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Abstract

We propose and analyze a quasi-Monte Carlo (QMC) algorithm for efficient simulation
of wave propagation modeled by the Helmholtz equation in a bounded region in which the
refractive index is random and spatially heterogenous. Our focus is on the case in which
the region can contain multiple wavelengths. We bypass the usual sign-indefiniteness of the
Helmholtz problem by switching to an alternative sign-definite formulation recently devel-
oped by Ganesh and Morgenstern (Numerical Algorithms, 83, 1441–1487, 2020). The price
to pay is that the regularity analysis required for QMC methods becomes much more techni-
cal. Nevertheless we obtain a complete analysis with error comprising stochastic dimension
truncation error, finite element error and cubature error, with results comparable to those
obtained for the diffusion problem.

Keywords: quasi-Monte Carlo method, finite element method, wave propagation, hetero-
geneous, random media, Helmholtz equation, coercive
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1 Introduction

This paper is concerned with a new algorithm and associated numerical analysis for efficient
simulation of wave propagation modeled by the Helmholtz equation in a bounded region in
which the refractive index is random and spatially heterogenous. The wave is induced by an
impinging incident wave, and our focus is on the case in which the region can contain multiple
wavelengths. The main aim of this article is to compute the expected value of a linear functional
of the resulting wave field by the use of a well designed Quasi-Monte Carlo (QMC ) method
[9, 11, 31, 34], and to bound the resulting error.

The design and analysis of QMC methods has been well studied for the classical diffusion
problem, see for example [19, 20, 21, 25, 27, 28]. However, it is well known that the standard
Galerkin variational formulation for the Helmholtz partial differential equation (PDE) lacks
positive definiteness unless the wavelength is relatively large compared to the region. The
resulting lack of coercivity (or sign-definiteness) rules out the standard QMC analysis that has
recently been used successfully for strongly elliptic diffusion problems with random input. The
analysis of QMC methods has also been extended to a general class of operator equations,
see [33] and subsequent papers, e.g., [7, 10, 17, 18]. These papers include the case of the
Helmholtz equation, under an appropriate inf-sup condition on the standard Galerkin variational
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formulation and assumptions on the wavelength and the random component of the refractive
index.

In this paper we bypass the sign-indefiniteness problem in a different way, by using the re-
cently developed sign-definite deterministic formulation of Ganesh and Morgenstern [16]. In the
present work that analysis is extended to include randomness in the heterogeneous refractive
index. In the resulting QMC analysis there is a price to pay for using the sign-definite formu-
lation of [16], in that the analysis of regularity with respect to the stochastic variables becomes
complicated, and a new approach is needed. On the other hand it has the advantage that the
space discretization can be carried out with the standard Galerkin scheme without any threat
of instability.

Precisely, we study the wave propagation problem in a bounded domain D ⊂ R
d, for d = 2, 3

with Lipschitz boundary ∂D. The incident wave is of wavelength λ = 2π/k, where k is the
positive wavenumber, and our interest extends to wavelengths λ smaller than L, where L is
a characteristic length of D, or equivalently to kL > 2π. The square of the refractive index,
n(x, ω), in the interior of D may be spatially varying, and is also random, as described below.

For a deterministic forcing function f ∈ L2(D) and boundary data g ∈ L2(∂D), and for
almost all elementary events ω in the probability space (Ω,A,P), the unknown field u(·, ω) ∈
H1(D) is assumed to satisfy the Helmholtz PDE and an absorbing boundary condition

(Lu)(x, ω) = −f(x) , x ∈ D , and
∂u

∂~n
(x̃, ω)− i k u(x̃, ω) = g(x̃) , x̃ ∈ ∂D , (1.1)

where the stochastic Helmholtz operator is given by

(Lu)(x, ω) := ∆u(x, ω) + k2 n(x, ω)u(x, ω) , x ∈ D , ω ∈ (Ω,A,P) . (1.2)

Here ~n = ~n(x̃) is the outward-pointing unit normal vector, defined almost everywhere on the
surface ∂D of the Lipschitz domain D. The system (1.1) is a well known model for a wide class of
applications, including acoustic, electromagnetic, and seismic wave propagation in heterogeneous
media [5, 26, 30]. The boundary condition in (1.1) is standard for the interior wave propagation
model and, as described in [16] and references therein, it can be either considered as an approxi-
mation of the Sommerfeld radiation condition occurring in the unbounded medium counterpart
of our model, or can be used as an interface condition in the heterogeneous-homogeneous coupled
wave propagation model [6, 14].

The random coefficient n(x, ω), x ∈ D, is taken in this article to be parameterized by an
infinite-dimensional vector y(ω) = (y1(ω), y2(ω), . . .). For a fixed realization ω ∈ Ω, we denote
the corresponding deterministic parametric coefficient by n(x,y) and the associated solution to
the above PDE model by u(x,y). We assume that the parameter y is uniformly distributed on

U := [−1
2 ,

1
2 ]

N ,

with the uniform probability measure µ(dy) =
⊗

j≥1 dyj = dy, where N is the set of positive
integers.

The non-negative, uncertain, coefficient n(x,y) is assumed to be expressible as a mean field
n0(x) plus a perturbation,

n(x,y) = n0(x) +
∑

j≥1

yj ψj(x) , x ∈ D , y ∈ U , (1.3)

where the functions ψj(x) are given. For example, the functions ψj may belong to the Karhunen-
Loève eigensystem of a covariance operator, or other suitable function systems in L2(D). We
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note that n and n0 represent the square of the non-zero physical refractive index, and hence n
and n0 are positive.

The paper [13] studied a different computational scheme for wave propagation in random
media, using the standard sign-indefinite formulation of the Helmholtz equation. In that paper
the squared refractive index n was taken to be of the form

n(x, ω) = [1 + ǫ η(x, ω)]2, x ∈ D, ω ∈ Ω, (1.4)

with ǫ a small perturbation parameter controlling the magnitude of the random fluctuation, η
being a random process satisfying the constraint that P

{
ω ∈ Ω : ‖η(·, ω)‖L∞(D) ≤ 1

}
= 1, and

Ω being a sample space. With D being star-shaped with respect to the origin, the authors
established in [13, Theorem 2.15] well-posedness of the continuous stochastic Helmholtz model,
under the restriction that the parameter ǫ is of the order 1/(kL). A discrete form of the stochastic
Helmholtz model was then developed in [13] by writing the stochastic solution as a series in
powers of ǫj, j = 0, 1, 2, . . .. The coefficients in the series expansion were approximated in [13]
using the interior-penalty discontinuous Galerkin (IPDG) discretization method in space, and
Monte Carlo (MC) cubature in the stochastic variables, the IPDG method being chosen because
of its unconditional stability. Because of the low-order convergence of MC approximations, the
approach in [13] requires substantially more sampling points in Ω (and hence more Helmholtz
system solves) compared to the higher-order QMC method and finite element method (FEM)
Galerkin scheme used in the present paper.

The general operator-theory approach in [7] and the expansion in powers of ǫ approach in [13]
both require that, roughly speaking,

kL× (some norm of the stochastic variables) be not large.

(For the case of [7] see Appendix A.) We shall see in (1.5) below that the same is true of the
present method. Thus all three approaches have this feature, but with the difference that in [7]
the requirement is absolute (see (A.3)), whereas in the present work the consequence of taking
larger values of kL is only to increase the constants in our error bounds.

Yet another approach to the Helmholtz problem with random refractive index has been
proposed recently in [32]. There well-posedness and stability of the sign-indefinite formulation of
the stochastic continuous problem has been proved. However, that article [32] does not consider
any form of numerical discretization. Other recent papers concerned with the Helmholtz problem
with variable coefficients are [1, 3, 4, 23, 24].

The main challenge in the present article lies in the design and numerical analysis of a high-
order QMC-FEM for the evaluation of expected values (that is, of integrals with respect to y over
a hypercube of length 1) of linear functionals of the solution u. As with the earlier applications
of QMC-FEM to diffusion problems, the key is to find computable bounds on appropriate mixed
partial derivatives of u with respect to components of y. The difference in this case is that
finding such bounds is now very much harder. The reason for the additional difficulty lies in
the much greater complexity of the coercive formulation [16]. In particular, unlike the situation
with the diffusion problem, both the trial and test functions of the QMC-FEM analysis have
stochastic components.

More precisely, for each y ∈ U , we seek a continuous wave field solution in a special subspace
V of H1(D), see (2.2) below. We fix u(·,y) ∈ V to be the unique solution of a sign-definite
weak formulation of (1.1)–(1.3), and we consider the quantity of interest (QoI) to be a bounded
linear functional G ∈ V ∗ of u(·,y), denoted in this article by [G(u)](y) = G(u(·,y)), where V ∗

denotes the dual space of V , with norm given by (2.10) below. An example of G ∈ V ∗ is the
average wave field in the heterogenous medium: G(u(·,y)) =

∫
D u(x,y) dx. The aim of this
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article is to design and analyze efficient QMC-FEM algorithms to compute approximations to
the expected value of G(u(·,y)), expressed as an infinite-dimensional integral over y:

∫

[−
1
2 ,

1
2 ]

N

G(u(·,y)) dy.

Key ingredients of our strategy are: (i) truncating the infinite series in (1.3) to finitely many
s terms; (ii) discretizing the solution in the spatial variable using FEM based on a mesh pa-
rameter h; and (iii) approximating the expected value integral by an N -point QMC cubature
rule.

