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AN INVERSE RANDOM SOURCE PROBLEM FOR MAXWELL’S EQUATIONS

PEIJUN LI AND XU WANG

Abstract. This paper is concerned with an inverse random source problem for the three-dimensional
time-harmonic Maxwell equations. The source is assumed to be a centered complex-valued Gaussian
vector field with correlated components, and its covariance operator is a pseudo-differential opera-
tor. The well-posedness of the direct source scattering problem is established and the regularity of
the electromagnetic field is given. For the inverse source scattering problem, the micro-correlation
strength matrix of the covariance operator is shown to be uniquely determined by the high frequency
limit of the expectation of the electric field measured in an open bounded domain disjoint with the
support of the source. In particular, we show that the diagonal entries of the strength matrix can
be uniquely determined by only using the amplitude of the electric field. Moreover, this result is
extended to the almost surely sense by deducing an ergodic relation for the electric field over the
frequencies.

1. Introduction

Inverse source scattering problems are to infer the information of the radiating sources by using the
measured wave fields generated by the unknown sources. These problems arise naturally and have
significant applications in many scientific areas such as biomedical engineering, medical imaging, and
optical tomography [2, 10,12,22]. They have attracted much attention by many researchers in both
of the engineering and mathematical communities. Consequently, a great number of computational
and mathematical results are available [3, 6, 7, 13]. In particular, modeled by Maxwell’s equations,
the inverse source scattering problem for electromagnetic waves is an important research subject not
only from the viewpoint of engineering and industrial applications but also from the mathematical
aspect. For instance, the model can be used to determine the source currents in the brain based on
the electric or magnetic measurements on the surface of the human head [3]. As for the mathematical
studies, we refer to [3] for the unique recovery of surface current density, to [23–25] for the unique
recovery of volume current density, and to [6] for the stability analysis on the inverse source problems
for elastic and electromagnetic waves.

So far, all the sources have been considered to be deterministic functions in the existing mathemat-
ical models for the inverse electromagnetic source scattering problem. However, in many practical
situations, the source of the system should be described by a random field instead of a deterministic
function due to the unpredictability of the surrounding environment or uncertainties associated with
the source itself [9].

Compared with the deterministic counterparts, if the source is a random field whose covariance
operator is not regular enough, then the source would be too rough to exist point-wisely. In this
case, the source should be understood as a distribution, and the corresponding problem and its
solution should be studied in the distribution sense. For instance, for a d-dimensional problem, if
the random source is micro-locally isotropic with order s, i.e., its covariance operator is a pseudo-
differential operator with the principal symbol φ(x)|ξ|−2s, where s ∈ (0, d2 ] is a real number and

φ ∈ C∞
0 (Rd) is a positive function representing the micro-correlation strength of the random source,
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then the source is a distribution in the Sobolev space W s− d
2
−ǫ(Rd) for any ǫ > 0 (cf. [20]). There are

already some mathematical studies on the inverse random source problems for acoustic and elastic
waves, which are to recover the strength φ by using measured wave fields in a domain which has a
positive distance to the support of the source. If s = 0, then the source is as rough as a random field
of the form

√
φẆ with Ẇ being the white noise (cf. [20]). When the source is modeled by a white

noise type random field, the Itô isometry can be resorted to recover the variance of the random
source. We refer to [4, 17] and [5] on the study of the inverse acoustic and elastic source scattering
problems, respectively. If s ∈ (0, d2 + 1), the Itô isometry is not valid any more since the increments
of the random source may be correlated. It turns out that the micro-local analysis is effective to
handle such a random source. For the inverse acoustic random source scattering problems, we refer
to [15] for the case s ∈ [d2 ,

d
2 + 1) and to [20] for the case s ∈ (0, d2 + 1). The results can be found

in [15, 16] on the inverse elastic random source scattering problems with s ∈ [d2 ,
d
2 + 1). We refer

to [18, 19] for related inverse problems on the stochastic Schrödinger equation. To the best of our
knowledge, the inverse random source problem for Maxwell’s equations is completely open! This
work initializes the mathematical study on the direct and inverse source scattering problems for the
stochastic Maxwell equations driven by a random electric current density.

In this paper, we consider the three-dimensional time-harmonic stochastic Maxwell equations

∇×E = ikH, ∇×H = ikE + J , (1.1)

where k > 0 is the wavenumber, E and H are the electric field and the magnetic field, respectively,
and J is the electric current density, which is assumed to be a complex-valued random vector field
defined on a complete probability space (Ω,F ,P) with a compact support O ⊂ R3. Moreover, the
source J is assumed to be micro-locally isotropic such that its covariance operator is a pseudo-
differential operator with the principal symbol given by A(x)|ξ|−2s, s ∈ (0, 52), where the complex-

valued matrix A ∈ C∞
0 (R3;C3×3) describes the micro-correlation strength of the random source and

the entries are assumed to be smooth functions with compact supports contained in O. Hence we
consider a more general principal symbol than that studied in [15,16,20], where the principal symbol
is characterized by a scalar real-valued smooth function. Given the electric current density J , the
direct scattering problem is to study the well-posedness of (1.1); the inverse scattering problem is to
determine J from a knowledge of the electric field E. Due to such a random J , both of the direct
and inverse scattering problems are challenging.

The work contains three contributions. First, by considering an equivalent problem, the well-
posedness is established for (1.1) in the distribution sense. The regularity is given for both the
electric field E and the magnetic field H. A key ingredient is to find an appropriate function space
for the electric current density J , which is required to satisfy a divergence free condition in the weak
sense. Second, we show that the micro-correlation strength matrix A is uniquely determined by the
high frequency limit of the expectation of the electric field measured in a bounded open domain
disjoint with the support of J . The result also implies that the diagonal entries of the strength
matrix A can be uniquely determined by the high frequency limit of the amplitude of the electric
field, which is known as the phaseless data. Third, if only the amplitude of the electric field is
available, then we show that the diagonal entries of the strength matrix A can be uniquely recovered
by the energy of the electric field averaged over the frequency band at a single realization of the
random source, which indicates that it is statistically stable to recover the strength matrix. The
idea is to deduce an ergodic relation for the electric field over the frequencies in order to obtain such
a strong result.

The paper is organized as follows. In Section 2, we address the direct source scattering problem.
The properties and assumptions are introduced for the random source; the well-posedness of (1.1)
and the regularity of the electromagnetic field are examined. Sections 3 and 4 are devoted to the
inverse source scattering problem. In Section 3, we discuss the uniqueness to recover the micro-
correlation strength matrix by using the expectation of the electric field; while in Section 4, we
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present the uniqueness result by using the amplitude of the electric field at a single path. The paper
is concluded with some general remarks and directions for future work in Section 5.

2. Direct scattering problem

In this section, we introduce some basic notation for complex isotropic Gaussian random fields
and establish the well-posedness for the direct scattering problem if the current density is a complex-
valued isotropic Gaussian random field.

