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A VARIATIONAL CHARACTERIZATION OF THE RISK-SENSITIVE

AVERAGE REWARD FOR CONTROLLED DIFFUSIONS ON R
d.

ARI ARAPOSTATHIS∗, ANUP BISWAS† , VIVEK S. BORKAR‡ , AND K. SURESH

KUMAR§

Abstract. We address the variational formulation of the risk-sensitive reward problem for non-
degenerate diffusions on Rd controlled through the drift. We establish a variational formula on the
whole space and also show that the risk-sensitive value equals the generalized principal eigenvalue of
the semilinear operator. This can be viewed as a controlled version of the variational formulas for
principal eigenvalues of diffusion operators arising in large deviations. We also revisit the average
risk-sensitive minimization problem and by employing a gradient estimate developed in this paper
we extend earlier results to unbounded drifts and running costs.
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1. Introduction. In this paper we consider the risk-sensitive reward maximiza-
tion problem on R

d for diffusions controlled through the drift. The main objective
is to derive a variational formulation for the risk-sensitive reward in the spirit of
[2], which does so for discrete time problems on a compact state space, and analyze
the associated Hamilton–Jacobi–Bellman (HJB) equation. Since the seminal work of
Donsker and Varadhan [18, 19], this problem has acquired prominence. The varia-
tional formula derived here can be viewed as a controlled version of the variational
formulas for principal eigenvalues of diffusion operators arising in large deviations.
For reversible diffusions, this formula can be viewed as an abstract Courant–Fischer
formula [18]. For general diffusions, the correct counterpart in linear algebra is the
Collatz–Wielandt formula for the principal eigenvalue of non-negative matrices [27,
Chapter 8]. For its connection with the large deviations theory for finite Markov
chains and an equivalent variational description, see [17].

There has been considerable interest to generalize this theory to a natural class
of nonlinear self-maps on positive cones of finite or infinite dimensional spaces. The
first task is to establish the existence and where possible, uniqueness of the principal
eigenvalue and eigenvector (the latter modulo a scalar multiple as usual), that is,
a nonlinear variant of the Perron–Frobenius theorem in the finite dimensional case
and its generalization, the Krein–Rutman theorem, in Banach spaces. This theory
is carried out in, e.g., [25, 29]. The next problem is to derive an abstract Collatz–
Wielandt formula for the principal eigenvalue [1]. In bounded domains, a Collatz–
Wielandt formula for the Dirichlet principal eigenvalue of a convex nonlinear operator
is obtained in [10]. Our first objective coincides with this, albeit for Feynman–Kac
operators arising in risk-sensitive control that we introduce later. For risk-sensitive
reward processes, that is, the problem of maximizing the asymptotic growth rate for
the risk-sensitive reward in discrete time problems, one can go a step further and give
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an explicit characterization of the principal eigenvalue as the solution of a concave
maximization problem [2]. The objective of this article is to carry out this program
for controlled diffusions.

At this juncture, it is worthwhile to underscore the difference between reward
maximization and cost minimization problems with risk-sensitive criteria. Unlike the
more classical criteria such as ergodic or discounted, they cannot be converted from
one to the other by a sign flip. The cost minimization criterion, after a logarithmic
transformation applied to its HJB equation, leads to the Isaacs equation for a zero-
sum stochastic differential game [20]. An identical procedure applied to the reward
maximization problem would lead to a team problem wherein the two agents seek to
maximize the same payoff non-cooperatively. The latter in particular implies that their
decisions at any time are conditionally independent given the state (more generally,
the past history). Our approach leads to a concave maximization problem, an immense
improvement with potential implications for possible numerical schemes. This does
not seem possible for the cost minimization problem. Thus the complexity of the
latter is much higher. Recently, a risk-sensitive maximization problem is also studied
in [14] under a blanket geometric stability condition. In the present paper we do not
impose any blanket stability on the controlled processes.

We first establish these results for reflected diffusions in a bounded domain, for
which the nonlinear Krein–Rutman theorem of [29] paves the way. This is not so if the
state space is all of Rd. Extension to the whole space turns out to be quite involved
due to the lack of compactness. Even the well-posedness of the underlying nonlinear
eigenvalue problem is pretty tricky. Hence we proceed via the infinite volume limit of
the finite volume problems. This leads to an abstract Collatz–Wielandt formula and
an abstract Donsker–Varadhan formula. More specifically, in Theorem 3.4 we show
that the generalized eigenvalue of the semilinear operator is simple, and identify some
useful properties of its eigenvector. We proceed to prove equality between the risk-
sensitive value and the generalized principal eigenvalue in Theorem 3.6, which also
establishes a verification of optimality criterion. The general result for the variational
formula is in Proposition 4.1, followed by more specialized results in Theorems 4.10
and 4.12. In the process of deriving these results, we present some techniques that may
have wider applicability. Most prominent of these is perhaps the gradient estimate in
Lemma 4.5 for operators with measurable coefficients.

Lastly, in section 5 we revisit the risk-sensitive minimization problem, and with
the aid of Lemma 4.5 we improve the main result in [3] by extending it to unbounded
drifts and running costs, under suitable growth conditions (see Assumption 5.1).

1.1. A brief summary of the main results. We summarize here the results
concerning the variational formula on the whole space. We consider a controlled
diffusion in R

d of the form

dXt = b(Xt, ξt) dt+ σ(Xt) dWt

defined in a complete probability space (Ω,F,P). The process W is a d-dimensional
standard Wiener process independent of the initial condition X0, and the control
process {ξt}t≥0 lives in a compact metrizable space K. We impose a standard set of
assumptions on the coefficients which guarantee existence and uniqueness of strong
solutions under all admissible controls. Namely, local Lipschitz continuity in x and
at most affine growth of b and σ, and local non-degeneracy of a := σσ

T (see As-
sumption 3.1 (i)). But we do not impose any ergodicity assumptions on the controlled
diffusion. The process {Xt}t≥0 could be transient.
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We let c : Rd×K → R be a continuous running reward function, which is assumed
bounded from above, and define the optimal risk-sensitive value J∗ by

J∗ := sup
{ξt}t≥0

lim inf
T→∞

1

T
logE

[
e
∫

T
0
c(Xt,ξt) dt

]
,

where the supremum is over all admissible controls, and E denotes the expectation
operator. This problem is translated to an ergodic control problem for the operator
A : C2(Rd) → C(Rd ×K×R

d), defined by

(1.1) Aφ(x, ξ, y) :=
1

2
trace

(
a(x)∇2φ(x)

)
+
〈
b(x, ξ) + a(x)y,∇φ(x)

〉
,

where ∇2 denotes the Hessian, and a(x) = σ(x)σT(x), that seeks to maximize the
average value of the functional

(1.2) L(x, ξ, y) := c(x, ξ)− 1

2
|σT(x)y|2 , (x, ξ, y) ∈ R

d ×K×R
d .

We first show that the generalized principal eigenvalue λ∗ (see (3.17)) of the maximal
operator

(1.3) Gf(x) :=
1

2
trace

(
a(x)∇2f(x)

)
+max

ξ∈K

[〈
b(x, ξ),∇f(x)

〉
+ c(x, ξ)f(x)

]

is simple. An important hypothesis for this is that c − λ∗ is negative and bounded
from above away from zero on the complement of some compact set (see Assump-
tion 3.1 (iii)). This is always satisfied if −c is an inf-compact function (i.e., the sub-
level sets {−c ≤ κ} are compact, or empty, in R

d × K for each κ ∈ R), or if c is
a positive function vanishing at infinity and the process {Xt}t≥0 is recurrent under
some stationary Markov control. Let the positive function Φ∗ ∈ C2(Rd), normalized as
Φ∗(0) = 1 to render it unique, denote the principal eigenvector, that is, GΦ∗ = λ∗Φ∗,
and define ϕ∗ = logΦ∗. The function

(1.4) H(x) :=
1

2

∣∣σT(x)∇ϕ∗(x)
∣∣2 , x ∈ R

d ,

plays a very important role in the analysis, and can be interpreted as an infinitesimal

relative entropy rate (see section 4). To keep the notation simple, we define Z :=
R
d × K × R

d, and use the single variable z = (x, ξ, y) ∈ Z. Let P(Z) denote the
set of probability measures on the Borel σ-algebra of Z, and MA denote the set of
infinitesimal ergodic occupation measures for the operator A defined by

(1.5) MA :=

{
µ ∈ P(Z) :

∫

Z

Af(z)µ(dz) = 0 ∀ f ∈ C2
c (R

d)

}
,

where C2
c (R

d) is the class of functions in C2(Rd) which have compact support. We
also define

(1.6)

P∗(Z) :=

{
µ ∈ P(Z) :

∫

Z

H(x)µ(dx, dξ, dy) <∞
}
,

P◦(Z) :=

{
µ ∈ P(Z) :

∫

Z

L(z)µ(dz) > −∞
}
.



4 A. ARAPOSTATHIS, A. BISWAS, V.S. BORKAR, AND K. SURESH KUMAR

Then, under the mild hypotheses of Assumption 3.1, we show in Proposition 4.1 that

(1.7)

J∗ = λ∗ = sup
µ∈P∗(Z)

inf
g∈C2

c (R
d)

∫

Z

(
Ag(z) + L(z)

)
µ(dz)

= max
µ∈MA∩P∗(Z)

∫

Z

L(z)µ(dz) .

We next specialize the results to the case where the diffusion matrix a is bounded
and uniformly elliptic (see Assumption 4.4), and show in Theorem 4.10 that under
any of the hypotheses of Assumption 4.7 we have MA∩P◦(Z) ⊂ P∗(Z). This permits
us to replace P∗(Z) with P(Z) and MA ∩ P∗(Z) with MA in the second and third
equalities of (1.7), respectively. We note here that if a is bounded and uniformly
elliptic, then Assumption 4.7 is satisfied when either −c is inf-compact, or 〈b, x〉− has

subquadratic growth, or |b|2

1+|c| is bounded.

We also show that if H
1+|ϕ∗|

is bounded (see Lemma 4.11 for explicit conditions

on the parameters under which this holds), then we can commute the ‘sup’ and the
‘inf’ to obtain

J∗ = inf
g∈C2

c (R
d)

sup
µ∈P(Z)

∫

Z

(
Ag(z) + L(z)

)
µ(dz) .

Also, in Theorem 4.12, we establish the variational formula over the class of functions
in C2(Rd) whose partial derivatives up to second order have at most polynomial growth
in |x|.

1.2. Notation. The standard Euclidean norm in R
d is denoted by | · |, and N

stands for the set of natural numbers. The closure, the boundary and the complement
of a set A ⊂ R

d are denoted by Ā, ∂A and Ac, respectively. We denote by τ(A) the
first exit time of the process {Xt} from the set A ⊂ R

d, defined by

τ(A) := inf {t > 0 : Xt 6∈ A} .

The open ball of radius r in R
d, centered at x ∈ R

d, is denoted by Br(x), and Br is
the ball centered at 0. We let τr := τ(Br), and τ̆r := τ(Bcr). For a Borel space Y ,
P(Y ) denotes the set of probability measures on its Borel σ-algebra.

