The above coupling has been schematically represented in Figure 5a, and will henceforth be
referred to as T-coupling, where T stands for ‘task-based’. Now we need to show that, under

32

10987654321

1

2

1

2

3 4

5

3 4 5

(a) T-coupling

JSQ(n(N), d(N)) CJSQ(n(N))

JSQ(d(N)) JSQ
Theorem 5.6

Proposition
5.12

Suitable
n
(N

)

Pr
op

os
it

io
n

5.
13

Su
it

ab
le

d(
N
)

Belongs to
the class

(b) Asymptotic equivalence relations

Figure 5: (a) Superposition of the occupancy states at some particular time instant, of schemes
Π1 and Π2 when the server pools in both systems are arranged in nondecreasing order of the
number of active tasks. The Π1 system is the union of the green and blue tasks, and the Π2
system is the union of the green and red tasks. (b) The equivalence structure is depicted for var-
ious intermediate load balancing schemes to facilitate the comparison between the JSQ(d(N))
scheme and the ordinary JSQ policy.

the T-coupling, the two systems, considered independently, evolve according to their respective
marginal statistical laws. This can be seen in several steps. Indeed, the T-coupling basically
uniformizes the departure rate by the maximum number of tasks present in either of the two
systems. Then informally speaking, the green region signifies the common portion of tasks,
and the red and blue regions represent the separate contributions. Without loss of generality,
we assume that |A1| ≥ |A2|. Observe that

(i) The total departure rate from Πi is

M(t)
[

p(t) + (1− p(t))
|Ai \ A3−i|

M(t)− H(t)

]
= |A1 ∩A2|+ |Ai \ A3−i| = |Ai|, i = 1, 2.

(ii) Since |A1| ≥ |A2|, each task in Π1 is equally likely to depart.

(iii) Each task in Π2 within A1 ∩A2 and each task within A2 \ A1 is equally likely to depart,
and the probabilities of departures are proportional to |A1 ∩ A2| and |A2 \ A1|, respec-
tively.

The T-coupling can be used to derive several stochastic inequality results that will play
an instrumental role in proving Theorem 5.6. Recall the CJSQ(n(N)) class of schemes from
Section 4.1. From a high-level perspective, the proof follows a somewhat similar structure as in
Section 4.1.

Step 1. Condition for g(N)-alikeness of schemes in CJSQ(n(N)) class. The next lemma uses
T-coupling to compare the occupancy processes of the JSQ policy with any scheme from the
CJSQ(n(N)) class.

Lemma 5.9. Let QΠ1
i (t) and QΠ2

i (t) denote the number of server pools with at least i tasks in two
T-coupled systems under the JSQ policy and a scheme in the CJSQ(n(N)) class, respectively. Then, for

33

any k ∈
{

1, 2, . . . , B
}

,{
k

∑
i=1

QΠ1
i (t)− kn(N)

}
t≥0

≤
{

k

∑
i=1

QΠ2
i (t)

}
t≥0

≤
{

k

∑
i=1

QΠ1
i (t)

}
t≥0

, (5.11)

provided the two systems start from the same occupancy states at t = 0. In particular, for all k ≥ 1,

sup
t≥0

∣∣QΠ2
k (t)−QΠ1

k (t)
∣∣ ≤ kn(N) (5.12)

Remark 5.10. The stochastic ordering in Lemma 5.9 is to be contrasted with the weak ma-
jorization results in [140, 143, 144, 167, 172] in the context of the ordinary JSQ policy in the
single-server queueing scenario, and in [82, 111, 112, 139] in the scenario of state-dependent
service rates, non-decreasing with the number of active tasks. In the current infinite-server
scenario, the results in [82, 111, 112, 139] imply that for any non-anticipating scheme Π taking
assignment decisions based on the number of active tasks only, for all t ≥ 0,

`

∑
m=1

XJSQ
(m)

(t) ≤st

`

∑
m=1

XΠ
(m)(t), for ` = 1, 2, . . . , N, (5.13){

LJSQ(t)
}

t≥0
≤st

{
LΠ(t)

}
t≥0

, (5.14)

where XΠ
(m)(t) is the number of tasks in the m-th ordered server pool at time t in the system

following scheme Π and LΠ(t) is the total number of overflow events under policy Π up to
time t. Observe that XΠ

(m) can be visualized as the m-th largest (rightmost) vertical bar (or
stack) in Figure 2. Thus (5.13) says that the sum of the lengths of the ` largest vertical stacks
in a system following any scheme Π is stochastically larger than or equal to that following the
ordinary JSQ policy for any ` = 1, 2, . . . , N. Mathematically, this ordering can be equivalently
written as

B

∑
i=1

min
{
`, QJSQ

i (t)
}
≤st

B

∑
i=1

min
{
`, QΠ

i (t)
}

, (5.15)

for all ` = 1, . . . , N. In contrast, in order to show asymptotic equivalence on various scales,
we need to both upper and lower bound the occupancy states of the CJSQ(n(N)) schemes in
terms of the JSQ policy, and therefore need a much stronger hold on the departure process.
The T-coupling provides us just that, and has several useful properties that are crucial for
our proof technique. For example, T-coupling has an important feature that if two systems
are T-coupled, then departures cannot increase the sum of the absolute differences of the Qi-
values, which is not true for the coupling considered in the above-mentioned literature. The
left stochastic ordering in (5.11) also does not remain valid in those cases. Furthermore, observe
that the right inequality in (5.11) (i.e., Qi’s) implies the stochastic inequality is reversed in (5.15),
which is counter-intuitive in view of the well-established optimality properties of the ordinary
JSQ policy. In the current infinite-server dynamics where there is no queueing, this can be
understood from the intuition that a better LBA has more customers in service instead of
less customers in queue. The fundamental distinction between the two coupling techniques
is also reflected by the fact that the T-coupling does not allow for arbitrary nondecreasing
state-dependent departure rate functions, unlike the couplings in [82, 111, 112, 139].

34

Remark 5.11 (Comparison of T-coupling and S-coupling). As briefly mentioned earlier, in the
current infinite-server scenario, the departures of the ordered server pools cannot be coupled,
mainly since the departure rate at the mth ordered server pool, for some m = 1, 2, . . . , N, de-
pends on its number of active tasks. It is worthwhile to mention that the T-coupling in the
current section is stronger than the S-coupling used in Section 4 in the single-server queueing
scenario. Observe that due to Lemma 5.9, the absolute difference of the occupancy states of
the JSQ policy and any scheme from the CJSQ class at any time point can be bounded deter-
ministically (without any terms involving the cumulative number of lost tasks). It is worth
emphasizing that the universality result on some specific scale, stated in Theorem 5.6, does not
depend on the behavior of the JSQ policy on that scale, whereas in the single-server queueing
scenario it does, mainly because the upper and lower bounds in Corollary 4.5 involve tail sums
of two different policies. More specifically, in the single-server queueing scenario the fluid and
diffusion limit results of CJSQ(n(N)) class crucially use those of the MJSQ(n(N)) scheme, while
in the current scenario it does not – the results for the MJSQ(n(N)) scheme comes as a conse-
quence of those for the CJSQ(n(N)) class of schemes. Also, the bounds in Lemma 5.9 do not
depend on t, and hence, apply in the steady state as well. Moreover, the S-coupling compares
the k highest horizontal bars, whereas the T-coupling in the current section compares the k low-
est horizontal bars. As a result, the bounds on the occupancy states established in Corollary 4.5
involve tail sums of the occupancy states of the ordinary JSQ policy, which necessitates proving
the convergence of tail sums of the occupancy states of the ordinary JSQ policy. In contrast, the
bound in the infinite-server scenario involves only a single component (see Equation (5.12)),
and thus, proving convergence of each component suffices.

The goal in the first step is to show that for a suitable choice of n(N), the schemes in the
CJSQ(n(N)) class are indistinguishable on suitable scales. This is formalized in Proposition 5.12
below, which follows immediately from Lemma 5.9.

Proposition 5.12. For any function g : N→ R+ diverging to infinity, if n(N)/g(N)→ 0 as N → ∞,
then the JSQ policy and the CJSQ(n(N)) schemes are g(N)-alike.

Step 2. g(N)-alikeness of JSQ(d(N)) and a scheme in CJSQ(n(N)). Next we compare the
CJSQ(n(N)) schemes with the JSQ(d(N)) scheme. The comparison follows a somewhat similar
line of argument as in Section 4.1, and involves a JSQ(n(N), d(N)) scheme which is an inter-
mediate blend between the CJSQ(n(N)) schemes and the JSQ(d(N)) scheme. Specifically, the
JSQ(n(N), d(N)) scheme selects a candidate server pool in the exact same way as the JSQ(d(N))

scheme. However, it only assigns the task to that server pool if it belongs to the n(N) + 1 lowest
ordered ones, and to a randomly selected server pool among these otherwise. By construction,
the JSQ(n(N), d(N)) scheme belongs to the class CJSQ(n(N)).

The next proposition establishes a sufficient criterion on d(N) in order for the JSQ(d(N))

scheme and JSQ(n(N), d(N)) scheme to be close in terms of g(N)-alikeness.

Proposition 5.13. Assume, n(N)/g(N) → 0 as N → ∞ for some function g : N → R+ diverging
to infinity. The JSQ(n(N), d(N)) scheme and the JSQ(d(N)) scheme are g(N)-alike if the following
condition holds:

n(N)

N
d(N)− log

N
g(N)

→ ∞, as N → ∞. (5.16)

35

Finally, Proposition 5.13 in conjunction with Proposition 5.12 yields Theorem 5.6. The overall
proof strategy as described above, is schematically represented in Figure 5b.

6 Load balancing in graph topologies

In this section we return to the single-server queueing dynamics, and extend the universal-
ity properties to network scenarios, where the N servers are assumed to be inter-connected
by some underlying graph topology GN . Tasks arrive at the various servers as independent
Poisson processes of rate λ, and each incoming task is assigned to whichever server has the
smallest number of tasks amongst the one where it arrives and its neighbors in GN . Ties are
broken arbitrarily. Thus, in case GN is a clique, each incoming task is assigned to the server
with the shortest queue across the entire system, and the behavior is equivalent to that under
the JSQ policy. The stochastic optimality properties of the JSQ policy thus imply that the queue
length process in a clique will be better balanced and smaller (in a majorization sense) than in
an arbitrary graph GN .

As stated in the introduction, network scenarios are not only of mathematical interest but
also of major relevance from an application perspective. For example, they emerge in modeling
connectivity properties, geographic restrictions and proximity relations in spatial network set-
tings. Besides capturing such physical concepts in infrastructure networks, network scenarios
also arise due to ‘logical relationships’, in particular so-called affinity notions and compatibility
constraints between tasks and servers. Such features are increasingly common in data centers
and cloud networks due to heterogeneity and data locality issues, see for instance [136, 169],
and also relate to the scalability considerations that are important in load balancing, as further
explained below.

Sparse graph topologies. Besides the prohibitive communication overhead discussed earlier, a
further scalability issue of the JSQ policy arises when executing a task involves the use of some
data. Storing such data for all possible tasks on all servers will typically require an excessive
amount of storage capacity. These two burdens can be effectively mitigated in sparser graph
topologies where tasks that arrive at a specific server i are only allowed to be forwarded to a
subset of the servers Ni. For the tasks that arrive at server i, queue length information then
only needs to be obtained from servers in Ni, and it suffices to store replicas of the required
data on the servers inNi. The subsetNi containing the peers of server i can be naturally viewed
as its neighbors in some graph topology GN . Here we consider the case of undirected graphs,
but most of the analysis can be extended to directed graphs.

While sparser graph topologies relieve the scalability issues associated with a clique, the
queue length process will be worse (in the majorization sense) because of the limited connec-
tivity. Surprisingly, however, even quite sparse graphs can asymptotically match the optimal
performance of a clique, provided they are suitably random, as we will further describe below.

The above model has been studied in [61, 147], focusing on certain fixed-degree graphs and
in particular ring topologies for which [113] had already presented simulation results. The
results demonstrate that the flexibility to forward tasks to a few neighbors, or even just one,
with possibly shorter queues significantly improves the performance in terms of the waiting
time and tail distribution of the queue length. This resembles the power-of-choice gains observed

36

for JSQ(d) policies in complete graphs.
However, the results in [61, 147] also establish that the performance sensitively depends on

the underlying graph topology, and that selecting from a fixed set of d− 1 neighbors typically
does not match the performance of re-sampling d− 1 alternate servers for each incoming task
from the entire population, as in the power-of-d scheme in a complete graph. Further interest-
ing results for the performance load balancing algorithms in a network context, with a focus
on tail asymptotics, may be found in [38, 110].

Supermarket model on graphs. When each arriving task is routed to the shortest of d ≥ 2 ran-
domly selected neighboring queues, the process-level convergence over any finite time interval
has been established recently in [28]. In this work, the authors analyze the evolution of the
queue length process at an arbitrary tagged server as the system size becomes large. The main
ingredient is a careful analysis of local occupancy measures associated with the neighborhood
of each server and to argue that under suitable conditions their asymptotic behavior is the same
for all servers. Under mild conditions on the graph topology GN (diverging minimum degree
and the ratio between minimum degree and maximum degree in each connected component
converges to 1), for a suitable initial occupancy measure, [28, Theorem 2.1] establishes that for
any fixed d ≥ 2, the global occupancy state process for the JSQ(d) scheme on GN has the same
weak limit in (3.2) as that on a clique, as the number of vertices N becomes large. Further, a
propagation of chaos property was shown to hold for this system, in the sense that the queue
lengths at any finite collection of tagged servers are asymptotically independent, and the queue
length process for each server converges in distribution (in the path space) to a certain McKean-
Vlasov process [28, Theorem 2.2]. Furthermore, when the graph sequence is random, with the
N-th graph given as an Erdős-Rényi random graph (ERRG) on N vertices with average degree
d(N), note that there are two types of randomness that drive the dynamics of the process: one
being the randomness of the underlying graph and the other being the randomness of the ar-
rival/departure processes given the graph. This setup comes under the framework of random
processes in random environment. Here one is typically interested in two types of convergence
results: (1) Annealed convergence, where one looks at the dynamics of the sequence of occupancy
processes averaged over the randomness of the underlying graph, and (2) Quenched convergence,
where one samples a sequence of random graphs with increasing N and given that sequence,
considers the dynamics of the sequence of occupancy process. In [28] annealed convergence is
is established under the condition d(N) → ∞, and the quenched convergence is shown under
a stronger condition d(N)/ log N → ∞.

Asymptotic optimality on graphs. We return to the case when each incoming task is assigned
to whichever server has the smallest number of tasks among the one where it arrives and its
neighbors in GN . The results presented in the remainder of the section are based on [116]
where also full proofs are provided, unless indicated otherwise. As mentioned earlier, the
queue length process in a clique will be better balanced and smaller (in a majorization sense)
than in an arbitrary graph GN . Accordingly, a graph GN is said to be N-optimal or

√
N-

optimal when the queue length process on GN is equivalent to that on a clique on an N-scale
or
√

N-scale, respectively. Roughly speaking, a graph is N-optimal if the fraction of nodes with
i tasks, for i = 0, 1, . . ., behaves as in a clique as N → ∞. The fluid-limit results for the JSQ

37

policy discussed in Section 3.3 imply that the latter fraction is zero in the limit for all i ≥ 2
in a clique in stationarity, i.e., the fraction of servers with two or more tasks vanishes in any
graph that is N-optimal, and consequently the mean waiting time vanishes as well as N → ∞.
Furthermore, the diffusion-limit results of [36] for the JSQ policy discussed in Section 3.4 imply
that the number of nodes with zero tasks and that with two tasks both scale as

√
N as N → ∞.

Again loosely speaking, a graph is
√

N-optimal if in the heavy-traffic regime the number of
nodes with zero tasks and that with two tasks when scaled by

√
N both evolve as in a clique

as N → ∞. Formal definitions of asymptotic optimality on an N-scale or
√

N-scale will be
introduced in Definition 6.1 below.

As one of the main results, we will demonstrate that, remarkably, asymptotic optimality
can be achieved in quite sparse ERRGs. We prove that a sequence of ERRGs indexed by the
number of vertices N with d(N) → ∞ as N → ∞, is N-optimal. We further establish that the
latter growth condition for the average degree is in fact necessary in the sense that any graph
sequence that contains Θ(N) bounded-degree vertices cannot be N-optimal. This implies that a
sequence of ERRGs with finite average degree cannot be N-optimal. The growth rate condition
is more stringent for optimality on

√
N-scale in the heavy-traffic regime. Specifically, we prove

that a sequence of ERRGs indexed by the number of vertices N with d(N)/(
√

N log(N))→ ∞
as N → ∞, is

√
N-optimal.