2.1. Complex isotropic Gaussian random fields. Let J(x) be a complex-valued Gaussian ran-
dom vector field. It can be determined by the mean m(x) = E[J(x)], the covariance

CJ(x, y) = E
[
(J(x) − E[J(x)])(J(y) − E[J(y)])⊤

]
,

and the relation

RJ (x, y) = E
[
(J(x) − E[J(x)])(J(y) − E[J(y)])⊤

]

if they exist. It is easy to verify the following properties for the complex-valued covariance and
relation matrix functions: for any x, y ∈ R3,

(i) C∗
J
(y, x) = CJ (y, x)

⊤
= CJ (x, y);

(ii) RJ(x, y) = R
J
(x, y) and RJ (y, x)

⊤ = RJ (x, y);
(iii) CJ(x, y) = RJ (x, y) if J(x) is real-valued;
(iv) RJ(x, y) = 0 if the real and imaginary parts of J are independent and identically distributed.

For a complex-valued Gaussian random vector Z = X + iY , the variance matrices of X and
Y , and the covariance matrices between X and Y are uniquely determined by the covariance and
relation of Z, and vice versa. More precisely, let VXX and VY Y be the variance matrices of X and
Y , and let VXY and VY X be the covariance matrices between X and Y . Denote by C and R the
covariance and relation matrices of Z. Then it is easy to note that

VXX =
1

2
ℜ[C +R], VY Y =

1

2
ℜ[C −R], VXY =

1

2
ℑ[R− C], VY X =

1

2
ℑ[R+ C].

where ℜ[·] and ℑ[·] stand for the real and imaginary parts of a complex number or matrix, respec-
tively. Conversely, we have from a simple calculation that

C = VXX + VY Y + i(VY X − VXY ), R = VXX − VY Y + i(VY X + VXY ).

If J is not regular enough, the covariance and relation matrix functions may not exist point-
wisely. Hence, it is necessary to give rigorous definitions of the covariance and the relation of J .
Let D := D(R3) be the space of test functions on R3, which is C∞

0 (R3) equipped with a locally
convex topology. Denote by D′ := D′(R3) the space of distributions on R3, which is the dual space
of D equipped with the weak-star topology. Denote by 〈·, ·〉 the dual product between (D′)3 and D3.
Then the derivative of a distribution ψ ∈ (D′)3 is defined by

〈∂xj
ψ,ϕ〉 = −〈ψ, ∂xj

ϕ〉 ∀ϕ ∈ D3

for j = 1, 2, 3. We refer to [1] and references cited therein for more details about distributions. Define
the covariance operator QC

J
and the relation operator QR

J
by

〈QC
Jϕ,ψ〉 :=

∫

R3

∫

R3

ψ∗(y)E [J(x)J∗(y)]ϕ(x)dxdy

=

∫

R3

∫

R3

ψ∗(y)CJ (x, y)ϕ(x)dxdy
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and

〈QR
Jϕ,ψ〉 :=

∫

R3

∫

R3

ψ∗(y)E[J(x)J(y)⊤]ϕ(x)dxdy

=

∫

R3

∫

R3

ψ∗(y)RJ (x, y)ϕ(x)dxdy

for any ϕ,ψ ∈ D3, where the star denotes the complex conjugate.
Hereafter, we use the notation W r,p := W r,p(R3) and Cr,α := Cr,α(R3) for simplicity. For any

space X, we denote by X the Cartesian product vector space X3 for convenience. Without loss of
generality, we may assume that the current density J is a centered Gaussian random field. If not,
it is essentially a deterministic inverse source problem to determine the nonzero mean, which has
been well studied in [6]. In addition, the current density J is required to satisfying the following
conditions.

Assumption 2.1. Let J ∈ D
′ be a complex-valued isotropic centered Gaussian random vector field

compactly supported in O ⊂ R3 with the covariance kernel CJ (x, y) and the relation kernel RJ (x, y)
depending only on |x− y|. Assume that

(i) the real and imaginary parts of J are independent and identically distributed with the relation

operator QR
J
= 0;

(ii) the covariance operator QC
J

defined through the kernel CJ is a pseudo-differential operator

of order s ∈ [0, 52), which implies that QC
J

has a principal symbol A(x)|ξ|−2s, where A(x) ∈
C∞
0 (R3;C3×3) is a smooth matrix function with a compact support contained in O.

Given the current density J satisfying Assumption 2.1, the direct scattering problem is to study
the well-posedness of Maxwell’s equations (1.1). We intend to answer the following questions: what
are the conditions of J such that Maxwell’s equations (1.1) admit a unique solution (E,H)? What
are the regularity for E and H if there is a unique solution? For the inverse scattering problem,
the goal is not to determine the random current density J but to determine the matrix A, which
represents the micro-correlation strength of the current density J , from a knowledge of the measured
electric field E. We are concerned with the uniqueness for the inverse scattering problem: can A or
what part of A be uniquely determined by the available data? To give a detailed explanation of A,
we rewrite J = (J1, J2, J3)

⊤ by its components. Then a simple calculation yields that

J(x)J∗(y)
d
=




J1(x)J1(y) · · · J1(x)J3(y)
...

. . .
...

J3(x)J1(y) · · · J3(x)J3(y)


 ,

where
d
= means “equals in distribution”. As a result, each entry in A(x) is determined by the

strength of covariance operator between Jj and Jl with j, l = 1, 2, 3.

2.2. Well-posedness. If the current density J ∈ D
′ is a distribution, then Maxwell’s equations

(1.1) do not hold point-wisely any more. To establish the well-posedness of (1.1) in some proper
sense, we impose the weak Silver–Müller radiation condition

lim
r→∞

∫

|x|=r

(
H × x

|x| −E
)
· φds = 0 ∀φ ∈ D,

which characterizes the behavior of solutions to (1.1) at infinity.
Eliminating the magnetic field H from (1.1), multiplying a test function φ ∈ D, and integrating

over R3, we get
∫

R3

(∇× (∇×E)) · φdx− k2
∫

R3

E · φdx = ik

∫

R3

J · φdx ∀φ ∈ D,
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which, by derivatives of distributions, leads to
∫

R3

(−∆− k2)E · φdx−
∫

R3

(∇ ·E)(∇ · φ)dx = ik

∫

R3

J · φdx ∀φ ∈ D. (2.1)

Moreover, for any φ ∈ D, it follows from the second equation in (1.1) that we get ∇(∇ · φ) ∈ D

and hence∫

R3

(∇×H) · (∇(∇ · φ))dx = −ik

∫

R3

E · (∇(∇ · φ))dx+

∫

R3

J · (∇(∇ · φ))dx,

which implies
∫

R3

(∇ ·E)(∇ · φ)dx =
i

k

∫

R3

J · (∇(∇ · φ))dx ∀φ ∈ D. (2.2)

Define the space

X :=
{
U ∈ D

′ :

∫

R3

U · (∇(∇ · φ)) dx = 0 ∀φ ∈ D

}
.

