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Abstract. This paper considers a social network modeled as an Erdős-Rényi random graph.
Each individual in the network updates her opinion using the weighted average of the opinions of
her neighbors. We explore how an external manipulative agent can drive the opinions of these
individuals to a desired state with a limited additive influence on their innate opinions. We show
that the manipulative agent can steer the network opinion to any arbitrary value in finite time (i.e.,
the system is controllable) almost surely when there is no restriction on her influence. However, when
the control input is sparsity constrained, the network opinion is controllable with some probability.
We lower bound this probability using the concentration properties of random vectors based on the
Lévy concentration function and small ball probabilities. Further, through numerical simulations,
we compare the probability of controllability in Erdős-Rényi graphs with that of power-law graphs to
illustrate the key differences between the two models in terms of controllability. Our theoretical and
numerical results shed light on how controllability of the network opinion depends on the parameters
such as the size and the connectivity of the network, and the sparsity constraints faced by the
manipulative agent.
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1. Introduction. Consider the following problem regarding controllability of
network opinion: the opinions propagated over an Erdős-Rényi random graph consist-
ing of N people are influenced by an external agent (referred to as the manipulative
agent henceforth) [18]. The goal of the manipulative agent is to influence the opin-
ions of the people so that the network opinion is driven to a desired state. However,
the manipulative agent is subject to sparsity constraints: it can only influence a few
people in the network at each time.

Our formulation is as follows: Let k = 1, 2, . . . denote discrete time. The network
opinion at time k, denoted by xk ∈ RN follows a DeGroot type linear propagation
model [12]:

(1.1) xk = Āxk−1 + uk,

where Ā ∈ RN×N is the row-normalized weighted adjacency matrix of the network.
In the most general setting, the randomness of the system (1.1) is induced by a
hierarchical probability measure over the space of graphs with N nodes where the
locations of non-zero entries of Ā are modeled using an Erdős-Rényi graph and the
non-zero entries of each row of Ā are drawn from a continuous distribution on the
unit simplex. The control input from the manipulative agent, uk ∈ RN represents her
influence at time k. We assume that the manipulative agent can influence only one
of the predefined (overlapping) groups of people in the network at any time instant,
and the size of each such group is small compared to the network size N . Thus, uk
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is s−sparse with s� N (i.e., budget-constrained), and its support belongs to a set of
admissible support sets U (i.e., pattern-constrained).

A fundamental question that arises in this context is: Can the network opinion be
driven to a desired value using the budget and pattern constrained inputs within a finite
time duration? The answer is that it is possible with some probability (that arises
due to the randomness in Erdős-Rényi model). We use concentration inequalities to
derive a lower bound for this probability which is a function of the network size N ,
the sparsity s, the edge probability p and the set of admissible support sets U for two
versions of the Erdős-Rényi graph model: a directed graph and an undirected graph.
The main results of the paper are informally stated below:

Theorem 1.1 (Informal statement of main results). Consider the linear opinion
formation model in (1.1) where Ā is the row-normalized adjacency matrix of an Erdős-
Rényi graph. Assume that the control input uk is s-sparse with 0 < s � N and its
support (defined in Table 1) satisfies Supp {uk} ∈ U for some set U which depends
on the specific sparsity pattern (detailed in Subsection 2.2). Further, assume that the
nonzero entries of each row Ā is drawn from a continuous distribution on the unit
simplex. Then, the following hold:

(a) Undirected graph: If the edge probability p satisfies (N−s)−1 ≤ p ≤ 1−(N−s)−1,
then the probability of controllability of the network opinion in (1.1) is at least
o
(
Q̄(U)(1− p)sN

[
1− e−c(p(N−s))

])
.

(b) Directed graph: If the edge probability p satisfies C log(N−s)
N−s < p ≤ 1− C log(N−s)

N−s ,
then the probability of controllability of the network opinion in (1.1) is at least
o
(
Q̄(U)(1− p)sN

[
1− e−c(p(N−s))

])
,

where Q̄(U) ≥ 1 is an increasing function of s and N which depends on the set U .
Here C, c > 0 are universal constants.

The key insights gained from Theorem 1.1 are as follows:
• The probability of controllability increases with the network size N and sparsity
s when all other parameters are kept constant. In particular, the network opinion
can be controlled almost surely, if the network size is sufficiently large (N → ∞),
irrespective of the sparsity patterns.

• The probability bound on controllability of network opinion is small when the net-
work is either loosely connected (small values of p which are close to 0) or densely
connected (large values of p which are close to 1), i.e., the probability of the system
being controllable is larger for moderate values of p.

• The dependence of controllability on the sparsity pattern is captured by the function
Q̄. This relation allows us to compare the probability of controllability under various
popular sparsity structures like unconstrained, piece-wise, and block sparsity.

The technique that we use to prove our results relies on rank-related properties of
binary random matrices (that model the adjacency matrix of Erdős-Rényi graph).
The key tools used to derive these properties are the Lévy concentration function
and small ball probability. The analysis characterizes the smallest singular value of
the (unweighted) binary adjacency matrix of an Erdős-Rényi graph, which can be of
independent interest.

1.1. Practical context of the model and examples. Controllability
of the network opinion has applications in marketing [31], targeted fake-news cam-
paigns [41], and political advertising [11]. For such problems, the randomness of the
Erdős-Rényi model captures the unknown structure of the underlying social network.
The directed graphs represent social networks such as Twitter whereas the undirected
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graphs represent social networks such as Facebook.
The DeGroot type opinion propagation model (given in (1.1)) that we consider is

an average based process that has been used widely in the literature ( [4, 19, 21, 45])
to model consensus and learning in multi-agent systems. Here, each individual in the
network averages the opinions of her neighbors according to the non-uniform weights1

prescribed by the ith row of Ā.
The sparsity pattern models the limited influence of the manipulative agent in

the following examples.
1. Consider a company that sends one salesperson each to m different parts of a coun-

try for marketing their products by offering free samples. At each time instant, the
company can afford a total of s free samples (and hence, constraining the sparsity
of the control input to be s), and each salesperson can visit at most s/m potential
customers (and thus, constraining the sparsity pattern). Hence, the control input
uk at each time instant k is formed by concatenating m sparse vectors. This is an
example of the sparsity pattern called piece-wise sparsity (Definition 2.3).

2. Consider a candidate visiting different parts of a country during election as part
of a political campaign. At each time instant, she can visit only a particular
area and influence the group of people located there. Therefore, the input uk at
each time instant k has nonzero entries occurring in clusters (corresponding to
the individuals located in a particular area). This is an example of the sparsity
pattern called block sparsity or group sparsity (Definition 2.4).

1.2. Related work. The linear opinion propagation model in (1.1) is similar
to the widely used DeGroot model [12]. For such linear models, several works have
explored the problem of controlling opinions in a social network by drawing tools
from control theory. In [37], the authors explore how a set of individuals (called the
leaders or strategic agents) can be used to manipulate the opinions of a fixed set of
people who are in their neighborhood. The leaders cannot strategically choose the
people whom they can influence, but can design the control inputs suitably. On the
contrary, our model is more flexible as the manipulative agent is an external entity
for the network, and she can influence the individuals of her choice. Other similar
works in [14, 28] also follow the model of strategic agents. Another study presented
in [13] deals with the network vulnerability where an external agent aims to disrupt
the synchronized state (consensus) of a networked system. Unlike our model which
limits the number of people influenced by the manipulative agent, the model in [13]
constrains the total energy spent by the agent. This work [13] provides guarantees
related to the inverse of controllability Gramian and its associated statistics. Further,
a recent study in [46] models the control input from the manipulating agent as a
local feedback control using a projection of the current network control and presents
guarantees on Hurwitz stability of the equivalent feedback system. Moreover, in
[47, 48], the authors examine how the nodes of a social network can be classified as
opinion leaders and opinion followers during the opinion formation process amidst
factors such as trustworthiness and uncertainty in decision making. A detailed survey
of such models can be found in [3]. Furthermore, the work in [35] is closely related to
ours where the authors investigate the difficulty of controlling the opinion dynamics
with metrics based on the control energy and explore the trade-off between the control
energy and the number of control nodes. However, none of the existing works explore
controllability of a networked system generated by a specific random graph model

1The model in [4, 19] uniformly averages the opinions of the neighbors whereas we consider the
more general case of averaging based on social reputation.
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under the constraints on the sparsity pattern of the control input (which is the aim of
this paper). A key reason for this literature gap is that the Kalman-rank based test for
sparse-controllability (i.e., controllability of a linear dynamical system under sparsity
constraints on the inputs) is combinatorial which makes the analysis cumbersome.
Recently, a simpler rank-based test which is similar to the classical PBH test [20,24]
and equivalent to the Kalman type rank test has been presented in [22]. Therefore, we
build upon the controllability conditions provided in [22] to derive sufficient conditions
for sparse-controllability of network opinion.

Organization: Section 2 presents the network opinion dynamics model. Section 3
introduces the notion of generalized sparse-controllability and derives the necessary
and sufficient conditions for a deterministic linear dynamical system to be sparse-
controllable. Based on this result, Section 4 and Section 5 present the main results
of our paper: the bounds on the probability with which the opinion dynamics for an
Erdős-Rényi graph (directed or undirected) is sparse-controllable. Finally, Section 6
presents numerical illustrations that complement and verify the main results.

Notation: Boldface lowercase letters denote vectors, boldface uppercase letters de-
note matrices, and calligraphic letters denote sets. Table 1 summarizes the other
notations used throughout the paper.

