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Abstract

As it is well known, the isomorphism problem for vertex-colored graphs
with color multiplicity at most 3 is solvable by the classical 2-dimensional
Weisfeiler-Leman algorithm (2-WL). On the other hand, the prominent Cai-
Fürer-Immerman construction shows that even the multidimensional version
of the algorithm does not suffice for graphs with color multiplicity 4. We give
an efficient decision procedure that, given a graph G of color multiplicity 4,
recognizes whether or not G is identifiable by 2-WL, that is, whether or not
2-WL distinguishes G from any non-isomorphic graph. In fact, we solve the
much more general problem of recognizing whether or not a given coherent
configuration of maximum fiber size 4 is separable. This extends our recog-
nition algorithm to graphs of color multiplicity 4 with directed and colored
edges.

Our decision procedure is based on an explicit description of the class
of graphs with color multiplicity 4 that are not identifiable by 2-WL. The
Cai-Fürer-Immerman graphs of color multiplicity 4 distinctly appear here as
a natural subclass, which demonstrates that the Cai-Fürer-Immerman con-
struction is not ad hoc. Our classification reveals also other types of graphs
that are hard for 2-WL. One of them arises from patterns known as (n3)-
configurations in incidence geometry.
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1 Introduction

Over 50 years ago Weisfeiler and Leman [36] described a natural combinatorial
procedure that since then constantly plays a significant role in the research on
the graph isomorphism problem. The procedure is now most often referred to as
the 2-dimensional Weisfeiler-Leman algorithm (2-WL). It generalizes and improves
the classical color refinement method (1-WL) and has an even more powerful k-
dimensional version (k-WL) for any k > 2. The original 2-dimensional version
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and the logarithmic-dimensional enhancement are important components in Babai’s
quasipolynomial-time isomorphism algorithm [4].

Even on its own, 2-WL is a quite powerful tool in isomorphism testing. For
instance, it solves the isomorphism problem for several important graph classes, in
particular, for interval graphs [16]. Also, it is successful for almost all regular graphs
of a fixed degree [5]. On the other hand, not every pair of non-isomorphic graphs is
distinguishable by 2-WL. For example, it cannot detect any difference between two
non-isomorphic strongly regular graphs with the same parameters.

We call a graph G amenable to k-WL if the algorithm distinguishes G from any
non-isomorphic graph. An efficient characterization of the class of graphs amenable
to 1-WL is obtained by Arvind et al. in [2], where it is given also for vertex-colored
graphs. Independently, Kiefer et al. [26] give an efficient criterion of amenability to
1-WL in a more general framework including also directed graphs with colored edges.
Similar results for 2-WL are currently out of reach, even for undirected uncolored
graphs. A stumbling block here is the lack of understanding which strongly regular
graphs are uniquely determined by their parameters. Note that a strongly regular
graph is determined by its parameters up to isomorphism if and only if it is amenable
to 2-WL.

A general strategy to approach a hard problem is to examine its complexity in the
parameterized setting. We consider vertex-colored graphs with the color multiplicity,
that is, the maximum number of equally colored vertices, as parameter. If this
parameter is bounded, the graph isomorphism problem is known to be efficiently
solvable. More specifically, it is solvable in time polynomial in the number of vertices
and quasipolynomial in the color multiplicity [4, Corollary 4], and it is solvable in
polylogarithmic parallel time [29]. Graph Isomorphism is known to be in the ModkL
hierarchy for any fixed color multiplicity [3], and even in the class ⊕L = Mod2L for
color multiplicity 4 and 5; see [1]. Recall that ModkL is the class of decision problems
solvable non-deterministically in logspace in the sense that the answer is “no” if and
only if the number of accepting paths is divisible by k.

Every graph of color multiplicity at most 3 is amenable to 2-WL (Immerman
and Lander [25]). Starting from the color multiplicity 4, the amenability concept
is non-trivial: The prominent Cai-Fürer-Immerman construction [9] shows that for
any k, there exist graphs with color multiplicity 4 that are not amenable to k-WL.

We design an efficient decision procedure that, given a graph G with color mul-
tiplicity 4, recognizes whether or not G is amenable to 2-WL. Note that an a priori
upper complexity bound for this decision problem is coNP, as a consequence of the
aforementioned fact that Graph Isomorphism for graphs of bounded color multiplic-
ity is in P. From now on, amenability is meant with respect to 2-WL, unless stated
otherwise.

We actually solve a much more general problem. 2-WL transforms an input graph
G, possibly with colored vertices and directed and colored edges, into a coherent
configuration C(G), which is called the coherent closure of G. The concept of a
coherent configuration has been discovered independently in statistics [6] and algebra
[21] and, playing an important role in diverse areas, has been developed to the
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subject of a rich theory; see a recent monograph [10], that we will use in this paper
as a reference book. A coherent configuration C is called separable if the isomorphism
type of C is determined by its regularity parameters in a certain strong sense; see
the definition in Section 2. The separability of the coherent closure C(G) implies
the amenability of the graph G. This was the approach undertaken in [16], where it
was shown that the coherent closure of any interval graph is separable. Somewhat
less obviously, the converse relation between amenability of G and separability of
C(G) is also true: For every graph G,

G is amenable if and only if C(G) is separable; (1)

see Theorem 2.5 in Section 2. Equivalence (1) reduces the amenability problem
for graphs to the separability problem for coherent configurations. This reduction
works as well for directed graphs with colored vertices and colored edges, that is,
essentially for general binary relational structures. If G has color multiplicity b,
then the maximum fiber size of C(G) is also bounded by b. While all coherent
configurations with fibers of size at most 3 are known to be separable [10], the
separability property for coherent configurations with fibers of size 4 is non-trivial,
and our first result is this.

Theorem 1.1. The problem of deciding whether a given coherent configuration with
maximum fiber size 4 is separable is solvable in ⊕L.

Since ⊕L ⊆ NC2 (which follows from the inclusion #L ⊆ NC2 in [37]), Theorem
1.1 implies that the separability problem is solvable in parallel polylogarithmic time.
Using the reduction (1), we obtain our result for graphs.

Theorem 1.2. The problem of deciding whether a given vertex-colored graph of
color multiplicity 4 is amenable to 2-WL is solvable in P. This holds true also for
vertex- and edge-colored directed graphs.

More precisely, the proof of Theorem 1.2 yields an algorithm deciding amenability
of graphs of color multiplicity at most 4 with running time O(n2+ω), where ω < 2.373
is the exponent of fast matrix multiplication [18]. Using randomization, the running
time can be improved to O(n4 log2 n).

Our results have the following consequences.

Highlighting the inherent structure of the Cai-Fürer-Immerman graphs.

The essence of our proof of Theorem 1.2 is an explicit description of the class of
graphs with color multiplicity 4 that are not amenable to 2-WL. The Cai-Fürer-
Immerman graphs of color multiplicity 4 distinctly appear here as a natural subclass,
which demonstrates that the Cai-Fürer-Immerman construction is not ad hoc. In a
sense, the famous CFI gadget [9, Fig. 3] (or [24, Fig. 13.24]) appears in our analysis
inevitably “by itself”. More precisely, this concerns a simplified version of the CFI
gadget, where each vertex in a cubic pattern graph is replaced with a quadruple
of new vertices and two quadruples are connected by edges directly, and not via
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two extra pairs of auxiliary vertices as in the original version; cf. Figure 17. The
simplified gadget appears in an algebraic analog of the CFI result by Evdokimov
and Ponomarenko [14]; see also Fürer’s survey paper [17]. This gadget comes out
also in the shrunken multipede graphs [32] (we discuss the multipede graphs below).
A transformation of the original CFI gadget into the simplified one is easy to retrace
using the framework of coherent configuration; see Section 5 where it is shown that
the auxiliary vertex pairs can be cut down in C(G) without affecting the separability
property.

Relevance to multipede graphs. While the CFI graphs have many automor-
phisms, Gurevich and Shelah [20] came up with a construction of (non-binary)
multipede structures that are rigid and yet not identifiable by k-WL. Neuen and
Schweitzer [32, 33] combined both approaches to construct multipede graphs and
to give sufficient conditions ensuring that these graphs are not amenable to k-WL
(see also a recent related paper [12]). The multipede graphs are vertex-colored and
the results of [32, 33] make perfect sense if the color multiplicity is bounded by 4.
We observe a close connection between such multipede graphs and the class of ir-
redundant coherent configurations playing a key role in the proof of Theorem 1.1.
An irredundant coherent configuration typically admits a natural representation by
a multipede graph and vice versa; see Remark 9.4. Though non-amenability to
k-WL for higher dimensions implies non-amenability to 2-WL, the results obtained
in [12, 32, 33] and in our paper are incomparable as we provide both sufficient and
necessary conditions for 2-WL-non-amenability.

More graphs hard for 2-WL. Our analysis reveals new types of non-amenable
graphs. A particularly elegant construction is based on the well-studied (n3)-
configurations of lines and points [19, 34]. For example, the 7-point Fano plane
and the 9-point Pappus configuration give rise to non-amenable graphs of color
multiplicity 4 with, respectively, 28 and 36 vertices.

Classification of small graphs. Our amenability criteria are easy to apply in
many cases. In particular, they imply that all graphs of color multiplicity 4 with
no more than 15 vertices are amenable. Among graphs of color multiplicity 4 with
16 vertices there are 436 non-amenable graphs. They are split into 218 pairs of
2-WL-indistinguishable non-isomorphic graphs, where a typical instance is the pair
consisting of vertex-colored Shrikhande and 4 × 4 rook’s graphs, which are known
as the smallest pair of strongly regular graphs with the same parameters.

Small coherent configurations. The corresponding fact about coherent config-
urations is that all of them with 15 or fewer vertices and fiber size 4 are separable.
This result can be obtained from our cut-down lemmas in Sections 4–6 and the
known fact that all quasiregular coherent configurations with at most 3 fibers are
separable [22], but we provide a self-contained proof; see Theorem 11.1. Moreover,
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on 16 vertices there is a unique, up to isomorphism, non-separable coherent configu-
ration with fiber size 4. Note that all coherent configuration with at most 15 points
have been enumerated [28], but their separability analysis seems to be still missing.1

Definability of a graph in 3-variable logic. A graph G is definable in a
logic L if L contains a sentence Φ that is true on G and false on any graph H
non-isomorphic to G. It is well known [9] that G is definable in (k + 1)-variable
first-order logic with counting quantifiers if and only if G is amenable to k-WL.
The aforementioned result by Immerman and Lander [25] actually says that every
graph of color multiplicity at most 3 is definable in 3-variable logic, even without
counting quantifiers. Our Theorem 1.2 can be recast as follows: It can be decided
in polynomial time whether a given graph of color multiplicity 4 is definable in the
counting 3-variable logic.

Structure of the paper

Our formal framework is presented in Section 2, where we give basic facts about
coherent configurations and use them to prove equivalence (1).

Formally, a coherent configuration C on a point set V is a partition of the Carte-
sian square V 2. Elements of the partition are called basis relations of C. The reflexive
basis relations determine a partition of V into fibers X1, . . . , Xs. A cell C[Xi] of C
(or a homogeneous component of C) is formed by the basis relations that are defined
on Xi. An interspace C[Xi, Xj] is formed by the basis relations between Xi and Xj.
A coherent configuration has the property that every basis relation belongs either
to a cell or to an interspace.

In Section 3 we explore the local structure of a coherent configuration C under
the condition that |Xi| ≤ 4 for every fiber of C. We call an interspace C[Xi, Xj]
uniform if it contains a single basis relation Xi×Xj . We observe that a non-uniform
interspace C[Xi, Xj] between 4-point fibers Xi and Xj contains either a matching
relation between Xi and Xj or a relation whose underlying undirected graph is an
8-cycle or the union of two 4-cycles. In the last case we say that C[Xi, Xj] is an
interspace of type 2K2,2. It is known [10] (see also Subsection 3.2) that it suffices to
solve the separability problem for coherent configurations that are indecomposable
in a direct sum of smaller configurations. As a consequence, we can assume in our
analysis that every fiber Xi consists of either 4 or 2 points; see Sections 3.1–3.2 for
details.

In Sections 4–6 we prove three cut-down lemmas:

• If an interspace C[Xi, Xj] contains a matching relation, then removal of the
fiber Xi from C does not affect the separability property.

• Furthermore, all fibers of size 2 can be removed without affecting the separa-
bility property.

1Coherent configurations on 16 vertices were studied in [27].
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• Finally, all pairs of fibers Xi, Xj such that C[Xi, Xj] contains an 8-cycle can
be removed without affecting the separability property.

The first cut-down lemma, allowing elimination of matching basis relations, is proved
in the general case, with no assumptions on the coherent configuration C. One
direction, namely the non-separability of the reduced version of a non-separable
configuration C, was known earlier due to Evdokimov and Ponomarenko [15].

The cut-down lemmas reduce our task to consideration of indecomposable co-
herent configurations C with all fibers of size 4 and all non-uniform interspaces of
type 2K2,2. We call such coherent configurations irredundant. This class is close
to the reduced Klein configurations studied in [10, Section 4.1.2]. The fiber graph
FC has the fibers of C as vertices, and two fibers Xi and Xj are adjacent in FC if
the interspace C[Xi, Xj ] is non-uniform. Like the reduced Klein configurations, the
structure of an irredundant configuration C determines a clique partition DC of FC

such that the cliques and the fibers form a line-point incidence structure known as
partial linear spaces (see [13, 30]), where every point (fiber) is incident to at most 3
lines (cliques in DC).

The case when all cliques in DC have size 2 corresponds to the Cai-Fürer-
Immerman construction. Though coherent configurations of this kind are well
studied (Evdokimov and Ponomarenko [14], see also [10, Section 4.1.3]), we con-
sider them in Section 8 for expository purposes as the simplest case of irredundant
configurations. Another instructive particular case, when all cliques in DC have
size 3, is called 3-harmonious and considered in Section 9. The underlying partial
linear spaces of such coherent configurations are the well-studied geometric (n3)-
configurations [19, 34].

After this case study, we consider the general irredundant configurations in Sec-
tion 10. Note that the standard isomorphism concept of coherent configurations is
called combinatorial isomorphism, while the equivalence with respect to the regu-
larity parameters is captured by the concept of algebraic isomorphism. Deciding
separability of an irredundant configuration C, we actually have to check whether
every algebraic isomorphism from C to another coherent configuration C′ is induced
by a combinatorial isomorphism. The first observation (made in Section 7), which
makes our analysis easier, is that we can suppose that C′ = C, that is, we can focus
on algebraic automorphisms of C. Moreover, it is enough to check only those auto-
morphisms which fix each cell of C. All such algebraic automorphisms form a group,
which we denote by A(C). Given f ∈ A(C), we can efficiently decide whether f is
induced by a combinatorial automorphism by considering suitable colored versions
of C and its image Cf and applying the algorithm of [1] for testing isomorphism of
vertex-colored graphs of color multiplicity 4. The main difficulty is that the group
A(C) can be of exponentially large order. Luckily, it is enough to consider any
set of generators of A(C) of polynomial size. We give an explicit description of an
appropriate generating set based on the system of cliques DC.

We summarize our decision procedure in Section 11. Theorem 1.1 is proved
by showing that the separability problem for irredundant configurations reduces in
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logarithmic space to the isomorphism problem for graphs of color multiplicity 4.
Theorem 1.2 is proved in Section 12 based on Equivalence (1) and the result of
[1] that isomorphism testing for graphs of color multiplicity 4 is not harder than
computing the rank of a matrix over the 2-element field. Finally, we apply our
amenability criteria to graphs of color multiplicity 4 with at most 16 vertices.

We conclude with a brief discussion of further questions in Section 13.

2 Basic definitions and facts

We begin with a formal definition of an undirected vertex-colored graph and then
introduce a more general notion of a colored graph, whose edges are directed and
colored (Subsection 2.1). The subsequent notion of a rainbow (Subsection 2.2) is
identical at first sight but uses a different isomorphism concept. Informally speaking,
rainbows are colored graphs considered up to renaming the colors. Coherent con-
figurations are rainbows with certain regularity properties. The Weisfeiler-Leman
algorithm (Subsection 2.3) converts an input graph into a coherent configuration
and, moreover, furnishes this configuration with a canonical coloring. We introduce
the amenability and separability concepts and reduce the former to the latter in
Subsection 2.4.

2.1 Colored graphs

By a vertex-colored graph G we mean an undirected graph without multiple edges
and loops that is endowed with a coloring of the vertex set cG : V (G) → C, where
C is a set whose elements are called colors. Vertex-colored graphs G and H are
isomorphic if there is a graph isomorphism φ : V (G) → V (H) that preserves colors,
i.e.,

cH(φ(v)) = cG(v) for all v ∈ V (G).

In a more general setting, we consider directed graphs with colored edges (ar-
rows). The loops are allowed, but the color of a loop vv must differ from the color
of any arrow uw with u 6= w. This generalizes the concept of a vertex-colored graph
because the colors of loops can be seen as a vertex coloring, and a symmetric adja-
cency relation can be simulated by requiring that uv is an arrow if any only if vu is
an arrow.

In fact, we do not need an adjacency relation (symmetric or not) at all because all
non-arrows can be assigned a special color. Formally, we define a colored (directed)
graph G as a function cG : V (G)2 → C such that

cG(vv) 6= cG(uw) whenever u 6= w. (2)

Two colored graphs G and H are isomorphic if there is a bijection φ : V (G) → V (H)
such that

cH(φ(u)φ(v)) = cG(uv) for all u, v ∈ V (G).
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In the context of the isomorphism problem, we can always assume that

cG(uv) = cG(u
′v′) if and only if cG(vu) = cG(v

′u′), (3)

that is, if arrows have the same color, then the inverse arrows must also be equally
colored. This condition can be ensured by modifying the coloring as follows. Suppose
that an arrow uv is colored red in G, and the inverse arrow vu is colored blue. Then
uv is recolored a new color redblue, and vu is recolored a new color bluered. The
new colored graph Ĝ satisfies the condition (3). Note that Ĝ ∼= Ĥ exactly when
G ∼= H . This motivates imposing the condition (3) on any colored graph.

For each color c ∈ C, the set {uv : cG(uv) = c} is called a color class of G. A
color class consisting of loops is referred to as vertex color class. We define the color
multiplicity of G as the maximum cardinality of a vertex color class of G.

2.2 Coherent configurations

Let V be a set, whose elements are called points. Let C = {R1, . . . , Rs} be a partition
of the Cartesian square V 2, that is,

⋃s
i=1Ri = V 2 and any two Ri and Rj are disjoint.

An element Ri of C will be referred to as a basis relation. C is called a rainbow if it
has the following two properties:

(A) If a basis relation R ∈ C contains a loop vv, then all pairs in R are loops;

(B) For every R ∈ C, the transpose relation R∗ = {uv : vu ∈ R} is also in C.

Though formally a rainbow is a pair (V, C), we simplify the notation by using
the same character C for the rainbow and its set of basis relations. This will cause
no ambiguity as the point set V = V (C) is uniquely determined as the set of all
elements occurring in the relations from C.

A set of points X ⊆ V is called a fiber of C if the set of loops {xx : x ∈ X} is a
basis relation of C.

Two rainbows (or, more generally, two partitions) C and D are isomorphic if
there is a bijection φ : V (C) → V (D), an isomorphism from C to D, such that
φ(R) ∈ D for every R ∈ C. Here φ(R) = {φ(u)φ(v) : uv ∈ R}. We can sometimes
write the same as Rφ =

{
uφvφ : uv ∈ R

}
.

Note that Conditions (A) and (B) are analogs of Conditions (2) and (3). By this
reason, a colored graph will also be called a colored rainbow. Let G be a colored
graph and C be a rainbow. If V (G) = V (C) and the color classes of G are exactly
the basis relations of C, then we say that G is a colored version of C. Thus, rainbows
C and D are isomorphic if and only if they have colored versions that are isomorphic
(as colored graphs).

A rainbow C is called a coherent configuration if,

(C) for every triple R, S, T ∈ C, the number p(uv) = | {w : uw ∈ R, wv ∈ S} | is
the same for all uv ∈ T .
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For a coherent configuration C, the number p(uv) in (C) does not depend on the
choice of uv in T and is denoted by pTRS . The entries of this 3-dimensional matrix
are called intersection numbers of C.

Coherent configurations C and D are combinatorially isomorphic if they are iso-
morphic as rainbows. We write C ∼=comb D for this relationship. Correspondingly,
any isomorphism from C to D is called combinatorial. Coherent configurations C
and D are algebraically isomorphic if their 3-dimensional matrices of intersection
numbers, pTRS and pT

′

R′S′ , are isomorphic, that is, there is a bijection f : C → D such
that

pTRS = p
f(T )
f(R)f(S).

In this case we write C ∼=alg D. Such a bijection f is called an algebraic isomorphism
from C to D. Note that combinatorially isomorphic coherent configurations are also
algebraically isomorphic. Indeed, any combinatorial isomorphism φ from C to D
gives rise to the algebraic isomorphism f defined by f(R) = Rφ.

Let AR denote the adjacency matrix of a relation R ⊆ V 2, i.e., AR[u, v] is equal
to 1 if uv ∈ R and to 0 otherwise. Define AC to be the linear span of the set of 0-1-
matrices {AR : R ∈ C} over C. Condition (C) implies thatAC is closed under matrix
multiplication and, hence, forms a matrix algebra over C. This algebra is called
the adjacency algebra of the coherent configuration C. It turns out [10, Proposition
2.3.17] that coherent configurations C and D are algebraically isomorphic if and only
if AC and AD are isomorphic algebras with distinguished bases. Another important
characterization of algebraic isomorphism will be given in Subsection 2.3.

Given a family of sets P, we use P∪ to denote the closure of P under unions.
Given two partitions P and Q of the same set, we write P 4 Q if every set in Q
belongs to P∪ or, equivalently, every set in P is a subset of some set in Q. In this
case we say that P is finer than Q and Q is coarser than P.

Proposition 2.1 (see [10, Section 2.6.1]). Let P be a partition of the Cartesian
square V 2. Then there is a unique coherent configuration C = C(P) such that

• C 4 P, and

• if C′ is a coherent configuration such that C′ 4 P, then C′ 4 C.

The coherent configuration C(P) is called the coherent closure of P. In other words,
the coherent closure of P is the coarsest of those coherent configurations refining
P. Given a colored (directed) graph G (in particular, a vertex-colored undirected
graph), let RG denote its uncolored version, that is, the rainbow whose basis rela-
tions are exactly the color classes of G. The coherent configuration C(RG) is called
the coherent closure of the graph G and denoted by C(G).

The following notational convention will be intensively used till the end of this
section. Suppose that P and Q are partitions. Any map f : P → Q extends to
a map from P∪ to Q∪ in a natural way. Specifically, if X = X1 ∪ . . . ∪ Xs where
Xi ∈ P, then Xf = Xf

1 ∪ . . . ∪Xf
s . Usage of the superscript f can be extended as

usually: If X = {X1, . . . , Xq} where Xi ∈ P∪, then X f = {Xf
1 , . . . , X

f
q }. Note that,

if f : P → Q is a bijection and P 4 R, then Q 4 Rf .
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Lemma 2.2 (see [10, Corollary 2.3.21]). If f is an algebraic isomorphism from a
coherent configuration P to a coherent configuration Q, and R is a coherent config-
uration such that P 4 R, then Rf is also a coherent configuration.