For kL ≥ 1, we prove that the combined error for the QMC-FEM approximation is of the
order

s
− 2

p0
+1

+ kLhp +




N

−min
(

1

p1
− 1

2
,1−δ
)
, δ ∈ (0, 12), for first order randomized QMC,

N
− 1

p1 , for higher order deterministic QMC,

where p is the degree of the finite element spline basis functions constructed using a tessellation
of D with mesh-width h, and p0, p1 ∈ (0, 1) satisfy the summability and wavenumber decay
conditions

∑

j≥1

(
kL ‖ψj‖L∞(D)

)p0
≤ K0 and

∑

j≥1

(
kL ‖ψj‖W 1,∞(D)

)p1
≤ K1, (1.5)

with K0,K1 ∈ R independent of the wavenumber k. In particular, the order constant in the
error bound depends on f , g, G, but is independent of k.

The rest of this article is organized as follows. In Section 2, for each fixed y ∈ U , we
introduce the coercive formulation of the stochastic model, and recall from [16] a wavenumber-
explicit spatial regularity bound on the unique solution. In Section 3 we provide an overview
of the analysis needed to obtain the final combined error bound. In Section 4 we derive explicit
bounds on partial derivatives with respect to components of y of the solution u, as needed for
the QMC analysis and the construction of QMC points. In Section 5 we quantify the effect of
truncation of the infinite series for n(x,y). In Section 6 we describe the error associated with
high-order FEM discretization. In Section 7 we focus on the efficient choice of the randomized
and deterministic QMC quadrature rules. In Appendix A we describe the alternative small
perturbation QMC-FEM approach. In Appendix B we prove a technical lemma.

2 A coercive reformulation of the stochastic Helmholtz model

A coercive variational formulation was developed and analyzed recently in [16] for a deterministic
wave propagation model with an inhomogeneous absorbing boundary condition. Here we extend
the method to our stochastic model.

The first step is to recognize that given data f ∈ L2(D), g ∈ L2(∂D), for each fixed y ∈ U ,
any sufficiently regular solution u(·,y) ∈ H1(D) of our model boundary value problem (BVP)

[
∆+ k2 n(x,y)

]
u(x,y) = −f(x) , x ∈ D , and (2.1)

∂u

∂~n
(x̃,y)− i k u(x̃,y) = g(x̃) , x̃ ∈ ∂D ,

has three additional smoothness properties: (i) ∆u(·,y) ∈ L2(D); (ii) ∂u
∂~n(·,y) ∈ L2(∂D); and

(iii) u(·,y) ∈ H1(∂D). The first two properties follow directly from (2.1) and the third property
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follows from the fact that ∇u(·,y) ∈ L2(∂D), since ∇u(·,y) = ~n ∂u
∂~n(·,y) +∇∂Du(·,y) and we

have the regularity result from [29, Theorem 4.2] that surface gradient ∇∂Du(·,y) ∈ L2(∂D).
We incorporate such natural smoothness properties of the Helmholtz PDE model (2.1) in the
following Hilbert space:

V :=
{
w : w ∈ H1(D) , ∆w ∈ L2(D) , w ∈ H1(∂D) ,

∂w

∂~n
∈ L2(∂D)

}
. (2.2)

Following [15, 16], for the stochastic heterogenous model we equip V with the following norm

‖w‖2V := k2 ‖w‖2L2(D) + ‖∇w‖2L2(D) +
1

k2
‖∆w‖2L2(D)

+ L
(
k2 ‖w‖2L2(∂D) + ‖∇∂Dw‖2L2(∂D) +

∥∥∥∂w
∂~n

∥∥∥
2

L2(∂D)

)
, (2.3)

where L is a characteristic length of the Lipschitz domain D ⊂ R
d, d = 2, 3. Note that each

term in (2.3) scales in the same way under a change of length scale. Throughout this article,
when considering the trace of a function w ∈ Hs(D) as a function in Hs−1/2(∂D), for notational
convenience we drop the Dirichlet trace operator γ. (That is, we drop γ and write w instead of
γ w whenever it is considered as a function on ∂D.)

For each fixed y ∈ U , to prove the unique solvability of the BVP (2.1) we ensure the
coercivity property of the variational formulation by assuming the following three conditions on
the geometry and medium of the wave propagation:

(A0) The domain D ⊂ R
d, for d = 2, 3, with diameter L, is star-shaped with respect to a ball

centered at the origin. That is, there exist constants γ̂, µ̂ with 0 < γ̂ ≤ µ̂ ≤ 1 such that

γ̂ L ≤ x̃ · ~n(x̃) ≤ µ̂L , x̃ ∈ ∂D .

We now fix L by defining L := supx∈D ‖x‖, where ‖x‖ is the Euclidean norm of x.

(A1) For y ∈ U and x ∈ D, there exist constants nmax, nmin, bmax and bmin such that almost
everywhere

0 < nmin ≤ n(x,y) ≤ nmax , (2.4)

0 < bmin ≤ ∇ · (xn(x,y)) ≤ bmax , bmin > (d− 2)nmax . (2.5)

(A2) The mean field and perturbation functions satisfy n0 ∈ W 1,∞(D), ψj ∈ W 1,∞(D) and∑
j≥1 ‖ψj‖W 1,∞(D) <∞, where throughout the article

‖w‖W 1,∞(D) := max
{
‖w‖L∞(D), L ‖∇w‖L∞(D)

}
.

The positivity and boundedness of the refractive index in (2.4) is well known for all practical
heterogeneous wave propagation media. As described in detail in [16, Remark 2.1], the two
inequalities on bmin in (2.5) are necessary to ensure the physical constraint that the (geometric-
optical) rays are non-trapping [12, Page 191]. For a detailed geometric interpretation related to
the positivity condition in (2.5), see [22, Section 7].

To develop the sign-definite variational formulation of the BVP, we consider the following
operators [15, 16]

Mℓw := x · ∇w − i k L β̂ℓw + αℓw, ℓ = 1, 2 . (2.6)

The four parameters α1, α2, β̂1, β̂2 ∈ R and an additional parameter A ∈ R will subsequently
play a crucial role. To explain the notation, the three parameters without the “hat” tag are
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independent of the geometry, while the parameters tagged with a “hat” will occur in this article
in combination with the “acoustic size” k L.

Next, for each fixed y ∈ U and for f ∈ L2(D) and g ∈ L2(∂D), with L and n(x,y) given
by (1.2)–(1.3), we recall a sesquilinear form By : V × V → C and an antilinear functional
Gy,f,g = Gy : V → C, introduced in [16]:

By(v,w) :=

∫

D

[(
M2v +

A

k2
Lv
)
Lw +

(
2− d+ α1 + α2 + i k L(β̂1 − β̂2)

)
∇v · ∇w

+
(
− α1 − α2 − i k L(β̂1 − β̂2)

)
k2 n v w + k2

(
∇ · (xn)

)
v w

]
dx

−
∫

∂D

[
M1w i k v +

(
x · ∇∂Dv − i k L β̂2 v + α2 v

)∂w
∂~n

+ (x · ~n)
(
k2 n v w −∇∂Dv · ∇∂Dw

)]
dS , (2.7)

and

Gy(w) :=

∫

D

(
M1w − A

k2
Lw
)
f dx+

∫

∂D
M1w g dS . (2.8)

Using the technical details in the proof of [16, Section 2], we have the following consistency
result connecting the PDE model and the variational formulation determined by the above
sesquilinear form and antilinear functional: For each y ∈ U , if u(·,y) ∈ H1(D) solves the wave
propagation PDE model (2.1), then u(·,y) ∈ V satisfies the variational equation

By(u,w) = Gy(w) for all w ∈ V . (2.9)

The following coercivity, continuity, and unique solvability of (2.9) with wavenumber-explicit
bounds follow from similar results proved in [16]. In particular, for acoustic size kL ≥ 1,
the V -norm spatial regularity bound of the unique solution of the wave propagation model is
independent of the wavenumber. Such wavenumber-explicit bounds play a crucial role in the
analysis and construction of QMC approximations. Below we use the standard norm for the
dual V ∗ of V :

‖G‖V ∗ := sup

{ |G(w)|
‖w‖V

: w ∈ V ,w 6= 0

}
. (2.10)

Theorem 2.1 ([16, Theorems 2.1, 3.1, 3.2, and 4.1]). Let the assumptions (A0) and (A1) hold.
If the three parameters A,α1, β̂1 are chosen such that

d− 2

2
< α1 <

bmin

2nmax
, 0 < A <

bmin − 2α1 nmax

2n2max

, β̂1 ≥ nmax µ̂

2
+

2 µ̂2

γ
+
γ̂

2
, (2.11)

then for all y ∈ U , f ∈ L2(D) and g ∈ L2(∂D) we have

Re[By(w,w)] ≥ Ccoer ‖w‖2V for all w ∈ V , (2.12)

|By(v,w)| ≤ Ccont(kL) ‖v‖V ‖w‖V for all v,w ∈ V , (2.13)

‖Gy,f,g‖V ∗ ≤ Cfunc(kL)
(
L ‖f‖L2(D) + L1/2 ‖g‖L2(∂D)

)
, (2.14)

6



with

Ccoer :=
1

2
min

{
2− d+ 2α1 , bmin − 2α1 nmax − 2An2max , A,

γ̂

2

}
,

Ccont(kL) :=
√
3max





|2− d+ α1 + α2|+ kL |β̂1 − β̂2| ,
Anmax + |α2 − i kL β̂2|+ kL+A ,
α1

kL
+ β̂1 + nmax µ̂ ,

|α2|
kL

+ |β̂2|+ 2 µ̂ , 2 ,
(
|α1 + α2|+ bmax + kL |β̂1 − β̂2|

)
nmax

+
(
An2max + nmax|α2 − i kL β̂2|

)
+ kLnmax +Anmax





,

Cfunc(kL) :=
√
3max

{
1 ,

A

kL
,
α1 +Anmax

kL
+ β̂1

}
.