Table 1
Summary of Notation

SN−1 : Unit Euclidean sphere in RN
Ai : ith column of A Aij : the (i, j)th entry of A
� : Hadamard product P(a) : Power set of {1, 2, . . . , a}
AS : Submatrix of A formed by the columns indexed by S
AS,: : Submatrix of A formed by the rows indexed by S

Supp {·} : Support of a vector, Supp {z} = {i : zi 6= 0} for any z ∈ RN
dist(a,S) : `2 distance of a from S, dist(a,S) , inf

a′∈S
‖a− a′‖

2. Opinion Dynamics Model. We consider a social network with N individ-
uals. The network opinion vector xk ∈ RN (with element xk[i] denoting the opinion
of the ith individual at time k) evolves according to (1.1), i.e., xk = Āxk−1 + uk.
Thus, the network opinion dynamics model has two key components: the random
graph model that represents the probability distribution from which Ā is obtained;
and the sparsity model that imposes restrictions on the additive control inputs uk.
We present them below:

2.1. Random graph model. This subsection describes the probabilistic
model for the matrix Ā in (1.1) in terms of the underlying social network graph..
The underlying network is modeled as a weighted Erdős-Rényi graph [9, 15] which
can be either an undirected graph (for networks like Facebook) or a directed graph
(for networks like Twitter). The formal definitions of the undirected and directed
Erdős-Rényi models are as follows:

Definition 2.1 (Erdős-Rényi model). Let W = wwT ∈ RN×N+ where w is
sampled from an arbitrary continuous distribution on RN+ . Also, let � denote the
Hadamard product of two matrices, and Ber(p) denote a Bernoulli distribution with
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parameter p. The row-normalized adjacency matrix

(2.1) Ā = Λ(A�W ),

with Λ ∈ RN×N being the normalizing diagonal matrix (Λii =
∑N
j=1 (A�W )ij),

follows:
1. the undirected Erdős-Rényi distribution ER(N,W , p), if for i, j = 1, 2, . . . , N ,

(2.2) Aij

{
iid∼ Ber(p) for j < i

= 0 for j = i
and Aij = Aji for j > i;

2. the directed Erdős-Rényi distribution DER(N,W , p), if for i, j = 1, 2, . . . , N ,

(2.3) Aij

{
iid∼ Ber(p) for j 6= i

= 0 for j = i.

A few words about Definition 2.1. The matrix A ∈ {0, 1}N×N specifies the
presence or absence of the edges in the graph, W assigns positive weights to each
existing edge, and Λ ensures that the resulting matrix Ā is a stochastic matrix. The
choice of W as a rank 1 matrix (outer product wwT) makes our model more general
than the unweighted Erdős-Rényi model (i.e., W = 11T) and useful in practical
scenarios that require weighted edges. For example, the weights can represent the
reputation of an individual as discussed in Subsection 1.1. Further, since Λ normalizes
each row of A �W in (2.1), the entries of W only determine the ratio of weights
(i.e., W = wwT and W = 1wT correspond to the same system).

We note that Āij specifies the trust that the ith individual in the network has on
her neighbor j (i.e., j such that Aij = 1). Therefore, the first term in (1.1) models
how the neighbors affect the opinion formation.

2.2. Sparsity model. We now discuss the second term uk in (1.1) which
models the influence from the manipulative agent. The sparsity model refers to the
constraints faced by the manipulative agent in the form of restrictions imposed on
the support of the control inputs. We adopt a generalized sparsity model called the
pattern-and-budget-constraint sparsity (PBCS) model. The PBCS model is character-
ized by a set U ⊆ P(N) called the admissible supports set such that |S| = s for each
S ∈ U (from Table 1, P(N) denotes the power set of {1, 2, . . . , N}). Therefore,

(2.4) U ⊆ U1 , {S ⊂ {1, 2, . . . , N} : |S| = s} .

Then, any admissible control input uk chosen by the manipulative agent at any time
instant k satisfies Supp {uk} ⊆ S for some S ∈ U . Thus, an admissible control input
is a vector whose support is a subset of an element in the admissible supports set U .
Three useful sparsity models that serve as examples of the PBCS model [16, 27] are
defined below:

Definition 2.2 (Unconstrained sparsity model). A PBCS model (2.4) is called
an unconstrained sparsity model if the admissible supports set U = U1 given in (2.4).

Thus, the unconstrained sparsity model (Definition 2.2) is the least restrictive version
of the PBCS model because from (2.4), the admissible supports set U1 has the largest
cardinality among all the versions of the PBCS model.

5
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Definition 2.3 (Piece-wise sparsity model). A PBCS model (2.4) is called a
piece-wise sparsity model if the admissible supports set U is given by

U = U2 , {S : S = ∪mi=1Si : Si ⊆ {(i− 1)N/m+ j, 1 ≤ j ≤ N/m} and |Si| = s/m} .

The piece-wise sparsity model corresponds to the case where each admissible control
input can be expressed as a concatenation of m sparse vectors, each with sparsity of
at most s/m (assume that both N and s are divisible by m).

Definition 2.4 (Block sparsity model). A PBCS model (2.4) is called a block
sparsity model if the admissible supports set U is given by

U = U3 , {S : S = ∪i∈ISi : Si ⊆ {(i− 1)m+ j, 1 ≤ j ≤ m} and |I| = s/m} .

The block sparsity model corresponds to the case where the non-zero entries of each
admissible control input form clusters of equal size m ≤ N (assume that both N and
s are divisible by m). To give more insights, a brief discussion on the relationship
between the block sparse vectors and the piece-wise sparse vectors is presented in
Appendix A.

Having specified the opinion dynamics model, we next derive the conditions under
which the network opinion is controllable under the different sparsity models (defined
in Subsection 2.2) on graphs sampled from the Erdős-Rényi model given in Subsec-
tion 2.1. We start with a generalized sparse-controllability test in the next section.

3. Generalized Sparse-Controllability Results. This section presents
necessary and sufficient conditions for sparse-controllability of a general linear dy-
namical system using control inputs from the PBCS model. In subsequent sections,
we explore the probability with which these necessary and sufficient conditions are
satisfied by the opinion dynamics model in (1.1). Thus, the main result of this section
serves as the starting point to derive the results in Sections 4 and 5.

As the main result of this section (necessary and sufficient conditions for sparse
controllability of a linear dynamical system) is of interest to the broader field of dy-
namical systems, we express the result for a more general version of a linear dynamical
system using notation that is different from Sec. 2 and (1.1). More specifically, we
consider the following general linear dynamical system:

(3.1) αk = Φαk−1 + Ψvk, k = 1, 2, . . . ,

where αk ∈ RN denotes the state vector, vk ∈ RL denotes the control input, Φ ∈
RN×N denotes the state transition matrix, and Ψ ∈ RN×L denotes the input matrix.
For the system in (3.1), the generalized sparse-controllability result is presented below.
In the theorem below, we use vk to represent a sparse input (see Subsection 2.2).

Theorem 3.1 (Controllability under PBCS model). Consider the linear system
(3.1) with sparse input vectors vk. Let the admissible supports set be U ⊆ P(L) with
|S| = s,∀S ∈ U . Then, for any initial state α0 and final state αK , there exists a
sparse input sequence vk, which steers the system from the state α0 to αK for some
finite K, if and only if the following two conditions hold:

(a) For all λ ∈ C, the rank of
[
λI −Φ ΨM

]
∈ RN×(N+|M|) is N , where the set

M = ∪S∈US ⊆ {1, 2, . . . , L}.
(b) There exists a set S ∈ U such that the rank of

[
Φ ΨS

]
∈ RN×(N+|S|) is N .

Proof. See Appendix B.
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Both conditions of Theorem 3.1 have to be satisfied simultaneously for the system
to be controllable under the sparsity constraints on the input. Condition (a) is identi-
cal to the classical PBH test for controllability of the reduced linear system described
by the matrix pair (Φ,ΨM). Here, ΨM is the effective control matrix, as the entries
of the control inputs corresponding to the complement Mc of M are always zero.
Since all sparse-controllable systems are controllable, necessity of the first condition
is straight-forward. Condition (b) provides the extra condition to be satisfied by a
controllable system (i.e., satisfies condition (a)) to be controllable under the sparsity
constraints.

We note that Theorem 3.1 is an extension of the sparse-controllability result [22,
Theorem 1] for a more general PBCS model. The original result [22, Theorem 1] is
applicable only to the unconstrained sparsity model in Definition 2.2.

Next, we apply Theorem 3.1 to our stochastic setting and derive probabilistic
results on sparse-controllability of network opinion dynamics. Before we launch into
those main results, we provide a result on controllability of the network opinion using
unconstrained (non-sparse) inputs.

Proposition 3.2. Consider the generalized linear system (3.1) and assume αk =
xk, vk = uk, Φ = Ā, and Ψ = I (i.e., the systems in (3.1) and (1.1) are equivalent).
If the sparsity s = N (i.e., the manipulative agent can influence any number of people),
then the system (3.1) (and hence, the system (1.1)) is controllable.

Proof. The result follows immediately by substituting αk = xk, vk = uk, Φ = Ā,
and Ψ = I in the two conditions of Theorem 3.1.

Proposition 3.2 indicates that the opinion dynamics model in (1.1) is always con-
trollable when an arbitrary number of people can be influenced by the manipulative
agent. Therefore, the non-trivial problem in this context is the controllability analysis
in the sparse regime (i.e., s� N) that we deal with in the subsequent sections.