Apparently, X is non-empty since all divergence free vector fields are included. If J ∈ X, we obtain
from (2.1)–(2.2) that

∫

R3

[
(∆ + k2)E + ikJ

]
· φdx = 0 ∀φ ∈ D,

which indicates that the following Helmholtz equation holds in the distribution sense:

(∆ + k2)E = −ikJ . (2.3)

Theorem 2.2. Let p ∈ (32 , 2], s ∈ (3
p
− 1

2 ,
3
2 ] and H = s− 3

2 ∈ (3
p
−2, 0]. Assume that J ∈ X∩WH−ǫ,p

comp

for any ǫ > 0 with a compact support contained in O. Then (2.3) admits a unique solution

E(x) = ik

∫

R3

Φk(x, y)J(y)dy a.s.

in X ∩W−H+ǫ,q
loc with q satisfying 1

p
+ 1

q
= 1 and

Φk(x, y) =
eik|x−y|

4π|x− y|
being the fundamental solution for the three-dimensional Helmholtz equation.

Proof. It has been shown in [20] that the scalar Helmholtz equation in R3 has a unique solution in
W−H+ǫ,q, which implies the well-posedness of (2.3) inW−H+ǫ,q. It then suffices to show E ∈ X. In
fact, noting ∇xΦk(x, y) = −∇yΦk(x, y), we have for any φ ∈ D that

∫

R3

E(x) · ∇x (∇x · φ) dx = ik

∫

R3

[∫

R3

Φk(x, y)∇x (∇x · φ) dx
]
· J(y)dy

= ik

∫

R3

∇y

[∫

R3

Φk(x, y) (∇x · φ) dx
]
· J(y)dy

= −ik

∫

R3

∇y

[∫

R3

(∇xΦk(x, y)) · φ(x)dx
]
· J(y)dy

= ik

∫

R3

∇y

[∫

R3

(∇yΦk(x, y)) · φ(x)dx
]
· J(y)dy

= ik

∫

O

(
∇y

(
∇y ·

[∫

R3

Φk(x, y)φ(x)dx

]))
· J(y)dy. (2.4)
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Let

f(y) =

∫

R3

Φk(x, y)φ(x)dx, y ∈ O

and choose a sufficiently large ball B such that O ( B. Define a smooth extension f̃ on R3 such
that

f̃(y) =

{
f(y), y ∈ O,

0, y ∈ R3 \B.

It is easy to note that f̃ ∈ D. Since J ∈ X, we have from (2.4) that
∫

R3

E(x) · ∇x (∇x · φ) dx = ik

∫

O
(∇y (∇y · f(y))) · J(y)dy

= ik

∫

R3

(
∇y

(
∇y · f̃(y)

))
· J(y)dy

= 0,

which completes the proof. �

Corollary 2.3. Under the assumptions in Theorem 2.2, the Helmholtz equation (2.3) together with

∇×E = ikH (2.5)

is equivalent to Maxwell’s equations (1.1) in the distribution sense.

Moreover, it holds H ∈
(
WH−ǫ,p(curl)

)′
which is the dual space of WH−ǫ,p(curl) equipped with

norm

‖h‖WH−ǫ,p(curl) =
(
‖h‖2

WH−ǫ,p + ‖∇ × h‖2
WH−ǫ,p

) 1

2 .

Proof. Based on the above discussions, it has been shown that any solution of (1.1) is also a solution

of (2.3)–(2.5). Next we show that if J ∈ X ∩WH−ǫ,p
comp and E ∈ X ∩W−H+ǫ,q is a solution of

(2.3)–(2.5) as stated in Theorem 2.2, then E also solves (1.1).
Noting E ∈ X and using (2.3) and (2.5), we get for any φ ∈ D that

−ik

∫

R3

J · φdx =

∫

R3

(∆ + k2)E · φdx

=

∫

R3

[
−∇× (∇×E) +∇(∇ ·E) + k2E

]
· φdx

= −
∫

R3

∇× (ikH) · φdx+

∫

R3

E · (∇(∇ · φ)) dx+ k2
∫

R3

E · φdx

= −ik

∫

R3

(∇×H + ikE) · φdx,

which implies that

∇×H = −ikE + J .

Moreover, since E ∈ X ∩W−H+ǫ,q
loc , we have for any φ ∈ D that

∣∣∣∣
∫

R3

H · φdx
∣∣∣∣ =

∣∣∣∣
1

ik

∫

R3

(∇×E) · φdx
∣∣∣∣ =

1

k

∣∣∣∣
∫

R3

E · (∇× φ)dx
∣∣∣∣

≤ 1

k
‖E‖W−H+ǫ,q‖∇ × φ‖WH−ǫ,p

≤ 1

k
‖E‖W−H+ǫ,q‖φ‖WH−ǫ,p(curl),

which completes the proof. �
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It should be pointed out that if J ∈ X satisfies Assumption 2.1 with s ∈ (3
p
− 1

2 ,
3
2 ], then it also

holds J ∈WH−ǫ,p with H = s− 3
2 and p > 1 according to Lemma 2.6 in [20], i.e., the assumptions

in Theorem 2.2 are satisfied. If J ∈ X satisfies Assumption 2.1 with s ∈ (32 ,
5
2), the current density J

turns to be smoother such that J ∈ C0,α for all α ∈ (0, s− 3
2) according to Lemma 2.6 in [20]. The

well-posedness of the problem in this case has been investigated in [21]. Therefore, we only need to
consider the current density J which satisfies Assumption 2.1.

3. Inverse scattering problem

This section addresses the inverse scattering problem. According to Assumption 2.1, the centered
Gaussian random field J is determined by its covariance operator QC

J
. To recover the strength matrix

A(x) of the operator QC
J
, it is required to recover the strength of the covariance operator between Jj

and Jl, j, l = 1, 2, 3, where J = (J1, J2, J3)
⊤. For convenience, we denote by ajl(x) = arjl(x)+ iaijl(x)

the (j, l)-entry of the strength matrix A(x). We discuss the covariance for each component of J and
the covariance between different components of J , separately.

3.1. Covariance for each component of J. First, we consider the covariance operator for each
component of J . By Theorem 2.2, the energy of each of the components of E is

E|Ej(x)|2 = k2
∫

R3

∫

R3

Φk(x, y)Φk(x, z)E[Jj(y)Jj(z)]dydz

=
k2

(4π)2

∫

R3

∫

R3

eik|x−y|−ik|x−z|

|x− y||x− z| Cjj(y, z)dydz,

where Cjj, j = 1, 2, 3 is the (j, j)-entry of the kernel CJ .
Let Cjj = Cr

jj + iC i
jj where Cr

jj and C i
jj are the real and imaginary parts of Cjj, respectively. It

follows from Assumption 2.1 that the principal symbols of Cr
jj and C i

jj are arjj|ξ|−2s and aijj|ξ|−2s,
respectively.

Theorem 3.1. Let Assumption 2.1 hold and U ⊂ R3 be a bounded open set which has a positive

distance to O. For j = 1, 2, 3, the strength arjj is uniquely determined by

lim
k→∞

k2s−2E|Ej(x)|2 =
1

(4π)2

∫

R3

1

|x− y|2a
r
jj(y)dy, x ∈ U

and aijj ≡ 0.

