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Abstract. Ambiguity sets of probability distributions are used to hedge against

uncertainty about the true probabilities of random quantities of interest (QoIs).

When available, these ambiguity sets are constructed from both data (col-
lected at the initial time and along the boundaries of the physical domain)

and concentration-of-measure results on the Wasserstein metric. To propa-

gate the ambiguity sets into the future, we use a physics-dependent equation
governing the evolution of cumulative distribution functions (CDF) obtained

through the method of distributions. This study focuses on the latter step by

investigating the spatio-temporal evolution of data-driven ambiguity sets and
their associated guarantees when the random QoIs they describe obey hyper-

bolic partial-differential equations with random inputs. For general nonlinear
hyperbolic equations with smooth solutions, the CDF equation is used to prop-

agate the upper and lower envelopes of pointwise ambiguity bands. For linear

dynamics, the CDF equation allows us to construct an evolution equation for
tighter ambiguity balls. We demonstrate that, in both cases, the ambigu-

ity sets are guaranteed to contain the true (unknown) distributions within a

prescribed confidence.

1. Introduction

Hyperbolic conservation laws describe a wide spectrum of engineering applica-
tions ranging from multi-phase flows [8] to networked traffic [19]. The underly-
ing dynamics is described by first-order hyperbolic partial differential equations
(PDEs) with non-negligible parametric uncertainty, induced by factors such as
limited and/or noisy measurements and random fluctuations of environmental at-
tributes. Decisions based, in whole or in part, on predictions obtained from such
models have to account for this uncertainty. The decision maker often has no dis-
tributional knowledge of the parametric uncertainties affecting the model and uses
data—often noisy and insufficient—to make inferences about these distributions.
Robust stochastic programming [2] calls for a quantifiable description of sets of
probability measures, termed ambiguity sets, that contain the true (yet unknown)
distribution with high confidence (e.g., [24, 13, 28]). The availability of such sets
underpins distributionally robust optimization (DRO) formulations [2, 27] that are
able of hedging against these uncertainties. Ambiguity sets are typically defined
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either through moment constraints [10] or statistical metric-like notions such as
φ-divergences [1] and Wasserstein metrics [13], which allow the designer to identify
distributions that are close to the nominal distribution in the prescribed metric.
Ideally, ambiguity sets should be rich enough to contain the true distribution with
high probability; be amenable to tractable reformulations; capture distribution vari-
ations relevant to the optimization problem without being overly conservative; and
be data-driven. Wasserstein ambiguity sets have emerged as an appropriate choice
because of two reasons. First, they provide computationally convenient dual refor-
mulations of the associated DRO problems [13, 15]. Second, they penalize horizon-
tal dislocations of the distributions [26], which considerably affect solutions of the
stochastic optimization problems. Furthermore, data-driven Wasserstein ambiguity
sets are accompanied by finite-sample guarantees of containing the true distribu-
tion with high confidence [14, 11, 33], resulting in DRO problems with prescribed
out-of-sample performance. Our recent work [4, 5] has explored how ambiguity
sets change under deterministic flow maps generated by ordinary differential equa-
tions, and used this information in dynamic DRO formulations. For these reasons,
Wasserstein DRO formulations are utilized in a wide range of applications includ-
ing distributed optimization [9], machine learning [3], traffic control [20], power
systems [16], and logistics [17].

We consider two types of input ambiguity sets. The first is based on Wasserstein
balls, whereas the second exploits CDF bands that contain the CDF of the true
distribution with high probability. Our focus is on the spatio-temporal evolution
of data-driven ambiguity sets (and their associated guarantees) when the random
quantities they describe obey hyperbolic PDEs with random inputs. Many tech-
niques can be used to propagate uncertainty affecting the inputs of a stochastic
PDE to its solution. We use the method of distributions (MD) [30], which yields a
deterministic evolution equation for the single-point cumulative distribution func-
tion (CDF) of a model output [6]. This method provides an efficient alternative
to numerically demanding Monte Carlo simulations (MCS), which require multiple
solutions of the PDE with repeated realizations of the random inputs. It is ideal
for hyperbolic problems, for which other techniques (such us stochastic finite ele-
ments and stochastic collocation) can be slower than MCS [7]. In particular, when
uncertainty in initial and boundary conditions is propagated by a hyperbolic deter-
ministic PDE with a smooth solution, MD yields an exact CDF equation [31, 6].
Regardless of the uncertainty propagation technique, data can be used both to
characterize the statistical properties of the input distributions and reduce uncer-
tainty by assimilating observations into probabilistic model predictions via Bayesian
techniques, e.g., [34].

The contributions of our study are threefold. First, we use data collected at the
initial time and along the boundaries of the physical domain to build ambiguity sets
that enjoy rigorous finite-sample guarantees for the input distributions. Specifically,
we construct data-driven pointwise ambiguity sets for the unknown true distribu-
tions of parameterized random inputs, by transferring finite-sample guarantees for
their associated Wasserstein distance in the parameter domain. The resulting am-
biguity sets account for empirical information (from the data) without introducing
arbitrary hypotheses on the distribution of the random parameters. Second, we
design tools to propagate the ambiguity sets throughout space and time. The MD
is employed to propagate each ambiguous distribution within the data-driven input
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ambiguity sets according to a physics-dependent CDF equation. For linear dynam-
ics, we use the CDF equation to construct an evolution equation for the radius of
ambiguity balls centered at the empirical distributions in the 1-Wasserstein (a.k.a.
Kantorovich) metric. For a wider class of nonlinear hyperbolic equations with
smooth solutions, we exploit the CDF equation to propagate the upper and lower
envelopes of pointwise ambiguity bands. These are formed through upper and lower
envelopes that contain all CDFs up to an assigned 1-Wasserstein distance from the
empirical CDF. Third, we use these uncertainty propagation tools to obtain point-
wise ambiguity sets across all locations of the space-time domain that contain their
true distributions with prescribed probability. Our method can handle both types
of input ambiguity sets (based on either Wasserstein balls or CDF bands), while
maintaining their confidence guarantees upon propagation. This allows the decision
maker to map their physics-driven stretching/shrinking under the PDE dynamics.

2. Preliminaries

Let ‖·‖ and ‖·‖∞ denote the Euclidean and infinity norm in Rn, respectively. The
diameter of a set S ⊂ Rn is defined as diam(S) := sup{‖x − y‖∞ |x, y ∈ S}. The
Heaviside function H : R → R is H(x) = 0 for x < 0 and H(x) = 1 for x ≥ 0. We
denote by B(Rd) the Borel σ-algebra on Rd, and by P(Rd) the space of probability
measures on (Rd,B(Rd)). For µ ∈ P(Rd), its support is the closed set supp(µ) :=
{x ∈ Rd |µ(U) > 0 for each neighborhood U of x} or, equivalently, the smallest
closed set with measure one. We denote by Cdf[P ] the cumulative distribution
function associated with the probability measure P on R and by CD(I) the set of all
CDFs of scalar random variables whose induced probability measures are supported
on the interval I ⊂ R. Given p ≥ 1, Pp(Rd) := {µ ∈ P(Rd) |

∫
Rd ‖x‖

pdµ < ∞} is

the set of probability measures in P(Rd) with finite p-th moment. The Wasserstein
distance of µ, ν ∈ Pp(Rd) is

Wp(µ, ν) :=
(

inf
π∈M(µ,ν)

{∫

Rd×Rd
‖x− y‖pπ(dx, dy)

})1/p

,

where M(µ, ν) is the set of all probability measures on Rd × Rd with marginals
µ and ν, respectively, also termed couplings. For scalar random variables, the
Wasserstein distance Wp between two distributions µ and ν with CDFs F and

G is, cf. [32], Wp(µ, ν) =
( ∫ 1

0
|F−1(t) − G−1(t)|pdt

)1/p
, where F−1 denotes the

generalized inverse of F , F−1(y) = inf{t ∈ R |F (t) > y}. For p = 1, one can use
the representation

W1(µ, ν) =

∫

R
|F (s)−G(s)|ds.(1)

Given two measurable spaces (Ω,F) and (Ω′,F ′), and a measurable function Ψ
from (Ω,F) to (Ω′,F ′), the push-forward map Ψ# assigns to each measure µ in
(Ω,F) a new measure ν in (Ω′,F ′) defined by ν := Ψ#µ iff ν(B) = µ(Ψ−1(B)) for
all B ∈ F ′. The map Ψ# is linear and satisfies Ψ#δω = δΨ(ω) with δω the Dirac
mass at ω ∈ Ω.
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3. Problem formulation

We consider a hyperbolic model for u(x, t),

∂u

∂t
+∇ · (q(u;θq)) = r(u;θr), x ∈ Ω, t > 0(2)

subject to initial and boundary conditions

u(x, t = 0) = u0(x), x ∈ Ω

u(x, t) = ub(x, t), x ∈ Γ, t > 0,(3)

restricting ourselves to problems with smooth solutions. Equation (2), with the
given flux q(u;θq) and source term r(u;θr), is defined on a d-dimensional semi-
infinite spatial domain Ω ⊂ Rd, and by the parameters θq and θr, that can be
spatially and/or temporally varying. The boundary function ub(x, t) is prescribed
at the upstream boundary Γ. For the sake of brevity, we do not consider different
types of boundary conditions, although the procedure can be adjusted accordingly.
Randomness in the initial and/or boundary conditions, u0(x) and ub(x, t), ren-
ders (2) stochastic. We make the following hypotheses.

Assumption 3.1 (Deterministic dynamics). We assume all parameters in (2) (i.e.,
all physical parameters specifying the flux q, θq, and the source term r, θr) are
deterministic, and the flux q is divergence-free once evaluated for a specific value
of u(x, t) = U , ∇ · q(U ;θq) = 0.

Assumption 3.2 (Existence and uniqueness of local solutions within a time hori-
zon). There exists T ∈ (0,∞] such that for each initial and boundary condition
from their probability space, the solution u(x, t) of (2) is smooth and defined on
Ω× [0, T ).