The above results demonstrate that the asymptotic optimality of cliques on an N-scale and√
N-scale can be achieved in far sparser graphs, where the number of connections is reduced by

nearly a factor N and
√

N/ log(N), respectively, provided the topologies are suitably random
in the ERRG sense. This translates into equally significant reductions in communication over-
head and storage capacity, since both are roughly proportional to the number of connections.

Arbitrary graph topologies. The key challenge in the analysis of load balancing on arbitrary
graph topologies is that one needs to keep track of the evolution of number of tasks at each
vertex along with their corresponding neighborhood relationship. This creates a major prob-
lem in constructing a tractable Markovian state descriptor, and renders a direct analysis of such
processes highly intractable, as already alluded to in [113]. Consequently, even asymptotic re-
sults for load balancing processes on an arbitrary graph have remained scarce so far. We take
a radically different approach and aim to compare the load balancing process on an arbitrary
graph with that on a clique. Specifically, rather than analyze the behavior for a given class
of graphs or degree value, we explore for what types of topologies and degree properties the
performance is asymptotically similar to that in a clique.

Stochastic coupling for graphs. Our proof arguments build on the stochastic coupling con-
structions developed in Section 4 for JSQ(d) policies. Specifically, we view the load balancing
process on an arbitrary graph as a ‘sloppy’ version of that on a clique, and thus construct sev-
eral other intermediate sloppy versions. By constructing novel couplings, we develop a method
of comparing the load balancing process on an arbitrary graph and that on a clique. In partic-
ular, we bound the difference between the fraction of vertices with i or more tasks in the two
systems for i = 1, 2, . . . , to obtain asymptotic optimality results. From a high-level viewpoint,
conceptually related graph conditions for asymptotic optimality were examined using quite
different techniques in [145, 146] in a dynamic scheduling framework (as opposed to the load

38

balancing context).

Notation. For k = 1, . . . , N, denote by Xk(GN , t) the queue length at the k-th server at time t
(including the task possibly in service), and by X(k)(GN , t) the queue length at the k-th ordered
server at time t when the servers are arranged in non-decreasing order of their queue lengths
(ties can be broken in some way that will be evident from the context). Let Qi(GN , t) denote
the number of servers with queue length at least i at time t and qi(GN , t) = Qi(GN , t)/N,
i = 1, 2, It is important to note that (qi(GN , t))i≥1 is itself not a Markov process. Given
the graph GN , the queue-length process (Xk(GN , t))N

k=1 is Markovian under the model assump-
tions, and (qi(GN , t)i≥1) is a function of (Xk(GN , t))N

k=1. Also, in the Halfin-Whitt heavy-traffic
regime (2.1), define the centered and scaled processes

Q̄1(GN , t) = −N −Q1(GN , t)√
N

, Q̄i(GN , t) =
Qi(GN , t)√

N
, (6.1)

analogous to (3.1).

Asymptotic optimality. In general, the optimality of the clique topology is strict, but it turns
out that near-optimality can be achieved asymptotically in a broad class of other graph topolo-
gies. Therefore, we now introduce two notions of asymptotic optimality, which will be useful to
characterize the performance in large-scale systems.

Definition 6.1 (Asymptotic optimality). A graph sequence G = {GN}N≥1 is called ‘asymptotically
optimal on N-scale’ or ‘N-optimal’, if for any λ < 1, the process (q1(GN , ·), q2(GN , ·), . . .) converges
weakly, on any finite time interval, to a process (q1(·), q2(·), . . .) satisfying (3.5).

Moreover, a graph sequence G = {GN}N≥1 is called ‘asymptotically optimal on
√

N-scale’ or
‘
√

N-optimal’, if in the Halfin-Whitt heavy-traffic regime (2.1), on any finite time interval, the pro-
cess (Q̄1(GN , ·), Q̄2(GN , ·), . . .) as in (6.1) converges weakly to the process (Q̄1(·), Q̄2(·), . . .) given
by (3.7).

Intuitively speaking, if a graph sequence is N-optimal or
√

N-optimal, then in some sense,
the associated occupancy processes are indistinguishable from those of the sequence of cliques
on N-scale or

√
N-scale. In other words, on any finite time interval their occupancy processes

can differ from those in cliques by at most o(N) or o(
√

N), respectively. We will interchange-
ably use the terms fluid scale and diffusion scale to refer to N-scale and

√
N-scale, respectively. In

particular, exploiting interchange of the stationary (t → ∞) and many-server (N → ∞) limits,
we obtain that for any N-optimal graph sequence {GN}N≥1, as N → ∞

q1(GN , ∞)→ λ and qi(GN , ∞)→ 0 for all i = 2, . . . , B,

implying that the stationary fraction of servers with queue length two or larger and the mean
waiting time vanish. It is worthwhile to point out that the above interchange of limits requires
the ergodicity of the queue length process for each fixed N, a certain tightness of the sequence
{(q1(GN , ∞), q2(GN , ∞), . . .)}N≥1, and the global stability of the fluid limits.

39

6.1 Asymptotic optimality criteria for deterministic graph sequences

We now proceed to develop a criterion for asymptotic optimality of an arbitrary deterministic
graph sequence on different scales. Next this criterion will be leveraged to establish optimality
of a sequence of random graphs. We start by introducing some useful notation, and two
measures of well-connectedness. Let G = (V, E) be any graph. For a subset U ⊆ V, define
com(U) := |V \ N[U]| to be the cardinality of the set of all vertices that are disjoint from U and
its immediate neighbors, where N[U] := U ∪ {v ∈ V : ∃ u ∈ U with (u, v) ∈ E}. For any fixed
ε > 0 define

dis1(G, ε) := sup
U⊆V,|U|≥ε|V|

com(U), dis2(G, ε) := sup
U⊆V,|U|≥ε

√
|V|

com(U). (6.2)

The next theorem provides sufficient conditions for asymptotic optimality on N-scale and√
N-scale in terms of the above two well-connectedness measures.

Theorem 6.2. For any graph sequence G = {GN}N≥1,

(i) G is N-optimal if for any ε > 0, dis1(GN , ε)/N → 0 as N → ∞.

(ii) G is
√

N-optimal if for any ε > 0, dis2(GN , ε)/
√

N → 0 as N → ∞.

From a high-level perspective, the conditions in Theorem 6.2 (i) and (ii) require that neigh-
borhoods of any Θ(N) and Θ(

√
N) vertices contain at least N− o(N) and N− o(

√
N) vertices,

respectively. As we will see below in Theorems 6.8 and 6.10, the conditions in Theorem 6.2
impose suitable levels of connectivity in the graph topology in order for it to be asymptoti-
cally optimal on fluid and diffusion scales, while significantly reducing the total number of
connections. The next corollary is an immediate consequence of Theorem 6.2.

Corollary 6.3. Let G = {GN}N≥1 be any graph sequence. Then (i) if the minimum degree in GN

equals N− o(N), then G is N-optimal, and (ii) if the minimum degree in GN equals N− o(
√

N), then
G is
√

N-optimal.

The rest of the subsection is devoted to a discussion of the main proof arguments for The-
orem 6.2, focusing on the proof of N-optimality. The proof of

√
N-optimality follows along

similar lines. We establish in Proposition 6.4 that if a system is able to assign each task to a
server in the set, denoted by SN(n(N)), of the n(N) + 1 nodes with shortest queues, where
n(N) is o(N), then it is N-optimal. Since the underlying graph is not a clique however (oth-
erwise there is nothing to prove), for any n(N) not every arriving task can be assigned to a
server in SN(n(N)). Hence we further prove in Proposition 6.5 a stochastic comparison prop-
erty implying that if on any finite time interval of length t, the number of tasks ∆N(t) that are
not assigned to a server in SN(n(N)) is oP(N), then the system is N-optimal as well. The N-
optimality can then be concluded when ∆N(t) is oP(N), which we establish in Proposition 6.6
under the condition that dis1(GN , ε)/N → 0 as N → ∞ as stated in Theorem 6.2.

To further explain the idea described in the above proof outline, it is useful to adopt a
slightly different point of view towards load balancing processes on graphs. From a high-level
viewpoint, a load balancing process can be thought of as follows: there are N servers, which
are assigned incoming tasks by some scheme. The assignment scheme can arise from some

40

topological structure, in which case we will call it topological load balancing, or it can arise from
some other property of the occupancy process, in which case we will call it non-topological
load balancing. As mentioned earlier, the JSQ policy or the clique is optimal among the set of
all non-anticipating schemes, irrespective of being topological or non-topological. Also, load
balancing on graph topologies other than a clique can be thought of as a ‘sloppy’ version of
that on a clique, when each server only has access to partial information on the occupancy
state. Below we first introduce a different type of sloppiness in the task assignment scheme,
and show that under a limited amount of sloppiness optimality is retained on a suitable scale.
Next we will construct a scheme which is a hybrid of topological and non-topological schemes,
whose behavior is simultaneously close to both the load balancing process on a suitable graph
and that on a clique.

A class of sloppy load balancing schemes. Fix some function n : N → N, and recall the set
SN(n(N)) as before as well as the class CJSQ(n(N)) from Section 4.1, where each arriving task
is assigned to one of the servers in SN(n(N)). It should be emphasized that for any scheme in
CJSQ(n(N)), we are not imposing any restrictions on how the incoming task should be assigned
to a server in SN(n(N)). The scheme only needs to ensure that the arriving task is assigned
to some server in SN(n(N)) with respect to some tie breaking mechanism. Observe that using
Corollary 4.5 and following the arguments as in the proof of Theorems 4.1 and 4.2, we obtain
the next proposition, which provides a sufficient criterion for asymptotic optimality of any
scheme in CJSQ(n(N)).

Proposition 6.4. For 0 ≤ n(N) < N, let Π ∈ CJSQ(n(N)) be any scheme. (i) If n(N)/N → 0 as
N → ∞, then Π is N-optimal, and (ii) If n(N)/

√
N → 0 as N → ∞, then Π is

√
N-optimal.

A bridge between topological and non-topological load balancing. For any graph GN and
n ≤ N, we first construct a scheme called I(GN , n), which is an intermediate blend between the
topological load balancing process on GN and some kind of non-topological load balancing on
N servers. The choice of n = n(N) will be clear from the context.

To describe the scheme I(GN , n), first synchronize the arrival epochs at server v in both
systems, v = 1, 2, . . . , N. Further, synchronize the departure epochs at the k-th ordered server
with the k-th smallest number of tasks in the two systems, k = 1, 2, . . . , N. When a task arrives
at server v at time t say, it is assigned in the graph GN to a server v′ ∈ N[v] according to its
own statistical law. For the assignment under the scheme I(GN , n), first observe that if

min
u∈N[v]

Xu(GN , t) ≤ max
u∈S(n)

Xu(GN , t), (6.3)

then there exists some tie-breaking mechanism for which v′ ∈ N[v] belongs to S(n) under GN .
Pick such an ordering of the servers, and assume that v′ is the k-th ordered server in that
ordering, for some k ≤ n + 1. Under I(GN , n) assign the arriving task to the k-th ordered server
(breaking ties arbitrarily in this case). Otherwise, if (6.3) does not hold, then the task is assigned
to one of the n + 1 servers with minimum queue lengths under GN uniformly at random.

Denote by ∆N(I(GN , n), T) the cumulative number of arriving tasks up to time T ≥ 0 for
which Equation (6.3) is violated under the above coupling. The next proposition shows that

41

the load balancing process under the scheme I(GN , n) is close to that on the graph GN in terms
of the random variable ∆N(I(GN , n), T).

Proposition 6.5. The following inequality is preserved almost surely

B

∑
i=1
|Qi(GN , t)−Qi(I(GN , n), t)| ≤ 2∆N(I(GN , n), t), ∀ t ≥ 0, (6.4)

provided the two systems start from the same occupancy state at t = 0.

In order to conclude optimality on N-scale or
√

N-scale, it remains to be shown that the term
∆N(I(GN , n), T) is sufficiently small. The next proposition provides suitable asymptotic bounds
for ∆N(I(GN , n), T) under the conditions on dis1(GN , ε) and dis2(GN , ε) stated in Theorem 6.2.
For N-optimality, the idea is that since for all ε > 0, dis1(GN , ε) is o(N), one can show that
there is a number nε(N) = o(N), such that com(U) = o(N) uniformly over all U ⊆ VN with
|U| ≥ nε(N). Consequently, this can be used to show that on any finite time interval, ‘most
of the tasks’ will be assigned to one of the nε(N) servers with smallest queue lengths. This
enables us to couple the system with a scheme from the class CJSQ(nε(N)). The idea is similar
when we consider

√
N-optimality.

Proposition 6.6. (i) For any ε > 0, there exists ε′ > 0 and nε′(N) with nε′(N)/N → 0 as N → ∞,
such that if dis1(GN , ε′)/N → 0 as N → ∞, then for all T > 0,

P

(
∆N(I(GN , nε′), T)/N > ε

)
→ 0.

(ii) For any ε > 0, there exists ε′ > 0 and mε′(N) with mε′(N)/
√

N → 0 as N → ∞, such that if
dis2(GN , ε′)/

√
N → 0 as N → ∞, then for all T > 0,

P

(
∆N(I(GN , mε′), T)/

√
N > ε

)
→ 0.

The proof of Theorem 6.2 then readily follows by combining Propositions 6.4-6.6 and ob-
serving that the scheme I(GN , n) belongs to the class CJSQ(n) by construction.

From the conditions of Theorem 6.2 it follows that if for all ε > 0, dis1(GN , ε) and dis2(GN , ε)

are o(N) and o(
√

N), respectively, then the total number of edges in GN must be ω(N) and
ω(N

√
N), respectively. Theorem 6.7 below states that the super-linear growth rate of the total

number of edges is not only sufficient, but also necessary in the sense that any graph with
O(N) edges is asymptotically sub-optimal on N-scale.

Theorem 6.7. Let G = {GN}N≥1 be any graph sequence, such that there exists a fixed integer M < ∞
with

lim sup
N→∞

#
{

v ∈ VN : dv ≤ M
}

N
> 0, (6.5)

where dv is the degree of the vertex v. Then G is sub-optimal on N-scale.

To prove Theorem 6.7, we show that starting from an all-empty state, in finite time, a positive
fraction of servers in GN will have at least two tasks. This establishes that the occupancy
processes when scaled by N cannot agree with those in the sequence of cliques, and hence

42

{GN}N≥1 cannot be N-optimal. The idea of the proof can be explained as follows: If a system
contains Θ(N) bounded-degree vertices, then starting from an all-empty state, in any finite
time interval there will be Θ(N) servers u say, for which all the servers in N[u] have at least
one task. For all such servers an arrival at u must produce a server with queue length two. It
follows that the instantaneous rate at which servers of queue length two are formed is bounded
away from zero, and hence Θ(N) servers of queue length two are produced in finite time.

6.2 Asymptotic optimality of random graph sequences

Next we investigate how the load balancing process behaves on random graph topologies.
Specifically, we aim to understand what types of graphs are asymptotically optimal in the
presence of randomness (i.e., in an average-case sense). Theorem 6.8 below establishes sufficient
conditions for asymptotic optimality of a sequence of inhomogeneous random graphs. Recall
that a graph G′ = (V ′, E′) is called a supergraph of G = (V, E) if V = V ′ and E ⊆ E′. 4

Theorem 6.8. Let G = {GN}N≥1 be a graph sequence such that for each N, GN = (VN , EN) is a
supergraph of the inhomogeneous random graph G′N where any two vertices u, v ∈ VN share an edge
with probability pN

uv, independently of each other.

(i) If inf {pN
uv : u, v ∈ VN} is ω(1/N), then G is N-optimal.

(ii) If inf {pN
uv : u, v ∈ VN} is ω(log(N)/

√
N), then G is

√
N-optimal.

The proof of Theorem 6.8 relies on Theorem 6.2. Specifically, if GN satisfies conditions (i)
and (ii) in Theorem 6.8, then the corresponding conditions (i) and (ii) in Theorem 6.2 hold.

As an immediate corollary of Theorem 6.8 we obtain an optimality result for the sequence of
ERRGs. Let ERRG(N, p(N)) denote a graph on N vertices, such that any pair of vertices share
an edge with probability p(N).