4. Sparse Controllability of Opinions in an Undirected Graph. This
section studies the probability with which the opinion dynamics system (1.1) satisfies
the sparse-controllability conditions specified in Theorem 3.1 when the underlying
graph is sampled from the undirected Erdős-Rényi model ER(N,W , p) defined in
Definition 2.1. The main result of this section is a lower bound on the probability of
controllability that is followed by a discussion of the insights that it yields.

To state the result, we define the function Q : {0, 1, . . . , s}×P(N)→ N as follows:

(4.1) Q(t,U) , |{I ⊆ S : S ∈ U and |I| = t}| .

where N is the set of natural numbers. We recall that U is the admissible supports
set of the control input. Also, if U (1) ⊂ U (2), we obtain that Q(t,U (1)) < Q(t,U (2)).
Therefore, Q(t,U) that counts the number of t-sized subsets of S ∈ U and it can be
considered as a measure of the flexibility of the sparsity pattern. If the sparsity model
is less pattern-constrained, the size of U increases which in turn increases Q(t, ·).
Intuitively, if the control input is less constrained, then the system is more likely to
be controllable (as Proposition 3.2 also suggests). This dependence of the probability
of controllability on U is captured by the function Q as given by the following result.

The main result of this section is a lower bound (in terms of Q in (4.1) and the
parameters of the undirected Erdős-Rényi model in (2.2)) on the probability that the
network opinion is controllable. In essence, Theorem 4.1 suggests that the probability
that the opinion dynamics model in Equation (1.1) is sparse controllable increases
linearly with the function Q(·,U) and exponentially with the network size N .

7
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Theorem 4.1 (Sparse controllability of network opinion in undirected Erdős-
Rényi graphs). Consider the network opinion model (1.1) where the constraints
on control input uk at each time k are modeled by the PBCS model in (2.4) with the
admissible supports set U and the additional constraint |∪S∈US| = N . Let the weighted
adjacency matrix Ā be sampled from the undirected Erdős-Rényi model ER(N,W , p)
given in (2.2). Assume that

(4.2) (N − s)−1 ≤ p ≤ 1− (N − s)−1.

Then, the network opinion of the system can be steered to any desired value from any
initial network opinion in finite time, with probability at least q where

(4.3) q =

s∑
i=0

Q(i,U)(1− p)i(2N−i−1)/2
[
1− C exp

(
−c(p(N − i))1/32

)]
,

for some constants C, c > 0, and Q is as defined in (4.1).

Proof. See Appendix C.

We note that in (4.3), the exponent 1/32 is not the sharpest possible power of pN
and it can be improved. The crux of the result is that there exists a small constant
0 < c̃ < 1 such that the probability of controllability exceeds 1 − C exp

(
−c(pN)c̃

)
.

Also, comparing Theorem 4.1 and Theorem 1.1, we note that Q̄(U) =
∑s
i=0Q(i,U)

in the informal statement of the main results in Section 1. The other implications of
Theorem 4.1 that highlight its importance in practical contexts are discussed below.

4.1. Dependence on parameters. In this subsection, we explore the effect
of the parameters of the opinion dynamics model (1.1) such as the sparsity s, edge
probability p, network size N on the lower bound q given in Theorem 4.1.
• Sparsity s: The dependence of q on the sparsity s is only through the first summation

term in (4.3) and it increases with the sparsity s. This observation is intuitive
because larger sparsity s implies less restrictions on the control inputs, and thus, it
leads to a higher probability of controllability.

• Edge probability p: The sufficient condition (4.2) for sparse controllability of opin-
ion dynamics includes a range of values of the edge probability p that depends on
both the network size N and sparsity s. This suggests that when the network is
highly connected (i.e. p ≈ 1) or sparsely connected (i.e., p ≈ 0), it is difficult to
control the network opinion by influencing a few number of people. This is intuitive
as it is not possible to influence the opinion of the network if p ≈ 0 as the people
in the network do not influence each other significantly due to lack of connections
among them. Also, when p is close to 1, we see that Ā has approximately low rank
with high probability, and hence the network opinion cannot be driven to all the
vectors in the null space of Ā. This is because from (1.1),

(4.4) xk = Ā
k
x0 +

k−1∑
i=1

Ā
k−i
ui + uk,

where the first two terms belong to the column space of Ā. Therefore, the sparsity
of uk should be greater than the nullity of Ā to ensure controllability.

• Network size N : As the network sizeN increases, the lower bound on the probability
of controllability q (in (4.3)) increases. This is due to the following:

q ≥ Q(0,U)
[
1− C exp

(
−c(p(N))1/32

)]
= 1− C exp

(
−c(p(N))1/32

)
,
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since from (4.1), Q(0,U) = 1 for any set U . This observation does not immediately
imply that the probability of controllability increases with N . However, as N →∞,
and s = o(N b), for some b ∈ (0, 1), the value q goes to unity. This implies that the
network opinion is controllable, almost surely, for any admissible supports set U .
This result is intuitive because the Erdős-Rényi model ensures that the expected
number of neighbors of every person on the network is p(N − 1). Thus, as the
network size increases, the people who can be influenced by the manipulative people,
are connected to more people in the network. Consequently, the opinion of an
asymptotically large network is controllable with probability one.

• Giant connected component: If p < 1/N , the undirected Erdős-Rényi graph almost
surely has no connected component of size O(log(n)) whereas if p > 1/N , the
undirected Erdős-Rényi graph has a unique giant connected component containing
a positive fraction of the nodes almost surely [8,21]. We note that the lower bound
in (4.2) is larger than this threshold value (1/N) of p required for the almost sure
existence of a unique giant component in the graph, and thus, our results hold
only when a unique giant connected component exists almost surely. Here, we do
not make explicit assumptions on the connected components, and the almost sure
existence of a unique giant component follow automatically from (4.2).

• Versions of the PBCS model: We note that all piece-wise and block sparse vec-
tors (Definitions 2.3 and 2.4) belong to the set of unconstrained sparse vectors (Def-
inition 2.2). Thus, if the network opinion is controllable using piece-wise sparse or
block sparse control inputs, it is controllable with unconstrained sparse control in-
puts. Also, the block sparsity can be seen as a special case of piece-wise sparsity
with a common support for all blocks (see Appendix A). Therefore, we have2

(4.5) Q(i,U3) ≤ Q(i,U2) ≤ Q(i,U1)

where U1,U2,U3 ⊆ P(N) correspond to the three different versions of the PBCS
model given in Definitions 2.2 to 2.4. Thus, out of the three models, the uncon-
strained sparse vectors offer the highest probability of controlling network opinion,
followed by the piece-wise sparse vectors.

4.2. Design of sparse inputs. Theorem C.2 deals with the existence of a set
of sparse vectors such that the network opinion can be driven from any initial state
x0 ∈ RN to any final state xf ∈ RN . The next important question is the design of this
set of sparse vectors. The problem can be cast as a sparse vector recovery problem
using (4.4) where we solve for {ui}ki=1 [23, 40, 42]. To elaborate, [22, Theorem 3]
ensures that we need at most N control input vectors (i.e., k = N) to drive the
system from any arbitrary initial state to the desired state. Therefore, we consider
the following sparse vector recovery problem: xf−ANx0 =

[
AN−1 AN−2 . . . I

]
ũ,

where ũ =
[
uT
1 uT

2 . . . uT
N

]T ∈ RN2

is a piece-wise sparse vector with N blocks
and each block being s−sparse. Then, the control input ũ can be estimated using the
piece-wise sparse recovery algorithms [27,42].

2Using straightforward computations, we get Q(i,U1) =
(N
i

)
,

Q(i,U2) =
∑

0≤j1,...,jm≤ s
m

j1+j2...+jm=i

m∏
l=1

(N
m

jl

)
and Q(i,U3)=

min{i, smN }∑
l=d imN e

(m
l

)(N
m

)l (l(N
m
− 1
)

i− l

)
.
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5. Sparse Controllability of Opinions in a Directed Graph. In this
section, we extend Theorem 4.1 in Section 4 to the directed Erdős-Rényi model
DER(N,W , p) specified in Definition 2.1. The main result of this section (The-
orem 5.1) establishes a lower bound on the probability of sparse-controllability of
network opinion in a directed Erdős-Rényi graph. This probability bound increases
linearly with the counting function Q(·,U) in (4.1) (which quantifies the complexity
of the sparsity model U) and exponentially with the network size N .

Theorem 5.1 (Sparse controllability of network opinion in directed Erdős-Rényi
graphs). Consider the network opinion model (1.1) where the constraints on control
input uk at each time k are modeled by the PBCS model in (2.4) with the admissible
supports set U and the additional constraint |∪S∈US| = N . Let the weighted adjacency
matrix Ā be sampled from the directed Erdős-Rényi model DER(N,W , p) given in
(2.3). Assume that

(5.1) C(N − s)−1 log(N − s) < p ≤ 1− C(N − s)−1 log(N − s).

Then, the network opinion of the system can be steered to any desired value from any
initial network opinion in finite time, with probability at least q where

(5.2) q =

s∑
i=0

Q(i,U)(1− p)i(N−1) [1− exp (−c(p(N − i)))] ,

for some constants C, c > 0, and Q is as defined in (4.1).

Proof. See Appendix D.

We make similar observations regarding the result as those discussed in Section 4
about Theorem 4.1. Also, we note that the range of edge connectedness p is shorter
for directed graphs compared to undirected graphs. Here, we require the graph to be
connected with higher probability which is log(N−s) times more than the undirected
graph. For the same edge probability, the undirected graph is likely to have more
number of connections and hence, it is more controllable. Further, the bound on the
probability of controllability is of similar order for directed graphs and undirected
graphs, when the other parameters are kept the same. Therefore, the direction of
information flow (uni-directional in directed graphs vs bi-directional in undirected
graphs) does not have a significant effect on the probability bound.