Regarding Assumption 3.2, we refer to [25] for a theoretical treatment of local
existence theorems. In the absence of direct access to the distribution of the initial
and boundary conditions, we analyze their samples from independent realizations
of (3). Specifically, we measure the initial condition u0 for all x ∈ Ω and get con-
tinuous measurements of ub at each boundary point for all times (for instance, in a
traffic flow scenario with Ω representing a long highway segment, a traffic helicopter
might pass above the area at the same time each morning and take a photo from the
segment that provides the initial condition for the traffic density u, whereas u at
the segment boundary is continuously measured by a single-loop detector. Assump-
tions 3.1 and 3.2 require traffic conditions far from congestion, with deterministic
parameters describing the flow, specifically maximum velocity and maximum traffic
density). We are interested in exploiting the samples to construct ambiguity sets
that contain the temporally- and spatially-variable one-point probability distribu-
tions of u0(t) and ub(x, t) with high confidence. We consider initial and boundary
conditions that are specified by a finite number of random parameters.

Assumption 3.3 (Input parameterization). The initial and boundary conditions
are parameterized by a := (a1, . . . , an) from a compact subset of Rn, i.e., u0(x) ≡
u0(x; a) and ub(x, t) ≡ ub(x, t; a). The parameterizations are globally Lipschitz with
respect to a for each initial position x and boundary pair (x, t). Specifically,

|u0(x; a)− u0(x; a′)| ≤ L0(x)‖a− a′‖ ∀x ∈ Ω, a,a′ ∈ Rn,(4a)

|ub(x, t; a)− ub(x, t; a′)| ≤ Lb(x, t)‖a− a′‖ ∀x ∈ Γ, t ≥ 0, a,a′ ∈ Rn,(4b)
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for some continuous functions L0 : Ω→ R≥0 and Lb : Γ× R≥0 → R≥0.

We denote by P true
a the distribution of the parameters in Rn, by P true

u0(x) the

induced distribution of u0(x; a) at the spatial point x, and by P true
ub(x,t)

the distribu-

tion of ub(x, t; a) at each boundary point x and time t ≥ 0. We use the superscript
‘true’ to emphasize that we refer to the corresponding true distributions, that are
unknown. We denote by F true

u0(x) ≡ Cdf
[
P true
u0(x)

]
and F true

ub(x,t)
≡ Cdf

[
P true
ub(x,t)

]
their

associated CDFs and make the following hypothesis for data assimilation.

Assumption 3.4 (Input samples). We have access to N independent pairs of
initial and boundary condition samples, (u1

0, u
1
b), . . . , (u

N
0 , u

N
b ), generated by corre-

sponding independent realizations a1, . . . ,aN of the parameters in Assumption 3.3.

Under these hypotheses, we seek to derive pointwise characterizations of am-
biguity sets for the CDF of u at each location (x, t) in space and time, starting
with their characterization for the initial and boundary data. We are interested in
defining the ambiguity sets in terms of plausible CDFs at each (x, t), and exploiting
the known dynamics (2) to propagate the one-point CDFs of u(x, t) in space and
time.

Problem statement. Given β, we seek to determine sets P0
x, x ∈ Ω and Pbx,t,

(x, t) ∈ Γ × R≥0 of CDFs that contain the corresponding true CDFs F true
u0(x) and

F true
ub(x,t)

for the initial and boundary conditions, respectively, with confidence 1− β,

P({F true
u0(x) ∈ P

0
x ∀x ∈ Ω} ∩ {F true

ub(x,t)
∈ Pbx,t ∀(x, t) ∈ Γ× R≥0}) ≥ 1− β.

We further seek to leverage the PDE dynamics to propagate the ambiguity sets of
the initial and boundary data and obtain a pointwise characterization of ambiguity
sets Px,t containing the CDF of u(x, t) at each x ∈ Ω and t ∈ [0, T ) with confidence
1− β,

P(F true
u(x,t) ∈ Px,t ∀(x, t) ∈ Ω× [0, T )) ≥ 1− β.

Section 4 exploits the compactly supported parameterization of the initial and
boundary data to build ambiguity sets which enjoy rigorous finite-sample guaran-
tees. Section 5 derives a deterministic PDE for the CDF of u(x, t), which enables
the investigation of how the difference between CDFs (and, by integration, their
Wasserstein distance) evolves in space and time. Section 6 characterizes how the
input ambiguity sets propagate in space and time under the same confidence guar-
antees.

4. Data-driven ambiguity sets for inputs

Using Assumptions 3.3 and 3.4, at each x ∈ Ω and boundary pair (x, t) ∈ Γ×R≥0,
we define empirical distributions

P̂Nu0(x) ≡ P̂
N
u0(x)(a

1, . . . ,aN ) :=
1

N

N∑

i=1

δui0(x) ≡
1

N

N∑

i=1

δu0(x;ai),

P̂Nub(x,t) ≡ P̂
N
ub(x,t)

(a1, . . . ,aN ) :=
1

N

N∑

i=1

δuib(x,t) ≡
1

N

N∑

i=1

δub(x,t;ai),

with associated CDFs F̂Nu0(x) := Cdf
[
P̂Nu0(x)

]
and F̂Nub(x,t) := Cdf

[
P̂Nub(x,t)

]
. We

employ these empirical distributions to build pointwise ambiguity sets based on
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concentration-of-measure results for the 1-Wasserstein distance. Specifically, we ex-
ploit compactness of the initial and boundary data parameterization together with
the following confidence guarantees about the Wasserstein distance between the
empirical and true distribution of compactly supported random variables (see [5]).

Lemma 4.1 (Ambiguity radius). Let (Xi)i∈N be a sequence of i.i.d. Rn-valued
random variables that have a compactly supported distribution µ and let ρ :=
diam(supp(µ))/2. Then, for p ≥ 1, N ≥ 1, and ε > 0, P(Wp(µ̂

N , µ) ≤ εN (β, ρ)) ≥
1− β, where

εN (β, ρ) :=





(
ln(Cβ−1)

c

) 1
2p ρ

N
1
2p
, if p > n/2,

h−1
(

ln(Cβ−1)
cN

) 1
p

ρ, if p = n/2,
(

ln(Cβ−1)
c

) 1
n ρ

N
1
n
, if p < n/2,

(5)

µ̂N := 1
N

∑N
i=1 δXi , the constants C and c depend only on p, n, and h−1 is the

inverse of h(x) = x2/[ln(2 + 1/x)]2, x > 0.

This result quantifies the radius εN (β, ρ) of an ambiguity ball that contains the
true distribution with high probability. The radius decreases with the number of
samples and can be tuned by the confidence level 1−β, allowing the decision maker
to choose the desired level of conservativeness. The explicit determination of c and
C in (5) through the analysis in [14] for the whole spectrum of data dimensions n
and Wasserstein exponents p can become cumbersome. Nevertheless, (5) provides
explicit ambiguity radius ratios for any pair of sample sizes once a confidence level
is fixed. Recall that, according to Assumption 3.3, the mapping of the parameters
to the initial and boundary data is globally Lipschitz. The following result, whose
proof is given in Appendix A, is useful to quantify the Wasserstein distance between
the true and empirical distribution at each input location.

Lemma 4.2 (Wasserstein distance under Lipschitz maps). If T : Rn → Rm is
Lipschitz with constant L > 0, namely, ‖T (x) − T (y)‖ ≤ L‖x − y‖, then for any
pair of distributions µ, ν on Rn it holds that Wp(µ, ν) ≤ LWp(T#µ, T#ν).

Using Lemmas 4.1 and 4.2 together with the finite-sample guarantees in the
parameter domain, we next obtain a characterization of initial and boundary value
ambiguity sets through pointwise Wasserstein balls. To express the ambiguity sets
in terms of CDFs, we will interchangeably denote byWp(FX1 , FX2) ≡Wp(PX1 , PX2)
the Wasserstein distance between any two scalar random variables X1, X2 with
distributions PX1

, PX2
and associated CDFs FX1

= Cdf[PX1
], FX2

= Cdf[PX2
].

Proposition 4.3 (Input ambiguity sets). Assume that N pairs of input samples
are collected according to Assumption 3.4 and let

ρa := diam(supp(P true
a ))/2(6)

and ā ∈ Rn such that ‖a − ā‖∞ ≤ ρa for all a ∈ supp(P true
a ). Given a confidence

level 1− β, define the ambiguity sets

P0
x :=

{
F ∈ CD([α0(x), γ0(x)]) |W1(F̂Nu0(x), F ) ≤ L0(x)εN (β, ρa)

}

Pbx,t :=
{
F ∈ CD([αb(x, t), γb(x, t)]) |W1(F̂Nub(x,t), F ) ≤ Lb(x, t)εN (β, ρa)

}
,
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for x ∈ Ω and x ∈ Γ, t ≥ 0, respectively, where

[α0(x), γ0(x)] := [u0(x; ā)−
√
nL0(x)ρa, u0(x; ā) +

√
nL0(x)ρa](7a)

[αb(x, t), γb(x, t)] := [ub(x, t; ā)−
√
nLb(x, t)ρa, ub(x, t; ā) +

√
nLb(x, t)ρa],(7b)

and L0(x), Lb(x, t), and εN (β, ρa) are given by (4a), (4b), and (5). Then,

P({F true
u0(x) ∈ P

0
x ∀x ∈ Ω} ∩ {F true

ub(x,t)
∈ Pbx,t ∀(x, t) ∈ Γ× R≥0}) ≥ 1− β.(8)

Proof. For the selected confidence 1− β, we get from Lemma 4.1 with p = 1 that

P(W1(P̂Na , P
true
a ) ≤ εN (β, ρa)) ≥ 1− β.(9)

Denoting by u0[x] the mapping a 7→ u0[x](a) := u0(x; a), it follows from elementary

properties of the pushforward map given in section 2 that P̂Nu0(x) = u0[x]#P̂
N
a

and P true
u0(x) = u0[x]#P

true
a , where P̂Na := 1

N

∑N
i=1 δai . Thus, we obtain from the

Lipschitz hypothesis (4a) and Lemma 4.2 that

W1(P̂Nu0(x), P
true
u0(x)) ≤ L0(x)W1(P̂Na , P

true
a ), ∀x ∈ Ω.

Since P true
u0(x) = u0[x]#P

true
a , we get from (4a), (7a), and the selection of ā that

P true
u0(x) is supported on [α0(x), γ0(x)], and hence, that F true

u0(x) ∈ CD([α0(x), γ0(x)])

for all x ∈ Ω. Analogously, we have that

W1(P̂Nub(x,t), P
true
ub(x,t)

) ≤ Lb(x, t)W1(P̂Na , P
true
a )

and F true
ub(x,t)

∈ CD([αb(x, t), γb(x, t)]) for all (x, t) ∈ Γ× R≥0. Consequently

{W1(P̂Na , P
true
a ) ≤ εN (β, ρa)} ⊂ {W1(P̂Nu0(x), P

true
u0(x)) ≤ L0(x)εN (β, ρa) ∀x ∈ Ω}

∩ {W1(P̂Nub(x,t), P
true
ub(x,t)

) ≤ Lb(x, t)εN (β, ρa) ∀(x, t) ∈ Γ× R≥0}.