The coercivity constant Ccoer is independent of the wavenumber. The continuity constant satisfies
Ccont(kL) = O

(
kL + (kL)−1

)
. The functional constant satisfies Cfunc(kL) = O

(
1 + (kL)−1

)
,

and so is bounded independently of the wavenumber if kL ≥ 1.
Consequently, for each y ∈ U , the variational formulation (2.9) has a unique solution

u(·,y) ∈ V and satisfied the regularity bound

‖u(·,y)‖V ≤ Cfunc(kL)

Ccoer

(
L ‖f‖L2(D) + L1/2 ‖g‖L2(∂D)

)
for all y ∈ U , (2.15)

which is bounded independently of the wavenumber if kL ≥ 1.

We note that (2.13) and (2.14) hold even without the weak non-trapping condition (2.5). In
particular, as described in [16], only the proof of coercivity requires all assumptions mentioned
in Theorem 2.1.

3 Overview of our method and error analysis

The main aim of this article is to design and analyze efficient algorithms to compute approxi-
mations to the expected value of G(u(·,y)), expressed as an infinite-dimensional integral over y:

I(G(u)) :=

∫

[−
1
2 ,

1
2 ]

N

G(u(·,y)) dy := lim
s→∞

Is(G(u)), (3.1)

with

Is(G(u)) :=

∫

[−
1
2 ,

1
2 ]

s

G(u(·, (y1, . . . , ys, 0, 0, . . .))) dy1 · · · dys . (3.2)

Key ingredients of our strategy are: (i) truncating the infinite series in (1.3) to finitely many
s terms, yielding the dimensionally-truncated solution us; (ii) discretizing us in the spatial
variable using FEM based on a mesh parameter h, leading to the discrete solution us,h; and
(iii) approximating the s-dimensional expected value integral of G(us,h) by an N -point QMC
cubature rule Qs,N . The precise details regarding us, us,h and the QMC rule Qs,N are given in
later sections. For now it suffices to say that we can write the combined error using the triangle
inequality as a sum of three terms: the dimension truncation error, the FEM discretization
error, and the QMC cubature error :

|I(G(u)) −Qs,N(G(us,h))|
≤ |(I − Is)(G(u))| + |Is(G(us − us,h))| + |Is(G(us,h))−Qs,N(G(us,h))|.
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Alternatively, if the QMC rule is randomized then we have the mean-square error

Erqmc

[
|I(G(u)) −Qs,N(G(us,h); ·)|2

]

≤ 2 |(I − Is)(G(u))|2 + 2 |Is(G(us − us,h))|2 + Erqmc

[
|Is(G(us,h))−Qs,N (G(us,h); ·)|2

]
,

where the expectation Erqmc is taken with respect to the random element in the QMC rule (see
Section 7).

4 Stochastic parameter regularity of random wave field

For the error analysis it is crucial to understand the behavior of multi-index high-order deriva-
tives of the solution of (2.9) with respect to the stochastic variables yj, j ≥ 1. To this end, we
first introduce some notation. For a multi-index ν = (νj)j≥1 with νj ∈ {0, 1, 2, . . .}, we write its
“order” as |ν| := ∑j≥1 νj and its “support” as supp(ν) := {j ≥ 1 : νj ≥ 1}. Furthermore, we
write ν! :=

∏
j≥1(νj !), which is different from |ν|! = (

∑
j≥1 νj)!. We denote by F the (countable)

set of all “finitely supported” multi-indices: F := {ν ∈ N
N
0 : supp(ν) < ∞}. For ν ∈ F, we

denote the ν-th partial derivative with respect to the parametric variables y by

∂ν = ∂νy =
∂|ν|

∂yν11 ∂y
ν2
2 · · · .

For any sequence of real numbers b = (bj)j≥1, we write bν :=
∏
j≥1 b

νj
j . By m ≤ ν we mean

that the multi-index m satisfies mj ≤ νj for all j. Moreover, ν − m denotes a multi-index
with the elements νj −mj, and

(
ν

m

)
:=
∏
j≥1

(
νj
mj

)
. We denote by ej the multi-index whose jth

component is 1 and whose other components are 0. We will make repeated use of the Leibniz
product rule

∂ν(PQ) =
∑

m≤ν

(
ν

m

)
(∂mP ) (∂ν−mQ) . (4.1)

For a general multi-index derivative, ∂ν , we obtain the following result.

Lemma 4.1. Let the assumptions and parameter restrictions in Theorem 2.1 hold. For each
y ∈ U let u(·,y) ∈ V be the unique solution of (2.9). Then for any ν ∈ F (including ν = 0)
and any u,w, z ∈ V ,

By(∂
νu,w) =

∑

j∈supp(ν)

νj Rj(∂
ν−eju,w) + Sν(u,w) + Tν(w), (4.2)

where

Rj(z, w) := −
∫

D

[
Aψj z Lw +

(
M2z +

A

k2
Lz
)
k2 ψj w

+
(
− α1 − α2 − i k L (β̂1 − β̂2)

)
k2 ψj z w + k2

(
∇ · (xψj)

)
z w
]
dx

+ k2
∫

∂D
(x · ~n)ψj z w dS, (4.3)

Sν(u,w)

:=





0 if |ν| = 0, 1,

−Ak2
∑

j∈supp(ν)

∑

ℓ∈supp(ν−ej)

νj(ν − ej)ℓ

∫

D
ψj ψℓ (∂

ν−ej−eℓu)w otherwise, (4.4)
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and

Tν(w) :=





Gy(w) if ν = 0,

−A
∫

D
ψj w f dx if ν = ej ,

0 otherwise.

(4.5)

Proof. For any y ∈ U , let u(·,y) ∈ V be the unique solution of (2.9). For any w ∈ V (indepen-
dent of y) and any ν ∈ F, we will prove the lemma by differentiating and equating the two sides
of (2.9), that is,

∂ν(By(u(·,y), w)) = ∂ν(Gy(w)) . (4.6)

Starting with the left-hand side of (4.6), we note from the sesquilinear form (2.7) that the
factors which depend on y are u(x,y) and n(x,y) as well as (cf. (1.2))

(Lu)(x,y) = ∆u(x,y) + k2 n(x,y)u(x,y) and (Lw)(x) = ∆w(x) + k2 n(x,y)w(x) .

Using the definition of n(x,y) in (1.3), we have

∂mn(x,y) =





n(x,y) if m = 0,

ψj(x) if m = ej ,

0 otherwise,

(4.7)

It follows that (suppressing from here on the dependence on x and y)

∂m(Lw) =





Lw if m = 0,

k2 ψj w if m = ej,

0 otherwise,

(4.8)

and using (4.1) we obtain

∂ν(Lu) = ∆(∂νu) + k2
∑

m≤ν

(
ν

m

)
(∂mn) (∂ν−mu)

= ∆(∂νu) + k2 n (∂νu) + k2
∑

j∈supp(ν)

νj ψj (∂
ν−eju)

= L(∂νu) + k2
∑

j∈supp(ν)

νj ψj (∂
ν−eju) . (4.9)

To ease our derivation below, we split the sesquilinear form (2.7) into three terms, By(u,w) =
B1(u,w) + B2(u,w) + B3(u,w), based on the level of dependency on y:

B1(u,w) :=

∫

D

(
M2u+

A

k2
Lu
)
Lw dx

B2(u,w) :=

∫

D
k2
(
ξ2 n+∇ · (xn)

)
uw dx−

∫

∂D
k2 (x · ~n)nuw dS ,

B3(u,w) :=

∫

D
ξ1 ∇u · ∇w dx

−
∫

∂D

(
M1w i k u+

(
x · ∇∂Du+ ξ3 u

)∂w
∂~n

− (x · ~n)∇∂Du · ∇∂Dw
)
dS ,
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with the abbreviations ξ1 := 2 − d + α1 + α2 + i kL(β̂1 − β̂2), ξ2 := −α1 − α2 − i kL(β̂1 − β̂2),
and ξ3 := −i kLβ̂2 + α2.

It is easy to see that
∂ν(B3(u,w)) = B3(∂

νu,w) .

Using (4.1) and (4.7) we obtain

∂ν(B2(u,w)) =
∑

m≤ν

(
ν

m

)[∫

D
k2
(
ξ2 (∂

mn) +∇ · (x (∂mn))
)
(∂ν−mu)w dx

−
∫

∂D
k2(x · ~n)(∂mn)(∂ν−mu)w dS

]

= B2(∂
νu,w)

+
∑

j∈supp(ν)

νj

[ ∫

D
k2(ξ2 ψj +∇ · (xψj)) (∂ν−eju)w dx−

∫

∂D
k2(x · ~n)ψj(∂ν−eju)w dS

]
.

