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Abstract

This paper concerns time-harmonic inverse source problems with a single far-field pattern
in two dimensions, where the source term is compactly supported in an a priori given inho-
mogeneous background medium. For convex-polygonal source terms, we prove that the source
support together with the zeroth and first order derivatives of the source function at corner
points can be uniquely determined. Further, we prove that an admissible set of source functions
(including harmonic functions) having a convex-polygonal support can be uniquely identified
by a single far-field pattern. A class of radiating sources is characterized and the extension of
the radiated field across a corner point is proven impossible. The corner scattering theory leads
to a data-driven inversion scheme for imaging an arbitrarily convex-polygonal source support.

Key words: Uniqueness, inverse source problem, Helmholtz equation, single measurement.

1 Introduction and main results

Consider the radiating of a time-harmonic acoustic source in an inhomogeneous background medium.
In two dimensions, this can be modeled by the inhomogeneous Helmholtz equation

∆u+ k2n(x)u = f in R2, (1.1a)

lim
r→+∞

√
r

(
∂u

∂r
− iku

)
= 0, r := |x|. (1.1b)

In this paper, the refractive index function is supposed to satisfy n(x) ∈ C0,α′
(R2) (0 < α′ < 1)

and n(x) = 1 in |x| > R for some R > 0. The number k > 0 represents the wavenumber of
the homogeneous medium in |x| > R and f ∈ L2(R2) is a source term compactly supported in
D ⊂ BR := {x : |x| < R} (see Figure 1). The Sommerfeld Radiation Condition (1.1b) (which
was introduced by Sommerfeld [35] in 1912) excludes inwardly propagated waves to characterize
the outgoing nature of the radiated wave [6] and thus guarantees the uniqueness of solutions to the
system (1.1). This radiation condition gives arise to the asymptotic expansion of u at the infinity

u(x) =
eik|x|√
|x|
u∞(x̂) +O(|x|−3/2) as |x| → ∞, (1.2)

which is uniform in all directions x̂ := x/|x| ∈ S := {x = (x1, x2) ∈ R2 : x2
1 + x2

2 = 1}. The function
u∞(x̂) is referred to as the far-field pattern (or scattering amplitude). It is an analytic function with
respect to the observation direction x̂ ∈ S (see [6]).

Using the variational approach, it is easy to prove that the system (1.1) admits a unique solution
in H2

loc(R2); see [6, Chapter 5] or [5, Chapter 5]. Since the far-field pattern encodes information
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Figure 1: Illustration of the acoustic source problem in an inhomogeneous background medium BR.
We assume that the source support D ⊂ BR is a convex polygon and that the medium in the exterior
of BR is homogeneous.

of the source, we are interested in the inverse problem of recovering the source support ∂D and/or
the source term f from the far-field pattern over all observation directions at a fixed frequency.
Throughout the paper we suppose that the refractive index function n(x) is known and k > 0 is an
arbitrarily fixed wave number. Note that the relation between ∂D and u∞ is non-linear, but the
operator mapping f to u∞ is linear.

It is well known that a single far-field pattern cannot uniquely determine a source function
(even its support) in general, due to the existence of non-radiating sources, for instance, f0 :=
(∆+k2n(x))ϕ where ϕ ∈ C∞0 (R2). In fact, by linear superposition, it is easy to conclude that f and
f + f0 could radiate identical far-field data at infinity. It was proved in [1,11] that the far-field data
over a range of frequencies can be used to uniquely determine a spatially-dependent source term
compactly supported in a homogeneous medium. Similar uniqueness results can be proved if the
background medium is inhomogeneous but known in advance; we refer to [16] for recent uniqueness
results for various inverse source problems in the time domain.

In [21], Ikehata proposed the enclosure method to recover the convex hull of a polygonal source in
a homogeneous medium using a single Cauchy pair of near-field data. Uniqueness was also verified
as a by-product of the enclosure method, if the source function is Hölder continuous and non-
vanishing near corners. For source functions without a polygonal support, Kusiak and Sylvester [25]
introduced the concept ”scattering support” to define the minimal set that supports the scattered
field; see also [36]. In a recent paper [2], the author reveals that the far-field data determine not only
the convex-polygonal support but also the source values at corner points. Moreover, it is proved
that non-radiating sources must vanish at corner points. Other related studies on corner scattering
are devoted to the absence of real non-scattering energies [3,7,8,18,33] and uniqueness with a single
measurement data in shape identification arising from inverse conductivity [12, 20, 34] and inverse
medium scattering problems [7, 8, 17–19,21,26] .

This paper has generalized the existing results in the literature in several aspects, providing
new insights into inverse source problems with a single measurement data. The major novelties
are summarized as follows. First, we consider the inverse source problem with a single far-field
pattern in an inhomogeneous background medium rather than a homogeneous one; Second, we
prove that the gradient of C1,α-smooth source terms at corner points can be uniquely identified, in
addition to the information of source values at corners and the convex-polygonal support which were
already discussed in [2, 21, 25]. Moreover, we show that a convex-polygonal source support can be
uniquely identified under the more general assumption that the lowest order expansion of the source
function is harmonic near corner points (see Corollary 1.6 and the remarks thereafter); Thirdly, we
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define an admissible set of source functions (including harmonic functions) which can be uniquely
identified by a single far-field pattern. Our approach relies heavily on the singularity analysis of
the inhomogeneous Laplace equation in a corner domain, which was already used in [7] for treating
inverse medium scattering problems. Our arguments are presented in a two-dimensional setting for
simplification, however they can be carried over to curvilinear polyhedral sources in 3D following
the lines of [7, Sections 5].

Below we state the main uniqueness results of this paper. Denote by Ba(z) = {x ∈ R2 : |x−z| <
a} the disk centered at z ∈ R2 with radius a > 0.

Theorem 1.1 (Determination of source support). Suppose that

(i) D := supp(f) ⊂ R2 is a convex polygon.

(ii) For each corner point O ∈ ∂D, it holds that f ∈ C1,α(D ∩Bε(O)) for some ε > 0, 0 < α < 1
and that |f(O)|+ |∇f(O)| > 0.

Then the source support ∂D together with f and ∇f at each corner point can be uniquely determined
by u∞(x̂) for all x̂ ∈ S.

The proof of Theorem 1.1 implies the following weak result which was proved in [2, 21,25].