Thus, since each F true
u0(x) ∈ CD([α0(x), γ0(x)]) and F true

ub(x,t)
∈ CD([αb(x, t), γb(x, t)]),

we deduce (8) from the definitions of the ambiguity sets. �

We next consider an alternative characterization of the ambiguity sets, which
enables the exploitation of a propagation tool applicable to a wider class of PDE
dynamics, yet at the cost of increased conservativeness. These ambiguity sets are
built using pointwise confidence bands (thereinafter termed ambiguity bands), en-
closed between upper and lower CDF envelopes that contain the true CDF at each
spatio-temporal location with prescribed probability. We rely on the next result,
whose proof is given in Appendix A, providing upper and lower CDF envelopes for
any CDF F and distance ρ, cf. Figure 1, so that the CDF of any distribution with
1-Wasserstein distance at most ρ from F is pointwise between these envelopes.

Lemma 4.4 (Upper and lower CDF envelopes). Let F ∈ CD([a, b]), define

tup
ρ [F ] ≡ tup

ρ,[a,b][F ] := sup
{
τ ∈ [a, b]

∣∣∣
∫ b

τ

(1− F (t))dt ≥ ρ
}

tlow
ρ [F ] ≡ tlow

ρ,[a,b][F ] := inf
{
τ ∈ [a, b]

∣∣∣
∫ τ

a

F (t)dt ≥ ρ
}
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𝐹−1(𝑦) ℝ𝑏

𝑈

𝑎

ℱ𝜌
up
[𝐹]

1

𝐹

𝑡

𝐹(𝑡)

𝑦

ℱ𝜌
up

𝐹 𝑡 = 𝑦
𝑡𝜌
up

𝐹

Figure 1. Illustration of the upper CDF envelope Fup
ρ [F ] (in yel-

low) of F (in red). For each point (t, y) in the graph of Fup
ρ [F ],

the blue area enclosed among the lines parallel to the axes that
originate from (t, y) and F is equal to ρ.

for any 0 < ρ ≤ min{
∫ b
a
F (t)dt,

∫ b
a

(1 − F (t))dt}, and the corresponding upper and

lower CDF envelopes Fup
ρ [F ] ≡ Fup

ρ,[a,b][F ] and F low
ρ [F ] ≡ F low

ρ,[a,b][F ]

Fup
ρ [F ](t) :=





0, if t ∈ (−∞, a)

sup
{
z ∈ [F (t), 1]

∣∣ ∫ z
F (t)

(F−1(y)− t)dy ≤ ρ
}
, if t ∈ [a, tup

ρ [F ])

1, if t ∈ [tup
ρ [F ],∞),

F low
ρ [F ](t) :=





0, if t ∈ (−∞, tlow
ρ [F ])

inf
{
z ∈ [0, F (t)]

∣∣ ∫ F (t)

z
(t− F−1(y))dy ≤ ρ

}
, if t ∈ [tlow

ρ [F ], b)

1, if t ∈ [b,∞).

Then, both Fup
ρ [F ] and F low

ρ [F ] are continuous CDFs in CD([a, b]) and for any
F ′ ∈ CD([a, b]) with W1(F, F ′) ≤ ρ, it holds that

F low
ρ [F ](t) ≤ F ′(t) ≤ Fup

ρ [F ](t), ∀t ∈ R.(10)

We rely on Lemma 4.4 to obtain in the next result ambiguity bands for the inputs
that share the confidence guarantees with the ambiguity sets of Proposition 4.3.

Corollary 4.5 (Input ambiguity bands). Assume N pairs of input samples are
collected according to Assumption 3.4 and let ρa and ā as in the statement of
Proposition 4.3. Given a confidence level 1− β, define the ambiguity sets

P0,Env
x :=

{
F ∈ CD(R) | F low

ρ0(x),[α0(x),γ0(x)][F̂
N
u0(x)](U) ≤ F (U)

≤ Fup
ρ0(x),[α0(x),γ0(x)][F̂

N
u0(x)](U) ∀U ∈ R

}
,

Pb,Env
x,t :=

{
F ∈ CD(R) | F low

ρb(x,t),[αb(x,t),γb(x,t)]
[F̂Nub(x,t)](U) ≤ F (U)

≤ Fup
ρb(x,t),[αb(x,t),γb(x,t)]

[F̂Nub(x,t)](U) ∀U ∈ R
}
,

for x ∈ Ω and (x, t) ∈ Γ× R≥0, respectively, where

ρ0(x) := L0(x)εN (β, ρa)(12a)

ρb(x, t) := Lb(x, t)εN (β, ρa),(12b)

and [α0(x), γ0(x)], [αb(x, t), γb(x, t)], εN (β, ρa) given by (7a), (7b), and (5). Then

P({F true
u0(x) ∈ P

0,Env
x ∀x ∈ Ω} ∩ {F true

ub(x,t)
∈ Pb,Env

x,t ∀(x, t) ∈ Γ× R≥0}) ≥ 1− β.
(13)
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Proof. By (8) and (13), it suffices to show that P0
x ⊂ P0,Env

x and Pbx,t ⊂ P
b,Env
x,t for

all x ∈ Ω and (x, t) ∈ Ω × R≥0, respectively, with P0
x and Pbx,t given in Proposi-

tion 4.3. Let x ∈ Ω and F ∈ P0
x. Then, we get from the definition of P0

x and (12a)

that F ∈ CD([α0(x), γ0(x)]) and W1(F̂Nu0
, F ) ≤ L0(x)εN (β, ρa) = ρ0(x). Thus,

since F ∈ CD([α0(x), γ0(x)]), we can invoke Lemma 4.4 and deduce from (10) that

F ∈ P0,Env
x . Analogously, Pbx,t ⊂ P

b,Env
x,t for all (x, t) ∈ Ω× R≥0. �

Remark 4.6 (Confidence bands for components of non-scalar random variables).
Confidence bands for scalar random variables are well-studied in the statistics litera-
ture [22]. Their construction has been originally based on the Kolmogorov-Smirnov
test [18], [29], for which rigorous confidence guarantees have been introduced in [12]
and further refined in [21]. A key difference of our approach is that we obtain anal-
ogous guarantees for an infinite (in fact uncountable) number of random variables,
indexed by all spatio-temporal locations. This is achievable by using the Wasser-
stein ball guarantees in the finite-dimensional but in general non-scalar parameter
space. Therefore, resorting to traditional confidence band guarantees [21] is pos-
sible only in the restrictive case where we consider a single random parameter for
the inputs. �

We next present explicit constructions for the upper and lower CDF envelopes
of the empirical CDF. For n,m ∈ N and t ∈ R, we use the conventions [n : m] = ∅
when m < n and [t, t) = ∅. The proof of the following result is given in Appendix A.

Proposition 4.7 (Upper CDF envelope for discrete distributions). Let F̂ ∈ CD([a, b])
be the CDF of a discrete distribution with positive mass ci at a finite number of
points ti, i ∈ [1 : N ] satisfying a =: t0 ≤ t1 < · · · < tN ≤ b and define bi,j :=∑i
k=j(tk − tj)ck, for 0 ≤ j ≤ i ≤ N , (with bi,j = 0 for any other i, j ∈ N0). Given

ρ > 0 with bN,0 =
∑N
i=1(ti − a)ci > ρ, let j1 := 0, i1 := min{i ∈ [1 : N ] | bi,0 ≥ ρ}

and

jk+1 := max{j ∈ [jk : ik] | bik,j ≥ ρ}+ 1, k = 1, . . . , kmax

ik+1 := min{i ∈ [ik + 1 : N ] | bi,jk+1
≥ ρ}, k = 1, . . . , kmax − 1,

where kmax := min{k ∈ N | bN,jk+1
≤ ρ}. Then, all indices jk, ik are well defined

and

jk < jk+1 ≤ ik < ik+1 ∀k ∈ [1 : kmax],(14)

where ikmax+1 := N + 1. Also, for each k ∈ [1 : kmax], let

∆t` :=
ρ− b`,jk+1∑`
l=jk+1

cl
, τ` := tjk+1

−∆t`, ` ∈ [ik : ik+1 − 1]

∆y` :=
ρ− bik−1,`

tik − t`
, y` :=

ik−1∑

l=1

cl + ∆y`, ` ∈ [jk : jk+1 − 1].

Then, τ` are defined for all ` ∈ [i1 : N ] and form a strictly increasing sequence with

t0 = tj1 ≤ · · · ≤ tj2−1 ≤ τi1 ≤ · · · ≤ τi2−1 < tj2 ≤ · · ·(15)

≤ tjk ≤ · · · ≤ tjk+1−1 ≤ τik ≤ · · · ≤ τik+1−1 < tjk+1
≤ · · ·

≤ tjkmax
≤ · · · ≤ tjkmax+1−1 ≤ τikmax

≤ · · ·
≤ τikmax+1−1 = τN < tjkmax+1

≤ tikmax
< tN .
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Further, the upper CDF envelope F̂ up ≡ Fup
ρ [F̂ ] of F̂ is given as

F̂ up(t) =




0 if t ∈ (−∞, a),

z` + (y` − z`)
tik−t`
tik−t

if t ∈ [t`, t`+1), ` ∈ [jk : jk+1 − 2], k ∈ [1 : kmax],

if t ∈ [tjk+1−1, τik), ` = jk+1 − 1, k ∈ [1 : kmax],

zjk+1−1 + (z` − zjk+1−1) t`+1−τ`
t`+1−t if t ∈ [τ`, τ`+1), ` ∈ [ik : ik+1 − 2], k ∈ [1 : kmax],

if t ∈ [τik+1−1, tjk+1
), ` = ik+1 − 1, k ∈ [1 : kmax],

1 if t ∈ [τN ,∞),

where z` :=
∑`
l=0 cl, ` ∈ [0 : N ] and c0 := 0.