Remark 3.2. The diagonal entry ajj of the strength matrix A is a real-valued function and it can

be uniquely determined by the high frequency limit of the phaseless data E|Ej|2 on an open set U ,
j = 1, 2, 3.

Proof. Rewriting E|Ej(x)|2 through Cr
jj and C i

jj, one get

E|Ej(x)|2 =
k2

(4π)2

∫

R3

∫

R3

cos(k|x− y| − k|x− z|)Cr
jj(y, z)− sin(k|x− y| − k|x− z|)C i

jj(y, z)

|x− y||x− z| dydz

+
ik2

(4π)2

∫

R3

∫

R3

sin(k|x− y| − k|x− z|)Cr
jj(y, z) + cos(k|x− y| − k|x− z|)C i

jj(y, z)

|x− y||x− z| dydz,

which apparently leads to

E|Ej(x)|2 =
k2

(4π)2
ℜ
[∫

R3

∫

R3

eik(|x−y|−|x−z|)Cr
jj(y, z)

|x− y||x− z| dydz

]

− k2

(4π)2
ℑ
[∫

R3

∫

R3

eik(|x−y|−|x−z|)C i
jj(y, z)

|x− y||x− z| dydz

]
(3.1)
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and

ℑ
[∫

R3

∫

R3

eik(|x−y|−|x−z|)Cr
jj(y, z)

|x− y||x− z| dydz

]
+ ℜ

[∫

R3

∫

R3

eik(|x−y|−|x−z|)C i
jj(y, z)

|x− y||x− z| dydz

]
= 0. (3.2)

It then suffices to consider the integrals

I1(x) :=

∫

R3

∫

R3

eik(|x−y|−|x−z|)Cr
jj(y, z)

|x− y||x− z| dydz

and

I2(x) :=

∫

R3

∫

R3

eik(|x−y|−|x−z|)C i
jj(y, z)

|x− y||x− z| dydz.

The proof consists of four steps.
Step 1. For any x ∈ U , by introducing a smooth function θ ∈ C∞

0 (R3) such that θ|U ≡ 1 and
supp(θ) ⊂ R3\O, we get

I1(x) =

∫

R3

∫

R3

eik(|x−y|−|x−z|)

|x− y||x− z| C
r
jj(y, z)θ(x)dydz.

Denote

S1(y, z, x) := Cr
jj(y, z)θ(x) =

1

(2π)3

∫

R3

ei(y−z)·ξs1(y, x, ξ)dξ.

It can be easily verified that the symbol s1(y, x, ξ) = crjj(y, ξ)θ(x), where crjj(y, ξ) is the symbol of

the kernel Cr
jj (cf. [20]). By Assumption 2.1, the leading term of s1, which is the principal symbol

of S1, has the form

sp1(y, ξ) = arjj(y)θ(x)|ξ|−2s.

Following [20], we define an invertible transformation τ : R9 → R9 given by τ(y, z, x) = (g, h, x),
where g = (g1, g2, g3) and h = (h1, h2, h3) with

g1 =
1

2
(|x− y| − |x− z|) , h1 =

1

2
(|x− y|+ |x− z|) ,

g2 =
1

2

[
|x− y| arccos

(y3 − x3
|x− y|

)
− |x− z| arccos

(z3 − x3
|x− z|

)]
,

h2 =
1

2

[
|x− y| arccos

(y3 − x3
|x− y|

)
+ |x− z| arccos

(z3 − x3
|x− z|

)]
,

g3 =
1

2

[
|x− y| arctan

(y2 − x2
y1 − x1

)
− |x− z| arctan

(z2 − x2
z1 − x1

)]
,

h3 =
1

2

[
|x− y| arctan

(y2 − x2
y1 − x1

)
+ |x− z| arctan

(z2 − x2
z1 − x1

)]
.

Then

I1(x) =

∫

R3

∫

R3

e2ik(e1·g)S2(g, h, x)dgdh,

where e1 = (1, 0, 0) and

S2(g, h, x) =S1(τ
−1(g, h, x))

det
(
(τ−1)′(g, h, x)

)

((g + h) · e1)((h − g) · e1)
= : S1(τ

−1(g, h, x))Lτ (g, h, x). (3.3)
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Step 2. To get an explicit expression of S2 with respect to (g, h, x), we define another invertible
transformation η : R9 → R9 given by η(y, z, x) = (v,w, x) with v = y − z and w = y + z. Let the
kernel

S3(v,w, x) := S1 ◦ η−1(v,w, x) = S1

(v + w

2
,
w − v

2
, x
)

=
1

(2π)3

∫

R3

eiv·ξs1

(v + w

2
, x, ξ

)
dξ

=
1

(2π)3

∫

R3

eiv·ξs3 (w, x, ξ) dξ, (3.4)

where we have used the properties of symbols in the last step (cf. [11, Lemma 18.2.1]). More precisely,
the symbol s3 is defined by

s3(w, x, ξ) = e〈−iDv,Dξ〉s1

(
v + w

2
, x, ξ

) ∣∣∣∣
v=0

,

which has an asymptotic expansion

s3(w, x, ξ) ∼
∞∑

n=1

〈−iDv ,Dξ〉n
n!

s1

(
v + w

2
, x, ξ

) ∣∣∣∣
v=0

.

Hence the principal symbol of s3 is

sp3(w, x, ξ) = sp1

(
v + w

2
, x, ξ

) ∣∣∣∣
v=0

= arjj

(w
2

)
|ξ|−2sθ(x).

Next, define the diffeomorphism γ := η ◦ τ−1 : (g, h, x) 7→ (v,w, x). It preserves the plane
{(g, h, x) ∈ R9 : g = 0}, i.e., γ(0, h, x) = (0, w, x). Now we are able to consider the kernel S1 ◦ τ−1

in (3.3):

S1 ◦ τ−1(g, h, x) = S1 ◦ η−1 ◦ η ◦ τ−1(g, h, x) = S3 ◦ γ(g, h, x),

where the kernel S3 ◦ γ admits a symbol s̃3(h, x, ξ) under the diffeomorphism γ satisfying

S3 ◦ γ(g, h, x) =
1

(2π)3

∫

R3

eig·ξs̃3(h, x, ξ)dξ.