Corollary 1.2. If the second condition in Theorem 1.1 is replaced by f ∈ C0,α(D ∩Bε(O)) for
some ε > 0, 0 < α < 1 and |f(O)| > 0 at the corner point O ∈ ∂D. Then the source support ∂D
and f(O) at each corner point O ∈ ∂D can be uniquely determined by u∞.

Theorem 1.1, Corollary 1.2 together with Corollary 3.1 (see Section 3) state that a source sup-
port of convex-polygon type and partial information (derivatives of the zeroth and first orders) of
the source function on corner points can be uniquely identified. In addition to these boundary in-
formation, we prove that the entire source function from an admissible class can be also uniquely
determined by a single far-field pattern.

Given A(x) = (a1(x), a2(x)) ∈ (L∞(BR))2 and b ∈ L∞(BR), introduce the admissible set

S(A, b) := {v(x) : ∆v(x) +A(x) · ∇v(x) + b(x) v(x) = 0 in BR}. (1.3)

In the special case that A ≡ 0 and b ≡ 0, the set S(A, b) consists of all harmonic functions in BR.
Theorem 1.3 below states that a single far-field pattern can be used to determine a source term
given by the restriction to a convex polygon of a special function from the admissible set S(A, b).

Theorem 1.3 (Determination of source terms). Assume that D = supp(f) is a (non-empty) convex
polygon and that f = v|D for some v ∈ S(A, b). Suppose further that A and b are known functions
which are analytic near each corner of ∂D. Then the source term f (and also its support D) can be
uniquely determined by u∞(x̂) for all x̂ ∈ S.

For the multi-index β = (β1, β2), we say β ≥ 0 if βj ≥ 0 for j = 1, 2. If βj ∈ N0 := {0, 1, 2, · · · },
we define the differential operator ∂βu := ∂β1

x1
∂β2
x2
u. The source term f is called non-radiating if the

resulting far-field pattern vanishes identically. Below we describe a class of radiating sources in a
piecewise homogeneous background medium. Here the source support is not necessarily a convex
polygon.

Corollary 1.4 (Characterization of radiating sources). Let n(x) ≡ n0 6= 1 in BR. Suppose that
the support D = supp(f) 6= ∅ contains at least one corner point O ∈ ∂D and its exterior R2\D is
connected. Then f is a radiating source under one of the following conditions

(i) There exists some l ∈ N0 and α ∈ (0, 1) such that f ∈ Cl+1,α(D ∩Bε(O))∩W l,∞(Bε(O)), and
for some multi-index β = (β1, β2) (βj ∈ N0) with |β| := β1 + β2 = l it holds that

|∂βf(O)|+ |∂β
′
f(O)| > 0, β′ − β ≥ 0, |β′ − β| = 1. (1.4)
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(ii) f = v|D for some v ∈ S(A, b) where A and b are analytic functions near O.

Condition (1.4) has been used in [7] to describe medium discontinuity in a low contrast case. In
the special case of l = 0, the first condition in Corollary 1.4 is equivalent to the condition (ii) of
Theorem 1.1 at the corner O; see also Remark 3.1. Corollary 1.4 (i) in the special case l = 0 implies
that the zeroth and first order derivatives of a non-radiating source must vanish at the corner point
(cf. Theorem 1.1).

As a corollary of the proofs of Theorems 1.1 and 1.3, we claim that the radiated field must
be ”singular” (that is, non-analytic) at corner points; see Corollary 1.5 below. This excludes the
possibility of analytical extension in a corner domain for solutions of forward source problems, which
is important in designing inversion algorithms with a single measurement data; see e.g. the enclosure
method [21], the range test approach [24,25] as well as [31, Chapter 5] and [9].

Corollary 1.5 (Absence of extension at corner points). Let n(x) ≡ n0 6= 1 in BR. Suppose that
O ∈ ∂D is a corner point lying on the boundary of D = supp(f) 6= ∅ and one of the conditions (i)-(ii)
in Corollary 1.4 holds at O. Then u cannot be analytically extended from BR\D to the interior of
D across the corner point O. In other words, u cannot be analytic at O.

In an inhomogeneous background medium, u maybe not analytic in R2\D if n(x) ∈ C0,α(R2).
However, Corollary 1.5 still holds if we properly define the extension across a corner point. Corollary
1.5 motivates us to design a data-driven and domain-defined sampling scheme for imaging a convex
polygonal source support (see Section 6 for more details).

From the proofs of Theorems 1.1 and 1.3, we can easily show the following results.

Corollary 1.6. (i) Assume that D = supp(f) is a (non-empty) convex polygon. For each corner
point Oj ∈ ∂D, suppose that f ∈ C0,αj (D ∩Bε(Oj)) (αj ∈ (0, 1)) has the asymptotic behavior

f(x) = rNj (Aj cosNjθ +Bj sinNjθ) + o(rNj ), |x| → 0, (1.5)

for some Nj ∈ N0 and Aj , Bj ∈ C with |Aj | + |Bj | > 0, uniformly in all directions x̂ = x/|x|
such that x ∈ D ∩ Bε(O). Then ∂D can be uniquely determined by a single far-field pattern
u∞.

(ii) The results in Corollaries 1.4 and 1.5 hold true if the lowest order expansion of f around the
corner takes the form (1.5).

We remark that the opening angle of the corner domain in Corollaries 1.4, 1.5 and Corollary 1.6
(ii) is allowed to be any number in (0, 2π)\{π}. The condition (1.5) in Corollary (1.6) covers those
assumptions made in Theorem 1.1, Corollary 1.2 and Theorem 1.3 for identifying a source support.

The rest of the paper is organized as follows. In Section 2, we give some preliminaries of weighted
Hölder spaces in an infinite sector and prove an important Lemma 2.3, which plays the key role to
all of our uniqueness proofs. Section 3 presents uniqueness results for recovering a convex-polygonal
source support. Section 4 is devoted to the uniqueness in recovering source terms. In Section 5, we
provide the proofs of Corollaries 1.4, 1.5 and 1.6. The reconstruction scheme will be described and
compared with other approaches in Section 6.

2 Preliminaries

In this section, we present some notations and auxiliary lemmas for weighted Hölder spaces in
an infinite sector. Denote by O = (0, 0) the origin in R2. Let (r, θ) be the polar coordinates of
x = (x1, x2) ∈ R2. Define Σ = Σθ0 := {(r, θ); r > 0, |θ| < θ0/2}, an infinite sector in R2 with the
opening angle θ0 ∈ (0, π) and with the vertex O located at the origin. For j ∈ N0, we introduce ∇j
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as the vector of all partial differential operators of order j with respect to the spatial variable, that
is

∇jϕ(x) :=
{
∂j1x1

∂j2x2
ϕ(x) ; j1, j2 ∈ N0, j1 + j2 = j

}
.