The term domain in R
d refers to a nonempty, connected open subset of the

Euclidean space R
d. For a domain D ⊂ R

d, the space Ck(D) (Ckb (D)) refers to
the class of all real-valued functions on D whose partial derivatives up to order k
exist and are continuous (and bounded). In addition Ckc (D) denotes the class of
functions in Ck(D) that have compact support. The space Lp(D), p ∈ [1,∞), stands
for the Banach space of (equivalence classes of) measurable functions f satisfying∫
D|f(x)|p dx < ∞, and L∞(D) is the Banach space of functions that are essentially
bounded in D. The standard Sobolev space of functions on D whose generalized
derivatives up to order k are in Lp(D), equipped with its natural norm, is denoted by
Wk,p(D), k ≥ 0, p ≥ 1.

In general, if X is a space of real-valued functions on Q, Xloc consists of all
functions f such that fϕ ∈ X for every ϕ ∈ C∞

c (Q), the space of smooth functions on
Q with compact support. In this manner we obtain for example the space W

2,p
loc(Q).

We adopt the notation ∂t :=
∂
∂t , and for i, j ∈ N, ∂i :=

∂
∂xi

and ∂ij := ∂2

∂xi∂xj
,

and use the standard summation rule that repeated subscripts and superscripts are
summed from 1 through d.
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2. The problem on a bounded domain. In this section, we consider the risk-
sensitive reward maximization with state dynamics given by a reflected diffusion on
a bounded C2 domain Q ⊂ R

d with co-normal direction of reflection. In particular,
the dynamics are given by

(2.1) dXt = b(Xt, ξt) dt+ σ(Xt) dWt − γ(Xt) dηt ,

where ηt denotes the local time of the process X on the boundary ∂Q. The ran-
dom processes in (2.1) live in a complete probability space (Ω,F,P). The process
W = (Wt)t≥0 is a d-dimensional standard Wiener process independent of the initial
condition X0. The control process ξ = (ξt)t≥0 takes values in a compact, metrizable
set K, and ξt(ω) is jointly measurable in (t, ω) ∈ [0,∞) × Ω. The set of admissible

controls Ξ consists of the control processes ξ that are non-anticipative: for s < t,
Wt −Ws is independent of

(2.2) Fs := the completion of σ{X0, ξr,Wr, r ≤ s} relative to (F,P) .

Concerning the coefficients of the equation, we assume the following:
(i) The drift b is a continuous map from Q ×K to R

d, and Lipschitz in its first
argument uniformly with respect to the second.

(ii) The diffusion matrix σ : Q → R
d×d is continuously differentiable, its deriv-

atives are Hölder continuous, and is non-degenerate in the sense that the
minimum eigenvalue of a(x) =

[
aij(x)

]
:= σ(x)σT(x) on Q is bounded away

from zero.
(iii) The reflection direction γ = [γ1(x), . . . , γd(x)]

T : Rd → R
d is co-normal, that

is, γ is given by

γi(x) =

d∑

j=1

aij(x)nj(x) , x ∈ ∂Q ,

where ~n(x) = [n1(x), . . . , nd(x)]
T is the unit outward normal.

We let Ξsm denote the set of stationary Markov controls, that is, the set of Borel
measurable functions v : Rd → K. Given ξ ∈ Ξ, the stochastic differential equation in
(2.1) has a unique strong solution. The same is true for the class of Markov controls [8,
Chapter 2]. Let Pxξ and Exξ denote the probability measure and expectation operator
on the canonical space of the process controlled under ξ ∈ Ξ, with initial condition
X0 = x.

Given a continuous reward function c : Q×K → R, which is Lipschitz continuous
in its first argument uniformly with respect to the second, the objective of the risk-
sensitive reward problem is to maximize

(2.3) Jxξ (c;Q) = lim inf
T→∞

1

T
logExξ

[
e
∫

T
0
c(Xt,ξt) dt

]
, x ∈ Q ,

over all admissible controls ξ ∈ Ξ. We define

(2.4) Jx∗ (c;Q) := sup
ξ∈Ξ

Jxξ (c;Q) , x ∈ Q , and J∗(c;Q) := sup
x∈Q

Jx∗ (c;Q) .

The solution of this problem shows that Jx∗ (c;Q) does not depend on x.
We let

C2
γ(Q) :=

{
f ∈ C2(Q) : 〈∇f, γ〉 = 0 on ∂Q

}
,
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and C2
γ,+(Q) denote its subspace consisting of nonnegative functions.

For f ∈ C2(Q), and ξ ∈ K, we define

(2.5)
Lξf(x) := 1

2 trace
(
a(x)∇2f(x)

)
+
〈
b(x, ξ),∇f(x)

〉
,

Gf(x) := 1
2 trace

(
a(x)∇2f(x)

)
+max

ξ∈K

[〈
b(x, ξ),∇f(x)

〉
+ c(x, ξ)f(x)

]
.

We summarize some results from [9] that are needed in Theorem 2.1 below. With-
out loss of generality we assume that 0 ∈ Q.

Consider the operator St : C(Q) → C(Q), t ∈ R+, defined by

Stf(x) := sup
ξ∈Ξ

Exξ

[
e
∫

t
0
c(Xs,ξs) dsf(Xt)

]
.

The characterization of St is exactly analogous to [9, Theorem 3.2], which considers the
minimization problem (see also [9, Remark 4.2]). Specifically, for each f ∈ C2+δ

γ (Q),
and T > 0, the quasi-linear parabolic p.d.e. ∂t u(t, x) = Gu(t, x) in (0, T ] × Q,
with u(0, x) = f(x) for all x ∈ Q, and 〈∇u(t, x), γ(x)〉 = 0 for all (t, x) ∈ (0, T ] ×
∂Q, has a unique solution in C1+δ/2,2+δ

(
[0, T ]×Q

)
. This solution has the stochastic

representation u(t, x) = Stf(x) for all (t, x) ∈ [0, T ]×Q.
Following the analysis in [9] we obtain the following characterization of J∗(c;Q)

defined in (2.4).

Theorem 2.1. There exists a unique pair (ρ, V ) ∈ R× C2
γ,+(Q) which solves

(2.6) GV = ρV in Q , 〈∇V, γ〉 = 0 on ∂Q , and V (0) = 1 .

Also, StV (x) = eρtV (x), for (x, t) ∈ Q × [0,∞). In addition, we have

Jx∗ (c;Q) = J∗(c;Q) = ρ ∀x ∈ Q ,

and

(2.7) ρ = inf
f∈C2

γ,+(Q), f>0

sup
x∈Q

Gf(x)
f(x)

= sup
f∈C2

γ,+(Q), f>0

inf
x∈Q

Gf(x)
f(x)

.

Proof. Equation (2.7) is the result in [9, Lemma 2.1], while the other assertions
follow from Lemma 4.5 and Remark 4.2 in [9].

2.1. A variational formula. Define

L(x, ξ, y) := c(x, ξ) − 1

2
|σT(x)y|2 , (x, ξ, y) ∈ Q×K×R

d ,

and an operator A : C2
γ(Q) → C(Rd ×K×R

d) by

Aφ(x, ξ, y) :=
1

2
trace

(
a(x)∇2φ(x)

)
+
〈
b(x, ξ) + a(x)y,∇φ(x)

〉
.

It is important to note that if f ∈ C2
γ,+(Q) is a positive function and g = log f , then

Gf(x)
f(x)

= max
ξ∈K

max
y∈Rd

[
Ag(x, ξ, y) + L(x, ξ, y)

]
.
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Thus, we obtain from (2.7) that

ρ = inf
g∈C2

γ (Q)

sup
x∈Q

sup
ξ∈K, y∈Rd

(
Ag(x, ξ, y) + L(x, ξ, y)

)
(2.8)

= sup
g∈C2

γ (Q)

inf
x∈Q

sup
ξ∈K, y∈Rd

(
Ag(x, ξ, y) + L(x, ξ, y)

)
.

We let

(2.9) F (g, µ) :=

∫

Q×K×Rd

(
Ag(x, ξ, y) + L(x, ξ, y)

)
µ(dx, dξ, dy)

for g ∈ C2
γ(Q) and µ ∈ P(Q×K×R

d).
It is clear that (2.8) can be written as

(2.10) ρ = inf
g∈C2

γ(Q)

sup
µ∈P(Q×K×Rd)

F (g, µ) .

Let MA,Q denote the class of infinitesimal ergodic occupation measures for the
operator A, defined by

MA,Q :=

{
µ ∈ P(Q×K×R

d) :

∫

Q×K×Rd

Af dµ = 0 ∀ f ∈ C2
γ(Q)

}
.

Implicit in this definition is the requirement that
∫
|Af | dµ <∞ for all f ∈ C2

γ(Q) and
µ ∈ MA,Q. We have the following result.

Theorem 2.2. It holds that

(2.11) ρ = inf
g∈C2

γ (Q)

sup
µ∈P(Q×K×Rd)

F (g, µ) = sup
µ∈P(Q×K×Rd)

inf
g∈C2

γ(Q)

F (g, µ) .

Moreover, P(Q×K×R
d) may be replaced with MA,Q in (2.11), and thus

ρ = sup
µ∈MA,Q

∫

Q×K×Rd

L(x, ξ, y)µ(dx, dξ, dy) .

Proof. The first equality in (2.11) follows by (2.10). We continue to prove the
rest of the assertions. First note that

sup
µ∈P(Q×K×Rd)

inf
g∈C2

γ(Q)

F (g, µ) = ρ̂ := sup
µ∈MA,Q

∫

Q×K×Rd

L(x, ξ, y)µ(dx, dξ, dy) ,

because the infimum on the left hand side is −∞ for µ /∈ MA,Q. It follows by (2.10)
that ρ̂ ≤ ρ. Let v∗ be a measurable selector from the maximizer of (2.6), that is,

〈
b
(
x, v∗(x)

)
,∇V (x)

〉
+ c

(
x, v∗(x)

)
V (x) = max

ξ∈K

[〈
b(x, ξ),∇V (x)

〉
+ c(x, ξ)V (x)

]
.

With φ := logV , (2.6) takes the form

(2.12) Aφ
(
x, v∗(x),∇φ(x)

)
+ L

(
x, v∗(x),∇φ(x)

)
= ρ .
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The reflected diffusion with drift b
(
x, v∗(x)

)
+ a(x)∇φ(x) is of course exponentially

ergodic. Let η∗ denote its invariant probability measure. Then, (2.12) implies that

(2.13)

∫

Q

L
(
x, v∗(x),∇φ(x)

)
η∗(dx) = ρ .

Let µ∗ ∈ P(Q×K×R
d) be defined by

µ∗(dx, dξ, dy) := η∗(dx) δv∗(x)(dξ) δ∇φ(x)(dy) ,

where δy denotes the Dirac mass at y. Then µ∗ is an ergodic occupation measure for
the controlled reflected diffusion with drift b(x, ξ) + a(x)y, and thus µ∗ ∈ MA,Q. Let
g ∈ C2

γ(Q) be arbitrary. Then

F (g, µ∗) =

∫

Q×K×Rd

L(x, ξ, y)µ∗(dx, dξ, dy) = ρ ,

where the second equality follows by (2.13). Thus ρ̂ ≥ ρ, and since we have already
asserted the reverse inequality, we must have equality. This establishes (2.11), and
also proves the last assertion of the theorem.

