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Abstract

Effective computation of resultants is a central problem in elimination theory and polynomial
system solving. Commonly, we compute the resultant as a quotient of determinants of matrices
and we say that there exists a determinantal formula when we can express it as a determinant of
a matrix whose elements are the coefficients of the input polynomials. We study the resultant in
the context of mixed multilinear polynomial systems, that is multilinear systems with polynomials
having different supports, on which determinantal formulas were not known. We construct deter-
minantal formulas for two kind of multilinear systems related to the Multiparameter Eigenvalue
Problem (MEP): first, when the polynomials agree in all but one block of variables; second, when
the polynomials are bilinear with different supports, related to a bipartite graph. We use the
Weyman complex to construct Koszul-type determinantal formulas that generalize Sylvester-type
formulas. We can use the matrices associated to these formulas to solve square systems with-
out computing the resultant. The combination of the resultant matrices with the eigenvalue and
eigenvector criterion for polynomial systems leads to a new approach for solving MEP.

Key words. Resultant matrix, Multilinear polynomial, Weyman complex, Determinantal formula, Koszul-
type matrix, Multiparameter eigenvalue problem
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1 Introduction

One of the main questions in (computational) algebraic geometry is to decide efficiently when an overdetermined
polynomial system has a solution over a projective variety. The resultant answers this question. The resultant
is a multihomogeneous polynomial in the coefficients of the polynomials of the system that vanishes if and
only if the system has a solution. We can also use it to solve square systems. When we restrict the supports
of the input polynomials to make them sparse, we have an analogous concept called the sparse resultant [28].
The sparse resultant is one of the few tools we can use to solve systems taking into account the sparsity of
the support of the polynomials. Hence, its efficient computation is fundamental in computational algebraic
geometry.

We are interested in the computation of the multiprojective resultant, as it is defined in [17, 20, 43], of
sparse systems given by a particular kind of multilinear polynomials. To define the multiprojective resultant
as a single polynomial, we restrict ourselves to systems where the number of equations is one greater than
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the dimension of the ambient multiprojective space. In what follows, we refer to this specific situation as an
overdetermined system1. In general, we compute the resultant of a polynomial system (f0, . . . , fn) as a quotient
of determinants of two matrices whose elements are polynomials in the coefficients of the input polynomials
[11, 12, 15, 16, 33, 36, 37]; thus the best we can hope for are linear polynomials. A classical example of such a
matrix is the Macaulay matrix, which represents a map (g0, . . . , gn) 7→

∑
i
gi fi, where each gi is a polynomial

in a finite dimensional vector space. In this case, we say that we have a Sylvester-type formula. Other classical
formulas include Bézout- and Dixon-type; nevertheless, the elements of the corresponding matrices are not
linear anymore. We refer to [25] and references therein for details.

When we can compute the resultant as the determinant of a matrix we say that we have a determinantal
formula. Besides general constructions that express any multivariate polynomial as a determinant of a matrix,
see for example [35, 49], we are interested in formulas such that the row/column dimension of the corresponding
matrix depends linearly on the degree of the resultant. The existence of such formulas is not known in general.
When we consider unmixed multihomogeneous systems, that is when every polynomial has the same support,
these formulas are well studied, e.g., [11, 18, 47, 54]. However, when the supports are not the same, that is
in the case of mixed multihomogeneous systems, there are very few results. We know determinantal formulas
for scaled multihomogeneous systems [22], in which case the supports are scaled copies of one of them, for
bivariate tensor-product polynomial systems [9], and for bilinear systems with two different supports [5]. One
tool to obtain such formulas is using the Weyman complex [52]. For an introduction to this complex we refer
to [53, Sec. 9.2] and [28, Sec. 2.5.C, Sec. 3.4.E].

Resultant computations are also useful in solving 0-dimensional square polynomial systems, say (f1, . . . , fN ),
taking into account the sparsity; here ”square” refers to systems having N polynomials in N variables. For
example we can use the u-resultant or hide a variable; we refer to [14, Ch. 3] for a general introduction.
Whenever a Sylvester-type formula is available, through the resultant matrix, we obtain a matrix representing
the multiplication map by a polynomial f0 in K[x]/〈f1, . . . , fN 〉. Then, we solve the system (f1, . . . , fN ) by
computing the eigenvalues and eigenvectors of this matrix, e.g., [4, 21]. The eigenvalues correspond to the
evaluations of f0 at the solutions of the system. From the eigenvectors, at least when there are no multiplici-
ties, we can recover the coordinates of the solutions. For a generalization of this approach to a broader class
of resultant matrices, that encapsulates Sylvester-type matrices as a special case, we refer to [5].

1.1 Multilinear polynomial systems

We focus on computing determinantal formulas for mixed multilinear polynomial systems. Besides their math-
ematical importance, as they are the first non-trivial case of polynomial systems beyond the linear ones,
multilinear systems are also ubiquitous in applications, e.g., cryptography [26, 34] and game theory [39].

For A,B ∈ N let X1, . . . ,XA,Y 1, . . . ,Y B be blocks of variables. We present various Koszul-type deter-
minantal formulas (related to the maps in the Koszul complex, see Def. 2.14) for the following two kinds of
mixed multilinear polynomials systems (f0, f1 . . . fN ):

• star multilinear systems: these are polynomial systems (f1, . . . , fN ), where for each fk, there is a jk ∈ [B]
such that

fk ∈ K[X1]1 ⊗ · · · ⊗K[XA]1 ⊗K[Y jk ]1,

• bipartite bilinear systems: these are polynomial systems (f1, . . . , fN ), where for each fk, there are ik ∈ [A]
and jk ∈ [B] such that

fk ∈ K[Xik ]1 ⊗K[Y jk ]1.

To make the system overdetermined and so, to consider its resultant, we complement it with several types of
multilinear polynomials f0 (see the beginning of sections 3 and 4).

Our first main contribution is the theorem below which is an extract of Thm. 3.7 and 4.4.

Theorem 1.1. Let f := (f1, . . . , fN ) be a star multilinear system (Def. 3.1) or a bipartite bilinear system
(Def. 4.1). Then, for certain choices of multilinear polynomials f0 (we present them at the beginning of Sec. 3
and 4), there is a square matrix M such that,

• The resultant of f agrees with the determinant of the matrix, res(f) = ± det(M).

• The number of columns/rows of M is degree(res(f)) and its elements are coefficients of f , possibly with
a sign change.

1For general overdetermined systems, there exists the concept of resultant system, see [51, Sec. 16,5].
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The matrix M corresponds to a Koszul-type determinantal formula (Def. 2.14) for f .

The size of the resultant matrix and the degree of the resultant depend on the multidegree of f0. We relate
the (expected) number of solutions of (f1, . . . , fN ) to the degree of the resultant of (f0, f1, . . . , fN ). For star
multilinear systems, we present closed formulas for the expected number of solutions of the system (f1, . . . , fN)
and the size of the matrices; we also express the size of the matrix in terms of the number of solutions. Our
techniques to obtain determinantal formulas exploit the properties and the parametrization, through a carefully
chosen degree vector, of the Weyman complex and are of independent interest. These results generalize the
ones in [5] that correspond to the case (A = 1, B = 2).

1.2 Multiparameter Eigenvalue Problem

A motivating application for the systems and the determinantal formulas that we study comes from the
multiparameter eigenvalue problem (MEP). We can model MEP using star multilinear systems or bipartite
bilinear systems. The resultant matrices that we construct together with the eigenvalue and eigenvector
criterion for polynomial systems, e.g., [13], lead to a new approach for solving MEP.

MEP generalizes the classical eigenvalue problem. It arises in mathematical physics as a way of solving
ordinary and partial differential equations when we can use separation of variables (Fourier method) to solve
boundary eigenvalue problems. Its applications, among others, include the Spectral and the Sturm-Liouville
theory [2, 3, 29, 32, 50]. MEP allows us to solve different eigenvalue problems, e.g., the polynomial and the
quadratic two-parameter eigenvalue problems [30, 40]. It is an old problem; its origins date from the 1920’ in
the works of R. D. Carmichael [10] and A. J. Pell [42].

The precise definition of the problem is as follows. Assume α ∈ N, β1, . . . , βα ∈ N, and consider matrices
{M (i,j)}0≤j≤α ∈ K

(βi+1)×(βi+1), where 0 ≤ i ≤ α. The MEP consists in finding λ = (λ0, . . . , λα) ∈ P
α(K) and

v1 ∈ P
β1(K), . . . ,vα ∈ P

βα(K) such that

(∑α

j=0
λj M

(1,j)
)
v1 = 0 , . . . ,

(∑α

j=0
λj M

(α,j)
)
vα = 0, (1)

where K is an algebraically closed field and P
n(K) is the (corresponding) projective space of dimension n ∈ N.

We refer to λ as an eigenvalue, (v1, . . . ,vα) as an eigenvector, and to (λ,v1, . . . ,vα) as an eigenpair. For
α = 1, MEP is the generalized eigenvalue problem.

To exploit our tools we need to write MEP as a mixed square bilinear system. For this we introduce the
variables X1 = (x0, . . . , xα) to represent the multiparameter eigenvalues and, for each 1 ≤ i ≤ α, the vectors
Y t = (yi,0, . . . , yi,βi

) to represent the eigenvectors. This way, we obtain a bilinear system F = (f1,0, . . . , fα,βα),
where for each 1 ≤ t ≤ α,

(
α∑

j=0

xj M
(t,j)

)
·




yt,0
yt,1
...

yt,βt


 =




βt∑

i=0

α∑

j=0

M
(t,j)
i,0 xj yt,i

...
βt∑

i=0

α∑

j=0

M
(t,j)
i,βt

xj yt,i




=




ft,0

...

ft,βt




(2)

and, for each 1 ≤ t ≤ α, ft,0, . . . , ft,βt ∈ K[X1]1⊗K[Y t]1. In this formulation, the system in (2) is a particular
case of a star multilinear system (Def. 3.1) with A = 1 and B = α, or a particular case of bipartite bilinear
system (Def. 4.1) with A = 1 and B = α. There is a one to one correspondence between the eigenpairs of MEP
and solutions of F , that is

(λ,v1, . . . , vα) is an

eigenpair of {M (i,j)}.
⇐⇒

(λ,v1, . . . ,vα) ∈ P
α(K)× P

β1(K)× · · · × P
βα(K)

and F (λ, v1, . . . ,vα) = 0.

The standard method to solve MEP is Atkinson’s Delta method [3, Ch. 6, 8]. For each 0 ≤ k ≤ α, it
considers the overdetermined system F k resulting from F (2) by setting xk = 0. Then, it constructs a matrix
∆k which is nonsingular if and only if F k has no solutions [3, Eq. 6.4.4]. Subsequently, it applies linear algebra
operations to these matrices to solve the MEP F [3, Thm. 6.8.1] . It turns out that the matrices ∆k are
determinantal formulas for the resultants of the corresponding overdetermined systems F k. The elements of
the matrices of the determinantal formulas ∆k are polynomials of degree α in the elements of the matrices
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M (i,j) [3, Thm. 8.2.1]. The Delta method can only solve nonsingular MEPs; these are MEPs where there exists
a finite number of eigenvalues [3, Ch. 8]. The main computational disadvantage of Atkinson’s Delta method is
the cost of computing the matrices ∆k. To compute these matrices one needs to consider multiple Kronecker
products corresponding to the Laplace expansion of a determinant of size α × α. The interested reader can
find more details in [3, Sec. 6.2].

Besides Atkinson’s Delta method, there are recent algorithms such as the diagonal coefficient homotopy
method [19] and the fiber product homotopy method [44] which exploit homotopy continuation methods. These
methods seems to be slower than the Delta method, but they can tackle MEPs of bigger size as they avoid
the construction of the matrices ∆k. The Delta method and the homotopy approaches can only compute the
regular eigenpairs of the MEP, that is, those where the eigenpair is an isolated solution of (2). In contrast to
the Delta method, experimentally and in some cases, the fiber product homotopy method can also solve singular
MEPs, see [44, Sec. 10]. We can also use general purpose polynomial system solving algorithms, that exploit
sparsity, to tackle MEP. We refer reader to [27], see also [46], for an algorithm to solve unmixed multilinear
systems using Gröbner bases, and to [23, 24] using resultants. We also refer to [6, 7] for an algorithm based
on Gröbner bases to solve square mixed multihomogeneous systems and to [8, 48] for a numerical algorithm
to solve these systems using eigenvalue computations. However, these generic approaches do not fully exploit
the structure of the problem.

Our second main contribution is a new approach to solve MEP based on the determinantal formulas that
we develop (Alg. 1). We present a novel way to compute the ∆ matrices by avoiding the expansion to minors.
Moreover, the resultant matrix from which this construction emanates has elements that are linear in the
elements of M (i,j), is highly structured, and with few non-zero elements (Rem. 5.2). As the Delta method and
the homotopy algorithms, it can only solve nonsingular MEPs and recover the regular eigenvalues. Contrary
to the general purpose approaches, it fully exploits the structure of the system and its complexity relates to
the number of eigenpairs. Our approach involves the computation of (standard) eigenvalues and eigenvectors
to recover the solutions of the MEP, as the classical symbolic-numeric methods, e.g., [13]. In particular, our
method works with exact coefficients as well as with approximations. The code for solving MEP using these
resultant matrices is freely available at https://mbender.github.io/multLinDetForm/sylvesterMEP.m.

Organization of the paper In Sec. 2.1 we define the multihomogeneous systems and introduce some
notation. Later, in Sec. 2.2, we introduce the multihomogeneous resultant. In Sec. 2.3, we introduce Weyman
complexes and then, in Sec. 2.4, we explain the Koszul-type formulas. In Sec. 3, we define the star multilinear
systems and we construct Koszul-type determinantal formulas for multihomogeneous systems involving them,
and in Sec. 3.2 we study the number of solutions of the systems and we compare them with the sizes of the
determinant. We also present an example in Sec. 3.3. In Sec. 4, we define the bipartite bilinear systems and
construct Koszul-type determinantal formulas for multihomogeneous systems involving them. Finally, in Sec. 5,
we present an algorithm and an example for solving MEP using our determinantal formulas.