2.3 The Weisfeiler-Leman algorithm

The following algorithm, that was described by Weisfeiler and Leman in [36], is now
known as the 2-dimensional Weisfeiler-Leman algorithm (2-WL for short). Given
a colored graph G as input, the algorithm iteratively computes colorings ciG of the
Cartesian square V 2 for V = V (G). Initially, c0G = cG and then,

ci+1
G (uv) = ciG(uv) |

{{
ciG(uw) | c

i
G(wv)

}}
w∈V

, (4)

where {{ }} denotes the multiset and | denotes the string concatenation (an appro-
priate encoding is assumed). Denote the partition of V 2 into the color classes of
ciG by Ri

G. Note that Ri+1
G 4 Ri

G. Let t = tG be the minimum number such that
Rt

G = Rt−1
G . The algorithm terminates after the t-th color refinement round. As

easily seen, Rt
G is a coherent configuration.2

Proposition 2.3 (see [10, Section 2.6.1]). Rt
G = C(G).

An easy induction on i shows that, if φ is an isomorphism from G to H , then

ciG(uv) = ciH(u
φvφ). (5)

Thus, the coloring produced by 2-WL is canonical and can be used for isomor-
phism testing. We say that colored graphs G and H are 2-WL-equivalent and write
G ≡2-WL H if

{{
ctG(uv) : uv ∈ V (G)2

}}
=
{{
ctH(uv) : uv ∈ V (H)2

}}
(6)

for t = tG (equivalently, for t = tH , or for all t).
Suppose that G ≡2-WL H . Equality (6) implies that there is a one-to-one map f :

C(G) → C(H) preserving the 2-WL colors. Note that f is an algebraic isomorphism
from C(G) to C(H). We, therefore, have the following diagram:

G ∼= H =⇒ G ≡2-WL H

⇓ ⇓

C(G) ∼=comb C(H) =⇒ C(G) ∼=alg C(H)

In the other direction, let f be an algebraic isomorphism from C toD. If C̃ is a colored
version of C, and D̃ is the colored version of D where each color class f(C) inherits
the color of C, then C̃ ≡2-WL D̃. Thus, the Weisfeiler-Leman algorithm provides yet
another interpretation for algebraic isomorphism of coherent configurations: C ∼=alg

2Moreover, a partition P is a coherent configuration if and only if 2-WL does not make any
color refinement when applied to a colored version of P .
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D if and only if C and D have colored versions C̃ and D̃ respectively such that
C̃ ≡2-WL D̃.

The fact that the 2-WL-equivalence of graphs G and H determines an algebraic
isomorphism of their coherent closures C(G) and C(H) has the converse, which we
state now.

Lemma 2.4. Let P and Q be rainbows and f : C(P) → C(Q) be an algebraic
isomorphism such that Q = Pf . Let G be a colored version of P. Let H be the
colored version of Q that inherits the colors from G via f , that is, every color class
C of G has the same color as the color class Cf of H.

1. If 2-WL is run on G (resp. H), then it outputs a colored version of C(P)
(resp. C(Q)).

2. The map f preserves the 2-WL coloring, that is,

ciG(Z) = ciH(Z
f) (7)

for all i ≥ 0 and Z ∈ C(P), where ciG(Z) := ciG(uv) for an arrow uv in Z and
ciH(Z

f ) is defined similarly. In particular, G ≡2-WL H.

3. If, moreover, G ∼= H, then f is induced by a combinatorial isomorphism from
C(P) to C(Q).

Proof. 1. This part follows directly from Proposition 2.3.
2. We use the induction on i. For i = 0, Equality (7) follows from the fact that

the coloring of H is defined according to the map f . Assume that Equality (7) is
true for some value of i for all Z ∈ C(P) and prove that then ci+1

G (Z) = ci+1
H (Zf)

for all Z ∈ C(P). Choose arbitrarily an arrow uv in Z and an arrow u′v′ in Zf . It
suffices to prove that

{{
ciG(uw) | c

i
G(wv)

}}
w∈V (G)

=
{{
ciH(u

′w′) | ciH(w
′v′)
}}

w′∈V (H)
. (8)

Each pair X, Y ∈ C(P) contributes pZXY elements ciG(X) | ciG(Y ) into the left-hand
side of (8). Similarly, for each X, Y ∈ C(P), the right-hand side of (8) contains

p
f(Z)
f(X)f(Y ) elements ciH(X

f) | ciH(Y
f ). Since f is an algebraic isomorphism,

p
f(Z)
f(X)f(Y ) = pZXY .

By the induction assumption,

ciH(X
f) | ciH(Y

f) = ciG(X) | ciG(Y ).

Equality (8) follows.
3. Let φ be an isomorphism from G to H . By (5), φ preserves the 2-WL coloring

and, therefore, every X in C(P) has the same 2-WL color as Xφ in C(Q). By Part
2, also Xf has this color. This implies that Xf = Xφ. It remains to note that φ is a
combinatorial isomorphism from C(P) to C(Q) (which readily follows from the fact
that φ preserves the 2-WL coloring).

12



2.4 Amenability to 2-WL and separability of the coherent

closure

We call a colored graph G amenable (to 2-WL) if 2-WL distinguishes G from any
non-isomorphic graph H , that is, G ≡2-WL H implies G ∼= H .

A coherent configuration C is separable if every algebraic isomorphism from C
to any coherent configuration D is induced by a combinatorial isomorphism from C
to D.

Theorem 2.5. A colored graph G is amenable if and only if its coherent closure
C(G) is separable.

Proof. (⇐=) Suppose that G ≡2-WL H . Consider the map f : C(G) → C(H) taking
each X ∈ C(G) to the basis relation in C(H) with the same 2-WL color. This
map is an algebraic isomorphism from C(G) to C(H). Since C(G) is separable, f is
induced by a combinatorial isomorphism φ from C(G) to C(H). Since φ preserves
the 2-WL coloring ctG, it preserves also the initial coloring c0G, which means that φ
is an isomorphism from G to H .

( =⇒ ) Given an algebraic isomorphism f : C(G) → D, we have to show that
f is induced by a combinatorial isomorphism from C(G) to D. Let R denote the
rainbow which is the uncolored version of G.

Claim A. D = C(Rf ).

Proof of Claim A. Since C(R) 4 R, we have D 4 Rf . By Proposition 2.1, this
implies that D 4 C(Rf ). Applying the inverse map f−1 : D∪ → C(G)∪, we have

C(R) 4 (C(Rf ))f
−1

. (9)

Since f−1 is an algebraic isomorphism from D to C(R), Lemma 2.2 implies that
(C(Rf ))f

−1

is a coherent configuration. Since f−1 takes Rf back to R, we have

(C(Rf ))f
−1

4 R

and, by Proposition 2.1,
(C(Rf ))f

−1

4 C(R).

Along with (9), this shows that (C(Rf ))f
−1

= C(R) or, equivalently, C(Rf ) =
C(R)f = D. ⊳

Let Gf denote the colored version of Rf that inherits the colors of G according to
the bijection f : R → Rf . Using Claim A and Part 2 of Lemma 2.4, we conclude that
G ≡2-WL G

f . Since G is amenable, G ∼= Gf . By Part 3 of Lemma 2.4, the algebraic
isomorphism f is induced by a combinatorial isomorphism from C(G) to D.

13



|X| = 2: |X| = 3:

K4

|X| = 4:

F4 C4 ~C4

Figure 1: Cells C[X ] on 2, 3, and 4 points.

3 Preliminaries on the structure of coherent con-

figurations

3.1 Fibers and interspaces

Let C be a coherent configuration on the point set V = V (C). Recall that a set of
points X ⊆ V is a fiber of C if it underlies a reflexive basis relation of C. Denote the
set of all fibers of C by F (C). By Property (A) in Section 2.2, F (C) is a partition of
V . Property (C) implies that for every basis relation R of C there are, not necessarily
distinct, fibers X and Y such that R ⊆ X × Y . Thus, if X, Y ∈ F (C), then the
Cartesian product X × Y is split into basis relations of C. We denote this partition
by C[X, Y ]. If X = Y , we simplify our notation to C[X ] = C[X,X ]. Note that
C[X ] is a coherent configuration on X , with X being its single fiber. We will call
C[X ] a cell of C. In general, coherent configurations with a single fiber are called
association schemes.

All possible association schemes on 2, 3, and 4 points are depicted in Figure 1.
Undirected edges are used to show basis relations that are equal to their transposes.
Directed edges are used to show basis relations that are not equal to their transposes,
and those are then not shown as they are reconstructable by reversing the arrows.
Loops are not shown at all. Though we use different patterns for different basis
relations, remember that C[X ] is just an (uncolored) partition of X . We give the 4-

point cells names K4, C4, ~C4, and F4 according to the names of the graphs appearing
as underlying shapes in the cell representations. Here, ~C4 stands for the directed
4-cycle, and F4 stands for the factorization of the complete graph K4 into three
matchings 2K2. We use notation C[X ] ≃ C4 etc. to indicate which type the cell
C[X ] has.

If X 6= Y , we call the partition C[X, Y ] an interspace of C. Note that R ∈
C[X, Y ] if and only if R∗ ∈ C[Y,X ]. In particular, R ∈ C[X, Y ] for X 6= Y implies
that R∗ 6= R. If |C[X, Y ]| = 1, that is, X × Y is a basis relation of C, then the
interspace C[X, Y ] will be called uniform. Otherwise, C[X, Y ] will be referred to as
non-uniform. The interspace C[X, Y ] is uniform if and only if so is C[Y,X ].

If R ∈ C[X, Y ], then the number of arrows in R from a point x ∈ X is the same
for each x in X . We call this number the valency of R and denote it by d(R).
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Lemma 3.1. Let X, Y ∈ F (C). If |X| and |Y | are coprime, then C[X, Y ] is uniform.

Proof. Let R be a basis relation such that R ⊆ C[X, Y ]. Recall that the valency
d(R) is equal to the number of arrows in R from each point x ∈ X . Note also that
the valency d(R∗) of the transpose relation R∗ is equal to the number of arrows in
R to a point y ∈ Y ; it does not depend on the choice of y. It follows that

d(R)|X| = |R| = d(R∗)|Y |.

Since |X| and |Y | are coprime, d(R) is divisible by |Y |. Taking into account that
d(R) ≤ |Y |, we obtain the equality d(R) = |Y |. As a consequence, R = X × Y .

Thus, all interspaces C[X, Y ] with |X| = 1 are uniform, and so are also inter-
spaces with |X| = 2 and |Y | = 3. Figure 2 shows all non-uniform interspaces C[X, Y ]
with |X| ≤ 3 and |Y | ≤ 3. Here we adhere to the following convention: A pair xy
with x ∈ X in y ∈ Y is shown as an undirected edge, as it is automatically ordered
once the ordered pair of fibers X, Y is given. To facilitate visualization, one basis
relation in each picture is not shown. It is reconstructable by taking the bipartite
complement of the shown part.

If we allow also fibers on 4 points, then the list of all non-uniform interspaces (up
to isomorphism of partitions) is completed in Figure 3. Again, one basis relation is
not shown in each case as it is reconstructable by taking the bipartite complement.
If |X| < |Y | = 4, then Lemma 3.1 implies that a non-uniform interspace C[X, Y ] is
possible only for |X| = 2. Such an interspace is unique. Suppose that |X| = |Y | = 4.
As agreed, we represent a basis relation as an undirected bipartite graph with vertex
classes X and Y (tacitly assuming the arrows in the direction from X to Y ). Note
that this graph must be regular. There is a unique basis relation of degree 1 (a
4-matching), a unique basis relation of degree 3 (the bipartite complement of a 4-
matching), and there are two self-complementary basis relations of degree 2 (two
disjoint 4-cycles and a 8-cycle). This yields three non-uniform interspaces C[X, Y ]
with 2 basis relations, for which we will use names 4K1,1, 2K2,2, and C8, using the
notation C[X, Y ] ≃ 2K2,2 etc. An interspace C[X, Y ] with |C[X, Y ]| = 3 consists of
two basis relations of degree 1 and one basis relation of degree 2. The latter can be
either an 8-cycle or the disjoint union of two 4-cycles. In each case, the two basis
relations of degree 1 are obtainable in a unique, up to combinatorial isomorphism,

|X| = |Y | = 2: |X| = |Y | = 3:

Figure 2: Non-uniform interspaces between fibers with at most 3 points.
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|X| = 2, |Y | = 4:

2K1,2 4K1,1

|X| = |Y | = 4, |C[X, Y ]| = 2:

2K2,2 C8

|X| = |Y | = 4, |C[X, Y ]| = 3: |X| = |Y | = 4, |C[X, Y ]| = 4:

Figure 3: Non-uniform interspaces between fibers with at most 4 points.

way by splitting the complement into two 4-matchings. This yields two interspaces
shown in Figure 3. An interspace C[X, Y ] with |C[X, Y ]| = 4 is a factorization of
X × Y into four 4-matchings. One factor is unique up to isomorphism. Two factors
can form together either an 8-cycle or the disjoint union of two 4-cycles, as shown
in the picture for the preceding case of |C[X, Y ]| = 3. The bipartite complement
of an 8-cycle is also an 8-cycle, which is uniquely factorizable into two further 4-
matchings, and, therefore, C[X, Y ] is uniquely determined in this case. The bipartite
complement of two 4-cycles also consists of two 4-cycles. It is factorizable in two
ways, but one of them leads to two 4-cycles whose union is an 8-cycle, which is the
case we already have. Thus, there are two interspaces with |C[X, Y ]| = 4, one with
two factors forming an 8-cycle and one with every two factors forming two 4-cycles.

3.2 Direct sums

Extending our notation, for any U ∈ F (C)∪ we let C[U ] denote the set of all basis
relations of C contained in U2. Note that C[U ] is a coherent configuration on the point
set U . Let W = V \ U . We say that C is the direct sum of coherent configurations
C[U ] and C[W ] and write C = C[U ] ⊞ C[W ] if the interspace C[X, Y ] is uniform for
every two fibers X, Y ∈ F (C) such that X ⊆ U and Y ⊆ W .

Lemma 3.2 (see [10, Corollary 3.2.8]). Suppose that C = C1 ⊞ C2. The coherent
configuration C is separable if and only if both C1 and C2 are separable.
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Lemma 3.2 reduces the general separability problem to its restriction for inde-
composable coherent configurations, that is, those configurations which cannot be
split into a direct sum. Lemma 3.1 implies that an indecomposable coherent config-
uration of maximum fiber size at most 4 either has maximum fiber size at most 3
or has only fibers of size 4 or 2.

3.3 Algebraic isomorphisms and fibers

Lemma 3.3 (see [10, Proposition 2.3.18]). Let f : C → C′ be an algebraic isomor-
phism of coherent configurations. If R is a reflexive basis relations of C, then Rf is
a reflexive basis relations of C′.

Given an algebraic isomorphism f : C → C′ and a fiber X ∈ F (C), we will write
f(X) to denote the fiber of C′ underlying the reflexive basis relation Rf ∈ C′ for the
reflexive basis relation R = {xx : x ∈ X} in C. Thus, the algebraic isomorphism f
determines a bijection X 7→ f(X) from F (C) to F (C′).

As it follows directly from the definitions, whenever we want to check that a given
rainbow is a coherent configuration or that a given map is an algebraic isomorphism
of coherent configurations, this is enough to do locally for every triple of fibers. We
formalize this observation as follows.

Lemma 3.4. Let C be a coherent configuration and C′ be a rainbow. Let f : C → C′

be a bijection that induces a one-to-one correspondence between the reflexive relations
of C and the reflexive relations of C′, that is, establishes a bijection f : F (C) → F (C′).
If C′[f(A) ∪ f(B) ∪ f(C)] is a coherent configuration for any fibers A,B,C ∈ F (C)
and, moreover, the restriction of f to C[A∪B∪C] is an algebraic isomorphism from
C[A ∪ B ∪ C] to C′[A′ ∪ B′ ∪ C ′], then C′ is also a coherent configuration and f is
an algebraic isomorphism from C to C′.

Lemma 3.4 readily implies the following fact. Let C be a coherent configuration
on point set V . For X ∈ F (C), we denote C \X = C[V \X ].

Lemma 3.5. Let f : C → C′ be an algebraic isomorphism of coherent configurations.
If X ∈ F (C), then the restriction of f to C \ X is an algebraic isomorphism from
C \X to C′ \ f(X).

4 Cutting it down: Interspaces with a matching

Let M be a basis relation of a coherent configuration C. Suppose that M ∈ C[X, Y ]
for distinct fibers X and Y . We callM a matching if bothM and its transpose have
valency 1, i.e., d(M) = d(M∗) = 1. This means that M determines a one-to-one
correspondence between X and Y . In the case that M ∈ C[X ] for a fiber X , we
call M a matching if d(M) = d(M∗) = 1 and, additionally, M is symmetric and
irreflexive. In this case, M determines a partition of X into pairs of points.
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Lemma 4.1. Suppose that a coherent configuration C contains a matching basis
relation in an interspace C[X, Y ]. Then C is separable if and only if C\X is separable.

We split the proof of Lemma 4.1 into two parts, Lemmas 4.6 and 4.8 below.
Before proceeding to the proof, we need some definitions. We call a rainbow P

fibrous if for every basis relation R ∈ P there are, not necessarily distinct, fibers
X, Y ∈ F (P) such that R ⊆ X × Y . Note that a coherent configuration is a
fibrous rainbow. For a fibrous rainbow P, we can use the notation P[X, Y ] =
{R ∈ P : R ⊆ X × Y }, that was introduced for coherent configurations.

Let P be a rainbow on point set V and Q be a rainbow on point set U . We call
a surjective function ν : V → U a folding map from P to Q if

• Rν ∈ Q for every basis relation R ∈ P, and

• |Rν | = |R| for every reflexive basis relation R ∈ P.

Note that, by the first condition, for every fiber X of P, its image Xν is a fiber of
Q. Taking into account the second condition, we see that the restriction of ν to X is
a bijection from X to Xν . Therefore, for every two (not necessarily distinct) fibers
X, Y ∈ F (P), the map ν induces a bijection from X × Y onto Xν × Y ν . If P is
fibrous, this implies that ν, extended to a map from V 2 to U2, induces a bijection
from R to Rν for each R ∈ P. Moreover, ν determines a one-to-one correspondence
R 7→ Rν between P[X, Y ] and Q[Xν , Y ν ] (hence Q must be fibrous too).

We say that basis relations R, S, T of a fibrous rainbow P form a collocated triple
(or are collocated) if there are fibers X, Y, Z ∈ F (P), not necessarily distinct, such
that T ∈ P[X, Y ], R ∈ P[X,Z], and S ∈ P[Z, Y ]. If P is a coherent configuration
and R, S, T are not collocated, then obviously pTRS = 0.

Lemma 4.2. If Q is a coherent configuration and ν is a folding map from a fibrous
rainbow P to Q, then P is also a coherent configuration. Moreover,

pTRS = pT
ν

RνSν

for every collocated triple R, S, T ∈ P.

Proof. If R, S, T ∈ P are not collocated, then pTRS is obviously well defined and equal
to 0, which means that Condition (C) in the definition of a coherent configuration
is fulfilled for such triples. Suppose that R, S, T is a collocated triple in P and that
this is certified by the fibers X, Y, Z ∈ F (P). Note that Rν , Sν , T ν is a collocated
triple in Q, which is certified by fibers Xν , Y ν , Zν ∈ F (Q). Let xy ∈ T and consider
the set W of all z ∈ Z such that xz ∈ R and zy ∈ S. Note that z ∈ W if and only
if xνzν ∈ Rν and zνyν ∈ Sν . Since xνyν ∈ T ν and ν is a bijection from Z onto Zν ,
we conclude that |W | = pT

ν

RνSν , not depending on the choice of xy in T .

Note that matching basis relations are thin in the sense of [10] and, therefore,
Part 1 of the following lemma can also be obtained from [10, Example 2.2.2].

18



Lemma 4.3. Suppose that an interspace C[X, Y ] of a coherent configuration C con-
tains a matching basis relation M and define a function ν : V (C) → V (C) \ X by
ν(x) = y for all xy ∈M and ν(z) = z for all z /∈ X. Then the following is true:

1. ν is a combinatorial isomorphism from the cell C[X ] to the cell C[Y ].

2. If R ∈ C[X, Y ] ∪ C[Y,X ], then Rν ∈ C[Y ].

3. If R ∈ C[X,Z] ∪ C[Z,X ], where Z ∈ F (C) and Z 6= X, Y , then Rν ∈ C[Y, Z] ∪
C[Z, Y ].

4. ν is a folding map from C to C \X.

Proof. Note that ν maps each fiber of C bijectively onto a fiber of C\X . Throughout
this proof, we write ab ≈ a′b′ in the case that the pairs ab and a′b′ are in the same
basis relation of C.

1. We show that ν takes the partition C[X ] of X2 onto the partition C[Y ] of Y 2.
Let x1x2 and x3x4 be two, not necessarily disjoint, pairs of points of X . Denote
yi = ν(xi) for i ≤ 4. Assuming that

x1x2 ≈ x3x4, (10)

we need to show that
y1y2 ≈ y3y4. (11)

Since x1y1 is the only arrow in M from x1 and x3y3 is the only arrow in M from x3,
Property (C) of a coherent configuration allows us to deduce from (10) that

y1x2 ≈ y3x4. (12)

Since x2y2 is the only arrow in M from x2 and x4y4 is the only arrow in M from x4,
the relation (12) along with Property (C) implies that y2y1 ≈ y4y3, which implies (11)
by Property (B) of a coherent configuration.

2. Suppose that R ∈ C[X, Y ] (the case R ∈ C[Y,X ] is symmetric). Note that
ν induces a bijection from X × Y onto Y 2. Therefore, it suffices to prove that for
arbitrary x1, x2 ∈ X and y1, y2 ∈ Y :

x1y1 ≈ x2y2 ⇐⇒ xν1y1 ≈ xν2y2.

This readily follows from the fact x1x
ν
1 is the only arrow in M from x1 and x2x

ν
2 is

the only arrow in M from x2.
3. Suppose that R ∈ C[X,Z] (the case of R ∈ C[Z,X ] is symmetric). Note that

ν determines a bijection from X × Z onto Y × Z. We have to show that ν takes
the partition C[X,Z] of X ×Z onto the partition C[Y, Z] of Y ×Z. Let x1, x2 ∈ X ,
yi = xνi for i = 1, 2, and z1, z2 ∈ Z. Assuming that x1z1 ≈ x2z2, we have to prove
that y1z1 ≈ y2z2. This follows from the fact that x1y1 is the only arrow in M from
x1 and x2y2 is the only arrow in M from x2.

4. The fact that ν is a folding map from C to C \X is a direct consequence of
the three preceding parts along with the obvious observation that Rν = R for all
R ∈ C \X .
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R ∈ C[X ]
f

−−−→ Rf ∈ C′[X ′]

ν

y
yν′

Rν ∈ C[Y ] −−−→
f0

R⋆ ∈ C′[Y ′], R⋆ = f0(R
ν) = ν ′(Rf).

