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Abstract

This paper studies an optimal forward investment problem in an in-
complete market with model uncertainty, in which the underlying stocks
depend on the correlated stochastic factors. The uncertainty stems from
the probability measure chosen by an investor to evaluate the perfor-
mance. We obtain directly the representation of the homothetic robust
forward performance processes in factor-form by combining the zero-sum
stochastic differential game and ergodic BSDE approach. We also estab-
lish the connections with the risk-sensitive zero-sum stochastic differential
games over an infinite horizon with ergodic payoff criteria, as well as with
the classical robust expected utilities for long time horizons. Finally, we
give an example to illustrate that our approach can be applied to address
a type of robust forward investment performance processes with negative
realization processes.
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1 Introduction

The aim of this paper is to study optimal investment evaluated by a forward
performance criterion in a stochastic factor market model, in which the prob-
ability measure that models future stock price evolutions is ambiguous. The
forward performance process, as an adapted stochastic dynamic utility evolving
forward in time, has been introduced and developed in [41]-[45] (see also [24]
and [55], and more recently [2], [3], [6], [12], [23], [28], [33], [37], [39] and [51]).
This new concept differs from the classical expected utility function, in which
the objective is to solve a stochastic control problem in a backward way via dy-
namic programming principle. One of the advantages of forward performance
processes is allowing the investor to consider optimal investment problems with
arbitrary horizons. As such, it provides a useful complement and a natural
extension to the classical expected utility function.

Recall the classical expected utility theory for the optimal portfolio selection is

sup
π

EP[U(Xπ
T )],

where π is the portfolio choice, P is a probability measure that is used to mea-
sure the evolutions of stock prices, T is the terminal horizon, and U is a fixed
utility function at time T . In spite of the popularity of expected utility theory,
there has been some criticism of it. One of them is the fact that it is not sat-
isfactory in dealing with model uncertainty (also called Knightian uncertainty)
as predicted by the famous Ellsberg paradox. In fact, an investor frequently
faces significant ambiguity about the probability measure P to evaluate the in-
vestment performance. In finance, [40] argued that the (perceived) failures of
the dominant paradigm, for example, in the context of the recent crisis, are due
to inadequate attention paid to the kind of uncertainty faced by agents and
modelers.

One possible way to address this problem is to use the concept of robust utility,
which was introduced to account for uncertain aversion. It can be numerically
represented by the following form

X → inf
P∈P

EP[U(X)],

where P is a family of probability measures describing all the possible prob-
abilities of future scenarios and the infimum means the worst-case scenario is
implemented. Robust utility maximization in the optimal investment problems
has been widely investigated under different situations with different approaches,
among others, a stochastic control method in [10, 26], a stochastic differential
game approach in [48], a duality method in [49]. For more details on various
portfolio selection problems, we refer to [1, 14, 20, 21, 27, 53, 54] and the refer-
ences therein. In particular, we refer to [30, 31, 32] for the review of the recent
advancements in robust investment management.
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In this paper, we consider the ambiguity of the probability measure under the
framework of forward performance processes in incomplete markets. We propose
a framework that solves directly the above problem in a unified manner, com-
bining the zero-sum stochastic differential game and ergodic backward stochastic
differential equation (BSDE) theory. The concept of robust forward performance
processes was recently introduced in [34], by using a penalty function to weight
relatively the probability models such that they are more in line with the ac-
tual market. They obtained the characterization of the robust forward criteria
via a duality approach. See also [13] for an extension to uncertain parameters.
However, both papers only consider robust forward performance processes with
zero volatility, in particular, the Markovian case for the stochastic factor model
is not covered. In this paper, we consider the Markovian robust forward perfor-
mance process in a stochastic factor model. The approach is different from the
duality approach used in [34] and the saddle point method used in [13]. Next,
we briefly introduce our framework and explain our major contributions.

We construct the robust forward performance process via a two-player zero-sum
stochastic differential game. In our model, the ambiguity of the probability mea-
sure is described via a family of equivalent probability measures parameterized
by a density process u in a compact and convex set (see (6)). We parameterize
the robust forward performance process by the density process u. This general-
izes the original definition of the robust forward performance process introduced
in [34] with penalty functions as a special class of parametrization. We refer to
Definition 4 and Remarks 5-6 for more details.

To robustify the optimal investment, the investor will select the best investment
portfolio that is least affected by the model uncertainty, whereas the nature of
the market acts to minimize the expected forward preference by choosing the
worst-case scenario. This leads to a two-player zero-sum stochastic differential
game between the investor and the market, where each player’s decision (strat-
egy) depends on the counterparty’s action (control) she has observed. Therefore,
the concept of “strategy” corresponding to the “control” will play a key role in
analyzing the game (see [11, 19]).

Utilizing the idea of “strategy”, we give a new characterization of the robust
forward performance process. Specifically, both the worst-case scenario “strat-
egy” corresponding to each portfolio selection and the optimal investment policy
under the worst-case scenario “strategy” are given in our characterization (see
(15)-(16)). Moreover, if the game value exists, the optimal investment “strat-
egy” corresponding to each scenario and the worst-case scenario under the op-
timal investment “strategy” are further given in (18)-(19). Compared to the
saddle point argument used in [26, 27, 53] in the classical framework and [13]
in the forward framework, our characterization (15)-(16) and (18)-(19) relies
on the investor’s response to each scenario and portfolio choice. Moreover, it
is often relatively easy to compute the optimal strategies, as they only involve
maximization/minimization problems rather than maxmin/minmax problems.
On the other hand, our stochastic differential game approach may also provide
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an alternative way to study the robust forward performance process when sad-
dle point does not exist. We present an example for the case τ < 0 (i.e. with a
negative realization process) in Section 7 to illustrate this point.

The second component to construct the robust forward performance process
in factor form is an ergodic BSDE. The stochastic PDE (SPDE) approach,
introduced in [45] to characterize the forward performance processes (without
model ambiguity), may not be applied directly to our model. First, the form of
the related SPDE is not easy to derive due to the presence of model uncertainty.
Second, it is difficult to obtain the solution existence and uniqueness of the
SPDE for the general case even if we know the form of the equation.

In order to get the representation of the homothetic robust forward performance
process in stochastic factor form, we apply directly the ergodic BSDE approach,
which was first proposed in [22] to study ergodic control problems. The ergodic
BSDE approach was first exploited in [38] to study the representation of the
homothetic forward performance process in the absence of model uncertainty.
We first characterize the power robust forward performance process in terms of
the solution of an ill-posed Isaacs type equation. Although the solution of this
Isaacs equation can not be obtained directly, it offers (i) the construction of the
optimal portfolio “strategy”, the worst-case scenario “strategy”, and the related
optimal portfolio choice and the worst-case scenario; (ii) the hint of the driver
form of the corresponding ergodic BSDE. Then, we obtain the representation of
the robust power forward performance process by using the Markovian solution
of the ergodic BSDE. The associated optimal portfolio and worst-case scenario
“strategy” and “control” are also obtained in feedback form of the stochastic
factor. We can also obtain other type of homothetic robust forward performance
processes (logarithmic and exponential) using the same approach.

The third contribution of this paper is establishing a connection between the
constant λ appearing in the solution of the ergodic BSDE (38) and a class of
zero-sum risk-sensitive stochastic differential game over an infinite horizon with
ergodic payoff criteria. Risk-sensitive optimal control has been widely applied
to optimal investment problems (see, [8, 17, 18, 25] and references therein). The
corresponding risk-sensitive stochastic differential games are studied in [5, 7, 9,
35] via PDE approach and in [15] via BSDE approach.