For 0 < α < 1, l ∈ N0 and β ∈ R, we define the weighted Hölder spaces Λl,αβ (Σ) endowed with the
norm (see [22,23,28,32])

‖ϕ‖Λl,αβ (Σ) := sup
x∈Σ


l∑

j=0

|x|β−α−l+j |∇jϕ(x)|

+ sup
x,y∈Σ

{∣∣|x|β∇lϕ(x)− |y|β∇lϕ(y)
∣∣

|x− y|α

}
. (2.1)

We may denote Λl,αβ (Σ) as Λl,αβ if it is clear in the context. Obviously, any function from Λl,αβ (Σ) lies

in Cl,α(Σ∩{(r, θ) : a < r < b}) for some 0 < a < b and the subscript β characterizes the asymptotic

behaviour at the origin and at infinity. It can be verified that if u ∈ Λl,αβ , then ∇ju ∈ Λl−j,αβ for all
j = 0, 1, · · · , l. In our applications we shall only care about the asymptotic behavior near the corner
point. For any function u ∈ Λl,αβ (Σ) with a compact support in Σ ∩BR(O) (R > 0), we have

∇ju(x) = O(rl−j+α−β) as r → 0+ in Σ,

for j = 0, 1 · · · , l. In particular, we have the decaying rate u(x) = O(rl+α−β) if β < l + α and the
inclusion relation

Λl,αβ (Σ) ⊂ Λl,αβ+1(Σ). (2.2)

In the following two lemmas we prove some properties of Λl,αβ (Σ) by definition.

Lemma 2.1. Let β ∈ R and α, α′ ∈ (0, 1) with α′ ≥ α and let Σ be an infinite sector. Assume that
g ∈ Λ0,α

β (Σ) with compact support and that f ∈ C0,α′
(Σ). Then the product fg belongs to the space

Λ0,α
β (Σ).

Proof. We need to prove the boundedness of the norm

‖fg‖Λ0,α
β (Σ) = sup

x∈Σ
|x|β−α|f(x)g(x)|+ sup

x,y∈Σ

∣∣|x|βf(x)g(x)− |y|βf(y)g(y)
∣∣

|x− y|α

:= I1 + I2. (2.3)

The first term I1 in (2.3) can be bounded by

I1 ≤ sup
x∈Σ
|f(x)| · sup

x∈Σ
|x|β−α|g(x)| ≤ ‖f‖C0,α(Σ) · ‖g‖Λ0,α

β (Σ) < +∞. (2.4)

Using the compactness of supp(g) and the triangle inequality, we can estimated the second term I2

by

I2 ≤ sup
x,y∈Σ

∣∣|x|βf(x)g(x)− |y|βf(x)g(y)
∣∣

|x− y|α
+ sup
x,y∈Σ

∣∣|y|βf(x)g(y)− |y|βf(y)g(y)
∣∣

|x− y|α

≤ sup
x∈Σ
|f(x)| · sup

x,y∈Σ

∣∣|x|βg(x)− |y|βg(y)
∣∣

|x− y|α
(2.5)

+ sup
y∈supp g

|y|α · sup
y∈Σ
|y|β−α|g(y)| · sup

x,y∈Σ

∣∣f(x)− f(y)
∣∣

|x− y|α

≤ ‖f‖C0,α′ (Σ) · ‖g‖Λ0,α
β (Σ) + C‖g‖Λ0,α

β (Σ) · ‖f‖C0,α′ (Σ)

< +∞. (2.6)

Combining (2.3)-(2.6), we arrive at our conclusion.
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Lemma 2.2. Any compactly supported function in Λ2,α′

−N+1(Σ) (N ∈ N0) belongs to Λ0,α′

−N (Σ).

Proof. Suppose that ϕ ∈ Λ2,α′

−N+1(Σ) has a compact support in Σ. By the definition of the norm
(2.1), we obtain

M0 := sup
x∈Σ
|x|−N−1−α′

|ϕ(x)| < +∞ and M1 := sup
x∈Σ
|x|−N−α

′
|∇ϕ(x)| < +∞. (2.7)

To prove ϕ ∈ Λ0,α′

−N (Σ), we only need to prove the boundedness of

M2 := sup
x∈Σ
|x|−N−α

′
|ϕ(x)|, M3 := sup

x,y∈Σ

∣∣|x|−Nϕ(x)− |y|−Nϕ(y)
∣∣

|x− y|α′ . (2.8)

We first prove M3 <∞. Write ψ(x) := |x|−Nϕ(x). The derivative of ψ can be estimated by

|∂xjψ(x)| =
∣∣−N |x|−N−1 xj

|x|
ϕ(x) + |x|−N∂xjϕ(x)

∣∣
≤ |N ||x|−N−1|ϕ(x)|+ |x|−N |∂xjϕ(x)|

≤ |N ||x|α
′
M0 + |x|α

′
M1,

for all x ∈ supp(ϕ) and j = 1, 2, implying that

|∇ψ(x)| ≤ C(M0 +M1) < +∞ for all x ∈ Σ ∩ suppϕ. (2.9)

Now we can estimate M3 by applying the mean-value theorem

M3 = sup
x,y∈Σ

∣∣ψ(x)− ψ(y)
∣∣

|x− y|α′ ≤ ||∇ψ||L∞(Σ∩suppϕ) sup
x,y∈Σ∩suppϕ

|x− y|1−α
′
<∞. (2.10)

Writing M2 as M2 = supx∈Σ

(
|x| · |x|−N−1−α′ |ϕ(x)|

)
and using the compactness of suppϕ, we get

M2 ≤
(

sup
x∈Σ∩suppϕ

|x|
)
· sup
x∈Σ

(
|x|−N−1−α′

|ϕ(x)|
)
≤ CM0 < +∞. (2.11)

Combining (2.10) and (2.11) we conclude that ϕ ∈ Λ0,α′

−N (Σ). The proof is complete.

The proofs of our main results depend on Lemma 2.3 below, which is motivated by Propositions
10, 12 and 13 of [7]. Introduce the finite sector

Σε := {(r, θ) ∈ R2 : 0 < r < ε, 0 < θ < θ0}, θ0 ∈ (0, π), 0 < ε < 1

and its partial boundary

Γε := {(r, θ) ∈ R2 : 0 < r < ε, θ = 0, θ0}.