Comparing the above kernel S3 ◦ γ(g, h, x) with S3(v,w, x) defined in (3.4), we may check that their
symbols have the following relationship (cf. [11, Theorem 18.2.9] or [14]):

s̃3(h, x, ξ) = s3

(
w(0, h, x), x,

(
∂v

∂g
(0, h, x)

)−⊤

ξ

)∣∣∣∣det
(
∂v

∂g
(0, h, x)

)∣∣∣∣
−1

+ r1(h, x, ξ)

= sp3

(
w(0, h, x), x,

(
∂v

∂g
(0, h, x)

)−⊤

ξ

)∣∣∣∣det
(
∂v

∂g
(0, h, x)

)∣∣∣∣
−1

+ r2(h, x, ξ)

= arjj

(
w(0, h, x)

2

) ∣∣∣∣∣

(
∂v

∂g
(0, h, x)

)−⊤

ξ

∣∣∣∣∣

−2s ∣∣∣∣det
(
∂v

∂g
(0, h, x)

)∣∣∣∣
−1

θ(x) + r2(h, x, ξ)

=: s̃p3(h, x, ξ) + r2(h, x, ξ),

where the residuals r1, r2 ∈ S−2s−1. Here Sm denotes the space of symbols of order m (cf. [11]).
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We conclude from the above discussions that

S2(g, h, x) = S1(τ
−1(g, h, x))Lτ (g, h, x)

=
1

(2π)3

∫

R3

eig·ξs̃3(h, x, ξ)L
τ (g, h, x)dξ

=
1

(2π)3

∫

R3

eig·ξs2(h, x, ξ)dξ,

where in the last step we have used the same property as that used in (3.4). Here the symbol s2
satisfies

s2(h, x, ξ) = sp2(h, x, ξ) + r3(h, x, ξ),

where the residual r3 ∈ S−2s−1 and the principal symbol

sp2(h, x, ξ) = s̃p3(h, x, ξ)L
τ (0, h, x).

Step 3. Based on the expression of S2, the integral I1(x) has the form

I1(x) =

∫

R3

∫

R3

e2ik(e1·g)S2(g, h, x)dgdh

=

∫

R3

∫

R3

e2ik(e1·g)
[

1

(2π)3

∫

R3

eig·ξ[s̃p3(h, x, ξ)L
τ (0, h, x) + r3(h, x, ξ)]dξ

]
dgdh

=

∫

R3

∫

R3

[
1

(2π)3

∫

R3

eig·(ξ+2ke1)dg

]
[s̃p3(h, x, ξ)L

τ (0, h, x) + r3(h, x, ξ)]dξdh

=

∫

R3

[s̃p3(h, x,−2ke1)L
τ (0, h, x) + r3(h, x,−2ke1)]dh.

It then suffices to calculate

s̃p3(h, x,−2ke1) = arjj

(
w(0, h, x)

2

) ∣∣∣∣∣

(
∂v

∂g
(0, h, x)

)−⊤

(−2ke1)

∣∣∣∣∣

−2s ∣∣∣∣det
(
∂v

∂g
(0, h, x)

)∣∣∣∣
−1

θ(x)

and

Lτ (0, h, x) =

∣∣det
(
(τ−1)′(0, h, x)

)∣∣
(h · e1)2

.

Noting that

h1 + g1 = |x− y|, h1 − g1 = |x− z|,
h2 + g2
h1 + g1

= arccos
(y3 − x3
|x− y|

)
,

h2 − g2
h1 − g1

= arccos
(z3 − x3
|x− z|

)
,

h3 + g3
h1 + g1

= arctan
(y2 − x2
y1 − x1

)
,

h3 − g3
h1 − g1

= arctan
(z2 − x2
z1 − x1

)
,
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we get

y1 = x1 + (h1 + g1) sin

(
h2 + g2
h1 + g1

)
cos

(
h3 + g3
h1 + g1

)
,

y2 = x2 + (h1 + g1) sin

(
h2 + g2
h1 + g1

)
sin

(
h3 + g3
h1 + g1

)
,

y3 = x3 + (h1 + g1) cos

(
h2 + g2
h1 + g1

)
,

z1 = x1 + (h1 − g1) sin

(
h2 − g2
h1 − g1

)
cos

(
h3 − g3
h1 − g1

)
,

z2 = x2 + (h1 − g1) sin

(
h2 − g2
h1 − g1

)
sin

(
h3 − g3
h1 − g1

)
,

z3 = x3 + (h1 − g1) cos

(
h2 − g2
h1 − g1

)
.

A simple calculation yields that

∂v

∂g
(0, h, x) = 2




sinα cos β − α cosα cosβ + β sinα sinβ cosα cos β − sinα sin β
sinα sin β − α cosα sin β − β sinα cos β cosα sin β sinα cos β

cosα+ α sinα − sinα 0


 ,

where α := h2

h1
, β := h3

h1
, and

(τ−1)′(0, h, x) =




1
2
∂v
∂g

1
2
∂v
∂g

I

−1
2
∂v
∂g

1
2
∂v
∂g

I

0 0 I


 .

Here I is the 3× 3 identity matrix. It then leads to

det

(
∂v

∂g
(0, h, x)

)
= 8 sinα,

(
∂v

∂g
(0, h, x)

)−⊤

e1 =
1

2




sinα cos β
sinα sin β

cosα




and thus

s̃p3(h, x,−2ke1) = arjj

(
w(0, h, x)

2

)
k−2s

8| sinα|θ(x).

To get Lτ (0, h, x), we next consider the matrix

(τ−1)′(0, h, x) =
∂(y, z, x)

∂(g, h, x)

∣∣∣∣
g=0

=




1
2
∂v
∂g

1
2
∂v
∂g

I

−1
2
∂v
∂g

1
2
∂v
∂g

I

0 0 I


 ,

which gives det
(
(τ−1)′(0, h, x)

)
= 8 sin2 α and

Lτ (0, h, x) =
8 sin2 α

(h · e1)2
.

Step 4. Based on the a priori estimates above, we obtain

I1(x) =

∫

R3

[
arjj

(
w(0, h, x)

2

) | sinα|
(h · e1)2

k−2sθ(x) + r3(h, x,−2ke1)

]
dh,
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where w(0,h,x)
2 = (h1 sinα cos β, h1 sinα sin β, h1 cosα) + x.

Define another coordinate transform ρ : R3 → R3 by

ρ(h) = ζ := (h1 sinα cos β, h1 sinα sinβ, h1 cosα) + x.

Noting that |ζ − x| = h1 = h · e1 and det((ρ−1)′) = 1
det(ρ′) with

ρ′ =




sinα cos β − α cosα cos β + β sinα sin β cosα cos β − sinα sin β
sinα sin β − α cosα sin β − β sinα cos β cosα sin β sinα cos β

cosα+ α sinα − sinα 0


 ,

we have

I1(x) =

[∫

R3

1

|ζ − x|2 a
r
jj(ζ)dζ

]
k−2s +O(k−2s−1), x ∈ U .

Following the same procedure as above, we may show that

I2(x) =

[∫

R3

1

|ζ − x|2 a
i
jj(ζ)dζ

]
k−2s +O(k−2s−1), x ∈ U .

It follows from (3.1)–(3.2) that

lim
k→∞

k2s−2E|Ej(x)|2 =
1

(4π)2

∫

R3

1

|ζ − x|2 a
r
jj(ζ)dζ

and ∫

R3

1

|ζ − x|2a
i
jj(ζ)dζ = 0,

which imply that arjj and aijj can be uniquely determined (cf. [20, Theorem 4.6]) and in particular

aijj = 0. �

3.2. Covariance between different components of J. To recover the non-diagonal entries of
the strength matrix A(x), we now consider the covariance between different components of J . By
Theorem 2.2, we have

E[Ej(x)El(x)] = k2
∫

R3

∫

R3

Φk(x, y)Φk(x, z)E[Jj(y)Jl(z)]dydz

=
k2

(4π)2

∫

R3

∫

R3

eik|x−y|−ik|x−z|

|x− y||x− z| Cjl(y, z)dydz

for j 6= l and j, l = 1, 2, 3. Denote by Cr
jl and C i

jl the real and imaginary parts of Cjl, respectively.

