
ar
X

iv
:1

90
8.

11
82

5v
2

 [
cs

.I
T

]
 2

0
M

ay
 2

02
0

The Communication Complexity of Set Intersection

and Multiple Equality Testing∗

Dawei Huang1, Seth Pettie1, Yixiang Zhang2, and Zhijun Zhang2

1University of Michigan
2IIIS, Tsinghua University

Abstract

In this paper we explore fundamental problems in randomized communication complexity
such as computing Set Intersection on sets of size k and Equality Testing between vectors of
length k. Sağlam and Tardos [ST13] and Brody et al. [BCK+16] showed that for these types
of problems, one can achieve optimal communication volume of O(k) bits, with a randomized
protocol that takes O(log∗ k) rounds. They also proved [ST13, BCK+16] that this is one point
along the optimal round-communication tradeoff curve.

Aside from rounds and communication volume, there is a third parameter of interest, namely
the error probability perr, which we write 2−E. It is straightforward to show that protocols for
Set Intersection or Equality Testing need to send at least Ω(k+E) bits, regardless of the number
of rounds. Is it possible to simultaneously achieve optimality in all three parameters, namely
O(k + E) communication and O(log∗ k) rounds?

In this paper we prove that there is no universally optimal algorithm, and complement the
existing round-communication tradeoffs [ST13, BCK+16] with a new tradeoff between rounds,
communication, and probability of error. In particular:

• Any protocol for solving Multiple Equality Testing in r rounds with failure probability
perr = 2−E has communication volume Ω(Ek1/r).

• We present several algorithms for Multiple Equality Testing (and its variants) that match
or nearly match our lower bound and the lower bound of [ST13, BCK+16].

• Lower bounds on Equality Testing extend to Set Intersection, for every r, k, and perr (which
is trivial); in the reverse direction, we prove upper bounds on Equality Testing for r, k, perr
imply similar upper bounds on Set Intersection with parameters r + 1, k, and perr.

Our original motivation for considering perr as an independent parameter came from the
problem of enumerating triangles in distributed (CONGEST) networks having maximum degree
∆. We prove that this problem can be solved in O(∆/log n+log log∆) time with high probability
1− 1/poly(n). This beats the trivial (deterministic) O(∆)-time algorithm and is superior to the
Õ(n1/3) algorithm of [CPZ19, CS19] when ∆ = Õ(n1/3).

∗An extended abstract of this paper [HPZZ20] was presented at the 31st ACM-SIAM Symposium on Discrete
Algorithms (SODA 2020). Compared to the extended abstract, this manuscript contains a detailed and complete
proof of the lower bound, as well as new upper bounds not appearing in [HPZZ20] (Sections 4.4 and 4.5, pages 28–38).
This work was supported by NSF grants CCF-1514383, CCF-1637546, and CCF-1815316. Authors’ emails: {hdawei,
pettie}@umich.edu, {zhangyix16, zhijun-z16}@mails.tsinghua.edu.cn.

1

http://arxiv.org/abs/1908.11825v2

1 Introduction

Communication Complexity was defined by Yao [Yao79] in 1979 and has become an indispensi-
ble tool for proving lower bounds in models of computation in which the notions of parties and
communication are not direct. See, e.g., books and monographs [Rou16, RY, KN97] and sur-
veys [CP10, Lov89] on the subject. In this paper we consider some of the most fundamental
and well-studied problems in this model, such as SetDisjointness, SetIntersection, ExistsEqual, and
EqualityTesting. Let us briefly define these problems formally since the terminology is not completely
standard.

SetDisjointness and SetIntersection. In the SetDisjointness problem Alice and Bob receive sets
A ⊂ U and B ⊂ U where |A|, |B| ≤ k and must determine whether A ∩ B = ∅. Define
SetDisj(k, r, perr) to be the minimum communication complexity of an r-round randomized
protocol for this problem that errs with probability at most perr. We can assume that |U | =
O(k2/perr) without loss of generality.1 The input to the SetIntersection problem is the same,
except that the parties must report the entire set A ∩ B. Define SetInt(k, r, perr) to be the
minimum communication complexity of an r-round protocol for SetIntersection.

EqualityTesting and ExistsEqual. In the EqualityTesting problem Alice and Bob hold vectors x ∈
Uk and y ∈ Uk and must determine, for each index i ∈ [k], whether xi = yi or xi 6= yi. A
potentially easier version of the problem, ExistsEqual, is to determine if there exists at least
one index i ∈ [k] for which xi = yi. Define Eq(k, r, perr) to be the randomized communication
complexity of any r-round protocol for EqualityTesting that errs with probability perr, and
∃Eq(k, r, perr) the corresponding complexity of ExistsEqual. Once again, we can assume that
|U | = O(k/perr) without loss of generality.

The deterministic communication complexity of these problems is well understood [KN97]. (The
optimal protocol is for Alice to send her entire input to Bob.) Although the randomized communi-
cation complexity of these problems has been studied extensively [HW07, Raz92, KS92, FKNN95,
DKS12, Nik13, BGMdW13, ST13, BCK+16], most prior work has focused on the relationship be-
tween round complexity and communication volume, and has usually not treated perr as a parameter
independent of k.

History. Håstad and Wigderson [HW07] gave an O(log k)-round protocol for SetDisjointness in
which Alice and Bob communicate O(k) bits, which matched an Ω(k) lower bound of Kalyanasun-
daram and Schnitger [KS92]; see also [Raz92, BGMdW13, DKS12]. Feder et al. [FKNN95] proved
that EqualityTesting can be solved with O(k) communication by an O(

√
k)-round protocol that errs

with probability exp(−
√
k). Nikishkin [Nik13] later improved their round complexity and error

probability to log k and exp(−k/polylog(k)), respectively. Improving [HW07], Sağlam and Tar-
dos [ST13] gave an r-round protocol for SetDisjointness that uses O(k log(r) k) communication, where
log(r) is the r-fold iterated logarithm function. For r = log∗ k the error probability of this protocol
is exp(−

√
k), coincidentally matching [FKNN95]. In independent work, Brody et al. [BCK+16]

gave r-round and O(r)-round protocols for ExistsEqual and SetIntersection, respectively, that use
O(k log(r) k) communication and err with probability 1/poly(k).

1Before the first round of communication, pick a pairwise independent h : U 7→ [O(k2/perr)] and check whether
h(A)∩h(B) = ∅ with error probability perr/2. Thus, having SetDisj depend additionally on |U | is somewhat redundant,
at least when |U | is large.

2

Problem Commun. Rounds Error Probability Notes

EqualityTesting O(k) O(
√
k) exp(−

√
k) [FKNN95]

EqualityTesting O(k) log k exp(−k/polylog(k)) [Nik13]

SetDisjointness O(k) O(log k) Constant [HW07]

SetDisjointness O(k log(r) k) r ≥ exp(−
√
k) [ST13]

ExistsEqual r
SetIntersection

O(k log(r) k)
O(r)

1/poly(k) [BCK+16]

ExistsEqual

SetDisjointness
O(k + Ek1/r) r + log∗(k/E)

EqualityTesting O(k + Ek1/r · log r 2−E new

and +Er log r)
r + log∗(k/E) [+1]

[SetIntersection] O(k + E) log k

Lower Bounds

SetDisjointness Ω(
√
k) ∞ Constant [BFS86]

SetDisjointness Ω(k) ∞ Constant [KS92]

ExistsEqual Ω(k log(r) k) r Constant [ST13]

ExistsEqual Ω(k log(r) k) r 1/poly(k) [BCK+16]

ExistsEqual Ω(Ek1/r) r 2−E new

Table 1: Upper and Lower bounds on SetDisjointness,SetIntersection,EqualityTesting, and
ExistsEqual. Via trivial reductions, lower bounds on ExistsEqual extend to all four problems, and
upper bounds on SetIntersection extend to all four problems. From Theorem 1, the upper bounds on
SetIntersection and SetDisjointness follow from those of EqualityTesting and ExistsEqual, respectively,
+1 round of communication. The log-star function is defined as log∗(x) = min{i : log(i)(x) ≤ 1},
e.g., log∗(k/E) = 0 if E ≥ k.

Sağlam and Tardos [ST13] were the first to show that this O(k log(r) k) round vs. communication
tradeoff is optimal, using a combinatorial round elimination technique. In particular, this lower
bound applies to any ExistsEqual protocol even with constant error probability. Independently,
Brody et al. [BCK+14, BCK+16] established the same lower bound tradeoff for ExistsEqual, assuming
the error probability is at most 1/poly(k). Brody et al. [BCK+16] also introduced a randomized
reduction from SetIntersection to EqualityTesting, which errs with probability exp(−Õ(

√
k)), i.e., it

cannot be applied when the desired total error probability perr is sufficiently small.

1.1 Contributions

First, we observe that a simple deterministic reduction shows that, up to one round of communi-
cation, SetIntersection is equivalent to EqualityTesting for any perr, and SetDisjointness is equivalent
to ExistsEqual for any perr. Theorem 1 is proved in Appendix A; it is inspired by the randomized
reduction of Brody et al. [BCK+16].

Theorem 1. For any parameters k ≥ 1, r ≥ 1, and perr = 2−E , it holds that

Eq(k, r, perr) ≤ SetInt(k, r, perr), SetInt(k, r + 1, perr) ≤ Eq(k, r, perr) + ζ,

∃Eq(k, r, perr) ≤ SetDisj(k, r, perr), SetDisj(k, r + 1, perr) ≤ ∃Eq(k, r, perr) + ζ,

3

where ζ = O(k + logE).

Second, we prove that in any of the four problems, it is impossible to simultaneously achieve
communication volume O(k + E) in O(log∗ k) rounds for all k, perr = 2−E . Specifically, any r-
round protocol needs Ω(Ek1/r) communication. Whereas the implication of [ST13, BCK+16] is
that optimal O(k) communication is only possible with Ω(log∗ k) rounds, the implication of our
work is that optimal communication O(k + E) is only possible with Ω(log k) rounds, whenever
E ≥ k.

We complement our lower bounds with matching or nearly matching upper bounds. First,
we show that in any EqualityTesting/ExistsEqual instance with E < k, one can, with probability
1−2−Θ(E), reduce the effective number of coordinates to E using O(k) communication and log∗(k/E)
rounds. Thus, we can simplify the following discussion by assuming that E ≥ k.

We give four distinct protocols, the first of which solves EqualityTesting with O(rEk1/r) com-
munication, which is optimal whenever r = O(1). The remaining three protocols attempt to get
rid of this extraneous r factor in different situations. Our second protocol shows that it is possible
to achieve O(Ek1/r) complexity, but for the slightly simpler problem of ExistsEqual. Our third
protocol shows that with O(r) rounds (instead of r rounds) it is possible to achieve O(Ek1/r) com-
munication. In particular, absolutely optimal communication O(E) is possible with log k = O(r)
communication.

Our first three protocols show that the optimal round-communication-error tradeoff for EqualityTesting

can be achieved whenever r = O(1) or r = Ω(log k), or for any r in the case of ExistsEqual. The
remaining problem (EqualityTesting in r rounds, r between ω(1) and o(log k)) seems to be quite
difficult. Our fourth protocol solves EqualityTesting with O(Ek1/r log r + Er log r) communication,
which for r ∈ [1, log k/log log k] is dominated by the first term and therefore within a log r ≤ log log k
factor of optimal. A close study of our second and fourth protocols reveals a key distinction between
EqualityTesting from ExistsEqual, which is only relevant when the probability of error is quite small
(e.g., E ≥ k). It is plausible that EqualityTesting is asymptotically harder than ExistsEqual for many
values of r, and for similar reasons, that SetIntersection is asymptotically harder than SetDisjointness.

Our original interest in SetIntersection came from distributed subgraph detection in CONGEST2

networks, which has garnered significant interest in recent years [CS19, CPZ19, IG17, ACKL17,
DKO14, KR18, FGKO18, CK18, GO18]. Izumi and LeGall [IG17] proved that triangle enumera-
tion3 requires Ω(n1/3/log n) rounds in the CONGEST model, and further showed that local triangle
enumeration4 requires Ω(∆/log n) rounds in CONGEST, which can be as large as Ω(n/log n).

The most natural way to solve (local) triangle enumeration is, for every edge {u, v} ∈ E(G),
to have u and v run a two-party SetIntersection protocol in which they compute N(u) ∩ N(v),
where N(u) = {ID(x) | {u, x} ∈ E(G)} and ID(x) ∈ {0, 1}O(log n) is x’s unique identifier. Any r-
round protocol with communication volume O(∆) can be simulated in CONGEST in O(∆/log n+r)
rounds since the message size is O(log n) bits. However, to guarantee a global probability of success

2In the CONGEST model there is a graph G = (V,E) whose vertices are identified with processors and whose
edges represent bidirectional communication links. Each vertex v does not know G, and is only initially aware of
an O(log n)-bit ID(v), deg(v), and global parameters n ≥ |V | and ∆ ≥ maxu∈V deg(u). Communication proceeds
in synchronized rounds; in each round, each processor can send a (different) O(log n)-bit message to each of its
neighbors.

3Every triangle (3-cycle) in G must be reported by some vertex.
4Every triangle in G must be reported by at least one of the three constituent vertices. Izumi and LeGall [IG17]

only stated the Ω(n/log n) lower bound but it can also be expressed in terms of ∆.

4

at least 1 − 1/poly(n), the failure probability of each SetIntersection instance must be perr = 2−E ,
E = Θ(log n), which is independent of ∆. Our communication complexity lower bound suggests
that to achieve this error probability, we would need Ω((∆+E∆1/r)/log n+ r) CONGEST rounds,
i.e., with r = log∆ we should not be able to do better than O(∆/log n + log∆). We prove that
(local) triangle enumeration can actually be solved exponentially faster, in O(∆/log n + log log∆)
CONGEST rounds, without necessarily solving every SetIntersection instance.

Organization. The proof of Theorem 1 on the near-equivalence of SetIntersection/SetDisjointness

and EqualityTesting/ExistsEqual appears in Appendix A. Section 2 reviews concepts from informa-
tion theory and communication complexity. In Section 3 we present new lower bounds for both
EqualityTesting and ExistsEqual that incorporate rounds, communication, and error probability. Sec-
tion 4 presents nearly matching upper bounds for EqualityTesting and ExistsEqual, and Section 5
applies them to the distributed triangle enumeration problem. We conclude with some open prob-
lems in Section 6.

2 Preliminaries

2.1 Notational Conventions

The set of positive integers at most t is denoted [t]. Random variables are typically written as
capital letters (X,Y,M , etc.) and the values they take on are lower case (x, y,m, etc.). The letters
p, q, µ,D are reserved for probability mass functions (p.m.f.). E.g., D(x) denotes the probability
that X = x whenever X ∼ D. The support supp(D) of a distribution D is the set of all x for which
D(x) > 0. If X ⊆ supp(D), D(X) =∑x∈X D(x).

Many of our random variables are vectors. If x is a k-dimensional vector and I ⊆ [k], xI is the
projection of x onto the coordinates in I and xi is short for x{i}. Similarly, if D is the p.m.f. of a
k-dimensional random variable, DI is the marginal distribution of D on the index set I ⊆ [k].

Throughout the paper, log and exp are the base-2 logarithm and exponential functions, and
log(r) and exp(r) their r-fold iterated versions:

log(0)(x) = exp(0)(x) = x, log(r)(x) = log(log(r−1)(x)), exp(r)(x) = exp(exp(r−1)(x)).

The log-star function is defined to be log∗(x) = min{r | log(r)(x) ≤ 1}. In particular, log∗(x) = 0 if
x ≤ 1.

2.2 Information Theory

The most fundamental concept in information theory is Shannon entropy. The Shannon entropy of
a discrete random variable X is defined as

H(X) = −
∑

x∈supp(X)

Pr[X = x] log Pr[X = x].

Since there may be cases in which different distributions are defined for the “same” random variable,
we use H(p) in place of H(X) if X is drawn from a p.m.f. p. We also write H(α), α ∈ (0, 1), to be
the entropy of a Bernoulli random variable with success probability α. In general, we freely use a
random variable and its p.m.f. interchangeably.

5

The joint entropy H(X,Y) of two random variables X and Y is simply

H(X,Y) = −
∑

x∈supp(X)

∑

y∈supp(Y)

Pr[X = x ∧ Y = y] log Pr[X = x ∧ Y = y].

This notion can be easily extended to cases of more than two random variables. Here, we state a
well known fact about joint entropy.