In this paper, we apply directly the ergodic BSDE approach to address the
zero-sum risk-sensitive stochastic differential game with ergodic payoff criteria
over an infinite horizon. Thus, we provide a new method to obtain the value of
the risk-sensitive game problem and give the robust optimal investment policy
which generalizes the results in [17, 18] to the stochastic factor model with
uncertainty. To obtain this connection, we prove a comparison result for a class
of ergodic BSDE whose drivers are only locally Lipschitz continuous. With the
help of this connection, the constant λ can be interpreted as the optimal long-
term growth rate of the expected utility with model uncertainty, and can also
be applied to study the related “robust large deviations” criteria for long-term
investment problems.
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In addition, we develop a connection between the robust forward performance
process and classical robust expected utility. Optimal investment problems
with classical robust expected utilities have been studied via different methods,
among others, by the duality approach [20, 49], the stochastic control approach
based on BSDE [10, 26] and stochastic differential game approach based on
PDE [52]. With the help of the relation established in [29] on the solution of
finite horizon BSDE and the solution of associated ergodic BSDE, we prove
that an appropriately discounted lower value function associated with the clas-
sical power robust expected utility will converge to the power robust forward
performance process as the trading horizon tends to infinity.

This paper is organized as follows. In section 2, we introduce the market model
with uncertainty and the notion of robust forward performance processes. The
stochastic differential game approach is given in subsections 2.1 and 2.2 for
different situations. In section 3, we focus on the power case and construct the
robust forward performance process in factor-form. Two examples are given in
section 4 to illustrate the applications in incomplete markets. Then, we present
the connections with the risk-sensitive game problem and classical expected
utility in sections 5 and 6, respectively. In section 7, we further provide an
example with a negative realization process for which saddle point does not
exist. Finally, section 8 concludes.

2 The stochastic factor model with uncertainty

and its robust forward performance process

Let (Ω,F ,F = {Ft}t≥0,P) be a filtered probability space satisfying the usual
conditions, on which the processW = (W 1, · · · ,W d)T is a standard d-dimensional
Brownian motion. Here, the superscript T denotes the matrix transpose. Sup-
pose the market consists of a risk-free bond and n risky stocks. The bond
is assumed to be zero interest rate and the discounted (by the bond) individ-
ual stock price Si

t , t ≥ 0, affected by the stochastic factor process V , has the
following form, for i = 1, ..., n,

dSi
t

Si
t

= bi(Vt)dt+

d∑

j=1

σij(Vt)dW
j
t , (1)

with Si
0 > 0, where the factor process V = (V 1, · · · , V d)T satisfies, for i =

1, ..., d,

dV i
t = ηi(Vt)dt+

d∑

j=1

κijdW j
t , (2)

with V i
0 ∈ R. We introduce the basic assumptions on the above model.
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Assumption 1 (H1) The coefficients

b : Rd → R
n, σ : Rd → R

n×d,

are uniformly bounded and the volatility matrix σ(v) has full row rank n.

(H2) The drift coefficient η satisfies the following dissipative condition: there
exists some positive constant Cη > 0 such that

(η(v)− η(v̄))T (v − v̄) ≤ −Cη|v − v̄|2, (3)

for any v, v̄ ∈ R
d. The volatility matrix κ = (κij), 1 ≤ i, j ≤ d, is a constant

matrix with κκT positive definite and normalized to ||κ|| = 11.

Herein, the dissipative condition (3) is introduced to ensure the existence of a
unique invariant measure of the stochastic factor process V , i.e., V is ergodic.
To simplify the notation, we introduce the market price of risk vector θ(v),
which is defined as

θ(v) = σ(v)T [σ(v)σ(v)T ]−1b(v), v ∈ R
d, (4)

so it solves the market price of risk equation σ(v)θ(v) = b(v). In addition, we
suppose the market price of risk vector θ(v), v ∈ R

d, is uniformly bounded and
Lipschitz continuous with bound Kθ and Lipschitz constant Cθ.

We consider an investor starting at time t = 0 with initial wealth level x > 0
and trading among the bond and the stocks. Let π̃ = (π̃1, · · · , π̃n)T be the
proportions of her total wealth in the individual stock accounts. Then, due to
the self-financing policy, the cumulative wealth process Xπ satisfies

dXπ
t =

n∑

i=1

π̃i
tX

π
t

Si
t

dSi
t = Xπ

t π̃
T
t (b(Vt)dt+ σ(Vt)dWt) .

As in [38], using the investment proportions rescaled by the volatility of stock
prices, namely, πT

t = π̃T
t σ(Vt), we get

dXπ
t = Xπ

t π
T
t (θ(Vt)dt+ dWt), (5)

with Xπ
0 = x ∈ R+.

Next, we consider model uncertainty, i.e., the ambiguity of the probability mea-
sure which evaluates the performance. We denote by ũ = (ũ1, · · · , ũd)T the pa-
rameters reflecting the possible future scenarios. For convenience, we will work
throughout with the scenario parameters rescaled by the volatility of stochastic
factors, i.e.,

u = κT (κκT )−1ũ.

We introduce admissible spaces Π̃ and U for the rescaled investment proportions
π and scenario parameters u, respectively.

1Herein, || · || represents the trace norm for the matrix in R
d×d, whereas | · | in (3) represents

the norm for the vectors in R
d.
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Definition 1 Let Π ⊂ R
d be convex and closed and include the origin 0. For

any t ≥ 0, a process π : Ω × [0, t] → Π is an admissible investment proportion
for an investor in the trading interval [0, t], if π ∈ L2

BMO[0, t], where

L2
BMO[0, t] =

{
(πs)s∈[0,t] : π is F-progressively measurable,

EP(

∫ t

τ

|πs|
2ds|Fτ ) ≤ C, a.s., for some constant C and all F-stopping times τ ≤ t

}
.

The set of all admissible investment proportions in the trading interval [0, t] is
denoted by Π[0,t]. Moreover, we define the set of admissible proportions for all

time horizons as Π̃ := ∪t≥0Π[0,t].

Definition 2 Suppose that U ⊆ R
d is convex and compact. For any s ≥ t ≥ 0,

a process u : [t, s] × Ω → U is an admissible scenario parameter if it is F-
progressively measurable and essentially bounded. We denote by Ut,s and U the
set of all admissible scenario parameter in the time interval [t, s] and for all
time horizons, respectively.

In a market with model uncertainty, the investor will apply P
u to measure her

preference instead of the probability measure P, where the probability measure
P
u is an equivalent probability measure with respect to P and introduced by the

following measure transformation

dPu

dP

∣∣∣
Ft

= E

(∫ t

0

uT
s dWs

)
:= exp{

∫ t

0

uT
s dWs −

1

2

∫ t

0

|us|
2ds}, u ∈ U . (6)

In fact, this characterization of model uncertainty, admitting an entire class
{Pu|u ∈ U} of possible prior models, is a common approach applied in the
classical robust expected utility, see [26].

For every u ∈ U , the process Wu defined as

dWu
t = −utdt+ dWt, (7)

is a Brownian motion under the probability measure Pu. Moreover, if π ∈ Π[0,t],
then under Pu, we also have

ess sup
τ

EPu

(∫ t

τ

|πs|
2ds

∣∣∣∣Fτ

)
< ∞.

The investor will evaluate her investment via a forward performance process,
the concept of which was first introduced and developed in [41]-[45]. Since the
investor is uncertain about the probability measure she uses, she will seek for an
optimal investment proportion that is least affected by model uncertainty. This
leads to the so called robust forward performance processes as first introduced
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in [34] and later extended to the case with uncertain parameters in [13]. In
[34] a class of convex penalty functions was introduced to represent the weight-
ing/likehood of Pu. To generalize the idea of penalty functions, we parameterize
robust forward performance processes by the investor’s prediction of the prob-
ability measure P

u (or the scenario parameter u), so penalty functions become
a special class of parametrization. For this, we first give a precise meaning of
parametrization which we will call a realization of the model Pu (or the scenario
parameter u) hereafter.