6. Numerical Experiments. To give additional insights, we compute the
probability of controllability of network opinion using Theorem 3.1 via numerical
experiments, and compare the results with the bounds in Theorems 4.1 and 5.1.
Also, we numerically evaluate the probability of controllability for a different model
of social networks called a power-law model [5, 30, 34] in order to understand how
probability of controllability varies for different models.3

3In this paper, a power-law graph refers to an undirected graph where the probability p(k) that
a uniformly sampled node has k neighbors (i.e., degree distribution evaluated at k) is proportional
to k−α for a fixed value of the power-law exponent α > 0 (the term power-law graph is used in some
literature to refer to a directed graph with both in- and out-degree distributions following a power-law
though we do not deal with such directed power-law graphs in this paper). It has been shown that
power-law degree distributions arise naturally from simple and intuitive generative processes such as
preferential attachment whose power-law exponent α lies in the range from 2 to 3 [5,30,34]. Hence,
they have been widely compared with Erdős-Rényi graphs in the social network literature [26, 32].
The key difference between the two graph models (Erdős-Rényi and power-law) lies in the degree

10

This manuscript is for review purposes only.



0 0.2 0.4 0.6 0.8 1

Edge probability p

0

0.2

0.4

0.6

0.8

1

P
ro

b
a

b
il

it
y

 o
f 

c
o

n
tr

o
ll

a
b

il
it

y

Unconstrained Sparsity s=1

Block Sparsity s=3, m=2

Unconstrained Sparsity s=2

Piecewise Sparsity s=3, m=2

Unconstrained Sparsity s=3

(a) Undirected graph with N = 12.
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(b) Directed graph with N = 12.
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(c) Undirected graph with N = 20.
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(d) Directed graph with N = 20.
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(e) Undirected graph with N = 50.
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(f) Directed graph with N = 50.

Figure 1. Variation of the probability of controllability of the network opinion with edge proba-
bility p. The figures show that the probability of controllability grows with sparsity s and its variation
with edge probability p is lower bounded by the relationship given in Theorems 4.1 and 5.1.

6.1. Probability of controllability of the Erdős-Rényi model. To
evaluate the probability of controllability of the Erdős-Rényi model, we simulated
1000 independent realizations of both undirected and directed Erdős-Rényi graphs
each (for each value of N and p). The fraction of the realizations that satisfy the
two conditions of Theorem 3.1 (with Φ as the adjacency matrix and Ψ = I) is the
estimate of probability of the opinion being controllable.

distribution (Erdős-Rényi graphs have Poisson degree distributions as opposed to power-law degree
distributions) which is a key structural property of networks with implications in epidemic spreading,
stability, friendship paradox and perception bias etc. [1, 10,36].

11

This manuscript is for review purposes only.



10 15 20 25 30 35 40 45 50

Network size N

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ro

b
a

b
il

it
y

 o
f 

c
o

n
tr

o
ll

a
b

il
it

y

Unconstrained Sparsity s=1

Unconstrained Sparsity s=2

Unconstrained Sparsity s=3

(a) Undirected graph with p = 0.2.
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(b) Directed graph with p = 0.2.

Figure 2. Variation of the probability of controllability of the network opinion with network size
N . The figures confirm that the probability of the network opinion being not controllable decreases
exponentially with the network size N , as given by Theorems 4.1 and 5.1.

2 2.5 3 3.5

Power-law exponent 

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ro

b
a
b

il
it

y
 o

f 
c
o

n
tr

o
ll
a
b

il
it

y

Unconstrained Sparsity s=1

Block Sparsity s=3, m=3

Unconstrained Sparsity s=2

Piecewise Sparsity s=3, m=3

Unconstrained Sparsity s=3

(a) Undirected power-law graph with N = 24.
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(b) Undirected power-law graph with α = 2.5.

Figure 3. Variation of the probability of controllability of the network opinion of the power-
law graph model with the power-law exponent α and the network size N . The figures show that
the probability of controllability in the power-law model is significantly different from that of the
Erdős-Rényi model.

As we mentioned in Subsection 1.1, the Erdős-Rényi model captures the un-
known structure of the underlying social network. Several real world networks such
as high-school romantic partner networks have been shown to be similar to Erdős-
Rényi model [7]. Further, although the Erdős-Rényi model might not capture all the
characteristics of other social networks, it provides the simplest and most analytically
tractable approximation for such networks (for example, the emergence of giant con-
nected components) [21]. In this context, our numerical results in this section help to
better understand the effect of the parameters of the Erdős-Rényi model on another
such sociologically important phenomena, namely controllability of opinions in social
networks. The key observations from the numerical results are as follows:
• Sparsity and PCBS model: Figures 1 and 2 confirm that as sparsity s increases,

the probability of controllability grows. This trend is in agreement with the bounds
in Theorems 4.1 and 5.1 which also capture the monotonically increasing nature of
the probability of controllability with s. Also, for s = 3, the unconstrained sparse
vectors offer the highest probability of controlling network opinion, followed by the
piece-wise and block sparse vectors. This order verifies the relation given by (4.5).

• Edge probability p: Figure 1 shows that the probability of controllability first
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increases with p, reaches its maximum value, and then decreases. Also, the prob-
ability of controllability is one when p is close to 1. For comparison, we note that
the bounds on the probability of controllability (given by Theorems 4.1 and 5.1) ap-
proximately scale as (1− p)Ns(1− exp((pN)α), for α > 0. This bound is zero when
p = 0, then increases with p to attain a maximum value and diminishes thereafter.
Thus, both the bounds in Theorems 4.1 and 5.1 and the curves in Figure 1 show
similar behaviors. However, as p approaches 1, the bound decreases, whereas the
probability of controllability estimated in Figure 1 suddenly increases when p = 1.
This difference in behavior is because the values of p close to 1 lie outside the regime
of the edge probability for which Theorems 4.1 and 5.1 hold. Also, this change in
probability of controllability is not surprising because when p = 1, the adjacency
matrix becomes A = 11T − I which is a deterministic full rank matrix. Therefore,
both the conditions of Theorem 3.1 are satisfied by the system for all values of s
and all sparsity patterns. Hence, the probability of controllability is 1.

• Network size N : Figure 2 indicates that as the network size N grows, the probabil-
ity of the system not being controllable decreases exponentially. This observation
corroborates the dependence of N on the probability of controllability given by
Theorems 4.1 and 5.1. Also, Theorems 4.1 and 5.1 imply the opinion of an asymp-
totically large network is controllable, almost surely, and the asymptotic behavior
is attained in the regime N > 30 when p = 0.2. This observation is confirmed from
Figure 1 that reveals that as N becomes larger, the network opinion is controllable
with high probability for a wider range of edge probability p values.

• Undirected and directed graphs: Figures 1 and 2 show that the probability of control-
lability is larger for directed graphs compared to undirected graphs, in all settings.
This is an additional insight which is not evident from Theorems 4.1 and 5.1.

6.2. Probability of controllability of the power-law model. The aim of
this subsection is to show that power law networks behave very differently from Erdős-
Rényi networks. Recall that an Erdős-Rényi network has a Poisson degree distribu-
tion, whereas a power-law network has a degree distribution of the form p(k) = Ck−α

where C is the normalizing constant and α > 0 is the power-law exponent. The
simulation results presented below for power-law networks show that our theoretical
results do not hold for this case, and there is a strong motivation to extend the results
of this paper to other random graph models in future work.

To evaluate the probability of controllability for a power-law model, we simulated
1000 independent realizations of undirected power-law graphs using the so called con-
figuration model [33] (for each value of the network size N and power-law exponent α).
More specifically, the configuration model generates k half-edges for each of the N
nodes in the graph where k is the number obtained by rounding the realizations sam-
pled independently from the power-law distribution i.e., k ∼ Ck−α where C is the
normalizing constant and α > 0 is the power-law exponent. Then, each half-edge
is connected to another randomly selected half-edge avoiding parallel edges and self-
loops, yielding a graph with a power-law degree distribution. Finally, the fraction
of the realizations that satisfy the conditions of Theorem 3.1 is used as the estimate
of the probability of controllability. The results are presented in Figure 3 where the
definition of the labels are the same as those in Figures 1 and 2 (see Subsection 6.1).

Figure 3a shows that the probability of controllability decreases monotonically
with power-law exponent α for all considered sparsity models. This observation is
intuitive because a smaller power-law exponent α implies that the network has larger
number of high-degree nodes, making it easier to control. This is different from
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the non-monotone relation observed in Figure 1 for Erdős-Rényi graphs. However, it
should also be noted that the parameter p of the Erdős-Rényi model and the parameter
α of the power-law model convey different information: p is the probability of the
presence of an edge whereas α is directly related to the degree of nodes. Further,
Figure 3b shows that the probability of controllability decreases with the number
of nodes N in power-law model indicating an opposite behavior to the Erdős-Rényi
model shown in Figure 2a. Also, unlike the Erdős-Rényi model, the variation of the
probability with N is not smooth. However, the cause of non-smoothness of the curve
is not obvious, and we defer it as future work. To sum up, these differences suggest
that the probability of controllability is an inherent property of the model.