2 Preliminaries

For a number N ∈ N we use the abbreviation [N ] = {1, . . . , N}.

2.1 Multihomogeneous systems

Let K be an algebraically closed field, Km a vector space, and (Km)∗ its dual space, where m ∈ N. Let q ∈ N

and consider q positive natural numbers, n1, . . . , nq ∈ N. For each i ∈ [q], we consider the following sets of
ni + 1 variables

xi := {xi,0, . . . , xi,ni} and ∂xi := {∂xi,0, . . . , ∂xi,ni}.

We identify the polynomial algebra K[xi] with the symmetric algebra of the vector space Kni+1 and the algebra
K[∂xi] with the symmetric algebra of (Kni+1)∗. That is

K[xi] ∼= S
(
K

ni+1
)
=
⊕

d∈Z

Si(d) and K[∂xi] ∼= S
(
(Kni+1)∗

)
=
⊕

d∈Z

S∗
i (−d).

Therefore, for each i, Si(d) corresponds to the K-vector space of polynomials in K[xi] of degree d and S∗
i (−d)

to the K-vector space of polynomials in K[∂xi] of degree d. Note that if d < 0, then Si(d) = S∗
i (−d) = 0.
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We identify the monomials in K[xi] and K[∂xi] with vectors in Z
ni+1. For each α = (α0, . . . , αni) ∈ Z

ni+1

we set xi
α :=

∏ni

j=0 x
αj

i,j , and ∂xi
α :=

∏ni

j=0 ∂x
αj

i,j . We consider the Z
q-graded polynomial algebra

K[x̄] := K[x1]⊗ · · · ⊗K[xq] ∼=
⊕

(d1,...,dq)∈Zq

S1(d1)⊗ · · · ⊗ Sq(dq).

Notice that for each d = (d1, . . . , dq) ∈ Z
q, K[x̄]d is the K-vector space of the multihomogeneous polynomials

of multidegree d, that is polynomials in K[x̄] having degree di with respect to the set of variables xi, for each
i ∈ [q]. We say that a polynomial f ∈ K[x̄] is multihomogeneous of multidegree d ∈ Z

q, if f ∈ K[x̄]d =
S1(d1)⊗ · · · ⊗ Sq(dq).

Example 2.1. Consider the two blocks of variables x1 = {x1,0, x1,1} and x2 = {x2,0, x2,1, x2,2} and the poly-
nomial x2

1,0 x1,1 ⊗ x2,0 x2,1 + x1,0 x
2
1,1 ⊗ x2

2,2 ∈ K[x1,x2]. It is multihomogeneous of multidegree (3, 2) and we
write it simply as x2

1,0 x1,1 x2,0 x2,1 + x1,0 x
2
1,1 x

2
2,2.

Following standard notation, we write the monomials of K[x̄] as
∏q

i=1 xi
αi instead of

⊗q

i=1 xi
αi . We

identify these monomials with vectors in Z
n1+1×· · ·×Z

nq+1. For each α = (α1, . . . ,αq) ∈ Z
n1+1×· · ·×Z

nq+1

we set xα :=
∏q

i=1 xi
αi . For each multidegree d ∈ Z

q, we denote by A(d) the set of exponents of the monomials
of multidegree d, that is A(d) = {α ∈ Z

n1+1 × · · · × Z
nq+1 : xα ∈ K[x̄]d}. The cardinality of A(d) is

#A(d) =
∏q

i=1

(
di+ni

ni

)
.

We fix N = n1+ · · ·+nq . Let P := P
n1 ×· · ·×P

nq be a multiprojective space over K, where P
ni := P

ni(K).
A system of multihomogeneous polynomials is a set of multihomogeneous polynomials in K[x̄]. We say that a
system of multihomogeneous polynomials {f1, . . . , fr} has a solution in P , if there is γ ∈ P such that fi(γ) = 0,
for every 1 ≤ i ≤ r. We call a system of multihomogeneous polynomials square if r = N , and overdetermined
if r = N + 1. Generically, square multihomogeneous systems have a finite number of solutions over P , while
the overdetermined ones do not have solutions. The following proposition bounds the number of solutions of
square multihomogeneous polynomial systems.

Proposition 2.2 (Multihomogeneous Bézout bound, [45, Example 4.9]). Consider a square multihomogeneous
system f := {f1, . . . , fN} of multidegrees d1, . . . ,dN ∈ N

q with di = (di,1, . . . , di,q), for each 1 ≤ i ≤ N . If f
has a finite number of solutions over P, then their number, counted with multiplicities, see [14, Sec. 4.2], is
the coefficient of the monomial

∏
i
Zni

i in the polynomial
∏N

k=1

(∑q

i=1 dk,i Zi

)
. We refer to this coefficient as

the multihomogeneous Bézout bound and we will write it as MHB(d1, . . . ,dN).

The multihomogeneous Bézout bound is generically tight, see [17, Thm. 1.11].

2.2 Multihomogeneous resultant

We fix N+1 multidegrees d0,d1, . . . ,dN ∈ N
q. To characterize the overdetermined multihomogeneous systems

of such multidegrees having solutions over P , we parameterize them and we introduce the resultant. The latter
is a polynomial in the coefficients of the polynomials of the system that vanishes if and only if the system has
a solution over P . Our presentation follows [14, Ch. 3.2] adapted to the multihomogeneous case.

Definition 2.3 (Generic multihomogeneous system). Consider the set of variables u := {uk,α : 0 ≤ k ≤
N and α ∈ A(dk)} and the ring Z[u]. The generic multihomogeneous polynomial system is the system
F := {F0, . . . , FN} ⊂ Z[u][x̄], where

Fk :=
∑

α∈A(dk)
uk,αx

α. (3)

The generic multihomogeneous system F parameterizes every overdetermined multihomogeneous system with
polynomials of multidegrees d0,d1, . . . ,dN , respectively. For each c = (ck,α)0≤k≤N,α∈A(dk) ∈ P

#A(d0)−1 ×

· · · ×P
#A(dN )−1, the specialization of F at c, that is F (c), is a multihomogeneous polynomial system in K[x̄],

say (f0, . . . , fN ), where

fk := Fk(c) =
∑

α∈A(dk)
ck,αx

α. (4)

Let Ω be its incidence variety, that is the algebraic variety containing the overdetermined multihomogeneous
systems that have solutions over P and their solutions,

Ω =
{
(p, c) ∈ P × (P#A(d0)−1 × · · · × P

#A(dN )−1) : (∀k ∈ [N ])Fk(c)(p) = 0
}
.
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Let π be the projection of Ω to P
#A(d0)−1 × · · · × P

#A(dN )−1, that is π(p, c) = c. We can think of π(Ω)
as the set of overdetermined multihomogeneous polynomial systems with solutions over P . This set is an
irreducible hypersurface [28, Prop. 3.3.1]. Its defining ideal in Z[u] is principal and it is generated by an
irreducible polynomial elim ∈ Z[u] [28, Prop. 8.1.1]. In particular, it holds

The system F (c) has a solution over P ⇐⇒ c ∈ π(Ω) ⇐⇒ elim(c) = 0.

Following [43, 17, 20], we call elim ∈ Z[u] the eliminant. We warn the reader that the polynomial
elim ∈ Z[u] is called the resultant in [28]. In this work we reserve the word resultant for a power of elim.
More precisely, the resultant res is a polynomial in Z[u] such that res = ±elimD, where D is the degree of
the restriction of π to the incidence variety Ω, see [20, Def. 3.1]. Consequently, we have

The system F (c) has a solution over P ⇐⇒ res(c) = 0. (5)

Proposition 2.4 ([43, Prop. 3.4]). Let uk be the blocks of variables in u related to the polynomial Fk, that is
uk = {uk,α}α∈A(di). The resultant res ∈ Z[u] is a multihomogeneous polynomial with respect to the blocks of
variables u0, . . . ,uN . The degree of res with respect to the variables uk is the multihomogeneous Bézout bound
(Prop. 2.2) of a square system with multidegrees d0 . . .dk−1,dk+1 . . .dN ,

degree(res,uk) = MHB(d0, . . . ,dk−1,dk+1, . . . ,dN ).

The total degree of the resultant is degree(res) =
∑N

k=0 MHB(d0, . . . ,dk−1,dk+1, . . . ,dN ).

Usually we compute the resultant as the quotient of the determinants of two matrices, see [28, Thm. 3.4.2].
When we can compute it as the (exact) determinant of a matrix, then we say that we have a determinantal
formula.

2.3 Weyman complex

A complex K• is a sequence of free modules {Kv}v∈Z together with morphisms δv : Kv → Kv−1, such that the
image of δv belongs to the kernel of δv−1, that is (∀v ∈ Z) Im(δv) ⊆ Ker(δv−1) or, equivalently, δv−1 ◦ δv = 0.
We write K• as

K• : · · ·
δv+1
−−−→ Kv

δv−→ Kv−1
δv−1
−−−→ · · · .

The complex is exact if for all v ∈ Z it holds Im(δv) = Ker(δv−1). A complex is bounded when there are two
constants a and b such that, for every v such that v < a or b < v, it holds Kv = 0. If we fix a basis for each
Kv, then we can represent the maps δv using matrices. For a particular class of bounded complexes, called
generically exact (see for example [28, Ap. A]), we can extend the definition of the determinant of matrices
to complexes. The non-vanishing of the determinant is related to the exactness of the complex. When there
are only two non-zero free modules in the complex (that is all the other modules are zero) we can define the
determinant of the complex if and only if both the non-zero free modules have the same rank. In this case, the
determinant of the complex reduces to the determinant of the (matrix of the) map between the two non-zero
vector spaces. We refer the reader to [1] for an accessible introduction to the determinant of a complex and to
[28, Ap. A] for a complete formalization.

The Weyman complex [52, 54, 53] of an overdetermined multihomogeneous system f = (f0, . . . , fN ) in K[x̄]
is a bounded complex that is exact if and only if the system f has no solutions over P . More precisely, the
determinant of the Weyman complex of the multihomogeneous generic system F (see Def. 2.3) is well-defined
and it is equal to the multihomogeneous resultant [53, Prop. 9.1.3]. If the Weyman complex involves only two
non-zero vector spaces, then the resultant of F is the determinant of the map between these spaces. Thus, in
this case, there is a determinantal formula for the resultant.

Theorem 2.5 (Weyman complex, [54, Prop. 2.2]). Let F = (F0, . . . , FN ) in Z[u][x̄] be a generic multihomoge-
neous system having multidegrees d0, . . . ,dN , respectively (see Def. 2.3). Given a degree vector m ∈ Z

q, there
exists a complex of free Z[u]-modules K•(m), called the Weyman complex of F , such that the determinant of
the complex K•(m) agrees with the resultant res(F0, . . . , FN ).

K•(m) :0 → KN+1(m)
δN+1(m)
−−−−−−→ · · · → K1(m)

δ1(m)
−−−−→ K0(m)

δ0(m)
−−−−→ · · · → K−N (m) → 0.
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Moreover, for each v ∈ {−N, . . . , N + 1} the Z[u]-module Kv(m) is

Kv(m) :=
N+1⊕

p=0

Kv,p(m)⊗Z Z[u], where Kv,p(m) :=
⊕

I⊂{0,...,N}
#I=p

Hp−v
P (m−

∑

k∈I

dk)⊗
∧

k∈I

ek, (6)

the term Hp−v
P (m −

∑
k∈I dk) is the (p − v)-th sheaf cohomology of P with coefficients in the sheaf OP(m −∑

k∈I
dk) whose global sections are K[x̄]m−

∑
k∈I dk

(see [31, Sec. II.5]), 2 and the element
∧

k∈I
ek is the

singleton {eI1 ∧ · · · ∧ eIp}, where I1 < · · · < Ip are the elements of I, e0,. . . ,eN is the standard basis of KN+1,
and ∧ is the wedge (exterior) product.

For a multihomogeneous system f = (f0, . . . , fN ) in K[x̄] that is the specialization of F at c, see (4),
the Weyman complex K•(m;f) is the Weyman complex K•(m) where we specialize each variable uk,α at
ck,α ∈ K.

Proposition 2.6 ([54, Prop. 2.1]). The vector spaces Kv(m,f) are independent of the specialization of the
variables u, in particular Kv(m, f) =

⊕N+1
p=0 Kv,p(m). Hence, the rank of Kv(m) as a Z[u]-module equals the

dimension of Kv(m,f) as a K-vector space. The differentials δv(m,f) depend on the coefficients of f .

Following [54], as P is a product of projective spaces, we use Künneth formula (Prop. 2.7) to write the
cohomologies in (6) as a product of cohomologies of projective spaces, that in turn we can identify with
polynomial rings.

Proposition 2.7 (Künneth Formula). The cohomologies of the product of projective spaces in each Kv,p(m)
of (6) are the direct sum of the tensor product of the cohomologies of each projective space, that is

Hp−v
P

(
m−

∑

k∈I

dk

)
∼=

⊕

r1+···+rq=p−v

q⊗

i=1

Hri
P
ni

(
mi −

∑

k∈I

dk,i
)
. (7)

By combining Bott formula and Serre’s duality, see [41, Sec. 1.1], we can identify the cohomologies of the
previous proposition with the rings K[xi] and K[∂xi]. Moreover, for each p − v, there is at most one set of
values for (r1, . . . , rq) such that every cohomology in the tensor product of the right hand side of the previous
equation does not vanish. In other words, the right hand side of (7) reduces to the tensor product of certain
cohomologies of different projective spaces.

Remark 2.8. For each 1 ≤ i ≤ q, a ∈ Z, it holds

• H0
P
ni (a) ∼= Si(a), that is the K-vector space of the polynomials of degree a in the polynomial algebra K[xi].

• Hni

P
ni (a) ∼= S∗

i (a + ni + 1), that is the K-vector space of the polynomials of degree a + ni + 1 in the
polynomial algebra K[∂xi].