Definition 3 For 0 ≤ t ≤ s < ∞, a mapping γ : Ω× [t, s]×Ut,s → L0(Fs;R
+)

is a realization process, if for each r with t ≤ r ≤ s and u ∈ Ut,s, it holds

γt,s(u) = γt,s(u1 ⊕ u2) = γt,r(u1) + γr,s(u2), a.s., (8)

where u1 and u2 is the restriction of u to trading interval [t, r] and [r, s], respec-
tively, and we denote u = u1 ⊕ u2.

We will use a realization process γt,s(u) to parameterize the original utility on
trading horizon [t, s] because of the chosen model P

u. The condition (8) is
essentially a time-additivity property, which states that along the same model
P
u, the realization process on interval [t, s] is accumulated by the realization

processes estimated on [t, r] and [r, s].

The following generalises the definition of robust forward performance processes.

Definition 4 A process U (x, t) , (x, t) ∈ R+× [0,∞), is a robust forward per-
formance process associated with a realization process γ and a parameter τ ∈ R

if

i) for each x ∈ R+, U (x, t) is F-progressively measurable;

ii) for each t ≥ 0, the mapping x 7→ U(x, t) is strictly increasing and strictly
concave;

iii) the process U(x, t) satisfies the self-generating property (dynamic program-
ming principle), i.e., for all s ≥ t ≥ 0 and ū ∈ U0,t,

ess sup
π∈Π̃

ess inf
u∈Ut,s

EPu [Ũ(Xπ
s , s, ū⊕ u)|Ft, X

π
t = x] = Ũ(x, t, ū), a.s. (9)

where
Ũ (x, t, u) = U(x, t) + τγ0,t(u). (10)

Remark 5 It is easy to check that the process Ũ defined in (10) also satisfies

properties i) − ii) in Definition 4 and thus Ũ parameterized by the scenario
parameter u can also be regarded as a robust forward performance process, where
γ0,t(u) represents a realization of the model Pu up to time t. In this situation,

8



the robust forward performance process Ũ(x, t, u) at any given time t constitutes
of the original utility U(x, t) and the realization process γ0,t(u) reflecting the
historical cumulative impact of the model Pu from 0 to t. Considering the utility
may be increasing or decreasing along with the model Pu which depends on the
investor’s attitude to this model, we introduce a parameter τ in (10) with its sign
indicating the varying trend of the utility and its absolute value |τ | modeling the
sensitively of the utility with respect to the model Pu (or the scenario u.)

Remark 6 It turns out that our definition of robust forward performance pro-
cesses is a generalization of robust forward performance processes studied in
[34], although they are proposed based on different ideas. In fact, it is easy to
check from (8) that property (9) is equivalent to the following form

ess sup
π∈Π̃

ess inf
u∈Ut,s

EPu [U(Xπ
s , s) + τγt,s(u)|Ft, X

π
t = x] = U(x, t), a.s. (11)

If τ ≥ 0 and the realization process γt,s(u) is convex in u, then τγt,s(u) becomes
a penalty function. In this situation, we can verify from (11) that our Definition
4 is consistent with [34]. Due to the convexity of γt,s(u) on u, a duality method
is developed in [34] to construct U(x, t) and its associated optimal investment
proportion π∗. Moreover, a saddle point method is employed to further find the
worst case scenario u∗ in [13] (with τ = 0).

On the other hand, if τ < 0, the economic interpretation of τγ0,t(u) in (10) is
as follows. From (10) the investor’s utility at time t includes two terms U(x, t)
and τγ0,t(u) when using the model Pu. Since τ is negative, the utility U(x, t) +
τγ0,t(u) is smaller than the original utility U(x, t) and the term |τ |γ0,t(u) can
be regarded as the utility’s loss from time 0 to t under model Pu. As a result, the
utility at time t becomes U(x, t) + τγ0,t(u). Following this viewpoint, the term
τγ0,t(u) represents the degree of utility loss based on the investor’s prediction
over the probability measure P

u stemming from model uncertainty.

We remark that we do not assume γt,s(u) is convex with respect to u, which
implies that the duality method may not be suitable to our framework even for
τ > 0. In addition, the classical saddle point argument used in [13] is not valid
either because the saddle point in general does not exist (for example, when the
term τγt,s(u) is concave in u).

2.1 A stochastic differential game approach

In contrast to [34] and [13], which do not cover the case of the stochastic factor
model, we aim to construct a class of robust forward performance processes
with explicit dependency on the stochastic factor process V . Our approach is
based on stochastic differential games, which is an alternative and more direct
approach for the case τ = 0, and may also work for the case τ 6= 0 when the
realization process γ has some specific forms (see Section 7 for the case τ < 0).
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The basic idea of the stochastic differential game approach is as follows. To ro-
bustify the optimal investment, the inner part of the above optimization problem
(11) is played by the market minimizes the expected forward utility by choosing
the worst-case scenario, whereas the investor aims to select the best invest-
ment proportion that is least affected by the market’s choice. This leads to a
stochastic differential game between the investor and market.

In addition to the representation of the robust forward performance process, we
also aim to provide both the optimal investment proportion for each scenario
and the worst-case scenario for each investment proportion. The investment
proportion (resp. worst-case scenario) responding to each scenario (resp. in-
vestment proportion) can be exactly expressed as the “strategy to control” in
the setup of stochastic differential games (see [11, 19]). Thus, we next give
the definitions of two admissible “strategies” associated with their respective
“controls”.

Definition 7 An admissible investment strategy responding to each scenario
parameter for an investor is a mapping α : [0,∞) × Ω × U → Π̃ satisfying the
following two properties:
i) For each u ∈ U , α is F-progressively measurable;
ii) Non-anticipative property, that is, for all t > 0 and all u1, u2 ∈ U , with
u1 = u2, dsdP-a.e., on [0, t], it holds that α(·, u1) = α(·, u2), dsdP-a.e., on [0, t].

An admissible scenario parameter strategy responding to each investment pro-
portion for the market, β : [0,∞)×Ω× Π̃ → U , is defined similarly. The set of
all admissible investment strategies for the investor is denoted by A, while the
set of all admissible scenario parameter strategies is denoted by B.

Herein, the concept non-anticipative property is widely used in the definition
of admissible strategies in differential games to characterize that each player’s
decision, depending on the other’s action, will not change if the other one chooses
the same control (see [11]). We introduce this concept here to enforce that an
investor will take the same investment action if the scenario does not change.

We consider a zero-sum stochastic differential game, where the state dynamic
is given by the wealth equation (5). Furthermore, let U(x, t) be a stochastic
process satisfying i) and ii) in Definition 4 and γ be a realization process with
parameter τ ∈ R. For any s ≥ t, the objective functional is given by

J(x, t; s, π, u) = EPu [U(Xπ
s , s) + τγt,s(u)|Ft, X

π
t = x].

The lower and upper values of the game are then defined as

U(x, t; s) = ess inf
β∈B

ess sup
π∈Π̃

J(x, t; s, π, β(·, π)), a.s., (12)

and
U(x, t; s) = ess sup

α∈A
ess inf
u∈U

J(x, t; s, α(·, u), u), a.s., (13)
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respectively.

Note that if U(x, t; s) = U(x, t), for all s ≥ t, which implies that the objective
functional of the stochastic differential game “self generates” the lower value of
the game, then it is clear that U(x, t) becomes a robust forward performance
process satisfying i)-iii) in Definition 4. Thus, we say the game is self-generating
if

U(x, t; s) = U(x, t), for all s ≥ t, (14)

which will in turn provide a robust forward performance process. To this end,
we will construct a control π∗ ∈ Π̃, a strategy β∗ ∈ B, and a process U(x, t)
satisfying the martingale properties: For any π ∈ Π̃, s ≥ t, a.s.,

ess inf
β∈B

J(x, t; s, π, β(·, π)) = J(x, t; s, π, β∗(·, π)) ≤ U (x, t) ; (15)

J(x, t; s, π∗, β∗(·, π∗)) = U (x, t) . (16)

2.2 Further discussion on the stochastic differential game

approach when the game value exists

In this subsection, according to the sign of the parameter τ in (11), we further
explain the application of our stochastic differential game method in robust
forward investment problems.