Corollary 6.9. Let G = {GN}N≥1 be a graph sequence such that for each N, GN is a super-graph of
ERRG(N, p(N)), and d(N) = (N− 1)p(N). Then (i) If d(N)→ ∞ as N → ∞, then G is N-optimal.
(ii) If d(N)/(

√
N log(N))→ ∞ as N → ∞, then G is

√
N-optimal.

Theorem 6.2 can be further leveraged to establish the optimality of the following sequence
of random graphs. For any N ≥ 1 and d(N) ≤ N − 1 such that Nd(N) is even, construct the
erased random regular graph on N vertices as follows: Initially, attach d(N) half-edges to each
vertex. Call all such half-edges unpaired. At each step, pick one half-edge arbitrarily, and pair
it to another half-edge uniformly at random among all unpaired half-edges to form an edge,
until all the half-edges have been paired. Thus, note that there can be more than one edge
between two vertices (i.e., multi-edge) or a half-edge of a vertex can be paired with another
half-edge of the same vertex (self-loops). Such a graph is known as a regular multi-graph. In
fact, it is known [153, Proposition 7.7] that the above pairing procedure results in a random
graph that has a uniform distribution over all regular multi-graph with degree d(N). Now the

4Reviewer: It troubles me that Thm 6.2 and its following comment have a ‘perturbation of a complete graph’
flavor made explicit in Cor 6.3, whereas Thms 6.8 and 6.9 have more of a ‘sampling proportional to the size of the
network’ aspect. This is due to the randomness, but the mechanism is unclear, and it is not intuitively clear for me
for instance that conditions (i) and (ii) in Theorem 6.8 should be enough to imply conditions (i) and (ii) in Theorem
6.2. I must be missing something. Could you briefly comment on this?

43

erased random regular graph is formed by erasing all the self-loops and collapsing the multiple
edges to a single edge, which thus produces a simple graph.

Theorem 6.10. Let G = {GN}N≥1 be a sequence of erased random regular graphs with degree d(N).
Then (i) If d(N)→ ∞ as N → ∞, then G is N-optimal. (ii) If d(N)/(

√
N log(N))→ ∞ as N → ∞,

then G is
√

N-optimal.

Note that due to Theorem 6.7, we can conclude that the growth rate condition for N-
optimality in Corollary 6.9 (i) and Theorem 6.10 (i) is not only sufficient, but necessary as well.
Thus informally speaking, N-optimality is achieved under the minimum condition required as
long as the underlying topology is suitably random.

7 Token-based load balancing

While a zero waiting time can be achieved in the limit by sampling only d(N) = o(N) servers as
Sections 4 and 6 showed, even in network scenarios, the amount of communication overhead in
terms of d(N) must still grow with N. As mentioned earlier, this can be avoided by introducing
memory at the dispatcher, in particular maintaining a record of only vacant servers, and assign-
ing tasks to idle servers, if there are any, or to a uniformly at random selected server otherwise.
This so-called Join-the-Idle-Queue (JIQ) scheme [11, 101] can be implemented through a simple
token-based mechanism generating at most one message per task. Remarkably enough, even
with such low communication overhead, the mean waiting time and the probability of a non-
zero waiting time vanish under the JIQ scheme in both the fluid and diffusion regimes, as we
will discuss in the next two subsections. It is worth emphasizing though that the JIQ scheme is
not optimal in the non-degenerate slow-down regime, which was introduced in Section 2.2 and
will be further discussed in Section 8.3.

7.1 Fluid-level optimality of JIQ scheme

We first consider the fluid limit of the JIQ policy. It is not hard to show that the number of
busy servers under the JIQ scheme is stochastically larger (in the path space) than that for the
JSQ(1) policy (tasks assigned uniformly at random). Consequently, the JIQ scheme is stable
whenever λ < 1. Recall that qN

i (∞) denotes a random variable denoting the process qN
i (·)

in steady state. Under significantly more general conditions (in the presence of finitely many
heterogeneous server pools and for general service time distributions with decreasing hazard
rate) it was proved in [141] that under the JIQ scheme

qN
1 (∞)→ λ, qN

i (∞)→ 0 for all i ≥ 2, as N → ∞. (7.1)

The above equation in conjunction with the PASTA property yields that the steady-state prob-
ability of a non-zero wait vanishes as N → ∞, thus exhibiting asymptotic optimality of the JIQ
policy on fluid scale.

High-level outline of proof idea. Loosely speaking, the proof of (7.1) consists of three prin-
cipal components:

44

(i) Starting from an all-empty state, the asymptotic rate of increase of q1 is given by the arrival
rate λ. Also, the rate of decrease is q1. Thus, on a small time interval dt, the rate of change
of q1 is given by

dq1(t)
dt

= λ− q1(t). (7.2)

Under the above dynamics, the system occupancy states converge to the unique fixed
point of the above ODE, given by the point (λ, 0, 0, . . .).

(ii) The occupancy process is monotone, in the sense that (a) starting from an all-empty
state, the occupancy process is componentwise stochastically nondecreasing in time (in
the sense of stochastic dominance), and (b) the occupancy process at any fixed time t,
starting from an arbitrary state, componentwise stochastically dominates the occupancy
process at time t, starting from an all-empty state.

(iii) Under the JIQ scheme, the system is stable, and hence the occupancy process is ergodic.
Since q1(t) is the instantaneous rate of departure from the system, ergodicity implies that
in steady state there can be at most λ fraction of busy servers (containing at least one task).
In fact, it further establishes that the steady-state fraction of servers with more than one
tasks vanishes asymptotically.

Points (i) and (ii) above imply that starting from any state the system must have at least λ

fraction of busy servers, and finally this along with Point (iii) establishes that the steady-state
occupancy process must converge to (λ, 0, 0, . . .).

7.2 Diffusion-level optimality of JIQ scheme

We now turn to the diffusion limit of the JIQ scheme established in [118]. Recall the centered
and scaled occupancy process as in (3.1), and the Halfin-Whitt heavy-traffic regime in (2.1).

Theorem 7.1 (Diffusion limit for JIQ). Assume that λ(N) satisfies (2.1). Under suitable initial
conditions the weak limit of the sequence of centered and diffusion-scaled occupancy process in (3.1)
coincides with that of the ordinary JSQ policy, and in particular, is given by the system of SDEs in (3.7).

The above theorem implies that for suitable states, on any finite time interval, the occupancy
process of a system under the JIQ policy is indistinguishable from that under the JSQ policy.

High-level outline of proof idea. The proof of Theorem 7.1 relies on a novel coupling con-
struction introduced in [118] as described below in detail. The idea is to compare the occupancy
processes of two systems following JIQ and JSQ policies, respectively. Comparing the JIQ and
JSQ policies is facilitated when viewed as follows: (i) If there is an idle server in the system,
both JIQ and JSQ perform similarly, (ii) Also, when there is no idle server and only O(

√
N)

servers with queue length two or more, JSQ assigns the arriving task to a server with queue
length one. In that case, since JIQ assigns at random, the probability that the task will land on
a server with queue length two or more and thus JIQ acts differently than JSQ is O(1/

√
N).

Since on any finite time interval the number of times an arrival finds all servers busy is at most
O(
√

N), all the arrivals except O(1) of them are assigned in exactly the same manner in both
JIQ and JSQ, which then leads to the same scaling limit for both policies.

45

The diffusion limit result in Theorem 7.1 is in fact true for an even broader class of load
balancing schemes. As in Section 4.1, let B denote the buffer capacity (possibly infinite) of
each server, and in case B < ∞, if a task is assigned to a server with B outstanding tasks, it is
instantly discarded. For an LBA Π, we will denote the total number of tasks lost up to time t
by LΠ(t). Define the class of schemes

Π(N) := {Π(d0, d1, . . . , dB−1) : d0 = N, 1 ≤ di ≤ N, 1 ≤ i ≤ B− 1, B ≥ 2},

where in the scheme Π(d0, d1, . . . , dB−1) with buffer capacity B, the dispatcher assigns an in-
coming task to the server with the minimum queue length among dk (possibly function of N)
servers selected uniformly at random when the minimum queue length across the system is k,
k = 0, 1, . . . , B− 1. The system analyzed in [36] (JSQ with B = 2) can be written as Π(N, N),
JIQ can be expressed as Π(N, 1, 1, . . .), and JIQ with a buffer capacity B = 2 is Π(N, 1).

The crux of the argument in proving diffusion-level optimality for any scheme in Π(N) goes
as follows: First the occupancy process under the scheme Π(N, d1, . . . , dB−1) is sandwiched
between those under Π(N, 1) and Π(N, d1). More specifically, the `1-distance between the
occupancy processes under Π(N, d1, . . . , dB−1) and Π(N, 1) is bounded by the number of items
lost due to full buffers. Next, this loss is bounded using the number of servers with queue
length 2 in Π(N, N). This allows the use of the results in [36], and yields that on any finite
time interval with high probability an O(1) number of items are lost due to full buffers, which
is negligible on

√
N scale. Specifically, this shows that for suitable initial states, the schemes

Π(N, 1) and Π(N, d1), along with any scheme in the class Π(N) has the same diffusion limit in
the Halfin-Whitt heavy-traffic regime. We conclude this subsection by describing the coupling
construction stating the stochastic inequalities, and a brief proof sketch for Theorem 7.1.

The coupling construction. We now construct a coupling between two systems following any
two schemes, say Π1 = Π(l0, l1, . . . , lB−1) and Π2 = Π(d0, d1, . . . , dB′−1) in Π(N), respectively, to
establish the desired stochastic ordering results. Note that Π1 and Π2 have (possibly different)
buffer capacities B and B′, respectively. With slight abuse of notation we will denote by Πi the
system following scheme Πi, i = 1, 2.

For the arrival process we couple the two systems as follows. First we synchronize the
arrival epochs of the two systems. Now assume that in the systems Π1 and Π2, the minimum
queue lengths are k and m, respectively, for some k ≤ B− 1, m ≤ B′− 1. Therefore, when a task
arrives, the dispatchers in Π1 and Π2 have to select lk and dm servers, respectively, and then
have to send the task to the one having the minimum queue length among the respectively
selected servers. Since the servers are being selected uniformly at random we can assume
without loss of generality, as in the stack construction, that the servers are arranged in non-
decreasing order of their queue lengths and are indexed in increasing order. Hence, observe
that when a few server indices are selected, the server having the minimum of those indices will
be the server with the minimum queue length among these. Thus, in this case the dispatchers
in Π1 and Π2 select lk and dm random numbers (without replacement) from {1, 2, . . . , N} and
then send the incoming task to the servers having indices to be the minimum of those selected
numbers. Now, note that selecting lk (or dm) random servers is equivalent to selecting a random
permutation of {1, 2, . . . , N}, say (σ1, σ2, . . . , σN), and selecting first lk (or dm) indices. To couple
the assignment decisions of the two systems, at each arrival epoch a single random permutation

46

of {1, 2, . . . , N} is drawn, denoted by Σ(N) := (σ1, σ2, . . . , σN). Define σ(i) := minj≤i σj. Then
observe that system Π1 sends the task to the server with the index σ(lk) and system Π2 sends the
task to the server with the index σ(dm). Since at each arrival epoch both systems use a common
random permutation, they take decisions in a coupled manner.

For the potential departure process, couple the service completion times of the kth queue
in both scenarios, k = 1, 2, . . . , N. More precisely, for the potential departure process assume
that we have a single synchronized exp(N) clock independent of arrival epochs for both sys-
tems. Now when this clock rings, a number k is uniformly selected from {1, 2, . . . , N} and
a potential departure occurs from the kth queue in both systems. If at a potential departure
epoch an empty queue is selected, then we do nothing. Since the service time requirements are
i.i.d. exponentially distributed, the memoryless property ensures that the two schemes, consid-
ered independently, still evolve according to their appropriate statistical laws under the above
coupling.

Proposition 7.2. For two schemes Π1 = Π(l0, l1, . . . , lB−1) and Π2 = Π(d0, d1, . . . , dB′−1) with
B ≤ B′ assume l0 = . . . = lB−2 = d0 = . . . = dB−2 = d, lB−1 ≤ dB−1 and either d = N or d ≤ dB−1.
Then the following holds:

(i) {QΠ1
i (t)}t≥0 ≤st {QΠ2

i (t)}t≥0 for i = 1, 2, . . . , B,

(ii) {∑B
i=1 QΠ1

i (t) + LΠ1(t)}t≥0 ≥st {∑B′
i=1 QΠ2

i (t) + LΠ2(t)}t≥0,

(iii) {∆(t)}t≥0 ≥ {∑B′
i=B+1 QΠ2

i (t)}t≥0 almost surely under the coupling defined above,

for any fixed N ∈ N where ∆(t) := LΠ1(t)− LΠ2(t), provided that at time t = 0 the above ordering
holds.

Proof of Theorem 7.1. Let Π = Π(N, d1, . . . , dB−1) be a load balancing scheme in the class Π(N).
Denote by Π1 the scheme Π(N, d1) with buffer size B = 2 and let Π2 denote the JIQ policy
Π(N, 1) with buffer size B = 2.

Observe that from Proposition 7.2 we have under the coupling defined above,

|QΠ
i (t)−QΠ2

i (t)| ≤ |QΠ
i (t)−QΠ1

i (t)|+ |QΠ1
i (t)−QΠ2

i (t)|
≤ |LΠ1(t)− LΠ(t)|+ |LΠ2(t)− LΠ1(t)| ≤ 2LΠ2(t),

(7.3)

for all i ≥ 1 and t ≥ 0 with the understanding that Qj(t) = 0 for all j > B, for a scheme with
buffer capacity B. The third inequality above is due to Proposition 7.2(iii), which in particular
says that {LΠ2(t)}t≥0 ≥ {LΠ1(t)}t≥0 ≥ {LΠ(t)}t≥0 almost surely under the coupling. Now we
have the following lemma.

Lemma 7.3. For all t ≥ 0, under the assumptions of Theorem 7.1, {LΠ2(t)}N≥1 forms a tight sequence.

Since LΠ2(t) is non-decreasing in t, the above lemma in particular implies that

sup
t∈[0,T]

LΠ2(t)√
N

P−→ 0. (7.4)

For any scheme Π ∈ Π(N), from (7.3) we know that

{QΠ2
i (t)− 2LΠ2(t)}t≥0 ≤ {QΠ

i (t)}t≥0 ≤ {QΠ2
i (t) + 2LΠ2(t)}t≥0.

47

1 2 R

α1λN α2λN αRλN

1 2 i N

1

Figure 6: Schematic view of the model with R dispatchers and N servers.

Combining (7.3) and (7.4) shows that if the weak limits under the
√

N scaling exist, they must
be the same for all the schemes in the class Π(N). Also, as described in Section 3, the weak limit
for Π(N, N) exists and the common weak limit can be described by the unique solution of the
SDEs in (3.7). Hence, the proof of Theorem 7.1 is complete.

7.3 Multiple dispatchers

So far we have focused on a basic scenario with a single dispatcher, but it is not uncommon
for LBAs to operate across multiple dispatchers. While the presence of multiple dispatchers
does not affect the queueing dynamics of JSQ(d) policies, it does matter for the JIQ scheme
which uses memory at the dispatcher. In order to examine the impact, we consider in this
subsection a scenario with N parallel identical servers as before and R ≥ 1 dispatchers, as
depicted in Figure 6. Tasks arrive at dispatcher r as a Poisson process of rate αrλN, with αr > 0,
r = 1, . . . , R, ∑R

r=1 αr = 1, and λ denoting the task arrival rate per server. For conciseness, we
denote α = (α1, . . . , αR), and without loss of generality we assume that the dispatchers are
indexed such that α1 ≥ α2 ≥ · · · ≥ αR.

When a server becomes idle, it sends a token to one of the dispatchers selected uniformly at
random, advertising its availability. When a task arrives at a dispatcher which has tokens avail-
able, one of the tokens is selected, and the task is immediately forwarded to the corresponding
server.

We distinguish two scenarios when a task arrives at a dispatcher which has no tokens avail-
able, referred to as the blocking and queueing scenario respectively. In the blocking scenario, the
incoming task is blocked and instantly discarded. In the queueing scenario, the arriving task is
forwarded to one of the servers selected uniformly at random. If the selected server happens
to be idle, then the outstanding token at one of the other dispatchers is revoked.

In the queueing scenario we assume λ < 1, which is not only necessary but also sufficient for
stability. It is not difficult to show that the joint queue length process is stochastically majorized
by a scheme that assigns each task to a server chosen uniformly at random. In the latter case,
the system decomposes into N independent M/M/1 queues, each of which has load λ < 1 and
is stable.