Lemma 2.3. Suppose q, h ∈ C0,α(Σε) for some α ∈ (0, 1) and that the lowest order expansion of h
as |x| → 0 is harmonic, that is, the asymptotic expansion

h(x) = rN (A cos(Nθ) +B sin(Nθ)) +O(rN+α), |x| → 0, x ∈ Σε (2.12)

holds uniformly in all θ ∈ (0, θ0) for some N ∈ N0 and A, B ∈ C. Let u ∈ H2(Σε) be a solution to
the boundary value problem

(BVP) :

{
∆u+ q(x)u = h(x) in Σε,

u = ∂νu = 0 on Γε,
(2.13)

where ∂νu denotes the normal derivative of u. Then it holds that A = B = 0.
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The proof of Lemma 2.3 is based on a precise characterization of the singularity of solutions to
the inhomogeneous Laplacian equation in a corner domain (see, e.g., [32, Chapters 2 and 3]). Our
argument is a refine of the proof of [7, Lemma 2] under the assumption (2.12). Below we sketch the
proof for the readers’ convenience and refer to [7, Lemma 2] for more details.

Proof of Lemma 2.3. Introduce the cutoff function χ(r) ∈ C∞0 (R) satisfying χ(r) ≡ 1 when r < ε
2

and χ(r) ≡ 0 when r > ε. From (2.13) we deduce the inhomogeneous Laplacian equation defined
over the infinite sector Σ:

∆(χu) = χh− (χu)q + [∆, χ]u =: f, in Σ, (2.14)

with the commutator operator

[∆, χ]u := ∆(χu)− χ∆u = 2∇χ · ∇u+ (∆χ)u.

We are going to analyze the regularity of χu (and thus u itself) in a neighboring hood of the origin
by using the vanishing of the Cauchy data of χu on θ = 0, θ0 together with the decaying rate of f
near O. For clarity we shall divide the rest of the proof into four steps.

Step 1: Show that the right hand side of (2.14) satisfies f ∈ Λ0,α
1 (Σ).

By the assumption of h and the inclusion relation (2.2) for compactly supported functions, we
obtain

χh ∈ Λ0,α
−j (Σ), for every j = −1, 0, 1, · · · , N − 1. (2.15)

The assumption u ∈ H2(Σε) implies

χu ∈ Λ0,α
1 (Σ). and (χu) q ∈ C0,α(Σ) ⊆ Λ0,α

1 (Σ). (2.16)

We now consider the regularity of [∆, χ]u appearing in (2.14). Since the supports of ∇χ and ∆χ
are contained in {x ∈ R2 : ε

2 ≤ |x| ≤ ε}, it follows from (2.13) that

∆u = h(x)− q(x)u in Σ′ε := Σε ∩ {
ε

2
< |x| < ε}. (2.17)

Since h ∈ C0,α(Σ′ε), qu ∈ C0,α(Σ′ε), by standard elliptic regularity theory it holds that

u ∈ C2,α(Σ′ε), (2.18)

implying the relation
[∆, χ]u ∈ Λ0,α

−j (Σ) for any integer j. (2.19)

Step 2: Prove χu ∈ Λ0,α
−N (Σ).

We can summarize from (2.15), (2.16) and (2.19) that
χh ∈ Λ0,α

j (Σ), for every j = 1, 0,−1, · · · ,−N + 1,

(χu) q ∈ Λ0,α
` (Σ), where ` = 1,

[∆, χ]u ∈ Λ0,α
j (Σ), for any integer j.

(2.20)

This implies that the right-hand-side of (2.14) belongs to f ∈ Λ0,α
1 (Σ). By the solvability of the

Laplace equation in an infinite sector (see e.g. [32, Theorem 6.11, Chapter 3]), we obtain

χu ∈ Λ2,α
1 (Σ). (2.21)

Now, applying Lemma 2.2 gives χu ∈ Λ0,α
0 (Σ), which improves the subscript β in the first step

(cf. 2.16) from β = 1 to β = 0. This means that u at the corner point is getting less singular.
Moreover, combining the fact χu ∈ Λ0,α

0 (Σ) with Lemma 2.1 leads to those relations in (2.20) where
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the subscript ` is replaced by 0, which in turn gives χu ∈ Λ2,α
0 (Σ). Repeating this process, we finally

arrive at
f ∈ Λ0,α

−N+1(Σ), χu ∈ Λ2,α
−N+1(Σ) ⊂ Λ0,α

−N (Σ′). (2.22)

Step 3: Singularity analysis of (2.14).

Write h1(x) := f − rN (A cosNθ + B sinNθ)χ. From (2.13) and the definition of χ, it follows
that the function χu solves the following Dirichlet and Neumann boundary value problems:

(Dirichlet BVP)

{
∆(χu) = rN (A cosNθ +B sinNθ)χ+ h1(x) in Σ

(χu) = 0 on ∂Σ,
(2.23)

(Neumann BVP)

{
∆(χu) = rN (A cosNθ +B sinNθ) + h1(x) in Σ

∂ν(χu) = 0 on ∂Σ.
(2.24)

Note that rN (A cosNθ +B sinNθ)χ ∈ Λ0,α
−N+1(Σ). From (2.12), we see

χ
[
h− rN (A cosNθ +B sinNθ)

]
∈ Λ0,α

−N (Σ).

Together with (2.19) and (2.22), this gives h1 ∈ Λ0,α′

−N (Σ) ⊂ Λ0,α′

−N+1(Σ) for all 0 < α′ < α. Therefore,

from [Theorem 6.11, Chapter 3, 32], the Dirichlet BVP (2.23) admits a unique solution in Λ2,α′

−N+1(Σ)

if α′ 6= jπ
θ0
−1−N (j ∈ Z), where θ0 is the opening angle of the sector Σ. Further, using [7, Proposition

5], [32, Proposition 2.12, Chapter 2] and the arbitrariness of α′ ∈ (0, α), the function χu ∈ Λ0,α′