If τ ≥ 0 and γt,s(u) is convex in u, a saddle point in general exists at least for a
special class of penalty functions γt,s(u) (as shown in [34] and [13]). In contrast
to the saddle point method, the advantage of the stochastic differential game
approach is to provide, in explicit form, the optimal investment choice for the
investor not only under the worst-case scenario but also for each scenario, as
well as the worst case scenario for each investment choice not only the optimal
one. Moreover, it is often relatively easy to compute the optimal strategy pair
(α∗, β∗), as they only involve maximization/minimization problems rather than
maxmin/minmax problems.

From Sections 3 to 6, we consider a robust forward problem without realization
process, i.e., τ = 0. In this situation, the game value exists, and we will con-
struct the associated forward performance process by the value of the stochastic
differential game. Recall that the value of the game exists if

U(x, t; s) = U(x, t; s), for all s ≥ t, (17)

which further implies that both equal to U(x, t) if the self-generating condition
(14) also holds. In this situation, with the help of the upper value function
U(x, t; s), we will construct a control pair (π∗, u∗) ∈ Π̃ × U , a strategy pair
(α∗, β∗) ∈ A × B, and a process U(x, t) satisfying the martingale properties:
(15), (16), and for any u ∈ U , s ≥ t, a.s.,

ess sup
α∈A

J(x, t; s, α(·, u), u) = J(x, t; s, α∗(·, u), u) ≥ U(x, t); (18)

11



J(x, t; s, α∗(·, u∗), u∗) = U (x, t) . (19)

Note that (15) and (16) are the martingale characterization of the lower value
of the game in (12), whereas (18) and (19) characterize the upper value of the
game in (13).

Moreover, if it also holds that π∗ = α∗(·, u∗) and u∗ = β∗(·, π∗), then the
martingale conditions (15)-(16) and (18)-(19) further imply that, for all s ≥ t,

J(x, t; s, π∗, u) ≥ J(x, t; s, π∗, β∗(·, π∗))

= J(x, t; s, α∗(·, u∗), u∗) ≥ J(x, t; s, π, u∗),

so the control pair (π∗, u∗) is a saddle point for the stochastic differential game
with the value J(x, t; s, π∗, u∗) = U(x, t).

Remark 8 When τ 6= 0, it is unclear how to construct a robust forward per-
formance process with a general realization process γ (see, for example, the dis-
cussion of the time consistency issue of penalty functions in Section 4 of [34]).
Moreover, a saddle point may even fail to exist if τ < 0. Nevertheless, we will
show in section 7 that our stochastic differential game approach may still work
for τ < 0, at least for a special class of quadratic form realization processes. A
more general case for τ 6= 0 is still left open.

3 Power robust forward performance processes

with zero realization processes

In this section, we focus on a class of homothetic robust forward performance
processes that are homogenous in the degree of δ ∈ (0, 1), and has the factor-
form

U (x, t) =
xδ

δ
ef(Vt,t), (20)

where f : Rd × [0,∞) → R is a deterministic function to be specified, and the
parameter τ of the realization process is equal to zero. We call such a robust
forward performance process a power robust forward performance process.

Proposition 9 Assume that f(v, t), (v, t) ∈ R
d × [0,∞), is a classical solution

(with enough regularity) of the semilinear PDE

ft +
1

2
Trace

(
κκT∇2f

)
+ η(v)T∇f +G(v, κT∇f) = 0, (21)

where
G(v, z) = inf

u∈U
sup
π∈Π

F (v, z, π, u), (22)
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with

F (v, z, π, u) = −
1

2
δ(1− δ)|π|2 + δπT (θ(v) + z + u) + zTu+

1

2
|z|2. (23)

Then, U(x, t) = xδ

δ
ef(Vt,t) is a power robust forward performance process.

Proof. Since U(x, t) obviously satisfies i) and ii) in Definition 4, it is sufficient
to examine iii) in Definition 4.

Step 1. From (22) and (23), we have

G(v, z) = inf
u∈U

sup
π∈Π

F (v, z, π, u) = inf
u∈U

F (v, z, α∗(v, z, u), u), (24)

with

α∗(v, z, u) = argmaxπ∈ΠF (v, z, π, u) = ProjΠ(
θ(v) + z + u

1− δ
). (25)

Using the Lipschitz continuity of the projection operator on the convex set Π,
there exists a Borel measurable mapping u∗ : Rd × R

d → U such that

u∗(v, z) = argminu∈UF (v, z, α∗(v, z, u), u). (26)

Then, from (24) and (26), we have

G(v, z) = F (v, z, π∗(v, z), u∗(v, z)), (27)

with
π∗(v, z) := α∗(v, z, u∗(v, z)). (28)

We claim that, for any u ∈ U ,

F (v, z, π∗(v, z), u) ≥ F (v, z, π∗(v, z), u∗(v, z)). (29)

If (29) holds, then

sup
π∈Π

inf
u∈U

F (v, z, π, u) ≥ inf
u∈U

F (v, z, π∗(v, z), u) (30)

≥ F (v, z, π∗(v, z), u∗(v, z)) (31)

= G(v, z) = inf
u∈U

sup
π∈Π

F (v, z, π, u),

so both (30) and (31) become equalities. In turn, π∗(v, z) in (28) and u∗(v, z)
in (26) satisfy, respectively,

π∗(v, z) = argmaxπ∈Π inf
u∈U

F (v, z, π, u),

and
u∗(v, z) = argminu∈UF (v, z, π∗(v, z), u). (32)

13



On the other hand, there exists a U -valued Borel measurable mapping β̄∗(v, z, π)
such that F (v, z, π, u) attains the minimum, i.e.

inf
u∈U

F (v, z, π, u) = F (v, z, π, β̄∗(v, z, π)).

Then, from (32), the mapping β∗(v, z, π) defines as

β∗(v, z, π) =

{
u∗(v, z), if π = π∗(v, z);
β̄∗(v, z, π), otherwise,

(33)

also minimizes F (v, z, π, u) over u ∈ U , and moreover,

π∗(v, z) = argmaxπ∈ΠF (v, z, π, β∗(v, z, π)). (34)

Step 2. We are left to prove the inequality (29). We omit the variables (v, z) in
π∗(v, z) and u∗(v, z), and write them as π∗ and u∗ in this step. For any u ∈ U
and λ ∈ (0, 1) let

u1 := λu+ (1 − λ)u∗.

Set π1 := α∗(v, z, u1) and recall from (28) that π∗ = α∗(v, z, u∗). Then, it
follows from (26) that

F (v, z, π∗, u∗) ≤ F (v, z, π1, u1)

= λF (v, z, π1, u) + (1− λ)F (v, z, π1, u
∗)

≤ λF (v, z, π1, u) + (1− λ)F (v, z, π∗, u∗).

where we used F (v, z, π, u) ≤ F (v, z, α∗(v, z, u), u) in the last inequality. Thus,

F (v, z, π∗, u∗) ≤ F (v, z, π1, u) = F (v, z, α∗(v, z, u1), u)

for any u ∈ U . Sending λ → 0 and using the continuity of α∗(v, z, u) in u, we
have α∗(v, z, u1) → α∗(v, z, u∗) = π∗. Then, the inequality (29) follows by the
continuity of F (v, z, π, u) in π.

Step 3. Using the homothetic form (20) and applying Itô’s formula to U(Xπ
s , s),

we get

dU(Xπ
s , s)

= U(Xπ
s , s)

[
fs +

1

2
Trace

(
κκT∇2f

)
+ η(Vs)

T∇f + F (Vs, κ
T∇f, πs, us)

]
ds

+ U(Xπ
s , s)(δπ

T
s +∇fTκ)dWu

s .