Fact 2.1. For any random variables X1,X2, ... ,Xn, their joint entropy is at most the sum of their
individual entropies, i.e., H(X1,X2, ... ,Xn) ≤

∑n
i=1 H(Xi).

The conditional entropy of Y conditioned on another random variable X, denoted H(Y | X),
measures the expected amount of extra information required to fully describe Y if X is known. It
is defined to be

H(Y | X) = H(X,Y)−H(X)

= −
∑

x∈supp(X)

Pr[X = x]
∑

y∈supp(Y)

Pr[Y = y | X = x] log Pr[Y = y | X = x] ≥ 0,

which can be viewed as a weighted sum of entropies of a number of conditional distributions.
Finally, the mutual information I(X ; Y) between two random variables X and Y quantifies the

amount of information that is revealed about one random variable through knowing the other one:

I(X ; Y) = H(X)−H(X | Y)

= H(X) +
∑

y∈supp(Y)

Pr[Y = y]
∑

x∈supp(X)

Pr[X = x | Y = y] log Pr[X = x | Y = y].

2.3 Communication Complexity

Let f(x, y) be a function over domain X × Y, and consider any two-party communication protocol
Q(x, y) that computes f(x, y), where one party holds x and the other holds y. The transcript of Q
on (x, y) is defined to be the concatenation of all messages exchanged by the two parties, in order,
as they execute on input (x, y). The communication cost of Q is the maximum transcript length
produced by Q over all possible inputs.

Let Qd be a deterministic protocol for f and suppose µ is a distribution over X × Y. The
distributional error probability of Qd with respect to µ is the probability Pr(x,y)∼µ[Qd(x, y) 6= f(x, y)].
For any 0 < ǫ < 1, the (µ, ǫ)-distributional deterministic communication complexity of the function
f is the minimum communication cost of any protocol Qd that has distributional error probability
at most ǫ with respect to the distribution µ.

A randomized protocol Qr(x, y, w) also takes a public random string w ∼ W as input. The error
probability of Qr is calculated as max(x,y)∈X×Y Prw∼W [Qr(x, y, w) 6= f(x, y)]. The ǫ-randomized
communication complexity of f is the minimum communication cost of Qr over all protocols Qr

with error probability at most ǫ.
Yao’s minimax principle [Yao77] is a common starting point for lower bound proofs in ran-

domized communication complexity. The easy direction of Yao’s minimax principle states that the
communication cost of the best deterministic protocol specific to any particular distribution is at
most the communication cost of any randomized protocol on its worst case input.

6

Lemma 2.2 (Yao’s minimax principle [Yao77]). Let f : X ×Y 7→ Z be the function to be computed.
Let Dµ,ǫ(f) be the (µ, ǫ)-distributional deterministic communication complexity of f , and let Rǫ(f)
be the ǫ-randomized communication complexity of f . Then for any 0 < ǫ < 1/2,

max
µ

Dµ,ǫ(f) ≤ Rǫ(f).

Therefore, to show a lower bound on the ǫ-randomized communication complexity of a function
f , it suffices to find a hard distribution µ on the input set and prove a lower bound for the commu-
nication cost of any deterministic protocol that has distributional error probability at most ǫ with
respect to µ.

3 Lower Bounds on ExistsEqual and EqualityTesting

In this section we prove lower bounds on EqualityTesting and ExistsEqual. Theorem 2 obviously
follows directly from Theorem 3, but we prove them in that order nonetheless because Theorem 2
is a bit simpler.

Theorem 2. Any r-round randomized protocol for EqualityTesting on vectors of length k that errs
with probability perr = 2−E requires at least Ω(Ek1/r) bits of communication.

Theorem 3. Any r-round randomized protocol for ExistsEqual on vectors of length k that errs with
probability perr = 2−E requires at least Ω(Ek1/r) bits of communication.

Without any constraint on the number of rounds, EqualityTesting trivially requires Ω(k) com-
munication. ExistsEqual also requires Ω(k) communication, through a small modification to the
SetDisjointness lower bounds [KS92, Raz92]. Even when k = 1, we need at least Ω(E) communica-
tion to solve EqualityTesting/ExistsEqual with error probability 2−E [KN97]. Thus, we can assume
that E = Ω(k1−1/r), k1/r = Ω(1), and hence r = O(log k). For example, some calculations later in
our proof hold when r ≤ (log k)/6. When proving Theorem 3, we will further assume E = Ω(log k)
when r = 1, which is reasonable because of Sağlam and Tardos’ Ω(k log(r) k) = Ω(k log k) lower
bound [ST13].

3.1 Structure of the Proof

We consider deterministic strategies for ExistsEqual/EqualityTesting when Alice and Bob pick their
input vectors independently from the uniform distribution on [t]k, where t = 2cE and c = 1/2.
Although the probability of seeing a collision in any particular coordinate is small, it is still much
larger than the tolerable error probability (since c < 1), so it is incorrect to declare “not equal in
every coordinate” without performing any communication.

We suppose, for the purpose of obtaining a contradiction, that there is a protocol for EqualityTesting

with error probability 2−E and communication complexity c′Ek1/r, where c′ = c/100. The length
of the jth message is lj , which could depend on the parameters (E, r, k, etc.) and possibly in some
complicated way on the transcript of the protocol before round j.5

Our proof must necessarily consider transcripts of the protocol that are extremely unlikely
(occurring with probability close to 2−E) and also maintain a high level of uncertainty about which

5In the context of ExistsEqual/EqualityTesting, it is natural to think about uniform-length messages, lj = c′Ek1/r/r,
or lengths that decay according to some convergent series, e.g., lj ∝ c′Ek1/r/2j or lj ∝ c′Ek1/r/j2.

7

coordinates of Alice’s and Bob’s vectors might be equal. Consider the first message. Alice picks her
input vector x ∈ [t]k, which dictates the first message m1. Suppose, for simplicity, that it betrays
exactly l1/k < c′Ek1/r−1 bits of information per coordinate of x. Before Bob can respond with
a message m2 he must commit to his input, say y. Most values of y result in “good” outcomes:
nearly all non-equal coordinates get detected immediately and the effective size of the problem is
dramatically reduced. We are not interested in these values of y, only very “bad” values. Let I1 be
the first k1−1/r coordinates (or, more generally, k1−1/r coordinates that m1 revealed below-average

information about). With probability about (2−c′Ek1/r−1
)|I1| = 2−c′E, Bob picks an input y that is

completely consistent with Alice’s on I1, i.e., as far as he can tell yi = xi for every i ∈ I1. Rather
than sample y uniformly from [t]k, we sample it from a “hybrid” distribution: yI1 is sampled from the
same distribution that m1 revealed about xI1 (forcing the above event to happen with probability
1), and y[k]\I1 is sampled from Bob’s former distribution (in this case, the uniform distribution on

[t]k−|I1|), conditioned on the value of yI1 .
This process continues round by round. Bob’s message m2 betrays at most l2/|I1| < c′Ek2/r−1

bits of information on each coordinate of yI1 , and there must be an index set I2 ⊂ I1 with |I2| =
k1−2/r such that, with probability around 2−c′E, it is completely consistent that xI2 = yI2 . Alice
resamples her input so that this (rare) event occurs with probability 1, generates m3, and continues.

At the end of this process |Ir| = k1−r/r = 1, and yet Alice and Bob have revealed less than the
full cE bits of entropy about xIr and yIr . Regardless of whether they report “equal” or “not equal”
(on Ir), they are wrong with probability greater than 2−E . Are we done? Absolutely not! The
problem is that this strange process for sampling a possible transcript of the protocol might itself
only find transcripts that occur with probability ≪ 2−E , making any conclusions we make about
its (probability of) correctness moot. Generally speaking, we need to show that Alice’s and Bob’s
actions are consistent with events that occur with probability ≫ 2−E .

Let us first make every step of the above process a bit more formal. It is helpful to think about
Alice’s and Bob’s inputs not being fixed vectors selected at time zero, but simply distributions over
vectors that change as messages progressively reveal more information about them.

• Before the jth round of communication, the sender of the jth message’s input is drawn from
a discrete distribution D̂(j−1) over [t]k. The receiver of the jth message’s input is drawn
from the distribution D(j−1). For example, when j = 1, if Alice speaks first then her initial
distribution, D̂(0), and Bob’s initial distribution, D(0), are both uniform over [t]k.

• Before the jth round of communication both parties are aware of an index set Ij−1 such that,

informally, (i) the distributions D(j−1)
Ij−1

and D̂(j−1)
Ij−1

are very similar, and in particular, it is

consistent that their inputs are identical on Ij−1, and (ii) the messages transmitted so far
reveal “average” or below-average information about these coordinates. For example, I0 = [k]
and it is consistent with the empty transcript that Alice’s and Bob’s inputs are identical on
every coordinate.

• The jth message is a random variable Mj ∈ {0, 1}lj . In order to pick an mj according to

the right distribution, the sender picks an input x ∼ D̂(j−1) which, together with the history
m1, ... ,mj−1, determines mj. The sender transmits mj to the receiver and promptly forgets

x. The sender’s new distribution (i.e., D̂(j−1), conditioned on Mj = mj) is called D(j).

• The distribution D(j) may reveal information about the coordinates Ij−1 in an irregular fash-
ion. We find a subset Ij ⊂ Ij−1 of coordinates, |Ij | = k1−j/r, for which the amount of

8

information revealed by D(j)
Ij

is at most average. The receiver of mj changes his input dis-

tribution to D̂(j), which is defined so that it basically agrees with D(j)
Ij

and the marginal

distribution D̂(j)
[k]\Ij

, conditioned on the value selected by D(j)
Ij

, is identical to D(j−1)
[k]\Ij

.

• The reason D(j)
Ij

and D̂(j)
Ij

are not identical is due to two filtering steps. To generate D̂(j),

we remove points from the support that have tiny (but non-zero) probability, which may be
too close to the error probability. Intuitively these rare events necessarily represent a small
fraction of the probability mass. Second, we remove points from the support if the ratio of
their probability occurring under D(j) over D(j−1) is too high. Intuitively, we want to conclude
that if there is a high probability of an error occurring under D(j) then the probability is also
high under D(j−1) (and by unrolling this further, under D(0)). This argument only works if
the ratios are what we would expect, given how much information is being revealed about

these coordinates by mj . As a result of these two filtering steps, D(j)
Ij

(xIj) and D̂(j)
Ij

(xIj) differ

by at most a constant factor, for any particular vector xIj ∈ [t]|Ij |.

3.2 A Lower Bound on EqualityTesting

We begin with two general lemmas about discrete probability distributions that play an important
role in our proof.

Roughly speaking, Lemma 3.1 captures and generalizes the following intuition: Suppose p is a
high entropy distribution on some universe U and q is obtained from p by conditioning on an event
X ⊆ U such that p(X) is large, say some constant like 1/4. If p’s entropy is close to log|U |, then
q’s entropy should not be much smaller than that of p. As our proof goes on round by round, we
will constantly throw away part of the input distribution’s support to meet certain conditions. It is
Lemma 3.1 that guarantees that the input distributions continue to have relatively high entropy.

Lemma 3.2 comes into play because the error probability will be calculated backward in a round-
by-round manner. Suppose the old distribution (p) has no extremely low probability point and the
new distribution (q) has almost full entropy. Lemma 3.2 provides us with a useful tool to transfer
a lower bound on the probability of any event w.r.t. q to a lower bound on the same event w.r.t. p.
It can be seen as a version of Markov’s inequality for Kullback-Leibler divergences.

Lemma 3.1. Let p and q be distributions defined on a universe of size 2s. Suppose both of the
following properties are satisfied:

1. The entropy of p is H(p) ≥ s− g, where g ∈ [0, s);

2. There exists α ∈ (0, 1) such that q(x) ≤ p(x)/α holds for every value x ∈ supp(q).

The entropy of q is lower bounded by:

H(q) ≥ s− g/α−H(α)/α.

Proof. Let X be the whole universe. From our assumptions, the entropy of q can be lower bounded
as follows.

H(q) =
∑

x∈X

q(x) log
1

q(x)
Defn. of H(q).

9

=
1

α

∑

x∈X

αq(x) log
1

αq(x)
+ log α

∑

x∈X

q(x) = 1.

≥ 1

α

∑

x∈X

[
p(x) log

1

p(x)
− (p(x)− αq(x)) log

1

p(x)− αq(x)

]
+ log α

The previous step follows from Assumption 2 and the fact that x log x−1+y log y−1 ≥ (x+y) log(x+
y)−1 for any x, y ≥ 0. Continuing,

≥ 1

α

[
s− g −

∑

x∈X

(p(x)− αq(x)) log
1

p(x)− αq(x)

]
+ log α Assumption 1.

≥ 1

α

[
s− g − (1− α) log

2s

1− α

]
+ log α Concavity of logarithm.

= s− g

α
+

1− α

α
log(1− α) + logα = s− g

α
− H(α)

α
.

Lemma 3.2. Let p and q be distributions defined on a universe of size 2s. Suppose both of the
following properties are satisfied:

1. The entropy of q is H(q) ≥ s− g1, where g1 ∈ [0, s);

2. There exists g2 ≥ 0 such that p(x) ≥ 2−s−g2 holds for every value x ∈ supp(q).

Then, for any α ∈ (0, 1),

Pr
x∼q

[
q(x)

p(x)
> 2g1/α+g2−(1−α) log(1−α)/α

]
≤ α.

Remark 1. Recall the Kullback-Leibler divergence (also known as relative entropy) is defined to be

DKL(q‖p) =
∑

x q(x) log
q(x)
p(x) , where supp(q) ⊆ supp(p). I.e., it is the expected value of log q(x)

p(x)

when x ∼ q. This lemma bounds the probability that log q(x)
p(x) deviates too far from its expectation.

It is syntactically similar to Markov’s inequality, but note that Markov’s inequality is inapplicable
as log q(x)

p(x) is generally not non-negative.

Proof of Lemma 3.2. Let X0 = {x ∈ supp(q) | q(x)/p(x) ≤ 2g1/α+g2−(1−α) log(1−α)/α} and X1 =
supp(q) \ X0. Suppose, for the purpose of obtaining a contradiction, that the conclusion of the
lemma is false, i.e., q(X1) = α0, for some α0 > α. Notice that for each value x ∈ X1, Assumption 2
implies that

q(x) > p(x) · 2g1/α+g2−(1−α) log(1−α)/α ≥ 2−s+g1/α−(1−α) log(1−α)/α. (1)

Then we can upper bound the entropy of q as follows.

H(q) =
∑

x∈X0

q(x) log
1

q(x)
+
∑

x∈X1

q(x) log
1

q(x)
Defn. of H(q).

<
∑

x∈X0

q(x) log
1

q(x)
+ α0

[
s− g1

α
+

1− α

α
log(1− α)

]
Eqn. (1).

10

≤ (1− α0) log
2s

1− α0
+ α0

[
s− g1

α
+

1− α

α
log(1− α)

]
Concavity of logarithm.

= s− α0

α
· g1 + α0

[
1− α

α
log(1− α)− 1− α0

α0
log(1− α0)

]

< s− g1,

where the last step follows from the monotonicity of (1−α) log(1−α)/α. This contradicts Assump-
tion 1.

We are now ready to begin the proof of Theorem 2 proper. Fix a round j and a particular history
(m1, ... ,mj−1) up to round j− 1. We let µj(mj) denote the probability that the jth message is mj,

if the input to the sender is drawn from D̂(j−1). Define D(j)[mj] to be the new input distribution of
the sender after he commits to mj. When mj is clear from context, it is denoted D(j). (The process

for deriving D̂(j) from D(j) and D(j−1) on the receiver’s end will be explained in detail later.)
We will prove by induction that the following Invariant 3.3 holds for each j ∈ [0, r], where the

particular values of Ij , D(j), D̂(j), and l1, ... , lj depend on the transcript m1, ... ,mj that is sampled.

In the base case, Invariant 3.3 clearly holds when j = 0, I0 = [k], and both D̂(0),D(0) are the uniform
distribution over [t]k.

Invariant 3.3. After round j ∈ [0, r] the partial transcript is m1, ... ,mj , which determines the

values {lj′ , D̂(j′),D(j′), Ij′}j′≤j . The index set Ij ⊆ [k] satisfies all of the following:

1. |Ij | = k1−j/r.

2. Each value xIj ∈ [t]|Ij | satisfies D̂(j)
Ij

(xIj) ≤ 4D(j)
Ij

(xIj).