𝜏𝑖𝑘 ℝ𝑏𝑡𝑗𝑘

ℱ𝜌
up[𝐹]

1

𝐹

𝜏𝑖𝑘+1−1

𝑦𝑗𝑘+1−1

𝑡𝑗𝑘+1

𝑡𝑖𝑘 𝑡𝑖𝑘+1
𝑡𝑗𝑘+1−1

Δ𝑦𝑗𝑘+1−1

Δ𝑡𝑖𝑘

𝑡𝑖𝑘max𝑎

𝑦𝑗𝑘

𝑧𝑖𝑘
𝑧𝑖𝑘+1−1

𝝆

𝝆

𝝆

𝑦low

𝑦beg
𝑦

𝑡beg
𝑡

𝑡rt𝑡end
𝑡𝑗𝑘max+1

𝜏𝑁

𝑡𝑁

Figure 2. Illustration of how the upper CDF envelope Fup
ρ [F ]

(in yellow) is constructed for a discrete distribution with a finite
number of atoms.

Proposition 4.7 is illustrated in Figure 2. To construct lower CDF envelopes,
we introduce the reflection F refl

( a+b2 , 12 )
[F ] of a function F around the point (a+b

2 , 1
2 ),

i.e., F refl
( a+b2 , 12 )

[F ](t) := 1− F (a+ b− t), t ∈ R. We also define the right-continuous

version rc[G] of an increasing function G by rc[G](t) := lims↘tG(s), that satisfies∫ t
a
G(s)ds =

∫ t
a

rc[G](s)ds. Combining this with the fact that G−1 ≡ (rc[G])−1

when G is increasing, we deduce from Lemma 4.4 that the upper and lower CDF
envelopes of a CDF F are well defined and, in fact, are the same with those of
any increasing function G agreeing with F everywhere except from its points of
discontinuity, i.e., with rc[G] = F . The next result explicitly constructs lower CDF
envelopes by reflecting the upper CDF envelopes of reflected CDFs. Its proof is
given in Appendix A.

Lemma 4.8 (Lower CDF envelope via reflection). Let F ∈ CD([a, b]) and ρ > 0

with ρ ≤
∫ b
a
F (t)dt. Then, the lower CDF envelope of F satisfies

F low
ρ [F ] = F refl

( a+b2 , 12 )

[
Fup
ρ

[
F refl

( a+b2 , 12 )

[
F
]]]
.

Using Lemma 4.8, one can leverage Proposition 4.7 to obtain the lower CDF
envelope F low

ρ [F ] of a discrete distribution F ∈ CD([a, b]) with mass ci > 0 at
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a finite number of points a =: t0 ≤ t1 < · · · < tN ≤ b for any ρ > 0 with

ρ ≤
∫ b
a
F (t)dt.

5. CDFs and 1-Wasserstein Distance propagation via the Method of
Distributions

Here we develop the necessary tools to propagate in space and time the input
ambiguity sets constructed in section 4. To obtain an evolution equation for the
single-point cumulative distribution function Fu(x,t) of u(x, t), we introduce the
random variable Π(U,x, t) = H(U − u(x, t)), parameterized by U ∈ R. The ensem-
ble mean of Π over all possible realizations of u at a point (x, t) is the single-point
CDF

〈Π(U,x, t)〉 = Fu(x,t).

The dependence of Fu(x,t) on U ∈ R is implied. We henceforth use the notation Ω̃ ≡
R×Ω, Γ̃ ≡ R×Γ, and x̃ ≡ (U,x) ∈ R×Rd. Using the Method of Distributions [30],
one can obtain the next result, whose derivation is summarized in Appendix B.

Theorem 5.1 (Physics-driven CDF equation [6]). Let Fu0(x), x ∈ Ω, and Fub(x,t),
(x, t) ∈ Γ×R≥0, be the CDFs of the initial and boundary conditions in (3). Under
Assumptions 3.1 and 3.2, the CDF Fu(x,t) as a solution of (2) obeys

(16)
∂Fu(x,t)

∂t
+ Λ · ∇̃Fu(x,t) = 0, x̃ ∈ Ω̃, t ∈ (0, T )

with Λ = (q̇(U ;θq), r(U ;θr)) and ∇̃ = (∇, ∂/∂U), with q̇ = ∂q/∂U , and subject to
initial and boundary conditions Fu0(x) and Fub(x,t), respectively.

The CDF evolution is governed by the linear hyperbolic PDE (16), which is
specific for the physical model (2). The next result exploits the properties of (16)
to obtain an upper bound across space and time on the difference between two
CDFs.

Corollary 5.2 (Propagation of upper bound on difference between CDFs). Con-
sider a pair of input CDFs F 1

u0(x), F
2
u0(x), x ∈ Ω, and F 1

ub(x,t)
, F 2

ub(x,t)
, (x, t) ∈

Γ× R≥0 such that

|e0(x̃)| ≥ |ε0(x̃)| = |F 1
u0(x) − F

2
u0(x)|, ∀x̃ ∈ Ω̃

|eb(x̃, t)| ≥ |εb(x̃, t)| = |F 1
ub(x,t)

− F 2
ub(x,t)

|, ∀(x̃, t) ∈ Γ̃× R≥0.(17)

Then, it holds that

|e(x̃, t)| ≥ |F 1
u(x,t) − F

2
u(x,t)| = |ε(x̃, t)|, ∀(x̃, t) ∈ Ω̃× [0, T ),(18)

where F 1
u(x,t) and F 2

u(x,t) are the solutions of (16) for the corresponding initial and

boundary data, with e(x̃, t) obeying

∂|e|
∂t

+ Λ · ∇̃|e| = 0, x̃ ∈ Ω̃, t > 0

|e(x̃, t = 0)| = |e0(x̃)|, x̃ ∈ Ω̃

|e(x̃, t)| = |eb(x̃, t)|, x̃ ∈ Γ̃, t > 0(19)
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Proof. Exploiting the linearity of (16), one can write an equation for the difference
ε(x̃, t) = F 1

u(x,t) − F
2
u(x,t),

∂ε

∂t
+ Λ · ∇̃ε = 0, x̃ ∈ Ω̃, t ∈ (0, T )

ε(x̃, t = 0) = ε0(x̃), x̃ ∈ Ω̃

ε(x̃, t) = εb(x̃, t), x̃ ∈ Γ̃, t > 0(20)

where ε0(x̃) = F 1
u0(x) − F 2

u0(x) and εb(x̃, t) = F 1
ub(x,t)

− F 2
ub(x,t)

are the initial

and boundary differences, resp. (20) can be expressed as the ODE system dε
ds =

0, dx̃
ds = Λ, s > 0 with initial/boundary conditions assigned at the intersection

between the characteristic lines and the noncharacteristic surface delimiting the
space-time domain. Pointwise input differences ε0(x̃) and εb(x̃, t) are conserved
and propagate rigidly along deterministic characteristic lines, hence retaining the
sign set by the input. Since the system dynamics does not change the sign of ε
along the deterministic characteristic lines, ε and |ε| obey the same dynamics

∂|ε|
∂t

+ Λ · ∇̃|ε| = 0, x̃ ∈ Ω̃, t ∈ (0, T )

|ε(x̃, t = 0)| = |ε0(x̃)|, x̃ ∈ Ω̃

|ε(x̃, t)| = |εb(x̃, t)|, x̃ ∈ Γ̃× R≥0.(21)

For e0(x̃, t) and eb(x̃, t) as in (17), and |e(x̃, t)| obeying (19), (21) implies (18). �

The next result shows that propagation in space and time of CDFs is monotonic.

Corollary 5.3 (Propagation of CDFs is monotonic). Consider a pair of input
CDFs F 1

u0(x), F
2
u0(x), x ∈ Ω, and F 1

ub(x,t)
, F 2

ub(x,t)
, (x, t) ∈ Γ× R≥0 such that

F 1
u0(x) ≥ F

2
u0(x) ∀x̃ ∈ Ω̃

F 1
ub(x,t)

≥ F 2
ub(x,t)

∀(x̃, t) ∈ Γ̃× R≥0(22)

Furthermore, we assume F 1
u(x,t) and F 2

u(x,t) to be solutions of (16) with F 1
u0(x), F

1
ub(x,t)

and F 2
u0(x), F

2
ub(x,t)

initial and boundary conditions, respectively. Then, it holds that

F 1
u(x,t) ≥ F

2
u(x,t),∀x̃ ∈ Ω̃× [0, T ).(23)

Proof. The discrepancy ε(x̃, t) = F 1
u(x,t) − F

2
u(x,t) obeys (20). Given non-negative

initial and boundary conditions, consistently with (22), it holds that ε(x̃, t) ≥ 0 for

all x̃ ∈ Ω̃, t ∈ (0, T ), hence (23). �

The CDF equation (16) provides a computational tool for the space-time prop-
agation of the CDFs of the inputs. If the governing equation (2) is linear, we
show next that one can obtain an evolution equation in the form of a PDE for
the 1-Wasserstein distance between each pair of distributions describing the same
underlying physical process.

Theorem 5.4 (Physics-driven 1-Wasserstein discrepancy equation). Consider a
pair of distributions F 1

u(x,t) and F 2
u(x,t) obeying (16), and assume linearity of (2).
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Then, the 1-Wasserstein discrepancy between F 1
u(x,t) and F 2

u(x,t) defined by (1),

ω1(x, t) =
∫
R |F

1
u(x,t) − F

2
u(x,t)|dU , obeys

∂ω1

∂t
+ q̇ · ∇ω1 − ṙ ω1 = 0, x ∈ Ω, t > 0

ω1(x, t = 0) = ω0(x), x ∈ Ω

ω1(x, t) = ωb(x, t), x ∈ Γ, t > 0,(24)

with ω0(x) =
∫
R |F

1
u0(x) − F

2
u0(x)|dU and ωb =

∫
R |F

1
ub(x,t)

− F 2
ub(x,t)

|dU the input

discrepancies.

Proof. (24) follows from (19) by integration along U ∈ R assuming F 1
u(x,t)(U =

±∞) = F 2
u(x,t)(U = ±∞), for all x ∈ Ω, t > 0, accounting for the linearity of q(U)

and r(U). �

Corollary 5.2 and the following Corollary 5.5 take advantage of the linearity and
hyperbolic structure of (19) and (24), respectively, and identify a dynamic bound
for the evolution of the pointwise CDF absolute difference and their 1-Wasserstein
distance, respectively, once the corresponding discrepancies are set at the initial
time and along the boundaries.