• If ri 6∈ {0, ni}, then Hri
P
ni (a) ∼= 0.

Remark 2.9. For each 1 ≤ i ≤ q, if Hri
P
ni (a) 6= 0, then ri ∈ {0, ni}. Moreover,

• If a > −ni − 1, then Hri
P
ni (a) 6= 0 ⇐⇒ ri = 0 and a ≥ 0.

• If a < 0, then Hri
P
ni (a) 6= 0 ⇐⇒ ri = ni and a ≤ −ni − 1.

We define the dual of a complex by dualizing the modules and the maps. The dual of the Weyman complex
is isomorphic to another Weyman complex. By exploiting Serre’s duality, we can construct the degree vectors
of a dual Weyman complex from the degree vector of the primal.

Proposition 2.10 ([53, Thm. 5.1.4]). Let m and m̄ be any degree vectors such that m+ m̄ =
∑

i
di − (n1 +

1, . . . , nq + 1). Then, Kv(m) ∼= K1−v(m̄)∗ for all v ∈ Z and K•(m) is dual to K•(m̄).

2The standard notation for the sheaf cohomology Hp
P (m), e.g., [31], is Hp(P,L(

∑

i mi Di)), where each Di is a
Cartier divisor given by the pullback of a hyperplane on Pni (via projection) and L(

∑

i mi Di) is the line bundle
associated to the Cartier divisor (

∑

i mi Di) on P. We use our notation for simplicity.
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2.4 Koszul-type formula

Our goal is to obtain determinantal formulas given by matrices whose elements are linear forms in the coef-
ficients of the input polynomials, that is linear in u, see (3). Hence, by [53, Prop. 5.2.4], our objective is to
choose a degree vector m so that the Weyman complex reduces to

K•(m) : 0 → Kv,p+v(m)⊗ Z[u]
δv(m)
−−−−→ Kv−1,p+v−1(m)⊗ Z[u] → 0 , (8)

where p =
∑

k∈I
nk, for some set I ⊂ {1, . . . , q}. That is, it holds Kv(m) = Kv,p+v(m) ⊗ Z[u], Kv−1(m) =

Kv−1,p+v−1(m)⊗ Z[u], and, for all t 6∈ {v − 1, v}, Kt(m) = 0,
We will describe the map δv(m) through an auxiliary map µ that acts as multiplication. For this, we need

to introduce some additional notation. This notation is independent from the rest of the paper and the readers
that are familiar with the Weyman complex can safely skip the rest of the section. Let R be a ring; for example
R = Z[u] or R = K. For each 1 ≤ i ≤ q, the polynomial ring R[xi], respectively R[∂xi], is a free R-module
with basis {xα

i : α ∈ A(d), d ∈ Z}, respectively {∂xα
i : α ∈ A(d), d ∈ Z}. We define the bilinear map

µ(i) : R[xi]× (R[xi]⊕R[∂xi]) → R[xi]⊕R[∂xi], (9)

which acts follows: for each d1, d2 ∈ Z, α ∈ A(d1) and β,γ ∈ A(d2), we have

µ(i)(x
α
i ,x

γ
i ) = x

α+γ
i and µ(i)(x

α
i ,∂x

β
i ) =

{
∂x

β−α
i if d1 ≤ d2 and β −α ∈ A(d1 − d2)

0 otherwise.

The map µ(i) is graded in the following way, for f ∈ Si(d) it holds

µ(i)(f, Si(D)) ⊆ Si(D + d) and µ(i)(f, S
∗
i (D)) ⊆ S∗

i (D + d).

We define the bilinear map µ :=
⊗q

i=1 µ(i).

Remark 2.11. If we restrict the domain of µ to
⊗q

i=1 (R[xi]×R[xi]) ≃
(⊗q

i=1 R[xi]
)
×
(⊗q

i=1 R[xi]
)
, then µ

acts as multiplication, ie for f, g ∈
(⊗q

i=1 R[xi]
)
, it holds µ(f, g) = f g.

Given f ∈
(⊗q

i=1 R[xi]
)
, we define the linear map

µf :
⊗q

i=1(R[xi]⊕R[∂xi]) →
⊗q

i=1(R[xi]⊕R[∂xi])
g 7→ µf (g) = µ(f, g).

Using the isomorphisms of Prop. 2.7 and Rem. 2.8, for d ∈ N
q and f ∈ K[x̄]d, if we restrict the map µf to

Hr
P(m), for any r ∈ N, then we obtain the map µf : Hr

P(m) → Hr
P(m+ d).

Definition 2.12 (Inner derivative [54]).Let E be a K-vector space generated by {e1, . . . eN}. We define the
k-th inner derivative, ∆k, of the exterior algebra of

∧
E as the (−1)-graded map such that, for each i and

1 ≤ j1 < · · · < ji ≤ N ,

∆k :
∧i E →

∧i−1 E

ej1 ∧ · · · ∧ eji 7→ ∆k(ej1 ∧ · · · ∧ eji) =

{
(−1)t+1ej1 ∧ · · · ∧ ejt−1

∧ ejt+1
∧ · · · ∧ eji if jt = k

0 otherwise

Given R-modules A1, A2, B1, B2 and homomorphisms µ1 : A1 → B1 and µ2 : A2 → B2, their tensor product
is the map µ1⊗µ2 : A1⊗A2 → B1⊗B2 such that, for a1 ∈ A1 and a2 ∈ A2, (µ1⊗µ2)(a1⊗a2) = µ1(a1)⊗µ2(a2).

Proposition 2.13 ([54, Prop. 2.6]). Consider the generic overdetermined multihomogeneous system F ∈
Z[u][x̄]N+1 with polynomials of multidegrees d0, . . . ,dN , respectively (Def. 2.3). Given a degree vector m ∈ Z

q,
we consider the Weyman complex K•(m). If there is v ∈ {−N+1, . . . , N+1} and p ∈ {0, . . . , N+1} such that

Kv(m) = Kv,p(m)⊗ Z[u] and Kv−1(m) = Kv−1,p−1(m)⊗ Z[u],

then the map δv(m) : Kv(m) → Kv−1(m) is δv(m) =
∑N

k=0 µFk
⊗ ∆k, where µFk

⊗ ∆k denotes the tensor
product of the maps µFk

and ∆k (Def. 2.12).

Definition 2.14 (Koszul-type determinantal formula). With the notation of Prop. 2.13, when the Weyman
complex reduces to

K•(m) : 0 → K1,p+1(m)⊗ Z[u]
δ1(m)
−−−−→ K0,p(m)⊗ Z[u] → 0 , (10)

we say that the map δ1(m) is a Koszul-type determinantal formula.
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Example 2.15. Consider the blocks of variables x1 := {x1,0, x1,1} and x2 := {x2,0, x2,1}, and the systems
f := (f0, f1, f2) of multidegrees d0 = d1 = d2 = (1, 1). That is,





f0 = (a0,0 x1,0 + a1,0 x1,1)x2,0 + (a0,1 x1,0 + a1,1 x1,1) x2,1

f1 = (b0,0 x1,0 + b1,0 x1,1) x2,0 + (b0,1 x1,0 + b1,1 x1,1) x2,1

f2 = (c0,0 x1,0 + c1,0 x1,1) x2,0 + (c0,1 x1,0 + c1,1 x1,1)x2,1.

(11)

As in [23, Lem. 2.2], consider the degree vector m = (2,−1). So, the Weyman complex is

K•(m,f) : 0 → K1,2(m, f)
δ1(m,f)
−−−−−→ K0,1(m,f ) → 0,

where




K1,2(m,f ) = S1(0)⊗ S∗
2 (−1)⊗

(
{e0 ∧ e1} ⊕ {e0 ∧ e2} ⊕ {e1 ∧ e2}

)

K0,1(m,f ) = S1(1)⊗ S∗
2 (0)⊗

(
{e0} ⊕ {e1} ⊕ {e2}

)
.

If we consider monomial bases for K1,2(m) and K0,1(m), then we can represent δ1(m) with the transpose of
the matrix that follows. Note that, the element ∂1 ∈ K[∂x1,∂x1] corresponds to the dual of 1 ∈ K[x1,x2].

x1,0 ⊗ ∂1⊗ e0 x1,0 ⊗ ∂1⊗ e1 x1,0 ⊗ ∂1⊗ e2
x1,1 ⊗ ∂1⊗ e0 x1,1 ⊗ ∂1⊗ e1 x1,1 ⊗ ∂1⊗ e2

1⊗ ∂x2,0 ⊗ (e0 ∧ e1) −b0,0 −b1,0 a0,0 a1,0 0 0
1⊗ ∂x2,1 ⊗ (e0 ∧ e1) −b0,1 −b1,1 a0,1 a1,1 0 0
1⊗ ∂x2,0 ⊗ (e0 ∧ e2) −c0,0 −c1,0 0 0 a0,0 a1,0

1⊗ ∂x2,1 ⊗ (e0 ∧ e2) −c0,1 −c1,1 0 0 a0,1 a1,1

1⊗ ∂x2,0 ⊗ (e1 ∧ e2) 0 0 −c0,0 −c1,0 b0,0 b1,0
1⊗ ∂x2,1 ⊗ (e1 ∧ e2) 0 0 −c0,1 −c1,1 b0,1 b1,1

The resultant is equal (up to sign) to the determinant of the above matrix, it has total degree 6 (same as
the size of this matrix) and 66 terms.

As we saw in the previous example, once we have fixed a basis for the map in Prop. 2.13, we can represent
the Koszul-type determinantal formula by the determinant of a matrix. We refer to this matrix as a Koszul
resultant matrix.

Corollary 2.16 ([53, Prop. 5.2.4]). Let F be a generic multihomogeneous system of polynomials with multi-
degrees d0, . . . ,dN , respectively. Let m ∈ Z

q be a degree vector so that the Weyman complex K•(m) becomes

K•(m) : 0 → Kv,p+v(m)⊗ Z[u]
δv(m)
−−−−→ Kv−1,p+v−1(m)⊗ Z[u] → 0 .

Then, the map δv(m) of Prop. 2.13 is linear in the coefficients of F . Moreover, as the determinant of the
complex is the resultant, the rank of both Kv(m) and Kv+1(m), as Z[u]-modules, equals the degree of the
resultant (Prop. 2.4).

We remark that Koszul-type formulas generalizes Sylvester-type formulas.

Proposition 2.17. Under the assumptions of Prop. 2.13, if p = 1 and v = 0, the map δv(m) acts as a
Sylvester map, that is (g0, . . . , gN) 7→

∑N

k=0 gk Fk. In this case, it holds

δv(m)(g0 ⊗ e0 + · · ·+ gN ⊗ eN) =
( N∑

k=0

gk Fk

)
⊗ 1.

Determinantal formulas for the multiprojective resultant of unmixed systems, that is systems where the
multidegree of each polynomial is the same, were extensively studied by several authors [47, 54, 12, 18].
However, there are very few results about determinantal formulas for mixed multihomogeneous systems, that
is, when the supports are not the same. We know such formulas for scaled multihomogeneous systems [22],
that is when the supports are scaled copies of one of them, and for bivariate tensor-product polynomial systems
[38, 9]. In what follows, we use the Weyman complex to derive new formulas for families of mixed multilinear
systems.
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3 Determinantal formulas for star multilinear systems

We consider four different kinds of overdetermined multihomogeneous systems, related to star multilinear
systems (Def. 3.1) and we construct determinantal formulas for each of them. These formulas are Koszul-
and Sylvester-type determinantal formulas (Def. 2.14). To simplify the presentation, we change somewhat
the notation that we used for the polynomial systems in sec. 2.1. We split the blocks of variables in two
groups; we replace the blocks of variables xk by Xi or Y j and the constants nk, that correspond to the
cardinalities of the blocks, by αi or βj . Let A,B ∈ N and q = A+B. Let X̄ be the set of A blocks of variables
{X1, . . . ,XA}. For each i ∈ [A], Xi := {xi,0, . . . , xi,αi}; so the number of affine variables in each block Xi

is αi ∈ N. We also consider the polynomial algebra K[Xi] =
⊕

d∈Z
SXi(d), where SXi(d) is the K-vector

space of polynomials of degree d in K[Xi]. Similarly, Ȳ is the set of B blocks of variables {Y 1, . . . ,Y B}. For
each j ∈ [B], Y j := {yj,0, . . . , yj,βj

}; hence the number of variables in each block Y j is βj ∈ N. Moreover,
K[Y j ] =

⊕
d∈Z

SY j (d), where SY j (d) is the K-vector space of polynomials of degree d in K[Y j ].
Consider the Z

q-multigraded algebra K[X̄, Ȳ ], given by

K[X̄, Ȳ ] :=
⊕

(dX1
,...,dXA

,dY 1
,...,dY B

)∈Zq

SX1
(dX1

)⊗ · · · ⊗ SXA
(dXA

)⊗ SY 1
(dY 1

)⊗ · · · ⊗ SY B
(dY B

).

For a multihomogeneous polynomial f ∈ K[X̄, Ȳ ] of multidegree d ∈ Z
q, we denote by dXi , respectively

dY j , the degree of f with respect to the block of variables Xi, respectively Y j . For each group of indices
1 ≤ i1 < · · · < ir ≤ A and 1 ≤ j1 < · · · < js ≤ B, we denote by K[Xi1 , . . . ,Xir ,Y j1 , . . . ,Y js ]1 the set of
multilinear polynomials in K[X̄, Ȳ ] with multidegree (dX1

, . . . , dXA , dY 1
, . . . , dY B ), where

dXl
=

{
1 if l ∈ {i1, . . . , ir}
0 otherwise

and dY l
=

{
1 if l ∈ {j1, . . . , js}
0 otherwise.

.

Let N =
∑A

i=1 αi +
∑B

j=1 βj . We say that a polynomial system is square if it has N equations and
overdetermined if it has N + 1. We consider the multiprojective space

P := P
α1 × · · · × P

αA × P
β1 × · · · × P

βB .