The recovery of strengths arjl and aijl of C
r
jl and C i

jl are stated in the following theorem.

Theorem 3.3. Let Assumption 2.1 hold and U ⊂ R3 be a bounded open set which has a positive

distance to O. For j, l = 1, 2, 3 and j 6= l, the strengths arjl and aijl are uniquely determined by

lim
k→∞

k2s−2ℜE[Ej(x)El(x)] =
1

(4π)2

∫

R3

1

|x− y|2a
r
jl(y)dy, x ∈ U

and

lim
k→∞

k2s−2ℑE[Ej(x)El(x)] =
1

(4π)2

∫

R3

1

|x− y|2 a
i
jl(y)dy, x ∈ U .

Remark 3.4. The non-diagonal entry ajl of the strength matrix A is a complex-valued function and

it can be uniquely determined by the high frequency limit of the phased data E[EjEl] on an open set

U with j, l = 1, 2, 3 and j 6= l.
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Proof. Using Cr
jl and C i

jl, we may split E[Ej(x)El(x)] into the real and imaginary parts

E[Ej(x)El(x)]

=
k2

(4π)2

∫

R3

∫

R3

cos(k|x− y| − k|x− z|)Cr
jl(y, z)− sin(k|x− y| − k|x− z|)C i

jl(y, z)

|x− y||x− z| dydz

+
ik2

(4π)2

∫

R3

∫

R3

sin(k|x− y| − k|x− z|)Cr
jl(y, z) + cos(k|x− y| − k|x− z|)C i

jl(y, z)

|x− y||x− z| dydz

=
k2

(4π)2
(ℜ[I3(x)]−ℑ[I4(x)]) +

ik2

(4π)2
(ℑ[I3(x)] + ℜ[I4(x)]) ,

where

I3(x) :=

∫

R3

∫

R3

eik(|x−y|−|x−z|)Cr
jl(y, z)

|x− y||x− z| dydz

and

I4(x) :=

∫

R3

∫

R3

eik(|x−y|−|x−z|)C i
jl(y, z)

|x− y||x− z| dydz.

Following the same procedure as that in the proof of Theorem 3.1, we may show for any x ∈ U
that

I3(x) =

[∫

R3

1

|ζ − x|2a
r
jl(ζ)θ(x)dζ

]
k−2s +O(k−2s−1)

and

I4(x) =

[∫

R3

1

|ζ − x|2a
i
jl(ζ)θ(x)dζ

]
k−2s +O(k−2s−1).

Consequently, we have for any x ∈ U that

lim
k→∞

k2sℑ[I3(x)] = lim
k→∞

k2sℑ[I4(x)] = 0

and

lim
k→∞

k2sℜ[I3(x)] =
∫

R3

1

|ζ − x|2 a
r
jl(ζ)θ(x)dζ,

lim
k→∞

k2sℜ[I4(x)] =
∫

R3

1

|ζ − x|2 a
i
jl(ζ)θ(x)dζ,

which completes the proof. �

Remark 3.5. The above results can be combined into

lim
k→∞

k2s−2E[Ej(x)El(x)] =
1

(4π)2

∫

R3

1

|x− y|2 ajl(y)dy, j, l = 1, 2, 3, x ∈ U . (3.5)

Equivalently, we have the matrix form

lim
k→∞

k2s−2E [E(x)E∗(x)] =
1

(4π)2

∫

R3

1

|x− y|2A(y)dy, x ∈ U , (3.6)

which shows that the micro-correlation strength matrix function A(x) can be uniquely determined by

the high frequency limit of the data E [EE∗] on an open set U .
Remark 3.6. If the covariance operators between components Jj and Jl are pseudo-differential

operators of the same order with the principal symbols ajl(x)|ξ|−2s, then all the strength {ajl}j,l=1,2,3

can be recovered at the same time by (3.6).
However, if the covariance operators between Jj and Jl are of different orders with the principal

symbols ajl(x)|ξ|−2sjl where sjl ∈ [0, 52), then only the strength of the roughest term can be recovered

by (3.6). For example, if s11 < sjl for any (j, l) 6= (1, 1) and j, l = 1, 2, 3, then the principal symbol
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of the covariance operator of J is A(x)|ξ|−2s11 with A(x) = diag{a11(x), 0, 0}. In this case, the other

strength ajl(x) can be recovered by modifying (3.5) as follows:

lim
k→∞

k2sjl−2E[Ej(x)El(x)] =
1

(4π)2

∫

R3

1

|x− y|2ajl(y)dy, j, l = 1, 2, 3, x ∈ U .

By Theorems 3.1 and 3.3, we conclude that the strength matrix A(x) of the covariance operator
QC

J
can be uniquely determined by the high frequency limit of the expectation of the electric field E

measured on an open set U . Moreover, if only the energy of the electric field |Ej(x)|2, j = 1, 2, 3, can
be observed on an open bounded domain U , then the strength of Jj can be uniquely determined by
a single realization of the phaseless data almost surely, which is discussed in the following section.

4. Recovery by a single path

In this section, we present some ergodicity results to avoid using all the sample paths in the
recovery of the strength. We show that the diagonal entries of the micro-correlation strength matrix
can be uniquely determined almost surely by the amplitude of the electric field averaged over the
frequency band at a single path.

To indicate the dependence on the wavenumber k of the electric field, we use the notation Ej(x; k)
from now on. The following theorem is the main result of this section.

Theorem 4.1. Let Assumption 2.1 hold and U ⊂ R3 be a bounded open set which has a positive

distance to O. The strength ajj is uniquely determined almost surely by

lim
K→∞

1

K − 1

∫ K

1
k2s−2|Ej(x; k)|2dk =

1

(4π)2

∫

R3

1

|x− y|2 ajj(y)dy, x ∈ U .

The above theorem indicates that it is statistically stable to recover the diagonal entries of the
micro-correlation strength matrix since only a single realization is needed for the random source.
We present some preliminaries on ergodicity before showing the proof of Theorem 4.1.

4.1. Ergodic relation. For j = 1, 2, 3, define

Tj(x) :=
1

(4π)2

∫

R3

1

|x− y|2ajj(y)dy.

According to Theorem 3.1, it holds ajj = arjj + iaijj = arjj and

lim
k→∞

k2s−2E|Ej(x; k)|2 = Tj(x), x ∈ U , (4.1)

which implies

lim
K→∞

1

K − 1

∫ K

1
k2s−2E|Ej(x; k)|2dk = Tj(x). (4.2)

In fact, for any ǫ > 0, it follows from (4.1) that there exists some k∗ = k∗(ǫ) > 0 such that
∣∣k2s−2E|Ej(x; k)|2 − Tj(x)

∣∣ < ǫ

2
∀ k > k∗.