Corollary 5.5 (Physics-driven 1-Wasserstein dynamic bound). Consider the input
CDF pairs F 1

u0(x), F
2
u0(x), x ∈ Ω, and F 1

ub(x,t)
, F 2

ub(x,t)
, (x, t) ∈ Γ×R≥0. Let w(x, t)

be the solution of (24) with initial and boundary conditions satisfying

w0(x) ≥ ω0(x) = W1

(
F 1
u0(x), F

2
u0(x)

)
∀x ∈ Ω

wb(x, t) ≥ ωb(x, t) = W1

(
F 1
ub(x,t)

, F 2
ub(x,t)

)
∀(x, t) ∈ Γ× R≥0.(25)

Then, it holds that

ω1(x, t) = W1

(
F 1
u(x,t), F

2
u(x,t)

)
≤ w(x, t) ∀(x, t) ∈ Ω× R≥0,(26)

where F 1
u(x,t) and F 2

u(x,t) are the solutions of (16) for the corresponding initial and

boundary distributions.

Proof. (26) follows from condition (25) and having w(x, t) and ω1(x, t) that fulfill
(24) with conditions w0, wb and ω0, ωb, respectively. �

6. Ambiguity set propagation under finite-sample guarantees

Here we combine the results from sections 4 and 5 to build pointwise ambiguity
sets for the distribution of u(x, t) over the whole spatio-temporal domain. We first
consider the general PDE model (2) and study how the input ambiguity bands of
Corollary 4.5 propagate in space and time using the CDF equation (16).

Theorem 6.1 (Ambiguity band evolution via the CDF dynamics). Assume that
N pairs of input samples are collected according to Assumption 3.4. Consider a
confidence 1− β and the CDFs

F low
u0(x) := F low

ρ0(x),[α0(x),γ0(x)]

[
F̂Nu0(x)

]
, x ∈ Ω

F low
ub(x,t)

:= F low
ρb(x,t),[αb(x,t),γb(x,t)]

[
F̂Nub(x,t)

]
, (x, t) ∈ Γ× R≥0

F up
u0(x) := Fup

ρ0(x),[α0(x),γ0(x)]

[
F̂Nu0(x)

]
, x ∈ Ω

F up
ub(x,t)

:= Fup
ρb(x,t),[αb(x,t),γb(x,t)]

[
F̂Nub(x,t)

]
, (x, t) ∈ Γ× R≥0,
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with [α0(x), γ0(x)], [αb(x, t), γb(x, t)] and ρ0(x), ρb(x, t) as given in (7a), (7b) and
(12a), (12b), respectively. Let F low

u(x,t) and F up
u(x,t) be the solutions of (16) with the

corresponding input CDFs above and define the ambiguity sets

PEnv
x,t :=

{
F ∈ CD(R) |F low

u(x,t) ≤ F ≤ F
up
u(x,t) ∀U ∈ R

}
, x ∈ Ω, t ∈ [0, T ).

Then P(F true
u(x,t) ∈ P

Env
x,t ∀(x, t) ∈ Ω× [0, T )) ≥ 1− β.

Proof. Let

A := {(a1, . . . ,aN ) ∈ RNn |F true
u0(x) ∈ P

0,Env
x (a1, . . . ,aN ) ∀x ∈ Ω

∧ F true
ub(x,t)

∈ Pb,Env
x,t (a1, . . . ,aN ) ∀(x, t) ∈ Γ× R≥0},

with P0,Env
x and Pb,Env

x,t as given in Corollary 4.5, where we emphasize their depen-
dence on the parameter realizations. Then, we have from (13) that

P((a1, . . . ,aN ) ∈ A) ≥ 1− β.(27)

Next, let (a1, . . . ,aN ) ∈ A and F̂Nu0(x) ≡ F̂Nu0(x)(a
1, . . . ,aN ), x ∈ Ω, F̂Nub(x,t) ≡

F̂Nub(x,t)(a
1, . . . ,aN ), (x, t) ∈ Γ × R≥0 be the associated empirical input CDFs.

These generate the corresponding lower CDF envelopes F low
u0(x) ≡ F

low
u0(x)(a

1, . . . ,aN )

and F low
ub(x,t)

≡ F low
ub(x,t)

(a1, . . . ,aN ) given in the statement, and we deduce from the

definitions of A and the ambiguity sets P0,Env
x , Pb,Env

x,t that F true
u0(x)(U) ≥ F low

u0(x)(U)

for all U ∈ R,x ∈ Ω and F true
ub(x,t)

(U) ≥ F low
ub(x,t)

(U) for all U ∈ R, (x, t) ∈ Γ× R≥0.

Thus, we obtain from Corollary 5.3 applied with F 1
u ≡ F true

u and F 2
u ≡ F low

u that

F true
u(x,t)(U) ≥ F low

u(x,t)(U) ∀U ∈ R, (x, t) ∈ Ω× [0, T ).

Analogously, we get that F true
u(x,t)(U) ≤ F up

u(x,t)(U) for all U ∈ R, (x, t) ∈ Ω× [0, T ),

and we deduce from the definition of the ambiguity sets PEnv
x,t in the statement that

F true
u(x,t) ∈ P

Env
x,t (a1, . . . ,aN ) ∀U ∈ R, (x, t) ∈ Ω× [0, T ).

The result now follows from (27). �

Under linearity of the dynamics, we can exploit Corollary 5.5 to propagate the
tighter Wasserstein input ambiguity balls of Proposition 4.3.

Theorem 6.2 (Ambiguity set evolution for linear dynamics). Assume that PDE
(2) is linear and N pairs of input samples are collected according to Assumption 3.4.
Consider a confidence level 1−β and let w(x, t) be the solution of (24) with w0(x) =
L0(x)εN (β, ρa), x ∈ Ω and wb(x, t) = Lb(x, t)εN (β, ρa), (x, t) ∈ Γ × R≥0, and

L0(x), Lb(x, t), ρa, and εN (β, ρa) given by (4a), (4b), (6), and (5). Let F̂Nu(x,t) be

the solution of (16) with the empirical input CDFs F̂Nu0(x) and F̂Nub(x,t) as given in

section 4 and define the ambiguity sets

Px,t :=
{
F ∈ CD(R) |W1(F̂Nu(x,t), F ) ≤ w(x, t)

}
, x ∈ Ω, t ∈ R≥0.

Then P(F true
u(x,t) ∈ Px,t ∀(x, t) ∈ Ω× R≥0) ≥ 1− β.

Proof. Let A := {(a1, . . . ,aN ) ∈ RNn |F true
u0(x) ∈ P

0
x(a1, . . . ,aN ) ∀x ∈ Ω ∧ F true

ub(x,t)
∈

Pbx,t(a1, . . . ,aN ) ∀(x, t) ∈ Γ× R≥0}, with P0
x and Pbx,t as given in Proposition 4.3.

Then, we have from (8) that (27) holds. Next, let (a1, . . . ,aN ) ∈ A and F̂Nu0(x) ≡
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F̂Nu0(x)(a
1, . . . ,aN ), x ∈ Ω, F̂Nub(x,t) ≡ F̂Nub(x,t)(a

1, . . . ,aN ), (x, t) ∈ Γ × R≥0 be the

associated input CDFs. From the definition of P0
x, Pbx,t and w0, wb we get

W1

(
F̂Nu0(x), F

true
u0(x)

)
≤ w0(x) ∀x ∈ Ω

W1

(
F̂Nub(x,t), F

true
ub(x,t)

)
≤ wb(x, t) ∀(x, t) ∈ Γ× R≥0.

Thus, applying Corollary 5.5 with F 1 ≡ F̂Nu and F 2 ≡ F true
u , W1

(
F̂Nu(x,t), F

true
u(x,t)

)
≤

w(x, t), for all (x, t) ∈ Ω× R≥0, and it follows from the definition of Px,t that

F true
u(x,t) ∈ Px,t(a

1, . . . ,aN ) ∀(x, t) ∈ Ω× R≥0.

Combining this with (27) for A as given in this proof yields the result. �

7. Numerical example

In this section, we illustrate the use of the ambiguity propagation tools developed
above in a numerical example. We consider a one-dimensional version of (2) with
linear

q(u) = u, and r(u; θr) = θru, θr ∈ R,(28)

defined in Ω = R≥0 and subject to the following initial and boundary conditions

u(x, 0) = u0 = a1 + a2, x ≥ 0

u(0, t) = ub(t) = a1 + a2 (1 + a3 sin(2πt)) , t ≥ 0(29)

(note that this fulfills the most restrictive conditions of Theorem 5.4). Because of
(29), in the following we drop the dependence of the input and boundary conditions
from x. Randomness is introduced by the finite set of (n = 3) i.i.d. uncertain
parameters a = (a1, a2, a3), which vary in [0, 1]n; according to (6), ρa = 1/2. We
choose a uniform distribution to be the data-generating distribution for a. Both
u0 and ub(t) are random non-negative variables which are defined on the compact
supports [0, 2] and [0, 2 + max (0, sin (2πt))], respectively.

7.1. Shape and size of the input ambiguity sets. We consider data-driven 1-
Wasserstein ambiguity sets for the parameters a, which are constructed according
to Lemma 4.1 using p = 1 and n = 3. We choose the radius εN (β, ρa) in (5)
for a given sample size N and a fixed β. Threshold radii for different size of the
sample N and identical confidence level 1− β can be constructed in relative terms,
as exemplified in [5]. By adjusting εN (β, ρa), the decision-maker determines the
level of conservativeness of the ambiguity set, and the distributional robustness as
a consequence. The ambiguity sets for the parameters are scaled into pointwise
ambiguity sets for the inputs following Proposition 4.3, via the definition of the
Lipschitz constants

ρ0 = L0εN (β, ρa), with L0 :=
√

2,

ρb(t) = Lb(t)εN (β, ρa), with Lb(t) :=

√
2 + 2 sin2(2πt) + 2 max(0, sin(2πt)).