For any s ≥ t ≥ 0, from (21), we further get

EPu [U(Xπ
s , s)|Ft, X

π
t = x]− U(x, t)

= J(x, t; s, π, u)− U(x, t)

= EPu

[ ∫ s

t

U(Xπ
r , r)

(
F (Vr, κ

T∇f, πr , ur)−G(Vr , κ
T∇f)

)
dr|Ft, X

π
t = x

]
.

(35)
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We set

π∗
t = π∗(Vt, κ∇f(Vt, t)), u∗

t = u∗(Vt, κ∇f(Vt, t)),

α∗(t, ut) = α∗(Vt, κ∇f(Vt, t), ut), β∗(t, πt) = β∗(Vt, κ∇f(Vt, t), πt),
(36)

with the mappings (π∗, u∗, α∗, β∗) given in (28), (26), (25) and (33), respectively.
Then, it is easy to check that U(x, t) satisfies the martingale conditions (15)-

(16) and (18)-(19), which implies that U(x, t) = xδ

δ
ef(Vt,t) is a power robust

forward performance process, with the optimal control pair (π∗, u∗) and the
optimal strategy pair (α∗, β∗).

Remark 10 It is worth to point out that the strategies α∗ and β∗ we constructed
in the above proof are also called “counterstrategies”; the reader can refer to
Chapter 10, Section 1 in [36] for more details.

Since, by our construction, π∗
t = α∗(t, u∗

t ) and u∗
t = β∗(t, π∗

t ), it follows that
(π∗, u∗) is actually a saddle point for the associated game. However, compared
to the classical saddle point argument such as Sion’s Minimax Theorem (see, for
example, [13, 53]), our formulae are more explicit and is constructed via their
corresponding counterstrategies.

Note that the semi-linear PDE (21) is a new class of Hamilton-Jacobi-Bellman-
Isaacs equations, which is ill-posed for the equation is posed forward in time.
Due to this “wrong” time direction, one does not expect solutions to exist for
all initial conditions or to depend continuously on them, making the problem
ill-posed. A similar difficulty also appears in [4], [46], [47] and [50] for the
construction of forward processes without model ambiguity, where the Widder’s
theorem is employed. Nevertheless, the form of PDE (21) motivates us how to
construct the optimal investment proportion, worst-case scenario parameter and
the related optimal strategies for different situations, which will be used in the
following Theorem 12. In order to give the specific form of the process f (Vt, t),
we bypass PDE (21) by directly using the Markovian solution of an ergodic
BSDE whose driver has the form (22). This approach was first introduced in [38]
to study the forward performance process in the absence of model uncertainty.
We first give the existence and uniqueness of the Markovian solution of the
associated ergodic BSDE. For this, we further strengthen Assumption 1 by
requiring the constant Cη given in (3) satisfies

Cη ≥
3δCθ

1− δ
[(Kθ +Ku) ∨ 1] , (37)

where δ ∈ (0, 1) is the risk aversion degree, Cθ and Kθ are the Lipschitz constant
and bound of the market price of risk vector θ(v) respectively, and Ku is the
bound of the scenario parameter u with Ku = maxu∈U |u|.

Lemma 11 Assume the function G has the form (22). Then, the ergodic BSDE

dYt = (−G(Vt, Zt) + λ)dt+ ZT
t dWt, (38)
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admits a unique Markovian solution (Yt, Zt, λ), t ≥ 0, i.e., there exist a unique
constant λ and functions y : Rd → R, z : Rd → R

d such that Yt = y (Vt) , Zt =
z (Vt). Here, we say a Markovian solution is unique in the following sense: the
function y(·) is unique up to a constant and has at most linear growth, and z(·)
is bounded.

Proof. Using the Lipschitz continuity of the projection operator, it follows from
(23) and (25) that

|F (v, z, α∗(v, z, u), u)− F (v̄, z, α∗(v̄, z, u), u)| ≤ C(1 + |z|) · |v − v̄|,

|F (v, z, α∗(v, z, u), u)− F (v, z̄, α∗(v, z̄, u), u)| ≤ C(1 + |z|+ |z̄|) · |z − z̄|,

|F (v, 0, α∗(v, 0, u), u)| ≤ C.

(39)

Indeed, to show the first inequality, we note from (23) that

|F (v, z, α∗(v, z, u), u)− F (v̄, z, α∗(v̄, z, u), u)|

≤
δ(1− δ)

2
|α∗(v, z, u) + α∗(v̄, z, u)| × |α∗(v, z, u)− α∗(v̄, z, u)|

+ δ|θ(v) + z + u| × |α∗(v, z, u)− α∗(v̄, z, u)|+ δ|α∗(v̄, z, u)| × |θ(v) − θ(v̄)|.

Since the projection operator ProjΠ(·) is Lipschitz continuous with its Lipschitz
constant 1 and 0 ∈ Π, from (25) we have

|α∗(v, z, u)− α∗(v̄, z, u)| ≤
1

1− δ
|θ(v) − θ(v̄)| ≤

Cθ

1− δ
|v − v̄|,

and

|α∗(v̄, z, u)| ≤
1

1− δ
|θ(v̄) + z + u| ≤

Kθ + |z|+Ku

1− δ
.

In turn,

|F (v, z, α∗(v, z, u), u)− F (v̄, z, α∗(v̄, z, u), u)|

≤ 3
δ

1− δ
(Kθ + |z|+Ku)Cθ|v − v̄|

≤
3δCθ

1− δ
[(Kθ +Ku) ∨ 1] (1 + |z|) · |v − v̄| ≤ Cη(1 + |z|) · |v − v̄|,

with Cη given in (37). The other two inequalities in (39) can be proved in a
similar way. Furthermore, we note that the constant C in (39) is independent
of u ∈ U . Hence, from (24), we further obtain

|G(v, z)−G(v̄, z)| ≤ C(1 + |z|) · |v − v̄|,

|G(v, z)−G(v, z̄)| ≤ C(1 + |z|+ |z̄|) · |z − z̄|, |G(v, 0)| ≤ C.
(40)

Therefore, from Proposition 3.1 and Appendix A in [38] we obtain the desired
result.
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Roughly speaking, the additional “large enough” requirement of the constant
Cη in (37) is to guarantee the forward stochastic factor process V converges
fast enough to dominate the dissipative nature of the backward equation for
Y reflected by the Lipschitz constant C in the first inequality of (40). This
additional requirement plays an important role in the study of ergodic BSDE
(38). We refer the reader to Appendix A in [38].

We next present the specific form of the process f(Vt, t) by using the solution
of the ergodic BSDE (38).

Theorem 12 Let (Yt, Zt, λ) = (y(Vt), z(Vt), λ), t ≥ 0, be the unique Markovian
solution of (38). Then, the process U(x, t), (x, t) ∈ R+ × [0,∞) , given by

U(x, t) =
xδ

δ
ey(Vt)−λt , (41)

is a power robust forward performance process. Moreover, the optimal portfolio
weight π∗, the worst-case scenario parameter u∗ and the optimal strategies α∗, β∗

responding to each scenario parameter u and portfolio weight π are given as
follows

π∗
t = π∗(Vt, z(Vt)), u∗

t = u∗(Vt, z(Vt)),

α∗(t, ut) = α∗(Vt, z(Vt), ut), β∗(t, πt) = β∗(Vt, z(Vt), πt),
(42)

where the mappings (π∗, u∗, α∗, β∗) are given in (28), (26), (25) and (33), re-
spectively.

In addition, the associated wealth process X∗ under the worst-case scenario is
given by

X∗
t = X0E

( ∫ t

0

(π∗
s )

T · [(θ(Vs) + u∗
s)ds+ dWu∗

s ]
)
.

It is worth to point out that the constant λ, as a part of the solution of er-
godic BSDE (38), can be regarded as the optimal long-term growth rate of the
corresponding expected utility of wealth with model uncertainty (see Remark
23).