3. The risk-sensitive reward problem on R
d. In this section we study the

risk-sensitive reward maximization problem on R
d. We consider a controlled diffusion

of the form

(3.1) dXt = b(Xt, ξt) dt+ σ(Xt) dWt .

All random processes in (3.1) live in a complete probability space (Ω,F,P). The
control process {ξt}t≥0 lives in a compact metrizable space K.

We approach the problem in R
d as a limit of Dirichlet or Neumann eigenvalue

problems on balls Br, r > 0. Differentiability of the matrix a can be relaxed here.
Consider the eigenvalue problem on a ball Br, with Neumann boundary conditions,
and the reflection direction along the exterior normal ~n(x) to Br at x. The drift
b : B̄r × K → R

d is continuous, and Lipschitz in its first argument uniformly with
respect to the second. The diffusion matrix a is Lipschitz continuous on B̄r and non-
degenerate. Let ρr denote the principal eigenvalue on Br under Neumann boundary
conditions of the operator G defined in (2.5). We refer to ρr as the Neumann eigenvalue

on Br. It follows from the results in [30] (see in particular Theorems 5.1, 6.6, and
Proposition 7.1) that there exists a unique Vr ∈ C2(Br) ∩ C0,1(B̄r), with Vr > 0 on
Br and Vr(0) = 1, solving

(3.2) 1
2 trace

(
a(x)∇2Vr(x)

)
+max

ξ∈K

[〈
b(x, ξ),∇Vr(x)

〉
+ c(x, ξ)Vr(x)

]
= ρrVr(x) ,

and 〈∇Vr(x), ~n(x)〉 = 0 on ∂Br. We also refer the reader to [24, Theorem 12.1, p. 195].
We adopt the following structural hypotheses on the coefficients of (3.1) and the

reward function c have the following structural properties.

Assumption 3.1. (i) The drift b : Rd ×K → R
d is continuous, and for some

constant CR > 0 depending on R > 0, we have

|b(x, ξ)− b(y, ξ)|+ ‖σ(x)− σ(y)‖ ≤ CR |x− y| ∀x, y ∈ BR , ∀ ξ ∈ K ,

d∑

i,j=1

aij(x)ζiζj ≥ C−1
R |ζ|2 ∀ (x, ζ) ∈ BR ×R

d ,
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and

|b(x, ξ)|2 + ‖σ(x)‖2 ≤ C0

(
1 + |x|2

)
∀ (x, ξ) ∈ R

d ×K ,(3.3)

where ‖σ‖ :=
(
trace σσ

T
)1/2

denotes the Hilbert–Schmidt norm of σ.
(ii) The reward function c : Rd × K → R is continuous and locally Lipschitz in

its first argument uniformly with respect to ξ ∈ K, is bounded from above in
R
d, and x 7→ maxξ∈Ξ |c(x, ξ)| has polynomial growth in |x|.

(iii) We assume that the Neumann eigenvalues ρn satisfy

(3.4) ρ∗ := lim sup
n→∞

ρn > lim
r→∞

sup
(x,ξ)∈Bc

r×K

c(x, ξ) .

Assumption 3.1 is enforced throughout the rest of the paper, unless mentioned
otherwise. Part (i) of this assumption are the usual hypotheses that guarantee exis-
tence and uniqueness of strong solutions to (3.1) under any admissible control.

Remark 3.2. Equation (3.4) is a version of the near-monotone assumption, which
is often used in ergodic control problems (see [8]). This has the effect of penalizing
instability, ensuring tightness of laws for optimal controls. There are two important
cases where (3.4) is always satisfied. First, when −c is inf-compact. In this case we
have ρ∗ ≤ sup

Rd×K c and ρ∗ > −∞, since the Dirichlet eigenvalues which are a lower
bound for ρ∗ are increasing as a function of the domain [7, Lemma 2.1]. Second,
when c is positive and vanishes at infinity, and under some stationary Markov control
the process {Xt}t≥0 in (3.1) is recurrent. This can be established by comparing ρn
with the Dirichlet eigenvalue on Bn (see subsection 3.2), and using [7, Theorems 2.6
and 2.7 (ii)]. For related studies concerning the class of running reward functions
vanishing at infinity, albeit in the uncontrolled case, see [22, 23, 7, 10]. See also
[4, Theorem 2.12] which studies the Collatz–Wielandt formula for the risk-sensitive
minimization problem.

Recall that Ξsm denotes the set of stationary Markov controls. For v ∈ Ξsm, we
use the simplifying notation

bv(x) := b
(
x, v(x)

)
, cv(x) := c

(
x, v(x)

)
,

and define Lv analogously.
We next review some properties of eigenvalues of linear and semilinear operators

on R
d. For f ∈ C2(Rd) and ψ ∈ W

2,d
loc(R

d), define

(3.5) L̃ψξ f := Lξf + 〈a∇ψ,∇f〉 ,

with Lξ as in (2.5). Let v ∈ Ξsm. Suppose that a positive function Ψ ∈ W
2,d
loc(R

d) and
λ ∈ R solve the equation

(3.6) LvΨ(x) + cv(x)Ψ(x) = λΨ(x) a.e. x ∈ R
d .

We refer to any such solution (Ψ, λ) as an eigenpair of the operator Lv + cv, and we
say that Ψ is an eigenvector with eigenvalue λ. Note that by eigenvector we always
mean a positive function. Let ψ = logΨ. We refer to the Itô stochastic differential
equation

(3.7) dX̃t =
(
bv(X̃t) + a(X̃t)∇ψ(X̃t)

)
dt+ σ(X̃t) dWt
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as the twisted SDE, and to its solution as the twisted process corresponding to Ψ.
Clearly L̃ψv is the extended generator of (3.7).

We define the generalized principal eigenvalue λv = λv(cv) of the operator Lv+cv
by

(3.8) λv := inf
{
λ ∈ R : ∃φ ∈ W

2,d
loc(R

d), φ > 0, Lvφ+ (cv − λ)φ ≤ 0 a.e. in R
d
}
.

A principal eigenvector Ψv ∈ W
2,d
loc(R

d) is a positive solution of (3.6) with λ = λv. A
principal eigenvector is also called a ground state, and we refer to the corresponding
twisted SDE and twisted process as a ground state SDE and ground state process

respectively. Unlike what is common in criticality theory, our definition of a ground
state does not require the minimal growth property of the principal eigenfunction (see
[6]).

An easy calculation shows that any eigenpair (Ψ, λ) of Lv + cv satisfies

(3.9) L̃ψvΨ−1(x) − cv(x)Ψ
−1(x) = −λΨ−1(x) a.e. x ∈ R

d ,

with ψ = logΨ. In other words, (Ψ−1,−λ) is an eigenpair of L̃ψv − cv. Note also that
(ψ, λ) is a solution to the ‘linear’ eigenvalue equation

(3.10) L̃ψv ψ − 1
2 |σ

T∇ψ|2 + cv = λ ,

and that this equation can also be written as

(3.11) Lvψ + max
y∈Rd

[
〈ay,∇ψ〉 − 1

2 |σ
Ty|2

]
+ cv = λ .

An extensive study of generalized principal eigenvalues with applications to risk-
sensitive control can be found in [3, 7]. In these papers, the ‘potential’ cv is assumed
to be bounded below in R

d, so the results cannot be quoted directly. It is not our
intention to reproduce all these results for potentials which are bounded above, so we
only focus on results that are needed later in this paper. We only quote results in
[3, 7] which do not depend on the assumption that cv is bounded below. Generally
speaking, caution should be exercised with arguments in [3, 7] that employ the Fatou
lemma. On the other hand, since c usually appears in the exponent, invoking Fatou’s
lemma hardly ever poses any problems.

Suppose that the twisted process in (3.7) is regular, that is, the solution exists
for all times. Then, an application of [7, Lemma 2.3] shows that an eigenvector Ψ has
the stochastic representation (semigroup property)

Ψ(x) = Exv

[
e
∫

t
0
[cv(Xs)−λ] dsΨ(Xt)

]
.

Recall that τ̆r denotes the first hitting time of the ball Br, for r > 0. We need
the following lemma.

Lemma 3.3. We assume only Assumption 3.1 (i)–(ii). The following hold.

(a) If (Ψ, λ) is an eigenpair of Lv+cv under some v ∈ Ξsm, and the twisted process

in (3.7) is exponentially ergodic, then we have the stochastic representation

(3.12) Ψ(x) = Exv

[
e
∫

τ̆r
0

[cv(Xs)−λ] dsΨ(Xτ̆r
)1{τ̆r<∞}

]
∀x ∈ B̄cr , ∀ r > 0 .

In addition, λ = λv, the generalized principal eigenvalue of Lv + cv, and the

ground state Ψ = Ψv is unique up to multiplication by a positive constant.
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(b) Any eigenpair (Ψ, λ) ∈ W
2,d
loc

(Rd)×R
d of Lv+cv satisfying (3.12) is a principal

eigenpair, and λ is a simple eigenvalue.

Proof. Combining the proof of [7, Theorem 2.2] with [7, Theorem 3.1], we deduce
that for every r > 0, there exists a δ > 0 such that

(3.13) Exv

[
e
∫

τ̆r
0

[cv(Xs)−λ+δ] ds 1{τ̆r<∞}

]
< ∞ , x ∈ Bcr .

Applying the Itô formula to (3.6) we obtain

(3.14)

Ψ(x) = Exv

[
e
∫

t∧τ̆r∧τn
0

[cv(Xs)−λ] dsΨ(Xt∧τ̆r∧τn
)
]

= Exv

[
e
∫

τ̆r
0

[cv(Xs)−λ] dsΨ(Xτ̆r
)1{τ̆r<t∧τn}

]

+ e−δt Exv

[
e
∫

t
0
[cv(Xs)−λ+δ] dsΨ(Xt)1{t<τ̆r∧τn}

]

+ Exv

[
e
∫

τn
0

[cv(Xs)−λ] dsΨ(Xτn
)1{τn<t∧τ̆r}

]
.

We study separately the three integrals on the right-hand side of (3.14), which we
denote as Ji, i = 1, 2, 3. For the first integral we have

lim
n→∞

lim
t→∞

J1 = Exv

[
e
∫

τ̆r
0

[cv(Xs)−λ] dsΨ(Xτ̆r
)1{τ̆r<∞}

]

by monotone convergence. Note that the limit is also finite by (3.13).

Let P̃
x

ψ,v and Ẽ
x

ψ,v denote the probability measure and expectation operator on

the canonical space of the twisted process in (3.7) with initial condition X̃0 = x. Next,
using again the technique in [7, Theorem 2.2], we write

J2 = e−δt Exv

[
e
∫

t∧τ̆r∧τn
0

[cv(Xs)−λ+δ] dsΨ(Xt∧τ̆r∧τn
)1{t<τ̆r∧τn}

]

≤ e−δt Exv

[
e
∫

t∧τ̆r∧τn
0

[cv(Xs)−λ+δ] dsΨ(Xt∧τ̆r∧τn
)
]

≤ e−δt Ẽ
x

ψ,v

[
eδ(t∧τ̆r∧τn)

]
≤ e−δt Ẽ

x

ψ,v

[
eδτ̆r

]
,

where in the second inequality we apply [7, Lemma 2.3]. Thus, J2 vanishes as t→ ∞.
Concerning J3, using monotone convergence, we obtain

(3.15) lim
t→∞

J3 = Exv

[
e
∫

τn
0

[cv(Xs)−λ] dsΨ(Xτn
)1{τn<τ̆r}

]
≤ Ψ(x) P̃

x

ψ,v

(
τn < τ̆r) .

where the inequality follows from the proof of [7, Lemma 2.3]. In turn, the right-hand
side of (3.15) vanishes as n → ∞, since the twisted process is geometrically ergodic.
This completes the proof of (3.12).