Definition 3.1 (Star multilinear systems). A square multihomogeneous system f = (f1, . . . , fN ) in K[X̄, Ȳ ]
with multidegrees d1, . . . ,dN ∈ Z

q , respectively, is a Star multilinear system if for every k ∈ [N ], there is
jk ∈ [B] such that

fk ∈ K[X1, . . . ,XA,Y jk ]1.

For each j ∈ [B], we denote by Ej the number of polynomials of f in K[X1, . . . ,XA,Y j ]1.

We use the term star because we can represent such systems using a star graph with weighted edges. The
vertices of the graph are the algebras K[Y 1], . . . ,K[Y B], and K[X1, . . . ,XA]. For each dk there is an edge
between the vertices K[X1, . . . ,XA] and K[Y j ] whenever dk,Yj

= 1. The weight of the edge between the
vertices K[X1, . . . ,XA] and K[Y j ] corresponds to Ej . That is, when it holds fk ∈ K[X1, . . . ,XA,Y j ]1. The
graph is a star because every vertex is connected to K[X1, . . . ,XA] and there is no edge between two vertices
K[Y j1 ] and K[Y j2 ].

Example 3.2. LetX1,X2,Y 1,Y 2,Y 3 be blocks of variables. Consider the multihomogeneous system (f1, f2, f3, f4) ⊂
K[X̄, Ȳ ] with the following (pattern of) multidegrees

( dk,X1
, dk,X2

, dk,Y1
, dk,Y2

, dk,Y3
)

d1 = ( 1, 1, 1, 0, 0 )
d2 = ( 1, 1, 1, 0, 0 )
d3 = ( 1, 1, 0, 1, 0 )
d4 = ( 1, 1, 0, 0, 1 )

K[X1,X2]

K[Y 1]

K[Y 2]

K[Y 3]

E1 = 2

E2 = 1

E3 = 1

It is a star multilinear system where E1 = 2, E2 = 1, and E3 = 1. The corresponding star graph is the one
above.

Remark 3.3. For each square star multilinear system, it holds N =
∑B

j=1 Ej . Moreover, if the system has a
nonzero finite number of solutions, then for each j ∈ {1, . . . , B} it holds Ej ≥ βj , see Prop. 2.2.
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3.1 Determinantal formulas

To be able to define the resultant, we study overdetermined polynomial systems (f0, f1, . . . , fN ) in K[X̄, Ȳ ]
where (f1, . . . , fN ) is a square star multilinear system and f0 is a multilinear polynomial. The obvious choice for
f0 is to have the same structure as one of the polynomials f1, . . . , fN ; still we also choose f0 to have a different
support. This leads to resultants of smaller degrees and so to matrices of smaller size. Aiming at resultant
formulas for any A and B, we were able to identify the following choices of f0, that lead to a determinantal
Weyman complex3. In particular, the following f0 lead to determinantal formulas:

• Center-Vertex case: f0 ∈ K[X1, . . . ,XA]1.

• Outer-Vertex case: f0 ∈ K[Y j ]1, for any j ∈ [B].

• Edge case: f0 ∈ K[X1, . . . ,XA,Y j ]1, for any j ∈ [B],

• Triangle case: f0 ∈ K[X1, . . . ,XA,Y j1 ,Y j2 ]1, for any j1, j2 ∈ [B], j1 6= j2.

We can view the various multidegrees of f0, d0 = (d0,X1
, . . . , d0,XA , d0,Y1

, . . . , d0,YB ), in the cases above as
solutions of the following system of inequalities:





(∀ 1 ≤ i ≤ A) 0 ≤ d0,Xi ≤ 1,

(∀ 1 ≤ j ≤ B) 0 ≤ d0,Y j ≤ 1,

(∀ 1 ≤ i1 < i2 ≤ A) d0,Xi1
= d0,Xi2

, and∑B

j=1 d0,Y j ≤ 1 + d0,X1
.

(12)

Consider the set {0, . . . , N} that corresponds to generic polynomials F = (F0, . . . , FN) (Def. 2.3). As many
of the polynomials have the same support, we can gather them to simplify the cohomologies of (6). We need
the following notation. For each tuple (s0, . . . , sB) ∈ N

B+1, let Is0,s1,...,sB be the set of all the subsets of
{0, . . . , N}, such that

• For 1 ≤ j ≤ B, the index sj indicates that we consider exactly sj polynomials from (F1, . . . , FN ) that
belong to Z[u][X1, . . . ,XA,Y j ]1.

• In addition, if s0 = 1, then 0 belongs to all the sets in Is0,s1,...,sB .

That is,

Is0,s1,...,sB :=
{
I : I ⊂ {0, . . . , N}, (0 ∈ I⇔s0 = 1) and

(∀1 ≤ j ≤ B) sj = #{k ∈ I \ {0} : Fk ∈ Z[u][X1, . . . ,XA,Y j ]1}
}
. (13)

Example 3.4. If we consider a system (F1, . . . , F4) as in Ex. 3.2 and introduce some F0, it holds for F =
(F0, . . . , F4) that I1,1,1,0 = {{0, 1, 3}, {0, 2, 3}} and I0,2,0,1 = {{1, 2, 4}}.

Notice that if I, J ∈ Is0,s1,...,sB , then I and J have the same cardinality and
∑

k∈I dk =
∑

k∈J dk, as they
correspond to subsets of polynomials of F with the same multidegrees.

The following lemma uses the sets Is0,s1,...,sB to simplify the cohomologies of (6).

Lemma 3.5. Consider a generic overdetermined system F = (F0, . . . , FN) in Z[u][X̄, Ȳ ] of multidegrees
d0, . . . ,dN (Def. 2.3), where (F1, . . . , Fn) is a square star multilinear system such that, for every j ∈ {1, . . . , B},
Ej ≥ βj, and d0 is the multidegree of F0. Following (6), we can rewrite the modules of the Weyman complex
Kv(m) =

⊕N+1
p=0 Kv,p ⊗ Z[u] in the more detailed form

Kv,p(m) ∼=
⊕

0≤s0≤1
0≤s1≤E1

...
0≤sB≤EB

s0+s1+···+sB=p

Hp−v
P

(
m− (

B∑

j=1

sj , . . . ,
B∑

j=1

sj , s1, . . . , sB)− s0 d0

)
⊗

⊕

I∈Is0,s1,...,sB

∧

k∈I

ek.

(14)

3For other choices of f0 we found specific values of A and B for which every possible Weyman complex is not
determinantal.
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Moreover, the following isomorphisms hold for the cohomologies:

Hp−v
P

(
m− (

B∑

j=1

sj , . . . ,

B∑

j=1

sj , s1, . . . , sB)− s0 d0

)
∼=

⊕

rX1
...rX1

,rY 1
...rY B

∈N∑
i rXi

+
∑

j rY j
=p−v

( A⊗

i=1

H
rXi

P
αi

(
mXi −

B∑

j=1

sj − s0 d0,Xi

)
⊗

B⊗

j=1

H
rY j

P
βj

(mY j − sj − s0 d0,Y j )
)
. (15)

Proof. Consider I, J ⊂ Is0,s1,...,sB . Then, by definition, #I = #J and
∑
k∈I

dk =
∑
k∈J

dk =

(
∑B

j=1 sj , . . . ,
∑B

j=1 sj , s1, . . . , sB) + s0 d0. Hence,

(
Hp−v

P (m−
∑

k∈I

dk)⊗
∧

k∈I

ek
)
⊕
(
Hp−v

P (m−
∑

k∈J

dk)⊗
∧

k∈J

ek
)
∼=

Hp−v
P

(
m− (

B∑

j=1

sj , . . . ,
B∑

j=1

sj , s1, . . . , sB)− s0 d0

)
⊗
( ∧

k∈I

ek ⊕
∧

k∈J

ek
)
.

By definition of E1, . . . , EB (def. 3.1), the set Is0,s1,...,sB is not empty if and only if 0 ≤ s0 ≤ 1 and for all
i ∈ {1, . . . , B} it holds 0 ≤ si ≤ Ei. Hence,

{I : I ⊂ {0, . . . , N},#I = p} =
⋃

0≤s0≤1
0≤s1≤E1

...
0≤sB≤EB

s0+s1+···+sB=p

Is0,s1,...,sB .

Thus, (14) holds. The isomorphism in (15) follows from Prop. 2.7.

In what follows, we identify the degree vectors that reduce the Weyman complex to have just two elements
and, in this way, they provide us Koszul-type determinantal formulas for star multilinear systems (Def. 2.14).
These degree vectors are associated to tuples called determinantal data. The determinantal data parameterize
the different Koszul-type determinantal formulas that we can obtain using the Weyman complex.

Definition 3.6. Consider a partition of {1, . . . , B} consisting of two sets P and D and a constant c ∈ N. We
say that the triplet (P,D, c) is determinantal data in the following cases:

• When f0 corresponds to Center-Vertex or Edge case: if holds, 0 ≤ c ≤ A.

• When f0 corresponds to Outer-Vertex case: if the following holds,

{
c = 0 if

∑
j∈P

d0,Y j = 0, or

c = A if
∑

j∈D d0,Y j = 0.

• When f0 corresponds to Triangle case: if the following holds,





0 ≤ c ≤ A,∑
j∈P

d0,Y j ≤ 1, and∑
j∈D

d0,Y j ≤ 1.

Equivalently, we say that the triplet (P,D, c) is determinantal data for the multidegree d0 if the following
conditions are satisfied:





∑
j∈P d0,Y j ≤ 1∑
j∈D

d0,Y j ≤ 1

0 ≤ c ≤ A when (∀ i ∈ [A]) it holds d0,Xi = 1,
c = 0 when (∀ i ∈ [A]) it holds d0,Xi = 0 and

∑
j∈P

d0,Y j = 0,

c = A when (∀ i ∈ [A]) it holds d0,Xi = 0 and
∑

j∈D
d0,Y j = 0.

(16)
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Theorem 3.7. Consider a generic overdetermined system F = (F0, . . . , FN ) in Z[u][X̄, Ȳ ] of multidegrees
d0, . . . ,dN (Def. 2.3), where (F1, . . . , Fn) is a square star multilinear system. Assume that for every j ∈
{1, . . . , B} it holds Ej ≥ βj (see Rem. 3.3) and that the multidegree of F0, d0, is a solution of the system in
(12). Then, for each determinantal data (P,D, c) (Def. 3.6) and a permutation σ : {1, . . . , A} → {1, . . . , A},
the degree vector m = (mX1

, . . . ,mXA
,mY 1

, . . . ,mY B
), defined by





mXi =
∑

j∈D
βj +

∑σ(i)−1
k=1 ασ−1(k) + d0,Xi for 1 ≤ i ≤ A and σ(i) > c

mXi =
∑

j∈D
βj +

∑σ(i)−1
k=1 ασ−1(k) − 1 for 1 ≤ i ≤ A and σ(i) ≤ c

mY j = Ej − βj + d0,Y j for j ∈ P
mY j = −1 for j ∈ D

corresponds to the Koszul-type determinantal formula (Def. 2.14)

K•(m) : 0 → K1,ω+1(m)⊗ Z[u]
δ1(m)
−−−−→ K0,ω(m)⊗ Z[u] → 0,

where ω =
∑c

k=1 ασ−1(k) +
∑

j∈D
βj .

Proof. To simplify the presentation of the proof, we assume with no loss of generality that σ is the identity
map. We rewrite (6) using Lem. 3.5. Hence, we obtain the following isomorphism,

Hp−v
P

(
m− (

B∑

j=1

sj , . . . ,
B∑

j=1

sj , s1, . . . , sB)− s0 d0

)
∼=

⊕
∑

i rXi
+
∑

j rY j
=p−v




⊗

j∈P

H
rY j

P
βj

(Ej − βj + d0,Y j − sj − s0 d0,Y j ) ⊗ [Case Y.1]

⊗

j∈D

H
rY j

P
βj

(−1− sj − s0 d0,Y j ) ⊗ [Case Y.2]

c⊗

i=1

H
rXi

P
αi

(∑

j∈D

βj +

i−1∑

k=1

αk − 1−
B∑

j=1

sj − s0 d0,Xi

)
⊗ [Case X.1]

A⊗

i=c+1

H
rXi

P
αi

(∑

j∈D

βj +

i−1∑

k=1

αk + d0,Xi −
B∑

j=1

sj − s0 d0,Xi

)
[Case X.2]




(17)

We will study the values for p, v, s0, . . . , sB, rX1
, . . . , rXA

, rY 1
, . . . , rY B

such thatKv,p(m) (14) does not vanish.
Clearly, if 0 ≤ s0 ≤ 1 and (∀i ∈ {1, . . . , B}) 0 ≤ si ≤ Ei, then the module

⊕
I∈Is0,s1,...,sB

∧
k∈I ek is not zero.

Hence, assuming 0 ≤ s0 ≤ 1 and (∀i ∈ {1, . . . , B}) 0 ≤ si ≤ Ei, we study the vanishing of the modules in (17).
By Rem. 2.8, the modules in the right hand side of (17) are not zero only when, for 1 ≤ i ≤ A, rXi ∈ {0, αi}
and, for 1 ≤ j ≤ B, rY j ∈ {0, βj}. We can use Rem. 2.9 to show that if (17) does not vanish, then we have
the following cases

[Case Y.1] For j ∈ P rY j = 0 and Ej−βj+d0,Yj
≥ sj+s0 d0,Yj

[Case Y.2] For j ∈ D rY j
= βj and sj + s0 d0,Yj

≥ βj

[Case X.1] For 1 ≤ i ≤ c rXi = αi and
B∑

j=1

sj + s0 d0,Xi ≥
∑

j∈D

βj +
i∑

k=1

αXk

[Case X.2] For c < i ≤ A rXi
= 0 and

∑

j∈D

βj +
i−1∑

k=1

αk ≥
B∑

j=1

sj + (s0 − 1) d0,Xi

(18)

From (18), we can deduce the possible values for v such that Kv,p(m) does not vanish. From (14), it holds
p =

∑B

j=1 sj + s0. By Prop. 2.7, p− v =
∑A

i=1 rXi +
∑B

j=1 rYj
. Hence, we deduce that

v =
B∑

j=1

sj + s0 −
∑

j∈D

βj −
c∑

i=1

αi.
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• First we provide a lower bound for v. Assume that c > 0. By [Case X.1], if i = c, then

B∑

j=1

sj + s0 d0,Xc ≥
∑

j∈D

βj +
c∑

k=1

αXk
.