We now give the proof of Theorem 12.

Proof. It is easy to check that the process given by (41) is F-progressively
measurable, strictly increasing and strictly concave in x. We only need to show
that the martingale conditions (15)-(16) and (18)-(19) hold. For this, from (5),
(7) and (38) we get, for all s ≥ t ≥ 0, (π, u) ∈ Π̃× U ,

Xπ
s = Xπ

t · exp
{∫ s

t

πT
r (θ(Vr) + ur)−

1

2
|πr|

2dr +

∫ s

t

πT
r dW

u
r

}
,

(Ys − λs) = (Yt − λt)−

∫ s

t

G(Vr , Zr)− ZT
r urdr +

∫ s

t

ZT
r dW

u
r .
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Thus, we have

U(Xπ
s , s) =

(Xπ
s )

δ

δ
eYs−λs

= U(Xπ
t , t) · E

( ∫ s

t

(δπT
r + ZT

r )dW
u
r

)
· exp

{∫ s

t

F (Vr, Zr, πr, ur)−G(Vr , Zr)dr
}
.

Therefore,

EPu [U(Xπ
s , s)|Ft, Xt = x]− U(x, t)

= J(x, t; s, π, u)− U(x, t)

= U(x, t) · EPu

(
Ms

Mt

· exp
{∫ s

t

(
F (Vr , Zr, πr, ur)−G(Vr , Zr)

)
dr
}∣∣∣Ft

)
− U(x, t),

where, for t ∈ [0, s], Mt := E
( ∫ t

0
(δπT

r +ZT
r )dW

u
r

)
, is a uniformly integrable ex-

ponential martingale (since π satisfies the BMO-condition and z(·) is bounded).
Similar to the argument in the proof of Lemma 9, we get the the martingale
conditions (15)-(16) and (18)-(19) from the above equality.

Remark 13 The probability measure P
u∗

associated with u∗ given in Theorem
12 has the following form

dPu∗

dP

∣∣∣
Ft

= E

(∫ t

0

(u∗
s)

TdWs

)
.

Thus, as a byproduct, we obtain a specific formula for the least favorable mar-
tingale measure as considered in [20].

Remark 14 Similar to Proposition 3.4 in [38], it is easy to check that

f(v, t) = y(v)− λt

is a classical solution of the semilinear PDE (21) with the initial condition
f(v, 0) = y(v), where (y(Vt), z(Vt), λ) is the solution of ergodic BSDE (38).

Next, we build a connection between power robust forward performance pro-
cesses and the solutions of a family of infinite horizon BSDE. For ρ > 0, we
consider the following infinite horizon BSDE

dY ρ
t = (−G(Vt, Z

ρ
t ) + ρY ρ

t ) dt+ (Zρ
t )

T
dWt, (43)

where the driver G(·, ·) is given in (38). Then, this BSDE admits a unique
Markovian solution (Y ρ

t , Z
ρ
t ) = (yρ(Vt), z

ρ(Vt)). Moreover, there exists a subse-
quence, denoted by ρn, such that

y(v) = lim
ρn↓0

yρn(v), z(v) = lim
ρn↓0

zρn(v), λ = lim
ρn↓0

ρny
ρn(v0),
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where (y(Vt), z(Vt), λ) is the solution of ergodic BSDE (38) and v0 ∈ R
d is an

arbitrary given reference point. These results were first obtained in [22] with
Lipschitz driver and then extended to the quadratic driver in [38].

Similar to the proof of Theorem 12, we can examine that the process Uρ(x, t)
given by (44) is still a power robust forward performance process and it converges
in an appropriate discounted manner to the process U(x, t) as ρ tends to 0.

Corollary 15 The process Uρ (x, t) , (x, t) ∈ R+ × [0,∞) , given by

Uρ(x, t) =
xδ

δ
ey

ρ(Vt)−
∫

t
0
ρyρ(Vs)ds (44)

is a power robust forward performance process and the optimal portfolio strategy
α∗,ρ
t for each scenario parameter u is given by

α∗,ρ
t (u) = ProjΠ

(
θ(Vt) + zρ(Vt) + ut

1− δ

)
.

Furthermore, there exists a subsequence ρn ↓ 0 such that, for (x, t) ∈ R+ ×
[0,∞) ,

lim
ρn↓0

Uρn(x, t)e−yρn (v0)

U(x, t)
= 1. (45)

and the associated optimal portfolio strategies α∗,ρn and α∗ satisfy

lim
ρn↓0

EP

∫ t

0

|α∗,ρn(s, us)− α∗(s, us)|
2
ds = 0, for t ≥ 0, u ∈ U . (46)

Remark 16 We have obtained the representation of the power robust forward
performance process in factor-form by combining the zero-sum stochastic differ-
ential game and ergodic BSDE approach. In fact, this approach can be applied
to study other type of homothetic robust forward performance processes, such as
logarithmic and exponential cases. More specifically, the processes U1(x, t) and
U2(x, t) given by

U1(x, t) = lnx+ y1(Vt)− λ1t, (x, t) ∈ R+ × [0,∞),

U2(x, t) = −e−γx+y2(Vt)−λ2t, (x, t) ∈ R× [0,∞)

are logarithmic and exponential (with risk aversion parameter γ > 0) robust for-
ward performance processes, respectively, where (Y i

t , Z
i
t , λ

i) = (yi(Vt), z
i(Vt), λ

i),
i = 1, 2, t ≥ 0, are the unique Markovian solution of the ergodic BSDE (38)
with the generator G = Gi, i = 1, 2, respectively, with

G1(v, z) = inf
u∈U

sup
π∈Π

{−
1

2
|π|2 + πT θ(v) + (πT + zT )u},

G2(v, z) = sup
u∈U

inf
π∈Π

{
1

2
|γπ − z|2 − rπT (θ(v) + u) + zTu}.
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4 Examples

We apply Theorem 12 to analyze two specific examples. The first example is
driven by the Brownian noise which can be fully hedged. The second example
is a single stock model correlated with a single stochastic factor where only
partial hedging is possible. In both examples, no constraints on portfolios are
imposed and optimal robust investment policies for the power robust forward
performance processes are given in the feedback form of stochastic factors.

4.1 Market model I

We consider the case that the set Π is large enough in the sense that the map-
pings α∗ in (25) has the following form

α∗(v, z, u) = ProjΠ(
θ(v) + z + u

1− δ
) =

θ(v) + z + u

1− δ
.

Then, the mappings u∗ in (26) and π∗ in (28) as well as β∗ in (33) take the form

u∗(v, z) = argminu∈UF (v, z, α∗(v, z, u), u) = ProjU
(
− θ(v)−

1

δ
z
)
,

π∗(v, z) = α∗(v, z, u∗(v, z)) =
θ(v) + z + ProjU

(
− θ(v)− 1

δ
z
)

1− δ
,

β∗(v, z, π) =

{
ProjU

(
− θ(v)− 1

δ
z
)
, if π = π∗(v, z);

argminu∈U (δπ + z)Tu, otherwise.

In this case, the ergodic BSDE (38) becomes

dYt =
(
−

1

2

δ

1− δ
dist2

(
U,−θ(Vt)−

1

δ
Zt

)
+

1

2δ
|Zt|

2+ZT
t θ(Vt)+λ

)
dt+ZT

t dWt.

(47)
In turn, from Theorem 12, we obtain the following result.

Proposition 17 Denote by (y(Vt), z(Vt), λ) the Markovian solution of (47).
Then, the process U(x, t) given by

U(x, t) =
xδ

δ
ey(Vt)−λt ,

is a power robust forward performance process. Moreover, the optimal control
pair (π∗, u∗) ∈ Π̃ × U and optimal strategy pair (α∗, β∗) ∈ A × B, have the
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following feedback form

π∗
t =

θ(Vt) + z(Vt) + ProjU
(
− θ(Vt)−

1
δ
z(Vt)

)

1− δ
,

u∗
t = ProjU

(
− θ(Vt)−

1

δ
z(Vt)

)
,

α∗(t, ut) =
θ(Vt) + z(Vt) + ut

1− δ
,

β∗(t, πt) =

{
ProjU

(
− θ(Vt)−

1
δ
z(Vt)

)
, if π = π∗(v, z);

argminut∈U (δπt + z(Vt))
Tut, otherwise.