Suppose that a positive φ ∈ W
2,d
loc(R

d) and λ̂ ≤ λ solve

Lvφ(x) + cv(x)φ(x) ≤ λ̂φ(x) a.e. x ∈ R
d .

An application of Itô’s formula and Fatou’s lemma then shows that

(3.16) φ(x) ≥ Exv

[
e
∫

τ̆r
0

[cv(Xs)−λ̂] ds φ(Xτ̆r
)1{τ̆r<∞}

]
∀x ∈ B̄cr , ∀ r > 0 .
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Equations (3.12) and (3.16) imply that if we scale φ by multiplying it with a posi-
tive constant until it touches Ψ at one point from above, the function φ

Ψ attains its
minimum value of 1 at some point in B̄r. A standard calculation shows that

L̃ψv
(
φ
Ψ

)
(x) ≤ (λ̂ − λ)

(
φ
Ψ

)
(x) .

Thus, φΨ must equal a constant by the strong maximum principle, which implies that

λ̂ = λ. This of course means that λ = λv. Uniqueness of Ψv is evident from the
preceding argument. This completes the proof of part (a).

Part (b) is evident from the preceding paragraph. This completes the proof.

3.1. The Bellman equation in R
d. Recall the solution (Vr , ρr) of (3.2), the

definition of ρ∗ in (3.4), and the definition of G in (1.3). We define

(3.17) λ∗ := inf
{
λ ∈ R : ∃φ ∈ W

2,d
loc(R

d), φ > 0, Gφ − λφ ≤ 0 a.e. in R
d
}
.

Recall the definitions of A and L in (1.1) and (1.2). Note that if (Φ, λ) is an eigenpair
of G, then similarly to (3.11), we have

(3.18) max
ξ∈K

max
y∈Rd

[
Aϕ(x, ξ, y) + L(x, ξ, y)

]
= λ ,

with ϕ = logΦ.

Theorem 3.4. There exists Φ∗ ∈ C2(Rd) satisfying

(3.19) max
ξ∈K

[
LξΦ∗(x) + c(x, ξ)Φ∗(x)

]
= ρ∗Φ∗(x) ∀x ∈ R

d ,

and the following hold:

(a) The function Φ−1
∗ is inf-compact.

(b) If v∗ is an a.e. measurable selector from the maximizer of (3.19), then, the

diffusion with extended generator L̃ϕ∗
v∗ , as defined in (3.5), is exponentially

ergodic and satisfies

(3.20) L̃ϕ∗
v∗Φ

−1
∗ (x) =

(
cv∗(x)− ρ∗

)
Φ−1
∗ (x) ,

with ϕ∗ := log Φ∗.

(c) ρ∗ = λ∗.
(d) ρn → ρ∗ and Vn → Φ∗ as n→ ∞ uniformly on compact sets, and the solution

Φ∗ to (3.19) is unique up to a scalar multiple, and satisfies

(3.21) Φ∗(x) ≥ Exv

[
e
∫

τ̆r
0

[cv(Xs)−ρ∗] dsΦ∗(Xτ̆r
)1{τ̆r<∞}

]
∀x ∈ B̄cr ,

for all r > 0, and for all v ∈ Ξsm, with equality if and only if v is an a.e.

measurable selector from the maximizer in (3.19).

Proof. Using Theorem 2.1 and (2.3)-(2.4), it follows that ρn ≤ supRd×K c, and this
combined with Assumption 3.1 (iii) shows that {ρn} converges along some subsequence
{nk}k∈N ⊂ N to ρ∗. Therefore, the convergence of Vnk

along some further subsequence
{n′

k} ⊂ {nk} to a Φ∗ satisfying (3.19) follows as in the proof of [13, Lemma 2.1].
We now turn to part (a). Here in fact we show that −|ϕ∗| has at least logarithmic

growth in |x|. Let δ ∈ (0, 1) be a constant such that ρ∗− c(x, ξ) > 4δ for all x outside
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some compact set in R
d. Consider a function of the form φ(x) =

(
1 + |x|2

)−θ
, with

θ > 0. By (3.3), there exists θ > 0 and r◦ > 0 such that

(3.22) max
(
Lξφ(x),

∣∣σT(x)∇φ(x)
∣∣) ≤ δφ(x) ∀ (x, ξ) ∈ Bcr◦ ×K .

We fix such a constant θ. We restrict our attention to solutions (Vn, ρn) of (3.2) over
an increasing sequence in N, also denoted as {n}, such that ρn converges to ρ∗. It is
clear then that we may enlarge the radius r◦, if needed, so that

(3.23) ρn − c(x, ξ) > 3δ ∀ (x, ξ) ∈ Bcr◦ ×K , and n ≥ r◦ .

Next, let χ̆ : R → (0,∞) be a convex function in C2(R) such that χ̆(t) = t for t ≥ 2,
and χ̆(t) is constant and positive for t ≤ 1. This can be chosen so that χ̆′′ < 2 and
supt>0 tχ̆

′′(t) < 2. Such a function can be constructed by requiring, for example, that
χ̆′′(t) = 6(2− t)(t−1) for t ∈ [1, 2], from which we obtain χ̆(t) = − 1

2 t
4+3t3−6t2+5t

for t ∈ [1, 2]. A simple calculation shows that χ̆(1) = 3
2 . Note that χ̆(t) − tχ̆′(t) ≥ 0

for all t > 0 by convexity. Let χ̆ǫ(t) := ǫχ̆
(
t/ǫ
)
for ǫ > 0. Then

(3.24) χ̆ǫ(t)− tχ̆′
ǫ(t) ≥ 0 , and tχ̆′′

ǫ (t) < 2 ∀ t > 0 .

Using (3.22)–(3.24), we obtain

(3.25)

Lξχ̆ǫ
(
φ(x)

)
+
(
c(x, ξ)− ρn

)
χ̆ǫ
(
φ(x)

)

≤ −3δχ̆ǫ
(
φ(x)

)
+ χ̆′

ǫ

(
φ(x)

)
Lξφ(x) +

1

2
χ̆′′
ǫ

(
φ(x)

)
|σT(x)∇φ(x)|2

≤ −3δχ̆ǫ
(
φ(x)

)
+ δφ(x) χ̆′

ǫ

(
φ(x)

)
+

1

2
δ2
(
φ(x)

)2
χ̆′′
ǫ

(
φ(x)

)

≤ −δχ̆ǫ
(
φ(x)

)
.

For the last inequality in (3.25), we use the properties χ̆ǫ(φ) ≥ φ χ̆′
ǫ(φ) and φ χ̆

′′
ǫ (φ) < 2

from (3.24), that the fact that χ̆ǫ(φ) ≥ φ and δ < 1. Note that, due to radial
symmetry, the support of χ̆′

ǫ◦φ is a ball of the form BRǫ
, with ǫ 7→ Rǫ an nonincreasing

continuous function with Rǫ → ∞ as ǫ ց 0. Recall the functions Vn in (3.2). Select
ǫ such that Rǫ = n > r◦. Scale Vn until it touches χ̆ǫ ◦ φ at some point x̂ from below.
Here, χ̆ǫ ◦ φ denotes the composition of χ̆ǫ and φ. Let vn be a measurable selector
from the minimizer in (3.2), and define hn := χ̆ǫ ◦ φ− Vn. Then, by (3.2) and (3.25),
we have

Lvnhn(x) +
(
cvn(x) − ρn

)
hn(x) < 0 ∀x ∈ R

d ,

and 〈∇hn, γ〉 = 0 on ∂Bn, since the gradient of χ̆ǫ ◦ φ vanishes on ∂BRǫ
. It follows

by the strong maximum principle that x̂ cannot lie in the Bn \ Br◦ . Thus hn > 0
on this set. This implies that x̂ cannot lie on ∂Bn either, without contradicting the
Hopf boundary point lemma. Thus x̂ ∈ Br◦ . This however shows by taking limits as
ǫց 0, and employing the Harnack inequality which asserts that Vn(x) ≤ CHVn(y) for
all x, y ∈ Br◦ for some constant CH, that Φ∗ ≤ Cφ for some constant C. This proves
part (a).

Equation (3.20) follows by (3.9). Since Φ−1
∗ is inf-compact and the right hand

side of (3.20) is negative and bounded away from zero outside a compact set by
Assumption 3.1 (iii), the associated diffusion is ergodic [22, Theorem 4.1]. In turn, the
Foster–Lyapunov equation in (3.20) shows that the diffusion is exponentially ergodic
[28]. This proves part (b).
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Moving to the proof of part (c), suppose that for some ρ ≤ ρ∗ we have

(3.26) max
ξ∈K

[
Lξφ(x) + c(x, ξ)φ(x)

]
≤ ρ φ(x) .

Evaluating this equation at measurable selector v∗ from the maximizer of (3.19), and
following the argument in the proof of Lemma 3.3 we obtain ρ = ρ∗ and φ = Φ∗.
This also shows that ρ∗ ≥ λ∗ by the definition in (3.17), and thus we have equality
by (3.19).

In order to prove part (d), suppose that ρn → ρ ≤ ρ∗ along some subsequence.
Taking limits along perhaps a further subsequence, we obtain a positive function
φ ∈ C2(Rd) that satisfies (3.26) with equality. Thus ρ = ρ∗ and and φ = Φ∗ by part
(c). The stochastic representation in (3.21) follows as in the proof of Lemma 3.3. This
completes the proof.

3.2. Dirichlet eigenvalues and the risk-sensitive value. In this section
we first show that the problem in R

d can also be approached by using Dirichlet
eigensolutions. The main result is Theorem 3.6, which establishes that ρ∗ equals the
risk-sensitive value J∗, and the usual verification of optimality criterion.

We borrow some results from [11, 12]. These can also be found in [3, Lemma 2.2],
and are summarized as follows: Fix any v ∈ Ξsm. For each r ∈ (0,∞) there exists a
unique pair (Ψv,r, λv,r) ∈

(
W2,p(Br) ∩ C(B̄r)

)
×R, for any p > d, satisfying Ψv,r > 0

on Br, Ψv,r = 0 on ∂Br, and Ψv,r(0) = 1, which solves

(3.27) LvΨv,r(x) + cv(x)Ψv,r(x) = λv,r Ψv,r(x) a.e. x ∈ Br .

Moreover, the solution has the following properties:
(i) The map r 7→ λv,r is continuous and strictly increasing.
(ii) In its dependence on the function cv, λv,r is nondecreasing, convex, and

Lipschitz continuous (with respect to the L∞ norm) with Lipschitz constant
1. In addition, if cv � c′v then λv,r(cv) < λv,r(c

′
v).