Using (4.1) and (4.8), followed by applying (4.9) with ν replaced by ν−ej and index j replaced
by ℓ, we obtain

∂ν(B1(u,w)) =
∑

m≤ν

(
ν

m

)∫

D

[
∂ν−m

(
M2u+

A

k2
Lu
)][

∂m(Lw)
]
dx

=

∫

D

[
∂ν
(
M2u+

A

k2
Lu
)]

Lw dx+
∑

j∈supp(ν)

νj

∫

D

[
∂ν−ej

(
M2u+

A

k2
Lu
)]
k2 ψj w dx

= B1(∂
νu,w) +

∫

D

A

k2
k2

∑

j∈supp(ν)

νj ψj (∂
ν−eju)Lw dx

+
∑

j∈supp(ν)

νj

∫

D

[
M2(∂

ν−eju) +
A

k2
L(∂ν−eju)

+
A

k2
k2

∑

ℓ∈supp(ν−ej)

(ν − ej)ℓ ψℓ (∂
ν−ej−eℓu)

]
k2 ψj w dx

= B1(∂
νu,w)

+
∑

j∈supp(ν)

νj

∫

D

[
Aψj (∂

ν−eju)Lw +
(
M2(∂

ν−eju) +
A

k2
L(∂ν−eju)

)
k2 ψj w

]
dx

+Ak2
∑

j∈supp(ν)

∑

ℓ∈supp(ν−ej)

νj (ν − ej)ℓ

∫

D
ψj ψℓ (∂

ν−ej−eℓu)w dx .

We note that for |ν| = 1 and j ≥ 1, the set supp(ν − ej) is empty; in this case we take
∂ν−ej−eℓ to be the zero operator. Thus using (4.3) and (4.4) we obtain,

∂ν(By(u,w)) = By(∂
νu,w)−

∑

j∈supp(ν)

νj Rj(∂
ν−eju,w) − Sν(u,w) . (4.10)

Now for the right-hand side of (4.6) we use (2.8), (4.7) and (4.5) to obtain

∂ν(Gyw) = Tν(w) . (4.11)

The required result is obtained by equating (4.10) and (4.11).
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Next we derive a bound on the parametric derivatives of the solution of (2.9) in the V -norm.

Theorem 4.2. Let the assumptions and parameter restrictions in Theorem 2.1 hold, and assume
additionally that (A2) holds. For each y ∈ U , let u(·,y) ∈ V be the unique solution of (2.9).
Then for all ν ∈ F (including ν = 0),

‖∂νu(·,y)‖V ≤ Cfunc(kL)

Ccoer

(
L ‖f‖L2(D) + L1/2‖g‖L2(∂D)

)
|ν|!Υν , (4.12)

where

Υν :=
∏

j≥1

Υ
νj
j , Υj := Cregu(kL) ‖ψj‖W 1,∞(D),

Cregu(kL) := max

{
CR(kL)

Ccoer
+

A

kLCfunc(kL)
,
2CR(kL)

Ccoer
,

√
2A

Ccoer

}
, (4.13)

CR(kL) := 2A(1 + nmax) + kL
(
1 + β̂2

)
+ |α2|+

∣∣− α1 − α2 − i kL(β̂1 − β̂2)
∣∣+ d+ 1 + µ̂ .

(4.14)

We have CR(kL) = O(kL+ 1), Cfunc(kL) = O
(
1 + (kL)−1

)
, so Cregu(kL) = O

(
kL+ (kL)−1

)
.

Proof. For the ν = 0 case, (4.12) follows from (2.15). Let |ν| ≥ 1. We recall (4.2) and bound
each term on the RHS of (4.2). Using the definition of the V -norm in (2.3), for any w ∈ V we
have

‖w‖L2(D) ≤
1

k
‖w‖V , ‖∇w‖L2(D) ≤ ‖w‖V , ‖∆w‖L2(D) ≤ k ‖w‖V , ‖w‖L2(∂D) ≤

1

k
√
L
‖w‖V ,

and hence using the definition of L in (1.2) and M2 in (2.6) we obtain

‖Lw‖L2(D) ≤ k (1 + nmax)‖w‖V , ‖M2w‖L2(D) ≤
(
L+ L |β̂2|+

|α2|
k

)
‖w‖V .

In addition, for all j ≥ 1, we have

‖∇ · (xψj)‖L∞(D) = ‖(∇ · x)ψj + x · ∇ψj‖L∞(D)

≤ d ‖ψj‖L∞(D) + L ‖∇ψj‖L∞(D) ≤ (d+ 1) ‖ψj‖W 1,∞(D).

For z, w ∈ V , using the above bounds in (4.3), the definition of CR(kL) in (4.14), applying the
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triangle and Cauchy-Schwarz inequalities, we obtain for j ≥ 1,

|Rj(z, w)|
≤ A ‖ψj‖L∞(D) ‖z‖L2(D)‖Lw‖L2(D)

+ k2 ‖ψj‖L∞(D) ‖M2z‖L2(D) ‖w‖L2(D) +A ‖ψj‖L∞(D) ‖Lz‖L2(D) ‖w‖L2(D)

+
∣∣− α1 − α2 − i k L (β̂1 − β̂2)

∣∣ k2 ‖ψj‖L∞(D) ‖z‖L2(D) ‖w‖L2(D)

+ k2 ‖∇ · (xψj)‖L∞(D) ‖z‖L2(D) ‖w‖L2(D)

+ k2 ‖x · ~n‖L∞(D) ‖ψj‖L∞(D) ‖z‖L2(∂D) ‖w‖L2(∂D)

≤ A (1 + nmax) ‖ψj‖L∞(D) ‖z‖V ‖w‖V

+ k
(
L+ L |β̂2|+

|α2|
k

)
‖ψj‖L∞(D) ‖z‖V ‖w‖V +A (1 + nmax) ‖ψj‖L∞(D) ‖z‖V ‖w‖V

+
∣∣− α1 − α2 − i k L (β̂1 − β̂2)

∣∣ ‖ψj‖L∞(D) ‖z‖V ‖w‖V
+ (d+ 1) ‖ψj‖W 1,∞ ‖z‖V ‖w‖V + µ̂ ‖ψj‖L∞(D) ‖z‖V ‖w‖V

≤
[
2A (1 + nmax) + kL

(
1 + |β̂2|) + |α2|+

∣∣− α1 − α2 − i k L (β̂1 − β̂2)
∣∣+ d+ 1 + µ̂

]

× ‖ψj‖W 1,∞ ‖z‖V ‖w‖V
= CR(kL) ‖ψj‖W 1,∞(D) ‖z‖V ‖w‖V . (4.15)

Similarly, with u(.,y) ∈ V being the solution of (2.9) and applying (2.14) and the above
bounds in (4.4) and (4.5), for any ν ∈ F, including ν = 0, we obtain

|Sν(u,w) + Tν(w)|

≤





‖Gy‖V ∗ ‖w‖V if ν = 0,

A ‖ψj‖L∞(D)‖w‖L2(D) ‖f‖L2(D) if ν = ej ,

Ak2
∑

j∈supp(ν)

∑

ℓ∈supp(ν−ej)

νj(ν − ej)ℓ ‖ψj‖L∞(D) ‖ψℓ‖L∞(D) ‖∂ν−ej−eℓu‖L2(D) ‖w‖L2(D)

otherwise,

≤ Sν(u) ‖w‖V , (4.16)

where

Sν(u)

:=





Cfunc(kL)
(
L ‖f‖L2(D) + L1/2‖g‖L2(∂D)

)
if ν = 0,

A

k
‖ψj‖L∞(D)‖f‖L2(D) if ν = ej ,

A
∑

j∈supp(ν)

∑

ℓ∈supp(ν−ej)

νj(ν − ej)ℓ ‖ψj‖L∞(D)‖ψℓ‖L∞(D) ‖∂ν−ej−eℓu‖V otherwise.

(4.17)

Taking now w = ∂νu(·,y) in (4.2), using the coercivity property (2.12) as lower bound, and
using (4.15) and (4.16) as upper bounds, we obtain

Ccoer‖∂νu‖2V ≤ |By(∂
νu, ∂νu)| ≤

( ∑

j∈supp(ν)

νj CR(kL) ‖ψj‖W 1,∞(D) ‖∂ν−eju‖V+Sν(u)

)
‖∂νu‖V ,
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and hence (now showing dependence on y)

‖∂νu(·,y)‖V ≤ 1

Ccoer

(
CR(kL)

∑

j∈supp(ν)

νj ‖ψj‖W 1,∞(D) ‖∂ν−eju(·,y)‖V + Sν(u(·,y))
)
.

(4.18)

The desired result now follows from (4.17) and (4.18) by applying Lemma B.1 with

Aν = ‖∂νu(·,y)‖V , B =
Cfunc(kL)

Ccoer

(
L ‖f‖L2(D) + L1/2‖g‖L2(∂D)

)
,

Ψj = ‖ψj‖W 1,∞(D) , c0 =
CR(kL)

Ccoer
+

A

kLCfunc(kL)
, c1 =

CR(kL)

Ccoer
, c2 =

A

Ccoer
.

The value of B is determined by taking ν = 0 in (4.17) and (4.18). The values of c1 and c2
follow easily by taking |ν| ≥ 2 in (4.17) and (4.18). The remaining case of |ν| = 1 is slightly
more complicated: taking ν = ej in (4.17) and (4.18) yields

‖∂eju(·,y)‖V ≤ 1

Ccoer

(
CR(kL) ‖ψj‖W 1,∞(D) ‖u(·,y)‖V +

A

k
‖ψj‖L∞(D) ‖f‖L2(D)

)

≤
(CR(kL)
Ccoer

+
A

kLCfunc(kL)

)
Ψj B ,

which gives the value of c0. With these values we obtain Cregu(kL) = max
{
c0, 2c1,

√
2c2
}
as

given in (4.13). This completes the proof.