7. Conclusion. This paper analyzed controllability of network opinions
modeled using a linear propagation framework with the additive influence of a sparsity
constrained manipulative agent. The linear propagation was modeled using an Erdős-
Rényi graph for two cases: the undirected and directed graphs. At every time instant,
the agent can influence only a small (compared to the network size) number of people
chosen according to a predefined sparsity pattern. The main results were Theorem 4.1
and Theorem 5.1 for undirected and directed graphs, respectively. They provide lower
bounds on the probability with which the manipulative agent is able to drive the
network opinion to any desired state starting from an arbitrary network opinion. Our
results indicate that in both cases, the probability increases with the network size,
and the opinions on an asymptotically large network is almost surely controllable.

One limitation of our results (Theorems 4.1 and 5.1) is that they are useful only
if s � N . Generalizing the results for all values of sparsity s is deferred to future
work. Also, relaxing the rank one assumption on the weight matrix and exploring
the controllability of opinions on other random graph models (e.g. power-law model,
stochastic block model) also remain as interesting future directions.
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Appendix A. Relation between Piece-wise and Block Sparsity Models.
In this section, we assert that the block sparse vectors can be seen as a special case of

the piece-wise sparse vectors. This observation implies that if a system is controllable
using block sparse control inputs, then it is controllable using piece-wise sparse control
inputs (see Subsection 4.1).

For any given block sparse vector z ∈ RN , we can rearrange its entries as follows:



Block 1


z1
z2
...
zm

Block 2

 zm+1

...
z2m

...
...

Block N
m

 zN−m+1

...
zN

→





z1
Block 1

zm+1

...
zN−m+1

z2
Block 2...

zN−m+2

...
...

zm
Block m....

zN

The rearranged vector on the right-hand side is a piece-wise sparse vector with m
blocks, each with at most sparsity s/m and the same support. Since shuffling the
entries of the control input does not change the controllability-related properties of
the system in (1.1), controllability under block sparsity can be seen as a special case
of that under piece-wise sparsity. We illustrate this idea using the example below:

Example A.1. Consider the case where N = 6, s = 2 and m = 2. A block sparse
vector with these parameters has N/m = 3 blocks out of which only s/m = 1 block has
nonzero entries. Therefore, for different choices of support, the block sparse vectors
can be rearranged to piece-wise sparse vectors with m = 2 blocks of size N/m = 3
where each block has at most s/m = 1 nonzero entries as shown below:

a ∈ R
b ∈ R

0
0
0
0

→

a ∈ R

0
0

b ∈ R
0
0

 ,


0
0

a ∈ R
b ∈ R

0
0

→


0
a ∈ R

0
0

b ∈ R
0

 ,


0
0
0
0

a ∈ R
b ∈ R

→


0
0

a ∈ R
0
0

b ∈ R

 .

However, the rearranged vectors only form a small subset of the set of piece-wise sparse
vectors. The excluded piece-wise sparse vectors take the following forms:


a ∈ R

0
0
0

b ∈ R
0

 ,

a ∈ R

0
0
0
0

b ∈ R

 ,


0
a ∈ R

0
b ∈ R

0
0

 ,


0
a ∈ R

0
0
0

b ∈ R

 ,


0
0

a ∈ R
b ∈ R

0
0

 ,


0
0

a ∈ R
0

b ∈ R
0




.

Thus, the larger set of piece-wise sparse vectors is less restricted than the set of block
sparse vectors.
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Appendix B. Proof of Theorem 3.1.
At a high level, the proof has three main steps:

1. We first prove that controllability as defined in Theorem 3.1 is equivalent to the
following: there exist an integer K > 0 and a matrix Ψ̃ ∈ B(K) such that

(B.1) Rank
{

Ψ̃
}

= N,

where B(K) =
{

Ψ̃ ∈ RN×Ks : Ψ̃ =
[
ΦK−1ΨS1 ΦK−2ΨS2 . . .ΨSK

]
,Sk ∈ U

}
.

2. Next, we show that when one of the conditions, either Condition (a) or Condi-
tion (b) of Theorem 3.1 does not hold, the condition given in Step 1 is violated.
This is equivalent to showing that Conditions (a) and (b) of Theorem 3.1 are
necessary for our notion of controllability to hold.

3. Finally, we show that when the condition given in Step 1 does not hold, Condi-
tions (a) and (b) of Theorem 3.1 are not true simultaneously. Thus, we show the
sufficiency part of the result.

We present the proof for the above steps in the following subsections:

B.1. An equivalent condition. To characterize controllability of the system
as defined in Theorem 3.1, we consider the following equivalent representation:

αK −ΦKα0 =

K∑
k=1

ΦK−kΨvk =

K∑
k=1

ΦK−kΨSkvk,Sk ,

where Sk ∈ U is the support of vk and ΨSk ∈ RN×|Sk| is the submatrix of Ψ with col-
umns indexed by Sk. Therefore, the system is controllable as defined in Theorem 3.1

iff the set W(K) = RN for some finite K with W(K) , ∪Ψ̃∈B(K)
CS
{

Ψ̃
}

, where

CS {·} denotes the column space of a matrix. However, a vector space over an infinite
field (RN in this case) cannot be a finite union of its proper subspaces [17, Chapter

1]. Therefore, CS
{

Ψ̃
}

= RN , for some Ψ̃ ∈ B, and Step 1 in the proof outline is

completed.

B.2. Necessity. We consider the following two cases:
(i) Suppose that Condition (a) in Theorem 3.1 does not hold. Then, from the classi-

cal PBH test for controllability, the linear dynamical system defined by the state
transition matrix-input matrix pair (Φ,ΨM) is not controllable. Therefore, con-
trollability matrix Ψ̃(K) =

[
ΦK−1ΨM ΦK−2ΨM . . . ΨM

]
does not have full

row rank for any finite K. Further, all matrices in B(K) are submatrices of Ψ̃(K),

and therefore, (B.1) is violated any Ψ̃ ∈ B(K).
(ii) Suppose Condition (b) in Theorem 3.1 does not hold. Then, for every index set
S ∈ U , there exists a nonzero vector z such that zTΨS = 0 and zTΦ = 0. This
implies that for any finite K, there exists a vector z such that zTΨ̃ = 0, for all
Ψ̃ ∈ B(K). Therefore, (B.1) is violated any Ψ̃ ∈ B(K).

Hence, we proved the necessity of the conditions given by Theorem 3.1.

B.3. Sufficiency. Suppose that (B.1) is not true for any integer K > 0 and
Ψ̃ ∈ B(K). We consider

Ψ̃
∗

= [ΦPN−1ΨS1 ΦPN−2ΨS1 . . . Φ(P−1)NΨS1

. . . Φ(P−1)N−1ΨS2 . . .Φ(P−2)NΨS2 . . .

. . . ΦN−1ΨSP . . . ΨSP ],
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where P = |U| and ∪Pi=1Si = U . Since (B.1) does not hold for any finite K and

Ψ̃ ∈ B(K), the matrix Ψ̃
∗

does not have full row rank. Next, we can rearrange

the columns of Ψ̃∗ to get the following matrix which has the same rank as that
of Ψ̃

∗
:
[
ΦN−1Ψ∗ ΦN−2Ψ∗ . . . Ψ∗

]
, where Ψ∗ ∈ RN×Ps is defined as Ψ∗ ,[

Φ(P−1)NΨS1 Φ(P−2)NΨS2 . . . ΨSP
]
. Thus, using classical Kalman rank test for

controllability without any constraints, the linear dynamical system defined by the
state transition matrix-input matrix pair (Φ,Ψ∗) is not controllable. Then, the clas-
sical PBH test for controllability without any constraints, implies that the matrix[
Φ− λI Ψ∗

]
∈ RN×N+K̃s has rank less than N , for some λ ∈ C. Therefore, there

exists a vector z 6= 0 ∈ RN such that zTΦ = λzT and zTΨ∗ = 0. However, we have

0 = zTΨ∗ = zT
[
λ(P−1)NΨS1 λ(P−2)NΨS2 . . . ΨSP

]
.

So either λ = 0 and zTΨSP = 0, or, if λ is nonzero, then zTΨM = 0. Since the
ordering of the index sets in U does not matter, we conclude that either λ = 0 and
zTΨS = 0 for all S ∈ S, or, zTΨM = 0 for some λ ∈ C. Therefore, the two conditions
of Theorem 3.1 do not hold simultaneously. Thus, the proof is complete.

Appendix C. Proof of Theorem 4.1. Theorem 3.1 provides necessary
and sufficient conditions under which a system is controllable using sparse inputs.
Therefore, the key idea of the proof of Theorem 4.1 is to derive the probability with
which the conditions of Theorem 3.1 hold when Φ and Ψ in Theorem 3.1 are set to
be Ā and I, respectively. The main tools used in the proof are the rank properties of
the Hadamard product and a random symmetric binary matrix as stated below:

Lemma C.1 (Invertibility of Hadamard product). For any matrix A ∈ RN×N
and a vector w ∈ RN , the Hadamard product A�

(
wwT

)
is invertible if and only if

A is invertible and all entries of w are nonzero.

Proof. Let W̄ ∈ RN×N be a diagonal matrix with the entries of w along its
diagonal. Then it follows that A�(wwT) = W̄AW̄ , where � denotes the Hadamard
product. Therefore,

det
{
A� (wwT)

}
= det

{
W̄
}2

det {A} = det {A}
∏
i∈[N ]

w2
i .

Thus, det
{
A� (wwT)

}
6= 0 if and only if det {A} 6= 0 and all the entries of w are

nonzero. Hence, the proof is complete.