−N (Σ)

around the corner can be decomposed into two parts: χu = u
(1)
D + u

(2)
D where

u
(1)
D = qD,N+2 + CD r

N+2[ln r sin(N + 2)θ + θ cos(N + 2)θ], CD ∈ C,

u
(2)
D = dDr

N+2 sin(N + 2)θ +
∑

j∈I(θ0,N)

dD,j r
jπ
θ0 sin(

jπ

θ0
θ) +O(rN+2+α′

), dD, dD,j ∈ C,

where

I(θ0, N) := {j :
jπ

θ0
∈ (N + 1, N + 2)}, dD = 0 if (N + 2)θ0/π /∈ N,

and qD,N+2 is a polynomial of order N + 2 satisfying

∆qD,N+2 = rN (A cosNθ +B sinNθ) in Σ, qD,N+2 = 0 on ∂Σ. (2.25)

Similarly, by [32, Chapter 2, Proposition 2.12] the Neumann BVP (2.24) admits a unique solution

χu = u
(1)
N + u

(2)
N ∈ Λ2,α′

−N+1(Σ) ⊂ Λ0,α′

−N (Σ) where

u
(1)
N (x) = qN ,N+2(x) + CN r

N+2[ln r cos(N + 2)θ − θ sin(N + 2)θ], CN ∈ C,

u
(2)
N (x) = dN r

N+2 cos(N + 2)θ +
∑

j∈I(θ0,N)

dN ,j r
jπ
θ0 cos(

jπ

θ0
θ) +O(rN+2+α′

), dN , dN ,j ∈ C.

Here, dN = 0 if (N + 2)θ0/π /∈ N and qN ,N+2 is a polynomial of order N + 2 satisfying

∆qN ,N+2 = rN (A cosNθ +B sinNθ) in Σ, ∂νqN ,N+2 = 0 on ∂Σ. (2.26)

Step 4: Show that A = B = 0.

We observe that rN+2 ln r = o(rN+1+τ ) (r → 0+) for any τ ∈ (0, 1) and

r
jπ
θ0 � rN+2 ln r � rN+2 � rN+2+α′

as r → 0+, for all j ∈ I(θ0, N). (2.27)
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Thus we can conclude from χu = u
(1)
D + u

(2)
D = u

(1)
N + u

(2)
N in Σ that

CD = CN = 0 and dD,j = dN ,j = 0 for all j ∈ I(θ0, N) (2.28)

and

qD,N+2(x) + dD r
N+2 sin(N + 2)θ = qN ,N+2(x) + dN r

N+2 cos(N + 2)θ =: qN+2

Combining (2.25) and (2.26) yields

∆qN+2 = rN (A cosNθ +B sinNθ) (2.29)

and further
∆2qN+2 = 0 in Σ, qN+2 = ∂νqN+2 = 0 on ∂Σ. (2.30)

Applying [Proposition 12, 7] to (2.30), we obtain qN+2 = 0 in Σ. Finally, it can be concluded from
(2.29) that rN (A cosNθ+B sinNθ) ≡ 0 in Σ, which implies A = B = 0. The proof is complete.

In the subsequent two corollaries we present examples of h fulfilling the condition (2.12) in Lemma
2.3.

Corollary 2.1. Assume in Lemma 2.3 that h ∈ C1,α(Σε) for some 0 < α < 1. Then, h(O) = 0 and
|∇h(O)| = 0.

Proof. Since h ∈ C1,α(Σε), the function h admits the asymptotic behavior

h(x) = h(O) +∇h(O) · x+O(|x|1+α), |x| → 0 (2.31)

in Σε. Note that the expression of h in (2.31) takes the form (2.12) with N = 0. Applying Lemma
2.3 gives h(O) = 0. Then we have

h(x) = ∇h(O) · x+O(|x|1+α), |x| → 0

which is of the from (2.12) with N = 1. Again using Lemma 2.3, we arrive at |∇h(O)| = 0.

Corollary 2.2. Suppose in Lemma 2.3 that h ∈ S(A, b) where A = (a1, a2) and b are analytic near
O. Then h ≡ 0 in Bε(O).

Proof. We first prove that the lowest order non-vanishing term in the Taylor expansion of h at the
corner point O is harmonic, if h does not vanish identically. This extends the proof of [7, Proposition
10] in the special case a1 = a2 ≡ 0 and b = b0 ∈ C to a more general setting.

Since A and b are both analytic functions, by elliptic regularity theory h is also analytic in Bε(O).
By [10, Lemma 2.1], there exists a positive integer M ∈ N0 such that h can be expanded in the polar
coordinates (r, θ) into the convergent series

h(x) =
∑
j≥M

rjFj(θ), where Fj(θ) =
∑

n+2m=j

(C+
n,m cosnθ + C−n,m sinnθ)

with C±n,m ∈ C. Here, we have C±n,m = 0 if n + 2m < M , because rMFM (θ) is supposed to be the
lowest order term. In two dimensions, it is easy to check that

∆h = (
∂2

∂r2
+

1

r

∂

∂r
+

1

r2

∂2

∂θ2
)h

=
∑
j≥M

(
j(j − 1)rj−2Fj + jrj−2Fj + rj−2F ′′j

)
=

∑
j≥M−2

rj [(j + 2)2Fj+2 + F ′′j+2]. (2.32)
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On the other hand, assuming

A(x) =
∑
j≥0

rjAj(θ), b(x) =
∑
j≥0

rjbj(θ),

we find
A(x) · ∇h(x) =

∑
j≥M−1

rjÃj(θ) (2.33)

and

b(x)h(x) =
(∑
j≥0

rjbj(θ)
)( ∑

`≥M

r`F`(θ)
)

=
∑
j≥M

rj b̃j(θ),

where

b̃j(θ) =
∑

k+`≥j;k≥0,`≥M

bk(θ)F`(θ). (2.34)

Inserting (2.32)-(2.34) into the equation

∆h(x) +A(x) · ∇h(x) + b(x)h(x) = 0

and comparing the coefficients of rM−1, we obtain M2FM + F ′′M = 0, θ ∈ [0, 2π]. By the definition
of Fj(θ), it follows that

F ′′M (θ) = (−n2)
∑

n+2m=M

(C+
n,m cosnθ + C−n,m sinnθ)

= −M2 (C+
M,0 cosMθ + C−M,0 sinMθ)− n2

∑
n+2m=M,m6=0

(C+
n,m cosnθ + C−n,m sinnθ) (2.35)

and

M2FM (θ) = M2(C+
M,0 cosMθ + C−M,0 sinMθ)

+M2
∑

n+2m=M,m6=0

(C+
n,m cosnθ + C−n,m sinnθ). (2.36)

Combining the previous two identities we get∑
n+2m=M
m 6=0

(C+
n,m cosnθ + C−n,m sinnθ)(M2 − n2) = 0 for all θ ∈ [0, 2π]. (2.37)

Since M2 − n2 6= 0 for all (n,m) ∈ {(n,m) ∈ N2 ; n+ 2m = M,m 6= 0}, the relation (2.37) implies

C±n,m = 0 if n+ 2m = M,m 6= 0.