5 Stochastic refractive index dimension truncation

For simulation of the stochastic wave propagation induced by the refractive index, we need to
truncate the infinitely many terms in the ansatz (1.3). To analyze the dimension truncation
error, it is convenient to introduce an operator theoretical framework which incorporates the
boundary condition.

Recalling (2.1), for each y ∈ U we now define the operator B(y) : V → L2(D)× L2(∂D) by

[B(y)w](x, x̃) :=

([
∆+ k2 n(x,y)

]
w(x)

∂w

∂~n
(x̃)− i k w(x̃)

)
, x ∈ D, x̃ ∈ ∂D. (5.1)

Then (2.1) can be expressed as

[B(y)u(·,y)](x, x̃) =

(
−f(x)
g(x̃)

)
, x ∈ D, x̃ ∈ ∂D.

We equip L2(D)× L2(∂D) with the weighted product space norm

∥∥(f
g

)∥∥
L2(D)×L2(∂D)

:= L ‖f‖L2(D) +
√
L ‖g‖L2(∂D), f ∈ L2(D), g ∈ L2(∂D).

It is easy to check that B(y) is a bounded linear operator.
From Theorem 2.1 we conclude that B(y) is boundedly invertible for all y ∈ U . Indeed, for

any
(
f
g

)
∈ L2(D)× L2(∂D) we can write

u(·,y) = [B(y)]−1 (−f
g

)
, with

∥∥ [B(y)]−1 (−f
g

)∥∥
V

≤ Cfunc(kL)

Ccoer

∥∥(f
g

)∥∥
L2(D)×L2(∂D)

,
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and therefore ∥∥ [B(y)]−1
∥∥ ≤ Cfunc(kL)

Ccoer
, (5.2)

which is bounded independently of the wavenumber if kL ≥ 1.
Corresponding to (1.3), for a truncation parameter s we consider a truncated refractive index

(essentially by setting yj = 0 for j > s)

ns(x,y) = ns(x,y{1:s}) = n0(x) +

s∑

j=1

yj ψj(x),

and define the operator Bs(y) = Bs(y{1:s}) : V → L2(D) × L2(∂D) as in (5.1) but with n
replaced by ns. Then we have also

us(·,y) = [Bs(y)]−1
(−f
g

)
and

∥∥[Bs(y)]−1
∥∥ ≤ Cfunc(kL)

Ccoer
. (5.3)

For a fixed truncated dimension s, in the following theorem we will estimate the approxima-
tion error (I − Is)(G(u)), where the infinite-dimensional integral I and the finite-dimensional
integral Is are as defined in (3.1)–(3.2). The proof of the estimate is based on the dimension
truncation error of the integrand

u(·,y)− us(·,y) =
(
[B(y)]−1 − [Bs(y)]−1

)(
−f
g

)

by a Neumann series argument. The first critical step is to recogonize that we can write the
difference operator [B(y)− Bs(y)] : V → L2(D)× L2(∂D) as

[B(y)− Bs(y)]w =
∑

j≥s+1

yj Tj w, (5.4)

with operators Tj : V → L2(D)× L2(∂D) defined as

Tj w := k2
(
ψj w

0

)
, j ≥ 1. (5.5)

The proof follows the general argument of [17] but there are some key differences which mean that
we do not need to impose the kind of small perturbation assumption discussed in Appendix A.

For developing the dimension truncation and QMC-FEM analysis in this article, we will
impose the following assumptions on the perturbation functions ψj in (1.3):

(A3) The sequence ψj is ordered: ‖ψ1‖L∞(D) ≥ ‖ψ2‖L∞(D) ≥ · · · .

(A4) There exists p0 ∈ (0, 1) and K0 ∈ R independently of k such that

∑

j≥1

[
(kL+ 1) ‖ψj‖L∞(D)

]p0
≤ K0 < ∞. (5.6)

(A5) There exists p1 ∈ (0, 1) and K1 ∈ R independently of k such that

∑

j≥1

[(
kL+ (kL)−1

)
‖ψj‖W 1,∞(D)

]p1
≤ K1 <∞. (5.7)

These conditions are similar to counterpart conditions assumed for the diffusion model in [28]
and also for general class of operator equations in [7, 8], but now with explicit dependence on kL.
We use the assumption (A5) in the next section to obtain QMC error bounds.
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Theorem 5.1. Let the assumptions (A0)–(A4) and parameter restrictions in Theorem 2.1 hold.
For every y ∈ U , f ∈ L2(D) and g ∈ L2(∂D), let u(·,y) ∈ V be the unique solution of (2.1),
and for each s ∈ N let us(·,y) denote the solution of the truncated version of (2.1) with n
replaced by ns. Then for every linear functional G ∈ V ∗, there exist a constant C independent
of s, f, g,G and kL such that

|(I − Is)(G(u))| = |I(G(u− us))| ≤ C
Cfunc(kL)

Ccoer
‖
(f
g

)
‖L2(D)×L2(∂D) ‖G‖V ∗ s

− 2

p0
+1
, (5.8)

which is bounded independently of the wavenumber if kL ≥ 1.

Proof. In this proof we will suppress the dependence on y to simplify our notation where possible.
We will begin by expanding u−us = (B−1−B−1

s )
(−f
g

)
in a Neumann series for sufficient large s.

Writing B−1 = (I + B−1
s (B − Bs))−1B−1

s , we need to first ensure that ‖ − B−1
s (B − Bs)‖ < 1.

For each j ≥ 1 and w ∈ V , we have from (5.5) that

∥∥B−1
s Tj w

∥∥
V

=
∥∥∥k2 B−1

s

(ψj w
0

)∥∥∥
V

≤ k2
Cfunc(kL)

Ccoer

∥∥(ψj w
0

)∥∥
L2(D)×L2(∂D)

≤ kL
Cfunc(kL)

Ccoer
‖ψj‖L∞(D) ‖w‖V ,

where we used ‖
(w
0

)
‖L2(D)×L2(∂D) = L ‖w‖L2(D) ≤ L

k ‖w‖V . Thus B−1
s Tj is a bounded operator

from V to V , with norm

∥∥B−1
s Tj

∥∥ ≤ kL
Cfunc(kL)

Ccoer
‖ψj‖L∞(D) =: bj . (5.9)

Hence from (5.4) we have for all y ∈ U ,

∥∥− B−1
s (B − Bs)

∥∥ =

∥∥∥∥
∑

j≥s+1

yj B−1
s Tj

∥∥∥∥ ≤ 1

2

∑

j≥s+1

bj.

Since kLCfunc(kL) = O(kL+ 1), from Assumptions (A3) and (A4) we know that the sequence
{bj}j≥1 is nonincreasing, and that

∑

j≥1

bp0j ≤ r0K0 < ∞, (5.10)

for some constant r0 independent of the wavenumber k.
Let s∗ be such that

∑
j≥s∗+1 bj ≤ 1

2 , implying that
∥∥−B−1

s (B − Bs)
∥∥ ≤ 1

4 . Then for all
s ≥ s∗, by the bounded invertibility of B(y) and Bs(y{1:s}) for all y ∈ U , we can write the
inverse of B in terms of the Neumann series, as

B−1 =
(
I + B−1

s (B − Bs)
)−1B−1

s =
∑

ℓ≥0

(
− B−1

s (B − Bs)
)ℓB−1

s .

Then, using representations (5.2), (5.3) and (5.5), we obtain

u− us =
(
B−1 − B−1

s

) (
−f
g

)
=
∑

ℓ≥1

(
− B−1

s (B − Bs)
)ℓB−1

s

(
−f
g

)

=
∑

ℓ≥1

(−1)ℓ
( ∑

j≥s+1

yj B−1
s Tj

)ℓ
us

=
∑

ℓ≥1

(−1)ℓ
∑

η∈{s+1:∞}ℓ

ℓ∏

i=1

(
yηi B−1

s Tηi
)
us,
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where we use the shorthand notation {s+ 1 : ∞}ℓ = {s+ 1, s + 2, . . . ,∞}ℓ.
Thus we can write

∫

U
G(u− us) dy =

∑

ℓ≥1

(−1)ℓ
∑

η∈{s+1:∞}ℓ

∫

U
G

[( ℓ∏

i=1

(yηi B−1
s Tηi)

)
us

]
dy

=
∑

ℓ≥1

(−1)ℓ
∑

η∈{s+1:∞}ℓ

(∫

Us+

ℓ∏

i=1

yηi dy{s+1:∞}

)(∫

Us

G

[( ℓ∏

i=1

(B−1
s Tηi)

)
us

]
dy{1:s}

)
,

where we separated the integrals for y{1:s} ∈ Us :=
[
−1

2 ,
1
2

]s
and y{s+1:∞} := (yj)j≥s+1 ∈ Us+ :=

{(yj)j≥s+1 : yj ∈
[
−1

2 ,
1
2

]
, j ≥ s+1}, which is an essential step of this proof. The integral over

y{s+1:∞} is nonnegative due to the simple yet crucial observation that

∫ 1

2

− 1

2

ynj dyj =

{
0 if n is odd,

1
2n(n+1) if n is even.