Hence, as 0 ≤ s0, d0,Xc+1
≤ 1, we conclude that v ≥ 0 as

v = s0 +

B∑

j=1

sj −
∑

j∈D

βj −
c∑

k=1

αk ≥ s0 (1− d0,Xc ) ≥ 0.

Assume instead that c = 0. Then v =
∑B

j=1 sj + s0 −
∑

j∈D
βj . By [Case Y.2], for each j ∈ D, βj ≤

sj + s0 d0,Yj
. Moreover, it holds, for each j ∈ P , 0 ≤ sj . Adding the inequalities we deduce that,

B∑

j=1

sj + s0
∑

j∈D

d0,Yj
≥
∑

j∈D

βj . (19)

By definition, 0 ≤
∑

j∈D
d0,Yj

≤ 1. Hence, by (19), v ≥ 0 as, v ≥ s0 − s0
∑

j∈D
d0,Yj

≥ 0.

• Finally we provide an upper bound for v. Assume that c < A. By [Case X.2], if we consider i = c+ 1, then

∑

j∈D

βj +

c∑

k=1

αk ≥
B∑

j=1

sj + (s0 − 1) d0,Xc+1
.

Hence we conclude that v ≤ 1, as 0 ≤ s0, d0,Xc+1
≤ 1 and so,

v = s0 +
B∑

j=1

sj −
∑

j∈D

βj −
c∑

k=1

αk ≤ s0 + (1− s0) d0,Xc+1
≤ 1.

Assume instead that c = A. Then v =
∑B

j=1 sj + s0 −
∑

j∈D
βj −

∑A

i=1 αi. By [Case Y.1], for j ∈ P ,
Ej − βj + d0,Yj

≥ sj + s0 d0,Yj
. Moreover, it holds, for each j ∈ D, Ej ≥ sj . As the system (F1, . . . , FN ) is

square, it holds
∑B

j=1 Ej =
∑A

i=1 αi +
∑

j∈P
βj +

∑
j∈D

βj . Hence, adding the inequalities we obtain

A∑

i=1

αi +
∑

j∈D

βj =
B∑

j=1

Ej −
∑

j∈P

βj ≥
B∑

j=1

sj + (s0 − 1)
∑

j∈P

d0,Yj
. (20)

By definition, 0 ≤ s0,
∑

j∈P
d0,Yj

≤ 1. Hence, by (20), v ≤ 1 as,

v ≤ s0 − (s0 − 1)
∑

j∈P

d0,Yj
≤ 1.

We conclude that the possible values for v, p, rX1
, . . . , rXA

, rY 1
, . . . , rY B

such that (17) is not zero are v ∈
{0, 1}, the possible values for rX1

, . . . , rXA
, rY 1

, . . . , rY B
are the ones in (18) and p =

∑c

k=1 αk+
∑

j∈D
βj+v.

Let ω =
∑c

k=1 αk +
∑

j∈D
βj . Hence, our Weyman complex looks like (8), where

δ1(m) : K1,ω+1(m)⊗ Z[u] → K0,ω(m)⊗ Z[u].

In what follows, we prove each case in (18). Consider the modules related to the variables Yj , for j ∈ {1, . . . , B}.
Case (Y.1) We consider the modules that involve the variables in the block Yj , for j ∈ P . As sj ≤ Ej

and s0, d0,Yj
≤ 1, it holds Ej − βj + d0,Yj

− sj − s0 d0,Yj
> −βj − 1. Hence, by Rem. 2.9,

H
rY j

P
βj

(Ej − βj + d0,Yj
− sj − s0 d0,Yj

) 6= 0 ⇐⇒ (21)

rY j = 0 and Ej − βj + d0,Yj
≥ sj + s0 d0,Yj

.

Case (Y.2)We consider the modules that involve the variables in the block Yj, for j ∈ D. As sj , s0, d0,Yj
≥

0, then −1− sj − s0 d0,Yj
< 0. Hence, by Rem. 2.9,

H
rY j

P
βj

(−1− sj − s0 d0,Yj
) 6= 0 ⇐⇒ rY j = βj and sj + s0 d0,Yj

≥ βj . (22)

14



Now we consider the cohomologies related to the blocks of variables Xi, for i ∈ {1, . . . , A}. We assume
that the cohomologies related to the blocks of variables Yj do not vanish.

Case (X.1) We consider the module related to the blocks X1 . . . ,Xc. We only need to consider this case
if c > 0, so we assume c > 0. We prove that for each 1 ≤ i ≤ c, if the cohomologies related to the variables in
the blocks Y j , for 1 ≤ j ≤ B, and the ones related to X1 . . . ,Xi−1, do not vanish, then

H
rXk

P
αi

(
mXi −

B∑

j=1

sj − s0 d0,Xi

)
6= 0 ⇐⇒

rXi = αi and
B∑

j=1

sj + s0 d0,Xi ≥
∑

j∈D

βj +
i∑

k=1

αXk
.

(23)

We proceed by induction on 1 ≤ i ≤ c.

• Consider i = 1 and the cohomology related to the block X1,

H
rX1

P
α1

(∑

j∈D

βj − 1−
B∑

j=1

sj − s0 d0,X1

)
.

As we assumed that c > 0 and the triplet (P,D, c) is determinantal data (def. 3.6), by definition either
d0,X1

= 1 or both d0,X1
= 0 and

∑
j∈D

d0,Yj
= 0. Also, it holds 0 ≤ s0,

∑
j∈D

d0,Yj
≤ 1. Hence, from (19),

we conclude that,

∑

j∈D

βj − 1−
B∑

j=1

sj − s0 d0,Xk
≤ s0

∑

j∈D

d0,Yj
− 1− s0 d0,Xk

< 0

Therefore, by Rem. 2.9,

H
rX1

P
α1

(∑

j∈D

βj − 1−
B∑

j=1

sj − s0 d0,X1

)
6= 0 ⇐⇒

rX1
= α1 and

B∑

j=1

sj + s0 d0,X1
≥
∑

j∈D

βj + αX1

• We proceed by induction, assuming that (23) holds for i− 1, we prove the property for i. We consider the
cohomology

H
rXi

P
αi

(∑

j∈D

βj − 1 +

i−1∑

k=1

αk −
B∑

j=1

sj − s0 d0,Xi

)
.

By definition (see (12)), d0,Xi−1
= d0,Xi , and by inductive hypothesis, if the previous modules do not vanish,

then
B∑

j=1

sj + s0 d0,Xi =
B∑

j=1

sj + s0 d0,Xi−1
≥
∑

j∈D

βj +

i−1∑

k=1

αXk
.

Hence, by Rem. 2.9,

H
rXi

P
αi

(∑

j∈D

βj − 1 +

i−1∑

k=1

αk −
B∑

j=1

sj − s0 d0,Xi

)
6= 0 ⇐⇒

rXi = αi and

B∑

j=1

sj + s0 d0,Xi ≥
∑

j∈D

βj +

i−1∑

k=1

αk + αi.

Case (X.2) We consider the module related to the blocks Xc+1 . . . ,XA. We only need to consider this
case if c < A, so we assume c < A. We prove that for each c < i ≤ A, if the cohomologies related to the
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variables in the blocks Y j , for 1 ≤ j ≤ B, and the ones related to Xi+1,Xi+2, . . . ,XA, do not vanish, then

H
rXi

P
αi

(∑

j∈D

βj +
i−1∑

k=1

αk + (1− s0) d0,Xi −
B∑

j=1

sj
)
6= 0 ⇐⇒

rXi = 0 and
∑

j∈D

βj +

i−1∑

k=1

αk ≥
B∑

j=1

sj + (s0 − 1) d0,Xi .

(24)

We proceed by induction.

• Consider i = A and the cohomology related to the block XA,

H
rXA

P
αA

(∑

j∈D

βj +

A−1∑

k=1

αk + (1− s0) d0,XA −
B∑

j=1

sj
)
.

As we assumed that c < A and the triplet (P,D, c) is determinantal data (Def. 3.6), by definition, either
d0,XA = 1 or both d0,XA = 0 and

∑
j∈P

d0,Yj
= 0. Also it holds 0 ≤ s0,

∑
j∈P

d0,Yj
≤ 1. Hence, from (20),

we conclude that
∑

j∈D

βj +

A−1∑

i=1

αi + (1− s0) d0,XA −
B∑

j=1

sj ≥ −αA

Therefore, by Rem. 2.9,

H
rXA

P
αA

(∑

j∈D

βj +

A−1∑

k=1

αk + (1− s0) d0,XA −
B∑

j=1

sj
)
6= 0 ⇐⇒

rXA
= 0 and

∑

j∈D

βj +

A−1∑

k=1

αk ≥
B∑

j=1

sj + (s0 − 1) d0,XA . (25)

• We proceed by induction, assuming that (24) holds for i + 1 ≤ A, we prove the property for i > c. We
consider the cohomology

H
rXi

P
αi

(∑

j∈D

βj +

i−1∑

k=1

αk + (1− s0) d0,Xi −
B∑

j=1

sj
)
.

By definition (see (12)), d0,Xi+1
= d0,Xi . So, if the previous cohomologies do not vanish, by induction

hypothesis,
∑

j∈D

βj +
i∑

k=1

αk ≥ (s0 − 1) d0,Xi+1
+

B∑

j=1

sj = (s0 − 1) d0,Xi +
B∑

j=1

sj

Equivalently,
∑

j∈D

βj +
i−1∑

k=1

αk + (1− s0) d0,Xi −
B∑

j=1

sj ≥ −αi.

Hence, by Rem. 2.9,

H
rXi

P
αi

(∑

j∈D

βj +

i−1∑

k=1

αk + (1− s0) d0,Xi −
B∑

j=1

sj
)
6= 0 ⇐⇒

rXi = 0 and
∑

j∈D

βj +

i−1∑

k=1

αk ≥
B∑

j=1

sj + (s0 − 1) d0,Xi .

The previous theorem gives us Sylvester-like determinantal formulas in some cases.
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Corollary 3.8 (Sylvester-type formulas). Consider d0 corresponding to the Center-Vertex or Edge case. Let
σ : {1, . . . , A} → {1, . . . , A} be any permutation and consider the determinantal data ({1, . . . , B}, ∅, 0). Then,
by Prop. 2.17, the overdetermined systems from Thm. 3.7 have a Sylvester-like formula coming from the degree
vector m related to the determinantal data ({1, . . . , B}, ∅, 0) and the permutation σ.

For each determinantal formula given by Thm. 3.7, we get another one from its dual.

Remark 3.9. Consider a degree vector m related to the determinantal data (P,D, c) and the permutation σ.
Then, the triplet (D, P,A− c) is also determinantal data and the map i 7→ (A+ 1− σ(i)) is a permutation of
{1, . . . , A}. Let m̄ be the degree vector associated to (D, P,A− c) and i 7→ (A+1−σ(i)), then, by Prop. 2.10,
K•(m) is isomorphic to the dual complex of K•(m̄).

3.2 Size of determinantal formulas

Following general approaches for resultants as in [14, Ch. 3] or specific ideas for Koszul-type formulas as in [5],
we can use the matrices associated to the determinantal formulas from Thm. 3.7 to solve the square systems
(f1, . . . , fN ). To express the complexity of these approaches in terms of the size of the output, that is, the
expected number of solutions, we study the size of the determinantal formulas of Thm. 3.7 and we compare
them with the number of solutions of the system.

The multihomogeneous Bézout bound (Prop. 2.2) implies the following lemma.

Lemma 3.10. The expected number of solutions,Υ, of a square star multilinear system is

Υ :=
(
∑A

i=1 αi)!∏A

i=1 αi!
·

B∏

j=1

(
Ej

βj

)
.

Lemma 3.11. The degree of the resultant and the sizes of the matrices corresponding to the determinantal
formulas of Thm. 3.7, that is, the rank of the modules K0(m) and K1(m), are (See the beginning of Sec. 3.1
for the definition of the four cases and the notation in the bounds) as follows:

• Center-Vertex case: The rank of the modules is Υ · (1 +
∑A

i=1
αi).

• Outer-Vertex case: The rank of the modules is Υ ·
Ej + βj (

∑A

i=1 αi) + 1

Ej − βj + 1
.

• Edge case: The rank of the modules is Υ ·
(1 +

∑A

i=1 αi)(Ej + 1)

Ej − βj + 1
.

• Triangle case: The rank is Υ · (1 +
∑A

i=1
αi) (1 +

βj1

Ej1 − βj1 + 1
+

βj2

Ej2 − βj2 + 1
).

The proof of this lemma can be found in Appendix A.1 and follows from a direct computation, see Prop. 2.4.

3.3 Example

We follow the notation from the beginning of Sec. 3. Consider four blocks of variables X1,X2,Y1,Y2 that we
partition to two sets: {X1,X2}, of cardinality A = 2, and {Y1,Y2}, of cardinality B = 2. The number of
variables in the blocks of the first set are α = (1, 1) and in the second β = (1, 1). That is, we consider

X1 := {X1,0, X1,1},X2 := {X2,0, X2,1}, Y1 := {Y1,0, Y1,1},Y2 := {Y2,0, Y2,1}.

Let (f1, . . . , f4) be a square star multilinear system corresponding to the following graph,

K[X1,X2]

K[Y 1]

K[Y 2]

E1 = 2

E2 = 2

By Lem. 3.10, the expected number of solutions of the system is 8. We introduce a polynomial f0 and we
consider the multiprojective resultant of f := (f0, f1, . . . , fN ). By Lem. 3.11, the degree of the resultant,
depending on the choice of f0, is as follows:
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• In the Center-Vertex case, that is f0 ∈ K[X1,X2]1, the degree of the resultant is 24.