Hence,

h(x) = rM
[
C+
M,0 cosMθ + C−M,0 sinMθ

]
+

∑
j≥M+1

rjFj(θ),

that is, h is of the form (2.12) near the corner point O. Applying Lemma 2.3 we obtain C±M,0 = 0.
This is a contradiction to the fact that FM (θ) does not vanish. Hence, h ≡ 0 in Bε(O).
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3 Determination of convex-polygonal source support

In this section, we first prove Theorem 1.1 for C1,α-continuous source functions around a corner
point and then generalize the uniqueness result to a larger class of smooth source functions with a
low contrast to the background medium.

Proof of Theorem 1.1. Let ũ be the solution of ∆ũ + k2nũ = f̃ in R2 where D̃ := supp f̃ is also

a convex polygon and f̃ ∈ C1,α(D̃ ∩Bε(Õ)) near each corner Õ of ∂D̃. Suppose further that
|f̃ |+ |∇f̃ | > 0 at each corner point of ∂D̃. Assume that

u∞(x̂) = ũ∞(x̂) for all x̂ ∈ S. (3.1)

Applying Rellich’s lemma and the unique continuation for Helmholtz equations, we see

u = ũ in R2\D ∪ D̃. (3.2)

Note that here we have used the assumption that the refractive index function n(x) is given.

The rest of the proof of Theorem 1.1 is divided into two steps. In the first step we prove the
unique determination of the source support, and in the second step the determination of the zeroth
and first order derivatives of the source term at corner points.

Step 1: Prove D = D̃. If the geometric shapes of D and D̃ are not identical, without loss of
generality we may suppose there exists some corner O ∈ ∂D and a neighborhood Bε(O) of O
such that Bε(O) ∩ D̃ = ∅. Set Σε := Bε(O) ∩ D with the opening angle θ0 ∈ (0, π), and write
Γε := ∂D ∩Bε(O). This scenario is illustrated in Figure 2.

⌃✏

B✏(O)

Figure 2: Illustration of two convex-polygonal source supports D and D̃.

By coordinate translation, we may suppose without loss of generality that the corner point O is
located at the origin. Then we have{

∆u+ k2n(x)u = f in Σε,

∆ũ+ k2n(x)ũ = 0 in Σε.
(3.3)

Since f ∈ L2(Bε(O)) ∩ C1,α(D ∩Bε(O)), by standard elliptic regularity theory we have u, ũ ∈
H2(Bε(O)). Recall the transmission conditions for u:

u+ = u−, ∂νu
+ = ∂νu

− on Γε,
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where (·)± denote the traces of u ∈ H2(Bε(O)) taking from D (+) and R2\D (−), respectively. We
deduce from (3.2) and the previous transmission conditions that

u = ũ, ∂νu = ∂ν ũ on Γε. (3.4)

Set w = u− ũ. From (3.3) and (3.4) it follows that w ∈ H2(Bε(O)) solves the Cauchy problem{
∆w + k2n(x)w = f0 + f1 in Σε,

w = ∂νw = 0 on Γε,
(3.5)

where

f0(x) :=

{
f(O), when f(O) 6= 0,

r[(∂1f)(O) cos θ + (∂2f)(O) sin θ], when f(O) = 0,

and
f1(x) := f(x)− f0(x), x ∈ Σε.

The assumption |f(O)|+ |∇f(O)| > 0 gives f0 6≡ 0. However, noting that f ∈ C1,α(Bε(O) ∩D) and
f0 is harmonic, we deduce from Lemma 2.3 that f0 ≡ 0. This contradiction implies ∂D = ∂D̃.

Step 2: Prove f(O) = f̃(O), ∇f(O) = ∇f̃(O) where O is an arbitrary corner point of the source
support.

We still use the notations Σε and Γε defined in Step 1 with D = D̃. Repeating the arguments in
Step 1, we obtain 

∆u+ k2n(x)u = f in Σε,

∆ũ+ k2n(x)ũ = f̃ in Σε,

u = ũ, ∂νu = ∂ν ũ on Γε.

This implies that w := u− ũ ∈ H2(Bε(O)) is a weak solution of{
∆w + k2n(x)w = f − f̃ in Σε,

w = ∂νw = 0 on Γε.

Analogous to Step 1, we may define

f0(x) :=

{
f(O)− f̃(O), when f(O) 6= f̃(O)

r{[(∂1f)(O)− (∂1f̃)(O)] cos θ + [(∂2f)(O)− (∂2f̃)(O)] sin θ}, when f(O) = f̃(O),

and
f1(x) = f(x)− f̃(x)− f0(x).

Applying Lemma 2.3 again, we obtain f0(x) ≡ 0, which implies f(O) = f̃(O) and ∇f(O) = ∇f̃(O).
Since the corner O is taken arbitrarily, we finish the proof of Theorem 1.1.

If the smoothness of f at the corner points can be weakened to be f ∈ C0,α(D ∩Bε(O)), it follows
from the proof of Theorem 1.1 that the source support ∂D and f(O) can be uniquely determined by
u∞(x̂) for all x̂ ∈ S, if f(O) 6= 0. This proves Corollary 1.2. Combining the arguments in proving
Theorem 1.1 and Lemma 2.3, we immediately get the shape identification result of Corollary 1.6 (i).

Theorem 1.1 can be generalized to more smooth source terms with a compact support, under an
extra condition concerning the source discontinuity at corner points (see (3.6) below). This leads to
Corollary 3.1.

Corollary 3.1. Suppose that D := supp(f) ⊂ R2 is a convex polygon and n(x) ≡ 1 in R2. Assume
that there exists an l ∈ N0 such that

f ∈ Cl+1,α(D ∩Bε(O)) ∩W l,∞(Bε(O)), 0 < α < 1
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for each corner O of ∂D, and that there exist a multi-index β = (β1, β2) (βj ∈ N0) with |β| :=
β1 + β2 = l such that

|∂βf(O)|+ |∂β
′
f(O)| > 0, β′ ≥ β, |β′ − β| = 1. (3.6)

Then ∂D, ∂βf(O) and ∂β
′
f(O) can be uniquely determined by u∞(x̂) for all x̂ ∈ S.