Scenarios with multiple dispatchers have received limited attention in the literature, and the
scant papers that exist [101, 115, 142] almost exclusively assume that the loads at the various

48

dispatchers are strictly equal, i.e., α1 = · · · = αR = 1/R. In these cases the fluid limit, for
suitable initial states, is the same as in Equation (7.2) for a single dispatcher, and in particular
the fixed point is the same, hence, the JIQ scheme continues to achieve asymptotically optimal
delay performance with minimal communication overhead. The results in [142] in fact show
that the JIQ scheme remains asymptotically optimal even when the servers are heterogeneous,
while it is readily seen that JSQ(d) policies cannot even provide maximum stability (i.e. achieve
stability whenever feasible at all) in that case for any fixed value of d. As one of the few
exceptions, [149] allows the loads at the various dispatchers to be different. It is not uncommon
for such skewed load patterns to arise for example when the various dispatchers receive tasks
from external sources making it difficult to perfectly balance the task arrival rates.

Results for blocking scenario. For the blocking scenario, denote by B(R, N, λ, α) the steady-
state blocking probability of an arbitrary task. It is established in [149] that,

B(R, N, λ, α)→ max{1− RαR, 1− 1/λ} as N → ∞.

This result shows that in the many-server limit the system performance in terms of blocking
is either determined by the relative load of the least-loaded dispatcher, or by the aggregate
load. This may be informally explained as follows. Let x̄0 be the expected fraction of busy
servers in steady state, so that each dispatcher receives tokens on average at a rate x̄0N/R.
We distinguish two cases, depending on whether a positive fraction of the tokens reside at
the least-loaded dispatcher R in the limit or not. If that is the case, then the task arrival rate
αRλN at dispatcher R must equal the rate x̄0N/R at which it receives tokens, i.e., x̄0/R = αRλ.
Otherwise, the task arrival rate αRλN at dispatcher R must be no less the rate x̄0N/R at which
it receives tokens, i.e., x̄0/R ≤ αRλ. Since dispatcher R is the least-loaded, it then follows that
x̄0/R ≤ αrλ for all r = 1, . . . , R, which means that the task arrival rate at all the dispatchers is
higher that the rate at which tokens are received. Thus the fraction of tokens at each dispatcher
is zero in the limit, i.e., the fraction of idle servers is zero, implying x̄0 = 1. Combining the two
cases, and observing that x̄0 ≤ 1, we conclude x̄0 = min{RαRλ, 1}. Because of Little’s law, x̄0

is related to the blocking probability B as x̄0 = λ(1− B). This yields 1− B = min{RαRλ, 1/λ},
or equivalently, B = max{1− RαR, 1− 1/λ}.

The above explanation also reveals that, somewhat counter-intuitively, it is the least-loaded
dispatcher that throttles tokens and leaves idle servers stranded, thus acting as bottleneck.
Specifically, in the limit dispatcher R (or the set of least-loaded dispatchers in case of ties)
inevitably ends up with all the available tokens, if any. The accumulation of tokens hampers
the visibility of idle servers to the heavier-loaded dispatchers, and leaves idle servers stranded
while tasks queue up at other servers.

Results for queueing scenario. For the queueing scenario, denote by W(R, N, λ, α) a random
variable with the steady-state waiting-time distribution of an arbitrary task. It is shown in [149]
that, for a fixed λ < 1 and N → ∞,

E[W(R, N, λ, α)]→ λ2(R, λ, α)

1− λ2(R, λ, α)
,

49

where

λ2(R, λ, α) = 1− 1− λ ∑r∗
i=1 αi

1− λr∗/R

with

r∗ = sup
{

r
∣∣αr >

1
R

1− λ ∑r
i=1 αi

1− λr/R
}

and the convention that r∗ = 0 if α1 = . . . = αR = 1/R. In particular,

λ2(2, λ, (1− α2, α2)) = λ
1− 2α2

2− λ
,

so that

E[W(2, N, λ, (1− α2, α2))]→
λ(1− 2α2)

2− 2λ(1− α2)
.

Here λ2 can be interpreted as the rate at which tasks are forwarded to randomly selected
servers. Furthermore, dispatchers 1, . . . , r∗ receive tokens at a lower rate than the incoming
tasks, and in particular λ∗2 = 0 if and only if r∗ = 0.

When the arrival rates at all dispatchers are strictly equal, i.e., α1 = · · · = αR = 1/R,
the above results indicate that the stationary blocking probability and the mean waiting time
asymptotically vanish as N → ∞, which is in agreement with the observations in [142] men-
tioned above. However, when the arrival rates at the various dispatchers are not perfectly equal,
so that αR < 1/R, the blocking probability and mean waiting time are strictly positive in the
limit, even for arbitrarily low overall load and an arbitrarily small degree of skewness in the ar-
rival rates. Thus, the ordinary JIQ scheme fails to achieve asymptotically optimal performance
for heterogeneous dispatcher loads.

Enhancements. In order to counter the above-described performance degradation for asym-
metric dispatcher loads, [149] proposes two enhancements.

Enhancement 1 (Non-uniform token allotment). When a server becomes idle, it sends a token
to dispatcher r with probability βr.

Enhancement 2 (Token exchange mechanism). Any token is transferred to a uniformly ran-
domly selected dispatcher at rate ν.

Note that the token exchange mechanism only creates a constant communication overhead
per task as long as the rate ν does not depend on the number of servers N, and thus preserves
the scalability of the basic JIQ scheme. The above enhancements can achieve asymptotically
optimal performance for suitable values of the βr parameters and the exchange rate ν.

Large number of dispatchers. In the above set-up we assumed the number of dispatchers to
remain fixed as the number of servers grows large, but a further natural scenario would be for
the number of dispatchers R(N) to scale with the number of servers as considered in [115]. He
analyzes the case R(N) = rN for some constant r, so that the relative load of each dispatcher
is λr. The term ‘I-queue’ is used for the queue of (idle) servers that is known by one of the
dispatchers. A server is added to an I-queue when it becomes idle. With fluid limits and
fixed-point calculations, the analysis in [115] determines the fraction of I-queues with i queued

50

servers and the fraction of servers with i tasks in queue that are in the j-th position in one of
the I-queues. The fixed point can be computed numerically.

Anticipation. In [115] it is also proposed to have servers issue their availability tokens to
the dispatchers already before they are idle, e.g. when they have just one task remaining.
This appears beneficial at very high load when there are (on average) fewer idle servers than
dispatchers, and tasks would frequently be assigned to uniformly at random selected servers
otherwise. Two variants are introduced. First, an LCFS-scheme in which the server that is
in the I-queue the least amount of time is chosen for the incoming task. Second, a server
that became idle, may probe d I-queues after which it chooses the least loaded amongst the d
selected servers. Both variants lead to small performance improvements.

7.4 Joint load balancing and auto-scaling

Besides delay performance and implementation overhead, a further key attribute in the context
of large-scale cloud networks and data centers is energy consumption. So-called auto-scaling
algorithms have emerged as a popular mechanism for adjusting service capacity in response
to varying demand levels so as to minimize energy consumption while meeting performance
targets, but have mostly been investigated in settings with a centralized queue, and queue-
driven auto-scaling techniques have been widely investigated in the literature [7, 54, 94, 95, 98,
99, 100, 132, 148, 171]. In systems with a centralized queue it is common to put servers to ‘sleep’
while the demand is low, since servers in sleep mode consume much less energy than active
servers. Under Markovian assumptions, the behavior of these mechanisms can be described in
terms of various incarnations of M/M/N queues with setup times. There are several further
recent papers which examine on-demand server addition/removal in a somewhat different
vein [128, 130]. Unfortunately, data centers and cloud networks with massive numbers of
servers are too complex to maintain any centralized queue, as it involves a prohibitively high
communication burden to obtain instantaneous state information.

Motivated by these observations, the authors of [121] propose a joint load balancing and
auto-scaling strategy, which retains the excellent delay performance and low implementation
overhead of the ordinary JIQ scheme, and at the same time minimizes the energy consumption.
The strategy is referred to as TABS (Token-Based Auto-Balance Scaling) and operates as follows:

• When a server becomes idle, it sends a ‘green’ message to the dispatcher, waits for an
exp(µ) time (standby period), and turns itself off by sending a ‘red’ message to the dis-
patcher (the corresponding green message is destroyed).

• When a task arrives, the dispatcher selects a green message at random if there are any,
and assigns the task to the corresponding server (the corresponding green message is
replaced by a ‘yellow’ message). Otherwise, the task is assigned to an arbitrary busy
server, and if at that arrival epoch there is a red message at the dispatcher, then it selects
one at random, and the setup procedure of the corresponding server is initiated, replacing
its red message by an ‘orange’ message. Setup procedure takes exp(ν) time after which
the server becomes active.

• Any server which activates due to the latter event, sends a green message to the dispatcher

51

Q1

busy
yellow

idle-on
green

∆0

idle-off
red

∆1

setup
orange

busy server
becomes idle

task assigned to
idle-on server

stand by period
ends, rate = µ

setup period
ends, rate = ν

idle-on server
not available

Figure 7: Illustration of server on-off decision rules in the TABS scheme, along with message
colors and state variables.

(the corresponding orange message is replaced), waits for an exp(µ) time for a possible
assignment of a task, and again turns itself off by sending a red message to the dispatcher.

The TABS scheme gives rise to a distributed operation in which servers are in one of four
states (busy, idle-on, idle-off or standby), and advertize their state to the dispatcher via ex-
change of tokens. Figure 7 illustrates this token-based exchange protocol. Note that setup
procedures are never aborted and continued even when idle-on servers do become available.
Recently, dynamic scaling and load balancing with variable service capacity and on-demand
agents has been further examined in [67].

To describe systems under the TABS scheme, we use QN(t) := (QN
1 (t), QN

2 (t), . . . , QN
B (t)) to

denote the system occupancy state at time t as before, where B ≥ 1 is a finite buffer capacity.
Also, let ∆N

0 (t) and ∆N
1 (t) denote the number of idle-off servers and servers in setup mode

at time t, respectively. The fluid-scaled quantities are denoted by the respective small letters,
viz. qN

i (t) := QN
i (t)/N, δN

0 (t) = ∆N
0 (t)/N, and δN

1 (t) = ∆N
1 (t)/N. For brevity in notation, we

will write qN(t) = (qN
1 (t), . . . , qN

B (t)) and δN(t) = (δN
0 (t), δN

1 (t)). The results presented in the
remainder of the section are extracted from [121], unless indicated otherwise.

Fluid limit. Under suitable initial conditions, on any finite time interval, with probabil-
ity 1, any sequence in N has a further subsequence along which the sequence of processes
(qN(·), δN(·)) converges to a deterministic limit (q(·), δ(·)) that satisfies the following system
of ODEs

d+qi(t)
dt

= λ(t)pi−1(q(t), δ(t), λ(t))− (qi(t)− qi+1(t)), i = 1, . . . , B,

d+δ0(t)
dt

= u(t)− d+ξ(t)
dt

,
d+δ1(t)

dt
=

d+ξ(t)
dt

− νδ1(t),
(7.5)

where by convention qB+1(·) ≡ 0, and

u(t) = 1− q1(t)− δ0(t)− δ1(t),
d+ξ(t)

dt
= λ(t)(1− p0(q(t), δ(t), λ(t)))1[δ0(t)>0].

52

For any (q, δ) and λ > 0, (pi(q, δ, λ))i≥0 are given by

p0(q, δ, λ) =

{
1 if u = 1− q1 − δ0 − δ1 > 0,

min{λ−1(δ1ν + q1 − q2), 1}, otherwise,

pi(q, δ, λ) = (1− p0(q, δ, λ))(qi − qi+1)q−1
1 , i = 1, . . . , B.

We now provide an intuitive explanation of the fluid limit stated above. The term u(t)
corresponds to the asymptotic fraction of idle-on servers in the system at time t, and ξ(t)
represents the asymptotic cumulative number of server setups (scaled by N) that have been
initiated during [0, t]. The coefficient pi(q, δ, λ) can be interpreted as the instantaneous fraction
of incoming tasks that are assigned to some server with queue length i, when the fluid-scaled
occupancy state is (q, δ) and the scaled instantaneous arrival rate is λ. Observe that as long
as u > 0, there are idle-on servers, and hence all the arriving tasks will join idle servers.
This explains that if u > 0, p0(q, δ, λ) = 1 and pi(q, δ, λ) = 0 for i = 1, . . . , B − 1. If u =

0, then observe that servers become idle at rate q1 − q2, and servers in setup mode turn on
at rate δ1ν. Thus the idle-on servers are created at a total rate δ1ν + q1 − q2. If this rate is
larger than the arrival rate λ, then almost all the arriving tasks can be assigned to idle servers.
Otherwise, only a fraction (δ1ν + q1 − q2)/λ of arriving tasks join idle servers. The rest of the
tasks are distributed uniformly among busy servers, so a proportion (qi− qi+1)q−1

1 are assigned
to servers having queue length i. For any i = 1, . . . , B, qi increases when there is an arrival to
some server with queue length i− 1, which occurs at rate λpi−1(q, δ, λ), and it decreases when
there is a departure from some server with queue length i, which occurs at rate qi − qi−1. Since
each idle-on server turns off at rate µ, the fraction of servers in the off mode increases at rate µu.
Observe that if δ0 > 0, for each task that cannot be assigned to an idle server, a setup procedure
is initiated at one idle-off server. As noted above, ξ(t) captures the (scaled) cumulative number
of setup procedures initiated up to time t. Therefore the fraction of idle-off servers and the
fraction of servers in setup mode decreases and increases by ξ(t), respectively, during [0, t].
Finally, since each server in setup mode becomes idle-on at rate ν, the fraction of servers in
setup mode decreases at rate νδ1.

Fixed point and global stability. In case of a constant arrival rate λ(t) ≡ λ < 1, any fluid
sample path in (7.5) has a unique fixed point:

δ∗0 = 1− λ, δ∗1 = 0, q∗1 = λ and q∗i = 0, (7.6)

for i = 2, . . . , B. Indeed, it can be verified that p0(q∗, δ∗, λ) = 1 and u∗ = 0 for (q∗, δ∗) given
by (7.6) so that the derivatives of qi, i = 1, . . . , B, δ0, and δ1 become zero, and that these cannot
be zero at any other fluid-scaled occupancy state. Note that, at the fixed point, a fraction λ of
the servers have exactly one task while the remaining fraction have zero tasks, independently
of the values of the parameters µ and ν.

In order to establish the convergence of the sequence of steady states, we need the global
stability of the fluid limit, i.e., starting from any fluid-scaled occupancy state, any fluid sample
path described by (7.5) converges to the unique fixed point (7.6) as t → ∞. More specifically,

53

irrespective of the starting state,

(q(t), δ(t))→ (q∗, δ∗), as t→ ∞, (7.7)

where (q∗, δ∗) is as defined in (7.6).

Interchange of limits. The global stability can be leveraged to show that the steady-state
distribution of the N-th system, for large N, can be well approximated by the fixed point of
the fluid limit in (7.6). Specifically, it justifies the interchange of the many-server (N → ∞) and
stationary (t→ ∞) limits. Since the buffer capacity B at each server is supposed to be finite, for
every N, the Markov process (QN(t), ∆N

0 (t), ∆N
1 (t)) is irreducible, has a finite state space, and

thus has a unique steady-state distribution. Let πN denote the steady-state distribution of the
N-th system, i.e.,

πN(·) = lim
t→∞

P
(
qN(t) = ·, δN(t) = ·

)
.

The fluid limit result and the global stability thus yield that πN converges weakly to π as
N → ∞, where π is given by the Dirac mass concentrated upon (q∗, δ∗) defined in (7.6).

Remark 7.4. Note that the above interchange of limits result was obtained under the assump-
tion that the queues have finite buffers, and analysis of the infinite-buffer scenario was left
open. The key challenge in the latter case stems from the fact that the system stability under
the usual subcritical load assumption is not automatic. In fact as explained in [122], when the
number of servers N is fixed, the stability may not hold even under a subcritical load assump-
tion. In [122] the stability issue of the TABS scheme has been addressed and the convergence
of the sequence of steady states was shown for the infinite-buffer scenario. In particular, it was
established that for a fixed choice of parameters λ < 1, µ > 0, and ν > 0, the system with
N servers under the TABS scheme is stable for large enough N. There the authors introduce
an induction-based approach that uses both the conventional fluid limit (in the sense of a large
starting state) and the mean-field fluid limit (when N → ∞) in an intricate fashion to prove the
large-N stability of the system.