• In the Outer-Vertex case, that is f0 ∈ K[Y j ]1 for j ∈ [2], its degree is 20.

• In the Edge case, that is f0 ∈ K[X1,X2,Y j ]1 for j ∈ [2], its degree is 36.

• In the Triangle case, that is f0 ∈ K[X1,X2,Y 1,Y 2]1, its degree is 48.

We consider the Edge case, where f0 ∈ K[X1,X2]1, and the overdetermined system f = (f0, f1, f2, f3, f4, f5),
where,

f0:= (a1 x2;0+a2 x2;1) x1;0+(a3 x2;0+a4 x2;1)x1;1

f1:= ((b1 y1;0+b2 y1;1)x2;0+(b3 y1;0+b4 y1;1)x2;1) x1;0+((b5 y1;0+b6 y1;1)x2;0+(b7 y1;0+b8 y1;1)x2;1)x1;1

f2:= ((c1 y1;0+c2 y1;1) x2;0+(c3 y1;0+c4 y1;1) x2;1)x1;0+((c5 y1;0+c6 y1;1) x2;0+(c7 y1;0+c8 y1;1)x2;1)x1;1

f3:= ((d1 y2;0+d2 y2;1)x2;0+(d3 y2;0+d4 y2;1) x2;1)x1;0+((d5 y2;0+d6 y2;1)x2;0+(d7 y2;0+d8 y2;1)x2;1)x1;1

f4:= ((e1 y2;0+e2 y2;1)x2;0+(e3 y2;0+e4 y2;1)x2;1)x1;0+((e5 y2;0+e6 y2;1)x2;0+(e7 y2;0+e8 y2;1)x2;1) x1;1

We consider the determinantal data ({1}, {2}, 1) and the identity map i 7→ i. Then, the degree vector of
Thm. 3.7 is m = (0, 3, 1,−1) and the vector spaces of the Weyman complex K(m,f) become

K1(m,f) = S∗
X1

(−1) ⊗ SX2
(0)⊗ SY 1

(0) ⊗ S∗
Y 2

(0) ⊗

{

(e0 ∧ e1 ∧ e3)⊕ (e0 ∧ e1 ∧ e4) ⊕
(e0 ∧ e2 ∧ e3)⊕ (e0 ∧ e2 ∧ e4)

}

⊕ S∗
X1

(−1) ⊗ SX2
(0) ⊗ SY 1

(0) ⊗ S∗
Y 2

(−1)⊗
{

(e1 ∧ e3 ∧ e4)⊕ (e2 ∧ e3 ∧ e4)
}

⊕ S∗
X1

(−1) ⊗ SX2
(0) ⊗ SY 1

(1) ⊗ S∗
Y 2

(−1)⊗
{

(e0 ∧ e3 ∧ e4)
}

,

K0(m,f) = S∗
X1

(0) ⊗ SX2
(1) ⊗ SY 1

(0) ⊗ S∗
Y 2

(0) ⊗

{

(e1 ∧ e3)⊕ (e1 ∧ e4) ⊕
(e2 ∧ e3)⊕ (e2 ∧ e4)

}

⊕ S∗
X1

(0) ⊗ SX2
(1)⊗ SY 1

(1) ⊗ S∗
Y 2

(0) ⊗
{

(e0 ∧ e3)⊕ (e0 ∧ e4)
}

⊕ S∗
X1

(0) ⊗ SX2
(1)⊗ SY 1

(1) ⊗ S∗
Y 2

(−1)⊗
{

(e3 ∧ e4)
}

.

The Koszul determinantal matrix representing the map δ1(m,f) between the modules with respect to the
monomial basis is




a1 a2 −b1 −b2 −b3 −b4
a3 a4 −b5 −b6 −b7 −b8

a1 a2 −b1 −b2 −b3 −b4
a3 a4 −b5 −b6 −b7 −b8

a1 a2 −c1 −c2 −c3 −c4
a3 a4 −c5 −c6 −c7 −c8

a1 a2 −c1 −c2 −c3 −c4
a3 a4 −c5 −c6 −c7 −c8

e1 e3 −d1 −d3 b1 b2 b3 b4
e5 e7 −d5 −d7 b5 b6 b7 b8
e2 e4 −d2 −d4 b1 b2 b3 b4
e6 e8 −d6 −d8 b5 b6 b7 b8

e1 e3 −d1 −d3 c1 c2 c3 c4
e5 e7 −d5 −d7 c5 c6 c7 c8
e2 e4 −d2 −d4 c1 c2 c3 c4
e6 e8 −d6 −d8 c5 c6 c7 c8

e1 e3 −d1 −d3 a1 a2

e5 e7 −d5 −d7 a3 a4

e2 e4 −d2 −d4 a1 a2

e6 e8 −d6 −d8 a3 a4

e1 e3 −d1 −d3 a1 a2

e5 e7 −d5 −d7 a3 a4

e2 e4 −d2 −d4 a1 a2

e6 e8 −d6 −d8 a3 a4




.

4 Determinantal formulas for bipartite bilinear system

In this section, we define the bipartite bilinear systems and we construct determinantal formulas for two
different kinds of overdetermined multihomogeneous systems related to them. These formulas are Koszul-type
determinantal formulas. This section follow the same notation as Sec. 3.
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Definition 4.1 (Bipartite bilinear system). A square multihomogeneous system f = (f1, . . . , fN ) in K[X̄, Ȳ ]
with multidegrees d1, . . . ,dN ∈ Z

q is a bipartite bilinear system if for every k ∈ [N ], there are ik ∈ [A] and
jk ∈ [B] such that fk ∈ K[Xik ,Y jk ]1. For each i ∈ [A] and j ∈ [B], let Ei,j be the number of polynomials of
f in K[Xi,Y j ]1.

We use the term bipartite because we can represent such systems using a bipartite graph. The vertices of
the graph are the algebras K[X1], . . . ,K[XA], K[Y 1], . . . ,K[Y B ]. For each dk there is an edge between the
vertices K[Xi] and K[Y j ] whenever dk,Xi

= dk,Yj
= 1. That is, when it holds fk ∈ K[Xi,Y j ]1. The graph is

bipartite because we can partition the vertices to two sets, {K[X1], . . . ,K[XA]} and {K[Y 1], . . . ,K[Y B ]} such
that there is no edge between vertices belonging to the same set.

Example 4.2. Let X1,X2,Y 1,Y 2,Y 3 be five blocks of variables. Consider the multihomogeneous system
(f1, f2, f3, f4) ⊂ K[X̄, Ȳ ] with multidegrees

( di,X1
, di,X2

, di,Y1
, di,Y2

, di,Y3
)

d1 = ( 1, 0, 1, 0, 0 )
d2 = ( 1, 0, 0, 1, 0 )
d3 = ( 0, 1, 0, 1, 0 )
d4 = ( 0, 1, 0, 0, 1 )

K[X1]

K[X2]

K[Y 1]

K[Y 2]

K[Y 3]

E1,1 = 1

E1,2 = 1

E2,2 = 1

E2,3 = 1
E1,3 = 0

E2,1
= 0

This system is a bipartite bilinear system where E1,1 = 1, E1,2 = 1, E1,3 = 0, E2,1 = 0, E2,2 = 1 and E2,3 = 1.
The corresponding bipartite graph is the one above.

Remark 4.3. For each square bipartite bilinear system, it holds N =
∑A

i=1

∑B

j=1 Ei,j . Moreover, if the system

has a nonzero finite number of solutions, then for i ∈ {1, . . . , A}, it holds
∑B

j=1 Ei,j ≥ αi and for each

j ∈ {1, . . . , B} it holds
∑A

i=1 Ei,j ≥ βj , see Prop. 2.2.

As we did in Sec. 3, we study overdetermined polynomial systems (f0, f1, . . . , fN ) in K[X̄, Ȳ ] where
(f1, . . . , fN ) is a square bipartite bilinear system and f0 is a multilinear polynomial. We consider different
types of polynomials f0. The obvious choice for f0 is to have the same structure as one of the polynomials
f1, . . . , fN ; still we also choose f0 to have a different support. This leads to resultants of smaller degrees and
so to matrices of smaller size. The following f0 lead to determinantal formulas:

1. f0 ∈ K[Xi]1, for any i ∈ {1, . . . , A}.

2. f0 ∈ K[Y j ]1, for any j ∈ {1, . . . , B}.

3. f0 ∈ K[Xi,Y j ]1, for any i ∈ {1, . . . , A} and j ∈ {1, . . . , B}.

Theorem 4.4. Consider a generic overdetermined system F = (F0, . . . , FN) in Z[u][X̄, Ȳ ] of multidegrees
d0, . . . ,dN (Def. 2.3), where (F1, . . . , Fn) is a square bipartite bilinear system. Assume that for each i ∈
{1, . . . , A},

∑B

j=1 Ei,j ≥ αi and for each j ∈ {1, . . . , B},
∑A

i=1 Ei,j ≥ βj (see Rem. 4.3), and F0 is a multilinear
polynomial as detailed in the paragraph above of multidegree d0.

The degree vector m = (mX1
, . . . ,mXA ,mY 1

, . . . ,mY B ) define by

{
mXi =

∑B

j=1 Ei,j − αi + d0,Xi for 1 ≤ i ≤ A

mY j = −1 for 1 ≤ j ≤ B

corresponds to a Koszul-type determinantal formula (Def. 2.14)

K•(m) : 0 → K1,
∑

B
j=1

βj+1(m)
δ1(m)
−−−−→ K0,

∑
B
j=1

βj
(m) → 0.

For the sake of brevity, we present the proof of Thm. 4.4 in Appendix A.2 as it is similar to the one of Thm. 3.7.
Additionally, we present an example of the determinantal formulas constructed in this section in Appendix A.3.

19



5 Solving the Multiparameter Eigenvalue Problem

We present an algorithm (and an example) for solving a nonsingular MEP. The polynomial system associated
to MEP, see (2), corresponds to a star multilinear system (Def. 3.1), where A = 1, B = α and Ej = βj + 1,
for each j ∈ [B]. In particular, following (2), the system is fMEP := (f1,0, . . . , f1,β1

, . . . , fα,0, . . . , fα,βα), where
fi,j ∈ K[Y 1, . . . ,Y i−1,Y i+1, . . . ,Y α]1, for i ∈ [α] and j + 1 ∈ [βi + 1]. The expected number of solutions is∏α

j=1(βj + 1), see Lem. 3.10.
We introduce a linear form f0 ∈ K[X]1 and consider the Sylvester-type determinantal formula of Cor. 3.8.

The map δ associated to this formula is as follows,

δ : K[Y 1, . . . ,Y α]1 ×
∏α

i=1 K[Y 1 . . .Y i−1,Y i+1 . . .Y α]1 → K[X ,Y 1, . . . ,Y α]1
(g0, g1,0, . . . , g1,β1

, . . . , gα,0, . . . , gα,βα) 7→ g0 f0 +
∑α

i=1

∑βi
j=0 gi,jfi,j . (26)

We fix a monomial basis for the domain and codomain of δ and we construct a matrix C associated to it.
We arrange the rows and columns of C so that we can write it as

[
C1,1 C1,2

C2,1 C2,2

]
, such that

• The submatrix [C2,1 C2,2 ] corresponds to the rows Y θ f0, for Y
θ ∈ K[Y 1, . . . ,Y α]1.

• The submatrix
[
C1,2

C2,2

]
corresponds to the column associated to the monomial Y θ X0.

• If the k-th row of C corresponds to Y θ f0, then the k-th column corresponds to the monomial Y θ x0.

We say that a MEP is affine if fMEP is a zero-dimensional system and for every solution the x0-coordinate is
not zero. When fMEP has a finite number of solutions, we can always assume that it is affine by performing
a structured linear change of coordinates. When the MEP is affine, by [5, Prop. 4.5], the matrix C1,1 is
invertible. Moreover, by [5, Lem. 4.4], we have a one to one correspondence between the eigenvalues of the

MEP and the (classical) eigenvalues of the Schur complement of C2,2, C̃2,2 := C2,2 − C2,1C
−1
1,1C1,2 : each

eigenvalue of C̃2,2 is the evaluation of f0
x0

at an eigenvalue of the original MEP. Also, the right eigenspaces of

C̃2,2 correspond to the vector of monomials x0 Y
α, for Y θ ∈ K[Y 1, . . . ,Y α]1, evaluated at each solution of

(f1,0, . . . , f1,β1
, . . . , fα,0, . . . , fα,βα) [21, Lem. 5.1]. Even more, if we multiply these eigenvectors by

[
M

−1

1,1 ·M2,1

I

]
,

then we recover a vector corresponding to the evaluation of every monomial in K[X ,Y 1, . . . ,Y α]1 evaluated
at the original solution. This information suffices to recover all the coordinates of the solution.

Remark 5.1 (Multiplication map). For an affine MEP, the matrix C̃2,2 corresponds to the multiplication map
of the rational function f0

x0
in the quotient ring K[X ,Y 1, . . . ,Y α]/f

MEP at multidegree (0, 1, . . . , 1) ∈ N
α+1,

with respect to the monomial basis {Y θ}Y θ∈K[Y 1,...,Y α]1
.

Algorithm 1 SolveMEP({{M (i,j)}j∈[βi+1]}i∈[α])

Require: Affine MEP {{M (i,j)}j∈[βi+1]}i∈[α]

1: (f1,0, . . . , fα,βα
)← Multilinear system associated to {{M (i,j)}j∈[βi+1]}i∈[α] (Eq. 2).

2: f0 ← Generic linear polynomial in K[X]1.

3:
[C1,1 C1,2

C2,1 C2,2

]

← Matrix corresponding to δ (Eq. 26); partitioned in four block

4:

{(

f0
x0
(p), v̄p

)}

p
← Set of Eigenvalue-Eigenvector of the Schur compl. of C2,2.

5: for all
(

f0
x0
(p), v̄p

)

∈
{(

f0
x0
(p), v̄p

)}

p
do

6: Extract the coordinates of p from
[

C
−1

1,1·C2,1

I

]

· v̄p.