Figure 4: Proof of Lemma 4.4: This commutative diagram uniquely determines Rf

for each R ∈ C[X ]. The similar commutative diagram holds also if R ∈ C[X,Z] for
each Z 6= X (as well as for R ∈ C[Z,X ]).

Lemma 4.4. Suppose that an interspace C[X, Y ] of a coherent configuration C con-
tains a matching basis relation M . Suppose also that an interspace C′[X ′, Y ′] of a
coherent configuration C′ contains a matching basis relation M ′. If f0 is an alge-
braic isomorphism from C \X to C′ \X ′ such that f0(Y ) = Y ′, then f0 extends to
an algebraic isomorphism f from C to C′.

Proof. Define a function ν : V (C) → V (C) \ X by ν(x) = y for all xy ∈ M and
ν(z) = z for all z /∈ X . A function ν ′ : V (C′) → V (C′) \X ′ is defined similarly.

Taking into account Lemma 3.3, let Z ′ = f0(Z) denote the fiber of C′ \ X ′

corresponding to a fiber Z of C \X under f0. We define a bijection f : C → C′ that
coincides with f0 on C \X and bijectively maps

• C[X ] onto C′[X ′],

• C[X, Y ] ∪ C[Y,X ] onto C′[X ′, Y ′] ∪ C′[Y ′, X ′],

• C[X,Z] ∪ C[Z,X ] onto C′[Y ′, Z ′] ∪ C′[Z ′, Y ′] for each Z ∈ F (C), Z 6= X, Y .

Moreover, we require that
f(Rν) = (f(R))ν

′

. (13)

This condition uniquely determines f because, by Parts 1–3 of Lemma 4.3, the
mappings ν and ν ′ are bijective when restricted to each of the domains listed above;
see Figure 4.

It is evident from the definition of f that a triple R, S, T is collocated in C if and
only if the triple Rf , Sf , T f is collocated in C′. If R, S, T ∈ C are not collocated, we
therefore have

pTRS = 0 = pT
f

RfSf .

Assume that R, S, T ∈ C form a collocated triple. By Part 4 of Lemma 4.3, ν
and ν ′ are folding maps. According to Lemma 4.2,

pTRS = pT
ν

RνSν (14)

and
pT

f

RfSf = p
ν′(T f )

ν′(Rf )ν′(Sf )
, (15)
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the last equality being true because Rf , Sf , T f are collocated as well. Combining
Equalities (13)–(15) and using the assumption that f0 is an algebraic isomorphism
from C \X to C′ \X ′, we conclude that

pTRS = pT
ν

RνSν = p
f0(T ν)
f0(Rν)f0(Sν) = p

f(T ν)
f(Rν)f(Sν ) = p

ν′(T f )

ν′(Rf )ν′(Sf )
= pT

f

RfSf .

Therefore, f is an algebraic isomorphism from C to C′.

A function ν in Lemma 4.3 is a kind of projection of a coherent configuration
C onto the smaller coherent configuration C \X along a matching in an interspace
C[X, Y ]. We now consider a kind of the reverse lifting operation.

Lemma 4.5. Let D be a coherent configuration on point set U . Let µ : Y → X be
a bijection, where Y ∈ F (D) and X ∩ U = ∅. Construct a rainbow C on the point
set U ∪ X such that C[U ] = D as follows: For each basis relation R ∈ D[Y ], the
partition C of (U ∪X)2 contains

• the image Rµ ⊂ X2 of R under µ;

• the relation R̂ ⊂ X × Y defined by

yµ1 y2 ∈ R̂ ⇐⇒ y1y2 ∈ R;

• the transpose of R̂.

Furthermore, for each Z ∈ F (D), Z 6= Y , and for each basis relation R ∈ D[Y, Z],
the partition C contains

• the relation R̂ ⊂ X × Z defined by

yµz ∈ R̂ ⇐⇒ yz ∈ R;

• the transpose of R̂.

Define a map ν : U ∪X → U to be the inverse µ−1 on X and the identity elsewhere.
Then the following is true:

1. C is a fibrous rainbow, and ν is a folding map from C to D.

2. C is a coherent configuration.

Proof. 1. The fact that C is fibrous is a straightforward consequence of the con-
struction. It is also straightforward to see that ν preserves the fibers and their
cardinalities. Moreover, we have

• ν(Rµ) = R for every R ∈ C[Y ];

• ν(R̂) = R and ν((R̂)∗) = R∗ for every R ∈ C[Y ];
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• ν(R̂) = R and ν((R̂)∗) = R∗ for every R ∈ C[Y, Z].

This shows that ν is a folding map.
2. By Part 1 and Lemma 4.2.

Lemma 4.6. Suppose that an interspace C[X, Y ] of a coherent configuration C con-
tains a matching basis relation M . If C is separable, then C \X is also separable.

Proof. Let f0 be an algebraic isomorphism from C\X to a coherent configuration D.
According to Lemma 3.3 and the notation introduced in Section 3.3, let Y ′ = f0(Y )
denote the fiber of D corresponding to the fiber Y of C. Fix a bijection µ′ : Y ′ → X ′,
where X ′ ∩ V (D) = ∅. Based on D and µ′, we construct a coherent configuration
C′ as described in Lemma 4.5. Note that, according to this construction, the inter-
space C′[X ′, Y ′] contains a matching basis relation, namely M ′ =

{
yµ

′

y : y ∈ Y ′
}

(indeed, M ′ = D̂ for D = {yy : y ∈ Y ′}). By Lemma 4.4, f0 extends to an algebraic
isomorphism f from C to C′. Since C is separable, f is induced by a combinatorial
isomorphism φ : V (C) → V (C′) from C to C′. Denote the restriction of φ to V (C)\X
by φ0. Note that φ(X) = f(X) = X ′. Therefore, the map φ0 is a combinatorial
isomorphism from C \X to D. Since f is induced by φ, the algebraic isomorphism
f0 is induced by the combinatorial isomorphism φ0.

The converse of Lemma 4.6 is known to be true due to Evdokimov and Pono-
marenko [15, Lemma 9.4]. Since their proof uses a matrix language, for the reader’s
convenience we give an independent proof of this fact, stated as Lemma 4.8 below.
Our argument is based on the following lemma, which essentially says that an alge-
braic isomorphism of coherent configurations preserves matching basis relations and
respects projections along them.

Lemma 4.7. Suppose that an interspace C[X, Y ] of a coherent configuration C con-
tains a matching basis relation M . If f : C → C′ is an algebraic isomorphism of
coherent configurations, then the following is true:

1. M ′ = f(M) is a matching basis relation in the interspace C′[X ′, Y ′], where X ′ =
f(X) and Y ′ = f(Y ).

2. f maps bijectively

(a) C[X ] onto C′[X ′],

(b) C[X, Y ] onto C′[X ′, Y ′] and C[Y,X ] onto C′[Y ′, X ′],

(c) C[X,Z] onto C′[X ′, Z ′] and C[Z,X ] onto C′[Z ′, X ′] for each Z ∈ F (C), Z 6=
X, Y , where Z ′ = f(Z).

3. f satisfies the condition
(f(R))ν

′

= f(Rν), (16)

where ν : V (C) → V (C) \ X is defined as the one-to-one map from X to Y
according to M and as the identity map elsewhere, and ν ′ : V (C′) → V (C′) \X ′

is defined similarly. Thus, each of the bijections in Part 2(a)–(c) is uniquely
determined by the restriction of f to C \X.
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Ŝ

M

Y ′

X ′

f(S)

f(S)µ
′

M ′

f̂(S)

M ′ =Mf

Figure 5: Proof of Lemma 4.7.

Proof. 1. According to the notation introduced in Section 3.3, X ′ and Y ′ are fibers
of C′. Note that R ∈ C[X, Y ] if and only if pDRR∗ > 0 for D = {xx : x ∈ X} and
pER∗R > 0 for E = {yy : y ∈ Y }. Since an algebraic isomorphism preserves the
intersection numbers and the pairs of mutually transposed basic relations (see [10,
Proposition 2.3.18]), we conclude that

R ∈ C[X, Y ] if and only if Rf ∈ C′[Xf , Y f ]. (17)

In particular, this shows that M ′ ∈ C′[X ′, Y ′]. Furthermore, M ′ is a matching basis
relation because an algebraic isomorphism preserves the valency of a basis relation
(see [10, Corollary 2.3.20]).

2. By the general property (17) of an algebraic isomorphism.
3. If R ∈ C \X , then (16) is trivially true because ν is the identity on C \X and

ν ′ is the identity on C′ \X ′. Thus, we have to consider the cases that R belongs to
the cell C[X ] or to one of the interspaces listed in Part 2(b)–(c). Consider first the
case that R ∈ C[X, Y ]. By Part 2 of Lemma 4.3, ν takes C[X, Y ] bijectively onto
C[Y ] and, similarly, ν ′ takes C′[X ′, Y ′] bijectively onto C[Y ′]. Given S ∈ C[Y ], let Ŝ
denote the basis relation in C[X, Y ] such that (Ŝ)ν = S. The similar notation will

be used also for C′. Since R̂ν = R for every R ∈ C[X, Y ] (and similarly in C′), we
actually have to prove that

f(Ŝ) = f̂(S) (18)

for any S ∈ C[Y ]. Note that T = Ŝ if and only if pTMS = 1; see Figure 5. Similarly,

T ′ = f̂(S) if and only if pT
′

M ′f(S) = 1. This implies Equality (18) as

p
f(Ŝ)
M ′f(S) = p

f(Ŝ)
f(M)f(S) = pŜMS = 1.

Suppose now that R ∈ C[X ]. By Part 1 of Lemma 4.3, ν takes C[X ] bijectively
onto C[Y ], and similarly ν ′ takes C′[X ′] bijectively onto C′[Y ′]. Let µ : Y → X be
the inverse of ν and, similarly, µ′ : Y ′ → X ′ be the inverse of ν ′. Now we have to
prove that

f(Sµ) = f(S)µ
′

(19)
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for any S ∈ C[Y ]. Note that T = Sµ if and only if pŜTM = 1. Similarly, T ′ = f(S)µ
′

if and only if p
f̂(S)
T ′M ′ = 1. Using (18), this implies Equality (19) as

p
f̂(S)
f(Sµ)M ′ = p

f(Ŝ)
f(Sµ)f(M) = pŜSµM = 1.

The other cases are handled similarly.

Lemma 4.8. Suppose that an interspace C[X, Y ] of a coherent configuration C con-
tains a matching basis relation. If C \X is separable, then C is separable too.

Proof. Let f be an algebraic isomorphism from C to C′. Let X ′ = f(X) be the fiber
of C′ corresponding to the fiber X of C. Denote the restriction of f to C \ X by
f0. By Lemma 3.5, f0 is an algebraic isomorphism from C \ X to C′ \ X ′. By the
assumption that C \X is separable, f0 is induced by a combinatorial isomorphism
φ0 : V (C) \X → V (C′) \X ′.

Let Y ′ = f(Y ). By Part 1 of Lemma 4.7, the basis relation M ′ = Mf is a
matching in the interspace C′[X ′, Y ′]. Define a bijection ν : X → Y , as usually, by
ν(x) = y for all xy ∈ M and a bijection ν ′ : X ′ → Y ′ similarly. Let us extend φ0 to
a bijection φ : V (C) → V (C′) by setting

φ = (ν ′)−1 ◦ φ0 ◦ ν

on X , that is, requiring the diagram

X
φ

−−−→ X ′

ν

y
yν′

Y −−−→
φ0

Y ′

be commutative.
Extend ν to the whole point set V (C) by the identity on V (C)\X and, similarly,

extend ν ′ to V (C′) by the identity on V (C′) \X ′. Recall the properties of ν and ν ′

established in Parts 1–3 of Lemma 4.3. The definition of φ implies that

φ ◦ ν = ν ′ ◦ φ.

It follows that
φ(R)ν

′

= φ(Rν)

for every basis relation R ∈ C. Comparing this with Equality (16) in Lemma 4.7,
we see that f(R) = φ(R) for all R ∈ C as a consequence of Parts 2–3 of this lemma.
We conclude that f is induced by φ.

Thus, the proof of Lemma 4.1 is complete.

Corollary 4.9 (cf. [10, Exercise 3.7.20]). Every coherent configuration D with max-
imum fiber size at most 3 is separable.
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Proof. By Lemma 3.1, D decomposes in a direct sum of indecomposable coherent
configurations each with fibers of the same size which can be 3, or 2, or 1. An
indecomposable coherent configuration with maximum fibers size 1 is actually a
single-point configuration and, hence, is separable. Let s ∈ {2, 3} and suppose that
C is an indecomposable coherent configuration with all fibers of the same size s. As
it is seen from Figure 2, every non-uniform interspace of C contains a matching basis
relation. Lemma 4.1 reduces deciding separability of a C to deciding separability of
a smaller coherent configuration. Applying this reduction repeatedly, we see that C
is separable if and only if the association scheme C[X ] for the only remaining fiber
X is separable. The 2- and 3-point association schemes are shown in Figure 1; all
of them are separable. Therefore, C is separable. By Lemma 3.2, we conclude that
D is separable.

Note that Corollary 4.9, along with Theorem 2.5, implies the Immerman-Lander
result [25] that every graph of color multiplicity at most 3 is amenable.

5 Cutting it down: 2-Point fibers

Corollary 4.9, along with Lemmas 3.2 and 3.1, reduces deciding whether a coherent
configuration C with maximum fiber size 4 is separable to the case that C has fibers
only of size 4 or 2. By Lemma 4.1, we can also assume that no interspace of C
contains a matching basis relation. The following lemma makes further reduction.

Lemma 5.1. Let C be an indecomposable coherent configuration on more than 2
points with fibers only of size 4 or 2. Suppose that no interspace of C contains a
matching basis relation. Let X ∈ F (C) with |X| = 2. Under these conditions, C is
separable if and only if C \X is separable.

We remark that Lemma 5.1 is applicable to the multipede graphs of color mul-
tiplicity at most 4 (see Section 1 and Remark 9.4). In this setting, Neuen and
Schweitzer [32, Section 4.2] use the operation of removing vertex color classes of
size 2 in order to reduce the number of vertices in their construction of benchmark
graphs challenging for practical isomorphism solvers.

To prove Lemma 5.1, we first collect some structural information.

5.1 Direct and skewed connections of interspaces

We use the notation introduced in Section 3.1; see, in particular, Figure 3.

Lemma 5.2.

1. Suppose that C[X, Y ] ≃ 2K1,2. If C[X, Y ] contains a relation R = {x1y1, x1y2,
x2y3, x2y4}, then C[Y ] contains a basis relation S = {y1y2, y2y1, y3y4, y4y3}.

2. Suppose that C[X, Y ] ≃ 2K2,2. If C[X, Y ] contains a relation R = {x1, x2} ×
{y1, y2} ∪ {x3, x4}× {y3, y4}, then C[Y ] contains a basis relation S = {y1y2, y2y1,
y3y4, y4y3}.
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Figure 6: Proof of Lemma 5.2: (a) Part 1; (b) Part 2; (c) Part 3.

3. Suppose that C[X, Y ] ≃ C8. If C[X, Y ] contains a relation R = {x1y1, x2y1, x2y2,
x3y2, x3y3, x4y3, x4y4, x1y4}, then C[Y ] ≃ C4 and S = {y1y3, y3y1, y2y4, y4y2} is
one of the two irreflexive basis relations of C[Y ].

Proof. 1. Let T be the basis relation of C[Y ] containing the arrow y1y2. We have
T ⊆ S because pTR∗R > 0. For example, y2y3 /∈ T because y1y2 extends to y1x1y2
and y2y3 cannot be extended to a triangle of this kind. On the other hand, S ⊆ T
because pRRT > 0. For example, y3y4 ∈ T because otherwise, while x1y2 extends to
x1y1y2, the pair x2y4 could not be extended to a triangle of this kind; see Figure 6(a).

2. Literally the same argument (but with x4y4 instead of x2y4) applies also for
this part; see Figure 6(b).

3. Again, let T be the basis relation containing the arrow y1y2. We have T∩S = ∅
because pTR∗R > 0. Furthermore, pRRT > 0, and this implies that T is exactly the
irreflexive complement of S in Y 2; see Figure 6(c).

The following definitions play an important role not only in the proof of Lemma
5.1 but also in the subsequent sections. In the context of Lemma 5.2, we say that
C[X, Y ] determines a matching basis relation in C[Y ] (namely {y1y2, y2y1, y3y4, y4y3}
in Parts 1–2 and {y1y3, y3y1, y2y4, y4y2} in Part 3). Suppose that C[X, Y ] determines
a matching M in Y , and C[Z, Y ] determines a matching M ′ in Y . We say that
C[X, Y ] and C[Z, Y ] have a direct connection at Y if M = M ′. If M 6= M ′, we
say that C[X, Y ] and C[Z, Y ] have a skewed connection at Y (or are, respectively,
directly or askew connected at Y ).

We conclude this subsection with a lemma that provides an important informa-
tion on the structure of matching-free coherent configurations.

Lemma 5.3 (Transitivity of direct 2K2,2-connections). If C[X, Y ] ≃ 2K2,2 and
C[Z, Y ] ≃ 2K2,2 are directly connected at Y , then either C[X,Z] contains a matching
basis relation or C[X,Z] ≃ 2K2,2 and the connections between C[Z,X ] and C[Y,X ]
at X and between C[X,Z] and C[Y, Z] at Z are direct.
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Figure 7: Proof of Lemma 5.3.

Proof. Fix basis relations R ∈ C[X, Y ] and S ∈ C[Z, Y ]. By assumption, they
determine the same matching in C[Y ]. Specifically, let

R = {x1, x2} × {y1, y2} ∪ {x3, x4} × {y3, y4}

and
S = {z1, z2} × {y1, y2} ∪ {z3, z4} × {y3, y4};

see Figure 7. Let T ∈ C[X,Z] be the basis relation containing the arrow x1z1.
Note that pTRS∗ = 2. This equality implies that T contains neither x1z3 nor x1z4.
Therefore, the valency of T is either 1 or 2. In the former case T is a matching basis
relation. Suppose that d(T ) = 2 and, hence, x1z2 ∈ T . It remains to exclude the
possibility that T is of C8-type.

Using the fact that z2x1 ∈ T ∗ and repeating the same argument as above, we
conclude that also z2x2 ∈ T ∗. This yields x2z2 ∈ T and, repeating the same argu-
ment, we also derive x2z1 ∈ T . It follows that T contains the set {x1, x2} × {z1, z2}
and, hence, is of 2K2,2-type.

Finally, note that T and S∗ determine the same matching in C[Z] and that T ∗

and R∗ determine the same matching in C[X ].

5.2 Subconfigurations C[X ∪ Y ∪ Z] with C[X, Y ] ≃ 2K1,2

Lemma 5.4. Let X, Y, Z ∈ F (C) with |X| = 2 and |Y | = |Z| = 4. Suppose that
C[X, Y ] ≃ 2K1,2.

1. If C[Z, Y ] ≃ 2K2,2 with direct connection to C[X, Y ] at Y , then C[X,Z] ≃ 2K1,2

with direct connection to C[Y, Z] at Z.

2. If C[Z, Y ] ≃ 2K2,2 with skewed connection to C[X, Y ] at Y , then C[X,Z] is uni-
form.

3. If C[Z, Y ] ≃ C8, then C[X,Z] is uniform.

4. If C[Z, Y ] is uniform, then C[X,Z] is uniform too.
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Figure 8: Proof of Lemma 5.4. An auxiliary enumeration of the points in Y ∪ Z
corresponds to the 8-cycle underlying the basis relation R in Part 3.

Proof. Fix a basis relation S ∈ C[X, Y ]. Also, fix a basis relation R ∈ C[Y, Z];
Figure 8 gives the corresponding picture for each part of the lemma. We will refer
to the points of C[X ∪ Y ∪ Z] using these pictures.

1. Let T be the basis relation of C[X,Z] containing the arrow x1z1. It suffices
to show that neither x1z3 nor x1z4 is in T . This follows from the fact that pTSR > 0.

2. It suffices to prove that all the arrows from z1 to X , i.e., z1x1 and z1x2, are in
the same basis relation. We will prove that the transposed arrows x1z1 and x2z1 are
in the same basis relation. Denote the basis relation containing x1z1 by T . Looking
at the triple y1x1z1, we see that pRS∗T > 0. Since y2z1 ∈ R and x = x2 is the only
point such that y2x ∈ S∗, we conclude that x2z1 ∈ T .

3. By Parts 1 and 3 of Lemma 5.2, each of the interspaces C[X, Y ] and C[Z, Y ]
determines a matching basis relation in the cell C[Y ]. Moreover, Part 3 of Lemma
5.2 implies that C[Y ] contains a unique matching relation. Therefore, the connection
of C[X, Y ] and C[Z, Y ] at Y is exactly as shown in Figure 8. The rest of the proof
is literally the same as in the preceding part, even though the points y1, y2, and z1
now have a different position, as shown in Figure 8(3).

4. The proof is literally the same as in Part 2, where the new position of the
points y1, y2 is shown in Figure 8(4).

28



5.3 Proof of Lemma 5.1

Since C is indecomposable, it contains a non-uniform interspace C[X, Y ]. It is im-
possible that |Y | = 2 because then C[X, Y ] would contain a matching; see Figure
2. It follows that |Y | = 4. We conclude that C[X, Y ] ≃ 2K1,2, as this is the only,
up to isomorphism, non-uniform interspace between two fibers of sizes 2 and 4; see
Figure 3.

To be specific, letX = {x1, x2} and Y = {y1, y2, y3, y4}, and suppose that C[X, Y ]
consists of the relation

T = {x1} × {y1, y2} ∪ {x2} × {y3, y4} (20)

and its complement X × Y \ T . We now proceed to proving that C is separable if
and only if C \X is separable.

( =⇒ ) Let f0 be an algebraic isomorphism from C\X to a coherent configuration
D. It suffices to extend D to a coherent configuration C′ such that f0 extends to
an algebraic isomorphism f from C to C′. Indeed, since C is separable, such an f is
induced by a combinatorial isomorphism φ : V (C) → V (C′), and the restriction of φ
to V (C) \X will give us a combinatorial isomorphism from C \X to D inducing f0.

We construct C′ and f as follows. First of all, take X ′ = {x′1, x
′
2} such that

X ′ ∩ V (D) = ∅. This will be a fiber of C′. The 2-point association scheme C′[X ′] is
unique. The map f is defined on the two basis relations of the cell C[X ] uniquely in
an obvious way: It maps the (ir)reflexive relation of C[X ] to the (ir)reflexive relation
of C′[X ′].

Let Y ′ = f0(Y ) denote the fiber of D corresponding to the fiber Y of C \ X
under f0. It follows from (20) by Part 1 of Lemma 5.2, that C[X, Y ] determines the
matching basis relation

M = {y1y2, y2y1, y3y4, y4y3} (21)

in C[Y ]. Note that M ′ = f0(M) is a matching basis relation in C′[Y ′] (cf. the proof
of Part 1 of Lemma 4.7). To be specific, let Y ′ = {y′1, y

′
2, y

′
3, y

′
4} and

M ′ = {y′1y
′
2, y

′
2y

′
1, y

′
3y

′
4, y

′
4y

′
3}.