We refer to λv,r and Ψv,r as the (Dirichlet) eigenvalue and eigenfunction, respectively,
of the operator Lv + cv on Br.

Recall the definition of G in (1.3). Based on the results in [31], there exists a
unique pair (Ψ∗,r, λ∗,r) ∈

(
C2(Br) ∩ C(B̄r)

)
×R, satisfying Ψ∗,r > 0 on Br, Ψ∗,r = 0

on ∂Br, and Ψ∗,r(0) = 1, which solves

(3.28) GΨ∗,r(x) = λ∗,rΨ∗,r(x) ∀x ∈ Br ,

and properties (i)–(ii) above hold for λ∗,r. Also recall the definitions of the generalized
principal eigenvalues in (3.8) and (3.17), and ρr defined in (3.2).

Lemma 3.5. The following hold:

(i) For r > 0, we have λv,r ≤ λ∗,r for all v ∈ Ξsm, and λ∗,r < ρr.
(ii) limr→∞ λv,r = λv for all v ∈ Ξsm, and limr→∞ λ∗,r = λ∗.

Proof. Part (i) is a straightforward application of the strong maximum principle.
By (2.5) and (3.28) we have

(3.29) LvΨ∗,r(x) + cv(x)Ψ∗,r(x) ≤ λ∗,r Ψ∗,r(x) a.e. x ∈ Br .

Let r′ < r, and suppose that λv,r′ ≥ λ∗,r. Scale Ψv,r′ so that it touches Ψ∗,r at one
point from below in Br′ . Then Ψ∗,r − Ψv,r′ is nonnegative, and by (3.27) and (3.29)
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it satisfies

Lv(Ψ∗,r −Ψv,r′)−
(
cv − λ∗,r

)−
(Ψ∗,r −Ψv,r′)

= −
(
cv − λ∗,r

)+
(Ψ∗,r −Ψv,r′)−

(
λv,r − λ∗,r

)
Ψv,r′ ≤ 0 a.e. on Br′ .

This however implies that Ψ∗,r = Ψv,r′ on Br′ which is a contradiction. Hence λv,r′ <
λ∗,r for all r

′ < r and the inequality λv,r ≤ λ∗,r follows by the continuity of r 7→ λv,r.
Following the same method, with r′ = r, we obtain λ∗,r < ρr.

Part (ii) follows by [7, Lemma 2.2 (ii)].

Recall the definitions in (2.3) and (2.4), and let

Jxξ = Jxξ (c) := Jxξ (c;R
d) ,

and similarly for Jx∗ and J∗. Also, recall that

Jxv = Jxv (c) = lim inf
T→∞

1

T
logExv

[
e
∫

T

0
cv(Xt) dt

]
, x ∈ R

d , v ∈ Ξsm .

The theorem that follows concerns the equality λ∗ = J∗. Recall the definition in (3.4).

Theorem 3.6. We have λ∗ = ρ∗ = J∗. In addition, Jxv = J∗ if and only if v is

an a.e. measurable selector from the maximizer of (3.19).

Proof. We already have ρ∗ = λ∗ from Theorem 3.4. This also gives

ρ∗ ≤ Jxv∗(c) ≤ J∗ .

Choose R > 0 such that ρ∗ > supBc
R×K c. This is possible by (3.4). Let δ > 0 be

given, and select a smooth, non-negative cut-off function χ that vanishes in BR and
equals to 1 in BcR+1. Let Ψ = Φ∗ + εχ, and select ǫ > 0 small enough so that

ǫ
(
Gχ(x) − ρ∗χ(x)

)
≤ δΦ∗(x) ∀x ∈ B̄R+1 .

This is clearly possible since Φ∗ is positive and

Gχ(x) − ρ∗χ(x) = max
ξ∈K

(c(x, ξ)− ρ∗)χ(x) ≤ 0 ∀x ∈ BcR+1 .

We have

(3.30) GΨ(x)−(ρ∗+δ)Ψ(x) ≤ (G−ρ∗)Φ∗(x)+ǫ (G−ρ∗)χ(x)−δΨ(x) ≤ 0 ∀x ∈ R
d .

Since Ψ is bounded below away from zero, a standard use of Itô’s formula and the
Fatou lemma applied to (3.30) shows that Jxξ ≤ ρ∗ + δ for all ξ ∈ Ξ. Since δ is
arbitrary this implies ρ∗ ≥ J∗, and hence we must have equality. This also shows that
every a.e. measurable selector from the maximizer of (3.19) is optimal.

Next, for v ∈ Ξsm, let (λv,Ψv) be an eigenpair, obtained as a limit of Dirich-
let eigenpairs

{
(λv,n,Ψv,n)

}
n∈N

, with Ψv,n(0) = 1, along some subsequence (see

Lemma 3.5). Let ν ∈ [−∞,∞) be defined by

ν := lim
r→∞

sup
(x,ξ)∈Bc

r×K

c(x, ξ) .

First suppose that λv > ν. Then, using the the argument in the preceding paragraph,
together with the fact that λv ≤ Jxv , we deduce that λv = Jxv for all x ∈ R

d. Thus if
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v ∈ Ξsm is optimal, we must have λv = ρ∗. This implies that we can select a ball B
such that

λv,n − sup
(x,ξ)∈Bc×K

c(x, ξ) > 0

for all sufficiently large n. Let τ̆ = τ(Bc). By [3, Lemma 2.10 (i)], we have the
stochastic representation

Ψv,n(x) = Exv

[
e
∫

τ̆

0
[cv(Xt)−λv,n] dtΨv,n(Xτ̆)1{τ̆<τn}

]
∀x ∈ Bn \ B̄ .

Next we show that that Ψv vanishes at infinity by using the argument in the proof
of Theorem 3.4. The analysis is simpler here. Selecting the same function φ as in the
proof of Theorem 3.4, there exists R > 0 such that

Lvφ(x) + cv(x)φ(x) ≤ λvφ(x) ∀x ∈ BcR .

Since Ψv,n(0) = 1, employing the Harnack inequality we scale φ so that φ > Ψv,n on
BR for all n > R. The strong maximum principle then shows that Ψv,n < φ on R

d.

Thus Ψ−1
v is inf-compact, which together with the Lyapunov equation L̃ψv

v Ψ−1
v =(

cv − ρ∗)Ψ
−1
v imply that the ground state process is exponentially ergodic. By

Lemma 3.3, we then have

(3.31) Ψv(x) = Exv

[
e
∫

τ̆

0
[cv(Xt)−ρ∗] dtΨv(Xτ̆)1{τ̆<∞}

]
∀x ∈ B̄c .

On the other hand, it holds that LvΦ∗ + cvΦ∗ ≤ ρ∗Φ∗, which implies that

(3.32) Φ∗(x) ≥ Exv

[
e
∫

τ̆

0
[cv(Xs)−ρ∗] dsΦ∗(Xτ̆)1{τ̆<∞}

]
.

Comparing the functions in (3.31) and (3.32) using the strong maximum principle, as
done in the proof of Lemma 3.3, we deduce that Ψv = Φ∗. Thus v is a measurable
selector from the maximizer of (3.19).

It remains to address the case λv ≤ ν. By [6, Corollary 3.2] there exists a positive
constant δ such that λv(cv + δ1B1

) > ν, and λv(cv + δ1B1
) < ρ∗. Thus repeating the

above argument we obtain

ρ∗ > λv(cv + δ1B1
) = lim inf

T→∞

1

T
logExv

[
e
∫

T
0
[cv(Xt)+δ1B1

(Xt)] dt
]
≥ Jvx ∀x ∈ R

d .

Therefore, v cannot be optimal. This completes the proof.

4. The variational formula on R
d. In this section we establish the variational

formula on R
d. As mentioned in subsection 1.1, the function H in (1.4) plays a very

important role in the analysis. To explain how this function arises, let Px,tv denote the
probability measure on the canonical path space {Xs : 0 ≤ s ≤ t} of the diffusion (3.1)

under a control v ∈ Ξsm, and P̃
x,t

v the analogous probability measure corresponding
to the diffusion

dX̃t =
(
bv(X̃t) + a(x)∇ϕ∗(X̃t)

)
dt+ σ(X̃t) dW̃t ,

with ϕ∗ as in Theorem 3.4. By the Cameron–Martin–Girsanov theorem we obtain

dPx,tv

dP̃
x,t

v

= exp

(
−
∫ t

0

〈
∇ϕ∗(X̃s),σ(X̃s)dW̃s

〉
− 1

2

∫ t

0

∣∣
σ
T(X̃s)∇ϕ∗(X̃s)

∣∣2 ds
)
.
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Thus, the relative entropy, or Kullback–Leibner divergence between P̃
x,t

v and Px,tv takes
the form

DKL

(
P̃
x,t

v

∥∥ Px,tv
)
= −

∫
log

(
dPx,tv

dP̃
x,t

v

)
dP̃

x,t

v =
1

2
Ẽ
x,t

v

[∫ t

0

∣∣σT(X̃s)∇ϕ∗(X̃s)
∣∣2 ds

]
.

Dividing this by t, and letting tց 0, we see that H is the infinitesimal relative entropy

rate.
Recall from subsection 1.1 the definition Z := R

d ×K × R
d, and the use of the

single variable z = (x, ξ, y) ∈ Z in the interest of notational simplicity. Also recall
the definitions in (1.5) and (1.6). Recall the definitions in (1.1) and (1.2). In analogy
to (2.9), we define

F (g, µ) :=

∫

Z

(
Ag(z) + L(z)

)
µ(dz) for g ∈ C2(Rd) and µ ∈ P(Z) .

The following result plays a central role in this paper.

Proposition 4.1. We have

(4.1) ρ∗ = max
µ∈MA∩P∗(Z)

∫

Z

L(z)µ(dz) = sup
µ∈P∗(Z)

inf
g∈C2

c (R
d)

F (g, µ) .

In addition, if MA ∩ P◦(Z) ⊂ P∗(Z), then P∗(Z) may be replaced by P(Z) in (4.1).

In the proof of Proposition 4.1 and elsewhere in the paper we use a cut-off function
χ defined as follows (compare this with the function χ̆ in the proof of Theorem 3.4).

Definition 4.2. Let χ : R → R be a smooth convex function such that χ(s) = s
for s ≥ 0, and χ(s) = −1 for s ≤ −2. Then χ′ and χ′′ are nonnegative and the latter

is supported on (−2, 0). It is clear that we can choose χ so that χ′′ < 1. We scale this

function by defining χt(s) := −t+χ(s+ t) for t ∈ R. Thus χt(s) = s for s ≥ −t, and
χt(s) = −t − 1 for s ≤ −t − 2. Observe that if −f is an inf-compact function then

χt(f) + t+ 1 is compactly supported by the definition of χ.

Proof of Proposition 4.1. We start with the first equality in (4.1). By (3.10), we
have

(4.2) L̃ϕ∗
v∗ϕ∗(x) + cv∗(x)−H(x) = ρ∗ .