Remark 5.2 (Atkinson’s Delta Method). By inspecting the eigenvalues and eigenvectors of the Schur comple-

ment of C2,2 for f0 = xi

x0
, we can conclude that C̃2,2 equals the matrix ∆−1

0 ∆i from Atkinson’s Delta method,

see [3, Chp. 6]. It worth to point out that our construction of C̃2,2 improves Atkinson’s construction of ∆−1
0 ∆i

as we avoid the symbolic expansion by minors that he considers [3, Eq. 6.4.4]. The dimension of the matrix
C2,2, and so the dimension of Atkinson’s Delta matrices, is

∏α

i=1(βi + 1) ×
∏α

i=1(βi + 1). These matrices are
dense. In contrast, the dimension of the matrix C is (α+ 1)

∏α

i=1(βi + 1)× (α+ 1)
∏α

i=1(βi + 1) (the degree
of the resultant of the system), but the matrix is structured (i.e., multi-Hankel matrix) and sparse; it has at
most (

∑α

i=1 βi + α+ 1) (α+ 1)
∏α

i=1(βi + 1) non-zero positions.
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In what follows we present an example of our algorithm in the two-parameter eigenvalue problem (2EP).
The interested reader can found information about the applications of 2EP in physics in [29]. We consider the
2EP given by the matrices

M (1,0) :=

[
−7 −3

−8 −2

]
M (1,1) :=

[
12 2

13 1

]
M (1,2) :=

[
−7 −1

−7 −1

]

M (2,0) :=

[
−11 −3

4 1

]
M (2,1) :=

[
7 −1

1 2

]
M (2,1) :=

[
−4 0

−1 −1

] . (27)

For simplicity, we will name the three blocks of variables as X ,Y ,Z, instead of X1,Y 1,Y 2. Following (2),
we write 2EP as the following bilinear system

[
f1

f2

]
=

[
−7x0 + 12 x1 − 7 x2 −3x0 + 2x1 − x2

−8x0 + 13 x1 − 7 x2 −2x0 + x1 − x2

]
·

[
y0

y1

]

[
f3

f4

]
=

[
−11 x0 + 7x1 − 4x2 −3x0 − x1

4x0 + x1 − x2 x0 + 2x1 − x2

]
·

[
z0

z1

] .

According to Lem. 3.10, the 2EP should have 4 different solutions. To solve this system, we introduce a
linear polynomial f0 ∈ K[X ] that separates the eigenvalues of the 2EP, that is, if λ1 and λ2 are different
eigenvalues, then f0

xi
(λ1) 6=

f0
xi
(λ2), for some xi ∈ X. Then, we consider a Sylvester-like determinantal formula

for the resultant of (f0, . . . , f4) (Cor. 3.8) and we solve the original system using eigenvalue and eigenvector
computations as in [5].

If the MEP problem has a finite number of eigenvalues and all of them are different, then any generic
f0 ∈ K[X ] separates the eigenvalues. In our case, we choose f0 := −x0 + 5x1 − 3 x2. Following Cor. 3.8,
there is a Sylvester-type formula for the resultant of the system f := (f0, . . . , f4) using the degree vector
m := (1, 1, 1). The latter is related to the determinantal data ({1, 2}, ∅, 0). The Weyman complex reduces to

0 →




SX(0)⊗ SY (1)⊗ SZ(1)⊗ {e0}
⊕SX(0)⊗ SY (0)⊗ SZ(1)⊗ {e1 ⊕ e2}
⊕SX(0)⊗ SY (1)⊗ SZ(0)⊗ {e3 ⊕ e4}


 δ1(m,f)

−−−−−→ (SX(1)⊗ SY (1)⊗ SZ(1)⊗K) → 0,

where the map δ1(m,f) is a Sylvester map (Prop. 2.17). Hence, the resultant of f is the determinant of a

matrix C representing this map, which has dimensions 12× 12 (Case 1, Lem. 3.11). We split C in
[

C1,1 C1,2

C2,1 C2,2

]

according to [5, Def. 4.1].











































x2y0z0 x2y0z1 x2y1z0 x2y1z1 x1y0z0 x1y0z1 x1y1z0 x1y1z1 x0y0z0 x0y0z1 x0y1z0 x0y1z1
z0e1 −7 −1 12 2 −7 −3
z1e1 −7 −1 12 2 −7 −3
z0e2 −7 −1 13 1 −8 −2
z1e2 −7 −1 13 1 −8 −2
y0e3 −4 0 7 −1 −11 −3
y1e3 −4 0 7 −1 −11 −3
y0e4 −1 −1 1 2 4 1
y1e4 −1 −1 1 2 4 1
y0z0e0 −3 5 −1
y0z1e0 −3 5 −1
y1z0e0 −3 5 −1
y1z1e0 −3 5 −1











































.

Remark 5.3. If the original MEP has a finite number of eigenvalues, after performing a generic linear change
of coordinates in the variables X, we can assume that there is no solution of (f1, . . . , fn) such that x0 = 0.

C̃2,2 =




7
4

0 −
1
4

−
1
2

−
3
4

3
2

9
4

2

−
21
4

−3 27
4

5
2

69
4

19
2

−
63
4

−6



.

By [5, Prop. 4.5], as the system (f1, . . . , fn) has no solutions such
that x0 = 0, the matrix C1,1 is nonsingular. Hence, by [5, Lem. 4.4],
we have a one to one correspondence between the eigenvalues of the
2EP and the (classical) eigenvalues of the Schur complement of C2,2,

C̃2,2 := C2,2 −C2,1C
−1
1,1C1,2 : each eigenvalue of C̃2,2 is the evaluation
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of f0
x0

at an eigenvalue of the original 2EP. In our case C̃2,2 is as it appears at the left.

Let p1, . . . , p4 be the four solutions of (f1, . . . , f4). Then, the eigenvalues of C̃2,2 are f0
x0

(p1) = 1, f0
x0

(p2) =

2, f0
x0

(p3) = 3 and f0
x0

(p4) = −2. As δ1(m,f ) is a Sylvester-like map, the right eigenspaces of C̃2,2 contain

the vector of monomials v :=

[
x0y0z0
x0y0z1
x0y1z0
x0y1z1

]
evaluated at each solutions of (f1, . . . , f4) [21, Lem. 5.1]; this is as it

appears in the table below. If each eigenspace has dimension one, then we can recover some coordinates of the
solutions by inverting the monomial map given by v.

v p1 p2 p3 p4
x0y0z0 1 1 1 1
x0y0z1 −3 −1 −2 −3
x0y1z0 1 1 −1 −3
x0y1z1 −3 −1 2 9

For example, the z0-coordinate of p1 is non-zero as (x0 y0 z0)(p1) 6=

0, and so its z1-coordinate equals
(x0 y0 z1)
(x0 y0 z0)

(p1) = −3. To compute the
remaining coordinates, either we substitute the computed coordinates
of the solutions in the original system and we solve a linear system, or
we extend each eigenvector v(pi) to w(pi), where w(pi) is the solution
of the following linear system:

[
C1,1 C1,2

C2,1 C2,2

]
w(pi) =

f0
x0

(pi)

[
0

v(pi)

]
, and so w(pi) =

[
−C

−1

1,1
·C1,2 v(pi)

v(pi)

]
.

Each coordinate of w(pi) is a monomial in K[X]1 ⊗K[Y ]1 ⊗K[Z]1 evaluated at pi. Hence, we can recover the
coordinates of pi from wi(pi) by inverting a monomial map. In this case, the solutions to (f1, . . . , f4), and so
eigenvalues and eigenvectors of 2EP are

Ext. Eigenvalues Eigenvectors
x0, x1, x2 y0, y1 z0, z1

p1 = ( 1,−1,−3 1, 1 1,−3 )
p2 = ( 1, 3, 4 1, 1 1,−1 )
p3 = ( 1, 1, 1 1,−1 1,−2 )
p4 = ( 1, 1, 2 1,−3 1,−3 )
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A Additional proofs and examples

A.1 Proof of Lemma 3.11

Proof of Lemma 3.11. Following Cor. 2.16, the size of the Koszul determinantal matrix is the degree of the
resultant. By Prop. 2.4, it holds,

degree(res) =
N∑

k=0

MHB(d0, . . . ,dk−1,dk+1, . . . ,dN ).

As many multidegrees dk are identical, we couple the summands in the previous equation. For each j ∈
{1, . . . , B}, let Ij ∈ {1, . . . , N} be the index of a polynomial in F such that Fj ∈ K[X1, . . . ,XA,Y Ij ]. Recall
that Ej is the number of polynomials with multidegree equal to dIj . Hence, we rewrite the degree of the
resultant as

deg(ResP(d0, . . . ,dn)) = MHB(d1, . . . ,dn) +
B∑

j=1

Ej MHB(d0, . . . ,dIj−1,dIj+1, . . . ,dn).

From Lem. 3.10, MHB(d1, . . . ,dn) =
(
∑A

i=1 αi)!∏
A
i=1

αi!
·
∏B

j=1

(
Ej

βj

)
= Υ. By Prop. 2.2, for every 1 ≤ j ≤ B,

MHB(d0, . . . ,dIj−1,dIj+1, . . . ,dn) is the coefficient of (
∏A

i=1 Z
αi
Xi

)(
∏B

t=1Z
βt

Yt
) in

( A∑

i=1

d0,XiZXi +
B∑

t=1

d0,Y tZXt

)( A∑

i=1

ZXi + ZYj

)Ej−1 ∏

k∈{1,...,B}\{j}

( A∑

i=1

ZXi + ZYk

)Ek

.

Consider the last two factors of the previous equation, that is

( A∑

i=1

ZXi + ZYj

)Ej−1 ∏

k∈{1,...,B}\{j}

( A∑

i=1

ZXi + ZYk

)Ek

. (28)

Then

MHB(d0, . . . ,dIj−1,dIj+1, . . . ,dn) =
A∑

s=1

d0,Xsθ
X
j,s +

B∑

l=1

d0,Y l
θYj,l,

where θXj,s is the coefficient of
(
∏A

i=1 Z
αi
Xi

)(
∏B

t=1 Z
βt
Yt

)

ZXs
in (28), and θYj,t is the coefficient of

(
∏A

i=1 Z
αi
Xi

)(
∏B

l=1
Z

βt
Yl

)

ZYt
in

(28). After some computations, we have

θXj,s =
((
∑A

i=1 αi)− 1)!

(αs − 1)!
∏

i∈{1,...,A}\{s} αi!

(
Ej − 1

βj

) ∏

k∈{1,...,B}\{j}

(
Ek

βk

)
= Υ ·

αs∑A

i=1 αi

Ej − βj

Ej

,

θYj,t =





(
∑A

i=1 αi)!∏
A
i=1

αi!

(
Ej−1
βj−1

)∏
k∈{1,...,B}\{j}

(
Ek
βk

)
= Υ ·

βj

Ej
if t = j,

(
∑A

i=1 αi)!∏
A
i=1

αi!

(
Et

βt−1

)(
Ej−1
βj

)∏
k∈{1,...,B}\{t,j}

(
Ek
βk

)
= Υ · βt

Et−βt+1

Ej−βj

Ej
otherwise.

Using the formulas for θXj,s and θYj,t we get

deg(ResP(d0, . . . ,dn)) = MHB(d1, . . . ,dn) +

B∑

j=1

Ej MHB(d0, . . . ,dIj−1,dIj+1, . . . ,dn) =

Υ +
B∑

j=1

Ej (
A∑

s=1

d0,Xsθ
X
j,s +

B∑

l=1

d0,Y tθ
Y
j,t) = Υ+

B∑

j=1

Ej (
A∑

s=1

d0,Xsθ
X
j,s) +

B∑

j=1

Ej (
B∑

l=1

d0,Y tθ
Y
j,t).

Next, we simplify the last two summands of the previous equation. For the first one, as
∑A

i=1 αi =∑B

j=1(Ej − βj) and for all s it holds d0,Xs = d0,X1
, we obtain

B∑

j=1

Ej

( A∑

s=1

d0,Xsθ
X
j,s

)
=

B∑

j=1

Ej

( A∑

s=1

d0,XsΥ
αs∑A

i=1 αi

Ej − βj

Ej

)
= Υ d0,X1

A∑

i=1

αi.
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For the second one, we perform the following direct calculations

B∑

j=1

Ej (
B∑

l=1

d0,Y tθ
Y
j,t) =

B∑

j=1

Ej

( ∑

t∈{1,...,B}\{j}

d0,Y tΥ
βt

Et − βt + 1

Ej − βj

Ej

+ d0,Y jΥ
βj

Ej

)
=

Υ

B∑

j=1

( B∑

t=1

d0,Y t ·
βt

Et − βt + 1
(Ej − βj)− d0,Y j ·

βj(Ej − βj)

Ej − βj + 1
+ d0,Y jβj

)
=

Υ
B∑

j=1

(Ej − βj)
( B∑

t=1

d0,Y t ·
βt

Et − βt + 1

)
+Υ

B∑

j=1

d0,Y j ·
βj

Ej − βj + 1
=

Υ (1 +

A∑

i=1

αi)
( B∑

t=1

d0,Y t ·
βt

Et − βt + 1

)
.

At last we have the formula

deg(ResP(d0, . . . ,dn)) = Υ
(
1 + d0,X1

A∑

i=1

αi + (1 +
A∑

i=1

αi)
( B∑

t=1

d0,Y t ·
βt

Et − βt + 1

))
.

The proof follows from instantiating the values of d0,X1
, d0,Y 1

, . . . , d0,Y B according to the multidegree of
f0.

A.2 Proof of Theorem 4.4

Proof of Theorem 4.4. In this proof, we follow the same strategy as in the proof of Thm. 3.7. As we did in
Sec. 3.1, we can interpret the various multidegrees of f0, d0 = (d0,X1

, . . . , d0,XA , d0,Y1
, . . . , d0,YB ), that we want

to prove that lead to determinantal formulas as solutions of the following system of inequalities:





(∀1 ≤ i ≤ A) 0 ≤ d0,Xi ≤ 1

(∀1 ≤ j ≤ B) 0 ≤ d0,Y j ≤ 1∑A

i=1 d0,Xi ≤ 1∑B

j=1 d0,Y j ≤ 1.