We set the interspace C′[X ′, Y ′] to be the partition of X ′ × Y ′ into the relations

T ′ = {x′1} × {y′1, y
′
2} ∪ {x′2} × {y′3, y

′
4}

and X ′ × Y ′ \T ′. Furthermore, we set f(T ) = T ′ and f(X × Y \T ) = X ′ × Y ′ \T ′.
This will define f also on C[Y,X ] according to the general property f(R∗) = f(R)∗

of an algebraic isomorphism. Note that the extension f , as defined so far, is an
algebraic isomorphism from C[X ∪ Y ] to the current fragment C′[X ′ ∪ Y ′] of C′.

Given Z ∈ F (C \X), let Z ′ = f0(Z). It remains, for each Z 6= Y , to construct
C′[X ′, Z ′] and to define f locally as a bijection from C[X,Z] to C′[X ′, Z ′]. If C[X,Z]
is uniform, which is always the case when |Z| = 2, we set C′[X ′, Z ′] also to be
uniform, and correspondingly define f(X×Z) = X ′×Z ′. Assume now that C[X,Z]
is non-uniform and, hence, |Z| = 4 and C[X,Z] ≃ 2K1,2.
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In this case, Lemma 5.4 implies that C[Z, Y ] ≃ 2K2,2 and that this interspace
is directly connected to C[X, Y ] at Y . Fix a basis relation SZ ∈ C[Z, Y ]. Fix an
enumeration z1, z2, z3, z4 of the points of Z such that

SZ = {z1, z2} × {y1, y2} ∪ {z3, z4} × {y3, y4}. (22)

Since f0 is an algebraic isomorphism from C \X to D, we have D[Z ′, Y ′] ≃ 2K2,2,
and this interspace determines the matching M ′ in D[Y ′]. Therefore, the points of
Z ′ can be enumerated so that

f0(SZ) = {z′1, z
′
2} × {y′1, y

′
2} ∪ {z′3, z

′
4} × {y′3, y

′
4}, (23)

and we fix such an enumeration z′1, z
′
2, z

′
3, z

′
4. Part 1 of Lemma 5.4 implies that

C[X,Z] is directly connected to C[Y, Z] at Z and, therefore, consists of the relation

RZ = {x1} × {z1, z2} ∪ {x2} × {z3, z4} (24)

and its complement X × Z \ RZ . We, therefore, define the interspace C′[X ′, Z ′] ≃
2K1,2 by requiring that it determines the matching {z′1z

′
2, z

′
2z

′
1, z

′
3z

′
4, z

′
4z

′
3} in C′[Z ′].

This condition defines C′[X ′, Z ′] uniquely and ensures that C′[X ′ ∪ Y ′ ∪ Z ′] is a
coherent configuration. There still remain two different possibilities to define f on
C[X,Z]. Our choice is this: We set

f(RZ) = {x′1} × {z′1, z
′
2} ∪ {x′2} × {z′3, z

′
4}. (25)

Note that the basis relation RZ is chosen in (24) in such a way that the set T ∪T ∗∪
SZ ∪S∗

Z ∪RZ ∪R∗
Z , seen as a symmetric irreflexive relation, forms a graph with two

connected components, one contaning x1 and the other containing x2. Likewise, the
basis relation f(RZ) is defined by (25) so that T ′∪ (T ′)∗∪ f(SZ)∪ f(SZ)

∗∪ f(RZ)∪
f(RZ)

∗ also has two connected components. This ensures that f is an algebraic
isomorphism from C[X ∪ Y ∪ Z] to C′[X ′ ∪ Y ′ ∪ Z ′], see Figure 9.

The construction of C′ and f : C → C′ is complete. It remains to argue that C′

is indeed a coherent configuration and that f is an algebraic isomorphism from C to
C′. For this purpose, we use Lemma 3.4.

Let us check that the assumptions of Lemma 3.4 are fulfilled. They are trivially
true if A,B,C are fibers of C \X . We, therefore, assume that C = X . The case that
Y ∈ {A,B} is already treated above. Thus, it remains to consider subconfigurations
C[X ∪ A ∪ B] for each pair A,B ∈ F (C) such that A 6= B and neither A nor B is
in {X, Y }. Fix such a pair A,B. We will prove a stronger fact: There is a bijection
φ = φAB from X ∪A∪B onto X ′∪A′∪B′ that is a combinatorial isomorphism from
C[X∪A∪B] to C′[X ′∪A′∪B′] and that induces the restriction of f to C[X ∪A∪B].

The restriction of f0 to C[A ∪ B] is an algebraic isomorphism from C[A ∪ B] to
C′[A′ ∪B′]. It is easy to deduce from Lemma 5.2 that this algebraic isomorphism is
induced by a combinatorial isomorphism φ0 : A∪B → A′∪B′. We will take φ to be
an extension of φ0 to a bijection from X ∪A∪B to X ′∪A′∪B′. Note that φ can be
defined on X in two ways. In both cases, this will be a combinatorial isomorphism
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Figure 9: Proof of Lemma 5.1: Defining the algebraic isomorphism f locally from
C[X ∪ Y ∪ Z] to C[X ′ ∪ Y ′ ∪ Z ′].

from C[X ∪A∪B] to C′[X ′ ∪A′ ∪B′]. We only need to ensure that φ induces f . To
define φ, we consider three cases.

Case 1: Both C[A,X ] and C[B,X ] are uniform. In this case, φ(X × Z) =
X ′ × Z ′ = f(X × Z) for both Z ∈ {A,B} independently of how φ is defined on X .

Case 2: Exactly one of the interspaces C[A,X ] and C[B,X ], say C[A,X ], is non-
uniform. Note that C[X,A] ≃ 2K1,2. Let a1, a2, a3, a4 be the enumeration of A and
a′1, a

′
2, a

′
3, a

′
4 be the enumeration of A′ fixed in the course of our construction of C′;

cf. (22) and (23). Let
MA = {a1a2, a2a1, a3a4, a4a3} (26)

and
M ′

A = {a′1a
′
2, a

′
2a

′
1, a

′
3a

′
4, a

′
4a

′
3} (27)

be the matchings determined by the interspaces C[Y,A] in the cell C[A] and C′[Y ′, A′]
in C′[A′]. Equalities (22) and (23) applied to Z = A show that f0(MA) = M ′

A. It
follows that either

φ0({a1, a2}) = {a′1, a
′
2} and φ0({a3, a4}) = {a′3, a

′
4}

or
φ0({a1, a2}) = {a′3, a

′
4} and φ0({a3, a4}) = {a′1, a

′
2}.

In the former case, we extend φ0 to φ by φ(xi) = x′i for both i = 1, 2. In the latter
case, we have to swap the values of φ on X by setting φ(x1) = x′2 and φ(x2) = x′1.
By Equalities (24) and (25) applied to Z = A, this ensures that φ(RA) = f(RA)
and, therefore, f on C[A ∪B ∪X ] is induced by φ.

Case 3: Both C[A,X ] and C[B,X ] are non-uniform. Thus, C[X,A] ≃ 2K1,2 and
C[X,B] ≃ 2K1,2. Like in the preceding case, let a1, a2, a3, a4 and a

′
1, a

′
2, a

′
3, a

′
4 be the

enumerations of A and A′ that were fixed in the course of our construction of C′.
Similarly, let b1, b2, b3, b4 and b

′
1, b

′
2, b

′
3, b

′
4 be the enumerations of B and B′. Since the
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basis relations SA and SB (fixed in the course of our construction of C′) are directly
connected at C[Y ], Lemma 5.3 implies that the interspace C[A,B] consists of the
basis relation

QAB = {a1, a2} × {b1, b2} ∪ {a3, a4} × {b3, b4}

and its complement A× B \QAB. Since the graph QAB ∪Q∗
AB ∪SA ∪S∗

A ∪SB ∪S∗
B

has two connected components, the graph f0(QAB)∪ f0(QAB)
∗ ∪ f0(SA)∪ f0(SA)

∗ ∪
f0(SB) ∪ f0(SB)

∗ must also have two connected components, which implies that

f0(QAB) = {a′1, a
′
2} × {b′1, b

′
2} ∪ {a′3, a

′
4} × {b′3, b

′
4}.

Using the fact that the coherent configuration C[A∪B∪Y ] has three 2K2,2-interspaces
that are pairwise directly connected, we see that the restriction of f0 to an algebraic
isomorphism from C[A ∪ B ∪ Y ] to C′[A′ ∪ B′ ∪ Y ′] is induced by a combinato-
rial isomorphism φ0 (now φ0 is defined on a larger domain than A ∪ B). Since
φ0(QAB) = f0(QAB), we have either

φ0({a1, a2}) = {a′1, a
′
2} and φ0({b1, b2}) = {b′1, b

′
2} (28)

or
φ0({a1, a2}) = {a′3, a

′
4} and φ0({b1, b2}) = {b′3, b

′
4}.

The coherent configuration C[A ∪ B ∪ Y ] has a combinatorial automorphism that
maps each basis relation onto itself and swaps the sets {a1, a2} and {a3, a4} and
simultaneously the sets {b1, b2} and {b3, b4}. Applying this automorphism if nec-
essary, we can modify φ0 and ensure Equality (28). Now, extending φ0 to φ by
φ(xi) = x′i for each i = 1, 2, we see that

φ(RA) = f(RA) and φ(RB) = f(RB)

for the basis relations RA and RB introduced by (24); see (25). It follows that φ
induces f on C[A ∪B ∪X ], as desired.

(⇐=) Let f be an algebraic isomorphism from C to a coherent configuration C′.
For each fiber A ∈ F (C), let A′ = f(A) denote the corresponding fiber of C′. Denote
the restriction of f to C \X by f0 and note that f0 is an algebraic isomorphism from
C \X to the coherent configuration C′ \X ′. Since C \X is separable, f0 is induced
by a combinatorial isomorphism φ0 : V (C) \X → V (C′) \X ′. Extend φ0 to a map
φ : V (C) → V (C′) as follows. We use the enumeration x1, x2 of X and y1, y2, y3, y4
of Y fixed in the beginning of the proof. Recall that the interspace C[X, Y ] consists
of the relation T specified by (20). Denote y′i = φ0(yi) for each i ≤ 4. Number the
points x′1 and x′2 of X ′ so that

f(T ) = {x′1} × {y′1, y
′
2} ∪ {x′2} × {y′3, y

′
4}. (29)

Now, we set φ(x1) = x′1 and φ(x2) = x′2. The bijection φ is therewith defined and
we have to show that φ is a combinatorial isomorphism from C to C′ inducing the
algebraic isomorphism f . It suffices to do this locally for subconfigurations C[X ∪Z]
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and C′[X ′ ∪Z ′], for each Z ∈ F (C \X). Since |X| = 2, the restriction of φ to X ∪Z
is a combinatorial isomorphism from C[X ∪ Z] to C′[X ′ ∪ Z ′] even irrespectively of
how φ is defined on X . Thus, we only have to prove that φ induces the restriction of
f to C[X ∪Z]. Our definition of φ ensures this for Z = Y , as it immediately follows
from (20) and (29).

Suppose that Z 6= Y . If C[X,Z] is uniform, we have nothing to prove. Assume,
therefore, that C[X,Z] is non-uniform. Recall that C[X,Z] ≃ 2K1,2 and C[Z, Y ] ≃
2K2,2. We refer to the enumeration z1, z2, z3, z4 we have fixed for each such Z.
Denote z′i = φ0(zi). Consider the basis relation

SZ = {z1, z2} × {y1, y2} ∪ {z3, z4} × {y3, y4}

as in (22). Since f0 is induced by φ0, we have

f(SZ) = {z′1, z
′
2} × {y′1, y

′
2} ∪ {z′3, z

′
4} × {y′3, y

′
4}. (30)

Consider now the basis relation

RZ = {x1} × {z1, z2} ∪ {x2} × {z3, z4}

in C[X,Z] specified by (24). Since f provides an algebraic isomorphism from C[X ∪
Y ∪ Z] to C′[X ′ ∪ Y ′ ∪ Z ′], Equalities (29) and (30) readily imply that

f(RZ) = {x′1} × {z′1, z
′
2} ∪ {x′2} × {z′3, z

′
4}.

Thus, f(RZ) = φ(RZ), and f is induced by φ on C[X,Z] and, hence, everywhere.
The proof of Lemma 5.1 is complete.

6 Cutting it down: Interspaces with an 8-cycle

Taking into account Lemma 5.1, our task now reduces to deciding separability of a
coherent configuration C under the following three conditions:

(1) C is indecomposable;

(2) all fibers of C have size exactly 4;

(3) the interspaces of C do not contain any matching basis relation.

Our next step is excluding C8-interspaces. ForX, Y ∈ F (C), we denote C\X, Y =
C[V (C) \ (X ∪ Y )].

Lemma 6.1. Let C be a coherent configuration satisfying Conditions (1)–(3) above.
Suppose that C has at least three fibers and that there is a C8-interspace C[X, Y ].
Under these conditions, C is separable if and only if C \X, Y is separable.

To prove Lemma 6.1, we need further structural information.
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∈
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z2 z6 z4 z8

x1
x5

x3
x7

y8 y4 y6 y2

R ∪ R∗

S ∪ S∗

Figure 10: Proof of Lemma 6.2.

6.1 Isolation of C8-interspaces

The following lemma shows that in a matching-free coherent configuration no two
C8-interspaces can share a fiber.

Lemma 6.2. If C[X, Y ] ≃ C8 and C[X,Z] ≃ C8, then the interspace C[Y, Z] contains
a matching basis relation.

Proof. Fix basis relations R ∈ C[Y,X ] and S ∈ C[X,Z]. Let X = {x1, x3, x5, x7},
Y = {y2, y4, y6, y8}, and Z = {z2, z4, z6, z8}, where the points are indexed according
to the 8-cycles underlying R and S; see Figure 10. Let T ∈ C[Y, Z] be the basis
relation containing the arrow y2z2. Note that pTRS = 2. This equality prevents the
membership in T of the other arrows y2z4, y2z6, and y2z8 from y2 to Z. It follows
that T has valency 1, that is, it is a matching basis relation.

6.2 Proof of Lemma 6.1

Since C is indecomposable, X or Y is connected by a non-uniform interspace to
a fiber U of C \ X, Y . To be specific, without loss of generality we assume that
there is a non-uniform interspace C[U,X ]. If possible, we fix U such that C[U, Y ]
is also non-uniform and also set W = U in this case; this is Case (a) in Figure 11.
Otherwise, we fix a fiber W of C \X, Y such that C[W,Y ] is non-uniform if such a
fiber exists. Then W 6= U ; this is Case (b) in Figure 11. If such a fiber does not
exist, we again set W = U . In the last case, C[W,Y ] is uniform.

Since C contains no interspace with a matching, Lemma 6.2 implies that C[U,X ] ≃
2K2,2. By the same reason we also have C[W,Y ] ≃ 2K2,2, unless C[W,Y ] is uniform.
If U = W and both C[U,X ] and C[U, Y ] are non-uniform, then Lemma 5.3 implies
that these interspaces have skewed connection at U ; see Figure 11(a).

Fix basis relations T ∈ C[X, Y ], TX ∈ C[U,X ], and TY ∈ C[W,Y ]. Enumerate the
points in the fibers X = {x1, x3, x5, x7} and Y = {y2, y4, y6, y8} so that the indices
correspond to the 8-cycle underlying T , as in Figure 11. By Part 3 of Lemma 5.2,

34



x7 y8

x3 y4

x5 y6

x1 y2

u1 u2 u3 u4

T ∪ T ∗

TX ∪ T ∗
X

TY ∪ T ∗
Y

x7 y8

x3 y4

x5 y6

x1 y2

u1 u2 u3 u4 w1 w3 w2 w4
(a) (b)

Figure 11: Proof of Lemma 6.1. Case (a): U = W . Case (b): U 6= W . In both
cases, C[Y,W ] is non-uniform.

the cell C[X ] contains a unique matching, namely

NX = {x1x5, x5x1, x3x7, x7x3} (31)

(corresponding to the two pairs of antipodal odd points on the 8-cycle). Therefore,
Part 2 of the same lemma implies that C[U,X ] determines exactly this matching in
C[X ]. We enumerate the points of U = {u1, u2, u3, u4} so that

TX = {u1, u2} × {x1, x5} ∪ {u3, u4} × {x3, x7}.

Note that C[X,U ] determines the matching

MX = {u1u2, u2u1, u3u4, u4u3} (32)

in the cell C[U ].
If U = W and both C[U,X ] and C[U, Y ] are non-uniform, then we suppose that

TY = {u1, u3} × {y4, y8} ∪ {u2, u4} × {y2, y6},

as in Figure 11(a). Thus, TY determines the matching

MY = {u1u3, u3u1, u2u4, u4u2}

in C[W ] = C[U ]. This assumption causes no loss of generality because the coherent
configuration C[X ∪Y ∪U ] under the conditions C[X, Y ] ≃ C8, C[X,U ] ≃ 2K2,2, and
C[Y, U ] ≃ 2K2,2 is unique up to combinatorial isomorphism. Indeed, the points of
C[X∪Y ∪U ] can obviously be enumerated so that the fragments C[X∪Y ] and C[X∪U ]
will look exactly as in Figure 11(a). Once this is fixed, the interspace C[U, Y ] must
determine the matching {y2y6, y6y2, y4y8, y8y4} in C[Y ] corresponding to the two
pairs of antipodal even points on the 8-cycle. By Lemma 5.3, the interspace C[Y, U ]
must determine a matching in C[U ] different from MX . One of these matchings,
namely MY , appears in Figure 11(a), and the other of them results actually in the
same picture by transposing the points u1 and u2.
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If U 6= W , then we enumerate W = {w1, w2, w3, w4} so that

TY = {w1, w3} × {y4, y8} ∪ {w2, w4} × {y2, y6}.

In this case,
MY = {w1w3, w3w1, w2w4, w4w2},

where MY , as above, denotes the matching determined by C[Y,W ] in C[W ]. For
notational convenience, in the case that U =W we set wi = ui for each i ≤ 4. Note
that MY is well defined irrespectively of whether W = U or W 6= U .

( =⇒ ) Let f0 be an algebraic isomorphism from C \X, Y to a coherent config-
uration D. Like in the proof of Lemma 5.1, it suffices to extend D to a coherent
configuration C′ and to extend f0 to an algebraic isomorphism f from C to C′.

For a fiber A of C \X, Y , let A′ = f0(A) denote the fiber of D corresponding to
A under f0. We fix an enumeration U ′ = {u′1, u

′
2, u

′
3, u

′
4} so that

f0(MX) = {u′1u
′
3, u

′
3u

′
1, u

′
2u

′
4, u

′
4u

′
2}. (33)

If W = U , then W ′ = U ′, and we set w′
i = u′i for i ≤ 4. If W 6= U , then we fix an

enumeration W ′ = {w′
1, w

′
2, w

′
3, w

′
4} so that

f0(MY ) = {w′
1w

′
3, w

′
3w

′
1, w

′
2w

′
4, w

′
4w

′
2}.

We now construct C′ and f as follows. Let φUW be the bijection from U ∪W
onto U ′ ∪W ′ defined by φUW (ui) = u′i and φUW (wi) = w′

i. Moreover, we take X ′ =
{x′1, x

′
3, x

′
5, x

′
7} and Y = {y′2, y

′
4, y

′
6, y

′
8} such thatX ′∩Y ′ = ∅ and (X ′∪Y ′)∩V (D) = ∅

and extend φUW to a bijection from U ∪ W ∪ X ∪ Y onto U ′ ∪ W ′ ∪ X ′ ∪ Y ′ by
setting φUW (xi) = x′i and φUW (yi) = y′i. The sets X

′ and Y ′ will be fibers of C′. We
build the fragments C′[U ′ ∪ X ′ ∪ Y ′] and C′[W ′ ∪ X ′ ∪ Y ′] as isomorphic copies of
C[U ∪ X ∪ Y ] and C[W ∪ X ∪ Y ] under the map φUW . Moreover, for any relation
R ∈ C[U ∪X ∪ Y ] ∪ C[W ∪X ∪ Y ] we set f(R) = φUW (R).

It remains, for each Z ∈ F (C) such that Z /∈ {X, Y, U,W} to construct C′[X ′, Z ′]
and C′[Y ′, Z ′] and to define f locally as a bijection from C[X,Z] to C′[X ′, Z ′] and
C[Y, Z] to C′[Y ′, Z ′]. If C[X,Z] is uniform, we set C′[X ′, Z ′] also to be uniform, and
correspondingly define f(X × Z) = X ′ × Z ′. Similarly, if C[Y, Z] is uniform, we set
C′[Y ′, Z ′] to be uniform and define f(Y × Z) = Y ′ × Z ′.

Assume that C[X,Z] is non-uniform. By Lemma 6.2, C[X,Z] ≃ 2K2,2. Recall
that the cell C[X ] contains a unique matching basis relation, namely NX . By Part
2 of Lemma 5.2, C[Z,X ] determines NX in C[X ] and, hence, is directly connected
to C[U,X ] at X . Lemma 5.3 implies that C[Z, U ] ≃ 2K2,2 and that the interspace
C[Z, U ] has direct connections to C[U,X ] at U and to C[X,Z] at Z. In particular,
C[Z, U ] determines the same matching in C[U ] as C[X,U ], namely MX . Note that
C[Z, Y ] must be uniform. If W 6= U , this follows by the choice of W and, if W = U ,
the non-uniformity of C[Z, Y ], by the argument similar to the above, would imply
that C[Z, U ] in C[U ] determines the matching MY rather than MX .
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Figure 12: Proof of Lemma 6.1. (a) C[X,Z] is non-uniform, and C[Y, Z] is uniform:
relations are named as in the proof; (b) C[X,Z] is uniform, and C[Y, Z] is non-
uniform: now SZ ∈ C[Z,W ] and RZ ∈ C[Y, Z].

The rest of our argument is similar to the proof of Lemma 5.1. Fix a basis
relation SZ ∈ C[Z, U ]. Fix an enumeration Z = {z1, z2, z3, z4} such that

SZ = {z1, z2} × {u1, u2} ∪ {z3, z4} × {u3, u4}; (34)

see Figure 12(a). Since f0 is an algebraic isomorphism from C \ X, Y to D and
SZ determines the matching MX in C[U ], the basis relation f0(SZ) determines the
matching f0(MX) in D[U ′]. Taking into account (33), the points of Z ′ can be
enumerated so that

f0(SZ) = {z′1, z
′
2} × {u′1, u

′
2} ∪ {z′3, z

′
4} × {u′3, u

′
4}, (35)

and we fix such an enumeration z′1, z
′
2, z

′
3, z

′
4. Note that C[X,Z] consists of the basis

relation
RZ = {x1, x5} × {z1, z2} ∪ {x3, x7} × {z3, z4} (36)

and its complement X × Z \ RZ . We, therefore, define the interspace C′[X ′, Z ′] as
consisting of the relation

R′
Z = {x′1, x

′
5} × {z′1, z

′
2} ∪ {x′3, x

′
7} × {z′3, z

′
4} (37)

and its complement X ′ × Z ′ \ R′
Z . This ensures that C′[X ′ ∪ U ′ ∪ Z ′] is a coherent

configuration combinatorially isomorphic to C[X ∪ U ∪ Z]. Moreover, we define f
on C[X,Z] by setting

f(RZ) = R′
Z . (38)

This ensures that f is an algebraic isomorphism from C[X∪U∪Z] to C′[X ′∪U ′∪Z ′].
Assume now that C[Y, Z] is non-uniform. As was noticed, in this case the inter-

space C[X,Z] must be uniform and, therefore, the fiber Z was not handled above.
We construct C′[Y ′, Z ′] and extend f to a map from C[Y, Z] to C′[Y ′, Z ′] similarly
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to the above, considering the interspaces C[Y,W ] ≃ 2K2,2 and C[Z,W ] ≃ 2K2,2; see
Figure 12(b).