(30)

Second, we construct conservative ambiguity envelopes for the initial and the bound-
ary conditions characterized by a 1-Wasserstein discrepancy larger than ρ0 and
ρb(t), respectively, according to Proposition 4.7. These upper and lower envelopes
define an ambiguity band which enjoys the same performance guarantees as the
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previously defined 1-Wasserstein ambiguity sets. We denote with ρEnv
0 ≥ ρ0 and

ρEnv
b (t) ≥ ρb(t) the 1-Wasserstein discrepancy between the upper and lower distri-

butions defining the initial and boundary ambiguity bands, respectively.
For both inputs, the maximum pointwise Wasserstein distance ρ0,max and ρb,max(t)

corresponds to the local size of the support. 1-Wasserstein discrepancies larger than
the maximum value denote uniformative ambiguity sets. For the chosen scenario,
ρ0,max = 2 and ρb,max(t) = 2 + max(0, sin(2πt)) for the initial and the boundary
values, respectively. A comparison of ρb(t), ρ

Env
b (t) and ρb,max(t) is presented in

Figure 3 for different sample sizes N and identical confidence level 1 − β. The
corresponding values for the initial condition can be read in the same figure at
t = 0 because of the imposed continuity between initial and boundary conditions
at t = 0. Regardless of the chosen shape of the ambiguity set, larger N determines
smaller ambiguity sets characterized by smaller 1-Wasserstein discrepancies. By
construction, 1-Wasserstein ambiguity sets defined through (30) are sharper than
the corresponding ambiguity bands drawn geometrically via Proposition 4.7 at all
times. The temporal behavior of ρb(t) is determined by the Lipschitz scaling func-
tion Lb(t) in (30); in this case it is periodic and bounded. Figures 7.1 and 7.1 show
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time
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ρb,max(t)

]
ρEnv
b (t)

]
ρb(t)

N = 25 N = 100

Figure 3. Characteristic 1-Wasserstein distances for the point-
wise ambiguity sets for ub(0, t). Black lines correspond to the ρb(t)
bounds set in Corollary 4.5 and used to define 1-Wasserstein ambi-
guity sets. Yellow lines indicate ρEnv

b (t), the sample-dependent 1-
Wasserstein discrepancy between envelopes defined via the Propo-
sition 4.7 procedure. The line pattern indicates the size of the
data sample N , as listed in the legend. The maximum theoretical
1-Wasserstein discrepancy for ub(0, t), ρb,max(t), is also drawn (red
circles).

the corresponding ambiguity bands for u0 and ub(t) at a given time t, respectively,
for the same values of sample size N and identical confidence level 1 − β. Both
upper and lower envelopes are data-driven, i.e., they depend on the empirical dis-
tribution of a specific sample. We also show the 1-Wasserstein discrepancy between
the upper and lower envelopes.

7.2. Propagation of the ambiguity set. Pointwise 1-Wasserstein distances for
the inputs can be propagated in space and in time to describe the behavior of
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Figure 4. Ambiguity band for the distributions of u0 for different
sample size N and identical confidence level 1−β. We use θr = −1.

Scatter points represent the empirical distribution F̂Nu0
. Dashed

yellow lines represent the conservative envelopes (with respect to
a minimum 1-Wasserstein distance ρ0) constructed according to
Proposition 4.7. The 1-Wasserstein discrepancies for the ambiguity
band - computed between the upper and the lower envelope - are
reported in the corresponding panels, also indicating ρ0.
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Figure 5. Ambiguity band for the distributions of ub(t) at t =
0.75 for different sample size N and identical confidence level 1−β.
We use θr = −1. Scatter points represent the empirical distri-

bution F̂Nub(t). Dashed yellow lines represent the conservative en-

velopes (with respect to a minimum 1-Wasserstein distance ρb(t))
constructed according to Proposition 4.7. The 1-Wasserstein dis-
crepancies for the ambiguity band are reported in the correspond-
ing panels, also indicating ρb(t).

the ambiguous distributions using (24), under the assumption of linear dynamics.
Solving (24) yields a quantitative measure of the stretch/shrink of the ambiguity
ball in each space-time location. True (unknown) distributions as well as their
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empirical approximations describing the given physical dynamics evolve according
to (16); the latter provide an anchor for the pointwise ambiguity balls in (x, t). In
section 7.2 we present the solution of (24), w1(x, t), solved using ρ0 and ρb(t) as
defined in (30) as initial and boundary conditions, respectively. The ambiguity ball
shrinks with respect to the input conditions as an effect of a depletion dynamics
imposed by (2) with the given choice of θr = −1. As expected, the smaller the
sample size N , the larger the radius of the ambiguity ball as quantified by w1(x, t).
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Figure 6. w1(x, t) as a solution of (24) with w0(x) = ρ0 and
wb(x, t) = ρb(t) for different sample size N (N = 25 in the left
panel, and N = 100 in the right panel) and identical confidence
level 1−β. The dotted line represents the domain partition between
regions where information originates from either the initial or the
boundary condition. We use θr = −1.

The dynamic evolution of ambiguity bands is determined by the evolution of
the upper and lower envelopes for the input samples, cf. Proposition 4.7, for given
sample size N and confidence level 1− β. The envelopes evolve according to (16),
thus requiring no linearity assumption for (2). As such, ambiguity bands, while
possibly being more conservative than 1-Wasserstein ambiguity sets in terms of
size, can be evolved for a wider class of hyperbolic equations. Ambiguity bands are
equipped with 1-Wasserstein measures, as the 1-Wasserstein distance between the
upper and the lower envelope represents the maximum distance between any pair
of distributions within the band, and it is constructed to be always larger or equal
than the local radius of the corresponding ambiguity ball. Confidence guarantees
established for the inputs (Corollary 4.5) withstand propagation, as demonstrated
in Theorem 6.1.

For a given choice of N , we compare the propagation of 1-Wasserstein ambiguity
sets with input conditions defined by (30) to the data-driven dynamic ambiguity
bands constructed via Proposition 4.7 and subject to the input envelopes repre-
sented in Figures 7.1 and 7.1. The corresponding w1 maps are shown in Figure 7
(top row). In both cases, the pointwise 1-Wasserstein distance undergoes the same
dynamics established by (24), but subject to different inputs (represented in Fig-
ure 3). In each spatial location, it is possible to track the temporal behavior of the
ambiguity set size for both shapes, as shown for two representative locations in Fig-
ure 7 (bottom row). The size of both ambiguity sets decreases from the maximum
imposed at the initial time for t < x, and reflects the temporal signature of the
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boundary, dampened as an effect of depletion dynamics introduced by (28) with
θr = −1, for t > x.
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Figure 7. Top row: 1-Wasserstein distance maps for the ra-
dius of the ambiguity balls w1(x, t) with input radii (30) (left),
and the ambiguity band wEnv

1 (x, t) (right), where wEnv
1 (x, t) =

W1(F low
u(x,t), F

up
u(x,t)). Bottom row: 1-Wasserstein distance profiles

at given locations x = {0.2, 1.}. The black solid line reflects the 1-
Wasserstein ambiguity radius w1(x, t), whereas the yellow dashed
line represents the 1-Wasserstein distance of the ambiguity band,
wEnv

1 (x, t). The maximum theoretical 1-Wasserstein discrepancy
is also drawn, wmax

1 (x, t) (marked red line). The location of the
cross-sections is indicated in the top-row contour plots in the cor-
responding column (x = 0.2 and x = 1, respectively), whereas the
demarcation line t = x is indicated in the bottom panels. Param-
eters are set to: N = 100, θr = −1.

8. Conclusions

We have provided computational tools in the form of PDEs for the space-time
propagation of pointwise ambiguity sets for random variables obeying hyperbolic
conservation laws. The initial and boundary conditions of these propagation PDEs
depend on the data-driven characterization of the ambiguity sets at the initial time
and along the physical boundaries of the spatial domain. We have introduced both
1-Wasserstein ambiguity balls and ambiguity bands, formed through upper and
lower CDF envelopes containing all distributions with an assigned 1-Wasserstein
distance from their empirical CDFs. The former are propagated by evolving the
ambiguity radius according to a dynamic law that can be derived exactly in the case
of linear physical models. The latter are propagated by solving the CDF equation
for both the upper and the lower CDF envelope defining the ambiguity band. In
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this second case, both linear and non linear physical processes can be described
exactly in CDF terms, provided that no shock develops in the physical model so-
lution. The performance guarantees for the input ambiguity sets of both types
are demonstrated to withstand propagation through the physical dynamics. These
computational tools allow the modeler to map the physics-driven stretch/ shrink
of the ambiguity sets size, enabling dynamic evaluations of distributional robust-
ness. Future research will consider systems of conservation laws with joint one-point
CDFs, the characterization of ambiguity sets when shocks are formed under nonlin-
ear dynamics, the assimilation of data collected within the space-time domain, the
application of these results in distributionally robust optimization problems, and
sharper concentration-of-measure results to reduce conservativeness of the ambigu-
ity sets for small numbers of samples.

Appendix A. Technical proofs from Section 4

We collect here basic properties of generalized CDF inverses used in the following:
(GI1) F (t) < y ⇒ t < F−1(y);
(GI2) F (t1) ≤ y ≤ F (t2)⇒ t1 ≤ F−1(y) ≤ t2;
(GI3) t < F−1(y)⇒ F (t) < y;
(GI4) F (t) = F (t1) ∀t ∈ [t1, t2) ∧ F (t1) < y ≤ F (t2)⇒ F−1(y) = t2.

Proof of Lemma 4.2. Let T̂ : Rn × Rn → Rm × Rm with T̂ (x, y) = (T (x), T (y)),
consider an optimal coupling π for which the infimum in the definition of the dis-

tance Wp(µ, ν) is attained, and define π̂ := T̂#π = π ◦ T̂−1. Then, it follows that

π̂(A×Rm) = (π◦ T̂−1)(A×Rm) = π(T−1(A)×T−1(Rm)) = µ(T−1(A)) = T#µ(A).
Hence, T#µ is a marginal of π̂ and similarly T#ν, i.e., π̂ is a coupling between T#µ

and T#ν. Let φ : Rm × Rm → R with φ(x, y) = ‖x − y‖p and T̂ as given above.
Then, we obtain from the change of variables formula and the Lipschitz hypothesis
that

(LHS) =

∫

Rm×Rm
‖x̂− ŷ‖pπ̂(dx̂, dŷ) =

∫

Rm×Rm
φ(x̂, ŷ)π̂(dx̂, dŷ)

=

∫

Rn×Rn
φ ◦ T̂ (x, y)π(dx, dy) =

∫

Rn×Rn
φ(T (x), T (y))π(dx, dy)

=

∫

Rn×Rn
‖T (x)− T (y)‖pπ(dx, dy) ≤

∫

Rn×Rn
Lp‖x− y‖pπ(dx, dy) = (RHS).