(29)

Consider the set {0, . . . , N} that corresponds to generic polynomials F = (F0, . . . , FN ) of multidegrees
d0, . . . ,dN (Def. 2.3), where (F1, . . . , Fn) is a square bipartite bilinear system such that, for each i ∈ {1, . . . , A},∑B

j=1 Ei,j ≥ αi and for each j ∈ {1, . . . , B},
∑A

i=1 Ei,j ≥ βj , and d0 is the multidegree of F0. As many of these
polynomials have the same support, similarly to (13), we can gather them to simplify the cohomologies of (6).
For that we introduce the following notation. For each tuple s0, s1,1, . . . , sA,B ∈ N, let Is0,s1,1,...,sA,B be the
set of all the subsets of {0, . . . , N}, such that

• For 1 ≤ i ≤ A and 1 ≤ j ≤ B, the index si,j indicates that we consider exactly si,j polynomials from
(F1, . . . , FN ) that belong to Z[u][Xi,Y j ]1.

• In addition, if s0 = 1, then 0 belongs to all the sets in Is0,s1,1,...,sA,B

That is,

Is0,s1,1,...,sA,B :=
{
I :I ⊂ {0, . . . , n}, (0 ∈ I⇔s0 = 1) and

(∀1 ≤ i ≤ A)(∀1 ≤ j ≤ B) si,j = #{k ∈ I : fk ∈ K[Xi,Y j ]}
}
. (30)

As in Lem. 3.5, we exploit the sets Is0,s1,1,...,sA,B to rewrite the cohomologies Kv(m) =
⊕N+1

p=0 Kv,p⊗Z[u]
of (6) in the following way,

Kv,p(m) =
⊕

0≤s0≤1
(∀1≤i≤A)(∀1≤j≤B) 0≤si,j≤Ei,j

s0+
∑A

i=1

∑B
j=1 si,j=p

(
Hp−v

P

(
m−

( B∑

j=1

s1,j , . . . ,
B∑

j=1

sA,j ,
A∑

i=1

si,1, . . . ,
A∑

i=1

si,B
)
− s0 d0

)

⊗
⊕

I∈Is0,s1,1,...,sA,B

∧

k∈I

ek
)
. (31)
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Hence, using the Künneth Formula (Prop. 2.7) with the degree vector m defined in Thm. 4.4, we have the
following isomorphisms of cohomologies,

Hp−v
P

(
m−

(
B∑

j=1

s1,j , . . . ,

B∑

j=1

sA,j ,

A∑

i=1

si,1, . . . ,

A∑

i=1

si,B

)
− s0 d0

)
∼=

⊕

rX1
+···+rXA

+rY 1
+···+rY B

=p−v




A⊗

i=1

H
rXi

P
αi

(
B∑

j=1

(Ei,j − si,j)− αi + (1− s0) d0,Xi

)
[Case X]

⊗
B⊗

j=1

H
rY j

P
βj

(
−1−

A∑

i=1

si,j − d0,Yj s0

)
[Case Y]




(32)

We will study the values for p, v, s0, s1,1, . . . , sA,B, rX1
, . . . , rXA , rY 1

, . . . , rY B such that Kv,p(m) does
not vanish. Clearly, if 0 ≤ s0 ≤ 1 and (∀i ∈ {1, . . . , A}) (∀j ∈ {1, . . . , B}) 0 ≤ si,j ≤ Ei.j , then the module⊕

I∈Is0,s1,1,...,sA,B

∧
k∈I

ek is not zero. Hence, assuming 0 ≤ s0 ≤ 1 and (∀i ∈ {1, . . . , A}) (∀j ∈ {1, . . . , B}) 0 ≤

si,j ≤ Ei.j (∀i ∈ {1, . . . , B}) 0 ≤ si ≤ Ei, we study the vanishing of the modules in the right-side part of (32).
We will study the cohomologies independently. By Rem. 2.8, the modules in the right hand side of (32) are
not zero only when, for 1 ≤ i ≤ A, rXi ∈ {0, αi} and, for 1 ≤ j ≤ B, rY j ∈ {0, βj}. At the end of the proof
we show that if (32) does not vanish then the following conditions hold,

[Case X] For 1 ≤ i ≤ A

rXi = 0
B∑

j=1

(Ei,j − si,j)− αi + (1− s0) d0,Xi ≥ 0

[Case Y] For 1 ≤ j ≤ B

rY j = βj

A∑

i=1

si,j + s0 d0,Y j − βj ≥ 0

(33)

Using (33), we study the possible values for v such that Kv,p(m) does not vanish. From (31), it holds
p =

∑A

i=1

∑B

j=1 si,j + s0. By Prop. 2.7, p− v =
∑A

i=1 rXi +
∑B

j=1 rY j . Hence, we deduce that, when Kv,p(m)
does not vanish, it holds,

v =
A∑

i=1

B∑

j=1

si,j + s0 −
B∑

j=1

βj =
B∑

j=1

(
A∑

i=1

si,j − βj

)
+ s0.

We bound the values for v for which Kv,p(m) does not vanish.

• First, we lower-bound v. Assume that the cohomologies involving Y j are not zero. Hence, if we sum
over j ∈ {1, . . . , B} the inequalities of [Case Y], we conclude that

0 ≤
B∑

j=1

(
A∑

i=1

si,j − βj) + s0

B∑

j=1

d0,Y j = v + s0

(
B∑

j=1

d0,Y j − 1

)
.

By definition, (29), 0 ≤
∑B

j=1 d0,Y j ≤ 1, and 0 ≤ s0 ≤ 1, hence 0 ≤ v.

• Finally, we upper-bound v. Assume that the cohomologies involving Xj are not zero. Hence, if we
sum over i ∈ {1, . . . , A} the inequalities of [Case X], we conclude that

0 ≤
A∑

i=1

(
B∑

j=1

(Ei,j − si,j)− αi + (1− s0) d0,Xi

)

=
A∑

i=1

B∑

j=1

Ei,j −
A∑

i=1

αi −
A∑

i=1

B∑

j=1

si,j + (1− s0)

(
A∑

i=1

d0,Xi

)
.

Recall that N =
∑A

i=1

∑B

j=1 Ei,j =
∑A

i=1 αi +
∑B

i=j
βj and v =

∑A

i=1

∑B

j=1 si,j + s0 −
∑B

i=j
βj . Also,

as d0 is a solution of (29), it holds 0 ≤
∑B

j=1 d0,Y j ≤ 1, and 0 ≤ s0 ≤ 1. Hence

v =
A∑

i=1

B∑

j=1

si,j + s0 −
B∑

i=j

βj ≤ s0 + (1− s0)

(
A∑

i=1

d0,Xi

)
≤ 1.
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We conclude that the possible values for v, p, rX1
, . . . , rXA , rY 1

, . . . , rY B such that (32) is not zero are
v ∈ {0, 1}, the possible values for rX1

, . . . , rXA
, rY 1

, . . . , rY B
are the ones in (33) and p =

∑B

j=1 βj+v. Hence,
our Weyman complex looks like (8), where

δ1(m) : K1,
∑

B
j=1

βj+1(m) → K0,
∑

B
j=1

βj
(m)

is a Koszul-type determinantal formula.
In what follows we prove each case in (33).
Case (X) We consider the modules that involve the variables in the block Xi, for 1 ≤ i ≤ A. As

(∀j) si,j ≤ Ei,j , 0 ≤ s0 ≤ 1 and 0 ≤ d0,Xi ≤ 1, we have
∑B

j=1(Ei,j − si,j) − αi + (1 − s0) d0,Xi > −1 − αi.
Hence, by Rem. 2.9,

H
rXi

P
αi (

B∑

j=1

(Ei,j − si,j)− αi + (1− s0) d0,Xi) 6= 0 ⇐⇒

rXi = 0 and
B∑

j=1

(Ei,j − si,j)− αi + (1− s0) d0,Xi ≥ 0.

Case (Y) We consider the modules that involve the variables in the block Y j , for 1 ≤ j ≤ B. As
(∀j ∈ {1, . . . , B}) si,j ≥ 0 and s0, d0,Y j ≥ 0, then −1−

∑A

i=1 si,j − s0 d0,Y j < 0, and so by Rem. 2.9,

H
rY j

P
βj

(−1−
A∑

i=1

si,j − s0 d0,Y j ) 6= 0 ⇐⇒

rY j = βj and
A∑

i=1

si,j + s0 d0,Y j − βj ≥ 0.

A.3 Example of determinantal formula for bipartite bilinear system

Consider four blocks of variables such that A = 2, B = 2, α = (1, 2), β = (1, 2), and





X1 := {X1,0, X1,1}
X2 := {X2,0, X2,1, X2,2}
Y1 := {Y1,0, Y1,1}
Y2 := {Y2,0, Y2,1, Y2,2}.

Let (f1, . . . , f6) be the square bipartite bilinear system represented by the following graph:

X1

X2

Y 1

Y 2

E1,1 = 1

E1,2 = 2 E2,1
= 1

E2,2 = 2

We introduce a polynomial f0 ∈ K[X1,Y 1]1 and consider the following overdetermined system f where,

f :=





f0 := (a1 y1;0 + a2 y1;1) x1;0 + (a3 y1;0 + a4 y1;1)x1;1

f1 := (b1 y1;0 + b2 y1;1) x1;0 + (b3 y1;0 + b4 y1;1)x1;1

f2 := (c1 y1;0 + c2 y1;1) x2;0 + (c5 y1;0 + c6 y1;1) x2;1 + (c3 y1;0 + c4 y1;1)x2;2

f3 := (d1 y2;0 + d2 y2;2 + d3 y2;1)x1;0 + (d4 y2;0 + d5 y2;2 + d6 y2;1)x1;1

f4 := (e1 y2;0 + e2 y2;2 + e3 y2;1) x1;0 + (e4 y2;0 + e5 y2;2 + e6 y2;1)x1;1

f5 := (g1 y2;0 + g2 y2;2 + g3 y2;1) x2;0 + (g7 y2;0 + g8 y2;2 + g9 y2;1)x2;1

+(g4 y2;0 + g5 y2;2 + g6 y2;1)x2;2

f6 := (h1 y2;0 + h2 y2;2 + h3 y2;1) x2;0 + (h7 y2;0 + h8 y2;2 + h9 y2;1)x2;1

+(h4 y2;0 + h5 y2;2 + h6 y2;1)x2;2

(34)
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Following Thm. 4.4, we consider the degree vector m = (3, 1,−1,−1). The vector spaces of the Weyman
complex K(m,f ) looks like,

K1(m,f) = SX1
(0)⊗ SX2

(0)⊗ S∗
Y 1

(0)⊗ S∗
Y 2

(−1)⊗

{
(e0 ∧ e3 ∧ e4 ∧ e5)⊕ (e0 ∧ e3 ∧ e4 ∧ e6) ⊕
(e2 ∧ e3 ∧ e4 ∧ e5)⊕ (e2 ∧ e3 ∧ e4 ∧ e6)

}

⊕ SX1
(0)⊗ SX2

(0)⊗ S∗
Y 1

(−1)⊗ S∗
Y 2

(0)⊗





(e0 ∧ e2 ∧ e3 ∧ e6)⊕ (e0 ∧ e2 ∧ e4 ∧ e5) ⊕
(e0 ∧ e2 ∧ e4 ∧ e6)⊕ (e0 ∧ e2 ∧ e3 ∧ e4) ⊕
(e2 ∧ e2 ∧ e3 ∧ e4)⊕ (e0 ∧ e2 ∧ e3 ∧ e5)





K0(m,f) = SX1
(0)⊗ SX2

(1)⊗ S∗
Y 1

(0)⊗ S∗
Y 2

(0)⊗
{

(e0 ∧ e3 ∧ e4)⊕ (e2 ∧ e3 ∧ e4)
}

⊕ SX1
(1)⊗ SX2

(0)⊗ S∗
Y 1

(0) ⊗ S∗
Y 2

(0)⊗





(e0 ∧ e3 ∧ e5)⊕ (e0 ∧ e3 ∧ e6) ⊕
(e0 ∧ e4 ∧ e5)⊕ (e0 ∧ e4 ∧ e6) ⊕
(e1 ∧ e3 ∧ e5)⊕ (e1 ∧ e3 ∧ e6) ⊕
(e1 ∧ e4 ∧ e5)⊕ (e1 ∧ e4 ∧ e6) ⊕
(e2 ∧ e3 ∧ e4)





The Koszul determinantal matrix representing the map δ1(m,f) between the modules with respect to a
monomial basis is,




−b1 −b3 a1 a3

−b2 −b4 a2 a4

−b1 −b3 a1 a3

−b2 −b4 a2 a4

−b1 −b3 a1 a3

−b2 −b4 a2 a4

−b1 −b3 a1 a3

−b2 −b4 a2 a4

−c1 −c5 −c3 a1 a3

−c2 −c6 −c4 a2 a4

−g1 −g7 −g4 e1 e4 −d1 −d4

−g3 −g9 −g6 e3 e6 −d3 −d6

−g2 −g8 −g5 e2 e5 −d2 −d5

−h1 −h7 −h4 e1 e4 −d1 −d4

−h3 −h9 −h6 e3 e6 −d3 −d6

−h2 −h8 −h5 e2 e5 −d2 −d5

−c1 −c5 −c3 b1 b3
−c2 −c6 −c4 b2 b4
−g1 −g7 −g4 e1 e4 −d1 −d4

−g3 −g9 −g6 e3 e6 −d3 −d6

−g2 −g8 −g5 e2 e5 −d2 −d5

−h1 −h7 −h4 e1 e4 −d1 −d4

−h3 −h9 −h6 e3 e6 −d3 −d6

−h2 −h8 −h5 e2 e5 −d2 −d5



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