Performance metrics. As mentioned earlier, two key performance metrics are the expected
waiting time of tasks E[WN] and energy consumption E[PN] for the N-th system in steady
state. In order to quantify the energy consumption, we assume that the energy usage of a
server is Pfull when busy or in set-up mode, Pidle when idle-on, and zero when turned off.
Evidently, for any value of N, at least a fraction λ of the servers must be busy in order for the
system to be stable, and hence λPfull is the minimum mean energy usage per server needed for
stability. We will define E[ZN] = E[PN]− λPfull as the relative energy wastage accordingly. The
interchange of limits result can be leveraged to obtain that asymptotically the expected waiting
time and energy consumption for the TABS scheme vanish in the limit, for any strictly positive
values of µ and ν. More specifically, for a constant arrival rate λ(t) ≡ λ < 1, for any µ > 0,
ν > 0, as N → ∞,

(a) Zero mean waiting time: E[WN]→ 0,

(b) Zero energy wastage: E[ZN]→ 0.

54

The key implication is that the TABS scheme, while only involving constant communication
overhead per task, provides performance in a distributed setting that is as good at the fluid
level as can possibly be achieved, even in a centralized queue, or with unlimited information
exchange.

Comparison to ordinary JIQ policy. Consider again a constant arrival rate λ(t) ≡ λ. It is
worthwhile to observe that the component q of the fluid limit as in (7.5) coincides with that for
the ordinary JIQ policy where servers always remain on, when the system following the TABS
scheme starts with all the servers being idle-on, and λ + µ < 1. To see this, observe that the
component q depends on δ only through (pi−1(q, δ))i≥1. Now, p0 = 1, pi = 0, for all i ≥ 1,
whenever q1 + δ0 + δ1 < 1, irrespective of the precise values of (q, δ). Moreover, starting from
the above initial state, δ1 can increase only when q1 + δ0 = 1. Therefore, the fluid limit of q
in (7.5) and the ordinary JIQ scheme are identical if the system parameters (λ, µ, ν) are such
that q1(t) + δ0(t) < 1, for all t ≥ 0. Let y(t) = 1− q1(t)− δ0(t). The solutions to the differential
equations

dq1(t)
dt

= λ− q1(t),
dy(t)

dt
= q1(t)− λ− µy(t),

y(0) = 1, q1(0) = 0 are given by

q1(t) = λ(1− e−t), y(t) =
e−(1+µ)t

µ− 1
(
et(λ + µ− 1)− λeµt).

Notice that if λ + µ < 1, then y(t) > 0 for all t ≥ 0 and thus, q1(t) + δ0(t) < 1, for all t ≥ 0.
The fluid-level optimality of the JIQ scheme was described in Section 7.1. This observation
thus establishes the optimality of the fluid-limit trajectory under the TABS scheme for suitable
parameter values in terms of response time performance. From the energy usage perspective,
under the ordinary JIQ policy, since the asymptotic steady-state fraction of busy servers (q∗1)
and idle-on servers are given by λ and 1− λ, respectively, the asymptotic steady-state (scaled)
energy usage is given by

E[PJIQ] = λPfull + (1− λ)Pidle = λPfull(1 + (λ−1 − 1) f),

where f = Pidle/Pfull is the relative energy consumption of an idle server. As described earlier,
the asymptotic steady-state (scaled) energy usage under the TABS scheme is λPfull. Thus the
TABS scheme reduces the asymptotic steady-state energy usage by λPfull(λ

−1 − 1) f = (1 −
λ)Pidle, which amounts to a relative saving of (λ−1 − 1) f /(1 + (λ−1 − 1) f). In summary, the
TABS scheme performs as well as the ordinary JIQ policy in terms of the waiting time and
communication overhead while providing a significant energy saving.

8 Redundancy policies and alternative scaling

In this section we discuss somewhat related redundancy policies, alternative scaling regimes,
and some additional performance metrics of interest.

55

8.1 Redundancy-d policies

So-called redundancy-d policies involve a somewhat similar operation as JSQ(d) policies, and
also share the primary objective of ensuring low delays [6, 162]. In a redundancy-d policy,
d ≥ 2 candidate servers are selected uniformly at random (with or without replacement) for
each arriving task, just like in a JSQ(d) policy. Rather than forwarding the task to the server
with the shortest queue however, replicas are dispatched to all sampled servers. Note that the
initial replication to d servers selected uniformly at random does not entail any communication
burden, but the abortion of redundant copies at a later stage does involve a significant amount
of information exchange and complexity.

Two common options can be distinguished for abortion of redundant clones. In the first vari-
ant, as soon as the first replica starts service, the other clones are abandoned. In this case, a task
gets executed by the server which had the smallest workload at the time of arrival (and which
may or may not have had the shortest queue length) amongst the sampled servers. This may be
interpreted as a power-of-d version of the Join-the-Smallest Workload (JSW) policy discussed in
Section 2.3.3. The optimality properties of the JSW policy mentioned in that subsection suggest
that redundancy-d policies should outperform JSQ(d) policies, which appears to be supported
by simulation experiments.

In the second option the other clones of the task are not aborted until the first replica has
completed service (which may or may not have been the first replica to start service). While a
task is only handled by one of the servers in the former case, it may be processed by several
servers in the latter case. When the service times are exponentially distributed and independent
for the various clones, the aggregate amount of time spent by all the servers until completion
remains exponentially distributed with the same mean. An exact analysis of the delay distri-
bution in systems with N = 2 or N = 3 servers is provided in [57, 58], and exact expressions
for the mean delay with an arbitrary number of servers are established in [59]. The limiting
delay distribution in the many-server regime (ii) is derived in [55, 60] based on an asymptotic
independence assumption among the servers. In general, the mean aggregate amount of time
devoted to a task and the resulting delay may be larger or smaller for less or more variable ser-
vice time distributions, also depending on the number of replicas per task [133, 138, 164, 165].
In particular, for heavy-tailed service time distributions, the mean aggregate time spent on a
task may be considerably reduced by virtue of the redundancy. Indeed, even if the first replica
to start service has an extremely long service time, that is not likely to be case for the other
clones as well. In spite of the extremely long service time of the first replica, it is therefore
unlikely for the aggregate amount of time spent on the task or its waiting time to be large. This
provides a significant performance benefit to redundancy-d policies over JSQ(d) policies, and
has also motivated a strong interest in adaptive replication schemes [4, 84, 85].

A further closely related model is where k of the replicas need to complete service, 1 ≤ k ≤ d,
in order for the task to finish which is relevant in the context of storage systems with coding
and MapReduce tasks [86, 87]. The special case where k = d = N corresponds to a classical
fork-join system. The authors of [78] present a unified approach for analyzing the stability
and performance of a broad class of workload-dependent task assignment and replication poli-
cies based on considering the so-called cavity process in a many-server regime with N → ∞.
This class of policies includes both versions of the redundancy-d policy as well as the above-
mentioned k-out-d system.

56

8.2 Conventional heavy traffic

In this subsection we briefly discuss a few asymptotic results for LBAs in the classical heavy-
traffic regime as described in Section 2.2 where the number of servers N is fixed and the relative
load tends to one in the limit.

The papers [39, 40, 134, 178] establish diffusion limits for the JSQ policy in a sequence of
systems with Markovian characteristics as in our basic model set-up, but where in the K-th
system the arrival rate is Kλ + λ̂

√
K, while the service rate of the i-th server is Kµi + µ̂i

√
K,

i = 1, . . . , N, with λ = ∑N
i=1 µi, inducing critical load as K → ∞. It is proved that for suitable

initial conditions the queue lengths are of the order O(
√

K) over any finite time interval and
exhibit a state-space collapse property. In particular, a properly scaled version of the joint queue
length process lives in a one-dimensional rather than N-dimensional space, reflecting that the
various queue lengths evolve in lock-step, with the relative proportions remaining virtually
identical in the limit, while the aggregate queue length varies.

Atar et al. [9] investigate a similar scenario, and establish diffusion limits for three policies:
the JSQ(d) policy, the redundancy-d policy (where the redundant clones are abandoned as soon
as the first replica starts service), and a combined policy called Replicate-to-Shortest-Queues
(RSQ) where d replicas are dispatched to the d-shortest queues. Note that the latter policy
requires instantaneous knowledge of all the queue lengths, and hence involves a similar exces-
sive communication overhead as the ordinary JSQ policy, besides the substantial information
exchange associated with the abortion of redundant copies. Conditions are derived for the val-
ues of the relative service rates µi, i = 1, . . . , N, in conjunction with the diversity parameter d,
in order for the queue lengths under the JSQ(d) and redundancy-d policies to be of the order
O(
√

K) over any finite time interval and exhibit state-space collapse. The conditions for the
two policies are distinct, but in both cases they are weaker for larger values of d, as intuitively
expected. While the conditions for the values of µi depend on d, whenever they are met, the ac-
tual diffusion-scaled queue length processes do not depend on the exact value of d in the limit,
showing a certain resemblance with the universality property as identified in Section 2.3.4 for
the conventional large-capacity and Halfin-Whitt regimes.

The authors of [181] consider a slightly different model set-up with a time-slotted operation,
and identify a class Π of LBAs that not only provide throughput-optimality (or maximum
stability, i.e., keep the queues stable in a suitable sense whenever feasible to do so at all),
but also achieve heavy-traffic delay optimality, in the sense that the properly scaled aggregate
queue length is the same as that in a centralized queue where all the resources are pooled as
the load tends to one. As it turns out, the class Π includes JSQ(d) policies with d ≥ 2, but does
not include the JIQ scheme, which tends to degenerate into a random assignment policy when
idle servers are rarely available. The authors further propose a threshold-based policy which
has low implementation complexity like the JIQ scheme, but does belong to the class Π, and
hence achieves heavy-traffic delay optimality. A later paper [180] establishes both necessary
and sufficient conditions for threshold-based task assignment policies to achieve heavy-traffic
optimality in terms of mean delay.

57

8.3 Non-degenerate slowdown

In this subsection we briefly discuss a few of the scarce asymptotic results for LBAs in the so-
called non-degenerate slow-down regime described in Section 2.2 where N−λ(N)→ γ > 0, as
the number of servers N grows large. In a centralized queue the process tracking the evolution
of the number of waiting tasks, suitably accelerated and normalized by N, converges in this
regime to a Brownian motion with drift −γ reflected at zero as N → ∞, as demonstrated in [8].
In stationarity, the number of waiting tasks, normalized by N, converges in this regime to an
exponentially distributed random variable with parameter γ as N → ∞. Hence, the mean
number of waiting tasks must be at least of the order N/γ, and the waiting time cannot vanish
as N → ∞ under any policy.

The authors of [73] characterize the diffusion-scaled queue length process under the JSQ
policy in this asymptotic regime. They further compare the diffusion limit for the JSQ policy
with that for a centralized queue as described above as well as several LBAs such as the JIQ
scheme and a refined version called Idle-One-First (I1F), where a task is assigned to a server
with exactly one task if no idle server is available and to a randomly selected server otherwise.

It is proved that the diffusion limit for the JIQ scheme is no longer asymptotically equivalent
to that for the JSQ policy in this asymptotic regime, and the JIQ scheme fails to achieve asymp-
totic optimality in that respect, as opposed to the behavior in the conventional large-capacity
and Halfin-Whitt heavy-traffic regimes discussed in Section 2.3.5. In contrast, the I1F scheme
does preserve the asymptotic equivalence with the JSQ policy in terms of the diffusion-scaled
queue length process, and thus retains asymptotic optimality in that sense.

These results provide further indication that the amount and accuracy of queue length in-
formation needed to achieve asymptotic equivalence with the JSQ policy depend not only on
the scale dimension (e.g. fluid or diffusion), but also on the load regime. Put differently, the
finer the scale and the higher the load, the more strictly one can distinguish various LBAs in
terms of the relative performance compared to the JSQ policy.

8.4 Sparse-feedback regime

As described in Section 2.3.5, the JIQ scheme involves a communication overhead of at most
one message per task, and yet achieves optimal delay performance in the fluid and diffusion
regimes. However, even just one message per task may still be prohibitive, especially when
tasks do not involve big computational tasks, but small data packets which require little pro-
cessing. In such situations the sheer message exchange in providing queue length information
may be disproportionate to the actual amount of processing required.

Motivated by the above issues, [150] proposes and examines a novel class of LBAs which also
leverage memory at the dispatcher, but allow the communication overhead to be seamlessly
adapted and reduced below that of the JIQ scheme. Specifically, in the proposed schemes,
the various servers provide occasional queue status notifications to the dispatcher, either in a
synchronous or asynchronous fashion. The dispatcher uses these reports to maintain queue
estimates, and forwards incoming tasks to the server with the lowest queue estimate. The
queue estimate for a server is incremented for every task assigned, and set to the true queue
length at update moments, but never lowered in between updates. Note that when the update
frequency per server is δ, the number of messages per task is d = δ/λ, with λ < 1 denoting the

58

arrival rate per server.
The results in [150] demonstrate that the proposed schemes markedly outperform JSQ(d)

policies with the same number of d ≥ 1 messages per task and they can achieve a vanishing
waiting time in the many-server limit when the update frequency δ exceeds λ/(1− λ). In case
servers only report zero queue lengths and suppress updates for non-zero queues, the update
frequency required for a vanishing waiting time can in fact be lowered to just λ, matching the
one message per task involved in the JIQ scheme.

From a scalability viewpoint, the most pertinent regime is d < 1 where only very sparse
server feedback is required. It is shown in [150] that the proposed schemes then outperform
the corresponding sparsified versions of the JIQ scheme where idle servers only provide no-
tifications to the dispatcher with probability d. In order to further explore the performance
for d < 1 in the many-server limit, [150] investigates fluid limits for the synchronous case as
well as the asynchronous case with exponential update intervals. The fixed point of the fluid
limit are leveraged to derive the stationary queue length distribution as function of the update
frequency.

Additionally, [150] examines the performance in the ultra-low feedback regime where the
update frequency δ goes to zero, and in particular establishes a somewhat counter-intuitive
dichotomy. In the synchronous case, the behavior of each of the individual queues approaches
that of a single-server queue with a near-deterministic arrival process and exponential service
times, with the mean waiting time tending to a finite constant. In contrast, in the asynchronous
case, the individual queues experience saw-tooth behavior with oscillations and waiting times
that grow without bound.

In order to achieve a vanishing waiting time, the dispatcher must assign each incoming
task to an idle server with high probability, and thus be able to identify on average at least
one idle server for every incoming task. When the amount of memory at the dispatcher is
limited, the dispatcher may in fact have to identify more idle servers on average to ensure that
at least one is available with high probability for each incoming task, as also reflected in the
results of [50, 51, 52]. These conditions, in conjunction with the fact that the fraction of idle
servers in equilibrium is 1− λ, translate into a minimum required communication overhead
for various families of algorithms. For example, if the dispatcher samples a server at random,
it will find that server idle with probability 1− λ, so in the absence of any memory it will need
to sample a number of servers that grows with N for each incoming task, while with unlimited
memory, it will need to sample on average 1/(1− λ) servers per incoming task. Likewise, if
servers report their queue status to the dispatcher, then an arbitrary server will report to be
idle with probability 1− λ, so they all need to do that every λ/(1− λ) time units on average,
i.e., 1/(1− λ) times on average per incoming task. When only idle servers report their status to
the dispatcher, as in the JIQ algorithm, they only need to do so at most once per incoming task.
When servers report their status asynchronously rather than all simultaneously, or idle servers
only after some delay, the associated memory requirement at the dispatcher can be reduced.

8.5 Scaling of maximum queue length

So far we have focused on the asymptotic behavior of LBAs in terms of the number of servers
with a certain queue length, either on fluid scale or diffusion scale, in various regimes as N →
∞. A related but different performance metric is the maximum queue length M(N) among all

59

servers as N → ∞. The authors of [103] showed that for fixed d ≥ 2 the stationary maximum
queue length M(N) in a system under the JSQ(d) policy is concentrated on at most two adjacent
values which are log(log(N))/ log(d) + O(1), whereas for purely random assignment (d = 1),
it scales as log(N)/ log(1/λ) and does not concentrate on a bounded range of values. This is
yet a further manifestation of the power-of-choice effect.