Thus, we get W p
p (T#µ, T#ν) ≤ (LHS) ≤ (RHS) = LpW p

p (µ, ν), implying the result.
�

Proof of Lemma 4.4. We show that Fup
ρ [F ] is continuous and increasing, and hence,

it is also a CDF, as it takes values in [0, 1] (the proof for F low
ρ [F ] is analogous).

Notice first that due to (GI1), i.e., that F (t) < y ⇒ t < F−1(y), the mapping
z 7→

∫ z
F (t)

(F−1(y) − t)dy is strictly increasing for z ∈ [F (t), 1]. Combining this

fact with continuity of z 7→
∫ z
F (t)

(F−1(y) − t)dy, we deduce existence of a unique

z ∈ [F (t), 1] so that Fup
ρ [F ](t) = z and

∫ z
F (t)

(F−1(y)−t)dy = ρ for all t ∈ [a, tup
ρ [F ]).

To show that Fup
ρ [F ] is increasing, let a ≤ t1 < t2 < tup

ρ [F ] with Fup
ρ [F ](t1) = z1
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and Fup
ρ [F ](t2) = z2 and assume w.l.o.g. that F (t2) < z1. Then, we have that

ρ =

∫ z1

F (t1)

(F−1(y)− t1)dy ≥
∫ z1

F (t2)

(F−1(y)− t1)dy >

∫ z1

F (t2)

(F−1(y)− t2)dy,

where we exploited that F is increasing in the first inequality. Thus, we get that
z2 > z1, because also

∫ z2
F (t2)

(F−1(y)− t2)dy = ρ. To prove continuity, let tν → t ∈
[a, tup

ρ [F ]) and {zν}ν∈N with Fup
ρ [F ](tν) = zν . Then, we have that

∫ zν

F (tν)

(F−1(y)− tν)dy =

∫ zν

F (t)

(F−1(y)− t)dy

+

∫ F (t)

F (tν)

(F−1(y)− t)dy +

∫ zν

F (tν)

(t− tν)dy,

or equivalently,
∫ zν
F (t)

(F−1(y)− t)dy = ρ−
∫ F (t)

F (tν)
(F−1(y)− t)dy −

∫ zν
F (tν)

(t− tν)dy.

Since 0 ≤ F (tν) < zν ≤ 1, and tν → t we get that
∫ zν
F (tν)

(t − tν)dy → 0. For the

other term, we have w.l.o.g. that F (tν) ≤ y ≤ F (t). It then follows from (GI2)

that tν ≤ F−1(y) ≤ t and therefore
∣∣ ∫ F (t)

F (tν)
(F−1(y)− t)dy

∣∣ ≤
∫ F (t)

F (tν)
|tν − t|dy → 0.

Thus,
∫ zν

F (t)

(F−1(y)− t)dy → ρ =

∫ z

F (t)

(F−1(y)− t)dy(31)

for a unique z ∈ [F (t), 1]. Since z′ 7→
∫ z′
F (t)

(F−1(y) − t)dy is strictly increasing

(near z) and continuous, its inverse is well defined and continuous (see e.g., [35,
Theorem 5, Page 168]). Thus, we get from (31) that zν → z, establishing continuity
of Fup

ρ [F ].

Next, let F ′ ∈ CD([a, b]) with W1(F, F ′) ≤ ρ. Equivalently,
∫ b
a
|F ′(t)−F (t)|dt ≤

ρ. We show (10) by contradiction. Assume w.l.o.g. that the upper bound in
(10) is violated, and there exists t∗ with F ′(t∗) > Fup

ρ [F ](t∗). Then necessarily

t∗ ∈ [a, tup
ρ [F ]), and since F ′(t∗) > F (t∗), (GI1) implies that F−1(F ′(t∗)) > t∗.

Hence, [t∗, F−1(F ′(t∗))) is nonempty and we get from (GI3) that F ′(t) ≥ F (t) for
all t ∈ [t∗, F−1(F ′(t∗))). Consequently, we obtain

ρ ≥
∫ b

a

|F ′(t)− F (t)|dt ≥
∫ F−1(F ′(t∗))

t∗
|F ′(t)− F (t)|dt

=

∫ F−1(F ′(t∗))

t∗
(F ′(t)− F (t))dt ≥

∫ F−1(F ′(t∗))

t∗
(F ′(t∗)− F (t))dt

=

∫ F ′(t∗)

F (t∗)

(F−1(y)− t∗)dy >
∫ Fup

ρ [F ](t∗)

F (t∗)

(F−1(y)− t∗)dy = ρ,

which is a contradiction. �

Proof of Proposition 4.7. We break the proof into several steps.
Step 1: all indices jk and ik are well defined and satisfy (14). We need to

establish that the min and max operations for the definitions of these indices are
not taken over the empty set. To show this for all k ∈ [1 : kmax], we verify the
following Induction Hypothesis (IH):

(IH) For each k ∈ [1 : kmax], jk, ik are well defined, jk < ik, and bik,jk ≥ ρ.
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All properties of (IH) can be directly checked for k = 1 by the definition of j1 and
i1, and the assumption bN,0 > ρ. For the general case, let k ≤ kmax−1 and assume
that (IH) is fulfilled. Then, jk+1 is well defined because bik,jk ≥ ρ by (IH). To show
this also for ik+1 we first establish that ik < N . Indeed, assume on the contrary
that ik = N . Then, from the definition of jk+1 we have that bik,jk+1

< ρ and
we get from the definition of kmax that k ≥ kmax, which is a contradiction. Since
ik < N , [ik+1 : N ] is nonempty. Combining this with the fact that bN,jk+1

> ρ,
which follows from the definition of kmax and our assumption k < kmax, we deduce
that the minimum in the definition of ik+1 is taken over a non-empty set. Hence,
ik+1 is well defined. In addition, we get from the definitions of jk+1 and ik+1 that
jk+1 < ik+1 and from the definition of ik+1 that bik+1,jk+1

≥ ρ. Thus, we have
shown (IH). Finally, jkmax+1 is also well defined because bikmax ,jkmax

≥ ρ by (IH).
Having established that jk and ik are well defined for all k ∈ [1 : kmax + 1], (14)
follows directly from their expressions.

Step 2: establishing (15). By the definition of jk+1, we get

bik,jk+1
< ρ ∀k ∈ [1 : kmax].(32)

In addition, we have that

bik+1−1,jk+1
< ρ ∀k ∈ [0 : kmax].(33)

For k = 0 this follows from the definition of j1 and i1. To show it also for k ∈ [1 :
kmax] we consider two cases. If bik+1,jk+1

≥ ρ, then, by definition, ik+1 = ik + 1
and we get from (32) that bik+1−1,jk+1

= bik,jk+1
< ρ. In the other case where

bik+1,jk+1
< ρ, (33) follows directly from the definition of ik+1. Next, note that due

to (14) and the fact that ikmax+1 = N + 1, the times τ` are indeed defined for all
` ∈ [i1 : N ]. In addition, for each k ∈ [1 : kmax] we get from (33) that ρ−b`,jk+1

> 0
for all ` ∈ [ik : ik+1 − 1]. Hence, ∆t` is positive and strictly decreasing with
` ∈ [ik : ik+1 − 1] and we have from the definition of the τ`’s that

τ` < τ`′ ∀k ∈ [1 : kmax], `, `′ ∈ [ik : ik+1 − 1] with ` < `′(34)

τik+1−1 < tjk+1
∀k ∈ [1 : kmax].(35)

By the definition of jk+1 we further obtain that

bik,jk+1−1 ≥ ρ ∀k ∈ [1 : kmax].(36)

From the latter and the definition of ∆tik , which implies that ∆tik
∑ik
l=jk+1

cl +

bik,jk+1
= ρ, we get that bik,jk+1−1 ≥ ∆tik

∑ik
l=jk+1

cl+bik,jk+1
, or equivalently, that

ik∑

l=jk+1−1

(tl − tjk+1−1)cl −
ik∑

l=jk+1

(tl − tjk+1
)cl ≥ ∆tik

ik∑

l=jk+1

cl ⇔

ik∑

l=jk+1

(tjk+1
− tjk+1−1)cl ≥ ∆tik

ik∑

l=jk+1

cl ⇔ tjk+1
− tjk+1−1 ≥ ∆tik .

Thus, we deduce from the definition of τ` with ` ≡ ik that τik ≥ tjk+1−1 for

k ∈ [1 : kmax]. Using this, and recalling that {t`}N`=0 are strictly increasing, we get
from (14), (34), and (35), that {τ`}N`=j1 are strictly increasing and (15) is satisfied.

Step 3: verification of the formula for F̂ up for t ∈ (−∞, a) ∪ [τN ,∞). For
t ∈ (−∞, a), it follows directly from the definition of the upper CDF envelope.
To establish it also when t ∈ [τN ,∞), it suffices again from the definition of the
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upper CDF envelope to show that τN = tup
ρ [F̂ ], with tup

ρ given in the statement of
Lemma 4.4. To show this, note that since by (15) tjkmax+1−1 ≤ τN < tjkmax+1

, we
have

∫ b

τN

(1− F̂ (t))dt =

∫ tN

τN

(1− F̂ (t))dt =

∫ tjkmax+1

τN

(1− F̂ (t))dt

+

∫ tN

tjkmax+1

(1− F̂ (t))dt = (tjkmax+1
− τN )

N∑

l=jkmax+1

cl + bN,jkmax+1
,

which, in turn, equals ∆tN
∑N
l=jkmax+1

cl + bN,jkmax+1
. Thus, we get from the defi-

nition of ∆tN that
∫ b
τN

(1− F̂ (t))dt =
ρ−bN,jkmax+1∑N
l=jkmax+1

cl

∑N
l=jkmax+1

cl + bN,jkmax+1
= ρ,

and hence τN = sup{τ ∈ [a, b] |
∫ b
τ

(1 − F̂ (t))dt ≥ ρ} = tup
ρ [F̂ ]. It remains to

verify the formula for F̂ up for all intermediate intervals, which are of the form
[tbeg, tend). To each of these intervals we also associate a right time-instant trt. For
each k ∈ [1 : kmax], tbeg, tend, and trt are given by one of the following cases.