As shown in Theorem 3.4 the twisted process X̃ with extended generator L̃ϕ∗
v∗ is

exponentially ergodic. Let ηv∗ denote its invariant probability measure. Since
|ϕ∗|

Φ−1
∗

vanishes at infinity, and Φ−1
∗ is a Lyapunov function by (3.20), it then follows from

(4.2), by using the Itô formula and applying [8, Lemma 3.7.2 (ii)], that

(4.3) ρ∗ =

∫

Rd

(
cv∗(x) −H(x)

)
ηv∗(dx) =

∫

Rd

L
(
x, v∗(x),∇ϕ∗(x)

)
ηv∗(dx) .

Next, we show that

(4.4) ρ∗ ≥
∫

Z

L(z)µ(dz) ∀µ ∈ MA ∩ P∗(Z) .

We write (3.19) as

max
ξ∈K

[
Lξϕ∗(x) + 1

2

∣∣
σ
T(x)∇ϕ∗(x)

∣∣2 + c(x, ξ)
]
= ρ∗ ∀x ∈ R

d ,
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and using the identity

Lξϕ∗ + 1
2

∣∣σT∇ϕ∗
∣∣2 = Lξϕ∗ + 〈ay,∇ϕ∗〉+ 1

2

∣∣σT(y −∇ϕ∗)
∣∣2 − 1

2 |σ
Ty|2

to obtain (compare with (3.18))

(4.5) Aϕ∗(x, ξ, y) +
1
2

∣∣σT(x)
(
y −∇ϕ∗(x)

)∣∣2 + L(x, ξ, y) ≤ ρ∗ .

Using the function χt in Definition 4.2, the identity

Aχt(ϕ∗) = χ′
t(ϕ∗)Aϕ∗ +

1
2χ

′′
t (ϕ∗)

∣∣σT∇ϕ∗
∣∣2 ,

and the definition of H, we obtain from (4.5) that

(4.6)
A(χt ◦ ϕ∗)(x, ξ, y)− χ′′

t

(
ϕ∗(x)

)
H(x)

+ χ′
t

(
ϕ∗(x)

)(
1
2

∣∣
σ
T(x)

(
y −∇ϕ∗(x)

)∣∣2 + L(x, ξ, y)− ρ∗

)
≤ 0 .

Let µ ∈ MA ∩ P∗(Z), and without loss of generality assume that µ ∈ P◦(Z). The
integral of the first term in (4.6) with respect to µ vanishes by the definition of MA.
Thus, we have

(4.7)

∫

Z

χ′
t

(
ϕ∗(x)

)(
1
2

∣∣σT(x)
(
y −∇ϕ∗(x)

)∣∣2 + L(x, ξ, y)− ρ∗

)
µ(dx, dξ, dy)

≤
∫

Rd

χ′′
t

(
ϕ∗(x)

)
H(x) η(dx) ,

with η(·) =
∫
K×Rd µ(· , dξ, dy). Since

∫
Hdη < ∞, then taking limits as t → ∞ in

(4.7), using dominated convergence together with the fact that χ′′
t (s) → 0 as t→ ∞,

we see that the right-hand side of (4.7) goes to 0. Also, using Fatou’s lemma and the
fact that χ′

t(s) → 1 as t→ ∞, we obtain from (4.7) that

(4.8)

∫

Z

(
1
2

∣∣
σ
T(x)

(
y −∇ϕ∗(x)

)∣∣2 + L(x, ξ, y)
)
µ(dx, dξ, dy) ≤ ρ∗ .

This proves (4.4). Now, if we let

µ∗(dx, dξ, dy) := ηv∗(dx)δv∗(x)(dξ)δ∇ϕ∗(x)(dy) ,

then

∫

Z

Af(z)µ∗(dz) =

∫

Rd

L̃ϕ∗
v∗ f(x) ηv∗(dx) = 0 ∀ f ∈ C2

c (R
d) ,

which implies that µ∗ ∈ MA. Then, the second equality in (4.3) can be written as

(4.9) ρ∗ =

∫

Z

L(z)µ∗(dz) ,

while the first equality in (4.3) together with the fact that c is bounded above and ρ∗
is finite implies that µ∗ ∈ P∗(Z). Therefore, µ∗ ∈ MA ∩P∗(Z), and the first equality
in (4.1) now follows from (4.4) and (4.9).

We now turn to the proof of the second equality in (4.1). Note that it µ /∈ P◦(Z)
then F (0, µ) = −∞. On the other hand, if µ /∈ MA then, as also stated in the proof
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of Theorem 2.2, infg∈C2
c (R

d) F (g, µ) = −∞. The remaining case is µ ∈ MA ∩ P∗(Z),

for which we have F (g, µ) =
∫
Z L(z)µ(dz), thus proving the equality.

The second statement of the proposition follows directly from the arguments used
above.

Remark 4.3. One can follow the argument in the proof of [5, Theorem 1.4], us-
ing Radon–Nikodym derivatives instead of densities, to show that every maximizing
infinitesimal ergodic occupation measure for (4.1) has the form

µ(dx, dξ, dy) = π(dx, dξ) δ∇ϕ∗(x)
(dy) ,

where δy denotes the Dirac mass at y ∈ R
d, and π(dx, dξ) is an optimal ergodic

occupation measure of the diffusion associated with operator A∗ defined by

A
∗φ(x, ξ) :=

1

2
trace

(
a(x)∇2φ(x)

)
+
〈
b(x, ξ) + a(x)∇ϕ∗(x),∇φ(x)

〉

for (x, ξ) ∈ R
d ×K and f ∈ C2(Rd). We leave the verification of this assertion to the

reader.

We continue our analysis by investigating conditions on the model parameters
which imply that MA ∩ P◦(Z) ⊂ P∗(Z). We impose the following hypothesis on the
matrix a.

Assumption 4.4. The matrix a is bounded and has a uniform modulus of continu-
ity on R

d, and is uniformly non-degenerate in the sense that the minimum eigenvalue
of a is bounded away from zero on R

d.

We start with the following lemma, which can be viewed as a generalization of [3,
Lemma 3.3]. Assumption 3.1, which applies by default throughout the paper, need
not be enforced in this lemma.

Lemma 4.5. Consider a linear operator in R
d, of the form

L := 1
2a
ij∂ij + bi∂i + c ,

and suppose that the matrix a = σσ
T satisfies Assumption 4.4, and the coefficients b

and c are locally bounded and measurable. Then, there exists a constant C̃0 such that

any strong positive solution u ∈ W
2,p
loc

(Rd), p > d, to the equation

(4.10) Lu(x) = 0 on R
d

satisfies

∣∣∇u(x)
∣∣

u(x)
≤ C̃0

[
1 + sup

y∈B1(x)

(
|b(y)|+

√
|c(y)|

)]
∀x ∈ R

d .

Proof. We use scaling. For any fixed x0 ∈ R
d, with |x0| ≥ 1, we define

Mx0
:= 1 + sup

x∈B3(x0)

(
|b(x)|+

√
|c(x)|

)
,

and the scaled function

ũx0
(y) := u

(
x0 +M−1

x0
y
)
, y ∈ R

d ,
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and similarly for the functions ãx0
, b̃x0

, and c̃x0
. The equation in (4.10) then takes

the form

(4.11)
1

2
ãijx0

(y) ∂ij ũx0
(y) +

b̃ix0
(y)

Mx0

∂iũx0
(y) +

c̃x0
(y)

M2
x0

ũx0
(y) = 0 on R

d .

It is clear from the hypotheses that the coefficients of (4.11) are bounded in the
ball B3, with a bound independent of x0, and that the modulus of continuity and
ellipticity constants of the matrix ãx0

in B3 are independent of x0. We follow the
argument in [3, Lemma 3.3], which is repeated here for completeness. First, by the
Harnack inequality [21, Theorem 9.1], there exists a positive constant CH independent
of the point x0 chosen, such that ũx0

(y) ≤ CH ũx0
(y′) for all y, y′ ∈ B2. Let

L0 :=
1

2
ãijx0

(y) ∂ij +
b̃ix0

(y)

Mx0

∂i .

By a well known a priori estimate [16, Lemma 5.3], there exists a constant Ca, again
independent of x0, such that,

(4.12)

∥∥ũx0

∥∥
W2,p(B1)

≤ Ca

(∥∥ũx0

∥∥
Lp(B2)

+
∥∥L0 ũx0

∥∥
Lp(B2)

)

≤ Ca

(
1 + sup

y∈B2

c̃x0
(y)

M2
x0

)∥∥ũx0

∥∥
Lp(B2)

≤ C̃1 ũx0
(0) ,

where in the last inequality, we used the Harnack property. Clearly then, the resulting
constant C̃1 does not depend on x0. Next, invoking Sobolev’s theorem, which asserts
the compactness of the embedding W2,p

(
B1(x0)

)
→֒ C1,r

(
B1(x0)

)
, for p > d and

r < 1− d
p (see [16, Proposition 1.6]), and combining this with (4.12), we obtain

sup
y∈B1

∣∣∇ũx0
(y)

∣∣ ≤ C̃2 ũx0
(x0)

for some constant C̃2 independent of x0. Thus

(4.13)
|∇ũx0

(0)|
ũx0

(0)
≤ C̃2 ∀x0 ∈ Bc1 .

Using (4.13) and the identity ∇u(x0) =Mx0
∇ũx0

(0) for all x0 ∈ Bc1, we obtain

∣∣∇u(x0)
∣∣

u(x0)
= Mx0

∣∣∇ũx0
(0)

∣∣
ũx0

(0)
≤ C̃2

[
1 + sup

x∈B3(x0)

(
|b(x)|+

√
|c(x)|

)]
∀x0 ∈ Bc1 .

Of course B3(x0) is arbitrary. The same is true with any radius, with perhaps a
different constant. This completes the proof.

Remark 4.6. Lemma 4.5 should be compared with similar gradient estimates in
the literature. Its benefit is that it matches or exceeds the estimates in [26, Lemma 5.1]
and [15, Theorem A.2], without requiring any regularity on the coefficients.

Assumption 4.7. One of the following holds:
(a) The function −c is inf-compact.
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(b) The drift b satisfies

(4.14) max
(x,ξ)∈Bc

r×K

〈
b(x, ξ), x

〉−

|x|2 −−−→
r→∞

0 .

(c) There exists a constant Ĉ0 such that (compare this with [4, Theorem 3.1 (b)])

H(x)(
1 + |ϕ∗(x)|

) (
1 + |c(x, ξ)|

) ≤ Ĉ0 ∀ (x, ξ) ∈ R
d ×K ,

where ϕ∗ = logΦ∗, and Φ∗ is as in Theorem 3.4.

Remark 4.8. Assumption 4.7 (c) is not specified in terms of the parameters of the

equation. However, Assumption 4.4 together with the hypothesis that |b|2

1+|c| is bounded

implies Assumption 4.7 (c). This is asserted by Lemma 4.5. See also Lemma 4.11 later
in this section.

We have the following estimate concerning the growth of the function Φ∗ in The-
orem 3.4. This does not require the uniform ellipticity hypothesis in Assumption 4.4.

Lemma 4.9. Grant Assumption 4.7 part (a) or (b). Then there exists a function

ζ : (0,∞) → (0,∞), with limr→∞ ζ(r) = ∞, such that the solution Φ∗ in (3.19)
satisfies

(4.15)
∣∣logΦ∗(x)

∣∣ ≥ ζ(r) log
(
1 + |x|

)
∀x ∈ Bcr .