On the other hand, there exists K∗ = K∗(ǫ) > 0 such that for any K > K∗

∣∣∣∣
1

K − 1

∫ K

1

(
k2s−2E|Ej(x; k)|2 − Tj(x)

)
dk

∣∣∣∣

≤ 1

K − 1

∫ k∗

1

∣∣k2s−2E|Ej(x; k)|2 − Tj(x)
∣∣ dk +

1

K − 1

∫ K

k∗

∣∣k2s−2E|Ej(x; k)|2 − Tj(x)
∣∣ dk

≤ C

K − 1
+

K − k∗

K − 1

ǫ

2
< ǫ

for some constant C > 0, and hence (4.2) holds.
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To prove the result given in Theorem 4.1, due to (4.2), it then suffices to show

lim
K→∞

1

K − 1

∫ K

1
k2s−2

(
|Ej(x; k)|2 − E|Ej(x; k)|2

)
dk = 0. (4.3)

The following propositions are required in order to get the ergodic relation (4.3). The proofs can be
found in [8, 14,15].

Proposition 4.2. Let Y (t) be a centered random field with E[Y (t)] = 0. If the covariance function

R(·, ·) is continuous and satisfies

|R(t, u)| = |E[Y (t)Y (u)]| . tα + uα

1 + |t− u|β ,

where the constants α, β satisfy 0 ≤ 2α < β < 1, then

lim
K→∞

1

K − 1

∫ K

1
Y (k)dk = 0

holds almost surely.

Proposition 4.3. Let X and Y be centered Gaussian random variables with E[X] = E[Y ] = 0.
Then the following identity holds:

E
[
(X2 − E[X2])(Y 2 − E[Y 2])

]
= 2(E[XY ])2.

4.2. Proof of Theorem 4.1. Define

Yj(x; k) := k2s−2
(
|Ej(x; k)|2 − E|Ej(x; k)|2

)
, x ∈ U

for j = 1, 2, 3, which apparently satisfies E[Y (x; k)] = 0. Next is to estimate E[Yj(x; k1)Yj(x; k2)] for
any k1, k2 ≥ 1.

Let Ej = Er
j + iEi

j , j = 1, 2, 3, where Er
j and Ei

j are the real and imaginary parts of Ej . A simple
calculation yields

Yj(x; k) = k2s−2
(
(Er

j(x; k))
2 − E(Er

j(x; k))
2 + (Ei

j(x; k))
2 − E(Ei

j(x; k))
2
)

and

|E[Yj(x; k1)Yj(x; k2)]|
k2s−2
1 k2s−2

2

= E
[ (

(Er
j(x; k1))

2 − E(Er
j(x; k1))

2
) (

(Er
j(x; k2))

2 − E(Er
j(x; k2))

2
) ]

+ E
[ (

(Er
j(x; k1))

2 − E(Er
j(x; k1))

2
) (

(Ei
j(x; k2))

2 − E(Ei
j(x; k2))

2
) ]

+ E
[ (

(Ei
j(x; k1))

2 − E(Ei
j(x; k1))

2
) (

(Er
j(x; k2))

2 − E(Er
j(x; k2))

2
) ]

+ E
[ (

(Ei
j(x; k1))

2 − E(Ei
j(x; k1))

2
) (

(Ei
j(x; k2))

2 − E(Ei
j(x; k2))

2
) ]

= 2
(
E[Er

j(x; k1)E
r
j(x; k2)]

)2
+ 2
(
E[Er

j(x; k1)E
i
j(x; k2)]

)2

+ 2
(
E[Ei

j(x; k1)E
r
j(x; k2)]

)2
+ 2
(
E[Ei

j(x; k1)E
i
j(x; k2)]

)2

=: Ij,1 + Ij,2 + Ij,3 + Ij,4, (4.4)

where we have used Proposition 4.3.
Using the facts

ℜ[g]ℜ[h] = 1

2
ℜ[gh+ gh],

ℜ[g]ℑ[h] = −ℜ[g]ℜ[ih] = −1

2
ℜ[igh− igh] =

1

2
ℑ[gh− gh],
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ℑ[g]ℑ[h] = ℜ[ig]ℜ[ih] = 1

2
ℜ[gh− gh]

for any g, h ∈ C, we get

Ij,1 =
1

2
ℜ
[
E[Ej(x; k1)Ej(x; k2)] + E[Ej(x; k1)Ej(x; k2)]

]2

≤ |E[Ej(x; k1)Ej(x; k2)]|2 +
∣∣∣E[Ej(x; k1)Ej(x; k2)]

∣∣∣
2
,

Ij,2 =
1

2
ℑ
[
E[Ej(x; k1)Ej(x; k2)]− E[Ej(x; k1)Ej(x; k2)]

]2

≤ |E[Ej(x; k1)Ej(x; k2)]|2 +
∣∣∣E[Ej(x; k1)Ej(x; k2)]

∣∣∣
2
,

Ij,3 =
1

2
ℑ
[
E[Ej(x; k1)Ej(x; k2)]− E[Ej(x; k1)Ej(x; k2)]

]2

≤ |E[Ej(x; k1)Ej(x; k2)]|2 +
∣∣∣E[Ej(x; k1)Ej(x; k2)]

∣∣∣
2
,

Ij,4 =
1

2
ℜ
[
E[Ej(x; k1)Ej(x; k2)]− E[Ej(x; k1)Ej(x; k2)]

]2

≤ |E[Ej(x; k1)Ej(x; k2)]|2 +
∣∣∣E[Ej(x; k1)Ej(x; k2)]

∣∣∣
2
.

For k1, k2 ≥ 1, let

Aj(k1, k2) = |E[Ej(x; k1)Ej(x; k2)]|2 ,

Bj(k1, k2) =
∣∣∣E[Ej(x; k1)Ej(x; k2)]

∣∣∣
2
.

It suffices to estimate Aj(k1, k2) and Bj(k1, k2).
By Assumption 2.1, we may easily verify that

E [Ej(x; k1)Ej(x; k2)]

= k1k2

∫

R3

∫

R3

Φk1(x, y)Φk2(x, z)E [Jj(y)Jj(z)] dydz

= k1k2

∫

R3

∫

R3

Φk1(x, y)Φk2(x, z)Rjj(y, z)dydz

= 0,

where Rjj is the (j, j)-entry of the relation kernel RJ of the relation operator QR
J
. Consequently,

Aj(k1, k2) = 0 ∀ k1, k2 ≥ 1.

For the term Bj(k1, k2), we have

E
[
Ej(x; k1)Ej(x; k2)

]
= k1k2

∫

R3

∫

R3

Φk1(x, y)Φk2(x, z)E
[
Jj(y)Jj(z)

]
dydz

=
k1k2
(4π)2

∫

R3

∫

R3

ei(k1|x−y|−k2|x−z|)

|x− y||x− z| Cjj(y, z)dydz.