An earlier paper [102] had already shown a similar result for the maximum bin occupancy
under a power-of-d policy in a balls-and-bins context where arriving items (balls) do not get
served and never depart but simply accumulate in bins, so that (stationary) queue lengths are
not meaningful. The maximum bin occupancy under purely random assignment, however,
scales as log(N)/ log(log(N)), and does concentrate on two adjacent values, in contrast with
the queueing scenario mentioned above.

In fact, the very notion of randomized load balancing and power-of-d strategies was in-
troduced in a balls-and-bins setting in the seminal paper [10]. Several further variations and
extensions in that context have been considered in [1, 17, 18, 31, 33, 45, 68, 129, 131, 161]. One
of the earliest papers on graph-based load balancing was also concerned with a balls-and-bins
setting [90].

As alluded to above, there are natural parallels between the balls-and-bins setup and the
queueing scenario that we have focused on so far. These commonalities are for example re-
flected in the fact that power-of-d strategies yield similar dramatic performance improvements
over purely random assignment in both settings. However, there are also quite fundamental
differences between the balls-and-bins setup and the queueing scenario, besides the obvious
contrasts in the performance metrics. This distinction is already reflected in the different scal-
ing behavior under purely random assignment of the maximum queue length in a queueing
scenario and the maximum bin occupancy in a balls-and-bins setting as mentioned above. A
further manifestation of is provided by the fact that a simple Round-Robin strategy produces
a perfectly balanced allocation in a balls-and-bins setup but is far from optimal in a queueing
scenario as observed in Section 2.3.1. In particular, the stationary fraction of servers with two
or more tasks under a Round-Robin strategy remains positive in the limit as N → ∞, whereas
it vanishes under the JSQ policy. On a related account, since tasks get served and eventually
depart in a queueing scenario, less balanced allocations with a large portion of vacant servers
will generate fewer service completions and result in a larger total number of tasks. Thus dif-
ferent schemes yield not only various degrees of balance, but also variations in the aggregate
number of tasks in the system, which is not the case in a balls-and-bins set-up.

9 Extensions and future research directions

Throughout most of the paper we have focused on the supermarket model as a canonical setup
and adopted several common assumptions in that context: (i) all servers are identical; (ii) the
service requirements are exponentially distributed; (iii) no advance knowledge of the service
requirements is available; (iv) in particular, the service discipline at each server is oblivious
to the actual service requirements. As mentioned earlier, the stochastic optimality of the JSQ
policy, and hence its central role as an ideal performance benchmark, critically rely on these as-
sumptions. The latter also broadly applies to the stochastic coupling techniques and asymptotic
universality properties that we have considered in the previous sections.

60

In this section we turn to a brief overview of results for scenarios where some of the above
assumptions are relaxed, in particular allowing for general service requirement distributions
and possibly heterogeneous servers, along with some broader methodological issues. In Sec-
tion 9.1 we focus on the behavior of JSQ(d) policies in such scenarios, mainly in the large-N
limit, while also briefly commenting on the JIQ policy. In Section 9.2 we discuss strategies
which specifically exploit knowledge of server speeds or service requirements of arriving tasks
in making task assignment decisions, and may not necessarily use queue length information,
mostly in a fixed-N regime. While non-exponential service requirement distributions and het-
erogeneous settings cover a major share of the extensions beyond the supermarket model, there
are also a plethora of further model variations that have been considered in the literature. An
exhaustive listing is simply out of reach, but some notable examples within the realm of scaling
laws include [105, 106, 166, 168].

9.1 JSQ(d) policies with general service requirement distributions

The authors of [41, 42] use direct probabilistic methods and fluid limits to obtain stability con-
ditions for finite-size systems with a renewal arrival process, a FCFS discipline at each server,
various state-dependent routing policies, including JSQ, and general service requirement dis-
tributions, which may depend on the task type, the server or both. Using fluid limits as well as
Lyapunov functions, [20, 21] show that JSQ(d) policies achieve stability for any subcritical load
in finite-size systems with a renewal arrival process, identical servers, non-idling local service
disciplines and general service requirement distributions. In addition, the author derives uni-
form bounds on the tails of the marginal queue length distributions, and uses these to prove
relative compactness of these distributions.

The authors of [22, 23] examine mean-field limits for JSQ(d) policies with generally dis-
tributed service requirements, leveraging the above-mentioned tail bounds and relative com-
pactness. They establish that similar power-of-choice benefits occur as originally demonstrated
for exponentially distributed service requirements in [113, 163], provided a certain ‘ansatz’
holds asserting that finite subsets of queues become independent in the large-N limit. The
latter ‘propagation of chaos’ property is shown to hold in several settings, e.g. when the ser-
vice requirement distribution has a decreasing hazard rate and the discipline at each server is
FCFS or when the service requirement distribution has a finite second moment and the load is
sufficiently low. The ansatz also always holds for the power-of-d version of the JSW rather than
JSQ policy, see Theorem 2.1 in [23].

It is further shown in [22, 23] that the arrival process at any given server tends to a state-
dependent Poisson process, and that the queue length distribution becomes insensitive with
respect to the service requirement distribution when the service discipline is either Proces-
sor Sharing or LCFS with preemptive resume. This may be explained from the insensitivity
property of queues with state-dependent Poisson arrivals and symmetric service disciplines.

There are strong plausibility arguments that a similar asymptotic insensitivity property
should hold for the JIQ policy in a queueing scenario, even if the discipline at each server is
not symmetric but FCFS for example. So far, however, this has only been rigorously established
for service requirement distributions with decreasing hazard rate in [141]. This result was in
fact proved for systems with heterogeneous server pools, and was further extended in [142]
to systems with multiple symmetric dispatchers. As it turns out, general service requirement

61

distributions with an increasing hazard rate give rise to major technical challenges due to a lack
of certain monotonicity properties. This has only allowed a proof of the asymptotic zero-wait
property for the JIQ policy for load values strictly below 1/2 so far [44].

A fundamental technical issue associated with any general service requirement distribution
is that the joint queue length no longer provides a suitable state description, and that the
state space required for a Markovian description is no longer countable. The authors of [2, 3]
introduce a particle representation for the state of the system and describe the state dynamics
for a JSQ(d) policy via a sequence of interacting measure-valued processes. They prove that as
N grows large, a suitably scaled sequence of state processes converges to a hydrodynamic limit
which is characterized as the unique solution of a countable system of coupled deterministic
measure-valued equations, i.e., a system of PDE rather than the usual ODE equations. They
also establish a ‘propagation of chaos’ result, meaning that finite collections of queues are
asymptotically independent.

The authors of [123, 125, 126] analyzed the performance and stability of static probabilis-
tic routing strategies and power-of-d policies in the large-N limit in systems with exponential
service requirement distributions, but heterogeneous server pools and a Processor-Sharing dis-
cipline at each server. They also considered variants of the JSQ(d) policy which account for the
server speed in the selection criterion as well as hybrid combinations of the JSQ(d) policy with
static probabilistic routing. Related results for heterogeneous loss systems rather than queue-
ing scenarios are presented in [89, 124, 127]. As the results in [125, 126] reflect, ordinary JSQ(d)
policies may fail to sample the faster servers sufficiently often in such scenarios, and therefore
fail to achieve maximum stability, let alone asymptotic optimality. In [123] a weighted version
of JSQ(d) policies is presented that does provide maximum stability, without requiring any
specific knowledge of the underlying system parameters and server speeds in particular.

The authors of [158, 159, 160] examine mean-field limits for power-of-d policies in many-
server loss systems as well Processor-Sharing queues with phase-type service requirement dis-
tributions. They observe that the fixed point suggests a similar insensitivity property of the
stationary occupancy distribution as mentioned above. In view of the insensitivity of loss sys-
tems with possibly state-dependent Poisson arrivals, this may be interpreted as an indirect
indication that the arrival process at any given server pool tends to a state-dependent Pois-
son arrival process in the large-N limit. In a somewhat different strand of work, the authors
of [83] investigate the behavior of blocking probabilities in various load regimes in systems
with many single-server finite-buffer queues, a Processor-Sharing discipline at each server, and
an insensitive routing policy.

9.2 Heterogeneous servers and knowledge of service requirements

The bulk of the literature has focused on systems with identical servers, and scenarios with
non-identical server speeds have received relatively limited attention. A natural extension of
the JSQ policy is to assign jobs to the server with the normalized shortest queue length, or
equivalently, assuming exponentially distributed service requirements, the shortest expected
delay. While such a Generalized JSQ (GJSQ) or Shortest Expected Delay (SED) strategy tends
to perform well [12], it is not strictly optimal in general [34], and the true optimal strategy may
in fact have a highly complicated structure.

The authors of [137] present approximations for the performance of GJSQ policies in a fixed-

62

N regime with generally distributed service requirements and a Processor-Sharing discipline
at each server, extending the analysis in [72] for the ordinary JSQ policy with homogeneous
servers. In [81] necessary and sufficient conditions are established for JSQ(d) policies to be
optimal in systems with heterogeneous server speeds in a classical heavy-traffic regime. The
authors of [56] examine fluid limits for a system with both ‘fast’ and ‘slow’ servers and task as-
signment policies which may only have limited knowledge of the speeds of individual servers.
In [29] and [174] fluid limits and heavy-traffic limits are investigated, respectively, for a some-
what related system where speeds are also heterogeneous but depend on the combination of
the server and the task type due to affinity relations.

In a separate line of work, the authors of [37] consider static dispatching policies in a fixed-N
regime with heterogeneous servers and a FCFS or Processor-Sharing discipline at each server.
The assignment decision may depend on the service requirement of the arriving task, but not
on the actual queue lengths or any other state information. In case of FCFS the optimal routing
policy is shown to have a nested size interval structure, generalizing the strict size interval
structure of the task assignment strategies in [76] which are optimal for homogeneous servers.
In case of Processor Sharing, the knowledge of the service requirements of arriving tasks is
irrelevant, in the absence of any state information.

The authors of [5] consider static probabilistic routing policies in a somewhat similar setup of
a fixed-N regime with multiple task types, servers with heterogeneous speeds, and a Processor-
Sharing discipline at each server. The routing probabilities are selected so as to either minimize
the global weighted holding cost or the expected holding cost for an individual task, and
may depend on the type of the task and its service requirement, but not on any other state
information.

When knowledge of the service requirements of arriving tasks is available, it is natural to
exploit that for the purpose of local scheduling at the various servers, and for example use
size-based disciplines. The impact of the local scheduling discipline and server heterogeneity
on the performance and degree of efficiency of load balancing strategies is examined in [30].
The authors of [71] show that any given dispatching policy can be augmented with a so-called
‘guardrails’ feature to ensure minimization of the mean delay in a classical heavy-traffic regime
in systems where the local scheduling is governed by the Shortest-Remaining Processing Time
(SRPT) policy. An interesting broader issue concerns the relative benefits provided by exploit-
ing knowledge of service requirements of arriving tasks versus using information on queue
lengths or workloads at the various servers, which strongly depend on the service requirement
distribution [77].

9.3 Open problems and emerging research directions

If we now return to scalable load balancing as the central theme of this survey, and consider
the above-described extensions in that light, it is striking how scant the results are if any of
the assumptions (i)-(iv) as stated at the beginning of Section 2.2 are dropped. On further
thought, the paucity of results from a scalability viewpoint is perhaps not so surprising since
it is not even clear what the optimal achievable (delay) performance is in the absence of these
assumptions, leaving aside any trade-off with communication overhead.

The graph-based load balancing scenario considered in Section 6 moves beyond assump-
tion (i) of all servers being identical as it entails that different incoming tasks can only be

63

served by different subsets of the servers. Thus, it is not clear what the optimal assignment
policy is, but since the server speeds are still homogeneous, it can be argued that the JSQ policy
provides a bound for the achievable performance. The results obtained in [116] as reviewed
in Section 6 establish suitable conditions in terms of the graph for that lower bound to be
asymptotically achievable.

Important extensions of these results are presented in [136, 169] which allow for more gen-
eral compatibility constraints between different task types and different servers represented
in terms of a bipartite graph, and examine conditions in terms of the latter graph for the
achievable performance to be asymptotically equivalent to that in case of full compatibility.
Informally speaking, both papers establish conditions in terms of the connectivity properties of
the bipartite compatibility graph for similar performance to be achievable as in a fully flexible
system. More specifically, the authors of [136] focus on scenarios with identical server speeds
and uniform loads across the various job types, and establish process-level limits indicating
convergence of the system occupancy under JSQ policies to that in the supermarket model
with full flexibility. The authors of [169] allow for heterogeneous server speeds and arbitrary
load distributions, and use drift methods to prove bounds and demonstrate that speed-aware
extensions of the JSQ and JIQ strategies achieve vanishing waiting times and minimum ex-
pected response times. Interestingly, the results in [136, 169] also entail a certain notion of
universality as in [116], with similar achievable performance as in a fully flexible system under
relatively sparse compatibility relations. An open question is what the associated communi-
cation overhead is with these policies, and whether that is close in any sense to the minimum
communication overhead required for asymptotically optimal delay performance.

A further extension of the above two models is where the service rates can depend in an
arbitrary way on the pairwise combination of the task and the server. In that case it is also
open what the minimum required overhead is to achieve asymptotically optimal performance,
and it even remains to be established what the asymptotically optimal performance is.

Both these questions are also largely open for non-exponential service requirement distri-
butions, even in the absence of any compatibility constraints. It is evident that for nearly
deterministic service requirements, a zero mean waiting time can be achieved without any
communication overhead at arbitrarily high sub-critical load (using open-loop policies such as
Round Robin). It might thus be natural to expect that for extremely variable service require-
ments correspondingly high communication overhead is needed to achieve a zero mean waiting
time. However, this is countered by the asymptotic insensitivity of the JIQ policy which has
been proven for service requirement distributions with decreasing hazard rate as mentioned
earlier. Also, the amount of communication overhead can in fact be reduced by not issuing mes-
sages when a server is busy at pre-defined time instants rather than sending messages when a
server is idle [152]. All in all, it seems largely open exactly how the amount of communication
overhead required for vanishing waiting time depends on the service requirement distribution
in conjunction with the system load.

Finally, throughout we have tacitly assumed that each task involves a single processing oper-
ation that can be handled by a single server. In reality however, tasks can have a highly complex
structure and consist of several sub-tasks that can be executed by multiple servers subject to
certain precedence constraints, see for instance [75] for references and further background. The
above questions also seem totally open in these scenarios.

64

References

[1] M. Adler, S. Chakrabarti, M. Mitzenmacher, and L. Rasmussen. Parallel randomized load balanc-
ing. In Proc. STOC ’95, pages 238–247, 1995.

[2] R. Aghajani, X. Li, and K. Ramanan. The PDE method for the analysis of randomized load
balancing networks. Proc. ACM Meas. Anal. Comput. Syst., 1(2):1–28, 2017.

[3] R. Aghajani and K. Ramanan. The hydrodynamic limit of a randomized load balancing network.
Ann. Appl. Probab., 29(4):2114–2174, 2019.

[4] M. Aktas, P. Peng, and E. Soljanin. Effective straggler mitigation: Which clones should attack and
when? ACM Perform. Eval. Rev., 45(2):12–14, 2017.

[5] E. Altman, U. Ayesta, and B. J. Prabhu. Load balancing in processor sharing systems. Telecommun.
Syst., 47(1):35–48, 2011.

[6] G. Ananthanarayanan, A. Ghodsi, S. Shenker, and I. Stoica. Effective straggler mitigation: Attack
of the clones. In Proc. NSDI ’13, pages 185–198, 2013.

[7] L. L. H. Andrew, M. Lin, and A. Wierman. Optimality, fairness, and robustness in speed scaling
designs. ACM SIGMETRICS Perform. Eval. Rev., 38(1):37–48, 2010.

[8] R. Atar. A diffusion regime with nondegenerate slowdown. Oper. Res., 60(2):490–500, 2012.

[9] R. Atar, I. Keslassy, and G. Mendelson. Randomized load balancing in heavy traffic. Preprint, 2017.

[10] Y. Azar, A. Z. Broder, A. R. Karlin, and E. Upfal. Balanced allocations. In Proc. STOC ’94, pages
593–602, 1994.

[11] R. Badonnel and M. Burgess. Dynamic pull-based load balancing for autonomic servers. In Proc.
IEEE NOMS, pages 751–754, 2008.

[12] S. A. Banawan and J. Zahorjan. Load sharing in heterogeneous queueing systems. In Proc. IEEE
INFOCOM ’89, pages 731–739 vol.2, 1989.