(5.11)

The integral over y{1:s} can be estimated, using (5.3) and (5.9), as

∣∣∣∣
∫

Us

G

[( ℓ∏

i=1

(B−1
s Tηi)

)
us

]
dy{1:s}

∣∣∣∣ ≤ ‖G‖V ∗ sup
y{1:s}∈Us

∥∥∥∥
( ℓ∏

i=1

(B−1
s Tηi)

)∥∥∥∥‖us‖V

≤ Cfunc(kL)

Ccoer
‖
(f
g

)
‖L2(D)×L2(∂D) ‖G‖V ∗

ℓ∏

i=1

bηi .

Hence, with the abbreviation

C1 :=
Cfunc(kL)

Ccoer
‖
(
f
g

)
‖L2(D)×L2(∂D) ‖G‖V ∗ , (5.12)

we obtain

∣∣∣∣
∫

U
G(u− us) dyyy

∣∣∣∣ ≤ C1

∑

ℓ≥1

∑

η∈{s+1:∞}ℓ

(∫

Us+

ℓ∏

i=1

yηi dy{s+1:∞}

) ℓ∏

i=1

bηi

= C1

∑

ℓ≥1

∫

Us+

∑

η∈{s+1:∞}ℓ

( ℓ∏

i=1

yηibηi

)
dy{s+1:∞} = C1

∑

ℓ≥1

∫

Us+

( ∑

j≥s+1

yj bj

)ℓ
dy{s+1:∞}.

Using the multinomial theorem with multi-index ν and
(ℓ
ν

)
= ℓ!/(

∏
j≥1 νj!), we can write

∣∣∣∣
∫

U
G(u− us) dyyy

∣∣∣∣ ≤ C1

∑

ℓ≥1

∫

Us+

∑

|ν|=ℓ
νj=0 ∀j≤s

(
ℓ

ν

) ∏

j≥s+1

(yj bj)
νj dy{s+1:∞}

= C1

∑

ℓ≥1

∑

|ν|=ℓ
νj=0 ∀j≤s

(
ℓ

ν

)( ∏

j≥s+1

∫ 1

2

− 1

2

y
νj
j dyj

) ∏

j≥s+1

b
νj
j

≤ C1

∑

ℓ≥2 even

∑

|ν|=ℓ
νj=0 ∀j≤s

νj even ∀j≥s+1

(
ℓ

ν

) ∏

j≥s+1

b
νj
j = C1

∑

ℓ′≥1

∑

|ν|=2ℓ′

νj=0 ∀j≤s
νj even ∀j≥s+1

(
2ℓ′

ν

) ∏

j≥s+1

b
νj
j ,
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where the last inequality follows from (5.11).
Now we split the sum into a sum over ℓ′ ≥ ℓ∗ (dropping the condition “νj even”) and the

initial terms 1 ≤ ℓ′ < ℓ∗ (substituting νj = 2ν ′j) to obtain the estimate

∣∣∣∣
∫

U
G(u− us) dyyy

∣∣∣∣ ≤ C1

∑

ℓ′≥ℓ∗

∑

|ν|=2ℓ′

νj=0 ∀j≤s
νj even ∀j≥s+1

(
2ℓ′

ν

) ∏

j≥s+1

b
νj
j + C1

∑

1≤ℓ′<ℓ∗

∑

|ν′|=ℓ′

ν′j=0 ∀j≤s

(
2ℓ′

2ν ′

) ∏

j≥s+1

(b2j )
ν′j

≤ C1

∑

ℓ′≥ℓ∗

∑

|ν|=2ℓ′

νj=0 ∀j≤s

(
2ℓ′

ν

) ∏

j≥s+1

b
νj
j + C1

∑

1≤ℓ′<ℓ∗

(2ℓ′)!

(ℓ′)!

∑

|ν′|=ℓ′

ν′j=0 ∀j≤s

(
ℓ′

ν ′

) ∏

j≥s+1

(b2j )
ν′j

≤ C1

∑

ℓ′≥ℓ∗

( ∑

j≥s+1

bj

)2ℓ′

+ C1

∑

1≤ℓ′<ℓ∗

(2ℓ′)!

(ℓ′)!

( ∑

j≥s+1

b2j

)ℓ′

≤ C1

(
∑

j≥s+1 bj)
2ℓ∗

1− (
∑

j≥s+1 bj)
2

+ C1
(2ℓ∗ − 2)!

(ℓ∗ − 1)!

∑
j≥s+1 b

2
j

1− (
∑

j≥s+1 b
2
j )
, (5.13)

where we used the multinomial theorem and the geometric series formula, noting that for s ≥ s∗

we have
∑

j≥s+1 b
2
j ≤

∑
j≥s+1 bj ≤ 1

2 .
From [28, Theorem 5.1] we know that

∑

j≥s+1

bj ≤ min

(
1

1
p0

− 1
, 1

)(∑

j≥1

bp0j

) 1

p0

s
− 1

p0
+1
. (5.14)

With a similar argument we can show that

∑

j≥s+1

b2j ≤
1

2
p0

− 1

(∑

j≥1

bp0j

) 2

p0

s
− 2

p0
+1
. (5.15)

Using the estimates (5.14) and (5.15) for the numerators in (5.13) and bounding the sums
in the denominators by 1/2, we see that the first term in (5.13) is O(s−2ℓ∗(1/p0−1)) while the
second term is O(s−(2/p0−1)). We therefore choose ℓ∗ such that 2ℓ∗(1/p0 − 1) ≥ 2/p0 − 1, i.e.,
ℓ∗ := ⌈(2− p0)/(2 − 2p0)⌉. Hence, for all s ≥ s∗ we arrive at

∣∣∣∣
∫

U
G(u− us) dyyy

∣∣∣∣ ≤ C1 C2 s
− 2

p0
+1
, (5.16)

where C2 is a constant depending on p0 and K0, and is independent of k.
It remains to derive the bound for s < s∗. Using (5.2) and (5.3) we have the estimate

∣∣∣∣
∫

U
G(u− us) dy

∣∣∣∣ ≤ ‖G‖V ∗ sup
y∈U

(
‖u(·,y)‖V + ‖us(·,y)‖V

)

≤ 2Cfunc(kL)

Ccoer
‖
(
f
g

)
‖L2(D)×L2(∂D) ‖G‖V ∗ ≤ 2C1 · (s∗)

2

p0
−1
s
− 2

p0
+1
, (5.17)

where we used s∗/s > 1 and the definition of C1 in (5.12). We now use (5.10) to get an upper
bound on (5.14) involving K0, and choose s∗ such that when s replaced by s∗ this upper bound
is at most 1/2. Consequently s∗ is a constant depending on p0 and K0, and is independent of k.

Combining now (5.16) and (5.17), and plugging in the definition (5.12) for C1, we obtain the
required result for all values of s.
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6 Finite element discretizations

In this section first we consider a high-order FEM for computationally solving the sign-definite
sesquilinear formulation. For each y ∈ U , having quantified the error resulting from dimension
truncation of the stochastic refractive index field n(·,y) by ns(·,y{1:s}) to approximate the
solution u(·,y) of (2.9) by the solution us(·,y{1:s}) satisfying

By{1:s}
(us, v) = Gy{1:s}

(v), for all v ∈ V, (6.1)

we consider the spatial Galerkin FEM approximation of us by us,h. To this end, we choose a
finite dimensional subspace V p

h ⊂ H2(Ω) spanned by splines of degree p ≥ 2 on a tessellation (of
at least C1-elements with maximum width h) of D. The space V p

h is chosen so that the following
approximation property holds: for 0 ≤ t ≤ 2 and for any v ∈ Ht∗(Ω) with t∗ ≥ t+ 1,

inf
wh∈V

p

h

‖v − wh‖Ht ≤ Cappr h
min{p+1,t∗}−t, (6.2)

and the constant Cappr depends on the chosen norm of v.
For each y ∈ U , the FEM approximation us,h(·,y{1:s}) ∈ V p

h to the unique solution us(·,y{1:s})
of (6.1) is required to be computed by solving the linear algebraic system arising from the finite-
dimensional coercive variational form

By{1:s}
(us,h, v) = Gy{1:s}

(v) for all v ∈ V p
h . (6.3)

Since V ⊂ H3/2(Ω), using (6.2), the coercivity and continuity of the sesquilinear form By{1:s}
,

Theorem 2.1 and Cea’s Lemma, under appropriate spatial regularity assumption of us satisfy-
ing (6.1) and the degree p ≥ 2 of the splines, the high-order FEM approximation us,h ∈ V p

h

satisfies the following error bound:

‖us(·,y{1:s})− us,h(·,y{1:s})‖V ≤ Cappr
Ccont(kL)

Ccoer
‖
(f
g

)
‖L2(D)×L2(∂D) h

p−1. (6.4)

Recall that Ccont(kL) = O
(
kL + (kL)−1

)
. This highlights that the well known pollution effect

is present in our (and all known) FEM approximations (converging in h) for the Helmholtz
PDE in two and higher dimensions. While the pollution effect requires large degrees of freedom
(DoF) for large acoustic size kL > 1 using the standard piecewise-linear (p = 1) low-order FEM,
we have demonstrated in [15, 16] that the pollution error can be efficiently avoided by using
high-order FEM (p ≥ 2), even for solutions with limited regularity.