3. Each nonempty subset I ′ ⊆ Ij satisfies

H(D̂(j)
I′) ≥

(
cE −

j∑

u=1

16j−u+1lu

k1−(u−1)/r
− 22j

)
|I ′|.

In accordance with our informal discussion in Section 3.1, Ij is a subset of indices on which
both parties have learned little information about each other from the partial transcript m1, ... ,mj .
Invariant 3.3(2) ensures that the two parties draw their inputs after the jth round from similar
distributions. Invariant 3.3(3) is the most important property. It says that the information re-
vealed by D̂(j) about I ′ is roughly what one would expect, given the message lengths l1, ... , lj .
Note that the uth message conveys information about |Iu−1| = k1−(u−1)/r indices so the average
information-per-index should be lu/k

1−(u−1)/r . The factor 16j−u+1 and the extra term 22j come
from Lemma 3.1, which throws away part of the input distribution in each round, progressively
distorting the distributions in minor ways.

To begin our induction, at round j we find a large fraction of possible messages mj that reveal
little information about the sender’s input, projected onto Ij−1. This is possible because the length
of the message lj = |mj | reflects an upper bound on the expected information gain. This idea is
formalized in the following Lemma 3.4.

11

Lemma 3.4. Fix j ∈ [1, r] and suppose Invariant 3.3 holds for j − 1. Then there exists a subset of
messages M′

j with µj(M′
j) ≥ 1/2 such that each message mj ∈ M′

j satisfies

H(D(j)
Ij−1

[mj]) ≥
(
cE − 2

j∑

u=1

16j−ulu

k1−(u−1)/r
− 2 · 22j−1

)
|Ij−1|.

Proof. LetM′
j contain all messages mj satisfying the above inequality andM′

j be its complement.
Suppose, for the purpose of obtaining a contradiction, that the conclusion of the lemma is not true,

i.e., µj(M′
j) = α > 1/2. Then the entropy of D̂(j−1)

Ij−1
can be upper bounded as follows.

H(D̂(j−1)
Ij−1

)

= I(D̂(j−1)
Ij−1

; Mj) +
∑

mj∈(M′
j∪M

′
j)

µj(mj)H(D(j)
Ij−1

[mj]) Defn. of I(·, ·).

≤ H(Mj) +
∑

mj∈(M′
j∪M

′
j)

µj(mj)H(D(j)
Ij−1

[mj]) I(X ; ·) ≤ H(X).

≤ lj +
∑

mj∈M′
j

µj(mj)H(D(j)
Ij−1

[mj]) +
∑

mj∈M′
j

µj(mj)H(D(j)
Ij−1

[mj]) H(Mj) ≤ |Mj | = lj .

< lj + (1− α)cE|Ij−1|+ α

(
cE − 2

j∑

u=1

16j−ulu
k1−(u−1)/r

− 2 · 22j−1

)
|Ij−1| Defn. of M′

j .

= lj +

(
cE − 2α

j∑

u=1

16j−ulu

k1−(u−1)/r
− 2α · 22j−1

)
|Ij−1|

<

(
cE −

j−1∑

u=1

16j−ulu

k1−(u−1)/r
− 22j−1

)
|Ij−1|, Because α > 1/2.

This contradicts Invariant 3.3(3) at index j − 1.

After the jth message mj is sent, the next step is to identify a set of coordinates Ij such that
D(j) still reveals little information about Ij and every subset of Ij, since we need this property to
hold for Ij+1, ... , Ir in the future, all of which are subsets of Ij. We also want Ij not to contain
many low probability points w.r.t. D(j−1), since this may stop us from applying Lemma 3.2 later
on. These two constraints are captured by parts (2) and (1), respectively, of Lemma 3.5.

Lemma 3.5. Fix j ∈ [1, r] and suppose Invariant 3.3 holds for j − 1. Then there exists a subset of
messages Mj ⊆ M′

j (from Lemma 3.4) with µj(Mj) ≥ 1/4 such that for each message mj ∈ Mj,

there exists a subset Ij ⊆ Ij−1 of size |Ij | = k1−j/r satisfying both of the following properties:

1. Pr
xIj

∼D
(j)
Ij

[
D(j−1)

Ij
(xIj) < (4t)−|Ij |/32

]
≤ 1/2;

2. Each nonempty subset I ′ ⊆ Ij satisfies

H(D(j)
I′) ≥

(
cE − 4

j∑

u=1

16j−ulu
k1−(u−1)/r

− 4 · 22j−1

)
|I ′|.

12

Proof. We first prove that for each message mj ∈ M′
j (from Lemma 3.4), there exists a subset

J0 ⊆ Ij−1 of size |J0| ≥ |Ij−1|/2 such that each nonempty subset I ′ ⊆ J0 satisfies part (2) of the
lemma. Suppose J1, J2, ... , Jw are disjoint subsets of Ij−1, each of which violates the inequality of
part (2), whereas none of the subsets of J0 = Ij−1 \ (

⋃w
v=1 Jv) do. Then we can upper bound the

entropy of D(j)
Ij−1

as follows.

H(D(j)
Ij−1

) ≤
w∑

v=0

H(D(j)
Jv

) Fact 2.1.

< cE|J0|+
w∑

v=1

(
cE − 4

j∑

u=1

16j−ulu
k1−(u−1)/r

− 4 · 22j−1

)
|Jv | Defn. of Jv .

= cE|Ij−1| − 4|Ij−1 \ J0|
(

j∑

u=1

16j−ulu

k1−(u−1)/r
+ 22j−1

)
.

On the other hand, from Lemma 3.4, having mj ∈ M′
j guarantees that

H(D(j)
Ij−1

) ≥
(
cE − 2

j∑

u=1

16j−ulu

k1−(u−1)/r
− 2 · 22j−1

)
|Ij−1|.

The two inequalities above are only consistent if |Ij−1\J0| ≤ |Ij−1|/2, or equivalently |J0| ≥ |Ij−1|/2.
Thus, J0 exists with the right cardinality, as claimed.

Now suppose, for the purpose of obtaining a contradiction, that the lemma is false. For every
mj ∈ M′

j there is a corresponding index set J0 whose subsets satisfy part (2) of the lemma. If
the lemma is false, that means there is a subset M′′

j ⊆ M′
j of “bad” messages with µj(M′′

j) > 1/4

such that, for each mj ∈ M′′
j , none of the

(|J0|
|Ij |

)
choices for Ij ⊆ J0 satisfy part (1) of the lemma.

(Remember that J0 depends on mj but the lower bound on |J0| ≥ |Ij−1|/2 is independent of mj .)
Consider the following summation:

Z =
∑

Ij⊆Ij−1 :

|Ij|=k1−j/r

∑

xIj
∈[t]|Ij | :

D
(j−1)
Ij

(xIj
)< (4t)−|Ij |/32

D(j−1)
Ij

(xIj).

We can easily upper bound Z as follows.

Z <

(|Ij−1|
|Ij |

)
· t|Ij| · (4t)

−|Ij |

32
=

(|Ij−1|
|Ij |

)
2−2|Ij |−5.

Invariant 3.3(2) relates D(j−1) and D̂(j−1), which lets us lower bound Z.

Z ≥ 1

4

∑

Ij⊆Ij−1 :

|Ij |=k1−j/r

∑

xIj
∈[t]|Ij | :

D
(j−1)
Ij

(xIj
)< (4t)−|Ij |/32

D̂(j−1)
Ij

(xIj) Invariant 3.3(2).

13

By definition, D̂(j−1) is a convex combination of the D(j)[mj] distributions, weighted according to
µj(·). Hence, the expression above is lower bounded by

≥ 1

4

∑

Ij⊆Ij−1 :

|Ij |=k1−j/r

∑

xIj
∈[t]|Ij | :

D
(j−1)
Ij

(xIj
)< (4t)−|Ij |/32

∑

mj∈M′′
j

µj(mj) · D(j)
Ij

[mj](xIj)

≥ 1

4

∑

mj∈M′′
j

µj(mj)
∑

Ij⊆J0 :

|Ij|=k1−j/r

∑

xIj
∈[t]|Ij | :

D
(j−1)
Ij

(xIj
)< (4t)−|Ij |/32

D(j)
Ij

[mj](xIj) Rearrange sums.

By definition, for every mj ∈ M′′
j and every choice of Ij ⊆ J0, part (1) of the lemma is violated.

Continuing with the inequalities,

>
1

4

∑

mj∈M′′
j

µj(mj) ·
(|J0|
|Ij|

)
· 1
2

>
1

32

(|Ij−1|/2
|Ij |

)
. Because µj(M′′

j) > 1/4.

This contradicts the upper bound on Z whenever k1/r is at least some sufficiently large constant.

The receiver of mj constructs a new distribution D̂(j) in two steps. After fixing Ij , we construct

D̃(j) by combining D(j−1) and D(j), filtering out some points in the space whose probability mass is
too low. We then construct D̂(j) from D̃(j) and D(j−1) by filtering out points that occur under D̃(j)

with substantially larger probability than they do under D(j−1).
Formally, suppose Invariant 3.3 holds for j − 1. For each message mj ∈ Mj (from Lemma 3.5),

let Ij be selected to satisfy both properties of Lemma 3.5. Define the probability mass of a vector

x ∈ [t]k under D̃(j) as follows:

D̃(j)(x) =

0, if D(j−1)
Ij

(xIj) <
(4t)−|Ij |

32 ;

D
(j)
Ij

(xIj
)

β1
· D(j−1)(x)

D
(j−1)
Ij

(xIj
)
, otherwise.

where β1 is

β1 = Pr
xIj

∼D
(j)
Ij

[
D(j−1)

Ij
(xIj) ≥

(4t)−|Ij |

32

]
.

14

In other words, we discard a 1 − β1 fraction of the distribution D(j), but ignoring this effect, the
projection of D̃(j) onto Ij has the same distribution as D(j) onto Ij, and conditioned on the value

of xIj , the distribution D̃(j) (projected onto [k]\Ij) is identical to D(j−1). We derive D̂(j) from D̃(j)

with a similar transformation.

D̂(j)(x) =

0, if
D̃

(j)
Ij

(xIj
)

D
(j−1)
Ij

(xIj
)
> 2γj ;

D̃
(j)
Ij

(xIj
)

β2
· D(j−1)(x)

D
(j−1)
Ij

(xIj
)
, otherwise.

where β2 and γj are defined to be

β2 = Pr
xIj

∼D̃
(j)
Ij

 D̃

(j)
Ij

(xIj)

D(j−1)
Ij

(xIj)
≤ 2γj

 ,

γj =

(
j∑

u=1

lu

(
16j−u+1

k1−(u−1)/r

)
+ (16 · 22j−1 + 6)

)
|Ij|+ 6

≤
j∑

u=1

lu

(
16

k1/r

)j−u+1

+ 22j · |Ij|+ 6.

The proofs of Lemmas 3.6 and 3.7 use several simple observations about D̃(j) and D̂(j):

1. Lemma 3.5(1) states that β1 ≥ 1/2. Lemma 3.5(2) lower bounds the entropy of D(j)
Ij

. We

apply Lemma 3.1 to D(j)
Ij

and D̃(j)
Ij

(taking the roles of p and q, respectively) with parameter

α = 1/2 ≤ β1, and obtain the following lower bound on the entropy of D̃(j)
Ij

.

H(D̃(j)
Ij

) ≥
(
cE − 8

j∑

u=1

16j−ulu

k1−(u−1)/r
− 8 · 22j−1 − 2

)
|Ij |.

2. We can then apply Lemma 3.2 to D(j−1)
Ij

and D̃(j)
Ij

(taking the roles of p and q, respectively)
with parameters

g1 =

(
8

j∑

u=1

16j−ulu

k1−(u−1)/r
+ (8 · 22j−1 + 2)

)
|Ij|,

g2 = 2|Ij |+ 5,

and α = 1/2.

Since g1/α + g2 − (1 − α) log(1 − α)/α = γj , we conclude that β2 ≥ 1 − α = 1/2. Thus, for

each value xIj ∈ supp(D̂(j)
Ij

),

D̂(j)
Ij

(xIj) =
D̃(j)

Ij
(xIj)

β2
=
D(j)

Ij
(xIj)

β1β2
≤ 4D(j)

Ij
(xIj). (2)

15

Lemma 3.6 completes the inductive step by lower bounding the entropy of D̂(j)
I′ for every

nonempty subset I ′ ⊆ Ij. To put it another way, it ensures that the coordinates in Ij remain
almost completely unknown to both parties.

Lemma 3.6. Fix j ∈ [1, r] and suppose Invariant 3.3 holds for j − 1. Then, for each message
mj ∈Mj (from Lemma 3.5), Invariant 3.3 also holds for j.

Proof. Due to Lemma 3.5 and Eqn. (2), the first two properties of Invariant 3.3 are satisfied. For
each nonempty subset I ′ ⊆ Ij, the third property of Invariant 3.3 can be derived from the second

property of Lemma 3.5 and an application of Lemma 3.1 to D(j)
I′ and D̂(j)

I′ (taking the roles of p and
q, respectively) with parameter α = 1/4 as follows.

H(D̂(j)
I′) ≥

(
cE − 16

j∑

u=1

16j−ulu

k1−(u−1)/r
− 16 · 22j−1 − 4

)
|I ′| ≥

(
cE −

j∑

u=1

16j−u+1lu

k1−(u−1)/r
− 22j

)
|I ′|.

Aside from maintaining Invariant 3.3 round by round, another important part of our proof is
to compute the error probability. Lemma 3.7 shows how the error probabilities of two consecutive
rounds are related after our modification to the protocol. More importantly, it also illustrates the

reason to bound the pointwise ratio between D̃(j)
Ij

and D(j−1)
Ij

.

Lemma 3.7. Fix a round j ∈ [1, r] and suppose Invariant 3.3 holds for j − 1. Fix any specific
message mj ∈ Mj (from Lemma 3.5). Define p to be the probability of error, when the protocol

begins after round j with the inputs drawn from D(j) and D̂(j), respectively. Then the probability of
error is at least 2−γj−1p when the inputs are instead drawn from D(j) and D(j−1), respectively.

Proof. From the definition of D̂(j), for each value x ∈ supp(D̂(j)), we have

D̂(j)(x)

D(j−1)(x)
=

D̃(j)
Ij

(xIj)

β2D(j−1)
Ij

(xIj)
≤ 2γj

β2
≤ 2γj+1. (3)

This concludes the proof.

Finally, with all lemmas proved above, we have reached the point to calculate the initial error
probability.

Lemma 3.8. Recall that c = 1/2, c′ = c/100. Fix any r ∈ [1, (log k)/6] and E ≥ 100k1−1/r/c.
Suppose the initial input vectors are drawn independently and uniformly from [t]k, where t = 2cE.
Then the error probability of the EqualityTesting protocol, perr, is greater than 2−E .

Proof. First suppose Invariant 3.3 holds for r and consider the situation after the final round, where
the inputs are drawn from D(r) and D̂(r), respectively. Notice that Ir is a singleton set, so the

entropy of D̂(r)
Ir

can be lower bounded as follows.

H(D̂(r)
Ir

) ≥ cE −
r∑

u=1

16r−u+1lu

k1−(u−1)/r
− 22r Invariant 3.3(3).

16

= cE − 16

k1/r

r∑

u=1

lu

(
16

k1/r

)r−u

− 22r

≥ cE − 16

k1/r

r∑

u=1

lu − 22k1−1/r k1/r ≥ 26 due to r ≤ (log k)/6.

≥ cE − 16c′E − 22k1−1/r >
cE

2
. Because

∑r
u=1 lu ≤ c′Ek1/r.

From the lower bound on the entropy of D̂(r)
Ir

, we can easily show that there exists no value xIr

such that D̂(r)
Ir

(xIr) = α > 3/4. If there were such a value, then the entropy of D̂(r)
Ir

can also be
upper bounded as

H(D̂(r)
Ir

) ≤ α log
1

α
+ (1− α) log

t

1− α
<

cE

4
+ α log

1

α
+ (1− α) log

1

1− α
<

cE

2
,

contradicting the lower bound on H(D̂(r)
Ir

).
After all r rounds of communication, the receiver of the last message has to make the decision

on Ir depending only on his own input on Ir. Let X0 ⊆ [t] be the subset of values xIr such that
the protocol outputs “not equal” on Ir upon seeing the input xIr after r rounds of communication,

X1 = [t] \ X0, and β = D̂(r)
Ir

(X0). Then, the final error probability is at least

∑

xIr∈X0

D̂(r)
Ir

(xIr)D(r)
Ir

(xIr) +
∑

xIr∈X1

D̂(r)
Ir

(xIr)
(
1−D(r)

Ir
(xIr)

)

=
∑

xIr∈X0

D̂(r)
Ir

(xIr)D(r)
Ir

(xIr) +
∑

xIr∈X1

D̂(r)
Ir

(xIr)
∑

x′
Ir
6=xIr

D(r)
Ir

(x′Ir)

≥ 1

4

∑

xIr∈X0

D̂(r)
Ir

(xIr)
2 +

1

4

∑

xIr∈X1

D̂(r)
Ir

(xIr)
∑

x′
Ir
6=xIr

D̂(r)
Ir

(x′Ir) Invariant 3.3(2).