The construction of C′ and f : C → C′ is therewith complete. It remains to
argue that C′ is indeed a coherent configuration and that f is indeed an algebraic
isomorphism from C to C′. We use Lemma 3.4.

If A,B,C are fibers of C \X, Y , then the assumptions of Lemma 3.4 are trivially
true.

Let B = X and C = Y . If A = U or A = W , then the assumptions of Lemma
3.4 are ensured by the construction. Suppose that A = Z is a fiber of C \ X, Y
different from U and W . Recall that at least one of the interspaces C[Z,X ] and
C[Z, Y ] is uniform. To be specific, assume that C[Z, Y ] is uniform; the other case is
symmetric. Using the fact that any association scheme on 4 points is separable, we
consider a bijection φZ : Z → Z ′ that is a combinatorial isomorphism from C[Z] to
D[Z ′] inducing the restriction of f0 to C[Z]. We stick to the enumeration z1, z2, z3, z4
and z′1, z

′
2, z

′
3, z

′
4 of points in Z and Z ′ fixed while constructing C′[Z ′, X ′]. If C[Z,X ]

is non-uniform, then either

φZ({z1, z2}) = {z′1, z
′
2} (39)

or φZ({z1, z2}) = {z′3, z
′
4}. The association scheme C[Z] has a combinatorial auto-

morphism that maps each basis relation onto itself and swaps the sets {z1, z2} and
{z3, z4}. Using this automorphism if needed, we can ensure Equality (39). Extend
φZ to a bijection φZ : X∪Y ∪Z → X ′∪Y ′∪Z ′ by setting φ(xi) = x′i and φ(yi) = y′i.
For the basis relations RZ and R′

Z introduced by (36) and (37), from the definition of
φZ on X ∪ Y and Equality (39) we derive that φZ(RZ) = R′

Z . Along with (38), this
shows that φZ is a combinatorial isomorphism from C[X ∪Y ∪Z] to C′[X ′∪Y ′∪Z ′]
and that φZ induces the restriction of f to C[X ∪ Y ∪Z]. Thus, the assumptions of
Lemma 3.4 are fulfilled also in this case.

Assume now that C = X and A and B are fibers of C\X, Y . If U ∈ {A,B}, then
the assumptions of Lemma 3.4 are ensured by the construction. Suppose, therefore,
that neither A nor B is equal to U . Our goal is to construct a bijection φAB from
X ∪A∪B onto X ′∪A′∪B′ that is a combinatorial isomorphism from C[X ∪A∪B]
to C′[X ′∪A′∪B′] and that induces the restriction of f to C[X ∪A∪B]. Like in the
proof of Lemma 5.1, we split our analysis into three cases.

Case 1: Both C[A,X ] and C[B,X ] are uniform. The interspace C[A,B] can be
uniform or of 2K2,2- or C8-type. The structure of the subconfiguration C[A ∪ B] in
the last two cases is described by Parts 2 and 3 of Lemma 5.2. In each case, it is
easy to see that the restriction of f0 to an algebraic isomorphism from C[A ∪ B] to
C′[A′ ∪ B′] is induced by a combinatorial isomorphism φ0 : A ∪ B → A′ ∪ B′. We
extend φ0 to φAB by setting φAB(xi) = x′i.

Case 2: Exactly one of the interspaces C[A,X ] and C[B,X ], say C[A,X ], is
non-uniform. Like in the first case, C[A,B] can be uniform or of 2K2,2- or C8-type.
Again, let φ0 : A∪B → A′∪B′ be a combinatorial isomorphism C[A∪B] to C′[A′∪B′]
inducing the restriction of f0 to C[A ∪B]. By Lemma 6.2, C[A,X ] ≃ 2K2,2, and we
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consider the enumeration a1, a2, a3, a4 of A and the enumeration a′1, a
′
2, a

′
3, a

′
4 of A′

that we have fixed for each such A; cf. (34) and (35). Let

MA = {a1a2, a2a1, a3a4, a4a3}

and
M ′

A = {a′1a
′
2, a

′
2a

′
1, a

′
3a

′
4, a

′
4a

′
3}

be the matchings determined by the interspaces C[U,A] in the cell C[A] and C′[U ′, A′]
in C′[A′]. By (34) and (35) applied to Z = A, we have f0(MA) = M ′

A. It follows
that either

φ0({a1, a2}) = {a′1, a
′
2} and φ0({a3, a4}) = {a′3, a

′
4}

or
φ0({a1, a2}) = {a′3, a

′
4} and φ0({a3, a4}) = {a′1, a

′
2}.

In the former case, we extend φ0 to φAB by φAB(xi) = x′i. In the latter case,
however, we have to swap the values of φAB on X so that φAB({x1, x5}) = {x′3, x

′
7}

and φAB({x3, x7}) = {x′1, x
′
5}. This ensures that φAB(RA) = R′

A for the basis
relations RA and R′

A as in (36) and (37). It follows from (38) that the restriction of
f to C[A ∪ B ∪X ] is induced by φAB.

Case 3: Both C[A,X ] and C[B,X ] are non-uniform. Recall that, by Lemma 6.2,
both C[A,X ] ≃ 2K2,2 and C[B,X ] ≃ 2K2,2. Moreover, both C[A,X ] and C[B,X ]
are directly connected to C[U,X ] ≃ 2K2,2 at X . It follows by Lemma 5.3 that both
C[A,U ] ≃ 2K2,2 and C[B,U ] ≃ 2K2,2 are directly connected to C[X,U ] at U and,
therefore, also to each other. Applying Lemma 5.3 once again, we conclude that
C[A,B] ≃ 2K2,2 and the connections between C[A,B] with C[U,A] at A and C[U,B]
at B are direct. Using the enumeration of the fibers A, B, A′, and B′ fixed in the
course of our construction of C′, we see that the interspace C[A,B] consists of the
basis relation

QAB = {a1, a2} × {b1, b2} ∪ {a3, a4} × {b3, b4}

and its complement A× B \QAB. Taking into account Equalities (34) and (35) for
Z = A and Z = B, we conclude that

f0(QAB) = {a′1, a
′
2} × {b′1, b

′
2} ∪ {a′3, a

′
4} × {b′3, b

′
4}.

We know the structure of the coherent configuration C[A ∪ B ∪ U ] up to the types
of its cells C[A], C[B], and C[U ]. In each case, the restriction of f0 to an algebraic
isomorphism from C[A ∪ B ∪ U ] to C′[A′ ∪ B′ ∪ U ′] is induced by a combinatorial
isomorphism φ0 : A ∪ B ∪ U → A′ ∪ B′ ∪ U ′. Since φ0(QAB) = f0(QAB), we have
either

φ0({a1, a2}) = {a′1, a
′
2} and φ0({b1, b2}) = {b′1, b

′
2} (40)

or
φ0({a1, a2}) = {a′3, a

′
4} and φ0({b1, b2}) = {b′3, b

′
4}.
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Applying, if necessary, an appropriate combinatorial automorphism of C[A∪B∪U ],
we can ensure Equality (40). We now extend φ0 to φAB by φAB(xi) = x′i. Note that

φAB(RA) = R′
A and φAB(RB) = R′

B

for the basis relations introduced by (36) and (37). Based on (38), we conclude that
the restriction of f to C[A ∪B ∪X ] is induced by φAB.

The analysis of fiber triples A,B,C such that C = X and A,B ∈ F (C \X, Y )
is complete. The triple of fibers consisting of C = Y and A,B ∈ F (C \ X, Y ) are
treated similarly.

(⇐=) Let f be an algebraic isomorphism from C to a coherent configuration
C′. For each fiber A ∈ F (C), let A′ = f(A) denote the corresponding fiber of C′.
Like in the proof of Lemma 5.1, denote the restriction of f to C \ X, Y by f0 and
note that f0 is an algebraic isomorphism from C \X, Y to the coherent configuration
C′\X ′, Y ′. Since C \X, Y is separable, f0 is induced by a combinatorial isomorphism
φ0 : V (C) \ (X ∪ Y ) → V (C′) \ (X ′ ∪ Y ′). We have to extend φ0 to a combinatorial
isomorphism φ : V (C) → V (C′) from C to C′ that induces f .

We first solve a more modest task of defining φ on X ∪ Y so that φ will be a
combinatorial isomorphism from C[X ∪Y ∪U ∪W ] to C′[X ′∪Y ′∪U ′∪W ′] inducing
the restriction of f to an algebraic isomorphism between these subconfigurations.
Let

u′i = φ0(ui) and w
′
i = φ0(wi) for i ≤ 4.

Since f is an algebraic isomorphism, f(MX) is a matching basis relation in C′[U ′];
see (32) and Figure 11. Since φ0 induces the restriction of f to C[U ],

f(MX) = {u′1u
′
2, u

′
2u

′
1, u

′
3u

′
4, u

′
4u

′
3}.

Since f is an algebraic isomorphism, f(TX) determines f(MX) in C′[U ′]. If C[W,Y ]
is non-uniform, then we similarly have

f(MY ) = {w′
1w

′
3, w

′
3w

′
1, w

′
2w

′
4, w

′
4w

′
2},

and f(TY ) determines f(MY ) in C′[W ′], irrespectively of whetherW = U orW 6= U .
We enumerate X ′ = {x′1, x

′
3, x

′
5, x

′
7} and Y ′ = {y′2, y

′
4, y

′
6, y

′
8} so that

f(TX) = {u′1, u
′
2} × {x′1, x

′
5} ∪ {u′3, u

′
4} × {x′3, x

′
7} (41)

and
f(TY ) = {w′

1, w
′
3} × {y′4, y

′
8} ∪ {w′

2, w
′
4} × {y′2, y

′
6},

the last equality under the assumption that C[W,Y ] is non-uniform. Our first con-
cern is to satisfy the constraints

φ({x1, x5}) = {x′1, x
′
5} and φ({y2, y6}) = {y′2, y

′
6}. (42)

This will ensure that

φ(TX) = f(TX) and φ(TY ) = f(TY ),

40



accomplishing our task locally on C[X ∪U ] and C[Y ∪W ], the latter also if C[W,Y ]
is uniform. We fulfill the first equality in (42) immediately just by setting

φ(x1) = x′1 and φ(x5) = x′5.

It remains to ensure the second equality in (42) as well as the equality

φ(T ) = f(T ) (43)

for the 8-cycles T ∈ C[X, Y ] and f(T ) ∈ C′[X ′, Y ′]; see Figure 11.
Since f is an algebraic isomorphism, Equality (41) implies that

f(NX) = {x′1x
′
5, x

′
5x

′
1, x

′
3x

′
7, x

′
7x

′
3}

for the unique matching basis relation NX ∈ C[X ] introduced by (31). Therefore
x′1, x

′
5 and x′3, x

′
7 are the two pairs of diametrically opposite points on the 8-cycle

f(T ) that belong to X ′. Similarly, if C[W,Y ] is non-uniform, then y′2, y
′
6 and y′4, y

′
8

are the two pairs of antipodal points on f(T ) belonging to Y ′. In fact, we can
suppose this also if C[W,Y ] is uniform, as Y ′ can be enumerated arbitrarily in this
case. Let y′ be the common neighbor of x′1 and x′3 on f(T ). We set

φ(x3) = x′3 and φ(x7) = x′7 if y′ ∈ {y′2, y
′
6}

or
φ(x3) = x′7 and φ(x7) = x′3 if y′ ∈ {y′4, y

′
8}.

Assignment of the four values φ(xi) uniquely determines the four values φ(yi). For
example, φ(y1) is the point in Y ′ lying on f(T ) between φ(x1) and φ(x3). In each
case, Conditions (42) and (43) are fulfilled.

Our modest task is fulfilled. Now, let Z 6= U,W be another fiber of C \X, Y . We
have to verify that φ is a combinatorial isomorphism from C[X ∪ Z] to C′[X ′ ∪ Z ′]
and from C[Y ∪ Z] to C′[Y ′ ∪ Z ′] and that φ induces f on these subconfigurations.
We do it for C[X ∪ Z]; the argument for C[Y ∪ Z] is similar.

If C[X,Z] is uniform, we have nothing to do. Assume, therefore, that C[X,Z]
is non-uniform and, hence, C[X,Z] ≃ 2K2,2. Recall that the connection between
C[Z,X ] and C[U,X ] at X must be direct; see Figure 12(a). Moreover, C[Z, U ] ≃
2K2,2 is directly connected to C[X,U ] at U and to C[X,Z] at Z. Let Z = {z1, z2, z3, z4}
and, without loss of generality, suppose that C[U,Z] and C[X,Z] determine a match-
ing {z1z2, z2z1, z3z4, z4z3} in C[Z]. Thus, C[Z, U ] consists of the basis relation

SZ = {z1, z2} × {u1, u2} ∪ {z3, z4} × {u3, u4}

and its complement Z × U \ SZ , while C[X,Z] consists of the basis relation

RZ = {x1, x5} × {z1, z2} ∪ {x3, x7} × {z3, z4}

and its complement X × Z \RZ . Since f0 is induced by φ0, we have

f(SZ) = {z′1, z
′
2} × {u′1, u

′
2} ∪ {z′3, z

′
4} × {u′3, u

′
4}, (44)
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where z′i = φ0(zi). Since f provides an algebraic isomorphism from C[X ∪U ∪Z] to
C′[X ′ ∪ U ′ ∪ Z ′], Equalities (44) and (41) imply that

f(RZ) = {x′1, x
′
5} × {z′1, z

′
2} ∪ {x′3, x

′
7} × {z′3, z

′
4},

see Figure 12(a). Along with the first equality in (42), this shows that

f(RZ) = φ(RZ).

We see that, as claimed, φ is a combinatorial isomorphism from C[X∪Z] to C′[X ′∪Z ′]
inducing f .

The proof of Lemma 6.1 is complete.

7 Irredundant configurations: Preliminaries

Along with two other Cut-Down Lemmas (i.e., Lemmas 4.1 and 5.1), Lemma 6.1
reduces our task to deciding separability of a coherent configuration C under the
following three conditions:

(1) C is indecomposable;

(2) all fibers of C have size 4;

(3) every non-uniform interspace of C is of type 2K2,2.

A coherent configuration satisfying Conditions (1)–(3) will be called irredundant.

7.1 Strict algebraic automorphisms

We begin with noticing that, for irredundant configurations, every algebraic isomor-
phism f gives rise to a combinatorial isomorphism φ, even though φ does not need
to induce f on the whole coherent configuration.

Lemma 7.1. Suppose that a coherent configuration C is irredundant. If f is an
algebraic isomorphism from C to a coherent configuration C′, then there exists a
combinatorial isomorphism φ from C to C′ such that φ induces f on the cell C[X ]
for each fiber X ∈ F (C).

Proof. For a fiberX ∈ F (C), letX ′ = f(X) denote the corresponding fiber of C′. We
construct φ locally as a bijection φ : X → X ′ for each X ∈ F (C). The restriction of
f to C[X ] is an algebraic isomorphism from the cell C[X ] to the cell C′[X ′]. It is easy
to check that all 4-point association schemes are separable. Using this fact, we set
φ : X → X ′ to be a combinatorial isomorphism from C[X ] to C′[X ′] inducing f on
C[X ]. It remains to show that φ defined in this way is also a partition isomorphism
from C[X, Y ] to C′[X ′, Y ′] for any two fibers X, Y ∈ F (C).

Assume first that the interspace C[X, Y ] is uniform. Since an algebraic iso-
morphism preserves the valency of a basis relation (see [10, Corollary 2.3.20]), the

42



interspace C′[X ′, Y ′] is also uniform. Thus, C[X, Y ] consists of the single basis rela-
tion X ×Y , and C′[X ′, Y ′] consists of the single basis relation X ′×Y ′. We are done
just because φ(X×Y ) = X ′×Y ′, as trivially follows from the equalities φ(X) = X ′

and φ(Y ) = Y ′.
Assume now that the interspace C[X, Y ] is non-uniform, that is, C[X, Y ] ≃ 2K2,2.

Since f preserves the valency of each basis relation in C[X, Y ], we must have either
C′[X ′, Y ′] ≃ 2K2,2 or C′[X ′, Y ′] ≃ C8. The latter possibility is actually excluded.
Indeed, let R be a basis relation in C[X, Y ]. For the matching basis relation M
determined by R in the cell C[X ] according to Part 2 of Lemma 5.2, we have pMRR∗ =
2. If C′[X ′, Y ′] ≃ C8, then Part 3 of Lemma 5.2 implies that the cell C′[X ′] contains a
single matching basis relationM ′. For this matching we, however, have pM

′

f(R)f(R)∗ = 0

and, therefore, M ′ 6= f(M).
Thus, C′[X ′, Y ′] ≃ 2K2,2. Specifically, suppose that C[X, Y ] consists of the basis

relation
R = {x1, x2} × {y1, y2} ∪ {x3, x4} × {y3, y4}

and its complement X × Y \R, and C′[X ′, Y ′] consists of the basis relation

f(R) = {x′1, x
′
2} × {y′1, y

′
2} ∪ {x′3, x

′
4} × {y′3, y

′
4}

and its complement X ′ × Y ′ \ f(R). By Part 2 of Lemma 5.2, C[X, Y ] determines
the matching basis relations

M = {x1x2, x2x1, x3x4, x4x3}

in the cell C[X ] and
N = {y1y2, y2y1, y3y4, y4y3}

in the cell C[Y ], while C′[X ′, Y ′] determines

M ′ = {x′1x
′
2, x

′
2x

′
1, x

′
3x

′
4, x

′
4x

′
3}

in C′[X ′] and
N ′ = {y′1y

′
2, y

′
2y

′
1, y

′
3y

′
4, y

′
4y

′
3}

in C′[Y ′]. Since f is an algebraic isomorphism, we have f(M) =M ′ and f(N) = N ′.
Since φ induces f both on C[X ] and C[Y ], this implies that φ(M) =M ′ and φ(N) =
N ′. Therefore, either φ({x1, x2}) = {x1, x2} or φ({x1, x2}) = {x3, x4}, and either
φ({y1, y2}) = {y1, y2} or φ({y1, y2}) = {y3, y4}. There are four cases altogether. In
two of them we have φ(R) = f(R), while φ(R) = X ′ × Y ′ \ f(R) in the other two
cases. In each case, φ is a partition isomorphism from C[X, Y ] to C′[X ′, Y ′]. We
conclude that φ is a combinatorial isomorphism from C to C′.

Lemma 7.1 implies that, if a coherent configuration C is irredundant, then C ∼=alg

C′ implies C ∼=comb C
′. This has the following practical consequence: An irredundant

configuration C is separable if and only if every algebraic automorphism of C is
induced by a combinatorial automorphism of C. Moreover, we call an algebraic
automorphism f of C strict if f is the identity on each cell C[X ] for X ∈ F (C).
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Lemma 7.2. An irredundant coherent configuration C is separable if and only if
every strict algebraic automorphism of C is induced by a combinatorial automorphism
of C.

Proof. The direction ‘only if’ follows directly from the definition of a separable
coherent configuration. For the other direction, assume that every strict algebraic
automorphism of C is induced by a combinatorial automorphism. We have to prove
that C is separable. Let f be an algebraic isomorphism from C to C′. Let φ be
a combinatorial isomorphism φ : V (C) → V (C′) from C to C′ as in Lemma 7.1.
Consider the composition g = φ−1 ◦ f , where φ−1 is understood as the induced map
from C′ to C. Since φ−1 is an algebraic automorphism from C′ to C, the composition
g is an algebraic automorphism of C. Since φ induces f on each cell of C, this
algebraic automorphism is strict. Note that f = φ ◦ g, where φ is understood as
the induced map from C to C′. By the assumption, g is induced by a combinatorial
automorphism ψ of C. It follows that f is induced by the combinatorial isomorphism
φ ◦ ψ from C to C′.

Denote the set of strict algebraic automorphisms of a coherent configuration C
by A(C). Note that A(C) is a group of permutations of the set C. Furthermore, let
A∗(C) denote the set of those strict algebraic automorphisms of C which are induced
by combinatorial automorphisms of C.

Lemma 7.3. A∗(C) is a subgroup of A(C).

Proof. If f and h are in A∗(C), then they are induced by combinatorial automor-
phisms φ and ψ respectively. Note that the product fh is induced by the combina-
torial isomorphism φψ and, therefore, fh is in A∗(C) as well.

Similarly, we call a combinatorial automorphism φ of C strict if φ takes every
basis relation in each cell C[X ] onto itself. Obviously, a strict combinatorial auto-
morphism induces a strict algebraic automorphism. Moreover, if a combinatorial
automorphism φ induces a strict algebraic automorphism, then φ must be strict
itself. We denote the set of strict combinatorial automorphisms of a coherent con-
figuration C by C(C). Note that C(C) is a group of permutations on the point set
V (C). Furthermore, we call a combinatorial automorphism φ of C color-preserving
if Rφ = R for every basis relation R ∈ C. The term is justified by the fact that φ is
a color-preserving automorphism of C if any only if φ is an automorphism of an (ar-
bitrarily chosen) colored version C̃ of C. Note that φ is color-preserving if it induces
the identity idC. Obviously, a color-preserving combinatorial automorphism is strict,
and the set C0(C) of all color-preserving automorphisms is a subgroup of C(C).

Lemma 7.4. C(C)/C0(C) ∼= A∗(C), where ∼= denotes isomorphism of groups.

Proof. Suppose that a permutation φ of the point set V (C) is a strict combinatorial
automorphism of C. In this case, let φ̄ denote the induced permutation of C. The
map φ 7→ φ̄ is a homomorphism from the group C(C) onto the group A∗(C) whose
kernel is C0(C). The lemma immediately follows from the first isomorphism theorem.

44



Lemma 7.5. If C is irredundant, then C(C) ∼=
∏

X∈F (C) C0(C[X ]).

Proof. To prove that C(C) is isomorphic to a subgroup of
∏

X∈F (C) C0(C[X ]), consider

an arbitrary φ in C(C). Since each fiber X is invariant under φ, this permutation is
split into the product φ =

∏
X∈F (C) φX , where φX is the identity outside X . By the

definition of a strict automorphism, the restriction of φX to X belongs to C0(C[X ]).
Let us prove that

∏
X∈F (C)C0(C[X ]) is isomorphic to a subgroup of C(C). Con-

sider φ =
∏

X∈F (C) φX , where φX ∈ C0(C[X ]) is defined outside X by identity. To

show that φ ∈ C(C), it is enough to prove that each φX is a strict combinatorial
automorphism of C. This reduces to proving that, for any fiber Y 6= X , the par-
tition C[X, Y ] is invariant under φX . This is clear if C[X, Y ] is uniform. If the
interspace C[X, Y ] is non-uniform, that is, consists of two basis relations R1 and
R2, then C[X, Y ] determines a matching basis relation M in the cell C[X ]. Since
φX(M) = M and φX is the identity on Y , we see that φX either fixes each of R1

and R2 or transposes them.