In particular, as demonstrated in [16] using an efficient construction of the space V p
h , the

number of DoF do not increase substantially despite imposing higher continuity requirements
needed for larger degree splines. In [16], for heterogeneous deterministic models (that is, with
yj = 0 in (1.3) for all j ≥ 1 and spatially dependent mean-field n0) and for various acoustic size
kL values with sufficiently smooth solutions, we have numerically demonstrated p− 1 estimated
order of convergence (EOC) for p = 2, 3, 4 in the V norm, as stated in (6.4), and also p+ 1 and
p EOC, respectively, in the H0-norm and the H1-norm.

For the bounded linear functional G ∈ V ∗, based on Nitsche arguments, we obtain for all
y ∈ U
∣∣∣G(us(·,y{1:s}))−G(us,h(·,y{1:s}))

∣∣∣ ≤ Cappr
Ccont(kL)

Ccoer
‖
(f
g

)
‖L2(D)×L2(∂D) ‖G‖V ∗ hp, (6.5)

and the same upper bound is obtained for for its integral counterpart

|Is(G(us − us,h))| = |I(G(us(·,y{1:s})))− I(G(us,h(·,y{1:s})))|.

Thus the upper bound is of order O
(
(kL+ (kL)−1)hp

)
= O

(
(1 + (kL)−1) (kL+ 1)hp

)
.
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7 Quasi-Monte Carlo integration

For complete details of various QMC integration rules, we refer to the survey [9] and extensive
references therein; see also the survey [27] for some QMC theory applied in the context of PDE
problems. In the next two subsections we focus on two QMC rules.

7.1 Randomly shifted lattice rules (first order convergence)

For a fixed dimension truncation parameter s, we consider the integral of a general complex-
valued function F defined over the s-dimensional unit cube [−1

2 ,
1
2 ]
s

Is(F ) =

∫

[−
1
2 ,

1
2 ]

s

F (y) dy ,

and we approximate this by a randomly shifted lattice rule

Qs,N(F ;∆) =
1

N

N∑

i=1

F
(
{ti +∆} − 1

2

)
, (7.1)

where t1, . . . , tN ∈ [0, 1]s are deterministic lattice cubature points, and ∆ is a random shift
which is drawn from the uniform distribution on [0, 1]s. The braces in (7.1) indicate that we
take the fractional part of each component in a vector, while the subtraction of 1

2
takes care of

the translation from the standard unit cube [0, 1]s to [−1
2 ,

1
2 ]
s. The lattice points are given by

ti = { izN } for i = 1, . . . , N , where z ∈ Z
s is known as the generating vector and it determines

the quality of the lattice rule.
We apply the theory and construction of randomly shifted lattice rules in weighted Sobolev

spaces to obtain first order convergence rates. Loosely speaking, these spaces contain functions
with square integrable mixed first derivatives. The norm is given by

‖F‖s,γ =

(
∑

u⊆{1:s}

1

γu

∫

[−
1
2 ,

1
2 ]

|u|

∣∣∣∣
∫

[−
1
2 ,

1
2 ]

s−|u|

∂|u|F

∂yu

(yu;y{1:s}\u) dy{1:s}\u

∣∣∣∣
2

dyu

)1/2

,

where {1 : s} is a shorthand notation for the set of indices {1, 2, . . . , s}, (∂|u|F )/(∂yu) denotes the
mixed first derivative of F with respect to the “active” variables yu = (yj)j∈u, while y{1:s}\u =
(yj)j∈{1:s}\u denotes the “inactive” variables. The weights γu moderate the relative importance
between subsets of variables. It is known that (see e.g., [9, Theorem 5.1]), given N a prime
power and the weights γu as input, a generating vector z can be obtained by the component-
by-component (CBC) construction to achieve the root-mean-square error (with respect to the
random shift)

√
Erqmc

[∣∣Is(F )−Qs,N(F ; ·)
∣∣2] ≤

(
2

N

∑

∅6=u⊆{1:s}

γλu [̺(λ)]
|u|

)1/(2λ)

‖F‖s,γ ∀ λ ∈ (12 , 1], (7.2)

where ̺(λ) = 2ζ(2λ)
(2π2)λ

, with ζ being the Riemann zeta function.

In our Helmholtz PDE problem, the integrand is given by

F (y) = G
(
us,h(·,y)

)
.

To apply the relevant QMC theory we need to obtain a bound on the norm ‖F‖s,γ = ‖G(us,h)‖s,γ .
Using linearity and boundedness of G, we have

∣∣∣∣
∂|u|

∂yu

G(us,h(·,y))
∣∣∣∣ =

∣∣∣∣G
(
∂|u|

∂yu

us,h(·,y)
)∣∣∣∣ ≤ ‖G‖V ∗

∥∥∥∥
∂|u|

∂yu

us,h(·,y)
∥∥∥∥
V

. (7.3)
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Now applying Theorem 4.2 with u replaced with us,h and restricting to multi-indices ν with
νj ≤ 1, we obtain

‖G(us,h)‖s,γ ≤ Cfunc(kL)

Ccoer
‖
(f
g

)
‖L2(D)×L2(∂D) ‖G‖V ∗

(
∑

u⊆{1:s}

(|u|!)2∏j∈uΥ
2
j

γu

)1/2

. (7.4)

The bound (7.4) takes exactly the same form as in the diffusion case in [28], so we could follow
the same line of argument there. Here instead we use a slightly simpler and shorter argument.

Substituting (7.4) into the bound (7.2) and then choosing the weights γu to equate the
expressions inside the two sums, we obtain

γu =

(
|u|!

∏

j∈u

Υj√
ρ(λ)

)2/(1+λ)

, Υj = Cregu(kL) ‖ψj‖W 1,∞(D), (7.5)

and this yields

√
Erqmc

[∣∣Is(G(ush))−Qs,N(G(ush); ·)
∣∣2] ≤ Cs,γ(λ)

N1/(2λ)

Cfunc(kL)

Ccoer
‖
(f
g

)
‖L2(D)×L2(∂D) ‖G‖V ∗ ,

with

Cs,γ(λ) := 2
1

2λ

(
∑

u⊆{1:s}

(
|u|!

∏

j∈u

(
Υj [̺(λ)]

1/(2λ)
)) 2λ

1+λ

) 1+λ
2λ

.

We proceed to choose the parameter λ such that Cs,γ(λ) is bounded independently of s.
Since Cregu(kL) = O

(
kL+ (kL)−1

)
, from (5.7) in Assumption (A5) we know that

∑

j≥1

Υp1
j ≤ r1K1 < ∞ ,

for some constant r1 independent of the wavenumber k. Writing θj := Υj [̺(λ)]
1/(2λ) and

τ := 2λ
1+λ , we have

∑

u⊆{1:s}

(
|u|!

∏

j∈u

θj

)τ
=

s∑

ℓ=0

(ℓ!)τ
∑

u⊆{1:s}
|u|=ℓ

∏

j∈u

θτj ≤
s∑

ℓ=0

(ℓ!)τ−1

( s∑

j=1

θτj

)ℓ
,

where the inequality holds because each term
∏
j∈u θ

τ
j from the left-hand side of the inequality

appears in the expansion (
∑s

j=1 θ
τ
j )
ℓ exactly ℓ! times, and the expansion contains other terms.

By the ratio test, the right-hand side is bounded independently of s provided that
∑∞

j=1 θ
τ
j <∞

and τ < 1. Thus in our case we require p1 ≤ τ < 1, i.e.,

p1 ≤
2λ

1 + λ
< 1 ⇐⇒ p1

2− p1
≤ λ < 1.

Noting that λ also needs to satisfy 1
2 < λ ≤ 1, we therefore choose

λ =





1

2− 2δ
for some δ ∈ (0, 12) when p1 ∈ (0, 23 ] ,

p1
2− p1

when p1 ∈ (23 , 1) ,
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This leads to the convergence rate O
(
N

−min( 1

p1
− 1

2
,1−δ))

, with the implied constant independent
of s.

Weights of the form (7.5) are known as POD weights (“product and order dependent
weights”). The CBC construction of lattice generating vector can be done for POD weights
in O(sN logN + s2N) operations, see [28].

Combining the estimates from this subsection with (5.8) and (6.5), we obtain the first main
conclusion of this paper.

Theorem 7.1. Let the assumptions (A0)–(A5) and parameter restrictions in Theorem 2.1 hold.
For each y ∈ U , let u(·,y) ∈ V be the unique solution of (2.9) and us,h(·,y) ∈ V p

h be the unique
solution of (6.3). Then for every f ∈ L2(D) and g ∈ L2(∂D), and every linear functional
G ∈ V ∗, a generating vector can be constructed for a randomly shifted lattice rule such that

√
Erqmc

[∣∣I(G(u)) −Qs,N(G(us,h); ·)
∣∣2]

≤ C ·
(
1 + (kL)−1

)(
s
− 2

p0
+1

+
(
kL+ 1

)
hp +N

−min( 1

p1
− 1

2
,1−δ)

)
, δ ∈ (0, 12) ,

where C depends on f , g, G, but is independent of s, h, N and the wavenumber k.

7.2 Interlaced polynomial lattice rules (higher order convergence)

In this subsection we briefly outline the results when we replace randomly shifted lattice rules
by deterministic interlaced polynomial lattice rules, which allow us to obtain higher order con-
vergence rates. The description below follows closely [7].