=
1

4

∑

xIr∈X0

D̂(r)
Ir

(xIr)
2 +

1

4

∑

xIr∈X1

D̂(r)
Ir

(xIr)
(
1− D̂(r)

Ir
(xIr)

)

≥ 1

4

∑

xIr∈X0

D̂(r)
Ir

(xIr)
2 +

1

16

∑

xIr∈X1

D̂(r)
Ir

(xIr) Because D̂(r)
Ir

(xIr) ≤ 3/4.

≥ β2

4t
+

1− β

16
≥ 1

4t
. Convexity of x2.

This result also meets the simple intuition that when the inputs to the two parties are almost
uniformly random and no communication is allowed, the best strategy would be guessing “not equal”
regardless of the actual input.

Finally, we are ready to transfer the error probability back round by round. From Lemma 3.5
through Lemma 3.7, the error probability w.r.t. D(j) and D̂(j) differs from the error probability
w.r.t. D(j−1) and D̂(j−1) by at most a 4 · 2γj+1 = 2γj+3 factor. In particular, Lemma 3.5 and
Lemma 3.6 say that the jth message mj satisfies Invariant 3.3 at index j with probability at least
1/4, provided Invariant 3.3 holds for j−1, and Lemma 3.7 says the error probabilities under the two
measures differ by a 2γj+1 factor for any such mj . Repeating this for each j ∈ [1, r], we conclude

17

that the initial error probability perr is lower bounded by

perr ≥
1

4t
· exp

−3r −

r∑

j=1

γj

 = exp

−cE − 2− 3r −

r∑

j=1

γj

 > 2−E ,

since

cE + 2 + 3r +
r∑

j=1

γj

≤ cE + 2 + 3r + 6r +
r∑

j=1

j∑

u=1

lu

(
16

k1/r

)j−u+1

+
r∑

j=1

22j |Ij |

≤ cE + 11r +

r∑

u=1

16lu

k1/r

r∑

j=u

(
16

k1/r

)j−u

+22k1−1/r
r∑

j=1

(
22

k1/r

)j−1

Rearrange sums.

≤ cE + 11r +
32

k1/r

r∑

u=1

lu + 44k1−1/r k1/r ≥ 26 since r ≤ (log k)/6.

≤ cE +
11cE

100
+

32cE

100
+

44cE

100
< E. Because

∑r
u=1 lu ≤ c′Ek1/r.

Proof of Theorem 2. Lemma 3.8 actually shows that given integers k ≥ 1 and r ≤ (log k)/6, any
r-round deterministic protocol for EqualityTesting on vectors of length k that has distributional error
probability perr = 2−E with respect to the uniform input distribution on [t]k, where t = 2cE , requires
at least Ω(Ek1/r) bits of communication. Notice that the additional assumption E ≥ 100k1−1/r/c
always makes sense since there is a trivial Ω(k) lower bound on the communication complexity of
EqualityTesting, regardless of r. Thus, Theorem 2 follows directly from Yao’s minimax principle.

3.3 A Lower Bound on ExistsEqual

The proof of Theorem 3 is almost the same as that of Theorem 2, except for the final step, namely
Lemma 3.8, in which we first compute the final error probability after all r rounds of communication
and then transfer it backward round by round using Lemma 3.7. The problem with applying the
same argument to ExistsEqual protocols is that the receiver of the last message may be able to
announce the correct answer, even though it knows little information about the inputs on the single
coordinate Ir.

In order to prove Theorem 3, first notice that Lemma 3.4 through Lemma 3.7 also hold perfectly
well for ExistsEqual protocols as no modification is required in their proofs. Therefore, it is sufficient
to prove the following Lemma 3.9, which is an analog of Lemma 3.8 for ExistsEqual. It is based
mainly on Markov’s inequality.

Lemma 3.9. Recall that c = 1/2, c′ = c/100. Consider an execution of a deterministic r-round
ExistsEqual protocol, r ∈ [1, (log k)/6], on input vectors drawn independently and uniformly from
[t]k, where t = 2cE . Here E ≥ 100k1−1/r/c if r > 1 and E ≥ (100 log k)/c otherwise. Then the
protocol errs with probability perr > 2−E .

18

Proof. Similarly to the proof of Lemma 3.8, we first consider the situation after the final round. In
the ExistsEqual protocol, the receiver of the last message can make the decision depending on every
coordinate of his own input. Let X0 ⊆ [t]k be the subset of values x such that the protocol outputs
“no” upon seeing the input x after r rounds of communication, X1 = [t]k \ X0. Then, the final error
probability is at least

∑

x∈X0

D̂(r)(x)D(r)
Ir

(xIr) +
∑

x∈X1

D̂(r)(x)

1−

∑

y∈N (x)

D(r)(y)

 ,

where N (x) = {y ∈ [t]k | there exists some i ∈ [k] such that xi = yi} is the subset of input vectors
that agree with x on at least one coordinate.

The main difficulty here is to lower bound 1−∑y∈N (x)D(r)(y), which is potentially quite small.
Consider the following summation Z0 over all transcripts m1, ... ,mr in which mj ∈ Mj (from
Lemma 3.5), where the set Mj depends on m1, ... ,mj−1:

Z0 =
∑

m1∈M1

µ1(m1)
∑

m2∈M2

µ2(m2) · · ·
∑

mr∈Mr

µr(mr)
∑

x∈[t]k

D̂(r)(x)
∑

y∈N (x)

D(r)(y).

From the proof of Lemma 3.7 (Eqn. (3)), we can upper bound Z0 as follows.

Z0 ≤
∑

m1∈M1

µ1(m1) · · ·
∑

mr∈Mr

µr(mr)
∑

x∈[t]k,
y∈N (x)

2γr+1 · D(r−1)(x) · D(r)(y)

Notice that γr and D(r−1) are independent of the choice of mr, hence by rearranging sums, this is
equal to

=
∑

m1∈M1

µ1(m1) · · ·
∑

mr−1∈Mr−1

µr−1(mr−1)
∑

x∈[t]k,
y∈N (x)

2γr+1 · D(r−1)(x)
∑

mr∈Mr

µr(mr) · D(r)(y)

By definition, D̂(r−1) is a convex combination of the D(r)[mr] distributions, weighted according to
µr(·). Hence, the expression above is upper bounded by

≤
∑

m1∈M1

µ1(m1) · · ·
∑

mr−1∈Mr−1

µr−1(mr−1)
∑

x∈[t]k,
y∈N (x)

2γr+1 · D(r−1)(x) · D̂(r−1)(y)

By the symmetry of x and y, this is equal to

=
∑

m1∈M1

µ1(m1) · · ·
∑

mr−1∈Mr−1

µr−1(mr−1)
∑

x∈[t]k,
y∈N (x)

2γr+1 · D̂(r−1)(x) · D(r−1)(y)

We repeat the same argument for rounds r − 1 down to 1, upper bounding Z0 by

≤ exp

r +

r∑

j=1

γj

 ·

∑

x∈[t]k,
y∈N(x)

D̂(0)(x) · D(0)(y)

19

≤ exp

r +

r∑

j=1

γj

 · k

t

The last inequality above follows from a union bound since, under the initial distributions D̂(0),D(0),
each of the k coordinates is equal with probability 1/t. Recall that E ≥ 100k1−1/r/c when r > 1 and
E ≥ (100 log k)/c otherwise. Hence, using the same argument as that in the proof of Lemma 3.8,
we can further bound this as

≤ 20.83cE · 20.02cE · 2−cE = 2−0.15cE ,

since

r +
r∑

j=1

γj ≤ 7r +
r∑

j=1

j∑

u=1

lu

(
16

k1/r

)j−u+1

+
r∑

j=1

22j |Ij | ≤
7cE

100
+

32cE

100
+

44cE

100
=

83cE

100
,

and k ≤ (cE/100)r/(r−1) ≤ (cE/100)2 ≤ 20.02cE when r > 1 and k ≤ 20.01cE otherwise.
Now fix a round j and a particular history (m1, ... ,mj) up to round j such that mj′ ∈ Mj′

holds for every j′ ≤ j. Define Zj as follows.

Zj =
∑

mj+1∈Mj+1

µj+1(mj+1) · · ·
∑

mr∈Mr

µr(mr)
∑

x∈[t]k

D̂(r)(x)
∑

y∈N (x)

D(r)(y).

By Markov’s inequality, there exists a subset of messages M̂1 ⊆ M1 with µ1(M̂1) ≥ µ1(M1)/2 ≥
1/8 such that each message m1 ∈ M̂1 satisfies Z1 ≤ 2Z0/µ1(M1) ≤ 8Z0 since µ1(M1) ≥ 1/4

from Lemma 3.5. Similarly, conditioned on any specific m1 ∈ M̂1, by Markov’s inequality, there
exists a subset of messages M̂2 ⊆ M2 with µ2(M̂2) ≥ µ2(M2)/2 ≥ 1/8 such that each message

m2 ∈ M̂2 satisfies Z2 ≤ 2Z1/µ2(M2) ≤ 82Z0. In general, conditioned on any specific partial

transcript m1, ... ,mj−1 such that mj′ ∈ M̂j′ holds for every j′ < j, there exists a subset of messages

M̂j ⊆Mj with µj(M̂j) ≥ µj(Mj)/2 ≥ 1/8 such that each message mj ∈ M̂j satisfies Zj ≤ 8jZj.

After repeating the same argument r times, we get M̂1, ... ,M̂r in sequence. For any sampled
transcript m1, ... ,mr such that mj ∈ M̂j for all j ≤ r, we have

Zr ≤ 8rZ0 ≤ 23r · 2−0.15cE ≤ 2−0.12cE ≤ 1

4
,

as r ≤ cE/100 and cE ≥ 100. Further, one more application of Markov’s inequality shows that
there exists a subset of values X ′ ⊆ [t]k with D̂(r)(X ′) = α ≥ 1/2 such that

∑
y∈N (x)D(r)(y) ≤ 1/2

holds for every x ∈ X ′.
As a result, we can then lower bound the final error probability as follows, where β = D̂(r)(X0 ∩

X ′).

∑

x∈X0

D̂(r)(x)D(r)
Ir

(xIr) +
∑

x∈X1

D̂(r)(x)

1−

∑

y∈N (x)

D(r)(y)

≥
∑

x∈(X0∩X ′)

D̂(r)(x)D(r)
Ir

(xIr) +
∑

x∈(X1∩X ′)

D̂(r)(x)

1−

∑

y∈N (x)

D(r)(y)

20

≥ 1

4

∑

x∈(X0∩X ′)

D̂(r)(x)D̂(r)
Ir

(xIr) +
∑

x∈(X1∩X ′)

D̂(r)(x)

1−

∑

y∈N (x)

D(r)(y)

 Invariant 3.3(2).

≥ 1

4

∑

x∈(X0∩X ′)

D̂(r)(x)D̂(r)
Ir

(xIr) +
1

2

∑

x∈(X1∩X ′)

D̂(r)(x) Defn. of X ′.

In order to minimize the above expression, we can now assume without loss of generality that the
partition between X0 ∩ X ′ and X1 ∩ X ′ depends solely on xIr as only the relative magnitude of

D̂(r)
Ir

(xIr)/4 and 1/2 matters. Continuing,

≥ β2

4t
+

α− β

2
≥ α2

4t
≥ 1

16t
. Convexity of x2.

Finally, we are ready to transfer the error probability back in exactly the same manner as we
did in the proof of Lemma 3.8. Using a similar argument, the existence of M̂j guarantees that

perr ≥
1

16t
· exp

−4r −

r∑

j=1

γj

 = exp

−cE − 4− 4r −

r∑

j=1

γj

 > 2−E ,

since

cE + 4 + 4r +

r∑

j=1

γj ≤ cE +
14cE

100
+

32cE

100
+

44cE

100
< E.

Proof of Theorem 3. Similarly to the proof of Theorem 2, Theorem 3 follows from Lemma 3.9 and
a direct application of Yao’s minimax principle.

4 New Protocols for EqualityTesting and ExistsEqual

In this section, we attempt to prove that our Ω(Ek1/r) lower bound is tight for EqualityTesting. We
manage to attain this bound in several situations, but fail to achieve it for every value of E, k, r.

First of all, the Ω(Ek1/r) bound is only binding when it is at least Ω(k), which is necessary
even when E is constant [KS92, Raz92, DKS12]. In Theorem 8 we give a log∗(k/E)-round protocol
that reduces the effective dimension of the problem from k to at most E with O(k) communication,
and basically lets us proceed under the assumption that E ≥ k. (Note that if E ≥ k initially,
log∗(k/E) = 0.)

In Theorem 9 we give a simple protocol for EqualityTesting with communication O(rEk1/r) when
E ≥ k. According to Theorem 2 this is optimal when r = O(1). All of our remaining protocols
aim to eliminate or reduce this seemingly unnecessary factor of r. In Theorem 10 we prove that
ExistsEqual can be solved with O(Ek1/r) communication, for any r and E ≥ k, and Theorem 11
shows the same communication can be attained for EqualityTesting, but with O(r) rounds rather
than r. In particular, Theorems 8, 10, and 11 imply that EqualityTesting/ExistsEqual can be solved
with absolutely optimal communication O(k + E) in log k rounds, which is also round-optimal
according to Theorems 2 and 3. However, Theorems 2, 9, and 11 leave the precise complexity of
EqualityTesting open when E ≥ k and r is between ω(1) and o(log k).

21

Theorem 12 is our most sophisticated upper bound, in many ways. It proves that EqualityTesting

can be solved using O(Ek1/r log r+Er log r) communication when E ≥ k. When r ≥ log k/log log k
the first term is dominant, and the protocol comes within a log r ≤ log log k factor of Theorem 2’s
lower bound. Taken together, these theorems highlight a potential complexity separation between
ExistsEqual and EqualityTesting and between SetDisjointness and SetIntersection in the low error
probability regime.

Theorems 4–7 follow by combining the dimension reduction of Theorem 8 with Theorems 9–12.

Theorem 4. There exists a (log∗(k/E)+r)-round randomized protocol for EqualityTesting on vectors
of length k that errs with probability perr = 2−E , using O(k + rEk1/r) bits of communication.

Theorem 5. There exists a (log∗(k/E) + r)-round randomized protocol for ExistsEqual on vectors
of length k that errs with probability perr = 2−E , using O(k + Ek1/r) bits of communication.

Theorem 6. There exists a (log∗(k/E) + O(r))-round randomized protocol for EqualityTesting on
vectors of length k that errs with probability perr = 2−E , using O(k+Ek1/r) bits of communication.

Theorem 7. There exists a (log∗(k/E) + r)-round randomized protocol for EqualityTesting on vec-
tors of length k that errs with probability perr = 2−E , using O(k + Ek1/r log r + Er log r) bits of
communication.

Remark 2. The log∗(k/E) terms in the round complexity of Theorems 4–7 are not absolute. They
can each be replaced with max{0, log∗(k/E)−log∗(C)}, at the cost of increasing the communication
by O(Ck).

Remark 3. By applying Theorem 1 to Theorems 4–7 we obtain SetDisjointness/SetIntersection pro-
tocols with the same communication complexity, but with one more round of communication. In
the case of SetDisjointness (Theorem 1 + Theorem 5), it is straightforward to skip the reduction of
Theorem 1 and solve the problem directly with O(k + Ek1/r) communication in (r + log∗(k/E))
rounds. However, we do not see how to avoid Theorem 1’s extra round of communication when
solving SetIntersection. I.e., the SetIntersection protocols implied by Theorems 1, 4, and 7 use
(log∗(k/E) + r+1) rounds.