Theorem C.2. Let A ∈ {0, 1}N×N be the adjacency matrix of an undirected
Erdős-Rényi graph with the edge probability p. Then, there exist finite positive con-
stants C and c such that, for N−1 ≤ p ≤ 1−N−1, the following holds:

P {A is non-singular} ≥ 1− C exp
(
−c(pN)1/32

)
.

Proof. See Appendix E.

Clearly, Condition (a) of Theorem 3.1 holds with probability 1. So we focus on
Condition (b) of Theorem 3.1. Let event E denote that event that Condition (b) of
Theorem 3.1 holds, i.e., E is given by

(C.1) E =
{
∃S ∈ U : Rank

{[
Ā IS

]}
= N

}
.
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In the following, we derive a lower bound on the probability P {E} which is also a
lower bound on the probability with which the network opinion is controllable under
given constraints.

For a given index set S ∈ U , we rearrange the columns of the matrix in (C.1) as

Rank
{[
Ā IS

]}
= Rank

{[
ĀS,: I
ĀSc,: 0

]}
,

where Sc = [N ]\S and |Sc| = N−s. Also, ĀS,: ∈ Rs×N and ĀSc,: ∈ RN−s×N are the
submatrices of Ā formed by rows indexed by S and Sc, respectively. Consequently,
(C.1) can be further simplified as follows: E =

{
∃S ∈ U : ĀSc,: is full row rank

}
.

We note that E depends on the rank of a non-square matrix ĀSc . However, since
Lemma C.1 and Theorem C.2 deals with the invertibility of square matrices, we first
lower bound P{E} in terms of probabilities with which certain square matrices are
invertible. For this, we notice that

(C.2) E ⊇
{
∃S ∈ U , I ⊆ S : ĀIc,: is full row rank

}
.

where Ic = [N ]\I ⊇ Sc, and ĀIc,: ∈ RN−|I|×N is the submatrix of Ā formed by rows
indexed by Ic. Here, (C.2) follows because if all rows of ĀIc,: are linearly independent,
then, all rows of the submatrix ĀSc,: of ĀIc,: are also linearly independent. Next, we
further bound (C.2) as follows:

(C.3) E ⊇
{
∃S ∈ U , I ⊆ S : ĀI,: = 0 and ĀIc,Ic is non-singular

}
,

where ĀI,: ∈ R|I|×N is the submatrix of Ā formed by rows indexed by I, and ĀIc,Ic ∈
RN−|I|×N−|I| is the (symmetric) principal submatrix of Ā formed by the rows indexed
by Ic and the corresponding columns. Therefore, we have

P {E} ≥ P
{
∃S ∈ U , I ⊆ S : ĀI,: = 0 and ĀIc,Ic is non-singular

}
.

Hence, P{E} now depends on the invertibility of the symmetric square matrix ĀIc,Ic .
Next, we note that Ā = Λ(A �W ) where the invertible diagonal matrix Λ ∈

RN×N+ normalizes the rows of A �W and Λii = min

{
1, 1∑N

j=1 Aij

}
. Since Λ is an

invertible diagonal matrix, we deduce that

P {E} ≥ P
{
∃S ∈ U , I ⊆ S : AI,: �W I,: = 0 and AIc,Ic �W Ic,Ic is non-singular

}
.

The entries of W Ic,Ic are sampled from a continuous distribution, they are nonzero
with probability one. Thus, Lemma C.1 leads to the following:

(C.4) P{E} ≥ P
{
∃S ∈ U , I ⊆ S : AI,: = 0 and AIc,Ic is non-singular

}
.

Further, (C.4) can be further simplified using Theorem C.2. For this, we rewrite
the right-hand side of (C.4) as P{E} ≥ P {∪si=0Ei} , where we define Ei as follows:

(C.5) Ei ,
{
∃S ∈ U , I ⊆ S : |I| = i,AI,: = 0 and AIc,Ic is non-singular

}
.

However, when AIc,Ic is invertible, all rows of A indexed by Ic are nonzero. There-
fore, Ei denote the event that A has exactly i zero rows (indexed by I), and the
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remaining rows are linearly independent. Consequently, the events {Ei}si=0 are dis-
joint, and so the union bound holds with equality. Therefore, we obtain

(C.6) P{E} ≥ P

{
s⋃
i=0

Ei

}
=

s∑
i=0

P {Ei} .

Now, we simplify P {Ei} by summing over all possible values of I (corresponding
to zero rows of Ā) as follows:

(C.7) P {Ei} =
∑

I⊆S:S∈U,
|I|=i

P {AI,: = 0}P {AIc,Ic is non-singular} ,

which we obtain using the fact that the entries of AI,: and AIc,Ic are independent.
The condition AI,: = 0 holds when all the independent Bernoulli variables in

AI,: are zeros. The number of independent random variables is (N − 1) + (N − 2) +
. . .+ (N − i) = i(N − (i+ 1)/2). Therefore, we have

(C.8) P {AI,: = 0} = (1− p)i(N−(i+1)/2).

Further, the entries of AIc,Ic ∈ RN−i×N−i have the same distribution as that of
A. Thus, we apply Theorem C.2 to get

(C.9) P {AIc,Ic is non-singular} ≥ 1− C exp
(
−cp(N − i)1/32

)
,

where c > 0 is universal constant. Combining (C.7), (C.8), and (C.9), we get that

(C.10) P {Ei} ≥ Q(i,U)pi(N−(i+1)/2)
[
1− C exp

(
−cp(N − i)1/32

)]
,

where Q is as defined in the statement of the theorem (see (4.1)). Finally, we complete
the proof by combining (C.6) and (C.10).

Appendix D. Proof of Theorem 5.1. The proof technique used here is
similar to that of Theorem 4.1. However, since Theorem C.2 does not hold in this
case, we use an an analogous theorem for directed graphs which is as follows:

Theorem D.1. Let A ∈ {0, 1}N×N be the adjacency matrix of a directed Erdős-
Rényi graph with the edge probability p. Let D be a real valued diagonal matrix
independent of A with ‖D‖ ≤ R

√
pN where R ≥ 1. Then, there exist finite positive

constants C and c that depend on R such that for C logN
N ≤ p ≤ 1 − C logN

N , it holds
that P {A+D is non-singular} ≥ 1− exp (−cpN).

Proof. The result is an immediate corollary of [6, Theorem 1.11].

Using the arguments similar to those in the proof of Theorem 4.1, we see that all
steps of the proof in Appendix C until (C.7) hold in this case. Hence, continuing from
there, the condition AI,: = 0 holds when all the independent Bernoulli variables in
AI,: are zeros. The number of independent random variables is i(N − 1). Therefore,
we have

(D.1) P {AI,: = 0} = (1− p)i(N−1).
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This manuscript is for review purposes only.



Further, the entries of AIc,Ic ∈ RN−i×N−i have the same distribution as that of A.
Thus, we apply Theorem D.1 to get

(D.2) P {AIc,Ic is non-singular} ≥ 1− exp (−cp(N − i)) ,

where c > 0 is universal constant. Combining (C.7), (D.1), and (D.2), we get that

(D.3) P {Ei} ≥ Q(i,U)(1− p)i(N−1) [1− exp (−cp(N − i))] ,

where Ei is defined in (C.5) and Q is as defined in the statement of the theorem (see
(4.1)).

Finally, we complete the proof by combining (D.3) and (C.6) (as we mentioned
in the beginning of the proof, (C.6) holds in this case).

Remark: We note that the bound in Theorem 5.1 is not as tight as the result in
Theorem 4.1 because of the bound in (C.3) used in the proof of Theorems 4.1 and 5.1
(see Figures 1 and 2). To be specific, for both cases, we claim that F1 ⊇ F2 where

F1 ,
{
∃S ∈ U , I ⊆ S : ĀIc,: is full row rank

}
F2 ,

{
∃S ∈ U , I ⊆ S : ĀI,: = 0 and ĀIc,Ic is non-singular

}
.

We recall that ĀIc,: ∈ RN−|I|×N and ĀI,: ∈ R|I|×N are the submatrices of Ā formed
by rows indexed by Ic = {1, 2, . . . , N} \ I and I, respectively. Also, ĀIc,Ic ∈
RN−|I|×N−|I| is the principal submatrix of Ā formed by the rows indexed by Ic
and the corresponding columns. To understand the difference between the directed
and the undirected graph cases, we define another event F3 as follows:

F3 ,
{
∃S ∈ U , I ⊆ S : ĀI,: = 0 and ĀIc,: is full row rank

}
.

Clearly, F1 ⊇ F3 ⊇ F2. However, for undirected graphs, Ā is a symmetric matrix,

and so if ĀI,: = 0, we have

[
ĀI,:
ĀIc,:

]
=

[
0 0
0 ĀIc,Ic

]
. Hence, when ĀI,: = 0, we have

ĀIc,: =
[
0 ĀIc,Ic

]
, and therefore, ĀIc,: has full row rank if and only if ĀIc,Ic has

full row rank. Further, since ĀIc,Ic is a square matrix, this is equivalent to ĀIc,Ic

being non-singular. Hence, F3 = F2 for the undirected graph case. However, for
directed graphs, F3 ⊃ F2, and thus, the bound is not as tight as the bound for the
undirected case.

Appendix E. Proof of Theorem C.2. The probability with which a sym-
metric random matrix with iid, zero mean and unit variance above-diagonal entries
(i.e., the entries in the upper triangular portion of a matrix other than the diagonal
entries) is invertible is studied in [43]. Our result is a generalization of [43, Theorem
1.5] which is modified to handle the adjacency matrix of an undirected Erdős-Rényi
graph with edge probability p. Our analysis is based on the concentration of inner
product using small ball probabilities whereas t [43, Theorem 1.5] uses the concentra-
tion of quadratic forms using small ball probabilities. We start by introducing some
notation and useful results from the literature.