[13] S. Banerjee and D. Mukherjee. Join-the-shortest queue diffusion limit in Halfin-Whitt regime: Tail
asymptotics and scaling of extrema. Ann. Appl. Probab., 29(2):1262–1309, 2019.

[14] S. Banerjee and D. Mukherjee. Join-the-shortest queue diffusion limit in Halfin-Whitt regime:
Sensitivity on the heavy traffic parameter. Ann. Appl. Probab., 30(1):80–144, 2020.

[15] M. Benaı̈m and J.-Y. Le Boudec. A class of mean field interaction models for computer and
communication systems. Perform. Eval., 65(11-12):823–838, 2008.

[16] M. Benaı̈m and J.-Y. Le Boudec. On mean field convergence and stationary regime.
arXiv:1111.5710, 2011.

[17] P. Berenbrink, A. Czumaj, A. Steger, and B. Vöcking. Balanced allocaton: The heavily loaded case.
In Proc. STOC ’00, pages 745–754, 2000.

[18] P. Berenbrink, A. Czumaj, A. Steger, and B. Vöcking. Balanced allocations: The heavily loaded
case. SIAM J. Comput., 35(6):1350–1385, 2006.

[19] S. Bhamidi, A. Budhiraja, and M. Dewaskar. Near equilibrium fluctuations for supermarket mod-
els with growing choices. arXiv:2006.03621, 2020.

[20] M. Bramson. Stability of two families of queueing networks and a discussion of fluid limits.
Queueing Syst., 28(1/3):7–31, 1998.

[21] M. Bramson. Stability of join the shortest queue networks. Ann. Appl. Probab., 21(4):1568–1625,
2011.

[22] M. Bramson, Y. Lu, and B. Prabhakar. Randomized load balancing with general service time

65

distributions. In Proc. ACM SIGMETRICS 2010, pages 275–286, 2010.

[23] M. Bramson, Y. Lu, and B. Prabhakar. Asymptotic independence of queues under randomized
load balancing. Queueing Syst., 71(3):247–292, 2012.

[24] A. Braverman. Steady-state analysis of the join-the-shortest-queue model in the Halfin-Whitt
regime. Math. Oper. Res., 45:1069–1103, 2020.

[25] G. Brightwell, M. Fairthorne, and M. J. Luczak. The supermarket model with bounded queue
lengths in equilibrium. J. Stat. Phys., pages 1–46, 2018.

[26] A. Budhiraja, P. Dupuis, M. Fischer, and K. Ramanan. Limits of relative entropies associated with
weakly interacting particle systems. Electr. J. Probab., 20, 2015.

[27] A. Budhiraja and E. Friedlander. Diffusion approximations for load balancing mechanisms in
cloud storage systems. Adv. Appl. Probab., 51(1):41–86, 2019.

[28] A. Budhiraja, D. Mukherjee, and R. Wu. Supermarket model on graphs. Ann. Appl. Probab.,
29(3):1740–1777, 2019.

[29] E. Cardinaels, S. C. Borst, and J. S. H. van Leeuwaarden. Job assignment in large-scale service
systems with affinity relations. Queueing Syst., 93(3-4):227–268, 2019.

[30] H.-L. Chen, J. R. Marden, and A. Wierman. On the impact of heterogeneity and back-end schedul-
ing in load balancing designs. In Proc. IEEE INFOCOM ’09, pages 2267–2275, 2009.

[31] A. Czumaj, F. Meyer auf der Heide, and V. Stemann. Shared memory simulations with triple-
logarithmic delay. In Lecture Notes in Computer Science, pages 46–59. Springer, Berlin, Heidelberg,
1995.

[32] R. W. R. Darling and J. R. Norris. Differential equation approximations for Markov chains. Probab.
Surveys, 5:37–79, 2008.

[33] M. Dietzfelbinger and F. Meyer auf der Heide. Simple, efficient shared memory simulations. In
Proc. SPAA ’93, pages 110–119, 1993.

[34] A. Ephremides, P. Varaiya, and J. Walrand. A simple dynamic routing problem. IEEE Trans. Autom.
Control, 25(4):690–693, 1980.

[35] P. Eschenfeldt and D. Gamarnik. Supermarket queueing system in the heavy traffic regime. Short
queue dynamics. arXiv:1610.03522, 2016.

[36] P. Eschenfeldt and D. Gamarnik. Join the shortest queue with many servers. The heavy traffic-
asymptotics. Math. Oper. Res., 43(3):867–886, 2018.

[37] H. Feng, V. Misra, and D. Rubenstein. Optimal state-free, size-aware dispatching for heteroge-
neous M/G/-type systems. Perform. Eval., 62(1):475–492, 2005.

[38] R. Foley and R. McDonald. Join the shortest queue: stability and exact asymptotics. Ann. Appl.
Prob., 11(3):569–607, 2001.

[39] G. Foschini and J. Salz. A basic dynamic routing problem and diffusion. IEEE Trans. Commun.,
26(3):320–327, 1978.

[40] G. J. Foschini. On heavy traffic diffusion analysis and dynamic routing in packet switched net-
works. Comp. Perf., pages 499–513, 1977.

[41] S. G. Foss and N. I. Chernova. Ergodicity of partially accessible multichannel communication
systems. Probl. Peredachi Inf., 27(2):9–14, 1991.

[42] S. G. Foss and N. I. Chernova. On the stability of a partially accessible multi-station queue with
state-dependent routing. Queueing Syst., 29(1):55–73, 1998.

66

[43] S. G. Foss and N. I. Chernova. On optimality of the FCFS discipline in multiserver queueing
systems and networks. Siberian Math. J., 42(2):372–385, 2001.

[44] S. G. Foss and A. L. Stolyar. Large-scale Join-Idle-Queue system with general service times. J.
Appl. Probab., 54(4):995–1007, 2017.

[45] D. Fotakis, R. Pagh, P. Sanders, and P. Spirakis. Space efficient hash tables with worst case constant
access time. Theory Comput. Syst., 38(2):229–248, 2005.

[46] B. Fralix, C. Knessl, and J. S. H. van Leeuwaarden. First passage times to congested states of
many-server systems in the Halfin-Whitt regime. Stoch. Models, 30(2):162–186, 2014.

[47] C. Fricker and N. Gast. Incentives and redistribution in homogeneous bike-sharing systems with
stations of finite capacity. EURO J. Transp. Logist., 5(3):261–291, 2016.

[48] D. Gamarnik and D. A. Goldberg. On the rate of convergence to stationarity of the M/M/N queue
in the Halfin-Whitt regime. Ann. Appl. Probab., 23(5):1879–1912, 2013.

[49] D. Gamarnik and D. A. Goldberg. Steady-state GI/GI/N queue in the Halfin-Whitt regime. Ann.
Appl. Probab., 23(6):2382–2419, 2013.

[50] D. Gamarnik, J. Tsitsiklis, and M. Zubeldia. Delay, memory and messaging tradeoffs in distributed
service systems. In Proc. ACM SIGMETRICS 2016/Performance 2016, pages 1–12, 2016.

[51] D. Gamarnik, J. Tsitsiklis, and M. Zubeldia. Delay, memory and messaging tradeoffs in distributed
service systems. Stochastic Systems, 8:45–74, 2018.

[52] D. Gamarnik, J. Tsitsiklis, and M. Zubeldia. A lower bound on the queueing delay in resource
constrained load balancing. Ann. Appl. Prob., 30:870–901, 2020.

[53] D. Gamarnik and A. Zeevi. Validity of heavy traffic steady-state approximations in generalized
Jackson networks. Ann. Appl. Probab., 16(1):56–90, 2006.

[54] A. Gandhi, S. Doroudi, M. Harchol-Balter, and A. Scheller-Wolf. Exact analysis of the
M/M/k/setup class of Markov chains via recursive renewal reward. In Proc. ACM SIGMETRICS
2013, pages 153–166, 2013.

[55] K. Gardner, M. Harchol-Balter, A. Scheller-Wolf, M. Velednitsky, and S. Zbarsky. Redundancy-d:
The power of d choices for redundancy. Oper. Res., 65(4):1078–1094, 2017.

[56] K. Gardner and C. Stephens. Smart dispatching in heterogeneous systems. ACM orm. Eval. Rev.,
47(2):12–14, 2016.

[57] K. Gardner, S. Zbarsky, S. Doroudi, M. Harchol-Balter, E. Hyytiä, and A. Scheller-Wolf. Reducing
latency via redundant requests. In Proc. ACM SIGMETRICS 2015, pages 347–360, 2015.

[58] K. Gardner, S. Zbarsky, S. Doroudi, M. Harchol-Balter, E. Hyytiä, and A. Scheller-Wolf. Queueing
with redundant requests: exact analysis. Queueing Syst., 83(3-4):227–259, 2016.

[59] K. Gardner, S. Zbarsky, M. Harchol-Balter, and A. Scheller-Wolf. The power of d choices for
redundancy. In Proc. ACM SIGMETRICS 2016/Performance 2016, pages 409–410, 2016.

[60] K. Gardner, S. Zbarsky, M. Velednitsky, M. Harchol-Balter, and A. Scheller-Wolf. Understanding
response time in the redundancy-d system. ACM Perform. Eval. Rev., 44(2):33–35, 2016.

[61] N. Gast. The power of two choices on graphs: the pair-approximation is accurate. ACM Perform.
Eval. Rev., 43(1):69–71, 2015.

[62] N. Gast. Expected values estimated via mean-field approximation are 1/N-accurate. Proc. ACM
Meas. Anal. Comput. Syst., 1(1):17, 2017.

[63] N. Gast, L. Bortolussi, and M. Tribastone. Size expansions of mean field approximation: Transient
and steady-state analysis. Perform. Eval., 129:60–80, 2019.

67

[64] N. Gast, D. Latella, and M. Massink. A refined mean field approximation for synchronous popu-
lation processes. ACM SIGMETRICS Perform. Eval. Rev., 46(2):30–32, 2019.

[65] N. Gast and B. Van Houdt. A refined mean field approximation. Proc. ACM Meas. Anal. Comput.
Syst., 1(2):33, 2017.

[66] R. J. Gibbens, P. Hunt, and F. P. Kelly. Bistability in communication networks. In Disorder in
Physical Systems, pages 113–128, 1990.

[67] D. Goldsztajn, A. Ferragut, F. Paganini, and M. Jonckheere. Controlling the number of active
instances in a cloud environment. In Proc. IFIP Performance 2017, pages 15–20, 2017.

[68] G. H. Gonnet. Expected length of the longest probe sequence in hash code searching. J. ACM,
28(2):289–304, 1981.

[69] C. Graham. Chaoticity on path space for a queueing network with selection of the shortest queue
among several. J. Appl. Probab., 37(1):198–211, 2000.

[70] C. Graham. Functional central limit theorems for a large network in which customers join the
shortest of several queues. Probab. Theory Relat. Fields, 131(1):97–120, 2005.

[71] I. Grosof, Z. Scully, and M. Harchol-Balter. Load balancing guardrails: Keeping your heavy traffic
on the road to low response times. Proc. ACM Meas. Anal. Comput. Syst., 3(2), 2019.

[72] V. Gupta, M. Harchol-Balter, K. Sigman, and W. Whitt. Analysis of join-the-shortest-queue routing
for web server farms. Perform. Eval., 64(9-12):1062–1081, 2007.

[73] V. Gupta and N. Walton. Load balancing in the non-degenerate slowdown regime. Oper. Res.,
67(1):281–294, 2019.

[74] S. Halfin and W. Whitt. Heavy-traffic limits for queues with many exponential servers. Oper. Res.,
29(3):567–588, 1981.

[75] M. Harchol-Balter. Open problems in queueing theory inspired by datacenter computing. Queue-
ing Systems, 97:3–37, 2020.

[76] M. Harchol-Balter, M. E. Crovella, and C. D. Murta. On choosing a task assignment policy for a
distributed server system. J. Parallel Distr. Comput., 59(2):204–228, 1999.

[77] M. Harchol-Balter, A. Scheller-Wolf, and A. R. Young. Surprising results on task assignment in
server farms with high-variability workloads. In Proc. ACM SIGMETRICS ’09/Performance ’09,
pages 287–298, 2009.

[78] T. Hellemans, T. Bodas, and B. Van Houdt. Performance analysis of workload dependent load
balancing policies. Proc. ACM Meas. Anal. Comput. Syst., 3(2):1–35, 2019.

[79] P. Hunt. Loss networks under diverse routing: the symmetric star network. Adv. Appl. Probab.,
27(1):255–272, 1995.

[80] P. Hunt and T. Kurtz. Large loss networks. Stoch. Proc. Appl., 53(2):363–378, 1994.

[81] D. Hurtado-Lange and S. mauguluri. Throughput and delay optimality of power-of-d choices in
homogeneous load balancing systems. arXiv:1904.10096, 2019.

[82] P. K. Johri. Optimality of the shortest line discipline with state-dependent service rates. Eur. J.
Oper. Res., 41(2):157–161, 1989.

[83] M. Jonckheere and B. J. Prabhu. Asymptotics of insensitive load balancing and blocking phases.
In ACM SIGMETRICS 2016/Performance 2016, pages 311–322, 2016.

[84] G. Joshi. Boosting service capacity via adaptive task replication. ACM Perform. Eval. Rev., 45(2):9–
11, 2017.

68

[85] G. Joshi. Synergy via redundancy: Boosting service capacity via adaptive task replication. In Proc.
IFIP Performance 2017, 2017.

[86] G. Joshi, E. Soljanin, and G. Wornell. Efficient replication of queued tasks for latency reduction in
cloud systems. In Proc. Allerton 2015, pages 107–114, 2015.

[87] G. Joshi, E. Soljanin, and G. Wornell. Efficient redundancy techniques for latency reduction in
cloud systems. ACM Trans. Model. Perform. Eval. Comput. Syst., 2(2):1–30, 2017.

[88] W. Kang and K. Ramanan. Asymptotic approximations for stationary distributions of many-server
queues with abandonment. Ann. Appl. Probab., 22(2), 2012.

[89] A. Karthik, A. Mukhopadhyay, and R. R. Mazumdar. Choosing among heterogeneous server
clouds. Queueing Syst., 85(1):1–29, 2017.

[90] K. Kenthapadi and R. Panigrahy. Balanced allocation on graphs. In Proc. SODA ’06, pages 434–443,
2006.

[91] T. G. Kurtz. Strong approximation theorems for density dependent Markov chains. Stoch. Proc.
Appl., 6(3):223–240, 1978.

[92] J. Le Boudec, D. McDonald, and J. Mundinger. A generic mean field convergence result for systems
of interacting objects. In Proc. QUEST ’07, pages 3–18, 2007.

[93] J.-Y. Le Boudec. The stationary behaviour of fluid limits of reversible processes is concentrated on
stationary points. Netw. Het. Media, 8:529–540, 2013.

[94] M. Lin, Z. Liu, A. Wierman, and L. L. H. Andrew. Online algorithms for geographical load
balancing. In Proc. IGCC’12, pages 1–10, 2012.

[95] M. Lin, A. Wierman, L. L. H. Andrew, and E. Thereska. Dynamic right-sizing for power-
proportional data centers. IEEE/ACM Trans. Netw., 21(5):1378–1391, 2013.

[96] X. Liu and L. Ying. On universal scaling of distributed queues under load balancing.
arXiv:1912.11904, 2019.

[97] X. Liu and L. Ying. A simple steady-state analysis of load balancing algorithms in the sub-Halfin-
Whitt regime. J. Appl. Probab., 57(2):578–596, 2020.

[98] Z. Liu, Y. Chen, C. Bash, A. Wierman, D. Gmach, Z. Wang, M. Marwah, and C. Hyser. Renew-
able and cooling aware workload management for sustainable data centers. ACM SIGMETRICS
Perform. Eval. Rev., 40(1):175–186, 2012.

[99] Z. Liu, M. Lin, A. Wierman, S. H. Low, and L. L. H. Andrew. Geographical load balancing with
renewables. ACM SIGMETRICS Perform. Eval. Rev., 39(3):62–66, 2011.

[100] Z. Liu, M. Lin, A. Wierman, S. H. Low, and L. L. H. Andrew. Greening geographical load balanc-
ing. In Proc. ACM SIGMETRICS 2011, pages 233–244, 2011.

[101] Y. Lu, Q. Xie, G. Kliot, A. Geller, J. R. Larus, and A. Greenberg. Join-idle-queue: a novel load
balancing algorithm for dynamically scalable web services. Perform. Eval., 68(11):1056–1071, 2011.