4.1 Overview and Preliminaries

We start by giving a generic protocol for EqualityTesting. The protocol uses a simple subroutine for
ExistsEqual/EqualityTesting when k = 1. Suppose Alice and Bob hold x, y ∈ U = {0, 1}l, respectively.
Alice picks a random w ∈ {0, 1}l from the shared random source and sends Bob x̌ = 〈x,w〉 mod 2,
where 〈·, ·〉 is the inner product operator. Bob computes y̌ = 〈y,w〉 mod 2 and declares “x = y” iff
x̌ = y̌. Clearly, Bob never errs if x = y; it is straightforward to show that the probability of error
is exactly 1/2 when x 6= y. We call this protocol an inner product test and x̌, y̌ test bits. A b-bit
inner product test on x and y refers to b independent inner product tests on x and y.

At the beginning of phase j, j ≥ 1, Alice and Bob agree on a subset Ij−1 of coordinates on which
all previous inner product tests have passed. In other words, they have refuted the potential equality

xi
?
= yi for all i ∈ [k]\Ij−1. Each coordinate i ∈ Ij−1 represents either an actual equality (xi = yi),

or a false positive (xi 6= yi). At the beginning of the protocol, I0 = [k]. In phase j, we perform
lj independent inner product tests on each coordinate in Ij−1 and let Ij ⊆ Ij−1 be the remaining
coordinates that pass all their respective inner product tests. Notice that each coordinate in Ij−1

22

corresponding to equality will always pass all the tests and enter Ij , while those corresponding to
inequalities will only enter Ij with probability 2−lj . At the end of the protocol, we declare all
coordinates in Ir equal and all other coordinates not equal.

This finishes the description of the generic EqualityTesting protocol. Theorems 4–12 all build on
the framework of the generic protocol, instantiating its steps in different ways.

4.1.1 A Protocol for Exchanging Test Bits

For EqualityTesting, it is possible that a constant fraction of the coordinates are actually equalities,
which makes |Ij| = Θ(k) for every j. The naive implementation would explicitly exchange all
lj |Ij−1| test bits and use Ω(kE) bits of communication in total. All the test bits corresponding to
equalities are “wasted” in a sense.

For our application, it is important that the communication volume that Alice and Bob use to
exchange their test bits in phase j be proportional to the number of false positives in Ij−1, instead
of the size of Ij−1. We will use a slightly improved version of a protocol of Feder et al. [FKNN95]
for exchanging the test bits.

Imagine packing the test bits into vectors x̂, ŷ ∈ B|Ij−1| where B = {0, 1}lj . Lemma 4.1 shows
that Alice can transmit x̂ to Bob, at a cost that depends on an a priori upper bound on the
Hamming distance dist(x̂, ŷ), i.e., the number of the coordinates in Ij−1 where they differ.

Lemma 4.1 (Cf. Feder et al. [FKNN95].). Suppose Alice and Bob hold length-K vectors x, y ∈ BK ,
where B = {0, 1}L. Alice can send one O(dL + d log(K/d))-bit message to Bob, who generates a
string x′ ∈ BK such that the following holds. If the Hamming distance dist(x, y) ≤ d then x = x′;
if dist(x, y) > d then there is no guarantee.

Proof. Define G = (V,E) to be the graph on V = BK such that {u, v} ∈ E iff dist(u, v) ≤ 2d.
The maximum degree in G is clearly at most ∆ =

(K
2d

)
· 22Ld since there are

(K
2d

)
ways to select the

2d indices and 22Ld ways to change the coordinates at those indices so that there are at most 2d
different coordinates. Let φ : V 7→ [∆] be a proper ∆-coloring of G. Alice sends φ(x) to Bob, which
requires log∆ = O(dL + d log(K/d)) bits. Every string in the radius-d ball around y (w.r.t. dist)
is colored differently since they are all at distance at most 2d, hence if dist(x, y) ≤ d, Bob can
reconstruct x without error.

Corollary 4.2. Suppose at phase j, it is guaranteed that the number of false positives in Ij−1 is at
most kj−1. Then phase j can be implemented with O(kj−1lj + kj−1 log(k/kj−1)) bits in 2 rounds.

Finally, a naive implementation of the protocol requires 2r rounds if the generic protocol has r
phases. In fact, the protocol can be compressed into exactly r rounds in the following way. At the
beginning, both parties agree that I0 = [k]. Alice generates her l1|I0| test bits x̂(1) for phase 1 and
communicates them to Bob; Bob first generates his own test bits ŷ(1) for phase 1 and determines
I1, then generates l2|I1| test bits ŷ(2) for phase 2 and transmits both ŷ(1) and ŷ(2) to Alice. Alice
computes I1, generates x̂(2), computes I2, generates x̂(3), and then sends x̂(2) and x̂(3) to Bob, and
so on. There is no asymptotic increase in the communication volume.

4.1.2 Reducing the Number of False Positives

Our protocols for EqualityTesting and ExistsEqual are divided into two parts. The goal of the first
part is to reduce the number of false positives from at most k to at most E; if E ≥ k, we can

23

skip this part. The details of this part are very similar to Sağlam and Tardos’s SetDisjointness

protocol [ST13].

Theorem 8. Let (x, y) be an instance of ExistsEqual with |x| = |y| = k. In log∗(k/E) rounds,
we can reduce this to a new instance (x′, y′) of ExistsEqual where |x′| = |y′| ≤ E, using O(k)
communication. The failure probability of this protocol is at most 2−(E+1).

For EqualityTesting, we can reduce the initial instance to a new instance (x′, y′) such that the
Hamming distance dist(x′, y′) ≤ E, with the same round complexity, communication volume, and
error probability.

Proof. We first give the protocol for ExistsEqual, then apply the necessary changes to make it work
for EqualityTesting.

The protocol for ExistsEqual uses our generic protocol, and imposes a strict upper bound kj on
|Ij |. Whenever |Ij | exceeds this upper bound, we halt the entire protocol and answer yes (there
exists a coordinate where the input vectors are equal). We start by setting the parameters kj and
lj for any j ∈ [1, log∗(k/E)] as follows.

k0 = k,

kj = max

{
k

2j−1 exp(j)(2)
, E

}
,

lj = 3 + exp(j−1)(2).

Note that it is reasonable to assume kj > E before the last phase, since whenever we find kj ≤ E,
we can simply terminate the protocol prematurely after phase j, and our goal would be achieved.

Now suppose the input vectors share no equal coordinates. We know that |Ij−1| ≤ kj−1 at the
beginning of phase j. The probability of any particular coordinate in Ij−1 passing all tests in phase
j is exactly pj = exp(−lj). Thus, the expected size of Ij is at most

kj−1pj =
k

2j−2 exp(j−1)(2)
· 1

23 exp(j)(2)
≤ k

2j+2 exp(j)(2)
≤ kj

8
.

Recall the statement of the usual Chernoff bound.

Fact 4.3 (See [DP09]). Let X =
∑n

i=1 Xi, where each Xi is an i.i.d. Bernoulli random variable.
Letting µ = E[X], the following inequality holds for any δ > 0.

Pr[X ≥ (1 + δ)µ] ≤
(

eδ

(1 + δ)1+δ

)µ

.

In our case Xi = 1 iff the ith coordinate in Ij−1 survives to Ij. By linearity of expectation,
µ ≤ kj/8. Setting δ = kj/µ − 1 ≥ 7, we have

Pr[X ≥ kj] = Pr[X ≥ (1 + δ)µ] ≤
(

eδ

(1 + δ)1+δ

) kj
1+δ

<

(
e7

88

)kj/8

< 2−1.7kj .

Hence, the probability that there are at least kj coordinates remaining after phase j is at most
2−1.7kj ≤ 2−1.7E , and the probability this happens in any phase is at most

∑
j 2

−1.7kj ≤ 2−(E+1).
Notice that when x and y share at least one equal coordinate, the error probability of this protocol

24

is 0 because if it fails to reduce the number of coordinates to E it (correctly) answers yes. The
communication volume of the protocol is asymptotic to

∑

j

lj |Ij−1| ≤
∑

j

ljkj−1 =
∑

j

O(k/2j) = O(k).

For EqualityTesting, we use the same kj as an upper bound on the number of false positives in
Ij, instead of the size of Ij. Since the number of false positives is at most k at the beginning, we
can still use the same argument to show that with the same choice of kj and lj, after log∗(k/E)
phases, the number of false positives is at most E with error probability 2−(E+1). By Lemma 4.1,
the number of bits we need to exchange in phase j is O(kj−1lj + kj−1 log(k/kj−1)). Notice that
log(k/kj−1) = j − 2 + exp(j−2)(2) = O(log lj), so the total communication volume is still O(k).

In all of our protocols, we first apply Theorem 8 to reduce the number of coordinates (in
the case of ExistsEqual) or false positives (in the case of EqualityTesting) to be at most E. This
requires no communication if E ≥ k to begin with. Hence, with log∗(k/E) extra rounds and O(k)
communication, we will assume henceforth that all instances of ExistsEqual have k ≤ E and all
instances of EqualityTesting have dist(x, y) ≤ E.

4.2 A Simple EqualityTesting Protocol

In light of Theorem 8, we can assume that the input vectors to EqualityTesting are guaranteed to
differ in at most k0 = min{k,E} coordinates.

Theorem 9. Fix any k ≥ 1, E ≥ 1, and r ∈ [1, (log k0)/2], where k0 = min{k,E}. There exists a
randomized protocol for EqualityTesting length-k vectors x, y with Hamming distance dist(x, y) ≤ k0

that uses r rounds, O(k + rEk
1/r
0) bits of communication, and errs with probability perr = 2−(E+1).

Proof. We instantiate the generic protocol. The parameter lj is the number of test bits generated
per coordinate of Ij−1 in phase j. The parameter kj is an upper bound on the number of false
positives surviving in Ij (with high probability 1− 2−Θ(E)).

kj = k
1−j/r
0 ,

lj = 4Ek
j/r−1
0 .

Now fix a phase j ∈ [1, r] and suppose at the beginning of phase j that the number of false
positives in Ij−1 is at most kj−1. By assumption this holds for j = 1. The probability that at least
kj false positives survive phase j is upper bounded by

(
kj−1

kj

)
2−kj lj ≤

(
ekj−1

kj

)kj

2−kj lj (
(n
k

)
≤
(
en
k

)k
)

≤ 22kj log(kj−1/kj)−kj lj (e ≤ k
1/r
0 =

kj−1

kj
due to r ≤ log k0

2)

≤ 2−2E . (log
kj−1

kj
≤ kj−1

kj
= k

1/r
0 ≤ lj

4)

Thus, by a union bound, the number of false positives surviving phase j is strictly less than kj , for
all j ∈ [1, r], with probability at least 1− 2−(E+1). In particular, there are no false positives at the
end since kr = 1.

25

Meanwhile, by Lemma 4.1, the total communication volume is O(k + rEk
1/r
0) since

r∑

j=1

kj−1lj = 4rEk
1/r
0 ,

and

r∑

j=1

kj−1 log
k

kj−1
= k0

r−1∑

j=0

1

k
j/r
0

(
log

k

k0
+ log k

j/r
0

)

≤ 2k0 log
k

k0
+ k0

r−1∑

j=0

log k
j/r
0

k
j/r
0

(k
1/r
0 ≥ 22 due to r ≤ log k0

2)

= O(k). (k
1/r
0 ≥ 22 and k0 ≤ k)

Proof of Theorem 4. Applying Theorem 8 and Theorem 9 in sequence, we obtain a (log∗(k/E)+r)-
round randomized protocol for EqualityTesting on vectors of length k that errs with probability perr =
2−E and uses O(k+ rEmin{k,E}1/r) bits of communication. When E ≥ k the protocol is obtained
directly from Theorem 9 and uses O(rEk1/r) communication. When E < k the communication
implied by Theorems 8 and 9 is O(k + rE1+1/r) = O(k + rEk1/r).6

4.3 An Optimal ExistsEqual Protocol

4.3.1 Overview of the Protocol

In this section, we show that we can obtain a (log∗(k/E) + r)-round, O(k+Ek1/r)-bit protocol for
ExistsEqual. This matches the lower bound of Theorem 3, asymptotically, when E ≥ k. Theorem 8
covers dimension reduction in log∗(k/E) rounds, so we assume without loss of generality that E ≥ k
and we have exactly r rounds.

Suppose the inputs x and y share no equal coordinates. Imagine writing down all the possible
results of the inner product tests in a matrix A of dimension (E + log k) × k, where Aq,i is “=”
if xi, yi pass the qth inner product test, and “ 6=” otherwise. By a union bound, with probability
1− 2−E, each column contains at least one “ 6=”. Now consider the area above the first “ 6=” in each
column. The probability that this area is at least E′ is, by a union bound, at most

(
E′ + k − 1

k − 1

)
2−E′

< exp(k log(e(E′ + k)/k) − E′). (4)

For E′ = E + O(k log(E/k)) = O(E), this probability is ≪ 2−E . In our analysis it suffices to
consider a situation where an adversary can decide the contents of A, subject to the constraint
that its error budget (the area above the curve defined by the first “ 6=” in each column) never

6It appears as if rE1+1/r is an improvement over rEk1/r when E < k, but this is basically an illusion. In light of
Remark 2, we can always dedicate log∗(k/E) − 2 rounds to the first part and r + 2 rounds to the second part while
increasing the communication by O(k). When E ≥ k1−1/r, rE1+1/r = Ω((r+2)Ek1/(r+2)), meaning there is no clear
benefit to use the rE1+1/r expression.

26

exceeds E′ = O(E). The notion of an error budget is also essential for analyzing the EqualityTesting

protocols of Section 4.4 Section 4.5.
In the jth phase, j ≥ 1, our protocol exposes the fragment of A consisting of the next lj rows

of columns in Ij−1. The set Ij consists of those columns without any “ 6=” exposed so far. The
communication budget for phase j is equal to lj |Ij−1|. In the worst case, the first exposed value in
each column of Ij−1 \ Ij is “ 6=”, so the adversary spends at least lj |Ij| of its error budget in phase j.

If we witness at least one “ 6=” in every column, we can correctly declare there does not exist
an equal coordinate and answer no. Otherwise, if the adversary has not exceeded his error budget
but there is some column without any “ 6=”, we answer yes. If the adversary ever exhausts his error
budget, we terminate the protocol and answer yes. Recall that the notion of an error budget tacitly
assumed that x and y differ in every coordinate. It is important to note that if they do not differ
in every coordinate, the protocol answers correctly with probability 1, regardless of whether the
protocol halts prematurely or not. Thus, there is nothing to prove in this case and it is fine to
measure the error budget expended as if Alice’s and Bob’s inputs differ in all coordinates. The
probability that the error budget is exhausted when x and y differ in all coordinates (causing the
algorithm to incorrectly answer yes) is ≪ 2−E , according to Eqn. (4).

4.3.2 Analysis

In this section we give a formal proof to the following Theorem:

Theorem 10. Fix any k ≥ 1, E ≥ k, and r ∈ [1, (log k)/2]. There exists an r-round random-
ized protocol for ExistsEqual on vectors of length k that errs with probability perr = 2−(E+1), using
O(Ek1/r) bits of communication.

Proof. The number of tests per coordinate in phase j is lj :

lj = 2Ekj/r−1.

Define Ej =
∑j

j′=1 lj′ |Ij′ | to be the portion of the error budget spent in phases 1 through j. We can
express the asymptotic communication cost of the protocol in terms of the error budget as follows.

r∑

j=1

lj |Ij−1| ≤ l1|I0|+ k1/r
r∑

j=2

lj−1|Ij−1| lj = k1/rlj−1.

≤ 2Ek1/r + Er−1k
1/r Defn. of Er−1.

Recall that the protocol terminates immediately after phase j if Ej ≥ E′, which indicates Er−1 < E′.
Hence, the total cost is bounded by

≤ (2E + E′)k1/r = O(Ek1/r).

The protocol can only err if x and y differ in every coordinate. In this case, there are two
possible sources of error. The first possibility is that the protocol answers yes because |Ir| ≥ 1. By
a union bound, this happens with probability at most

k2−
∑r

j=1 lj ≤ k2−lr = k2−2E .

The second possibility is that the protocol terminates prematurely and answers yes if Ej ≥ E′

for some j ∈ [1, r]. The probability of this event occuring is also ≪ 2−E ; see Eqn. (4). This
concludes the proof.

27

Proof of Theorem 5. Theorem 5 follows directly by combining Theorem 8 and Theorem 10.

4.4 A log k-Round Communication Optimal EqualityTesting Protocol

Suppose we want a communication optimal EqualityTesting protocol using O(k + E) bits. When
E ≥ k we need r = Ω(log k) rounds, by Theorem 2. In this section, we give a protocol for
EqualityTesting that uses O(r) rounds (rather than r) and O(Ek1/r) bits of communication, assuming
E ≥ k. Observe that when r = Θ(log k), there is no (asymptotic) difference between r rounds and
O(r) rounds as this only influences the leading constant in the communication volume.