Remark 18 It is worth to point out that the presence of the uncertainty in our
forward setting may lead to extreme prediction and conservative policy implica-
tions for an ambiguity-averse investor. In fact, if we consider the situation that
the set U is large enough such that

u∗(v, z) = ProjU
(
− θ(v) −

1

δ
z
)
= −θ(v)−

1

δ
z.

Then, ergodic BSDE (47) has the form

dYt =
( 1

2δ
|Zt|

2 + ZT
t θ(Vt) + λ

)
dt+ ZT

t dWt, (48)

and the robust optimal portfolio weight π∗
t = − 1

δ
z(Vt). Note that (0, 0, 0) is the

unique Markovian solution of ergodic BSDE (48), from Proposition 17 we get

π∗
t = −

1

δ
z(Vt) = 0, u∗

t = −θ(Vt)−
1

δ
z(Vt) = −θ(Vt),

α∗(t, ut) =
θ(Vt) + ut

1− δ
,

β∗(t, πt) =

{
−θ(Vt), if π = π∗(v, z);
argminut∈U (δπt)

Tut, otherwise.

This implies that the robust investment policy for an investor is no actions to
be taken in the market if the degree of the uncertainty is too large for her. At
the same time, the worst-case scenario has a simple form and depends only on
the market price of risk θ(v) and the stochastic factor Vt. In addition, even if
an investor is forced to invest (or pursuit high profits) in some situations such
as the investor has a wrong judgment on the uncertainty of the market, or is
influenced by other extreme events, the optimal investment strategy α∗ still gives
the corresponding action policy for different scenarios.
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4.2 Market model II

We consider a single stock and single stochastic factor model. In this situation,
we suppose n = 1 and d = 2 in the state equations (1) and (2), i.e.,

dSt = b(Vt)Stdt+ σ(Vt)StdW
1
t ,

dV 1
t = η(Vt)dt+ ρdW 1

t +
√
1− ρ2dW 2

t and dV 2
t = 0,

(49)

with constant ρ ∈ (0, 1) and σ (·) bounded by a positive constant. Note that the
stochastic factor cannot be traded directly so that the market model is typically
incomplete.

Here, we consider an optimal portfolio problem with no constraints, i.e., Π =
R×{0} (which means π2

t ≡ 0). Let U = {(u1, u2) : −R ≤ u1 ≤ u2 ≤ R}
(a triangle domain in R

2) with some given constant R > 0. Then, the wealth
equation (5) reduces to dXπ

t = Xπ
t π

1
t

(
θ(Vt)dt+ dW 1

t

)
with θ(Vt) = b(Vt)/σ(Vt),

and the driver of (38) takes the form

G(v, z1, z2) =
δ

2(1− δ)
dist2

(
[−R,R],−θ(v)−

1

δ
z1 −

1− δ

δ
z2I{z2≥0}

)

−
1

2δ
|z1|

2 − θ(v)z1 +
(2δ − 1

2δ
z2 −

1

δ
z1 − θ(v)

)
z2I{z2≥0}

+ (
1

2
z2 +R)z2I{z2<0}.

(50)

Then, from Theorem 12, we have the following result.

Proposition 19 Suppose that (Y (t), Z1(t), Z2(t), λ) = (y(Vt), z
1(Vt), z

2(Vt), λ)
is the Markovian solution of ergodic BSDE (38) with the driver (50). Then, the
process U(x, t) given by

U(x, t) =
xδ

δ
ey(Vt)−λt ,

is a power robust forward performance process. Moreover, the optimal portfolio
weights and worst-case scenario parameters are given by

π∗
1(t) =

1

1− δ

(
θ(Vt) + Z1(t)

+ Proj[−R,R]

(
− θ(Vt)−

1

δ
Z1(t)−

1− δ

δ
Z2(t)I{Z2(t)≥0}

))
,

π∗
2(t) =0,

u∗
1(t) =Proj[−R,R]

(
− θ(Vt)−

1

δ
Z1(t)−

1− δ

δ
Z2(t) · I{Z2(t)≥0}

)
,

u∗
2(t) =Proj[−R,R]

(
− θ(Vt)−

1

δ
Z1(t)−

1− δ

δ
Z2(t)

)
· I{Z2(t)≥0} + R · I{Z2(t)<0}.
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The optimal portfolio weight strategies for each scenario u ∈ U and the worst
case scenario strategies for each investment weight π ∈ Π̃ are given as follows

α∗
1(t, u(t)) =

1

1− δ
[θ(Vt) + Z1(t) + u1(t)], α∗

2(t, u(t)) = 0,

β∗
1(t, π(t)) =

{
u∗
1(t), if π1(t) = π∗

1(t),
−R · sgn(a(t)), otherwise,

β∗
2(t, π(t)) =

{
u∗
2(t), if π1(t) = π∗

1(t),
−R · sgn(a(t)) · I{Z2(t)≥0} +R · I{Z2(t)<0}, otherwise,

where a(t) := δπ1(t) + Z1(t) + Z2(t) · I{Z2(t)≥0}.

Similar to Remark 18, we can conclude that the best choice for an investor will
take no action in an incomplete market if the uncertainty is large enough. In
fact, from Proposition 19 (especially, the form of π∗

1) we can derive a boundary
(say, M) or a domain of the scenario’s value in what degree an ambiguity-averse
investor should not take action in the market with uncertainty. Herein, the
boundaryM depends on the boundedness of the functions z1(·) and z2(·) as well
as θ(·). Once the uncertainty exceeds the boundary M , the robust investment
opportunity will disappear (in this case, π∗

1 ≡ 0 because Z1 = Z2 ≡ 0). In turn,
this reflects that the uncertainty in our model is essentially associated with the
risk price θ and the part Z of the solution of ergodic BSDE.

Moreover, when the stock price is not affected by the stochastic factor in the
sense that the coefficients b and σ in (49) are constants, the processes Z1 and
Z2, as part of the solution of the ergodic BSDE (38), will equal to 0. Then,
from Proposition 19, it is easy to check that the worst-case scenario parameters
u∗
1 and u∗

2 will choose the values closest to −θ(= − b
σ
) for any given R > 0 and

the optimal portfolio weight π∗
1 will have the form

π∗
1(t) =

1

1− δ

(
θ + Proj[−R,R]

(
− θ

))
.

Therefore, for the model that the stock price is not affected by the stochastic
factor, there will be no investment action into the stock when the value of the
risk θ belongs to the range of the uncertainty (i.e., |θ| ≤ R).

In addition, we observe that the sign of z2(Vt)(= Z2(t)) has an important impact
on the the worst-case scenario, albeit not shown explicitly in the form of the
power robust forward performance process U(x, t). It seems interesting to ob-
serve that the sign of z2(Vt)(= Z2(t)) only affects the worst-case scenario strate-
gies β∗

1 and β∗
2 , not the optimal investment policy strategies α∗

1 and α∗
2 respond-

ing to each scenario. A similar situation occurs if one consider a general compact
and convex subset U ⊂ R

2 (e.g. U = {(u1, u2) : −R ≤ ui ≤ R, i = 1, 2}); the
only difference is that for this case the form of worst-case scenario parameters
depend also on the sign of some process involving z1(Vt). Therefore, one may
deduce that the Z’s part of the solution of the ergodic BSDE (38) carries with
the important information on the worst-case scenario.
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Remark 20 The above incomplete market model with uncertainty has also been
studied in [26] in the framework of classical robust expected utility. They give
an explicit PDE characterization for the lower value function of a robust utility
maximization problem combining the duality approach and the stochastic control
approach.