E.1. Toolbox. In this section, we present a concept called small ball proba-
bility which describes the spread of a distribution in space. The results on small ball
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probabilities requires us to define two other quantities called Lévy concentration func-
tion and least common denominator (LCD). The definition of the Lévy concentration
function is as follows:

Definition E.1 (Lévy function). The Lévy concentration of a random vector
x ∈ RN for any ε > 0 is defined as L(x, ε) = sup

z∈RN
P {‖x− z‖ ≤ ε}.

Thus, the Lévy concentration function measures the small ball probabilities, namely,
the likelihood that the random vector x enters a small ball of radius ε in the space. A
useful result on Lévy concentration which we will use to define the LCD is as follows:

Lemma E.2. Let ξ be a random variable with unit variance and finite fourth
moment, and ζ ∈ {0, 1} be another random variable independent of ξ such that
p = P {ζ = 1}. Then, there exist constants 0 < δ0, ε < 1 such that the Lévy func-
tion (in Definition E.1) satisfies L(ζξ, ε) ≤ 1− δ0p.

Proof. The proof follows from [39, Lemma 3.2] and [29, Remark 6.4].

We need some other definitions to introduce the concept of LCD. Let SN−1 ⊂ RN
denote the unit Euclidean sphere. We define a subset of SN−1 parameterized by
ρ ∈ (0, 1) based on sparsity as
(E.1)

Tincomp(N, ρ) ,
{
x ∈ SN−1 : @ y ∈ RN such that ‖y‖0 ≤

N

(pN)1/16
, ‖x− y‖ ≤ ρ

}
.

The set Tincomp(N, ρ) represents the set of incompressible vectors, i.e., the vectors
that are not close to sparse vectors with at most N

(pN)1/16
nonzero entries.

Definition E.3 (Regularized LCD [29, Definition 6.3]). Let α ∈ (0, 1), x ∈
Tincomp(N, ρ) and Z be the set of integers. We define the regularized LCD of (x, α) as

D̂(x, α) = max
I⊂[N ]:|I|≤dαNe

D (xI/ ‖xI‖) with D(x) = inf
{
θ > 0 : dist

(
θx,ZN

)
< γ

}
,

where γ = (δ0p)
−1/2

√
log+

(√
δ0pθ

)
and D(x) is called the LCD of x and δ0 is given

by Lemma E.2.

Here, D(x) is the generalization of the least common multiple to real valued numbers.
If all the entries of x are rational numbers, then D(x) is the least common multiple
of the denominators of the entries of x, i.e., D(x) is the smallest integer θ such that
θx ∈ ZN . This quantity D(x) bounds the small ball probabilities of projections, xTa.
The quantitative relation between L

(
xTa,

√
pε
)

and D(x) is provided next.

Proposition E.4 ( [29, Proposition 6.5]). Let a ∈ RN be a random vector
with independent entries ai = ζiξi where P {ζi = 1} = 1 − P {ζi = 0} = p, and ξi
is a random variable with unit variance and finite fourth moment. Also, ζi and ξi
are independent random variables. Then, for any x ∈ SN−1 and ε > 0, the Lévy

function satisfies L
(
xTa,

√
pε
)
≤ C1

(
ε+ 1√

pD(x)

)
, where D is the LCD given by

Definition E.3.

To state the other results used in the proof, we define a subset of Tincomp(N, ρ)
in (E.1) based on the regularized LCD (see Definition E.3) as follows:

(E.2) Tlarge(N, ρ) ,
{
x ∈ Tincomp(N, ρ) : D̂

(
x, (pN)−1/16

)
> exp

(
(pN)1/32

)}
,
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where D̂ is the regularized the least common denominator (see Definition E.3).
The following result shows that, with high probability, the eigenvectors of A

(defined in Theorem C.2) belong to the set Tlarge(N, ρ).

Lemma E.5. There exist positive constants C and c such that if N−1 < p <
1−N−1, then for any λ ∈ R, the following concentration inequality holds:

P

{
∃x ∈ SN \ Tlarge(N, ρ) : ‖(A− λI)x‖ = 0

}
≤ exp(−cpN).

Here, A ∈ RN×N and p are defined in Theorem C.2. Also, SN−1 ⊂ RN is the unit

Euclidean sphere, Tlarge(N, ρ) is defined in (E.2), and ρ = C
−
⌊

log 1/(8p)

log
√
pN

⌋
.

Proof. See Appendix E.3.

The final result of this subsection bounds the infimum of ‖Ax‖ over incompress-
ible vectors for a general random matrix A.

Lemma E.6. Let A ∈ RN×N be any random matrix with iid columns. Let H ⊆
RN denote the span of all columns of A except the first column. Then, for every
ε > 0, it holds that

P
{

inf
x∈Tincomp(N,ρ)

‖Ax‖ ≤ ερ√
N

}
≤ (pN)1/16P {dist (A1,H) ≤ ε} ,

where Tincomp(N, ρ) is defined in (E.1).

Proof. The result is obtained from [38, Lemma 3.5] by choosing the first parameter
of the compressible set as (pN)−1/16 and the fact that columns of A are iid.

Having presented the mathematical tools, in the next subsection, we formally
prove Theorem C.2.

E.2. Proof of Theorem C.2. We obtain the probability with which A is
invertible by computing the probability with which the smallest singular value of A
is positive. Using the union bound and with SN−1 ⊂ RN denoting the unit Euclidean
sphere, we have
(E.3)

P {A is singular} ≤ P
{

inf
x∈Tlarge(N,ρ)

‖Ax‖ = 0

}
+ P

{
inf

x∈SN−1\Tlarge(N,ρ)
‖Ax‖ = 0

}
,

where Tlarge(N, ρ) and ρ are given by (E.2) and (E.5), respectively. In what follows,
we upper bound the two terms in (E.3).

Using Lemma E.5, there exists a constant c1 > 0 such that

(E.4) P
{

inf
x∈(SN−1\Tlarge(N,ρ))

‖Ax‖ = 0

}
≤ exp(−c1pN).

Next, we bound the first term in the right hand side of (E.3) using Lemma E.6.
To this end, we use (E.2) to get Tlarge(N, ρ) ⊂ Tincomp(N, ρ) which is defined in (E.1).
Thus, we deduce that

P
{

inf
x∈Tlarge(N,ρ)

‖Ax‖ = 0

}
≤ P

{
inf

x∈Tincomp(N,ρ)
‖Ax‖ = 0

}
.
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Further, we write the symmetric matrix A =

[
0 aT ∈ R1×N−1

a ∈ RN−1×1 Asub ∈ RN−1×N−1
]
,

and apply Lemma E.6 to obtain

(E.5) P
{

inf
x∈Tlarge(N,ρ)

‖Ax‖ = 0

}
≤ (pN)1/16P

{
dist

([
0
a

]
, CS

{[
aT

Asub

]})
= 0

}
,

where CS {·} denote the column space of a matrix. The distance term on the right
hand side simplifies as follows:

dist

([
0
a

]
, CS

{[
aT

Asub

]})
≥ dist (a, CS {Asub})= min

z∈CS{Asub}
‖a− z‖= max

z∈SN−2

Asubz=0

zTa.

Therefore, from (E.5), we have

P
{

inf
x∈Tlarge(N,ρ)

‖Ax‖ = 0

}
≤ (pN)1/16P

 max
z∈SN−2

Asubz=0

zTa ≤ 0


≤ (pN)1/16P

{
∃z ∈ SN−2 : Asubz = 0 and zTa = 0

}
≤ (pN)1/16P

{
∃z ∈ SN−2 \Tlarge(N − 1, ρ′): Asubz = 0

}
+ (pN)1/16P

{
∃z ∈ Tlarge(N − 1, ρ′) : zTa = 0

}
,(E.6)

where ρ′ , C
−
⌊

log 1/(8p)

log
√
p(N−1)

⌋
wherein the constant C is same as the constant in (E.4).

Next, we use Lemmas E.2 and E.5 to simplify the two probability terms in (E.6).
Since the entries of Asub ∈ RN−1×N−1 have the same distribution as that of A,

we again apply Lemma E.5 to get

(E.7) P
{
∃z ∈ SN−2 \ Tlarge(N − 1, ρ′) : Asubz = 0

}
≤ exp(−c1p(N − 1)),

The second term in (E.6) can be simplified as follows:

P
{
∃z ∈ Tlarge(N − 1, ρ′) : zTa = 0

}
≤ sup

z∈Tlarge(N−1,ρ′)
P
{∣∣zTa∣∣ = 0

}
≤ sup

z∈Tlarge(N−1,ρ′)
sup
z∈R

P
{∣∣zTa− z∣∣ = 0

}
≤ sup

z∈Tlarge(N−1,ρ′)
L
(
zTa, 0

)
.