4.4.1 Overview of the Protocol

The protocol uses the concept of an error budget introduced in Section 4.3. To shave the factor r
off the communication volume, we cannot afford to use Ekj/r−1 test bits for each coordinate that
participates in phase j. Consequently, we cannot guarantee with high probability (say 1− 2−Θ(E))
that the number of false positives in Ij is less than k1−j/r.

Our protocol needs to be able to respond to the rare event that the number of false positives
in Ij is larger than kj . Notice that this type of error cannot be detected in the first j phases, and
is not easily detectable in the following phases. The danger in the number of false positives in Ij
exceeding kj is that when the test bits for phase j+1 are exchanged using Lemma 4.1, the protocol
may silently fail, with all test bits potentially corrupted.

To address these challenges, Alice and Bob each keep a history of all the test bits they have
generated so far. They also keep a history of the test bits they have received from the other party,
which may have been corrupted. Define TA and TB to be the true history of the test bits generated

by Alice and Bob, respectively. Define T
(A)
B to be what Alice believes Bob’s history to be, and

define T
(B)
A analogously. Observe that if every invocation of Lemma 4.1 succeeds, then TA = T

(B)
A

and TB = T
(A)
B .

To detect inconsistencies, after Alice and Bob generate and exchange their test bits for phase

j, they accumulate their views of the history into strings T (A) = TA ◦ T (A)
B and T (B) = T

(B)
A ◦ TB ,

respectively, where ◦ is the concatenation operator, and verify that T (A) = T (B) with a certain
number of inner product tests. This is called a history check. If the history check passes, they can
proceed to phase j + 1. If the history check fails then the results of phase j are junk, and we can
infer that one of two types of low probability events occurred in phase j − 1. The first possibility is
that the test bits at phase j − 1 were exchanged successfully (and consequently, the history check
succeeded), but Ij−1 contains more than kj−1 false positives. The second possibility is that Alice’s
and Bob’s histories were already inconsistent at phase j−1, but the phase-(j−1) history check failed
to detect this. Notice that Alice and Bob cannot detect which of these types of errors occurred. In
either case, we must undo the effects of phases j and j−1 and restart the protocol at the beginning
of phase j − 1. It may be that the history check then fails at the re-execution of phase j − 1, in
which case we would continue to rewind to the beginning of phase j − 2, and so on. Being able to
rewind multiple phases is important because we do not know which phase suffered the first error.

Both parties maintain an empirical error meter E′′ that measures the sum of logarithms of
probabilities of low probability (error) events that have been detected. If the error meter ever exceeds
the error budget E′ = Θ(E) we terminate the protocol, which we show occurs with probability
≪ 2−E . Thus, the process above (proceeding iteratively with phases, undoing and redoing them

28

when errors are detected) must end by either successfully completing phase r or exceeding the error
budget.

If Alice and Bob successfully finish phase r, we are still not done. This is because an error can
happen in the later phases but we do not have sufficiently high (1 − 2−E) confidence that they all
succeeded. To build this confidence, Alice and Bob do inner product tests on the whole history,
gradually increasing their number until Θ(E) tests have been done. If one of these history checks
fails, we increase the error meter E′′ appropriately and rewind the protocol to a suitable phase j in
the first stage of the protocol.

Let us make every step of this protocol more quantitatively precise.

• The protocol has two stages, the Refutation Stage (in which potential equalities are refuted)
and the Verification Stage, each consisting of a series of phases. Although the Refutation
Stage logically precedes the Verification Stage, because phases can be undone, an execution
of the protocol may oscillate between Refutation and Verification multiple times.

• The Refutation Stage is similar to the protocol in Section 4.2 except Alice and Bob will verify
whether the messages conveyed by Lemma 4.1 are successfully received with further inner
product tests. The budget of phase j is

Bj =
Ek

1/r
0

min{j2, r} .

Observe that the sum of budgets,
∑r

j′=1 Bj′ , is O(Ek
1/r
0). Thus, in phase j, we perform

lj = Bj/kj−1 independent inner product tests on each coordinate in Ij−1, and exchange test
bits with a Hamming distance of kj−1. I.e., we are working under the assumption (perhaps
false) that there are kj−1 false positives still in Ij−1. As usual, I0 is initially [k] and

k0 ≤ E

kj ≤ k
1−j/r
0

All histories TA, TB , T
(A)
B , T

(B)
A are initially empty, and the error meter E′′ is initially zero.

• Phase j has two steps, the test step and the history check step. In the test step, Alice and Bob
conduct inner product tests as in Section 4.2, i.e., they generate lj test bits for each coordinate
in Ij−1 and exchange them using Lemma 4.1, assuming their Hamming distance is at most
kj−1. Alice appends the test bits she generates onto the history TA, and appends the test

bits she receives from Bob onto T
(A)
B . Bob does likewise. In the history check step, they use

Bj independent inner product tests to check whether T (A) = T (B), where T (A) = TA ◦ T (A)
B ,

and T (B) = T
(B)
A ◦ TB . The history check fails if they detect inequality and passes otherwise.

Since Bj is, in general, less than E, we are still skeptical of history checks that pass.

• If the history check for phase j passes, Alice and Bob proceed to phase j+1, or proceed to the
Verification Stage if j = r. Otherwise, an error has been detected: either the number of false
positives in Ij−1 is at least kj−1, or the history check at phase j − 1 mistakenly passed. The
latter occurs with probability exp(−Bj−1) and we show the former occurs with probability

exp(−3k−1/r
0 Bj−1/4). Not knowing which occurred, we increment the error meter E′′ by

29

k
−1/r
0 Bj−1/2 due to a union bound. If E′′ exceeds the error budget E′ = cE then we halt,

where c ≥ 2 is a suitable constant. Otherwise we retract the effects of phases j and j − 1 and
continue the protocol at the beginning of phase j − 1, with “fresh” random bits so as not to
recreate previous errors.

• Observe that after phase r of the Refutation Stage, each coordinate in Ir has only passed
about Br/kr−1 = E/r inner product tests, which is not high enough. Before the Verification
Stage begins, Alice and Bob each generate E′ test bits for each coordinate in Ir and append
them to T (A) and T (B). (This can be viewed as a degenerate instantiation of Lemma 4.1 with
d = 0, which requires no communication.) If there are no false positives in Ir, these test bits
must be identical.

• In the Verification Stage the phases are indexed in reverse order: r, r − 1, ... , 1. In each
successive phase j, Alice and Bob test the equality T (A) = T (B) with Bj independent inner
product tests. This process stops if it passes a total of E′ tests, in which case they report
that x and y are equal on Ir and not equal on [k]\Ir, or some Verification phase j detects
that T (A) 6= T (B). In this case, we know Verification phases r, r − 1, ... , j + 1 passed in error,
and that there must also have been an error in Refutation phase r. Therefore, Alice and

Bob increment E′′ by k
−1/r
0 Br/2 +

∑r
j′=j+1Bj′ and halt if E′′ ≥ E′. If not, they rewind the

execution of the protocol to phase j of the Refutation Stage and continue.

Algorithm 1 recapitulates this description in the form of pseudocode, from the perspective of
Alice. Here TA[j, i] refers to the sequence of Alice’s test bits in TA for the ith coordinate produced
in the most recent execution of phase j, and TA[j1 · · · j2, ·] refers to the test bits generated from
phase j1 to phase j2. Phase r+ 1 refers to the E′ × |Ir| test bits generated between the Refutation

and Verification stages. T (A)[j, i] refers to the concatenation of TA[j, i] and T
(A)
B [j, i].

Algorithm 1 An EqualityTesting protocol for Theorem 11 (from the perspective of Alice).

1: procedure EqualityTesting ⊲ main procedure
2: I0 ← [k]
3: k0 ← min{k,E} ⊲ initial bound on Hamming distance
4: E′ ← cE ⊲ error budget
5: E′′ ← 0 ⊲ error meter
6: for j ← 1, ... , r do

7: Bj ←
Ek

1/r
0

min{j2, r} ⊲ phase j communication budget

8: kj ← k
1−j/r
0 ⊲ ideal upper bound on Hamming distance

9: lj ← Bj/kj−1 ⊲ tests per coordinate
10: end for

11: Refutation(1)
12: Verification(r)
13: Output equal on coordinates Ir and not equal on [k]\Ir
14: end procedure

30

Algorithm 1 An EqualityTesting protocol for Theorem 11 (from the perspective of Alice).(cont.)

15: procedure InnerProductTest(w,b)
16: perform b independent inner product tests on w and return the test bits
17: end procedure

18: procedure Refutation(j) ⊲ phase j of the Refutation Stage
19: TA[j, ·]←⊥ ⊲ Clear test bits for phase j
20: for all i ∈ Ij−1 do

21: TA[j, i]← InnerProductTest(xi, lj)
22: end for

23: send TA[j, ·] to Bob and receive T
(A)
B [j, ·] from Bob via Lemma 4.1

24: T (A)[j, ·]← TA[j, ·] ◦ T (A)
B [j, ·]

25: T̂ (A) ← InnerProductTest(T (A)[1 · · · j, ·], Bj)
26: send T̂ (A) to Bob and receive T̂ (B) from Bob directly
27: if T̂ (A) = T̂ (B) then ⊲ passed history check

28: Ij ← {i ∈ Ij−1 | TA[j, i] = T
(A)
B [j, i]} ⊲ all coords. not yet refuted

29: if j < r then

30: Refutation(j + 1)
31: else

32: T (A)[r + 1, ·]←⊥
33: for all i ∈ Ir do

34: T (A)[r + 1, i]← InnerProductTest(xi, E
′)

35: end for

36: end if

37: else

38: E′′ ← E′′ + k
−1/r
0 Bj−1/2, and terminate if E′′ ≥ E′ ⊲ update error meter

39: Refutation(j − 1)
40: end if

41: end procedure

42: procedure Verification(j) ⊲ phase j of the Verification Stage
43: T̂ (A) ← InnerProductTest(T (A)[·, ·], Bj)
44: send T̂ (A) to Bob and receive T̂ (B) from Bob directly
45: if T̂ (A) = T̂ (B) then

46: if
∑r

j′=j Bj′ < E′ then ⊲ insufficiently confident to halt
47: Verification(j − 1)
48: end if

49: else ⊲ error detected
50: E′′ ← E′′ + k

−1/r
0 Br/2 +

∑r
j′=j+1Bj′ , and terminate if E′′ ≥ E′ ⊲ update error meter

51: Refutation(j) ⊲ rewind protocol to phase j
52: Verification(r)
53: end if

54: end procedure

31

4.4.2 Analysis

To prove Theorem 6, it suffices to prove the following Theorem 11.

Theorem 11. Fix any k ≥ 1, E ≥ 1, and r ∈ [1, (log k0)/6], where k0 = min{k,E}. There exists a
randomized protocol for EqualityTesting length-k vectors x, y with Hamming distance dist(x, y) ≤ k0

that uses O(r) rounds, O(k+Ek
1/r
0) bits of communication, and errs with probability perr = 2−(E+1).

The protocol of Lemma 4.1 fails if Bob does not generate the correct x′ = x, which indicates that
the precondition is not met, i.e., dist(x, y) > d. Refutation phase j fails if the condition in line 27
is not satisfied and the else branch at line 37 is executed in order to resume the protocol from phase
j − 1. Similarly, we say Verification phase j fails if the condition in line 45 is not satisfied, which
also indicates the else branch at line 49 is executed and the protocol is resumed from Refutation
phase j.

We begin the proof by showing that the extra communication caused by redoing some of the
Refutation/Verification phases is properly covered by the total error budget. The following two
lemmas actually prove that the error budget spent so far is correctly lower bounded in line 38 and
line 50, and then Lemma 4.6 upper bounds the total number of extra phases by O(r) and the overall

extra communication by O(k + Ek
1/r
0).

Lemma 4.4. Fix any j ∈ [2, r]. If phase j of the Refutation Stage fails, then the outcome of the

most recent execution of phase j − 1 happened with probability at most exp(−k−1/r
0 Bj−1/2).

Proof. Recall that there are two types of errors at phase j − 1. If the (j − 1)th history check
erroneously passed, this occurred with probability exp(−Bj−1). The probability that more than
kj−1 false positives survive in Ij−1 is less than

(
k0
kj−1

)
2−kj−1lj−1 ≤

(
ek0
kj−1

)kj−1

2−kj−1lj−1 (
(
n
k

)
≤
(
en
k

)k
.)

≤ 22kj−1 log(k0/kj−1)−kj−1lj−1 (e ≤ k
1/r
0 ≤ k0

kj−1
due to r ≤ log k0

6)

≤ 2−3lj−1kj−1/4,

where the last step follows from the inequality

2 log
k0
kj−1

= 2(j − 1) log k
1/r
0

≤ 8j−1 log k
1/r
0

4(j − 1)2
(Because 8x3 ≤ 8x for x ∈ N)

≤ k
(j−1)/r
0

4(j − 1)2
(log k

1/r
0 ≤ k

1/r
0
8 due to k

1/r
0 ≥ 26)

≤ Bj−1

4kj−2
(Defn. of Bj−1)

=
lj−1

4
. (Defn. of lj−1)

Combining the above two cases, by a union bound, the outcome of the most recent execu-
tion of phase j − 1 of the Refutation Stage happens with probability at most exp(−Bj−1) +

exp(−3lj−1kj−1/4) = exp(−Bj−1) + exp(−3k−1/r
0 Bj−1/4) ≤ exp(−k−1/r

0 Bj−1/2), as claimed.

32

Lemma 4.5. Fix any j ∈ [1, r]. If phase j of the Verification Stage fails, then the outcomes of
the most recent execution of phases r, r − 1, ... , j + 1 of the Verification Stage and phase r of the

Refutation Stage happened with overall probability at most exp(−k−1/r
0 Br/2−

∑r
j′=j+1Bj′).

Proof. Notice that the failure of Verification phase j means all previous Verification phases r, r −
1, ... , j+1 failed to detect an inconsistency in the history, which occurs with probability exp(−∑r

j′=j+1Bj′).
Meanwhile, the inconsistency is caused by an error of some type in Refutation phase r, which, ac-

cording to Lemma 4.4, occurs with probability at most exp(−k−1/r
0 Br/2). Therefore, the outcomes

of the most recent execution of Verification phases r, r−1, ... , j+1 and Refutation phase r happened

with overall probability at most exp(−k−1/r
0 Br/2−

∑r
j′=j+1Bj′).

Lemma 4.6. Algorithm 1 executes O(r) extra Refutation/Verification phases and uses O(k+Ek
1/r
0)

extra bits of communication.

Proof. We first consider the total number of extra phases. Each failure of Refutation phase j uses

at least k
−1/r
0 Bj−1/2 ≥ E/(2r) of the error budget and causes the re-execution of two phases,

namely j − 1 and j. Similarly, each failure of Verification phase j uses k
−1/r
0 Br/2 +

∑r
j′=j+1Bj′ ≥

(r− j +1)E/(2r) of the error budget and causes the re-execution of 2(r− j + 1) phases. Thus, the
total number of extra phases is at most 4cr = O(r), where the error budget E′ = cE.

Turning to the overall extra communication, notice that phase j of the Refutation Stage has
communication volume O(Bj + kj−1 log(k/kj−1)) and phase j of the Verification Stage has com-

munication volume O(Bj). For any j ∈ [2, r], also notice that Bj−1/Bj ≤ j2/(j − 1)2 ≤ 4 ≤ k
1/r
0 .

Thus, the communication caused by each failure is at most O(k
1/r
0) times the error budget spent by

that failure, if we temporarily ignore the kj−1 log(k/kj−1) term.
In order to upper bound the communication contributed by the kj−1 log(k/kj−1) term, observe

that Refutation phase j can only be repeated O(j2) times before the error budget is exhausted.

Thus, the overall extra communication is upper bounded by O(k + Ek
1/r
0) since

O(k
1/r
0) ·E′ +

r∑

j=1

O(j2) · kj−1 log
k

kj−1

= O(k
1/r
0) ·E′ + k0

r∑

j=1

O(j2)

k
(j−1)/r
0

(
log

k

k0
+ log k

(j−1)/r
0

)

= O(k
1/r
0) ·E′ + k0 log

k

k0

r∑

j=1

O(j2)

k
(j−1)/r
0

+ k0

r∑

j=1

O(j2) · log k(j−1)/r
0

k
(j−1)/r
0

= O(k + Ek
1/r
0). (k

1/r
0 ≥ 26 and k0 ≤ k)

Now we are ready to prove Theorem 11.