[102] M. J. Luczak and C. McDiarmid. On the power of two choices: Balls and bins in continuous time.
Ann. Appl. Probab., 15(3):1733–1764, 2005.

[103] M. J. Luczak and C. McDiarmid. On the maximum queue length in the supermarket model. Ann.
Probab., 34(2):493–527, 2006.

[104] M. J. Luczak and C. McDiarmid. Asymptotic distributions and chaos for the supermarket model.
Electr. J. Prob., 12:75–99, 2007.

[105] M. J. Luczak and C. McDiarmid. Balanced routing of random calls. Ann. Appl. Probab., 25(3):1279–
1324, 2015.

69

[106] M. J. Luczak, C. McDiarmid, and E. Upfal. On-line routing of random calls in networks. Prob. Th.
Rel. Fields, 125(4):457–482, 2003.

[107] M. J. Luczak and J. R. Norris. Strong approximation for the supermarket model. Ann. Appl.
Probab., 15(3):2038–2061, 2005.

[108] M. J. Luczak and J. R. Norris. Averaging over fast variables in the fluid limit for Markov chains:
application to the supermarket model with memory. Ann. Appl. Probab., 23(3):957–986, 2013.

[109] D. Martirosyan and P. Robert. The equilibrium states of large networks of Erlang queues.
arXiv:1811.04763, 2018.

[110] D. McDonald and S. Turner. Comparing load balancing algorithms for distributed queueing net-
works. In Analysis of Communication Networks: Call Centres, Traffic and Performance, volume 28,
pages 109–133, 2000.

[111] R. Menich. Optimality of shortest queue routing for dependent service stations. In Proc. CDC ’87,
pages 1069–1072, 1987.

[112] R. Menich and R. F. Serfozo. Optimality of routing and servicing in dependent parallel processing
systems. Queueing Syst., 9(4):403–418, 1991.

[113] M. Mitzenmacher. The power of two choices in randomized load balancing. PhD thesis, University of
California, Berkeley, 1996.

[114] M. Mitzenmacher. The power of two choices in randomized load balancing. IEEE Trans. Parallel
Distrib. Syst., 12(10):1094–1104, 2001.

[115] M. Mitzenmacher. Analyzing distributed Join-Idle-Queue: A fluid limit approach. In Proc. Allerton
2016, pages 312–318, 2016.

[116] D. Mukherjee, S. Borst, and J. van Leeuwaarden. Asymptotically optimal load balancing topolo-
gies. Proc. ACM Meas. Anal. Comput. Syst., 2(1):1–29, 2018.

[117] D. Mukherjee, S. Borst, J. van Leeuwaarden, and P. Whiting. Asymptotic optimality of threshold-
based load balancing in large-scale systems. 2016.

[118] D. Mukherjee, S. Borst, J. van Leeuwaarden, and P. Whiting. Universality of load balancing
schemes on the diffusion scale. J. Appl. Probab., 53(4), 2016.

[119] D. Mukherjee, S. Borst, J. van Leeuwaarden, and P. Whiting. Universality of power-of-d load
balancing in many-server systems. Stoch. Syst., 8(4):265–292, 2018.

[120] D. Mukherjee, S. Borst, J. van Leeuwaarden, and P. Whiting. Asymptotic optimality of power-of-d
load balancing in large-scale systems. Math. Oper. Res., 2020.

[121] D. Mukherjee, S. Dhara, S. Borst, and J. van Leeuwaarden. Optimal service elasticity in large-scale
distributed systems. Proc. ACM Meas. Anal. Comput. Syst., 1(1):25, 2017.

[122] D. Mukherjee and A. Stolyar. Join-Idle-Queue with service elasticity: Large-scale asymptotics of a
non-monotone system. Stoch. Syst., 9(4):338–358, 2019.

[123] A. Mukhopadhyay, A. Karthik, and R. R. Mazumdar. Randomized assignment of jobs to servers
in heterogeneous clusters of shared servers for low delay. Stoch. Syst., 6(1):90–131, 2016.

[124] A. Mukhopadhyay, A. Karthik, R. R. Mazumdar, and F. Guillemin. Mean field and propagation of
chaos in multi-class heterogeneous loss models. Perform. Eval., 91:117–131, 2015.

[125] A. Mukhopadhyay and R. R. Mazumdar. Rate-based randomized routing in large heterogeneous
processor sharing systems. In Proc. ITC 26, pages 1–9, 2014.

[126] A. Mukhopadhyay and R. R. Mazumdar. Analysis of randomized Join-the-Shortest-Queue (JSQ)
schemes in large heterogeneous processor-sharing systems. IEEE Trans. Control Netw. Syst.,

70

3(2):116–126, 2016.

[127] A. Mukhopadhyay, R. R. Mazumdar, and F. Guillemin. The power of randomized routing in
heterogeneous loss systems. In Proc. ITC ’27, pages 125–133, 2015.

[128] L. M. Nguyen and A. L. Stolyar. A service system with randomly behaving on-demand agents.
ACM SIGMETRICS Perform. Eval. Rev., 44(1):365–366, 2016.

[129] R. Pagh and F. F. Rodler. Cuckoo hashing. J. Algorithms, 51(2):122–144, 2004.

[130] G. Pang and A. L. Stolyar. A service system with on-demand agent invitations. Queueing Syst.,
82(3-4):259–283, 2016.

[131] R. Panigrahy. Efficient hashing with lookups in two memory accesses. In Proc. SODA ’05, pages
830–839, 2005.

[132] J. Pender and T. Phung-Duc. A law of large numbers for M/M/c/delayoff-setup queues with
nonstationary arrivals. In Proc. ASMTA ’16, pages 253–268, Cham, 2016.

[133] F. Poloczek and F. Ciucu. Contrasting effects of replication in parallel systems: From overload to
underload and back. In Proc. ACM SIGMETRICS 2016/Performance 2016, pages 375–376, 2016.

[134] M. I. Reiman. Some diffusion approximations with state space collapse. In Modelling and Perfor-
mance Evaluation Methodology, pages 207–240. Springer, Berlin, Heidelberg, 1984.

[135] P. Robert. Stochastic Networks and Queues. Springer Berlin Heidelberg, 2003.

[136] D. Rutten and D. Mukherjee. Load balancing under strict compatibility constraints. In Proc. ACM
SIGMETRICS 2021, pages 51–52, 2021.

[137] J. Selen, I. Adan, and S. Kapodistria. Approximate performance analysis of generalized join the
shortest queue routing. In Proc. VALUETOOLS ’16, pages 103–110, 2016.

[138] N. B. Shah, K. Lee, and K. Ramchandran. When do redundant requests reduce latency? IEEE
Trans. Commun., 64(2):715–722, 2016.

[139] P. D. Sparaggis, D. Towsley, and C. G. Cassandras. Extremal properties of the shortest/longest
non-full queue policies in finite-capacity systems with state-dependent service rates. J. Appl.
Probab., 30(1):223–236, 1993.

[140] P. D. Sparaggis, D. Towsley, and C. G. Cassandras. Sample path criteria for weak majorization.
Adv. Appl. Probab., 26(1):155–171, 1994.

[141] A. L. Stolyar. Pull-based load distribution in large-scale heterogeneous service systems. Queueing
Syst., 80(4):341–361, 2015.

[142] A. L. Stolyar. Pull-based load distribution among heterogeneous parallel servers: the case of
multiple routers. Queueing Syst., 85(1):31–65, 2017.

[143] D. Towsley. Application of majorization to control problems in queueing systems. In P. Chrétienne,
E. G. Coffman, J. K. Lenstra, and Z. Liu, editors, Scheduling Theory and its Applications, chapter 14.
John Wiley & Sons, Chichester, 1995.

[144] D. Towsley, P. Sparaggis, and C. Cassandras. Optimal routing and buffer allocation for a class of
finite capacity queueing systems. IEEE Trans. Autom. Control, 37(9):1446–1451, 1992.

[145] J. N. Tsitsiklis and K. Xu. On the power of (even a little) resource pooling. Stoch. Syst., 2(1):1–66,
2012.

[146] J. N. Tsitsiklis and K. Xu. Flexible queueing architectures. Oper. Res., 65(5):1398–1413, 2017.

[147] S. R. Turner. The effect of increasing routing choice on resource pooling. Probab. Eng. Inf. Sci.,
12(01):109–124, 1998.

71

[148] R. Urgaonkar, U. C. Kozat, K. Igarashi, and M. J. Neely. Dynamic resource allocation and power
management in virtualized data centers. In Proc. IEEE NOMS 2010, pages 479–486, 2010.

[149] M. van der Boor, S. Borst, and J. van Leeuwaarden. Load balancing in large-scale systems with
multiple dispatchers. In Proc. IEEE INFOCOM 2017, 2017.

[150] M. van der Boor, S. Borst, and J. van Leeuwaarden. Hyper-scalable JSQ with sparse feedback. Proc.
ACM Meas. Anal. Comput. Syst., 2019.

[151] M. van der Boor, S. Borst, J. van Leeuwaarden, and D. Mukherjee. Scalable load balancing in
networked systems: Universality properties and stochastic coupling methods. In B. Sirakov, P. N.
de Souza, and M. Viana, editors, Proc. Int. Cong. Math. 2018, pages 3881–3912, 2018.

[152] M. van der Boor, M. Zubeldia and S. Borst. Zero-wait load balancing with sparse messaging. Oper.
Res.] Lett., 48:368–375, 2020.

[153] R. van der Hofstad. Random Graphs and Complex Networks, volume 1. Cambridge University Press,
Cambridge, 2017.

[154] B. van Houdt. Global attraction of ODE-based mean field models with hyperexponential job sizes.
Proc. ACM Meas. Anal. Comput. Syst., 3(2):23, 2019.

[155] J. van Leeuwaarden and C. Knessl. Transient behavior of the Halfin-Whitt diffusion. Stoch. Proc.
Appl., 121(7):1524–1545, 2011.

[156] J. van Leeuwaarden and C. Knessl. Spectral gap of the Erlang A model in the Halfin-Whitt regime.
Stoch. Syst., 2(1):149–207, 2012.

[157] J. van Leeuwaarden, B. Mathijsen, and B. Zwart. Economies-of-scale in resource sharing systems:
tutorial and partial review of the QED heavy-traffic regime. SIAM Rev., 61(3):403–440, 2019.

[158] T. Vasantam, A. Mukhopadhyay, and R. Mazumdar. Mean-field analysis of loss models with
mixed-Erlang distributions under power-of-d routing. In ITC 29, pages 250–258, 2017.

[159] T. Vasantam, A. Mukhopadhyay, and R. Mazumdar. The mean-field behavior of processor-sharing
systems with general job lengths under the SQ(d) policy. Perform. Eval., 127:120–153, 2018.

[160] T. Vasantam, A. Mukhopadhyay, and R. Mazumdar. Insensitivity of the mean-field limit of loss
systems under SQ(d) routing. Adv. Appl. Prob., 51(4):1027–1066, 2019.

[161] B. Vöcking. How asymmetry helps load balancing. In Proc. FOCS ’99, pages 131–140, 1999.

[162] A. Vulimiri, P. B. Godfrey, R. Mittal, J. Sherry, S. Ratnasamy, and S. Shenker. Low latency via
redundancy. In Proc. CoNEXT ’13, pages 283–294, 2013.

[163] N. D. Vvedenskaya, R. L. Dobrushin, and F. I. Karpelevich. Queueing system with selection of the
shortest of two queues: An asymptotic approach. Problemy Peredachi Informatsii, 32(1):20–34, 1996.

[164] D. Wang, G. Joshi, and G. Wornell. Efficient task replication for fast response times in parallel
computation. In Proc. ACM SIGMETRICS 2014, number 1, pages 599–600, 2014.

[165] D. Wang, G. Joshi, and G. Wornell. Using straggler replication to reduce latency in large-scale
parallel computing. In Proc. DCC ’15, number 3, pages 7–11, 2015.

[166] W. Wang, Q. Xie, and M. Harchol-Balter. Zero queueing for multi-server jobs. Proc. ACM Meas.
Anal. Comput. Syst., 5(1):1–25, 2021.

[167] R. R. Weber. On the optimal assignment of customers to parallel servers. J. Appl. Probab., 15(2):406–
413, 1978.

[168] W. Weng and W. Wang. Achieving zero asymptotic queueing delay for parallel jobs. Proc. ACM
Meas. Anal. Comput. Syst., 4:1–36, 2020.

72

[169] W. Weng, X. Zhou, and R. Srikant. Optimal load balancing with locality constraints. Proc. ACM
Meas. Anal. Comput. Syst., 4:1–37, 2020.

[170] W. Whitt. Blocking when service is required from several facilities simultaneously. AT&T Bell
Laboratories Technical Journal, 64(8):1807–1856, 1985.

[171] A. Wierman, L. L. H. Andrew, and A. Tang. Power-aware speed scaling in processor sharing
systems: optimality and robustness. Perform. Eval., 69(12):601–622, 2012.

[172] W. Winston. Optimality of the shortest line discipline. J. Appl. Probab., 14(1):181–189, 1977.

[173] Q. Xie, X. Dong, Y. Lu, and R. Srikant. Power of d choices for large-scale bin packing. In Proc.
ACM SIGMETRICS 2015, pages 321–334, 2015.

[174] A. Yekkehkhany, A. Hojjati, and M. H. Hajiesmaili. GB-PANDAS: Throughput and heavy-traffic
optimality analysis for affinity scheduling. ACM Perform. Eval. Rev., 45(2):2–14, 2018.

[175] L. Ying. On the approximation error of mean-field models. In Proc. ACM SIGMETRICS 2016/Per-
formance 2016, pages 285–297, 2016.

[176] L. Ying. Stein’s method for mean field approximations in light and heavy traffic regimes. Proc.
ACM Meas. Anal. Comput. Syst., 1(1):12, 2017.

[177] L. Ying, R. Srikant, and X. Kang. The power of slightly more than one sample in randomized load
balancing. In Proc. IEEE INFOCOM 2015, pages 1131–1139, 2015.

[178] H. Zhang, G.-H. Hsu, and R. Wang. Heavy traffic limit theorems for a sequence of shortest
queueing systems. Queueing Syst., 21(1):217–238, 1995.

[179] Z. Zhao, S. Banerjee, and D. Mukherjee. Many-server asymptotics for join-the-shortest queue in
the super-halfin-whitt scaling window. arXiv:2106.00121, 2020.

[180] X. Zhou, J. Tan, and N. Shroff. Heavy-traffic delay optimality in pull-based load balancing systems:
Necessary and sufficient conditions. Proc. ACM Meas. Anal. Comput. Syst., 2(3), 2019.

[181] X. Zhou, F. Wu, J. Tan, Y. Sun, and N. Shroff. Designing low-complexity heavy-traffic delay-optimal
load balancing schemes: Theory to algorithms. Proc. ACM Meas. Anal. Comput. Syst., 1(2):39, 2017.

73

	1 Introduction
	2 Scalability spectrum
	2.1 Basic model
	2.2 Asymptotic scaling regimes
	2.3 Basic load balancing algorithms
	2.4 Performance comparison

	3 Preliminaries, JSQ policy, and power-of-d algorithms
	3.1 Definitions, limit sequences and convergence issues
	3.2 Fluid limit for JSQ(d) policies
	3.3 Fluid limit for JSQ policy
	3.4 Diffusion limit for JSQ policy
	3.5 JSQ(d) policies in heavy-traffic regime

	4 Universality of JSQ(d) policies
	4.1 High-level outline of proof approach
	4.2 Extension to batch arrivals

	5 Blocking and infinite-server dynamics
	5.1 Fluid limit for JSQ policy
	5.2 Diffusion limit for JSQ policy
	5.3 Universality of JSQ(d) policies in infinite-server dynamics

	6 Load balancing in graph topologies
	6.1 Asymptotic optimality criteria for deterministic graph sequences
	6.2 Asymptotic optimality of random graph sequences

	7 Token-based load balancing
	7.1 Fluid-level optimality of JIQ scheme
	7.2 Diffusion-level optimality of JIQ scheme
	7.3 Multiple dispatchers
	7.4 Joint load balancing and auto-scaling

	8 Redundancy policies and alternative scaling
	8.1 Redundancy-d policies
	8.2 Conventional heavy traffic
	8.3 Non-degenerate slowdown
	8.4 Sparse-feedback regime
	8.5 Scaling of maximum queue length

	9 Extensions and future research directions
	9.1 JSQ(d) policies with general service requirement distributions
	9.2 Heterogeneous servers and knowledge of service requirements
	9.3 Open problems and emerging research directions