Further, we note that the entries of a have the same distribution as ζξ, where ζ, ξ ∈
{0, 1} are Bernoulli random variables with probabilities of being 1 as 1/2 and 2p,
respectively. Thus, Proposition E.4 implies that there exists a constant C1 > 0 with
(E.8)

P
{
∃z ∈ Tlarge(N − 1, ρ′) : zTa = 0

}
≤ sup

z∈Tlarge(N−1,ρ′)

C1√
2pD(z)

≤ C1
√

2p e((N−1)p)
1
32

,

where the last step follows from the definition of Tlarge(N − 1, ρ′) and the fact that

D̂(x, α) ≤ D(x), for any x ∈ SN−1 and 0 < α < 1. Combining (E.6), (E.7) and (E.8),
we get that

P
{

inf
x∈Tlarge(N,ρ)

‖Ax‖ = 0

}
≤ (pN)1/16exp(−c1p(N − 1))+

C1√
2p exp

(
((N − 1)p)1/32

)
≤ C2 exp

(
−c2(pN)1/32

)
,
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for some constants C2, c2 > 0. Finally, combining the above equation with (E.3) and

(E.4), we conclude that P
{

inf
x∈SN−1

‖Ax‖ > 0

}
≥ 1−C3 exp

(
−c3(pN)1/32

)
, for some

constants C3, c3 > 0. Thus, the proof is complete.

E.3. Proof of Lemma E.5. The proof is adapted from [29, Theorem 2.2],
which relies on the following lemma:

Lemma E.7. Let X ⊂ SN−1 ⊂ RN . We fix parameters ε > 0, 0 ≤ α < 1/2,
1/16 ≤ β and λ ∈ R. Suppose for all N−1 < p ≤ 1/2 and for any y ∈ RN , there exist
constants C1, c1 > 0 such that

(E.9) P
{
∃x ∈ X :

∥∥[A− p(11T − I)
]
x− λx

∥∥ ≤ ε(pN)α
}
≤ C1 exp(−c1(pN)β).

where A ∈ RN×N and p are defined in Theorem C.2. Then, there exist constants
C2, c2 > 0 such that for any N−1 < p ≤ 1−N−1 and λ ∈ R,

(E.10) P
{

inf
x∈X

‖Ax− λx‖ = 0

}
≤ C2 exp(−c2(pN)β).

Proof. We first consider the case where p < 1/2 and note that for any x ∈ X ,

p11Tx = p(1Tx)1 ∈ Y , {κ1 : κ ∈ [−pN, pN ]} .

Then, for any λ ∈ R, we have

inf
y∈Y

inf
x∈X

∥∥[A− p11T + pI
]
x− λx− y

∥∥ ≤ inf
x∈X
‖Ax− (λ− p)x‖ .

This relation leads to

P
{

inf
x∈X
‖Ax− λx‖ ≤ ε(pN)α

}
≤P

{
inf
y∈Y

inf
x∈X

∥∥[A− p11T
]
x− λx− y

∥∥ ≤ ε(pN)α
}
.

Let Ynet be an ε(pN)α−net of Y and |Ynet| ≤ 2pN
ε(pN)α ≤ c exp

(
(pN)1/16

)
, for some

constant c > 0. We then deduce from the triangle inequality that for every y ∈ Y,
there exists ȳ ∈ Ynet such that∥∥[A− p11T

]
x− λx− y

∥∥ ≥ ∥∥[A− p11T
]
x− λx− ȳ

∥∥− ‖y − ȳ‖ .
Therefore, taking infimum over x ∈ X ,y ∈ Y and ȳ ∈ Ynet,

inf
y∈Y

inf
x∈X

∥∥[A− p11T
]
x− λx− y

∥∥ ≥ inf
y∈Ynet

inf
x∈X

∥∥[A− p11T
]
x− λx− ȳ

∥∥− ε(pN)α.

Consequently, we derive

P
{

inf
x∈X
‖Ax− λx‖≤ε(pN)α

}
≤P

 ⋃
y∈Ynet

inf
x∈X

∥∥[A− p11T
]
x− λx− y

}
≤2ε(pN)α

.
Finally, using the union bound and (E.9), we arrive at the desired result for p ≤ 1/2.

Next, to handle the case where p > 1/2, we notice that the distribution of A −
p(11T−I) is the same as that of (1−p)(11T−I)−Ã where Ã is the adjacency matrix of
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an Erdős-Rényi graph with edge probability 1−p ≤ 1/2. Therefore, the distribution of∥∥[A− p(11T − I)
]
x− λx

∥∥ is the same as that of
∥∥∥[Ã− (1− p)(11T − I)

]
x+ λx

∥∥∥.

Thus, we can use similar arguments as for the case p ≤ 1/2 to prove that (E.10) holds
for all p > 1/2. Hence, the proof of Lemma E.7 is complete.

To prove Lemma E.5, we invoke the union bound to get

(E.11) P
{

inf
x∈SN−1\Tlarge(N,ρ)

‖Ax‖ = 0

}
≤ P

{
inf

x∈SN−1\Tincomp(N,ρ)
‖Ax‖ = 0

}
+ P

{
inf

x∈Tsmall(N,ρ)
‖Ax‖ = 0

}
,

where Tsmall(N, ρ) , Tsmall(N, ρ) we use the fact that Tlarge(N, ρ) ⊆ Tincomp(N, ρ)
which in turn, implies that SN−1\Tlarge(N, ρ) ⊆

[
SN−1 \ Tincomp(N, ρ)

]⋃
Tsmall(N, ρ).

In the following, we show that for each of these two sets, there exist ε, β, α satisfying
the conditions of Lemma E.7 such that for any given λ ∈ R and y ∈ RN and for
all N−1 < p < 1/2, (E.9) holds. Thus, using Lemma E.7 with λ = 0 in (E.10) and
(E.11), our proof is complete.

We start by proving that the set SN−1 \ Tincomp(N, ρ) satisfies the condition
(E.9) of Lemma E.7. We use the non-centered version of [29, Corollary 5.5] given
in [29, Appendix B]. The corollary states that there exist constants C, c, c̃ > 0 such
that if 2 ≤ p−1 < M and for any λ ∈ R and y ∈ RN ,

P

{
inf

x∈Tcomp(N,M,ρ)

∥∥A− p(11T − I)x− y
∥∥ ≤ c̃ρ√pN} ≤ exp(−cpN)

Tcomp(N,M, ρ) ,
{
x ∈ SN−1 : ∃ y ∈ RN such that ‖y‖0 ≤Mand ‖x− y‖ ≤ ρ} .

In our case, since N−1 < p < 1/2, we get p−1 < N
(pN)1/16

, and with M = N
(pN)1/16

,

P
{

inf
x∈SN−1\Tincomp(N,ρ)

∥∥[A− p11T − pI
]
x− λx

∥∥ ≤ c̃ρ√pN} ≤ exp(−c1pN),

for some constant c1 > 0 and for any y ∈ R. Therefore, SN−1 \ Tincomp satisfies the
condition (E.9) of Lemma E.7.

Finally, we complete the proof by establishing that Tsmall(N, ρ) also satisfies the
condition (E.9) of Lemma E.7. For this, we rely on the following related results:
(i) From the non-centered version of [29, Proposition 5.2] (explicitly stated as the

equation above Proposition 8.1), we get that there exist constants K, c2 such that

P
{∥∥A− p(11T − I)

∥∥ > K
√
pN
}
≤ exp(c2pN).

(ii) From [29, Proposition 6.8, Equation (3)], for any x ∈ Tincomp(N, ρ), we know that

(E.12) D̂
(
x, (pN)−1/16

)
≥ ρ2

√
N

4(pN)3/32
.

(iii) [29, Proposition 8.1] establishes the following: For any N−1 ≤ p ≤ 1/2, λ ∈
[−K
√
pN,K

√
pN ] and y ∈ RN , there exist constants C3, c3, c̃ > 0 ,

(E.13) P

{
inf

x∈ŜD

∥∥A− p(11T − I)x− y
∥∥ ≤ C3ε(pN)7/16

}
≤ exp(−c3pN),
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where c̃
√
N

(pN)1/32
≤ D ≤ exp

(
(pN)1/32

)
and we define ε = min

{√
N
D , ρ4 (pN)

1
8

}
and

ŜD =
{
x ∈ Tincomp :D ≤ D̂

(
x, (pN)−

1
16

)
≤ 2D

}
.(E.14)

(iv) [29, Proposition 8.2] proves that for any given λ ∈ [−K
√
pN,K

√
pN ], the relation

(E.13) holds if ρ2
√
N

4(pN)3/32
≤ D ≤ c̃

√
N

(pN)1/32
.

Combining these arguments, we obtain the following result: There exist constants
C4, c4 > 0 such that if for any N−1 < p ≤ 1/2, λ ∈ R and y ∈ RN ,

(E.15) P

{
inf

x∈ŜD

∥∥A− p(11T − I)x− y
∥∥ ≤ C4ε(pN)7/16

}
≤ exp(−c4pN),

where ρ2
√
N

4(pN)3/32
≤ D ≤ exp

(
(pN)1/32

)
. Also, from (E.12), we deduce that

Tsmall(N, ρ)=

{
x ∈ Tincomp(N, ρ) :

ρ2
√
n

4(pN)3/32
≤ D̂

(
x, (pN)−1/16

)
≤exp

(
(pN)1/32

)}
.

Next, we use the covering set-based arguments to prove that Tsmall(N, ρ) satisfies

Condition (E.9) of Lemma E.7. We have Tsmall(N, ρ) =
⋃K
k=1 Ŝ2−k exp((pN)1/32) where

K = min

{
k ∈ N : 2−k exp

(
(pN)1/32

)
≤ ρ2

√
N

4(pN)3/32

}
≤ (pN)1/16,

and Ŝ is as defined in (E.14). Using (E.15) and the union bound, we conclude that

P
{

inf
x∈Tsmall(N,ρ)

∥∥A− p(11T − I)x− y
∥∥≤C4ε(pN)

7
16

}
≤ (pN)

1
16 e−c4pN ≤ e−c5pN ,

for some constant c5 > 0. Thus, the proof is complete.
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