Proof of Theorem 11. If there are no errors, Algorithm 1 has at most 2r phases and uses O(
∑r

j=1(Bj+

kj−1 log(k/kj−1))) = O(k + Ek
1/r
0) communication, where each phase can be implemented in O(1)

33

rounds. Together with Lemma 4.6, we have shown that it is an O(r)-round randomized Equali-

tyTesting protocol using O(k+Ek
1/r
0) bits of communication. Thus, it suffices to calculate the error

probability of the protocol.
Consider a possible execution of the protocol, i.e., the sequence of the Refutation/Verification

phases that are performed. It can be represented by a unique 0-1 string of length at most 4cr + 2r
(by the proof of Lemma 4.6) such that each “1” corresponds to a failed phase. In particular, each
execution of the protocol that terminates prematurely because E′′ ≥ E′ is represented as a 0-1
string, which occurs with probability at most 2−E′

, by Lemmas 4.4 and 4.5. Hence the overall
probability of terminating prematurely is 24cr+2r · 2−E′

.
An error can also be caused by at least one false positive surviving all E′ independent inner

product tests generated after Refutation phase r. The probability of this happening is at most
k02

−E′
. The last possible source of error is that all Verification phases fail to detect the inequality

T (A) 6= T (B). According to line 46, the probability of this happening is at most 2−E′
. Hence, the

overall probability of error is upper bounded by

24cr+2r · 2−E′
+ k02

−E′
+ 2−E′

= poly(k0)2
−E′

,

which is at most 2−E for, say, E′ = 2E. This concludes the proof.

Proof of Theorem 6. Theorem 6 subsequently follows by applying Theorem 8 and Theorem 11 in
sequence.

4.5 A More Efficient EqualityTesting Protocol

Theorem 10 demonstrates that the Ω(Ek1/r) lower bound can be attained for ExistsEqual. Let
us highlight a key property of the protocol that arises naturally in ExistsEqual but is difficult to
efficiently recreate in EqualityTesting. In the first round Alice generates about l1 = E/k1−1/r test
bits per coordinate and sends them to Bob. Since there is no possibility of reporting yes (∃i.xi =
yi) in error, Bob can operate under the assumption that ∀i.xi 6= yi. Therefore, if he finds that
|I1|= β1k

1−1/r, he can infer that the adversary has expended a β1 fraction of his error budget and
adaptitvely choose the length of his message to be β1Ek1/r, i.e., we are effectively charging k1/r bits
of communication to each of the β1E units of error just spent by the adversary. In Theorem 10 this
adaptivity happens transparently: the length of the jth message depends directly on the fraction
βj−1 of the error budget expended by the adversary in round j − 1, even though βj−1 is not ever
named as a parameter of the algorithm.

A key difference between ExistsEqual and EqualityTesting is that in the latter, the adversary can
effectively hide how much of its error budget it has expended. Consider the state of Bob after
receiving the first message from Alice. If he finds that |I1|= k/2, there is no way to tell how many
false positives are contained in I1 and how many are true positives. In the worst case the number
of false positives could be as high as k1−1/r. We cannot optimistically assume the false positive
number is lower,7 and continually using the pessimistic bound leads to O(rEk1/r) communication.
It seems that any optimal algorithm must detect and adapt to the fraction of the error budget spent
by the adversary.

7Invoking Lemma 4.1 with a Hamming distance d that is too small can result in an undetected failure of the
protocol.

34

Theorem 12. Fix any k ≥ 1, E = Ω(1), and r ∈ [1, (log k0)/2], where k0 ≤ min{k,E}. There exists
a randomized protocol for EqualityTesting length-k vectors x, y with Hamming distance dist(x, y) ≤ k0

that uses r rounds, O(k + Ek
1/r
0 log r + Er log r) bits of communication, and errs with probability

perr = 2−(E+1).

The remainder of this section constitutes a proof of Theorem 12.
Define E′ = 7E to be the error budget of the adversary, i.e., it is allowed to make up to E′ inner

product tests pass on unequal coordinates.

Round 1. Initially I0 = [k] is guaranteed to contain at most k0 unequal coordinates. Alice

generates l1 = E′k
1/r−1
0 test bits for each coordinate in I0, and transmits them to Bob using

Lemma 4.1 with a Hamming distance of d = k0. (We show later that the k0 log(k/k0) terms in this
protocol contribute negligibly to the overall communication; thus, for the time being we measure

the cost as k0l1 = E′k
1/r
0 .) Bob sets I1 to be the subset of I0 that pass all inner product tests.

Round 2. Due to the adversary’s error budget, the number of false positives in I1 is at most

k1 = E′/l1 = k
1−1/r
0 .

Suppose the true number of false positives in I1 is

k∗1 = β′
1k1 = β′

1k
1−1/r
0 ,

meaning the adversary just spent a β′
1 fraction of his total error budget. Bob cannot measure β′

1,
but he can send a message to Alice that allows her to estimate β′

1. Bob invokes Lemma 4.1 log r

times. For i ∈ [1, log r], Bob generates the next l
(i)
2 test bits for coordinates in I1 so that Alice can

recover them up to a Hamming distance of k
(i)
1 , where

l2k1 = 2E′k
1/r
0 ,

l
(i)
2 = l2 · 2i−1,

k
(i)
1 = k1/2

i−1.

Clearly invocation i will succeed if k
(i)
1 ≥ k∗1 and may fail if k

(i)
1 < k∗1. In order to detect which

invocations of Lemma 4.1 succeed, Bob supplements each with a Θ(E)-bit hash of the test bits
generated. Thus, with probability 1− 2−Θ(E), Lemma 4.1 has no silent failures.

Round 3 Onward. Suppose that Alice detects that the invocations of Lemma 4.1 with Hamming

distances k
(1)
1 , ... , k

(i∗)
1 succeed but the one with k

(i∗+1)
1 fails (or that i∗ = log r). Alice estimates β′

1

by
β1 = 2−i∗ .

Observe that if i∗ < log r (the (i∗ + 1)th invocation of Lemma 4.1 fails) then

k∗1 ≥ k
(i∗+1)
1 = 2−i∗ · k1−1/r

0

35

and consequently, β1 ≤ β′
1. On the other hand, if i∗ = log r then β1 = 1/r whereas β′

1 may be close
to zero. Either way, we have

β1 ≤ β′
1 + 1/r.

Since every false positive in I2 has successfully passed l
(i∗)
2 inner product tests, we can conclude

that the maximum number of false positives remaining in I2 is

k2 =
E′

l
(i∗)
2

=
E′

2E′k
1/r
0 · 2i∗−1/k1

=
k1

k
1/r
0 2i∗

= β1k
1−2/r
0 .

As before, k∗2 = β′
2k2 is the true number of false positives in I2, where β′

2 ∈ [0, 1] is currently
unknown. In the third round Alice selects l3 (see below), and invokes the test bit exchange protocol

(Lemma 4.1) with l
(i)
3 = l32

i−1 test bits per coordinate and Hamming distance k
(i)
2 = k2/2

i−1, in
parallel for all i ∈ [1, log r]. The overall communication volume is k2l3 log r, and we select l3 such
that this is linear in the (estimated) error budget spent by the adversary in round one, i.e.,

k2l3 log r = β1E
′k

1/r
0 log r

and therefore
l3 = β12E

′k
1/r
0 /k2 = 2E′/k

1−3/r
0

is independent of β1.
All the bounds above were specialized to round three, but apply to round j by reindexing

appropriately. In particular, the receiver of the (j − 1)th message estimates β′
j−2 = k∗j−2/kj−2 by

βj−2 = 2−i∗ ≤ β′
j−2 + 1/r

and sets

kj−1 = βj−2k
1−(j−1)/r
0 ,

lj = 2E′/k
1−j/r
0 ,

then invokes Lemma 4.1 log r times in parallel with parameters l
(i)
j = lj2

i−1 and k
(i)
j−1 = kj−1/2

i−1

to send the jth message. It remains to bound the total communication and the probability of error.

Communication Volume. With the extra Θ(E)-bit hash, the cost of each invocation of Lemma 4.2
with parameters d, L is O(E + dL+ d log(k/d)). There are at most log r invocations per round and
r rounds, so the total contributed by the first term is O(Er log r). The total contributed by the
second term is:

k0l1 +

r∑

j=2

log r∑

i=1

k
(i)
j−1l

(i)
j

= E′k
1/r
0 + log r ·

r∑

j=2

kj−1lj

36

= E′k
1/r
0 + 2E′k

1/r
0 log r ·

1 +

r∑

j=3

βj−2

≤ E′k
1/r
0 + 2E′k

1/r
0 log r ·

1 +

r∑

j=3

(β′
j−2 + 1/r)

≤ E′k
1/r
0 + 6E′k

1/r
0 log r (

∑

j≥3

β′
j−2 < 1)

= E′k
1/r
0 (6 log r + 1).

Next we bound the third term. For any j ≥ 2, we have

log r∑

i=1

k
(i)
j−1 log(k/k

(i)
j−1)

=

log r∑

i=1

kj−1

2i−1
log

2i−1k

kj−1

= kj−1 log
k

kj−1

log r∑

i=1

1

2i−1
+ kj−1

log r∑

i=1

i− 1

2i−1

= O(kj−1 log(k/kj−1)).

Therefore, it suffices to only consider the first invocation of Lemma 4.1 from each round. Now we
bound the total across all rounds. For the first two rounds we have k0 log k/k0 ≤ k and k1 log k/k1 ≤
k, so we start counting from round j = 3.

r∑

j=3

kj−1 log
k

kj−1

=

r−1∑

j=2

βj−1k
1−j/r
0 log

k

βj−1k
1−j/r
0

≤
r−1∑

j=2

βj−1k
log kj/r

βj−1

kj/r

≤ k

r−1∑

j=2

log kj/r

kj/r
+ k

r−1∑

j=2

βj−1 log
1

βj−1

kj/r
(βj ≤ 1.)

≤ k

r−1∑

j=2

log kj/r

kj/r
+

k

e

r−1∑

j=2

1

kj/r

= O(k). (k1/r ≥ 2.)

In conclusion, the total communication cost is O(k + Ek
1/r
0 log r + Er log r).

37

Error Probability. We now show that protocol errs with probability less than 2−(E+1). If we
use a 2E-bit hash of the test bits in each invocation of Lemma 4.1 the probability that any failed
invocation goes unnoticed is at most

r log r · 2−2E .

The algorithm works correctly so long as k∗j ≤ kj for every j, which holds whenever the adversary
does not exceed his error budget E′. The probability that the error budget is exceeded is, by a
union bound, at most

(
E′ + k0 − 1

k0 − 1

)
2−E′ ≤ exp(k0 log

(
e(E′ + k0)/k0

)
− E′),

which is less than 2−3E when E′ = 7E ≥ 7k0. Finally, every unequal coordinate is ultimately
subject to lr = 2E′ inner product tests, and the probability that any goes undetected is at most
k02

−2E′
. The total error probability is therefore at most

r log r · 2−2E + 2−3E + k02
−2E′ ≪ 2−(E+1).

This concludes the proof of Theorem 12.

5 Distributed Triangle Enumeration

One way to solve local triangle enumeration in the CONGEST model is to execute, in parallel, a
SetIntersection protocol across every edge of the graph, where the set associated with a vertex is a list
of its neighbors. Since there are at most ∆n/2 edges, we need the SetIntersection error probability
to be 2−E , E = Θ(log n), in order to guarantee a global success probability of 1− 1/poly(n). Our
lower bound says any algorithm taking this approach must take Ω((∆ + E∆1/r)/log n+ r) rounds
since each round of CONGEST allows for one O(log n)-bit message. The hardest situation seems
to be when ∆ = E = Θ(log n), in which case the optimum choice is to set r = log∆, making the
triangle enumeration algorithm run in O(log∆) = O(log log n) time. In Theorem 13 we show that
it is possible to handle this situation exponentially faster, in O(log log∆) = O(log log log n) time,
and in general, to solve local triangle enumeration [IG17] in optimal O(∆/log n) time so long as
∆ > log n log log log n.

Theorem 13. Local triangle enumeration can be solved in a CONGEST network G = (V,E) with
maximum degree ∆ in O(∆/log n+log log∆) rounds with probability 1−1/poly(n). This is optimal
for all ∆ = Ω(log n log log log n).

Proof. The algorithm consists of min{log log∆, log log log n} phases. The goal of the first phase
is to transform the original triangle enumeration problem into one with maximum degree ∆1 <
(log n)o(1), in O(log∗ n) rounds of communication. The goal of every subsequent phase is to reduce
the maximum degree from ∆′ ≤ √log n to

√
∆′, in O(1) rounds of communication. Thus, the total

number of rounds is O(log log∆) rounds if the first round is skipped, and O(log∗ n+log log(∆1)) =
O(log log log n) otherwise.

38

Phase One. Suppose ∆ ≥ √log n. Each vertex u is identified with the set Au = {ID(v) |
{v, u} ∈ E} having size ∆. For each {u, v} ∈ E we reduce SetIntersection to EqualityTesting by
applying Theorem 1, then run the two-party EqualityTesting protocol of Theorem 4, with k =
max{∆, log n}, r = log∗ n, and E = r−1k1−1/r. (I.e., if ∆ < log n we imagine padding each set
to size log n with dummy elements.) One undesirable property of this protocol is that it can fail
“silently” if the preconditions of Lemma 4.1 are not met. When the Hamming distance between two
strings exceeds the threshold d, Bob generates a garbage string x′ 6= x but fails to detect this. To
rectify this problem, we change the Lemma 4.1 protocol slightly: Alice sends the color φ(x) of her
string, as well as an O(log n)-bit hash h(x). Bob reconstructs x′ as usual and terminates the protocol
if h(x) 6= h(x′). Clearly the probability of an undetected failure (i.e., x 6= x′ but h(x) = h(x′)) is
1/poly(n). Define G1 = (V,E1) such that {u, v} ∈ E1 iff the SetIntersection protocol over {u, v}
detected a failure. In other words, with high probability, all triangles in G have been discovered,
except for those contained entirely inside G1. The probability that any particular edge appears in E1

is 2−E = 2−k1−1/log∗ n/log∗ n and independent of all other edges. In particular, if ∆≫ (log n)1+1/log∗ n

then no errors occur, with probability 1− 1/poly(n). Define ∆1 to be the maximum degree in G1.
Thus,

Pr
[
∆1 ≥ (log n)2ǫ

]
≤ n ·

(
∆

(log n)2ǫ

)
·
(
2−E

)(log n)2ǫ
ǫ = 1/r = 1/log∗ n

≤ n · exp
(
O((log n)2ǫ log log n) − ǫ(log n)1−ǫ · (log n)2ǫ

)

≤ 1/poly(n).

Phases Two and Above. Suppose that at some round, we have detected all triangles except for
those contained in some subgraph G′ = (V,E′) having maximum degree ∆′ <

√
log n. Express ∆′

as (log n)γ , where γ < 1/2. We execute the EqualityTesting protocol of Theorem 9 with k = ∆′,
r = 2, and E = C(log n)1−γ/2 for a sufficiently large constant C. Note that 1 − γ/2 > γ, so
E > k, as required by Theorem 9. The protocol takes O(Ek1/2/log n+ r) = O(1) rounds since the
communication volume is O(Ek1/2) = O(log n) and r = 2. Let G′′ be the subgraph of G′ consisting
of edges whose protocols detected a failure and ∆′′ be the maximum degree in G′′. Once again,

Pr
[
∆′′ ≥ (log n)γ/2

]
≤ n ·

(
∆′

(log n)γ/2

)
·
(
2−E

)(logn)γ/2

≤ n · exp
(
O((log n)γ/2 log log n) − C(log n)1−γ/2 · (log n)γ/2

)

≤ 1/poly(n).

Thus, once ∆ ≤ √log n, log log∆ ≤ log log log n − 1 of these 2-round phases suffice to find all
remaining triangles in G.

Theorem 13 depends critically on the duality between edges and SetIntersection instances, and
between edge endpoints and elements of sets. In particular, when an execution of a SetIntersection

over {u, v} is successful, this effectively removes {u, v} from the graph, thereby removing many
occurrences of ID(u) and ID(v) from adjacent sets.

Consider a slightly more general situation where we have a graph of arboricity λ (but unbounded
∆), witnessed by a given acyclic orientation having out-degree at most λ. Redefine the set Au to
be the set of out-neighbors of u.