Noting

k1|x− y| − k2|x− z| = (k1 + k2)
|x− y| − |x− z|

2
+ (k1 − k2)

|x− y|+ |x− z|
2
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and using the coordinate transform and the symbols defined in the proof of Theorem 3.1, we get

Bj(k1, k2) =

∣∣∣∣
k1k2
(4π)2

∫

R3

∫

R3

ei((k1+k2)e1·g+(k1−k2)e1·h)S2(g, h, x)dgdh

∣∣∣∣
2

=

∣∣∣∣
k1k2
(4π)2

∫

R3

∫

R3

ei((k1+k2)e1·g+(k1−k2)e1·h)

[
1

(2π)3

∫

R3

eig·ξs2(h, x, ξ)dξ

]
dgdh

∣∣∣∣
2

=

∣∣∣∣
k1k2
(4π)2

∫

R3

∫

R3

ei(k1−k2)e1·h

[
1

(2π)3

∫

R3

eig·(ξ+(k1+k2)e1)dg

]
s2(h, x, ξ)dξdh

∣∣∣∣
2

=

∣∣∣∣
k1k2
(4π)2

∫

R3

ei(k1−k2)e1·hs2(h, x,−(k1 + k2)e1)dh

∣∣∣∣
2

.

If |k1 − k2| < 1, due to the fact that A(x) is compactly supported, then we obtain

Bj(k1, k2) =

∣∣∣∣
k1k2
(4π)2

∫

R3

ei(k1−k2)e1·h

[
ajj

(
w(0, h, x)

2

) | sin(h2/h1)|
(h · e1)2

(
k1 + k2

2

)−2s

θ(x)

+ r3(h, x,−(k1 + k2)e1)

]
dh

∣∣∣∣
2

.

(
k1k2

(k1 + k2)2s

)2

,

If |k1 − k2| ≥ 1, then for arbitrary β ∈ (0, 1), we deduce that

Bj(k1, k2) =

∣∣∣∣
k1k2
(4π)2

1

i(k1 − k2)

∫

R3

s2(h, x,−(k1 + k2)e1)de
i(k1−k2)h1dh2dh3

∣∣∣∣
2

=

∣∣∣∣
k1k2
(4π)2

1

i(k1 − k2)

∫

R3

ei(k1−k2)h1∂h1
s2(h, x,−(k1 + k2)e1)dh1dh2dh3

∣∣∣∣
2

.

(
k1k2

(k1 + k2)2s|k1 − k2|

)2

≤
(

k1k2
(k1 + k2)2s

)2 1

|k1 − k2|β
,

since the symbol s2 is also compactly supported and |∂h1
s2(h, x, ξ)| . |ξ|−2s for x ∈ U . We conclude

from the above estimates that

Aj(k1, k2) + Bj(k1, k2) .
k21k

2
2

(k1 + k2)4s
1

1 + |k1 − k2|β
.

Finally, it follows from (4.4) that

|E[Yj(x; k1)Yj(x; k2)]| ≤ 4k2s−2
1 k2s−2

2 (Aj(k1, k2) + Bj(k1, k2))

.

(
k1k2

(k1 + k2)2

)2s 1

1 + |k1 − k2|β

.
1

1 + |k1 − k2|β
.

Using Proposition 4.2 with α = 0, we get

lim
K→∞

1

K − 1

∫ K

1
Yj(x; k)dk = 0 ∀ x ∈ U ,

and hence (4.3) holds. This completes the proof of Theorem 4.1.
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5. Conclusion

In this paper, we have studied the three-dimensional Maxwell’s equations driven by a rough
complex-valued Gaussian vector field, where the covariance operator of the random source is a
pseudo-differential operator with a complex-valued strength matrix. Under an appropriate assump-
tion of the random source, the well-posedness of the direct scattering problem is established in the
distribution sense. The regularity of the electromagnetic field is also given. The micro-correlation
strength matrix of the random source is shown to be uniquely determined by the high frequency
limit of the expectation of the electric field. Moreover, the diagonal entries of the strength matrix are
shown to be uniquely determined by the amplitude of the electric field averaged over the frequency
band at a single path due to the ergodicity.

In this work, we assume that the real and imaginary parts of the random source are independent
and identically distributed, i.e., they are uncorrelated. A possible future work is to remove the
assumption and consider more general complex-valued Gaussian vector fields where the real and
imaginary parts are correlated. In this case, the centered random source would be determined by
not only its covariance operator but also its relation operator. The recovery of the strength matrix
of the relation operator is open since the micro-local analysis seems not work anymore. The same
issue appears in the inverse elastic wave scattering problem. If the random source is a real-valued
Gaussian vector field and the components are independent and identically distributed, the recovery
of the scalar strength function for the elastic scattering problem has been investigated in [15, 16].
However, there are no results on the problem if the random source is complex and correlated. It
is also unclear how the non-diagonal entries of the strength matrix can be uniquely determined by
only the amplitude of the electric field averaged over the frequency band at a single path. We hope
to be able to report the progress on these problems elsewhere in the future.
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[14] M. Lassas, L. Päivärinta, and E. Saksman, Inverse scattering problem for a two dimensional random potential,
Comm. Math. Phys., 279 (2008), 669–703.

[15] J. Li, T. Helin, and P. Li, Inverse random source problems for time-harmonic acoustic and elastic waves,
arXiv:1811.12478.

[16] J. Li and P. Li, Inverse elastic scattering for a random source, SIAM J. Math. Anal. (2019), 4570–4603.
[17] M. Li, C. Chen, and P. Li, Inverse random source scattering for the Helmholtz equation in inhomogeneous media,
Inverse Probl.,, 34 (2018), 015003.



AN INVERSE RANDOM SOURCE PROBLEM FOR MAXWELL’S EQUATIONS 19

[18] J. Li, H. Liu, and S. Ma, Determining a random Schrödinger equation with unknown source and potential, SIAM
J. Math. Anal., 51 (2019), 3465–3491.

[19] J. Li, H. Liu, and S. Ma, Determining a random Schrödinger operator: both potential and source are random,
arXiv:1906.01240.

[20] P. Li and X. Wang, Inverse random source scattering for the Helmholtz equation with attenuation,
arXiv:1911.11189.

[21] P. Monk, Finite Element Methods for Maxwell’s Equations, Oxford University Press, New York, 2003.
[22] T. Nara, J. Oohama, M. Hashimoto, T. Takeda, and S. Ando, Direct reconstruction algorithm of current dipoles for
vector magnetoencephalography and electroencephalography, Physics in Medicine and Biology, 52 (2007), 3859–3879.

[23] N. P. Valdivia, Electromagnetic source identification using multiple frequency information, Inverse Probl., 28
(2012), 115002.

[24] G. Wang, F. Ma, Y. Guo, and J. Li, Solving the multi-frequency electromagnetic inverse source problem by the
Fourier method, J. Differential Equations, 265 (2018), 417–443

[25] X. Wang, M. Song, Y. Guo, H. Li, and H. Liu, Fourier method for identifying electromagnetic sources with
multi-frequency far-field data, J. Comput. Appl. Math. 358 (2019), 279–292.

Department of Mathematics, Purdue University, West Lafayette, Indiana 47907, USA

E-mail address: lipeijun@math.purdue.edu

Department of Mathematics, Purdue University, West Lafayette, Indiana 47907, USA

E-mail address: wang4191@purdue.edu