Remark 3.1. (i) By Sobolev embedding theorems, the condition f ∈ W l,∞(Bε(O)) implies that
f ∈ Cl−1,α(Bε(O)). Hence, ∇jf(O) = 0 for all |j| ≤ l − 1. If l = 0, Corollary 3.1 is equivalent
to the result of Theorem 1.1 when n(x) ≡ 1. (ii) The multi-index β′ in (3.6) takes the form
β′ = (β1 + 1, β2) or β′ = (β1, β2 + 1) in two dimensions.

Proof of Corollary 3.1. Obviously, we have f ∈ H l(Bε(O)), and by the regularity of elliptic equa-
tions (see e.g., [13]) we get u ∈ H l+2(Bε(O)). By the trace lemma,

∂jνu
+ = ∂jνu

−, j = 0, 1, · · · , l + 1.

Proceeding as in the proof of Theorem 1.1, we suppose there exist two sources f and f̃ (D̃ := supp f̃
is a convex polygon) which generate identical far-field patterns over all observation directions. If
∂D 6= ∂D̃, we suppose there exists a corner point O of D and a neighborhood Bε(O) of O such
that Bε(O) ∩ D̃ = ∅. Setting Σε = D ∩ Bε(O) and Γε = ∂D ∩ Bε(O). In this section we define
v = ∂β(u − ũ), where β = (β1, β2), |β| = l, is the multi-index specified in Corollary 3.1. Then we
have {

∆v + k2v = ∂βf in Σε,

v = ∂νv = 0 on Γε.
(3.7)

Applying Lemma 2.3 to (3.7), we conclude ∂βf(O) = ∂β
′
f(O) = 0 for all β′ ≥ β, |β′−β| = 1, which

contradicts our assumption (3.6). Thus D = D̃. In the same manner, one can prove

∂β(f − f̃)(O) = ∂β
′
(f − f̃)(O) = 0.

The proof is complete.

4 Determination of source terms

In this section we prove Theorem 1.3.

Proof of Theorem 1.3. Assume that the two convex polygons D and D̃ := supp(f̃) produce identical
far-field patterns. Here we suppose that f̃ = ṽ|

D̃
for some ṽ ∈ S(A, b) which is analytic near corner

points of D̃. Denote by ũ the Sommerfeld radiation solution corresponding to D̃ and f̃ .

If D 6= D̃, we may choose at least one corner point O ∈ ∂D as done in the proof of Theorem
1.1. Since f = v|D for some v ∈ S(A, b), the source function f must be analytic on Bε(O) ∩D.
By the proof of Corollary 2.2, the lowest order term in the Taylor expansion of f in Bε(O) ∩D is
harmonic. Arguing analogously to the proofs of Corollary 2.2 and Theorem 1.1, we may conclude
from u∞ = ũ∞ that f vanishes identically on Bε(O) ∩D. Hence v ≡ 0 on Bε(O) ∩D, and by
unique continuation we get v ≡ 0 on D. This implies that f vanishes identically on D and thus
supp(f) = ∅, which contradicts our assumption. Hence, we obtain the uniqueness in determining
the source support.

To determine the source term, we set w = u− ũ and consider the Cauchy problem (cf. (3.5)){
∆w + k2n(x)w = f − f̃ in Σε,

w = ∂νw = 0 on Γε,

13



where Σε and Γε are defined as the same ones in the proof of Theorem 1.1. Note that f−f̃ = (v−ṽ)|D
where v− ṽ ∈ S(A, b) is analytic in Bε(O). By the proof of Lemma 2.2, the function f − f̃ takes the
form

f(x)− f̃(x) = rN (A cosNθ +B sinNθ) +O(rN+α), |x| → 0, x ∈ Σε.

for some N ∈ N0. Recalling Lemma 2.3 and Corollary 2.2, we arrive at f = f̃ and thus v = ṽ on
Σε. Since A and b are a priori given, the relation f = f̃ in D follows from the unique continuation
property of elliptic equations.

5 Characterization of radiating sources and singularity at
corner points

Proof of Corollary 1.4. Assume u∞ ≡ 0. Then we obtain u ≡ 0 in R3\D by Rellich’s lemma, and
in particular the traces of u vanish on Γε = ∂D ∩Bε(O) for some ε > 0. Under the condition (i) in
Corollary 1.4, we can deduce from the proof of Corollary 3.1 that v = ∂βu satisfies{

∆v + k2n0v = ∂βf in Σε = D ∩Bε(O),

v = ∂νv = 0 on Γε.
(5.1)

It then follows that ∂βf(O) = ∂β
′
f(O) = 0 for the indexes β and β′ specified in Corollary 3.1 (i),

which contradicts the condition (1.4).

If f fulfills the condition (ii), by the proof of Theorem 1.3, f must vanish identically, leading to
a contradiction to the assumption that D = supp(f) 6= ∅.

Proof of Corollary 1.5. Since n(x) ≡ n0 in BR\D, u is analytic in BR\D. Suppose on the contrary
that u can be analytically extended from (BR\D)∩Bε(O) to D ∩Bε(O) for some ε > 0. Denote by
w the extended solution in Bε(O), which solves the Helmholtz equation ∆w + k2n0w = 0 in Bε(O)
and coincides with u in (BR\D) ∩ Bε(O). Setting v = u− w, we may arrive at the same boundary
value problem (5.1) with l = 0 and then the same contradictions as in the proof of Corollary 1.4.

Proof of Corollary 1.6 (ii). If the lowest order expansion of f around the corner is harmonic, the
results of Corollaries 1.4 and 1.5 can be proved analogously by applying Corollary 2.2.

6 A data-driven inversion scheme

The aim of this section is to propose a non-iterative numerical scheme to reconstruct the shape ∂D
of a convex-polygonal source support embedded in BR from a single far-field pattern. For simplicity
we shall assume n(x) ≡ n0 > 0 in |x| < R and consider a slightly different model as follows ∆u+ k2u = 0 in |x| > R,

∆u+ k2n0u = f in |x| < R,
u+ = u−, ∂νu

+ = λ∂−ν u on |x| = R,
(6.1)

where u is required to fulfill the Sommerfeld radiation condition at infinity. Here, the medium inside
BR is supposed to be homogeneous and isotropic, and the parameter λ > 0 (λ 6= 1) models the ratio
of the constant densities in |x| > R and |x| < R. In this section, the source function f is supposed
to satisfy the two conditions in Theorem 1.1. Although the refractive index n(x) is discontinuous
on ∂BR, our corner scattering theory explored in previous sections are still valid for the new model
(6.1). By Theorem 1.1 and Corollary 1.2, the source support ∂D can be uniquely determined by the
radiated far-field pattern u∞(x̂) for all x̂ ∈ S. Moreover, by the proof of Corollary 1.5 we obtain
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Proposition 6.1. The solution u cannot be (analytically) extended from BR\D into a neighboring
area of any corner point of ∂D as a solution of the Helmholtz equation ∆u+ k2n0u = 0.