Au = {ID(v) | {u, v} ∈ E with orientation u→ v}.

39

By definition |Au| ≤ λ. Because the orientation is acyclic, every triangle on {x, y, z} is (up to
renaming) oriented as x→ y, x→ z, y → z. Thus, it will only be detectable by the SetIntersection

instance associated with {x, y}.

Theorem 14. Let G = (V,E) be a CONGEST network equipped with an acyclic orientation with
outdegree at most λ. We can solve local triangle enumeration on G in O(λ/log n+ log λ) time.

Proof. We apply Theorem 1 to reduce each SetIntersection instance to an EqualityTesting instance,
then apply Theorem 6 with E = Θ(log n) and r = log λ to solve each with O(λ+Eλ1/r) = O(λ+E)
communication in O((λ+E)/log n+ r) = O(λ/log n+ log λ) time. Note that the dependence on λ
here is exponentially worse than the dependence on ∆ in Theorem 13.

It may be that G is known to have arboricity λ, but an acyclic orientation is unavailable. The
well known “peeling algorithm” (see [CN85] or [BE10]) computes a Cλ orientation in O(logC n) time
for C sufficiently large, say C ≥ 3. Using this algorithm as a preprocessing step, we can solve local
triangle enumeration optimally when λ = Ω(log2 n).

Theorem 15. Let G = (V,E) be a CONGEST network having arboricity λ (with no upper bound
on ∆). Local triangle enumeration can be solved in optimal O(λ/log n) time when λ = Ω(log2 n),
and sublogarithmic time O(log n/log(log2 n/λ)) otherwise.

Proof. The algorithm computes a γ · λ orientation in O(logγ n) time and then applies Theorem 14
to solve local triangle enumeration in O(γλ/log n + log(γλ)) time. The only question is how to
set γ. If λ = Ω(log2 n) we set γ = 3, making the total time O(λ/log n), which is optimal [IG17].
Otherwise we choose γ to balance the logγ n and γλ/log n terms, so that

γ log γ = log2 n/λ

Thus, the total running time is slightly sublogarithmic O(log n/log(log2 n/λ)). Specifically, it is
O(log n/log log n) whenever λ < log2−ǫ n.

6 Conclusions and Open Problems

We have established a new three-way tradeoff between rounds, communication, and error prob-
ability for many fundamental problems in communication complexity such as SetDisjointness and
EqualityTesting. Our lower bound is largely incomparable to the round-communication lower bounds
of [ST13, BCK+16], and stylistically very different from both [ST13] and [BCK+16]. We believe that
our method can be extended to recover Sağlam and Tardos’s [ST13] tradeoff (in the constant error
probability regime), but with a more “direct” proof that avoids some technical difficulties arising
from their round-elimination technique. It is still open whether EqualityTesting can be solved in r
rounds with precisely O(Ek1/r) communication and error probability 2−E < 2−k. Our algorithms
match this lower bound only when r = O(1) or r = Ω(log k), or for any r when solving the easier
ExistsEqual problem.

We developed some CONGEST algorithms for triangle enumeration that employ two-party
SetIntersection protocols. It is known that this strategy is suboptimal when ∆ ≫ n1/3 [CPZ19,
CS19]. However, for the local triangle enumeration problem,8 our O(∆/log n+log log∆) algorithm

8Every triangle must be reported by one of its three constituent vertices.

40

is optimal [IG17] for every ∆ = Ω(log n log log log n). Whether there are faster algorithms for tri-
angle detection9 is an intriguing open problem. It is known that 1-round LOCAL algorithms must
send messages of Ω(∆ log n) bits deterministically [ACKL17] or Ω(∆) bits randomized [FGKO18].
Even for 2-round triangle detection algorithms, there are no nontrivial communication lower bounds
known.

References

[ACKL17] A. Abboud, K. Censor-Hillel, S. Khoury, and C. Lenzen. Fooling views: A new
lower bound technique for distributed computations under congestion. CoRR,
abs/1711.01623, 2017.

[BCK+14] J. Brody, A. Chakrabarti, R. Kondapally, D. P. Woodruff, and G. Yaroslavtsev.
Beyond set disjointness: the communication complexity of finding the intersection.
In Proceedings of the 33rd ACM Symposium on Principles of Distributed Computing
(PODC), pages 106–113, 2014.

[BCK+16] J. Brody, A. Chakrabarti, R. Kondapally, D. P. Woodruff, and G. Yaroslavtsev. Cer-
tifying equality with limited interaction. Algorithmica, 76(3):796–845, 2016.

[BE10] L. Barenboim and M. Elkin. Sublogarithmic distributed MIS algorithm for sparse
graphs using Nash-Williams decomposition. Distributed Computing, 22(5-6):363–379,
2010.

[BFS86] L. Babai, P. Frankl, and J. Simon. Complexity classes in communication complexity
theory (preliminary version). In Proceedings of the 27th Annual IEEE Symposium on
Foundations of Computer Science (FOCS), pages 337–347, 1986.

[BGMdW13] H. Buhrman, D. García-Soriano, A. Matsliah, and R. de Wolf. The non-adaptive
query complexity of testing k-parities. Chicago J. Theor. Comput. Sci., 2013, 2013.

[CK18] A. Czumaj and C. Konrad. Detecting cliques in CONGEST networks. In Proceedings
of the 32nd International Symposium on Distributed Computing (DISC), volume 121
of Leibniz International Proceedings in Informatics (LIPIcs), pages 16:1–16:15, 2018.

[CN85] N. Chiba and T. Nishizeki. Arboricity and subgraph listing algorithms. SIAM Journal
on Computing, 14(1):210–223, 1985.

[CP10] A. Chattopadhyay and T. Pitassi. The story of set disjointness. SIGACT News,
41(3):59–85, 2010.

[CPZ19] Y.-J. Chang, S. Pettie, and H. Zhang. Distributed triangle detection via expander
decomposition. In Proceedings of the 30th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 821–840, 2019.

[CS19] Y.-J. Chang and T. Saranurak. Improved distributed expander decomposition and
nearly optimal triangle enumeration. In Proceedings of the 2019 ACM Symposium on
Principles of Distributed Computing (PODC), pages 66–73, 2019.

9At least one vertex must announce there is a triangle; there is no obligation to list them all.

41

[DKO14] A. Drucker, F. Kuhn, and R. Oshman. On the power of the congested clique model.
In Proceedings of the 33rd ACM Symposium on Principles of Distributed Computing
(PODC), pages 367–376, 2014.

[DKS12] A. Dasgupta, R. Kumar, and D. Sivakumar. Sparse and lopsided set disjointness via
information theory. In Proceedings of the 15th International Workshop on Approxi-
mation, Randomization, and Combinatorial Optimization (APPROX), pages 517–528,
2012.

[DP09] D. P. Dubhashi and A. Panconesi. Concentration of Measure for the Analysis of
Randomized Algorithms. Cambridge University Press, 2009.

[FGKO18] O. Fischer, T. Gonen, F. Kuhn, and R. Oshman. Possibilities and impossibilities for
distributed subgraph detection. In Proceedings of the 30th Symposium on Parallelism
in Algorithms and Architectures (SPAA), pages 153–162, 2018.

[FKNN95] T. Feder, E. Kushilevitz, M. Naor, and N. Nisan. Amortized communication com-
plexity. SIAM J. Comput., 24(4):736–750, 1995.

[FKS84] M. L. Fredman, J. Komlós, and E. Szemerédi. Storing a sparse table with O(1) worst
case access time. J. ACM, 31(3):538–544, 1984.

[GO18] T. Gonen and R. Oshman. Lower bounds for subgraph detection in the CONGEST
model. In Proceedings of the 21st International Conference on Principles of Distributed
Systems (OPODIS), volume 95 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 6:1–6:16, 2018.

[HPZZ20] Dawei Huang, Seth Pettie, Yixiang Zhang, and Zhijun Zhang. The communication
complexity of set intersection and multiple equality testing. In Proceedings 31st ACM-
SIAM Symposium on Discrete Algorithms (SODA), pages 1715–1732, 2020.

[HW07] J. Håstad and A. Wigderson. The randomized communication complexity of set dis-
jointness. Theory of Computing, 3(1):211–219, 2007.

[IG17] T. Izumi and F. Le Gall. Triangle finding and listing in CONGEST networks. In
Proceedings of the 36th ACM Symposium on Principles of Distributed Computing
(PODC), pages 381–389, 2017.

[KN97] E. Kushilevitz and N. Nisan. Communication Complexity. Cambridge University
Press, 1997.

[KR18] J. H. Korhonen and J. Rybicki. Deterministic subgraph detection in broadcast CON-
GEST. In Proceedings of the 21st International Conference on Principles of Distributed
Systems (OPODIS), volume 95 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 4:1–4:16, 2018.

[KS92] B. Kalyanasundaram and G. Schnitger. The probabilistic communication complexity
of set intersection. SIAM J. Discrete Math., 5(4):545–557, 1992.

[Lov89] L. Lovasz. Communication complexity: A survey. Technical Report TR-204-89, Com-
puter Science Dept., Princeton University, 1989.

42

[Nik13] Vladimir Nikishkin. Amortized communication complexity of an equality predicate. In
Proceedings 8th International Computer Science Symposium in Russia (CSR), volume
7913 of Lecture Notes in Computer Science, pages 212–223. Springer, 2013.

[Raz92] A. A. Razborov. On the distributional complexity of disjointness. Theor. Comput.
Sci., 106(2):385–390, 1992.

[Rou16] T. Roughgarden. Communication complexity (for algorithm designers). Foundations
and Trends in Theoretical Computer Science, 11(3-4):217–404, 2016.

[RY] A. Rao and A. Yehudayoff. Communication complexity. (unpublished manuscript;
available from the authors’ homepages).

[SS90] J. P. Schmidt and A. Siegel. The spatial complexity of oblivious k-probe hash func-
tions. SIAM J. Comput., 19(5):775–786, 1990.

[ST13] M. Sağlam and G. Tardos. On the communication complexity of sparse set disjointness
and exists-equal problems. In Proceedings of the 54th Annual IEEE Symposium on
Foundations of Computer Science (FOCS), pages 678–687, 2013.

[Yao77] A. C.-C. Yao. Probabilistic computations: Toward a unified measure of complexity
(extended abstract). In Proceedings of the 18th Annual IEEE Symposium on Founda-
tions of Computer Science (FOCS), pages 222–227, 1977.

[Yao79] A. C.-C. Yao. Some complexity questions related to distributive computing (pre-
liminary report). In Proceedings of the 11th Annual ACM Symposium on Theory of
Computing (STOC), pages 209–213, 1979.

A Reductions and Near Equivalences

Brody et al. [BCK+16] proved that SetIntersection on sets of size k is reducible to EqualityTesting

on vectors of length O(k), at the cost of one round and O(k) bits of communication. However, the
reduction is randomized and fails with probability at least exp(−Õ(

√
k)). This is the probability

that when k balls are thrown uniformly at random into k bins, some bin contains ω(
√
k) balls.

Recall the statement of Theorem 1:

Eq(k, r, perr) ≤ SetInt(k, r, perr), SetInt(k, r + 1, perr) ≤ Eq(k, r, perr) + ζ,

∃Eq(k, r, perr) ≤ SetDisj(k, r, perr), SetDisj(k, r + 1, perr) ≤ ∃Eq(k, r, perr) + ζ,

where ζ = O(k + log log p−1
err). In other words, under any error regime perr, the communication

complexity of SetIntersection and EqualityTesting are the same, up to one round and O(k+log log p−1
err)

bits of communication, and that the same relationship holds between SetDisjointness and ExistsEqual.
The proof is inspired by the probabilistic reduction of Brody et al. [BCK+16], but uses succinct
encodings of perfect hash functions rather than random hash functions.

Proof of Theorem 1. The leftmost inequalities have been observed before [ST13, BCK+16]. Given
inputs x, y to ExistsEqual or EqualityTesting, Alice and Bob generate sets A = {(1, x1), ... , (k, xk)}
and B = {(1, y1), ... , (k, yk)} before the first round of communication and then proceed to solve

43

SetIntersection or SetDisjointness on (A,B). Knowing A ∩ B or whether A ∩ B = ∅ clearly allows
them to determine the correct output of EqualityTesting or ExistsEqual on (x, y).

The reverse direction is slightly more complicated. Let (A,B) be the instance of SetIntersection

or SetDisjointness over a universe U with size at most |U | = O(k2/perr). Alice examines her set
A, and picks a perfect hash function h : U 7→ [k] for A, i.e., h is injective on A. (This can
be done in O(k) time, in expectation, using only private randomness. In principle Alice could
do this step deterministically, given sufficient time.) Most importantly, h can be described us-
ing O(k + log log|U |) = O(k + log log p−1

err) bits [SS90], using a variant of the Fredman-Komlós-
Szemerédi [FKS84] 2-level perfect hashing scheme.10 Alice sends the O(k+ log log p−1

err)-bit descrip-
tion of h to Bob. Bob calculates Bj = B ∩ h−1(j) and responds to Alice with the distribution
|B0|, |B1|, ... , |Bk−1|, which takes at most 2k bits. They can now generate an instance of Equality
Testing where the k equality tests are the pairs A0×B0, A1×B1, ... , Ak−1×Bk−1. By construction,
Aj = A ∩ h−1(j) is a 1-element set. There is clearly a 1-1 correspondence between equal pairs and
elements in A ∩ B. We have Bob speak first in the EqualityTesting/ExistsEqual protocol; thus, the
overhead for this reduction is just 1 round of communication and O(k + log log p−1

err) bits.

10We sketch how the encoding of h works, for completeness. First, pick a function h′ : U 7→ [O(k2)] that is
collision-free on A. Fredman et al. [FKS84] proved that a function of the form h′(x) = (ax mod p) mod O(k2)
works with constant probability, where p = Ω(k2 log|U |) is prime and a ∈ [0, p) is random. Pick another function
h∗ : [O(k2)] 7→ [k] that has at most twice the expected number of collisions on A, namely 2 ·

(

k
2

)

/k < k, and partition
A into k buckets Aj = A∩h−1

∗ (j). The sizes |A0|, |A1|, ... , |Ak−1| can be encoded with 2k bits. We now pick O(log k)
pairwise independent hash functions h1, h2, ... , hO(log k) : [O(k2)] 7→ [O(k2)]. For each bucket Aj , we define h(j) to be
the function with the minimum i for which h(j)(x) = hi(x) mod |Aj |

2 is injective on Aj . In order to encode which
function h(j) is (given that h1, ... , hO(log k) are fixed and that |Aj | is known), we simply need to write i in unary, i.e.,
using the bit-string 0i−11. This takes less than 2 bits per j in expectation since each hi is collision-free on Aj with
probability at least 1/2. Combining h′, h∗, |A0|, ... , |Ak−1| and h(0), ... , h(k−1) into a single injective function from
U 7→ [O(k)] is straightforward, and done exactly as in [FKS84]. By marking which elements in this range are actually
used (O(k) more bits), we can generate the perfect h : U 7→ [k] whose range has size precisely k. Encoding h′ takes
O(log k + log log|U |) bits and encoding h∗ takes O(log k) bits. The distribution |A0|, ... , |Ak−1| can be encoded with
2k bits. The functions h1, ... , hO(log k) can be encoded in O(log2 k) bits, and the functions h(0), ... , h(k−1) with less
than 2k bits in expectation.

44

	1 Introduction
	1.1 Contributions

	2 Preliminaries
	2.1 Notational Conventions
	2.2 Information Theory
	2.3 Communication Complexity

	3 Lower Bounds on ExistsEqual and EqualityTesting
	3.1 Structure of the Proof
	3.2 A Lower Bound on EqualityTesting
	3.3 A Lower Bound on ExistsEqual

	4 New Protocols for EqualityTesting and ExistsEqual
	4.1 Overview and Preliminaries
	4.1.1 A Protocol for Exchanging Test Bits
	4.1.2 Reducing the Number of False Positives

	4.2 A Simple EqualityTesting Protocol
	4.3 An Optimal ExistsEqual Protocol
	4.3.1 Overview of the Protocol
	4.3.2 Analysis

	4.4 A logk-Round Communication Optimal EqualityTesting Protocol
	4.4.1 Overview of the Protocol
	4.4.2 Analysis

	4.5 A More Efficient EqualityTesting Protocol

	5 Distributed Triangle Enumeration
	6 Conclusions and Open Problems
	A Reductions and Near Equivalences