Proof. We start with part (a). Let α : (0,∞) → (0,∞) be a strictly increasing

function, satisfying α(r) → ∞ and α(r)
r → 0 as r → ∞, and

(4.16) logα(r) ≥ log r − inf
Bc

r

|ϕ∗|
1/3 .

This is always possible. A specific function satisfying these properties is given by

α(r) :=
√
r + sup

s∈(0,r]

(
s exp

(
− inf
Bc

r

|ϕ∗|
1/3

))
.

Let c1 be a constant such that
∣∣Lv∗(log|x|)

∣∣ ≤ c1 for all |x| > 1. Such a constant
exists since σ and b have at most linear growth in |x| by (3.3). We define

(4.17) κ(r) := min

(√
r ,

1

c1
inf

Bc
r×K

∣∣c(x, ξ)− ρ∗
∣∣1/2 , inf

Bc
r

|ϕ∗|
1/3

)
.

Since the functions −ϕ∗ and −c are inf-compact, it is clear that κ(r) → ∞ as r → ∞.
Define the family of functions

hr(x) := −κ(r)
(
log|x| − logα(r)

)
, r ≥ 1 , x ∈ Bcr .

Note that for any g ∈ C2(Rd) we have

(4.18) Lξχt(g) = χ′
t(g)Lξ(g) +

1

2
χ′′
t (g)

∣∣
σ
T∇g

∣∣2 .

Thus, applying (4.18) and the bound
∣∣Lv∗(log|x|)

∣∣ ≤ c1, we obtain

(4.19)
L̃ϕ∗
v∗χt

(
hr(x)

)
≤ c1 κ(r)χ

′
t

(
hr(x)

)
+
〈
a(x)∇ϕ∗(x),∇χt

(
hr(x)

)〉

+
1

2
χ′′
t

(
hr(x)

) ∣∣σT(x)∇hr(x)
∣∣2 ∀x ∈ Bcr .
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Combining (4.2) and (4.19), and completing the squares, we have
(4.20)

L̃ϕ∗
v∗

(
χt ◦ hr − ϕ∗

)
(x) ≤ cv(x)− ρ∗ + c1 κ(r)χ

′
t

(
hr(x)

)

+
1

2
χ′′
t

(
hr(x)

) ∣∣σT(x)∇hr(x)
∣∣2 + 1

2

∣∣σT(x)∇χt
(
hr(x)

)∣∣2

− 1

2

∣∣σT(x)
[
∇ϕ∗(x)−∇χt

(
hr(x)

)]∣∣2 .

Recall that χ′ ≤ 1, and χ′′ ≤ 1. Choose r large enough so that ϕ∗ < −1 on Bcr . It
then follows by the definitions in (4.16) and (4.17) that ϕ∗−χt ◦hr < 0 on ∂Br for all
t ≥ 0. Also, for each t > 0, the difference ϕ∗−χt ◦hr is negative outside some compact

set by the inf-compactness of −ϕ∗. Note also that |∇hr| ≤ κ(r)
r on Bcr . Hence (3.3)

and (4.17) imply that there exists r0 such the right-hand side of (4.20) is negative on
Bcr for all r > r0 and all t ≥ 0. An application of the strong maximum principle then
shows that ϕ∗ < hr on Bcr for all r > r0.

Now, note that

log
|x|
α(r)

≥ 1

2
log

(
1 + |x|

)
when |x| ≥ max

(
1, 2

(
α(r)

)2)
.

Since α(r) is strictly increasing, the inequality (4.15) holds with

ζ(r) :=
1

2
κ
(
α−1

(√
r/2

))
for all r ≥ 2

(
α(r0)

)2
.

This completes the proof under Assumption 4.7 (a) .
The proof under part (b) of the assumption is similar. The only difference is that

here we use the fact that mr := supx∈Bc
r

(
Lv∗(log|x|)

)− → 0 as t → ∞, which is
implied by (4.14). Thus with ǫ > 0 any constant such that ρ∗ − c > ǫ outside some
compact set, we choose κ(r) as

κ(r) := min

(√
r , sup

Bc
r×K

ǫ

2
√
mr

, inf
Bc

r

|ϕ∗|
1/3

)
.

The rest is completely analogous to the analysis above. This concludes the proof.

The first part of the theorem which follows is quite technical, but identifies
a rather deep property of the ergodic occupation measures of the operator A. It
shows that under Assumptions 4.4 and 4.7 (a) or (b), or Assumption 4.7 (c), if such
a measure µ is feasible for the maximization problem, or in other words, it sat-
isfies

∫
Z L(z)µ(dz) > −∞, then it necessarily has “finite average” entropy, that is∫

H dµ <∞, or equivalently, it belongs in the class P∗(Z). The proof uses the method
of contradiction. We first show that if such a measure µ is not in the class P∗(Z),
then the left hand side of (4.7) grows at a geometric rate as a function of t. Then we
obtain a contradiction by evaluating the right-hand side of (4.7) using this geometric
growth together with the bound in Lemma 4.9.

Theorem 4.10. (i) Under Assumptions 4.4 and 4.7 (a) or (b), or Assump-

tion 4.7 (c), we have MA ∩P◦(Z) ⊂ P∗(Z). This of course implies by Propo-

sition 4.1 that

ρ∗ = max
µ∈MA

∫

Z

L(z)µ(dz) = sup
µ∈P(Z)

inf
g∈C2

c (R
d)

F (g, µ) .
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(ii) Let Assumption 4.4 hold, and suppose that

(4.21) sup
x∈Rd

H(x)

1 + |ϕ∗(x)|
< ∞ .

Then

(4.22) ρ∗ = inf
g∈C2

c (R
d)

sup
µ∈P(Z)

F (g, µ) .

Proof. We first prove part (i) under under Assumption 4.7 (a) or (b). We argue
by contradiction. Let µ ∈ MA ∩P◦(Z), and suppose that µ /∈ P∗(Z). As in the proof
of Proposition 4.1 we let η(·) =

∫
K×Rd µ(· , dξ, dy). Let I1(t) and I2(t) denote the left

and the right-hand side of (4.7), respectively, and define

I(t) :=

∫

Rd

χ′
t

(
ϕ∗(x)

)
H(x) η(dx) .

Then of course I(t) → ∞ as t→ ∞ by the hypothesis. Expanding I1(t) we see that

I1(t) = I(t)−
∫

Z

χ′
t

(
ϕ∗(x)

)〈
a(x)y,∇ϕ∗(x)

〉
dµ+

∫

Z

χ′
t(ϕ

∗(x))(c − ρ∗) dµ .

Since
∫
L dµ is finite, it follows that

∫
Z |σTy|2dµ and

∫
Z max{−c, 0} dµ are also finite.

Moreover, the second assertion and the fact that c is bounded above imply that∫
Z |c| dµ < ∞. Thus, using the Cauchy–Schwarz inequality in the above display and
the fact |χ′

t| is bounded, we have

(4.23) α0(t)− α1(t)
√
I(t) + I(t) ≤ I1(t) ≤ α0(t) + α1(t)

√
I(t) + I(t)

for some constants α0(t) and α1(t) which are bounded in t ∈ [0,∞).

First suppose that over some sequence tn → ∞ we have I2(tn)
I1(tn)

→ δ < 1 as n→ ∞.

This implies by (4.23) that I2(tn)
I(tn)

→ δ. However, if this is the case, then the inequality

α0(tn)− α1(tn)
√

I(tn) +
(
1− I2(tn)

I(tn)

)
I(tn) ≤ 0 ,

which is implied by (4.7) and (4.23), contradicts the fact that I(t) → ∞ as t → ∞.

Thus we must have lim inft→∞
I2(t)
I1(t)

≥ 1, and same applies to the fraction I2(t)
I(t) .

Define

gk :=

∫

Rd

H(x)1{−2k<ϕ∗(x)<−2k+2} η(dx) , k ∈ N .

We have I(2n) ≥ ∑n
k=1 gk for n ∈ N, by definition of these quantities. Recall that

I2(t) is defined as the right-hand side of (4.7). Note then that, since χ′′ < 1, we have

I2(2n) < δgn+1 for some δ < 1. Therefore, since lim inft→∞
I2(t)
I(t) ≥ 1, there exists

n0 ∈ N such that

(4.24) Sn :=

n∑

k=1

gk ≤ gn+1 ∀n ≥ n0 .

Thus Sn+1 − Sn = gn+1 ≥ Sn, which implies that Sn+1 ≥ 2Sn. This of course means
that Sn diverges at a geometric rate in n, that is, Sn ≥ 2n−1S1. Let h denote the
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inverse of the map y 7→ ζ(y) log(1+y). Note that H(x) ≤ C(1+ |x|p) for some positive
constants C and p by Lemma 4.5 and the hypothesis that c has polynomial growth
in Assumption 3.1 (ii). Thus, by Lemma 4.9, we obtain

gn ≤ C

∫

Rd

(1 + |x|p)1{−2n<ϕ∗(x)<−2n+2} η(dx)

≤ C

∫

Rd

(1 + |x|p)1{ζ(|x|) log(1+|x|)<2n} η(dx)

≤ C
(
1 + h(2n)p

)

for all n ∈ N. However, this implies from (4.24) that

log 2 ≤ lim sup
n→∞

logSn
n

≤ C′ lim sup
n→∞

log h(n)

n

= C′ lim sup
k→∞

log k

ζ(k) log(1 + k)
= 0

for some constant C′, and we reach a contradiction. Therefore, MA∩P◦(Z) ⊂ P∗(Z).
Moving on to the proof under Assumption 4.7 (c), we replace the function χt in

Definition 4.2 by a function χ̃t defined as follows. For t > 0, we let χ̃t be a convex
C2(R) function such that χ̃t(s) = s for s ≥ −t, and χ̃t(s) = constant for s ≤ −te2.
Then χ̃′

t and χ̃
′′
t are nonnegative. In addition, we select χ̃t so that χ̃′′

t (s) ≤ − 1
s for

s ∈ [−te2,−t] and t ≥ 0. This is always possible. We follow the same analysis as in
the proof of Proposition 4.1, with the function χ̃t as chosen, and obtain

(4.25)

∫

Z

χ̃′
t

(
ϕ∗(x)

)(
1
2

∣∣σT(x)
(
y −∇ϕ∗(x)

)∣∣2 + L(x, ξ, y)− ρ∗

)
µ(dx, dξ, dy)

≤
∫

Rd

χ̃′′
t

(
ϕ∗(x)

)
H(x) η(dx)

≤
∫

Rd

H(x)

|ϕ∗(x)|
1At

(x) η(dx)

≤ Ĉ0

∫

Rd×K×Rd

1 + |ϕ∗(x)|
|ϕ∗(x)|

(
1 + |c(x, ξ)|

)
1At

(x)µ(dx, dξ, dy) ,

where At := {x : ϕ∗(x) ≤ −t}. The integral on the right-hand side of (4.25) vanishes
as t→ ∞ by the hypothesis that

∫
c dµ > −∞, so again we obtain (4.8) which implies

the result. This completes the proof of part (i).
We continue with part (ii). We use a C2 convex function χ̂t : R → R, for t ≥ 1,

satisfying χ̂t(s) = s for s ≤ −t, χ̂′′
t (s) ≤ − 1

s log|s| for s < −t, and χ̂t(s) = constant for

s ≥ ζ̂(t), for some ζ̂(t) < −t. We let ht(x) = χ̂t
(
ϕ∗(x)

)
. We may translate ϕ∗ so that

it is smaller than −1 on R
d. By (4.6), we have

(4.26)
Aht(z) + L(z)− ρ∗ ≤

[
1− χ̂′

t

(
ϕ∗(x)

)](
L(z)− ρ∗

)

− 1
2 χ̂

′
t

(
ϕ∗(x)

)∣∣
σ
T(x)

(
y −∇ϕ∗(x)

)∣∣2 + χ̂′′
t

(
ϕ∗(x)

)
H(x) .