To determine the position and shape of ∂D, we introduce a test domain Ω which represents an
acoustically sound-soft obstacle inside BR. Here Ω ⊂ BR is called a test domain if it is a connected
convex domain and k2n0 is not the Dirichlet eigenvalue of −∆ over Ω. Consider the time-harmonic
scattering of a plane wave from the obstacle Ω modeled by

∆v + k2v = 0 in R2\BR, v = eikx·d + vsc,

∆v + k2n0v = 0 in BR\Ω,
v = 0 on ∂Ω,

v+ = v−, ∂νv
+ = λ∂−ν v on ∂BR,

where vsc is a Sommerfeld radiating solution in |x| > R. Note that d ∈ S denotes the incident
direction of the plane wave vin(x) = eikx·d in R2. The far-field patterns v∞(x̂, d) of vsc for all
incident directions define the far-field operator F (Ω) : L2(S)→ L2(S):

(F (Ω)g)(x̂) =

∫
S
v∞(x̂, d)g(d) ds(d), x̂ ∈ S.

Analogously, denote by F0 : L2(S) → L2(S) the far-field operator corresponding to the penetra-
ble scatterer BR without the embedded sound-soft obstacle Ω, and by S0 the scattering operator
corresponding to F0 defined by

S0 := I + 2ikγF0, γ :=
eiπ/4√

8kπ
.

It was proved in [4] via Factorization Method that the spectrum system (λ
(Ω)
j , ψ

(Ω)
j ) of the operator

F
(Ω)
# := |Re((F0 − F (Ω))S0)|+ |Im((F0 − F (Ω))S0)|

can be used to characterize the embedded obstacle Ω. Note that the spectra are uniquely determined
by Ω, BR, k, n0 and λ, all of which are known. To proceed, we recall that the data-to-pattern operator
G(Ω) : H1/2(∂Ω)→ L2(S) is defined as G(Ω)(h) := v∞, where v∞ is the far-field pattern of the unique
radiating solution v to the boundary value problem

∆v + k2v = 0 in R2\BR, ∆v + k2n0v = 0 in BR\Ω,
v = h on ∂Ω, v+ = v−, ∂νv

+ = λ∂−ν v on ∂BR.

Our imaging scheme is essentially based on the following lemma.

Lemma 6.1. Let u∞ be the far-field pattern corresponding to the source term f with the convex
polygonal support D ⊂ BR. Then u∞ belongs to the range of the data-to-pattern operator G(Ω) if
and only if D ⊂ Ω.

Proof. Suppose D ⊂ Ω ⊂ BR. By the definition of G(Ω), we have G(Ω)(h) = u∞ with h := u|∂Ω,
implying that u∞ is indeed in the range of G(Ω). Now, suppose that u∞ = G(Ω)(h) for some
h ∈ H1/2(Ω) but D ⊂ Ω does not hold. Since D is a convex polygon and Ω is a connected convex
domain, one can always find a corner point of ∂D which lies in the exterior of Ω. Using Rellich’s
lemma and the unique continuation for solutions of the Helmholtz equation, u can be analytically
extended into a full neighborhood of this corner point. However, this is a contradiction to Proposition
6.1, implying that D ⊂ Ω.

By [4], the range of G(Ω) coincides with the range of (F
(Ω)
# )1/2. Hence, u∞ belongs to the range

of (F
(Ω)
# )1/2 if and only if D ⊂ Ω. This reveals an inclusion relation between the unknown target

D and the a priori given obstacle Ω through their measurement data u∞ and F (Ω). Together with
Picard’s criterion, we derive a non-iterative inversion scheme stated as below.
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Theorem 6.1. Introduce the domain-defined indicator

W (Ω) :=

∞∑
j=1

| < u∞, ψ
(Ω)
j >L2(S) |2

|λ(Ω)
j |

. (6.2)

We have W (Ω) < ∞ if and only if D ⊂ Ω. Hence, the source support D can be regarded as the
intersection of all test domains Ω such that W (Ω) <∞.

By Theorem 6.1, the source support D can be reconstructed by firstly selecting different test
domains Ω ⊂ BR and then computing the indicator W (Ω) to get the inclusion relation between D
and Ω. In particular, these test domains can be taken as sound-soft disks with different centers and
radii. We refer to [29] for numerical examples of recovering convex polygonal sound-soft obstacles
and source support in a homogeneous background medium. If ∂D contains no corners, only partial
information of D can be recovered; see [27] where the linear sampling method with a single far-field
pattern was discussed. In the case of a variable inhomogeneous background medium, Theorem 6.1
can be similarly justified by taking inspirations from the corresponding factorization schemes proved
in [15,30].

In Theorem 6.1 we establish a domain-defined factorization method in an inhomogeneous back-
ground medium using only a single far-field pattern. A one-wave factorization method was discussed
earlier in [9] for inverse elastic scattering problems. The pointwise-defined factorization scheme [4]
makes use of far-field data over all incident directions at a fixed energy. In comparison [4], we use
in Lemma 6.1 a sampling domain Ω ⊂ R2 in place of a sampling point z ∈ R2. Correspondingly, the
far-field data of the background Green’s tensor G0(·, z) (or its equivalence function used in [4]) has
been substituted by the measurement u∞ in Lemma 6.1, and the role of the singularity of G0 was
replaced by the absence of analytical extension in a corner domain (see Proposition 6.1) (cf. [4] and
Theorem 6.1). We refer to [24] and [31, Chapter 15] for other domain-defined sampling methods
with a single measurement data.

One can interpret Theorem 6.1 as a data-driven reconstruction scheme, because far-field patterns
of a priori given obstacles (test domains) are involved in inversion process. Theorem 6.1 explains
how do these a priori data encode the information of our target. The test domains Ω can also be
replaced by sound-hard, impedance and penetrable scatterers embedded in BR.
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