Without giving the full technical details, we simply say here that (7.1) is now replaced by a
deterministic quadrature rule

Qs,N(F ) =
1

N

N∑

i=1

F
(
ti − 1

2

)
,

where the points ti ∈ [0, 1]s are obtained by “interlacing” the points of a “polynomial lattice
rule”, which are specified by a generating vector of “polynomials” rather than of integers. For
the precise details as well as implementation, see e.g., [7, 27] and the references there. The error
bound (7.2) is now replaced by

∣∣Is(F )−Qs,N (F )
∣∣ ≤

(
2

N

∑

∅6=u⊆{1:s}

γλu [̺α(λ)]
|u|

)1/(2λ)

‖F‖s,α,γ ∀ λ ∈ ( 1α , 1],

where α ≥ 2 is an integer smoothness parameter (also known as the “interlacing factor”), N is
a power of 2, ̺α(λ) = 2αλ(α−1)/2[(1 + 1

2αλ−2
)α]. and the norm is now

‖F‖s,α,γ := sup
u⊆{1:s}

sup
y
v
∈[0,1]|v|

1

γu

∑

v⊆u

∑

τ
u\v∈{1:α}

|u\v|

∣∣∣∣
∫

[− 1

2
, 1
2
]s−|v|

(∂(αv,τu\v,0)F )(y) dy{1:s}\v

∣∣∣∣ .

Using again (7.3) and Theorem 4.2 (this time with general multi-indices), we obtain instead
of (7.4),

‖G(us,h)‖s,α,γ ≤ Cfunc(kL)

Ccoer
‖
(f
g

)
‖L2(D)×L2(∂D) ‖G‖V ∗ sup

u⊆{1:s}

1

γu

∑

νu∈{1:α}|u|

|νu|!
∏

j∈u

(
2δ(νj ,α)Υ

νj
j

)
,
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where δ(νj , α) is 1 if νj = α and is 0 otherwise. We now choose γu so that the supremum is 1,
i.e.,

γu =
∑

νu∈{1:α}|u|

|νu|!
∏

j∈u

(
2δ(νj ,α)Υ

νj
j

)
. (7.6)

Using the above weights and following the arguments in [7, Pages 2694–2695], by taking λ = p1
and the interlacing factor α = ⌊1/p1⌋+1, we eventually arrive at the convergence rateO(N−1/p1),
with the implied constant independent of s, h,N .

Weights of the form (7.6) are called SPOD weights (“smoothness-driven product and or-
der dependent weights”). The generating vector (of polynomials) can be obtained by a CBC
construction in O(α sN logN + α2 s2N) operations, see [7].

We summarize our second main conclusion in the following theorem.

Theorem 7.2. Let the assumptions (A0)–(A5) and parameter restrictions in Theorem 2.1 hold.
For each y ∈ U , let u(·,y) ∈ V be the unique solution of (2.9) and us,h(·,y) ∈ V p

h be the unique
solution of (6.3). Then for every f ∈ L2(D) and g ∈ L2(∂D), and every linear functional
G ∈ V ∗, a generating vector can be constructed for an interlaced polynomial lattice rule with
interlacing factor α = ⌊1/p1⌋+ 1 ≥ 2 such that

∣∣I(G(u)) −Qs,N (G(us,h))
∣∣ ≤ C ·

(
1 + (kL)−1

)(
s
− 2

p0
+1

+
(
kL+ 1

)
hp +N

− 1

p1

)
,

where C depends on f , g, G, but is independent of s, h, N and the wavenumber k.
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A Small perturbation approach

In this section, by a partial differential operator (PDO) associated with a boundary value prob-
lem (BVP), governed by a PDE and a boundary condition (BC), we mean the PDO in its weak
sense. The weak PDO (WPDO) is a linear operator induced by a sesquilinear form associated
with an equivalent weak formulation of the BVP (WBVP).

The stochastic wave propagation Helmholtz PDE model introduced in Section 1 can be
reformulated, using the celebrated standard weak form, as

Sy(u,w) = ℓ(w) for all y ∈ U , w ∈ H1(D), (A.1)

where, for fixed y, Sy : H1(D)×H1(D) → C is a sesquilinear form, and ℓ is a linear functional.
More precisely,

Sy(v,w) = a0(v,w) +
∑

j≥1

yj aj(v,w),

where for v,w ∈ H1(D)

a0(v,w) =

∫

D

[
∇v · ∇w − k2 n0 v w

]
− i k

∫

∂D
γvγw, aj(v,w) = k2

∫

D
ψjv w, j ≥ 1.

It is well known that a0 is sign-indefinite (that is, non-coercive). However, a0 satisfies the inf-sup
condition with inf-sup constant µ0 = O(1/k), see for example [2, Cor. 1.10]. Indeed, till recently,
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all known and analyzed variational reformulations of the heterogeneous media deterministic
Helmholtz model are sign-indefinite, see for example [16] and references therein.

The inf-sup property of a0 has been established [2], using the following weighted (k-dependent)
norm in H1(D) [2]:

‖v‖2H1
k
= ‖∇v‖2L2(D) + k2 ‖v‖2L2(D).

The framework in [7, 8] is established for a general class of operators defined on reflexive Banach
spaces X,Y . For our wave propagation model, it is appropriate to consider linear operators
Aj : X → Y ′ defined as

Y〈w,Ajv〉Y ′ = aj(v,w), v ∈ X, w ∈ Y, j ≥ 0,

with X = Y = H1
k(D). Consequently the standard WBVP (A.1) based WPDO A of the

BVP (1.1) with PDO L in (1.2) is:

A(y) = A0 +
∑

j≥1

yjAj, y ∈ U. (A.2)

Thus, thanks to the inf-sup property of a0, we have A0 ∈ L(X,Y ′) is boundedly invertible with
‖A−1

0 ‖ = O(k) and ‖Aj‖ = O(1), since

‖Aj‖ ≤ sup
v,w 6=0

|aj(v,w)|
‖v‖X ‖w‖X

≤
‖ψj‖L∞(D) k

2 ‖v‖L2(D) ‖w‖L2(D)

‖v‖X ‖w‖X
≤ ‖ψj‖L∞(D).

The class of stochastic WPDOs considered in [7, 8] are of the form in (A.2). The framework
in [7, 8] starts with the summability assumption [7, Equation (1.3)]

∑

j≥1

‖Aj‖pL(X,Y ′)
<∞, for some p ∈ (0, 1],

and bounded invertible assumption of A0, as a linear operator from X to Y ′.
The analysis in [7, 8] and related papers, while of wide generality, requires that the operator

sum in (A.2) be small, in the sense that

A0 +
∑

j≥1

yjAj = A0

(
I +

∑

j≥1

yjA−1
0 Aj

)

should satisfy, using |yj| ≤ 1/2,
1

2

∑

j≥1

‖A−1
0 Aj‖ < 1 , (A.3)

since if this is satisfied then the Neumann series for the inverse of the operator sum converges in
operator norm in the space X. Accordingly, it seems reasonable to say that any argument based
on (A.3) is using the “small perturbation” approach. Note that (A.3), when applied to our wave
propagation model, requires that a quantity of the order k

∑
j≥1 ‖ψj‖L∞(D) be less than 1.
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B Technical lemma

Lemma B.1. Given some non-negative real numbers (Ψj)j∈N and constants c0, c1, c2, B, let
(Aν)ν∈F be non-negative real numbers satisfying the inequality

Aν ≤





B if ν = 0,

c0 Ψj B if ν = ej,

c1
∑

j∈supp(ν)

νj Ψj Aν−ej

+c2
∑

j∈supp(ν)

∑

ℓ∈supp(ν−ej)

νj (ν − ej)ℓΨj ΨℓAν−ej−eℓ
if |ν| ≥ 2.

Then for any ν ∈ F we have

Aν ≤ |ν|!Υν B , with Υν :=
∏

j≥1

Υ
νj
j , Υj := max

{
c0, 2c1,

√
2c2
}
Ψj .

Proof. Let Υj = C Ψj. We prove this result by induction while determining the multiplying
factor C. The cases |ν| ≤ 1 hold trivially if c0 ≤ C. Suppose that the result holds for all |ν| < n
with some n ≥ 1. Then for |ν| = n ≥ 2, we can split the terms in the inequality into

Aν ≤ c1
∑

j≥1

νj Ψj Aν−ej
+ c2

∑

j≥1

νj (νj − 1)Ψ2
j Aν−2ej + c2

∑

j≥1

∑

ℓ≥1
ℓ 6=j

νj νℓΨj ΨℓAν−ej−eℓ
.

Applying the induction hypothesis then leads to

Aν ≤ c1
∑

j≥1

νj Ψj (|ν| − 1)!Υν−ej B + c2
∑

j≥1

νj (νj − 1)Ψ2
j (|ν| − 2)!Υν−2ej B

+ c2
∑

j≥1

∑

ℓ≥1
ℓ 6=j

νj νℓΨj Ψℓ (|ν| − 2)!Υν−ej−eℓ B

≤ c1
C

∑

j≥1

νj(|ν | − 1)!Υν B +
c2
C2

∑

j≥1

νj (νj − 1) (|ν | − 2)!Υν B

+
c2
C2

∑

j≥1

∑

ℓ≥1
ℓ 6=j

νj νℓ (|ν| − 2)!Υν B =
(c1
C

+
c2
C2

)
|ν|!Υν B.

If c1 ≤ C
2 and c2 ≤ C2

2 , then c1
C + c2

C2 ≤ 1. So we may choose C := max{c0, 2c1,
√
2c2} as

stated in the lemma.

An alternative bound can be obtained by choosing C := max{c0, c3}, with c3 := c1+
√
c2
1
+4c2

2
which satisfies c1

c3
+ c2

c2
3

= 1.
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