If a coherent configuration C is irredundant, then every cell C[X ] is either of F4-,

or C4-, or ~C4-type; see Figure 1. In each of these cases, the group C0(C[X ]) is clear.
In particular, if C[X ] is of F4-type, i.e., the factorization of X into three matchings,
then C0(C[X ]) is isomorphic to the Klein four-group. Specifically, this is the group
K(X) of all such permutations φ : X → X that, for every two points x, x′ ∈ X ,
either φ({x, x′}) = {x, x′} or φ({x, x′}) = X \ {x, x′}. If X = {x1, x2, x3, x4}, then

K(X) = {idX , (x1x2)(x3x4), (x1x3)(x2x4), (x1x4)(x2x3)}.

Denote the three matching relations on X by M , N , and L, say,

M = {x1x2, x2x1, x3x4, x4x3},

N = {x1x3, x3x1, x2x4, x4x2},

L = {x1x4, x4x1, x2x3, x3x2}.

We will use the depicted colors for these relations in relevant figures. Any permu-
tation φ in K(X) preserves each of the matchings, that is, φ(M) = M , φ(N) = N ,
φ(L) = L. If φ preserves a matching, then two cases are possible: the matched pairs
are either preserved or swapped. We say that φ fixes the matching in the former case
and that φ flips the matching in the latter case. For example, φ = (x1x2)(x3x4) fixes
M and flips each of N and L. To emphasize on this, we will use also the notation
φNL = φLN = (x1x2)(x3x4). In this notation,

K(X) = {idX , φNL, φML, φMN}, (45)

where φML = (x1x3)(x2x4) fixes N and flips both M and L, and similarly for φMN .
Thus, Lemma 7.5 gives us a complete explicit description of the group C(C). A

representation of the subgroup C0(C) by a set of generators is efficiently computable
as explained in [1] as this is the automorphism group of a graph of color multiplicity 4
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underlying any colored version C̃ of C; see Section 10. By Lemma 7.4, this makes the
group A∗(C) fully comprehensible. Since C is separable exactly when A(C) = A∗(C),
we can decide separability if we can efficiently find an explicit description of the
group A(C). From now on, we focus on this task.

Call a permutation f on C bound if f is the identity on each cell, maps each
interspace onto itself, and satisfies the condition f(R∗) = f(R)∗ for every basis rela-
tion R of C. Since the last condition is obeyed by any algebraic isomorphism, every
strict algebraic automorphism is bound. If C[X, Y ] ≃ 2K2,2, then for a bound per-
mutation f there are two possibilities. Specifically, suppose that C[X, Y ] partitions
X × Y into two parts R1 and R2. We say that f fixes C[X, Y ] if

f(Ri) = Ri

and that f switches C[X, Y ] if
f(Ri) = R3−i

for i = 1, 2. Note that, if f switches C[X, Y ], then it switches also C[Y,X ]. Given a
set S of pairs {X, Y } such that C[X, Y ] is non-uniform, let fS denote the bijection
from C onto itself which switches the interspace C[X, Y ] as well as the interspace
C[Y,X ] for each {X, Y } ∈ S and leaves the rest of C fixed. Thus, every bound
permutation of C coincides with fS for some S. Conversely, every fS is a bound
permutation, but not all fS must be algebraic automorphisms.

Thus, we have to describe the class of those S for which fS is an algebraic auto-
morphism. We begin our analysis with two instructive special cases in Subsections
8 and 9, and then consider the general case in Subsection 10. Prior to this we do
some preliminary work in Subsection 7.2.

7.2 The case of three fibers

Let f be a bound permutation of C. Lemma 3.4 reduces verification of whether
or not f is a strict algebraic automorphism of C to local verification of this on all
3-fiber subconfigurations C[X ∪ Y ∪ Z]. Thus, the case of coherent configurations
with three fibers is quite important and we consider it here.

We call an irredundant configuration C skew-connected if C contains no directly
connected interspaces.

Lemma 7.6. Let C be an irredundant coherent configuration with F (C) = {X, Y, Z}
and f be a bound permutation of the set of basis relations of C.

1. If C is skew-connected, then f is an algebraic automorphism of C.

2. Suppose that C is not skew-connected. Then f is an algebraic automorphism of
C if and only if either f = idC or f makes exactly two switches of interspaces
(switching an interspace and its transpose is counted as a single switch).

46



Proof. 1. It suffices to show that f is induced by some combinatorial automorphism
φ of C. Let fXY denote the restriction of f to C[X, Y ] ∪ C[Y,X ] and extend it to
the whole C by identity. Define fY Z and fXZ similarly. Since f = fXY ◦ fY Z ◦ fXZ ,
it is enough to check that each of the three permutations of C are induced by a
combinatorial automorphism of C. We show this for fXY , and the same argument
applies as well for the other two cases. If C[X, Y ] is uniform or if f fixes C[X, Y ],
then f = idC is induced by idX∪Y ∪Z . Suppose that f switches C[X, Y ]. LetM be the
matching basis relation of C[X ] determined by the interspace C[Y,X ] according to
Lemma 5.2. If the interspace C[Z,X ] is non-uniform, it determines another matching
relation L in C[X ]. Let N be the matching relation on X different from M and also
from L if the last exists. Consider the permutation φMN of X and extend it also to
Y ∪ Z by identity. It remains to notice that φMN is a combinatorial automorphism
of C and that it induces fXY .

2. Since C is not skew-connected, it contains two non-uniform directly connected
interspaces and, therefore, Lemma 5.3 implies that all interspaces of C are non-
uniform and all connections between them are direct. Recall that f is an algebraic
automorphism if and only if pRST = p

f(R)
f(S)f(T ) for all triples of basis relations R, S, T ∈

C. This equality holds for every bound f if all three relations R, S, T are either in
C[X ∪ Y ], or in C[X ∪Z], or in C[Y ∪Z]; cf. the proof of Part 1. The only situation
that requires some care is when every interspace of C contains one of the relations
R, S, and T or their transposes. In any case of this kind, we have either pRST = 2
or pRST = 0. The lemma follows from the observation that the value of pRST switches
from 2 to 0 or vice versa whenever we complement one of the relations. Specifically,
let Rc = X × Y \ R for a basis relation R ∈ C[X, Y ]. Using this notation also for
other interspaces, we have

pRST 6= pR
c

ST = pRScT = pRST c (46)

for any triple R, S, T under consideration. The inequality in (46) implies that any f
making exactly one switch is not an algebraic automorphism. Applying (46) twice,
we see that f making two switches is an algebraic automorphism. Applying (46) once
again, we see that f making three switches is not an algebraic automorphism.

8 Irredundant configurations: The CFI case

Let C be an irredundant configuration. Like in the case of reduced Klein configura-
tions [14], we define the fiber graph of C, denoted by FC, as follows:

• The vertices of FC are the fibers of C, i.e., V (FC) = F (C);

• Two fibers X and Y are adjacent in FC if the interspace C[X, Y ] is non-uniform.

Recall that irredundant configurations are indecomposable. This implies that FC is
connected.
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As usually, ∆(G) (resp., δ(G)) denotes the maximum (resp., minimum) degree
of a vertex in the graph G.

We now consider coherent configurations corresponding to the classical CFI con-
struction [9] of graphs of color multiplicity 4 not amenable to k-WL. Recall that an
irredundant configuration C is skew-connected if C contains no directly connected
interspaces. Note that ∆(FC) ≤ 3 in this case. Part 3 of the following lemma is
reminiscent of [9, Lemma 6.2].

Lemma 8.1. If C is skew-connected, then the following is true.

1. A(C) = {fS : S ⊆ E(FC)}.

2. If δ(FC) ≤ 2, then every fS is induced by a combinatorial automorphism of C.

3. If δ(FC) = 3, i.e., FC is a regular graph of degree 3, then fS is induced by a
combinatorial automorphism of C exactly when |S| is even.

Proof. 1. This part follows directly from Lemma 3.4 and Part 1 of Lemma 7.6.
2. Note that fS ◦ fS′ = fS△S′, where ◦ denotes the group operation in A(C),

i.e., the composition of permutations. This implies that the set A(C) = { fS }S is
a commutative group with every element having order 2. For s ∈ E(FC), denote
fs = f{s}. The group A(C) is generated by the set {fs : s ∈ E(FC)}. Indeed, if
S = {s1, . . . , sk}, then obviously fS = fs1 ◦ . . . ◦ fsk . Therefore, it suffices to prove
that, if δ(FC) ≤ 2, then each fs is induced by a combinatorial automorphism of C.

Let s = {X, Y }. Suppose first that the degree of X in FC is 2. This means that
X is incident to two non-uniform interspaces of C. One of them is C[X, Y ], and let
C[X,Z] be the other one. By Part 2 of Lemma 5.2, each of the interspaces C[Y,X ]
and C[Z,X ] determines a matching in the cell C[X ]. Denote these matchings by M
and L respectively and note that M 6= L because C is skew-connected. Therefore,
C[X ] ≃ F4. Let N be the third matching in C[X ]. Consider the permutation φMN as
in (45) and extend it to a permutation of the entire point set V = V (C) by identity
outside X . Since N is not determined by any incident interspace, fs is induced
by φMN .

Suppose now that X has degree 1 in FC . As above, letM be the matching deter-
mined in C[X ] by the interspace C[Y,X ]. Furthermore, let N be another matching
relation on X . If C[X ] ≃ F4 or C[X ] ≃ C4, then fs is induced by φMN by the

same reason as above. If C[X ] ≃ ~C4, then this does not work because φMN is not
a strict combinatorial automorphism of C[X ]. In this case, let x1, x2, x3, x4 be an
enumeration of X along a non-matching basis relation of C[X ] (which is a directed
4-cycle). Then fs is induced by the cyclic permutation (x1x2x3x4) because, as easily
seen, this permutation flips M .

The case that both X and Y have degree 3 in FC can be reduced to the case
above. Indeed, suppose that s1 = {A,B} and s2 = {A,C} are two adjacent edges
in FC. Let M be the matching in the cell C[A] determined by the interspace C[B,A]
and N be the matching in C[A] determined by C[C,A]. Note that

fs1 ◦ fs2 = φMN , (47)
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where φMN is the permutation of C induced by the permutation of V that flips each of
M and N and is the identity outside A. Since all permutations under consideration
are involutive, we infer from (47) that

fs1 = φMN ◦ fs2.

It immediately follows that fs1 is induced by a combinatorial automorphism if and
only if fs2 is induced by a combinatorial automorphism. By the connectedness of
FC, this implies that all fs are induced by combinatorial automorphisms if this is
true for at least one of them, which is the case as we already know.

3. We first prove by induction on n that, if |S| = 2n, then fS is induced by
a combinatorial automorphism. If n = 0, then f∅ = idC, and the claim is trivially
true.

Consider next the case that n = 1, i.e., S = {s1, s2}. If s1 and s2 are adjacent in
FC, then fS = fs1 ◦ fs2 is induced by a combinatorial automorphism φMN as in (47).
Otherwise, consider a sequence s1, r1, . . . , rk, s2 of successive edges along a path in
FC. Such a path exists because FC is connected. Note that

fS = fs1 ◦ fs2 = fs1 ◦ (fr1 ◦ fr1) ◦ . . . ◦ (frk ◦ frk) ◦ fs2
= (fs1 ◦ fr1) ◦ (fr1 ◦ fr2) ◦ . . . ◦ (frk−1

◦ frk) ◦ (frk ◦ fs2).

Since each of the factors fs1◦fr1, fri◦fri+1
, and frk ◦fs2 is induced by a combinatorial

automorphism, this is true also for fS.
Suppose now that n > 1. Let s1 and s2 be two elements of S. We have

fS = f{s1,s2} ◦ fS\{s1,s2}.

By the induction assumption, both factors are induced by a combinatorial automor-
phism, so this must be true as well for fS.

For the other direction, assume that |S| is odd. Let s ∈ S. We have

fS = fs ◦ fS\{s}.

We already know that the second factor is induced by a combinatorial automorphism.
This implies that fS is induced by a combinatorial automorphism if and only if this
is so for fs. Therefore, it suffices3 to prove that fs is not induced by a combinatorial
automorphism for any s.

Assume to the contrary that fs is induced by a combinatorial automorphism φ.
Note that φ must be strict and, by Lemma 7.5,

φ =
∏

X∈F (C)

φX , (48)

where φX ∈ K(X) is defined outside X by identity. Consider a factor φX that
is non-identity; at least one such factor must exist. Suppose that φX = φMN for

3As an alternative argument, note that, if we show that at least one fs does not belong to
A∗(C), then this will imply that A∗(C) is a subgroup of A(C) of index 2.
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matchings M and N in C[X ]. Since X has degree 3 in FC, the matching M must be
determined by an interspace C[Y,X ], and N must be determined by an interspace
C[Z,X ]. Let s1 = {X, Y } and s2 = {X,Z}. Accordingly with (47), we now have

φX = fs1 ◦ fs2 ,

where φX is understood as the induced permutation of C. Along with (48), this
implies that

fs = fs1 ◦ . . . ◦ fs2k

or, equivalently,
fs ◦ fs1 ◦ . . . ◦ fs2k = idC.

After all possible cancellations of pairs of equal factors, the product in the left
hand side is non-empty and consists of pairwise distinct factors, which yields a
contradiction.

Corollary 8.2. A skew-connected coherent configuration C is separable if and only
if δ(FC) ≤ 2.

Remark 8.3. Let C be a skew-connected coherent configuration with δ(FC) = 3.
Denote the number of fibers in C by n. Then the fiber graph FC has n vertices and
m = 3

2
n edges. We have |A(C)| = 2m by Part 1 of Lemma 8.1 and |A∗(C)| = 2m−1

by Part 3 of this lemma. From Lemma 7.5 it follows that |C(C)| = 4n. Lemma 7.4,
therefore, implies that |C0(C)| = 22n−m+1 = 2m−n+1. This equality agrees with the
fact, which can be derived from (47), that color-preserving automorphisms of C are
in one-to-one correspondence with Eulerian subgraphs of FC. Recall that a graph
is called Eulerian if its every vertex has even degree. All Eulerian subgraphs of a
connected graph with n vertices and m edges form the cycle space, which is a vector
space of dimension m− n + 1 over the two-element field.

9 Irredundant configurations: The 3-harmonious

case

9.1 The hypergraph of direct connections

Let C be an irredundant configuration. Suppose that C[X, Y ] is a non-uniform
interspace. We define D(X, Y ) to be the set of fibers consisting of X , Y , and all
Z such that C[Z,X ] is non-uniform and directly connected with C[Y,X ]. Let DC

denote the family of all sets D(X, Y ) over non-uniform interspaces C[X, Y ]. We
regard DC as a hypergraph on F (C) and call it the hypergraph of direct connections
of C.

Recall that the degree of a vertex v in a hypergraph H is the number of hy-
peredges of H containing v. Similarly to graphs, ∆(H) (resp., δ(H)) denotes the
maximum (resp., minimum) degree of a vertex in the hypergraph H . The following
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(a) (b)

Figure 13: (a) A hypergraph of direct connections DC shown as a family of two
3-cliques, marked in bold, and six 2-cliques in the fiber graph FC. (b) A geometric
representation of DC.

properties of irredundant configurations are known for reduced Klein configurations
[31]; see also [10, Section 4.1.2]. The two classes of coherent configurations are closely
related but not identical. In particular, a reduced Klein configuration cannot contain
C4-cells.

Lemma 9.1 (cf. [10, Lemma 4.1.18]).

1. 1 ≤ δ(DC) ≤ ∆(DC) ≤ 3. Moreover, every edge {X, Y } of FC can be extended to
a hyperedge of DC.

2. Every hyperedge of DC is a clique in FC, and all interspace connections within
this clique are direct.

3. Any two hyperedges of DC have at most one common vertex.

Proof. Part 1 follows from the definitions and the obvious fact that a cell contains
at most three matchings where interspaces can be directly connected to each other.
Lemma 5.3 implies that, if A and B are two fibers in D(X, Y ), then the interspace
C[A,B] is non-uniform and D(A,B) = D(X, Y ). This yields Parts 2 and 3.

Lemma 9.1 shows that DC is a clique edge partition of FC . This implies that the
fiber graph is reconstructable from the hypergraph of direct connections. Indeed,
FC is the Gaifman graph of DC, that is, two fibers are adjacent in FC if and only if
they are both contained in some hyperedge of DC.

Part 3 of Lemma 9.1 says exactly that DC is a linear hypergraph. Linear hy-
pergraphs with each hyperedge of size at least 2 are known in incidence geometry
[13, 30] as partial linear spaces. Here vertices of a hypergraph are interpreted as
points and hyperedges as lines ; see Figure 13, though not every partial linear space
admits a geometric realization. A relationship between reduced Klein configurations
and partial linear spaces was noticed in [10, Corollary 4.1.19]. Lemma 9.3 below
shows that, under certain conditions, a coherent configuration is uniquely deter-
mined by its hypergraph of direct connections, and that partial linear spaces are
a rich source of templates for constructing coherent configurations. The following
elementary fact will be useful in the proof of Lemma 9.3 and also later.

Lemma 9.2.
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1. Let M1,M2,M3 be the three matching relations on a 4-element set X numbered in
an arbitrary order. Then there is a permutation φ of X such that φ(M1) = M1,
φ(M2) =M3, and φ(M3) =M2.

2. LetM1,M2,M3 be the three matching relations on a 4-element set X andM ′
1,M

′
2,M

′
3

be the three matching relations on a 4-element set X ′, numbered in an arbitrary
order. Then there is a bijection ψ from X onto X ′ such that ψ(Mi) = M ′

i for
each i = 1, 2, 3.

Proof. Part 1 is straightforward; cf. the discussion in Section 7.1. Part 2 easily
follows from Part 1.

Recall that a hypergraph is called connected if its Gaifman graph is connected.

Lemma 9.3.

1. Let C be an irredundant configuration. If C ∼=alg C′, then DC
∼= DC′, where ∼=

denotes isomorphism of hypergraphs.

2. Under the condition δ(DC) ≥ 2, DC
∼= DC′ implies that C ∼=comb C

′.

3. For any connected partial linear space D with ∆(D) ≤ 3 there is an irredundant
configuration C such that DC

∼= D.

Proof. 1. This part follows from the fact that an algebraic isomorphism respects
fibers, non-uniformity of interspaces, and direct connections of interspaces.

2. Let h : F (C) → F (C′) be an isomorphism from the hypergraph DC to the
hypergraph DC′. Based on h, we define a bijection h̄ from the set of all matching
basis relations of C to the set of all matching basis relations of C′. Consider a fiber
X ∈ F (C). Let C1 and C2 be two hyperedges of DC containing X . All interspaces
C[Y,X ] for Y ∈ C1 determine the same matching in the cell C[X ], which we denote
by M1. All interspaces C[Y,X ] for Y ∈ C2 determine a matching M2, different
from M1. Thus, C[X ] ≃ F4. Denote the third matching in C[X ] by M3. Similarly,
the interspaces C′[Y ′, h(X)] for Y ′ ∈ h(C1) determine a matching M ′

1, and the
interspaces C′[Y ′, h(X)] for Y ′ ∈ h(C2) determine a matching M ′

2 6=M ′
1 in C′[h(X)].

Denote the third matching in C′[h(X)] byM ′
3 and set h̄(Mi) =M ′

i for i = 1, 2, 3. Let
ψX be a bijection from X onto h(X) such that ψX(M) = h̄(M) for each matching
M in C[X ]. Such a bijection exists by Part 2 of Lemma 9.2. Combining all ψX over
X ∈ F (C), we obtain a bijection from V (C) onto V (C′) which is a combinatorial
isomorphism from C to C′.

3. Given D, we construct C as follows. Each point p of D gives rise to a 4-point
fiber Xp in C, with the cell C[Xp] being of type F4. With each hyperedge C of D
containing p, we associate a matching relationMp,C in C[Xp] such thatMp,C 6=Mp,C′

if C 6= C ′. For each pair of points p and q in the same hyperedge C, we make the
interspace C[Xp, Xq] non-uniform so that it determines the matching Mp,C in C[Xp]
and the matching Mq,C in C[Xq].
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Without the assumption δ(DC) ≥ 2 in Part 2 of Lemma 9.3, a coherent configu-
ration C cannot be uniquely reconstructed from DC because, if a fiber X has degree
1 in DC, then the cell C[X ] can be not only of type F4 but also of type C4 or ~C4.

Note that C is skew-connected exactly when |C| = 2 for all C ∈ DC, that is, DC

is just the edge set of the graph FC . Part 2 of Lemma 9.3, therefore, implies that, if
C is a skew-connected coherent configuration with δ(FC) ≥ 2, then the isomorphism
C ∼=comb C

′ is equivalent to the isomorphism FC
∼= FC′ .

Remark 9.4. Curiously, Lemma 9.3 reveals a connection between irredundant co-
herent configurations and the multipede graphs introduced by Neuen and Schweitzer
in [32]. Let C be an irredundant configuration and assume for the hypergraph of di-
rect connections of C that δ(DC) = 3. Consistently with the notation in [32], denote
the incidence graph of the hypergraph DC by G = G(V,W ), where V = F (C) is the
vertex set of DC, i.e., the set of all fibers of C, and W is the set of the hyperedges
of DC, i.e., the cliques of directly connected fibers. Two vertices v ∈ V and w ∈ W
are adjacent in G if v belongs to w. Thus, every vertex in V has degree 3 in G. Any
such bipartite graph G determines a multipede graph denoted in [32] by R(G). This
is a vertex-colored graph with vertex classes of size 4 and 2. Since we started from
an irredundant configuration C, the coloring of R(G) is not refinable by 2-WL, and
each color class of R(G) stays as a fiber in the coherent closure C(R(G)). Let C′ be
the coherent configuration obtained from C(R(G)) by cutting down all fibers of size
2 (cf. Lemma 5.1). Lemma 9.3 implies that C′ is combinatorially isomorphic to C.

9.2 Separability of 3-harmonious configurations

We say that a coherent configurations C is 3-harmonious if the following three con-
ditions are met:

• C is irredundant;

• Every fiber of C belongs to exactly three cliques inDC (that is, DC is a 3-regular
hypergraph);

• |C| = 3 for all C ∈ DC (that is, DC is a 3-uniform hypergraph).

If C is 3-harmonious, then the incidence graph of the hypergraph DC is a cubic
bipartite graph, which readily implies the equality

|DC| = |F (C)|. (49)

Lemma 9.5. If C is 3-harmonious, then fS ∈ A(C) exactly in the following case:
For each clique C ∈ DC, the switch set S contains two or no edges of C.

Proof. ( =⇒ ) Suppose that C ∈ DC and C = {X, Y, Z}. If fS ∈ A(C), then the
restriction of fS to C[X ∪ Y ∪ Z] is a strict automorphism of this subconfiguration.
By Part 2 of Lemma 7.6, fS is either identity on C[X ∪ Y ∪ Z] or switches exactly
two edges of C.

(⇐=) This part follows directly from Lemma 7.6 by Lemma 3.4.
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Lemma 9.6. A 3-harmonious coherent configuration C is separable if and only if
the group of color-preserving automorphisms C0(C) is trivial.

Proof. Lemma 9.5 implies that

|A(C)| = 4|DC |.