Case 1) tbeg = t` and tend = t`+1 with ` ∈ [jk : jk+1 − 2], and trt = tik ;
Case 2) tbeg = tjk+1−1, tend = τik , and trt = tik ;
Case 3) tbeg = τ` and tend = τ`+1 with ` ∈ [ik : ik+1 − 2], and trt = t`+1;
Case 4) tbeg = τik+1−1, tend = tjk+1

, and trt = tik+1
.

One can readily check from the formula for F̂ up that these cases cover all interme-
diate intervals. To verify the formula for all [tbeg, tend) we will exploit the following
fact:

Fact I) For each of the Cases 1)–4) and pair (t, y) with t ∈ (tbeg, tend) and

y = F̂ up(t), it holds that F̂−1(y) = trt.
Step 4: Proof of Fact I. Recall that

F̂ up(t) = sup

{
z ∈ [F̂ (t), 1]

∣∣∣
∫ z

F̂ (t)

(F̂−1(y)− t)dy ≤ ρ
}

(37)

and note that

∫ F̂ (ti)

F̂ (tj)

(F̂−1(y)− tj)dy = bi,j ∀ 0 ≤ j ≤ i ≤ N.(38)

We first consider Case 1). Let t ∈ (t`, t`+1) with ` ∈ [jk : jk+1 − 2]. Then, we have
from (14) and (38) that

∫ F̂ (tik )

F̂ (t)

(F̂−1(y)− t)dy ≥
∫ F̂ (tik )

F̂ (tjk+1−1)

(F̂−1(y)− tjk+1−1)dy = bik,jk+1−1 ≥ ρ,

∫ F̂ (tik−1)

F̂ (t)

(F̂−1(y)− t)dy ≤
∫ F̂ (tik−1)

F̂ (tjk )

(F̂−1(y)− tjk)dy = bik−1,jk < ρ,

where we exploited (36) and (33) for each last inequality, respectively. Thus, it

follows from (37) that F̂ (tik−1) < F̂ up(t) ≤ F̂ (tik), which implies by (GI4) that

F̂−1(F̂ up(t)) = tik ≡ trt. For Case 2), let t ∈ (tjk+1−1, τik). Then, we get from (38)
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and the definition of τik that

∫ F̂ (tik )

F̂ (t)

(F̂−1(y)− t)dy ≥
∫ F̂ (tik )

F̂ (tjk+1−1)

(F̂−1(y)− τik)dy =

∫ F̂ (tik )

F̂ (tjk+1−1)

(F̂−1(y)− tjk+1
)dy

+

∫ F̂ (tik )

F̂ (tjk+1−1)

(tjk+1
− τik)dy = bik,jk+1

+ ∆tik

ik∑

l=jk+1

cl = ρ,

whereas by arguing precisely as in Case 1), we get that
∫ F̂ (tik−1)

F̂ (t)
(F̂−1(y)−t)dy < ρ.

Thus, we deduce F̂ (tik−1) < F̂ up(t) ≤ F̂ (tik), and hence, by (GI4), F̂−1(F̂ up(t)) =
tik ≡ trt. The proof of Fact I for Cases 3) and 4) follows similar arguments and
exploits the orderings (14) and (15), and we omit it for space reasons.

Step 5: verification of the formula for F̂ up for t ∈ [a, τN ). Let any interval
(tbeg, tend) as given by Cases 1)–4), let t ∈ (tbeg, tend), {tν}ν∈N ⊂ (tbeg, tend) with

tν ↘ tbeg, and denote y ≡ F̂ up(t), yν ≡ F̂ up(tν), ν ∈ N. Due to Fact I, F̂−1(y) =

trt, F̂−1(yν) = trt for all ν ∈ N. We use this together with z = F̂ up(t) ⇔
∫ F̂−1(z)

t
(z − F̂ (s))ds = ρ and the continuity of F̂ up (which implies yν → ybeg ≡

F̂ up(tbeg)) to get

∫ F−1(y)

t

(y − F̂ (s))ds =

∫ F−1(yν)

tν

(yν − F̂ (s))ds ∀ν ∈ N⇔
∫ trt

t

(y − F̂ (s))ds =

∫ trt

tν

(yν − F̂ (s))ds ∀ν ∈ N⇔
∫ trt

t

(y − F̂ (s))ds =

∫ trt

tbeg

(ybeg − F̂ (s))ds⇔
∫ trt

t

(y − ybeg)ds+

∫ trt

t

(ybeg − F̂ (s))ds =

∫ t

tbeg

(ybeg − ylow)ds+

∫ trt

t

(ybeg − F̂ (s))ds⇔

(y − ybeg)(trt − t) = (ybeg − ylow)(t− tbeg),

with ylow = F̂ (tbeg), cf. Figure 2. Hence, y = ybeg + (ybeg − ylow)
t−tbeg

trt−t = ylow +

(ybeg − ylow)
trt−tbeg

trt−t . The proof is completed by verifying the formula for F̂ up at

tbeg for each interval given by Cases 1)–4), which follows from the definitions of y`
and z`. �

Proof of Lemma 4.8. We exploit the following equivalences for any F ∈ CD([a, b])
and pair (t, y) in the graph of its lower and upper CDF envelopes:

y = F low
ρ [F ](t)⇔

∫ t

F−1(y)

(F (s)− y)ds = ρ(39a)

y = Fup
ρ [F ](t)⇔

∫ F−1(y)

t

(y − F (s))ds = ρ.(39b)

We also use the following elementary results about the left inverse of a CDF F ∈
CD(R), defined by F−1

left(y) := inf{t ∈ R |F (t) ≥ y}.
Fact II) For any y ∈ (0, 1), F−1(1− y) = a+ b− F̃−1

left(y), where F̃ ≡ F refl
( a+b2 , 12 )

[F ].

Fact III) For any y ∈ [0, 1] and t ∈ R,
∫ F−1

left(y)

t
(y−F (s))ds =

∫ F−1(y)

t
(y−F (s))ds.
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Next, let F ∈ CD([a, b]) and denote F̃ ≡ F refl
( a+b2 , 12 )

[F ] and F̃ up ≡ Fup
ρ [F̃ ]. To prove

the result, we show that F low
ρ [F ](t) = F refl

( a+b2 , 12 )

[
F̃ up](t) for any t for which these

values are in (0, 1). Let y = 1− F̃ up(a+b− t) = F refl
( a+b2 , 12 )

[
F̃ up](t) ∈ (0, 1). We show

that
∫ t
F−1(y)

(F (s)− y)ds = ρ, which by (39a) implies that F low
ρ [F ](t) = y. Indeed,

∫ t

F−1(y)

(F (s)− y)ds =

∫ t

F−1(1−F̃up(a+b−t))
(F (s)− (1− F̃ up(a+ b− t)))ds

=

∫ t

a+b−F̃−1
left(F̃

up(a+b−t))
(F (s)− (1− F̃ up(a+ b− t)))ds

=

∫ F̃−1
left(F̃

up(a+b−t))

a+b−t
(F̃ up(a+ b− t)− F̃ (s))ds

=

∫ F̃−1(F̃up(a+b−t))

a+b−t
(F̃ up(a+ b− t)− F̃ (s))ds = ρ,

where we used Fact II in the second equality, that the reflection around (a+b
2 , 1

2 ),
i.e., the change of variables (t, y) 7→ (a + b − t, 1 − y) is an isometry in the third
equality, Fact III in the fourth equality, and the equivalent characterization (39b)
for y = Fup

ρ [F ](t) in the last equality. �

Proof of Fact II. Let y ∈ (0, 1). Then

F−1(1− y) = inf{t ∈ R |F (t) > 1− y} = inf F−1((1− y,∞))

= supF−1((−∞, 1− y]) = sup{t ∈ R |F (t) ≤ 1− y}

= sup{t ∈ R | 1− F̃ (a+ b− t) ≤ 1− y}

= sup{a+ b− τ, τ ∈ R | 1− F̃ (τ) ≤ 1− y}

= a+ b+ sup{−τ, τ ∈ R | F̃ (τ) ≥ y}

= a+ b− inf{τ ∈ R | F̃ (τ) ≥ y} = a+ b− F̃−1
left(y),

where we used F is increasing and inf I = sup Ic for any intervals I, Ic with
I ∪ Ic = R in the third equality. �

Proof of Fact III. To show the result we will prove that
∫ F−1(y)

F−1
left(y)

(y − F (s))ds = 0.

Since F−1(y) ≥ F−1
left(y), it suffices to consider the case of strict inequality. Then,

the result follows directly from the fact that F (s) = y for any s ∈ (F−1
left(y), F−1(y)),

which can be readily checked by the definitions of F−1 and F−1
left. �

Appendix B. Derivation of the CDF equation

An equation for the Cumulative Distribution Function of u(x, t), solution of
(2), obeying Assumption 3.1 and Assumption 3.2, is obtained via the Method of
Distributions in three steps. First, we rely on the following inequalities for the
newly introduced random variable Π(x̃, t)

∂Π

∂t
= −∂Π

∂U

∂u

∂t
, ∇Π = −∂Π

∂U
∇u.(40)
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Second, we multiply (2) by − ∂Π
∂U and, accounting for (40), we obtain a stochastic

PDE for Π(U,x, t):

∂Π

∂t
+ q̇(U) · ∇Π = −∂Π

∂U
r(U), x ∈ Ω, U ∈ R, t > 0,(41)

with q̇ = ∂q/∂U . This formulation is exact in case of smooth solutions of (2) [23]
and whenever ∇ · q(U) = 0. (41) is defined in an augmented (d + 1)-dimensional

space Ω̃ = Ω × R, and it is subject to initial and boundary conditions that follow
from the initial and boundary conditions of the original model

Π(U,x, t = 0) = Π0 = H(U − u0(x)), x̃ ∈ Ω̃

Π(U,x, t) = Πb(U,x, t) = H(U − ub(t)), x ∈ Γ, U ∈ ΩU , t > 0.

Finally, since the ensemble average of Π is the CDF of u, Fu(x,t) = 〈Π(U,x, t)〉,
ensemble averaging of (41) yields (16). This equation is subject to initial and
boundary conditions along (Γ× R)

Fu(x,t) = Fu0(x), x̃ ∈ Ω̃, t = 0

Fu(x,t) = Fub(x,t), x ∈ Γ, U ∈ R, t > 0.(42)

The relaxation of Assumptions 3.1 and 3.2 leads to different (and often approxi-
mated) CDF equations: we refer to [6, 7] for a complete discussion.
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