We claim that given any ǫ > 0 there exists t > 0 such that F (ht, µ) ≤ ρ∗ + ǫ for all
µ ∈ P(Z). This of course suffices to establish (4.22).

By Assumption 3.1 (iii) there exists t1 > 0 such that the first term on the right-
hand side of (4.26) is nonpositive for all t ≥ t1. Also, using the definition of χ̂, we
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have

χ̂′′
t

(
ϕ∗(x)

)
H(x) ≤ H(x)

|ϕ∗(x)| log|ϕ∗(x)|
1{x ∈ R

d : ϕ∗(x) ≤ −t} −−−→
t→∞

0

by the hypothesis, and since −ϕ∗ is inf-compact by Theorem 3.4. This proves the
claim, and completes the proof.

There is a large class of problems which satisfy (4.21). It consists of equations
with |b|2 + |c| having at most linear growth in |x| and |x|−1〈b, x〉− growing no faster
than |c|2. This fact is stated in the following lemma.

Lemma 4.11. Grant Assumption 4.4 and suppose that

sup
(x,ξ)∈Rd×K

max

( 〈b(x, ξ), x〉−
1 + |x||c(x, ξ)| ,

|b(x, ξ)|2 + |c(x, ξ)|
1 + |x|

)
< ∞ .

Then (4.21) holds.

Proof. We use the function χt in Definition 4.2. Let r̃ > 0 be such that ρ∗ −
c(x, ξ) > δ > 0 on Bcr̃ ×K. Note that there exists a constant C such that

L̃ϕ∗
v∗χt

(
ǫ(r̃ − |x|)

)
≤ Cǫ

(
1 + |x|−1〈bv∗(x), x〉− + |∇ϕ∗(x)|

)
∀ t > 0 .

Thus for some ǫ > 0 small enough, using (4.2), we obtain

L̃ϕ∗
v∗

(
ϕ∗(x) − χt

(
ǫ(r̃ − |x|)

))
> 0 ∀x ∈ Bcr̃ , ∀ t > 0 .

An application of the strong maximum principle then shows that ϕ∗(x) ≤ ǫ(r̃− |x|)−.
Therefore, using Lemma 4.5, we obtain

∣∣∇ϕ∗(x)
∣∣2 ≤ C′(1 + |x|) ≤ C′

(
1 + r̃ − ǫ−1ϕ∗(x)

)
∀x ∈ Bcr̃ ,

for some constant C′.

We next present the variational formula over functions in C2(Rd) whose derivatives
up to second order have at most polynomial growth in |x|. Let C2

pol(R
d) denote this

space of functions.

Theorem 4.12. Under Assumption 3.1 alone, we have

(4.27) ρ∗ = inf
g∈C2(Rd)

sup
µ∈P(Z)

F (g, µ) .

Under Assumptions 4.4 and 4.7 (a) or (b), we have

(4.28) ρ∗ = inf
g∈C2

pol
(Rd)

sup
µ∈P(Z)

F (g, µ) = sup
µ∈P(Z)

inf
g∈C2

pol
(Rd)

F (g, µ) .

Proof. By (3.18) and (3.19) we have

max
ξ∈K

max
y∈Rd

[
Aϕ∗(x, ξ, y) + L(x, ξ, y)

]
= ρ∗ .

Since ϕ∗ ∈ C2(Rd), this implies that

inf
g∈C2(Rd)

sup
µ∈P(Z)

F (g, µ) ≤ ρ∗ .
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On the other hand, by Theorem 3.4 (d), it follows that for any g ∈ C2(Rd) we have

sup
z∈Z

[
Ag(z) + L(z)

]
≥ ρ∗ ,

which then implies the converse inequality

inf
g∈C2(Rd)

sup
µ∈P(Z)

F (g, µ) ≥ ρ∗ .

This proves (4.27).
Concerning (4.28), the first equality follows as in the preceding paragraph since

ϕ∗ ∈ C2
pol(R

d) by Assumptions 3.1 (i)–(ii) and 4.4, and Lemma 4.5. Turning now our
attention to the second equality in (4.28), recall from the proof of Proposition 4.1 that

ηv∗ denotes the invariant probability measure of L̃ϕ∗
v∗ . Under Assumption 4.7 (a) or

(b), Lemma 4.9 shows that Φ−1
∗ (x) grows faster in |x| than any polynomial. Therefore,∫

Rd |x|n ηv∗(dx) < ∞ for all n ∈ N by (3.20). Since |∇ϕ∗(x)| has at most polynomial
growth, and b has at most linear growth, we obtain

(4.29)

∫

Rd

∣∣L̃ϕ∗
v∗ f(x)

∣∣ ηv∗(dx) < ∞ ∀ f ∈ C2
pol(R

d) .

Continuing, if (4.29) holds, then it is standard to show by employing a cut-off function,
that

(4.30)

∫

Rd

L̃ϕ∗
v∗ f(x) ηv∗(dx) = 0 ∀ f ∈ C2

pol(R
d) .

Let µ∗ ∈ MA denote the ergodic occupation measure corresponding to ηv∗ , that is,

µ∗(dx, dξ, dy) = ηv∗(dx) δv∗(x)(dξ) δ∇ϕ∗
(dy) .

Equation (4.30) implies that

(4.31) F (g, µ∗) =

∫

Z

L(z)µ∗(dz) = ρ∗ ∀ g ∈ C2
pol(R

d) .

Since

sup
µ∈P(Z)

inf
g∈C2

pol
(Rd)

F (g, µ) ≤ inf
g∈C2

pol
(Rd)

sup
µ∈P(Z)

F (g, µ) ,

the second equality in (4.28) then follows by (4.27) and (4.31).

5. The risk-sensitive cost minimization problem. Using Lemma 4.5, we
can improve the main result in [3] which assumes bounded drift and running cost.

We say that a function f : X → R defined on a locally compact space is coercive,
or near-monotone, relative to a constant β ∈ R if there exists a compact set K such
that infKc f > β. Recall that an admissible control ξ for (3.1) is a process ξt(ω) which
takes values in K, is jointly measurable in (t, ω) ∈ [0,∞)×Ω, and is non-anticipative,
that is, for s < t, Wt −Ws is independent of Fs given in (2.2). We let Ξ denote the
class of admissible controls, and Exξ the expectation operator on the canonical space
of the process under the control ξ ∈ Ξ, conditioned on the process X starting from
x ∈ R

d at t = 0.
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Let c : Rd×K → R be continuous, and Lipschitz continuous in its first argument
uniformly with respect to the second. We define the risk-sensitive penalty by

Exξ = Exξ (c) := lim sup
T→∞

1

T
logExξ

[
e
∫

T
0
c(Xt,ξt) dt

]
, ξ ∈ Ξ ,

and the risk-sensitive optimal values by Ex∗ := infξ∈Ξ Exξ , and E∗ := infx∈Rd Ex∗ . Let

Ĝf(x) :=
1

2
trace

(
a(x)∇2f(x)

)
+min
ξ∈K

[〈
b(x, ξ),∇f(x)

〉
+ c(x, ξ)f(x)

]
, f ∈ C2(Rd) ,

and

λ̂∗ = λ̂∗(c) := inf
{
λ ∈ R : ∃ϕ ∈ W

2,d
loc(R

d), ϕ > 0, Ĝϕ− λϕ ≤ 0 a.e. in R
d
}
.

We say that λ̂∗ is strictly monotone at c on the right if λ̂∗(c + h) > λ̂∗(c) for all
non-trivial nonnegative functions h with compact support.

Proposition 5.2 below improves [3, Proposition 1.1]. We first state the assump-
tions.

Assumption 5.1. In addition to Assumption 4.4 we require the following.
(i) The drift b and running cost c satisfy, for some θ ∈ [0, 1) and a constant κ0,

the bound

|b(x, ξ)| ≤ κ0
(
1 + |x|θ

)
, and |c(x, ξ)| ≤ κ0

(
1 + |x|2θ

)

for all (x, ξ) ∈ R
d ×K.

(ii) The drift b satisfies

(5.1)
1

|x|1−θ max
ξ∈K

〈
b(x, ξ), x

〉+ −−−−→
|x|→∞

0 .

Proposition 5.2. Grant Assumption 5.1, and suppose that c is coercive relative

to E∗. Then the HJB equation

(5.2) min
ξ∈K

[
LξV∗(x) + c(x, ξ)V∗(x)

]
= E∗ V∗(x) ∀x ∈ R

d

has a solution V∗ ∈ C2(Rd), satisfying infRd V∗ > 0, and the following hold:

(a) Ex∗ = E∗ = λ̂∗ for all x ∈ R
d.

(b) Any v ∈ Ξsm that satisfies

(5.3) LvV∗(x) + c
(
x, v(x)

)
V∗(x) = min

ξ∈K

[
LξV∗(x) + c(x, ξ)V∗(x)

]

a.e. x ∈ R
d, is stable, and is optimal, that is, Evx = E∗ for all x ∈ R

d.

(c) It holds that

V∗(x) = Exv

[
e
∫

T
0
[c(Xt,v(Xt))−E∗] dt V∗(XT )

]
∀ (T, x) ∈ R+ ×R

d ,

for any v ∈ Ξsm that satisfies (5.3).

(d) If λ̂∗ is strictly monotone at c on the right, then there exists a unique positive

solution to (5.2), up to a multiplicative constant, and any optimal v ∈ Ξsm

satisfies (5.3).
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Proof. A modification of [3, Lemma 3.2] (e.g., applying Itô’s formula to the func-
tion f(x) = |x|2+2θ) shows that (5.1) implies that

lim sup
t→∞

1

t
Exξ

[
|Xt|1+θ

]
= 0 ∀ ξ ∈ Ξ .

From this point on, the proof follows as in [3], using Lemma 4.5. Indeed, parts (a) and
(b) follow from [3, Theorem 3.4] by using the above estimate and Lemma 4.5. Since
infRd V∗ > 0, any minimizing selector is recurrent. Moreover, the twisted diffusion
corresponding to the minimizing selector is regular. Thus part (c) follows from [3,
Theorem 1.5]. In addition, the hypothesis in (d) implies that for any minimizing

selector v, λv = λ̂∗ is right monotone at c which, in turn, implies the simplicity of
the principal eigenvalue by [3, Theorem 1.2]. This also implies the last claim by [3,
Lemma 3.6].
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