Since every cell of a 3-harmonious coherent configuration is of type F4, Lemma 7.5
implies that C(C) ∼=

∏
X∈F (C)K(X) and, therefore,

|C(C)| = 4|F (C)|.

Taking into account Equality (49), we conclude by Lemma 7.4 that A∗(C) = C(C)
if and only if |C0(C)| = 1.

Lemma 9.6 provides an efficient separability test for 3-harmonious coherent con-
figurations. Given a 3-harmonious coherent configuration C, we construct a vertex
colored graph G(C) = G as follows:

• V (G) = V (C).

• The vertex color classes of G are exactly the fibers of C.

• Every vertex color class of G is an independent set.

• For two disjoint sets X and Y of vertices of G, let G[X, Y ] denote the subgraph
of G on the vertex set X ∪ Y formed by the edges between a vertex in X and
a vertex in Y . For each non-uniform interspace C[X, Y ], we set G[X, Y ] to be
one of the two 2K2,2 graphs underlying the basis relations of C[X, Y ]. We do
not specify which of the two relations in C[X, Y ] shall be used to construct
G[X, Y ] as this is irrelevant for our purpose.

Note that φ is a color-preserving automorphism of C exactly when φ is an auto-
morphism of G(C). Since G(C) has color multiplicity 4, whether it has a non-trivial
automorphism is efficiently verifiable by the known techniques [1, 29].

We now show that there exist 3-harmonious coherent configurations of both
sorts — separable and non-separable. Recall that the hypergraph of direct connec-
tions DC can be viewed as a partial linear space. Moreover, if C is 3-harmonious,
then every line contains exactly 3 points and every point is incident to exactly 3
lines. Partial linear spaces with n points having these properties are known as (n3)-
configurations ; see [19, 34]. Lemma 9.3 implies a one-to-one correspondence between
(n3)-configurations and 3-harmonious coherent configurations with n fibers.

There is no (n3)-configuration for n ≤ 6. There are a unique (73)-configuration,
namely the Fano plane, and a unique (83)-configuration, namely the Möbius-Kantor
configuration; see Figure 14. We denote the corresponding 3-harmonious coherent
configurations by CFano and CMK respectively.

Theorem 9.7. CFano is non-separable, and CMK is separable.
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(a) (b) (c)

(d)

Figure 14: (a) The Fano plane. (b) The Möbius-Kantor configuration. One 3-point
“line” in (a) and in (b) is drawn as a circle. (c) The Pappus configuration. (d)
Construction of the cyclic versions D7 and D8 of the Fano and the Möbius-Kantor
configurations.

In fact, we prove a more general fact. Let n ≥ 7. The cyclic (n3)-configuration
Dn is constructed as follows [19, Section 2.1]. Let Fn be the Cayley graph of Zn

with the difference set {±1,±2,±3} and Dn be the hypergraph formed by 3-cliques
{i, i+ 2, i+ 3} in Fn, where i ∈ Zn. It is straightforward to see that Dn is really an
(n3)-configuration. By the uniqueness of (n3)-configurations for n = 7, 8 (see, e.g.,
[34, Theorem 5.13]), the Fano plane is isomorphic, as a hypergraph, to D7, and the
Möbius-Kantor configuration is isomorphic to D8. Let Cn be the coherent configu-
ration constructed from Dn as in the proof of Part 3 of Lemma 9.3. This lemma
implies that CFano ∼=comb C7 and CMK

∼=comb C8. Thus, Theorem 9.7 is equivalent to
the statement that Cn is non-separable if n = 7 and separable if n = 8.

Theorem 9.8. Let n ≥ 7. The coherent configuration Cn is non-separable if and
only if n is a multiple of 7.

Proof. Fix a vertex-colored graph Gn = G(Cn) as described above. By Lemma
9.6, it suffices to show that Gn has a non-trivial automorphism if and only if n is
divisible by 7. Recall that the graph Gn is not uniquely determined (not even up to
isomorphism). It can be constructed in many non-isomorphic ways, and any variant
is suitable for our purposes (as the automorphism group of Gn always coincides with
C0(Cn), that is, is the same for any particular implementation of the construction).
To fix the notation, we turn back to construction of Cn from Dn and make some
specifications.

Specifically, we set V (Cn) = { (i, j) : i ∈ Zn, 1 ≤ j ≤ 4}. The fibers of Cn are
the sets Xi = { (i, 1), (i, 2), (i, 3), (i, 4) } for each i ∈ Zn and, correspondingly, each
vertex fromXi has color i inGn. From now on, we will just refer to (i, j) as the vertex
j in color class Xi, i.e., drop the (i, ) in most cases. Recall that the construction
ensures that C[Xi] ≃ F4. Let M,N,L be the three matching relations in C[Xi].
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Figure 15: (a) The subgraph Gn[Xi+2, Xi+3] corresponds to the 2K2,2-interspace
Cn[Xi+2, Xi+3], determining the matchings M in Cn[Xi+2] and N in Cn[Xi+3]. (b)
The constraints on an automorphism φ of Gn imposed by the triangle {i, i+2, i+3}
in Dn. (c) The two constraints on φi, φi+1, and φi+2 involving φi.

For each i ∈ Zn, the triangle {i, i+2, i+3} in Dn contributes a triple of directly
connected non-uniform interspaces in Cn. We construct Cn so that the non-uniform
interspaces Cn[Xi, Xi+2], Cn[Xi, Xi+3], and Cn[Xi+2, Xi+3] determine the matchings
L in Cn[Xi], M in Cn[Xi+2], and N in Cn[Xi+3]; see Figure 15(a). This defines the
coherent configuration Cn unambiguously; cf. Lemma 9.3. Figure 15(b) shows the
connection scheme of the above three interspaces, which is the same for each i ∈ Zn.
In the graph Gn = G(Cn), there remain two possibilities for each of the subgraphs
Gn[Xi, Xi+2], Gn[Xi, Xi+3], and Gn[Xi+2, Xi+3], but for the following argument it
does not matter which 2K2,2-fragment is in the graph and which is in its complement.
We make an arbitrary choice in each case, and Gn is therewith fixed.

Let φ be an automorphism of Gn, and let φi denote the restriction of φ to Xi.
Since φi must map each matching of Xi onto itself, this permutation belongs to the
Klein four-group K(Xi) consisting of the permutations ψ0 = idXi

, ψM = (12)(34),
ψN = (13)(24) and ψL = (14)(23). Differently from the terminology after Lemma
7.5, we now name the non-identity group elements by the matching relation they
fix, e.g., ψM = φNL.

The three connections between matchings shown in Figure 15(b) can be seen as
constraints on a sequence (φj)j∈Zn

corresponding to an automorphism φ. Indeed,
if φ fixes (resp. flips) one of the three connected matchings, then it must also fix
(resp. flip) each of the other two. For example, if φi = ψL, then φi+2 must fix the
matching M on Xi+2, which implies that either φi+2 = ψM or φi+2 = ψ0, where
ψ0 = idXi+2

. Figure 15(c) shows the two constraints on φi and the two subsequent
local automorphisms φi+1 and φi+2. Alternatively these constraints can be described
by a table in Table 1(a). Consider, for example, the first row of this table, which
corresponds to the equality φi = ψM . The constraint on the pair (φi, φi+1) forces
φi+1 to fix the matching N and, therefore, φi+1 ∈ {ψN , ψ0}. Furthermore, since
φi = ψM flips L, the constraint on the pair (φi, φi+2) forces φi+2 to flip M and,

56



therefore, φi+2 ∈ {ψN , ψL}. Table 1(a) gives eight possibilities for the pair (φi, φi+1).
It turns out that, in each of these eight cases, Table 1(a) determines the next local
automorphism φi+2 unambiguously. This can be seen from Table 1(b). For example,
if φi = ψM , then column i+2 of Table 1(a) shows that φi+2 ∈ {ψN , ψL}. If, moreover,
φi+1 = ψN , then the intersection of column i + 1 and row N of Table 1(a) shows
that φi+2 ∈ {ψM , ψL}. Therefore, the equalities φi = ψM and φi+1 = ψN imply that
φi+2 = ψL.

(a)

i i+ 1 i+ 2
M 0/N N/L
N M/L N/L
L M/L 0/M
0 0/N 0/M

(b)

i i+ 1 i+ 2 i+ 3
M N L = {N,L} ∩ {M,L} L
M 0 N = {N,L} ∩ {0, N} M
N M N = {N,L} ∩ {0, N} L
N L L = {N,L} ∩ {M,L} M
L M 0 = {0,M} ∩ {0, N} N
L L M = {0,M} ∩ {M,L} 0
0 N M = {0,M} ∩ {M,L} N
0 0 0 = {0,M} ∩ {0, N} 0

Table 1: (a) A table representation of the constraints on φi and φi+1 and on φi and
φi+2 depicted in Figure 15(c). (b) Extrapolation of the sequence (φi)i on the basis
of φi, φi+1 and the recurrence relation implied by Table (a).

The rest of our analysis is based on Table 1(b). Observe that the eight pairs in
columns i and i+1 are exactly the same as the eight pairs in columns i+1 and i+2.
It follows that the constraints of Table (a) completely determine the entire sequence
(φj)j for each of the eight consistent pairs (φi, φi+1), for an arbitrarily fixed i. We
can imagine that the index j ranges through the set of all integers, remembering
that it has to be considered modulo n. Moreover, observe that the pair (0, 0) stays
in the same row, while the other seven pairs (M,N), . . . , (0, N) change their rows
according to the cyclic permutation (1372564). This has the following consequences.
First, the pair (M,N) eventually appears in every non-zero row and, hence, the
infinite expansions of the seven non-zero rows are identical up to a shift. Second,
the sequence that appears in this way is periodic with period 7. It follows that, if Gn

has a nontrivial automorphism φ, then the corresponding infinity sequence of local
automorphisms (φj)j, where each index j is considered modulo n, must be periodic
with period 7, namely

. . . φi φi+1 φi+2 φi+3 φi+4 φi+5 φi+6 . . .

. . . ψM ψN ψL ψL ψM ψ0 ψN . . .
(50)

for some choice of i. We immediately conclude from here that, if n is not divisible
by 7, then Gn has no nontrivial automorphism.

Table 1(b) includes also column i+3. Looking at columns i and i+3, we see that,
in each of the eight possible cases, φi+3 fixes N whenever φi fixes L, and φi+3 flips
N whenever φi flips L. This leads us to the following conclusion: If a sequence (φj)j
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satisfies the constraints on φi and φi+2 and φi+2 and φi+3, shown in Figure 15(b),
for every i, then it also satisfies the constraint on φi and φi+3 for every i. It readily
follows that, if n is divisible by 7, then any assignment of local automorphisms as
in (50) determines a nontrivial automorphism φ of Gn.

Remark 9.9. There are exactly three (93)-configurations [19, 34]. The most famous
of them is the Pappus configuration shown in Figure 14(c). Computer-assisted
verification shows that the corresponding 36-point coherent configuration is non-
separable. Of the other two (93)-configurations, one is the cyclic (93)-configuration
defined above, and the other is obtained similarly by rotating the triangle {0, 3, 4}
(instead of {0, 2, 3}) in Z9. These two produce separable coherent configurations.

10 Irredundant configurations: The general case

Given C ∈ DC and a non-empty U ( C, let S(U,C) be the set of all edges {X, Y }
in FC such that X ∈ U and Y ∈ C \U . Using the notation fS introduced in Section
7.1, we now define fX,C = fS({X},C) for X ∈ C,.

Lemma 10.1. Suppose that a coherent configuration C is irredundant.

1. fS ∈ A(C) if and only if, for every C ∈ DC, either the intersection S ∩
(
C
2

)
is

empty or it forms a spanning bipartite subgraph of
(
C
2

)
, where

(
C
2

)
is considered

the complete graph on the vertex set C.

2. A(C) is generated by the set of fX,C for all C ∈ DC and all X ∈ C.

Proof. 1. For C ∈ DC, denote S[C] = S ∩
(
C
2

)
. By Lemma 9.1, {S[C] }C∈DC

is a
partition of S. Therefore,

fS =
∏

C∈DC

fS[C]. (51)

(⇐=) It suffices to prove that each fS[C] is an algebraic automorphism of C.
By Lemma 3.4, it is enough to check that, for every triple of fibers X, Y, Z, the
restriction of fS[C] to C[X ∪Y ∪Z] is an algebraic automorphism of C[X ∪Y ∪Z]. If
|{X, Y, Z}∩C| ≤ 1, then fS[C] is the identity on C[X∪Y ∪Z]. If |{X, Y, Z}∩C| = 2,
then Lemma 5.3 implies that C[X∪Y ∪Z] is either decomposable or skew-connected.
The former case is obvious, and in the latter case we are done by Part 1 of Lemma
7.6. If {X, Y, Z} ⊆ C, then the bipartiteness of S[C] implies that fS[C] switches
either two (up to transposing) or no interspaces between X, Y, Z. In this case we
are done by Part 2 of Lemma 7.6.

( =⇒ ) Let C ∈ DC and suppose that S[C] is non-empty. The claim is trivially
true if |C| = 2, so we assume that |C| ≥ 3. Let X , Y , and Z be three fibers in C.
By assumption, the restriction of fS to C[X ∪ Y ∪ Z] is an algebraic automorphism
of C[X ∪ Y ∪ Z]. By Part 2 of Lemma 7.6, fS makes either none or exactly two
switches in C[X ∪Y ∪Z]. For S[C], seen as a graph on the vertex set C, this implies
that S[C] does not contain any induced subgraph isomorphic to K3 or to K2 +K1,
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where the latter is the graph with 3 vertices and 1 edge. A graph is (K2+K1)-free if
and only if it is complete multipartite. To see this, look at the complement and note
that a graph is a vertex-disjoint union of cliques if and only if it does not contain
an induced copy of a path on 3 vertices, the complement of K2 +K1. Thus, S[C] is
a complete multipartite graph. Since S[C] is also triangle-free, it is bipartite.

2. By Equality (51), Part 1 implies that A(C) is generated by the set of fS(U,C)

for all C ∈ DC and ∅ 6= U ( C. Note that, if U is split into two non-empty parts
U1 and U2, then fS(U,C) = fS(U1,C) ◦ fS(U2,C) (as each interspace between U1 and U2

is switched twice). It follows that

fS(U,C) =
∏

X∈U

fX,C ,

which implies the lemma.

Lemma 10.1 suggests two approaches to deciding separability of an irredundant
configuration.

1st approach is based on Part 1 of Lemma 10.1. We infer from it that

|A(C)| =
∏

C∈DC

2|C|−1 = 2(
∑

C∈DC
|C|)−|DC |. (52)

It remains to compute the order of the group A∗(C) and check whether or not
|A∗(C)| = |A(C)|. By Lemma 7.4, |A∗(C)| = |C(C)|/|C0(C)|, where |C(C)| is easy to
determine using Lemma 7.5. Indeed, Lemma 7.5 says that C(C) ∼=

∏
X∈F (C)C0(C[X ]),

and we have C0(C[X ]) = K(X) (the Klein group of order 4) for C[X ] ≃ F4,
C0(C[X ]) ∼= D4 (the dihedral group of order 8) for C[X ] ≃ C4, and C0(C[X ]) ∼= Z4

(the cyclic group of order 4) for C[X ] ≃ ~C4. It remains to compute the order of the
group of color-preserving automorphisms |C0(C)|. To this end, we construct a vertex-
colored graph G∗(C) whose automorphism group Aut(G∗(C)) is precisely C0(C),
compute a set of generators of Aut(G∗(C)) as in [1], and apply the Schreier–Sims
algorithm to compute the order of Aut(G∗(C)) based on this set of generators.

We construct G∗ = G∗(C) similarly to the graph G(C) in Section 9 with the only
difference that, for each X ∈ F (C), the subgraph G∗[X ] induced by G∗ on X is
defined more carefully:

• If there are interspaces C[Y,X ] and C[Z,X ] with askew connection at X , then
G∗[X ] is empty (in this case C[X ] ≃ F4 by Part 2 of Lemma 5.2, and each
matching relation onX will be anyway preserved by any automorphism of G∗);

• Otherwise, G∗[X ] depends on C[X ]. We define G∗[X ] so that Aut(G∗[X ])
consists exactly of the color-preserving combinatorial automorphisms of C[X ]
(i.e., those mapping each basis relation of C[X ] onto itself). Specifically,
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– if C[X ] ≃ F4, then we put a matching 2K2 in G
∗[X ] different from the one

determined by some interspace C[Y,X ] (at least one such an interspace
must exist because C is indecomposable);

– if C[X ] ≃ C4, then we leave G∗[X ] empty (a matching on X is implicitly
determined anyway);

– if C[X ] ≃ ~C4, we have to put a directed 4-cycle in G∗[X ] coherently
with the matching implicitly determined on X . To avoid making G∗ a
directed graph, we subdivide each edge of this cycle with two differently
colored vertices in the direction given by ~C4. This costs us two new colors
and four new vertices of each of these colors (which we put in V (G∗) in
addition to the vertices of C).

2nd approach is based on Part 2 of Lemma 10.1. For each pair (X,C) where
X ∈ C ∈ DC, we check whether the algebraic automorphism fX,C is induced by
a combinatorial automorphism. A crucial fact is that the number of such pairs is
polynomially bounded. Fix G∗ = G∗(C) as above and obtain a graph G∗

X,C from
G∗ by complementing each bipartite subgraph G∗[X, Y ] spanned by the fiber X
and a fiber Y in C \ {X}. By construction, a combinatorial automorphism φ of C
induces fX,C exactly when φ is an isomorphism of the graphs G∗ and G∗

X,C . Thus,
fX,C is induced by a combinatorial automorphism if and only if G∗ ∼= G∗

X,C . The
last condition is efficiently verifiable [1] as the graphs G∗ and G∗

X,C are of color
multiplicity 4.

Remark 10.2. Following the second approach, instead of G∗ = G∗(C) we can still
use the simpler construction G = G(C) exactly as described in Section 9 (where
G[Z] for each Z ∈ F (C) is an independent set). Though the automorphism group
Aut(G(C)) can be strictly larger than C0(C), it is easy to see that G ∼= GX,C exactly
when G∗ ∼= G∗

X,C . Indeed, any isomorphism φ from G∗ to G∗
X,C is obviously an

isomorphism also from G to GX,C . Conversely, let φ be an isomorphism from G
to GX,C . Suppose that C[Z] is a cell with a single determined matching M . Any
modification φ∗ of φ within Z which maps M onto itself and flips M if and only
if φ does so stays an isomorphism from G to GX,C . It follows that φ admits a
modification φ∗ such that φ∗ is not only an isomorphism from G to GX,C but also
an automorphism of G∗[Z]. Making such a modification on each such fiber Z, we
obtain an isomorphism φ∗ from G∗ to G∗

X,C . Summarizing, we see that our decision
procedure has the same outcome regardless of whether the simpler construction G(C)
or its augmented version G∗(C) is used.

Example 10.3. We make use of the construction of a coherent configuration C =
C(D) based on a given partial linear space D as described in the proof of Part 3 of
Lemma 9.3. For the partial linear space D depicted in Figure 13(a), the coherent
configuration C(D) is separable. By Part 2 of Lemma 10.1, it is enough to show that
each fX,C is induced by a combinatorial automorphism. Suppose first that |C| = 3,
say, C = {X, Y, Z}. For appropriate combinatorial automorphisms φ ∈ K(Y ) and
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M
N
L

(a) (b)

Figure 16: (a) A pattern D is represented as a clique partition of a 9-vertex graph
consisting of three 3-cliques and nine 2-cliques. (b) We can assign the names M , N
and L to the matching basis relations of each cell in C(D) such that every interspace
connects matchings with the same name. Each edge color in the depicted graph
represents this name.

ψ ∈ K(Z), we have φψfX,C = fS where S consists of two edges of FC emanating
from Y and Z such that each of them forms a 2-clique in D = DC . Note that the
six edges of this kind form a connected subgraph of FC. Like the analysis of the
CFI case in Section 8, we see that fS is induced by a combinatorial automorphism.
Since fX,C = ψ−1φ−1fS, the same holds true for fX,C .

Suppose now that |C| = 2, say, C = {X, Y }. Let C ′ be the hyperedge of D such
that X ∈ C ′ and |C ′| = 3. For a suitable combinatorial automorphisms φ ∈ K(X),
we have φ fX,C = fX,C′. We already know that fX,C′ is induced by a combinatorial
automorphism. Therefore, this is so also for fX,C = φ−1fX,C′ .

Consider the same example also from the perspective of Part 1 of Lemma 10.1.
By Equality (52), we have |A(C)| = 210. As it readily follows from Lemma 7.5,
|C(C)| = 212. We already know that |A∗(C)| = |A(C)|, and Lemma 7.4 implies that
|C0(C)| = 4. This can be seen also directly. Moreover, C0(C) is isomorphic to the
Klein four-group. Indeed, let X1, . . . , X6 be the fibers of C. If φ is a color-preserving
automorphism of C, then φ =

∏6
i=1 φi, where each φi ∈ K(Xi) is extended by

identity outside Xi. For every choice of a non-identity permutation φ1, a simple
argument shows that each of the other factors φ2, . . . , φ6 is uniquely determined.

Example 10.4. Consider next D shown in Figure 16(a). This pattern yields a
non-separable coherent configuration C = C(D). To see this, we make use of the
names M , N and L for the matching basis relations in each cell as introduced after
Lemma 7.5 and assign these names as shown in Figure 16(b). Note that the nine
2-cliques in D form three disjoint 3-cycles, each with exactly one edge of the typeM ,
N and L. Combining the local combinatorial automorphisms φNL, φML and φMN

of the three cells in such a cycle (e.g., for the cells in the top row of Figure 16(b))
we get a nontrivial combinatorial automorphism that induces a trivial algebraic
automorphism, i.e., a nontrivial color-preserving combinatorial automorphism. By
doing this on any one, two or three multicolored cycles, we obtain 23 − 1 = 7
nontrivial color-preserving automorphisms.

Three further such automorphisms can be constructed from the monochromatic
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3-cliques. Consider, for instance, the M- and the N -cliques. They are connected
by a matching consisting of three L-edges. If we pick φML for each cell of the M-
clique and φNL for each cell of the N -clique, we obtain a nontrivial color-preserving
automorphism. The other two pairs of monochromatic 3-cliques give us two more
such automorphisms. It follows that |C0(C)| ≥ 10. By Lemma 7.5, |C(C)| = 49 =
218. Lemma 7.4, therefore, implies that |A∗(C)| ≤ 218/10 < 215. On the other hand,
by (52), we have |A(C)| = 23·3+9·2−12 = 215. This implies that not all strict algebraic
automorphisms of C are induced by combinatorial automorphisms and, thus, C is
non-separable.

11 Putting it together

We are now prepared to prove Theorem 1.1. The cut-down lemmas (that is, Lemmas
4.1, 5.1, and 6.1) and our analysis of the irredundant case in Section 7 yield the
following algorithm for recognizing whether or not a given coherent configuration C
with fibers of size at most 4 is separable.

• Decompose C in the direct sum of indecomposable subconfigurations C1, . . . , Cm
and handle each of them separately. By Lemma 3.2, C is separable if and only
if every Ci is separable.

• Assume, therefore, that the input configuration C is indecomposable. If all
fibers of C are of size at most 3, immediately decide that C is separable (see
Corollary 4.9). Otherwise:

– Remove all fibers of size 2 from C.

– Remove all pairs of fibers X and Y with C[X, Y ] ≃ C8.

– As long as C contains an interspace C[X, Y ] with a matching, remove the
fiber X from C.

• If C becomes decomposable, split it into indecomposable components and han-
dle each of them separately.

• If C becomes empty, decide that C is separable.

• Otherwise, we arrive at the case that C is irredundant and proceed as described
in Section 10.

• If all computational paths terminate with a positive decision, output ‘C is
separable’; otherwise, output ‘C is non-separable’.

Due to [1], each computational path for an irredundant coherent configuration
is implementable in ⊕L. A list of all subconfigurations to which this step is applied
can clearly be generated in logarithmic space [35]. Since L⊕L = ⊕L (see [8]), the
whole algorithm can be implemented in ⊕L. Theorem 1.1 is proved.

As a by-product of our analysis, we state the following fact.
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Figure 17: A fragment of the unique non-separable coherent configuration T with 16
points: Three pairwise skew-connected interspaces and the matching basis relations
they induce.

Theorem 11.1.

1. All coherent configurations with 15 or fewer points and maximum fiber size 4 are
separable.

2. There is a unique, up to combinatorial isomorphism, non-separable coherent con-
figuration on 16 points with maximum fiber size 4.

Proof. 1. Suppose that a coherent configuration has at most 15 vertices. After
cutting down 2-point cells, matching interspaces, and C8-interspaces and ignoring
possible single-fiber components, we are faced with an irredundant configuration C
having 2 or 3 fibers. It follows from Lemma 5.3 that C is either skew-connected
or has 3 fibers with all connections between non-uniform fibers being direct. In
the former case, since we obviously have δ(FC) ≤ 2, the coherent configuration C
is separable by Corollary 8.2. In the latter case, the separability of C follows from
Part 2 of Lemma 10.1. Indeed, DC consists of a single 3-element hyperedge C,
and we only have to check that fX,C for any X ∈ C is induced by a combinatorial
automorphism φ. Let M be the matching basis relation in C[X ] determined by the
interspaces between X and the other two cells in C. As a desired φ, we can take
any color-preserving automorphism of C[X ] flipping M and extend it to V (C) by

identity. Such an automorphism exists in all three cases C[X ] ≃ F4, C4, ~C4 (cf. the
proof of Part 2 of Lemma 8.1).

2. Taking into account the proof of Part 1, we only have to consider the case
that an irredundant configuration C has 4 fibers. If DC consists of a single 4-element
hyperedge, that is, all interspaces are non-uniform and all connections between them
are direct, then the separability of C follows by Part 2 of Lemma 10.1 as in Part 1.

Suppose now that DC has a hyperedge C of size 3. To show that C is separable,
we again use Part 2 of Lemma 10.1. Let X ∈ C. Note that the degree of X in
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the hypergraph DC is at most 2. Therefore, the same argument as in Part 1 works,
showing that fX,C is induced by a combinatorial automorphism of C. Similarly,
fX,C′ is induced by a combinatorial automorphism if X belongs also to a 2-element
hyperedge C ′ of DC. More specifically, in this case we have C ′ = {X, Y } where Y is
the fiber of C not belonging to C. Thus, the interspace C[X, Y ] is non-uniform, and
C[X ] ≃ F4 with one matching N determined by C[Y,X ] and another matching M
determined by the interspaces between X and the other two fibers in C. Then fX,C′

is induced by φNL ∈ K(X) where L is the other matching in C[X ] different from N
and M .

If all hyperedges of DC are of size 2, then C is skew-connected. By Corollary
8.2, C is separable exactly when δ(FC) ≤ 2. It remains to note that δ(FC) = 3 in
the only case that FC is the complete graph on 4 vertices; see Figure 17. Any two
skew-connected coherent configurations with such fiber graph are combinatorially
isomorphic, as easily follows from Part 2 of Lemma 9.2.

12 Back to graphs

12.1 Proof of Theorem 1.2

Let G be a colored graph as defined in Section 2.1. Suppose that the color multi-
plicity of G is bounded by 4. By Theorem 2.5, G is amenable to 2-WL if and only if
its coherent closure C(G) is separable. Given G with n vertices, the coherent closure
C(G) is computable in time O(n3 log n) using the algorithm in [25]. Since G has
color multiplicity at most 4, the coherent configuration C(G) has only fibers with at
most 4 points. Therefore, we can decide separability of C(G) using the algorithm
presented in Section 11. This algorithm reduces deciding separability for C(G) to
deciding separability for a number of irredundant subconfigurations C1, . . . , Ct such
that

t⋃

i=1

F (Ci) ⊆ F (C(G)). (53)

Producing the list of coherent configurations C1, . . . , Ct has low time complexity.
For each i ≤ t, we decide separability of Ci using the 2nd Approach presented
in Section 10. Specifically, Ci is separable if and only if the associated vertex-
colored graph Gi = G(Ci) is isomorphic to its modified version H i = Gi

X,C for every
X ∈ F (Ci), where C is the hyperedge of DCi containing X . Here, G(C) refers to the
construction of a graph from a given irredundant configuration described in Section
9; see Remark 10.2. Denote the number of vertices in Gi by ni. The isomorphism
algorithm for graphs of color multiplicity 4 in [1] performs a low-cost conversion
of the pair (Gi, H i) into a system of Mi < (ni)

2 linear equations with Ni < ni

unknowns over the field Z2 such that Gi ∼= H i if and only if the system is consistent.
Specifically, we here describe a simplified version of this general reduction suit-

able for any pair (Gi, H i) arising from Ci. Recall that V (G
i) = V (H i) = V (Ci), and

the vertex color classes of both Gi and H i are exactly the fibers X1, . . . , Xs of Ci,
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where each Xj has the same color both in Gi and H i. For every vertex color class
Xj , we have Gi[Xj ] = H i[Xj ]. Every non-empty bipartite subgraph Gi[Xj, Xk] is
isomorphic to 2K2,2. In this case, H i[Xj , Xk] is equal either to G

i[Xj , Xk] or to its
bipartite complement.

Any isomorphism from Gi and H i maps each vertex color class Xj onto itself.
Moreover, if Gi and H i are isomorphic, then there is an isomorphism φ preserving
each of the three matchings on Xj for every j (note that φ is forced to preserve the
matchings if Ci[Xj] has at least two determined matchings and φ can be modified
to obey this condition if there is exactly one determined matching in Ci[Xj]). De-
note the restriction of φ to Xj by φj. Thus, φj is one of the four elements of the
Klein group K(Xj). Recall that a preserved matching can be either fixed or flipped.
Denote the matchings on Xj by Aj, Bj , Cj. An element of K(Xj) is uniquely de-
termined by a triple (aj , bj, cj), where aj = 1 if Aj is flipped and aj = 0 if Aj is
fixed, and similarly for bj and cj . Since a non-identity element of K(X) fixes one
matching and flips the other two, we have

(Ej) aj ⊕ bj ⊕ cj = 0.

Another constraint on φj is imposed by each pair Xj, Xk such that Gi[Xj, Xk] is
non-empty. To be specific, suppose that Ci[Xj , Xk] determines the matching Aj in
Xj and the matching Bk in Xk. Then

(Ej,k) aj ⊕ bk = dj,k,

where dj,k = 0 if H i[Xj, Xk] is equal to G
i[Xj, Xk] and dj,k = 1 if H i[Xj , Xk] is the

bipartite complement of Gi[Xj, Xk]. It remains to notice that a set of permutations
{φj }

s
j=1 composing an isomorphism from Gi to H i exists if and only if the system

of equations consisting of (Ej) for all j ≤ s and (Ej,k) for all non-empty Gi[Xj , Xk]
has a solution.

The rank of anM×N matrix over a finite field is computable in time O(MNω−1),
where N ≤ M (see [7, 23]), or in randomized time O(MN logN + Nω) (see [11]).
Recall that we test isomorphism of |F (Ci)| pairs of graphs G

i and H i and that, for
each pair, our task is reduced to checking solvability of a linear system with 3|F (Ci)|
unknowns and at most

(
|F (Ci)|

2

)
equations. Since |F (Ci)| = ni/4, in this way we can

test separability of Ci in time O((ni)
2+ω) deterministically or in time O((ni)

4 log ni)
using randomization. Taking into account the inequality

∑t
i=1 ni ≤ n, which follows

from (53), and the general inequality

t∑

i=1

(ni)
α ≤

(
t∑

i=1

ni

)α

for any real α ≥ 1, we conclude that separability of C(G) is decidable in deterministic
time O(n2+ω) or in randomized time O(n4 log2 n), where an extra logarithmic factor
corresponds to the number of repetitions needed to make the failure probability an
arbitrarily small constant.

65



12.2 Small graphs

Theorem 12.1.

1. All graphs of color multiplicity 4 with at most 15 vertices are amenable.

2. Up to isomorphism and color renaming, there are 436 non-amenable graphs of
color multiplicity 4 with 16 vertices. More precisely, the number of non-trivial
≡2-WL-equivalence classes is 218, each consisting of exactly two non-isomorphic
graphs.

Proof. 1. Let G be a graph of color multiplicity 4 with at most 15 vertices. By
Theorem 2.5, G is amenable if and only if its coherent closure C(G) is separable.
Note that C(G) has at most 15 points, and every fiber of C(G) has size at most 4.
By Part 1 of Theorem 11.1, C(G) is separable.

2. Recall the notation introduced in Subsection 2.2 and the statement of Lemma
2.4. Given a colored graph G, let RG denote its underlying rainbow, that is, the
partition of V (G)2 determined by the color classes of G. In particular, if G is a
vertex-colored graph, then RG consists of the sets of loops vv of equally colored
vertices, the set of pairs uv with adjacent u and v, and the set of pairs uv with
non-adjacent u and v. The coherent closure C(G) = C(RG) is a refinement of the
partition RG. Given a bijection f : C(G) → D from C(G) onto a rainbow D,
we extend f to a bijection from C(G)∪ onto D∪ by the rule (X1 ∪ . . . ∪ Xs)

f =
Xf

1 ∪ . . .∪X
f
s . For each X ∈ RG, this defines its image Xf and, as usually, we have

(RG)
f =

{
Xf : X ∈ RG

}
, which is a partition coarser than D. Finally, we define

Gf as the colored version of (RG)
f where each Xf inherits the color of the color

class X of G. If G is a vertex-colored graph, then Gf is a vertex-colored graph as
well.

We begin with stating a general fact that follows from Part 2 of Lemma 2.4 and
the discussion preceding this lemma.

Claim B. G ≡2-WL H if and only if there is an algebraic isomorphism f : C(G) →
C(H) such that H = Gf .

According to Part 2 of Lemma 11.1, among all 16-point coherent configura-
tions with maximum fiber size 4 there is a unique non-separable configuration T .
Moreover, the proof of this lemma shows that T is the unique skew-connected con-
figuration whose fiber graph FT is isomorphic to the complete graph K4. Let G be
a vertex-colored graph of color multiplicity 4 on 16 vertices. By Theorem 2.5, G is
non-amenable if and only if C(G) ∼=comb T . Looking for non-amenable graphs, we
can therefore assume that C(G) = T .

Combining Claim B with Lemma 7.1, we conclude that G ≡2-WL H if and only
if there is a strict algebraic automorphism f of T such that H ∼= Gf . Looking
for graphs H such that G ≡2-WL H , we can therefore assume that H = Gf for
f ∈ A(T ). If f ∈ A∗(T ), i.e., f is induced by a combinatorial automorphism φ of
T , then obviously φ is an isomorphism from G to H . Conversely, if G ∼= H , then
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f ∈ A∗(T ) by Part 3 of Lemma 2.4. Thus,

G ≡2-WL G
f and G 6∼= Gf iff f ∈ A(T ) \ A∗(T ). (54)

Note that the difference A(T )\A∗(T ) is non-empty by Part 3 of Lemma 8.1 because
T is skew-connected and δ(FT ) = 3. We now generalize the equivalence (54) as
follows.

Claim C. Suppose that C(G) = T . Let h, f ∈ A(T ). Then Gh ∼= Gf if and only if
h−1f ∈ A∗(T ).

Proof of Claim C. Denote A = Gh and note that Gf = Ah−1f . We obtain the claim
by applying the equivalence (54) to A. ⊳

Consider h, f ∈ A(T ) \A∗(T ). By Part 3 of Lemma 8.1, A∗(T ) is a subgroup of
A(T ) of index 2. This implies that h−1f ∈ A∗(T ) and, hence, Gh ∼= Gf by Claim
C. It follows that, if each of two graphs H1 and H2 is ≡2-WL-equivalent but not
isomorphic to G, then H1 and H2 are isomorphic to each other. This proves that
every non-trivial ≡2-WL-equivalence class of 16-vertex graphs of color multiplicity 4
contains exactly two graphs. It remains to count the number of such classes.

We first describe the structure of graphs G of color multiplicity 4 with C(G) = T .
Clearly, any such G has 4 vertex color classes, each consisting of 4 vertices. More
precisely, the vertex color classes of G are exactly the fibers of T . For any two fibers
X and Y , the interspace T [X, Y ] is a refinement of the partition ofX×Y accordingly
to the adjacency relation of G[X, Y ]. It follows that G[X, Y ] is isomorphic either
to 2K2,2 or to K4,4. The latter option is actually impossible. Indeed, assume that
G[X, Y ] ∼= K4,4 and let T− be obtained from T by making the interspace T [X, Y ]
uniform. Note that

T ≺ T− 4 RG,

and that T− is a coherent configuration (because every subconfiguration T−[A∪B∪C]
for A,B,C ∈ F (T−) is obviously coherent). This contradicts Proposition 2.1.

Furthermore, the induced subgraph G[X ] for each vertex color class X must be
regular, that is, G[X ] is either empty or isomorphic to K4, C4, or 2K2. We conclude
that every 16-vertex G of color multiplicity 4 with C(G) = T is one of the graphs
obtainable in the following way:

Step 1. Take four disjoint 4-vertex sets X1, X2, X3, X4 and color them in four colors
so that each Xi is monochromatic.

Step 2. For each two indices i and j, connect Xi and Xj with 8 edges so that
G[Xi, Xj] ∼= 2K2,2. Note that G[Xi, Xj] determines a matching on Xi and
a matching on Xj . It is required that, for every i, the three subgraphs
G[Xi, Xj] for j ∈ {1, 2, 3, 4}\{i} determine three pairwise distinct matchings
on Xi.

Step 3. For each i, either leave G[Xi] empty or plant a K4-, or C4-, or 2K2-subgraph
on Xi.
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(a) (b)

Figure 18: A colored truncated tetrahedral graph (two looks).

We claim that C(G) ∼= T for every graph G obtainable as described above. Due
to Step 2, the edges of G between the classes X1, X2, X3, X4 represent a coherent
configuration T with fibers X1, X2, X3, X4. Since any K4-, C4-, or 2K2-subgraph
planted in Step 3 can be split into matching, we have

T 4 RG. (55)

On the other hand, note that the vertex coloring of G determines the partition
of the diagonal {vv : v ∈ V (G)} into four reflexive relations, each of size 4, corre-
sponding to the fibers of T . Each G[Xi, Xj ] determines the partition of Xi × Xj

of 2K2,2-type corresponding to the interspace T [Xi, Xj]. Moreover, each G[Xi, Xj]
determines a matching on Xi in the sense of Part 2 of Lemma 5.2. Due to Step 2,
this determines the F4-factorization of each (Xi)

2. In terms of partitions, these
observations can be stated as

C(G) 4 T . (56)

Relations (55) and (56) imply by Proposition 2.1 that C(G) = T .
Thus, we have described the family of allG of color multiplicity 4 with C(G) ∼= T .

However, following Steps 1–3, we can generate the same, up to isomorphism, graph
in many different ways. Now, we want to count the number of such graphs up to
isomorphism and color renaming. As we already know that every non-trivial ≡2-WL-
equivalence class consists of two non-isomorphic graphs, we can count the number
of these classes and multiply it by 2.

Suppose that G is obtained according to Steps 1–3. With G we associate a
truncated tetrahedral graph TG whose vertices are colored black or white; see Figure
18(a). Denote the three matchings on the vertex color class Xi of G by Li, Mi, and
Ni. The vertex set of TG is {Li,Mi, Ni }

4
i=1. Each triple {Li,Mi, Ni} forms a 3-clique.

Moreover, a vertex M ∈ {Li,Mi, Ni} is adjacent to a vertex M ′ ∈ {Lj ,Mj, Nj}
whenever G[Xi, Xj] determines M on Xi and M ′ on Xj . The edge set of TG is
therewith defined. A vertex M ∈ {Li,Mi, Ni} is colored black if M is covered by
the adjacency relation of G[Xi] and it is colored white otherwise. Thus, the clique
{Li,Mi, Ni} contains 3, 2, 1 black vertices exactly when G[Xi] is isomorphic to K4,
C4, 2K2 respectively. All vertices in {Li,Mi, Ni} are white exactly when Xi is an
independent set in G.

Claim D. G andH are≡2-WL-equivalent up to color renaming if and only if TG ∼= TH .
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Proof of Claim D. Denote C = C(G) and D = C(H). Note that TG does not change
after renaming the colors in G. To prove the claim in the forward direction, we can
therefore assume that G ≡2-WL H . By Claim B, there is an algebraic isomorphism
f : C → D such that H = Gf . Each of the matching relations Li, Mi, and Ni is
in C and, therefore, the restriction of f to the matching relations can be seen as
a bijection from V (TG) onto V (TH). Since the algebraic isomorphism f takes the
fibers of C to the fibers of D, f takes the 3-cliques of TG to the 3-cliques of TH .
Since f preserves the relation “an interspace I determines a matching M”, f takes
the remaining edges of TG to the remaining edges of TH . Finally, f preserves the
black-white coloring because H = Gf . Therefore, f provides an isomorphism from
TG to TH .

Assume now that TG ∼= TH . Given an isomorphism α from TG to TH , we construct
an algebraic isomorphism f : C → D such that H = Gf , possibly after appropriately
renaming the colors of vertices in H . By Claim B, this will imply that G ≡2-WL H
up to color renaming.

We first define f on the set of the matching relations in C just by setting f(M) =
α(M) for each of the 12 matchings. The isomorphism α takes the 3-cliques of TG
to the 3-cliques of TH . Therefore, if M and M ′ are matchings on the same fiber of
C, then f(M) and f(M ′) are matchings on the same fiber of D. Using this, we can
consistently extend f to a bijection from the set of the reflexive relations of C to
the reflexive relations of D. For a fiber Xi of C, we will denote the corresponding
fiber of D by f(Xi). Renaming the vertex colors in H if necessary, we can ensure
that the vertex color classes Xi in G and f(Xi) in H are equally colored. Finally,
for each pair of fibers Xi, Xj ∈ F (C), we define f locally as a bijection from the
interspace C[Xi, Xj] onto the interspace D[f(Xi), f(Xj)] in the following way: The
element of C[Xi, Xj] corresponding to the adjacency relation of G[Xi, Xj] is taken
by f to the element of D[f(Xi), f(Xj)] corresponding to the adjacency relation of
H [f(Xi), f(Xj)]. Thus, we have defined a bijection f from C onto D. Since α
preserves adjacency between vertices in different 3-cliques, f preserves the relation
“an interspace I determines a matching M”. This implies that f is an algebraic
isomorphism from C onto D.

It remains to argue that H = Gf . Suppose that a relation R ∈ C is covered by
the adjacency relation of G. We have to verify that the relation Rf ∈ D is covered
by the adjacency relation of H . If R belongs to an interspace of C, this follows
directly from the definition of f . If R belongs to a cell of C, that is, is a matching
relation, this follows from the fact that α preserves the black-white vertex coloring.
It remains to note that the correspondence between the reflexive color relations in
G and H was secured by color renaming. ⊳

Claim D reduces our task to counting the non-isomorphic black-white colorings
of the truncated tetrahedral graph T . We use the Pólya enumeration theorem. Let
Aut(T ) be the subgroup of the symmetric group S12 consisting of the automor-
phisms of T . Every automorphism of T takes a 3-clique to a 3-clique, determining a
permutation of the 4-element set of all 3-cliques. This actually yields a one-to-one
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(a) (b)

Figure 19: An example of 2-WL-equivalent non-isomorphic colored graphs: (a) The
Shrikhande graph; (b) the 4× 4 rook’s graph.

correspondence between Aut(T ) and S4 in accordance with the fact that the regular
tetrahedron has the same isometries as its truncated version. As a consequence,
the permutations in Aut(T ), like in S4, are split into 5 conjugacy classes. One
class consists of the identity permutation, which in Aut(T ) has 12 cycles. The six
transpositions in S4 correspond to reflections in a plane, which for the truncated
tetrahedron give six permutations with 7 cycles each, seen in Figure 18(a) as reflec-
tions in a line. The eight 3-cycles in S4 correspond to axial rotations, which for the
truncated tetrahedron give eight permutations with 4 cycles each, seen as rotations
in Figure 18(a). The six 4-cycles in S4 correspond to six permutations in Aut(T )
with 3 cycles each, which can be seen as rotations in Figure 18(b). Finally, three
products of two transpositions in S4 correspond to three permutations in Aut(T )
with 6 cycles each, which appear in Figure 18(b) as the inversion in the central
point. By the Pólya enumeration theorem, the number of non-isomorphic ways to
color the vertices of T in n colors is equal to

p(n) =
1

24

(
n12 + 6n7 + 3n6 + 8n4 + 6n3

)
.

The number of different colorings in two colors is, therefore, equal to p(2) = 218.

To illustrate Part 2 of Theorem 12.1, we show two ≡2-WL-equivalent and still
non-isomorphic graphs produced as in the proof, with all color classes left empty
in Step 3. Remarkably, these are colored versions of two smallest non-isomorphic
strongly regular graphs with the same parameters, namely the Shrikhande graph
and the 4× 4 rook’s graph both having parameters (16,6,2,2); see Figure 19(a)–(b).
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13 Further questions

Our results raise questions about the parameterized complexity of recognizing amenabil-
ity of a given graph with the color multiplicity m taken as the parameter. The
problem is trivial for m = 3 due to [25]. We show that it is solvable in polynomial
time for m = 4. Our analysis surely generalizes to a few subsequent values of m.
For any fixed m, the problem is in coNP, and it is open whether it is in P if m is
large.

Another open question, that naturally arises in light of Theorem 1.2, concerns
the next dimension of the Weisfeiler-Leman algorithm: Can the amenability to 3-WL
be decided in polynomial time on input graphs of color multiplicity 4?

The WL dimension of a graph G is defined as the minimum k such that G is
amenable to k-WL. The graphs with large WL dimension are of significant interest
in the study of the graph isomorphism problem. When we seek such graphs among
graphs with color multiplicity 4, note that they must be at least non-amenable to
2-WL. Cai, Fürer, and Immerman [9] give conditions ensuring linear WL dimension
for graphs whose coherent closure is, in our terminology, skew-connected. Further
such conditions are identified by the line of research [12, 20, 32, 33]. Can we achieve
high WL dimension in other cases, say, for graphs whose coherent closure corre-
sponds to a line-point (n3)-configuration?
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