On the other hand, when we do not consider the model uncertainty, the above
model will reduce to the case that has been studied in [38] (Section 3.1.3 therein).
The optimal portfolio weights obtained in [38] have the following form

π̃∗
1(t) =

1

1− δ
(θ(Vt) + Z̃1(t)), π̃∗

2(t) = 0,

where (Ỹ , Z̃1, Z̃2, λ̃) is the Markovian solution of ergodic BSDE (38) with the
driver

G̃(v, z1, z2) =
1

2

δ

1− δ
|z1 + θ(v)|2 +

1

2
(|z1|

2 + |z2|
2).

Comparing the form between optimal portfolio weight π̃∗
1 and the robust weight

π∗
1 given in Proposition 19, we observe that the model uncertainty affects the

optimal policy in the following two aspects:
i) π∗

1 has an additional projection term, which can be seen as a direct reflection
on the model uncertainty influencing the robust investment policy;
ii) The solutions of the ergodic BSDE (38) with driver G and G̃, especially for
the Z’s part shown in π∗

1 and π̃∗
1 , are different. Note that the difference between

G and G̃ is mainly caused by the model uncertainty. This reflects indirectly the
impact on optimal policy induced by the uncertainty via the associated ergodic
BSDE.

5 Connection with ergodic risk-sensitive stochas-

tic differential games

We establish a connection between the constant λ appearing in the solution of
the ergodic BSDE (38) and a zero-sum risk-sensitive stochastic differential game
over the infinite horizon with ergodic payoff criteria. It turns out the constant
λ is the value of the zero-sum risk-sensitive game and can be interpreted as
the optimal long-term growth rate of expected utility of wealth with model
uncertainty.

We first give the comparison theorem for ergodic BSDE (38), which will be
employed in Theorem 22. Moreover, this result can be applied to compare the
robust optimal long-term growth rate of expected utility for the model with
different parameters.

Lemma 21 Suppose that Gi, i = 1, 2, satisfy the following conditions

|Gi(v, z)−Gi(v̄, z)| ≤ C(1 + |z|) · |v − v̄|,

|Gi(v, z)−Gi(v, z̄)| ≤ C(1 + |z|+ |z̄|) · |z − z̄|, |Gi(v, 0)| ≤ C.
(51)
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For i = 1, 2, let (Y i, Zi, λi) be the unique Markovian solution of the ergodic
BSDE (38) with driver Gi(v, z). If G1(v, z) ≥ G2(v, z), then we have

λ1 ≥ λ2.

We remark that, under the assumptions on the coefficients of our model (mainly
the boundedness and Lipschitz assumption on the market price of the risk θ),
the function G(v, z) defined in (22) satisfies the condition (51) (see (40)). We
next give the proof of Lemma 21.

Proof. Denote

γt =

{
G1(Vt,Z

1
t )−G1(Vt,Z

2
t )

|Z1
t −Z2

t |
2 (Z1

t − Z2
t ), if Z1

t 6= Z2
t ,

0, otherwise.

Then, from the boundedness of Z1 and Z2, we know γ is a bounded process.
We define the probability measure Q as follows

dQ

dP

∣∣∣
Ft

= E(

∫ t

0

γrdWr).

Using the notations Ŷ = Y 1 − Y 2, Ẑ = Z1 − Z2, λ̂ = λ1 − λ2, we get

Ŷ0 − ŶT =

∫ T

0

G1(Vt, Z
2
t )−G2(Vt, Z

2
t ) + γT

t Ẑtdt− λ̂T −

∫ T

0

ẐT
t dWt

=

∫ T

0

G1(Vt, Z
2
t )−G2(Vt, Z

2
t )dt− λ̂T −

∫ T

0

ẐT
t dW

Q
t ,

where WQ defined via dWQ
t = −γtdt + dWt is a Brownian motion under the

probability measure Q. Therefore, we get

1

T
EQ[Ŷ0 − ŶT ] + λ̂ =

1

T
EQ[

∫ T

0

G1(Vt, Z
2
t )−G2(Vt, Z

2
t )dt]. (52)

Note that there exist mappings yi, i = 1, 2, such that Y i
t = yi(Vt), i = 1, 2.

Since yi, i = 1, 2, are of linear growth, there exists a constant C independent of
T such that

EQ|ŶT | ≤ C(1 + EQ|VT |) ≤ C, (53)

where the last inequality is derived from the dissipative condition (3). It follows
from (52) and G1(v, z) ≥ G2(v, z) that

λ̂ = lim sup
T→∞

1

T
EQ[

∫ T

0

G1(Vt, Z
2
t )−G2(Vt, Z

2
t )dt] ≥ 0,

which completes the proof.
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We start to formulate a two-player zero-sum risk-sensitive stochastic differen-
tial game associated with the forward process. The dynamic is given by the
stochastic factor model (2) and the running payoff function is given by

L(v, π, u) = −
1

2
δ(1− δ)|π|2 + δπT [θ(v) + u], (v, π, u) ∈ R

d × R
d × R

d.

In line with the forward process, the planning horizon of the differential game
is infinite and we study the following ergodic payoff criterion

J (π, u) = lim sup
T↑∞

1

T
lnEPπ,u

(
e
∫

T
0

L(Vs,πs,us)ds
)
, (π, u) ∈ Π̃× U , (54)

where the probability measure P
π,u is defined as follows

dPπ,u

dP

∣∣∣∣
Ft

= E

(∫ t

0

(δπT
r + uT

r )dWr

)
. (55)

Note that the criterion J represents the gain for Player 1 and the loss for Player
2. Thus, Player 1 aims to maximize J by using her control π, whereas Player
2 wants to minimize it via her control u. Intuitively, this model can be applied
to describe the long-time investment action of a risk-averse investor in a market
with model uncertainty (see Remark 23 on the equivalent form of J ), namely,
the investor is trying to maximize her long-term portfolio gain rate via choosing
the portfolio weight π, whereas the market, by default, aims to minimize the
investor’s gain rate via hiding the real market model and adding disturbance
terms.

Theorem 22 For any (π, u) ∈ Π̃ × U with feedback forms, i.e. (πs, us) =
(π(Vs), u(Vs)) for some Borel measurable mappings (π(·), u(·)), let (y(Vt), z (Vt) ,
λ), t ≥ 0, be the unique Markovian solution of the ergodic BSDE (38). Further-
more, if the set Π is also assumed to be bounded, then λ is the value of the
associated risk-sensitive game problem, namely,

λ = inf
u∈U

sup
π∈Π̃

J (π, u) = sup
π∈Π̃

inf
u∈U

J (π, u). (56)

Moreover, the supremum and infimum in (56) can be attainable by choosing π∗

and u∗ as in (42).

Proof. From (23), we have

|F (v, z, π, u)− F (v̄, z, π, u)| ≤ C|π| · |v − v̄|,

|F (v, z, π, u)− F (v, z̄, π, u)| ≤ C(1 + |π|+ |z|+ |z̄|) · |z − v̄|,

|F (v, 0, π, u)| ≤ C|π|2 + C|π|.

(57)
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Then, similar to the proof of Lemma 11, from (39) and (57), the following two
ergodic equations

dY u
t = (− sup

πt∈Π
F (Vt, Z

u
t , πt, ut) + λu)dt+ (Zu

t )
T dWt,

dY π
t = (− inf

ut∈U
F (Vt, Z

π
t , πt, ut) + λπ)dt+ (Zπ

t )
TdWt,

(58)

have unique Markovian solutions (Y u, Zu, λu) and (Y π, Zπ, λπ), respectively,
for each (u, π) ∈ U × Π̃ with feedback forms.

Step 1. We first show that

λ = inf
u∈U

λu = sup
π∈Π̃

λπ . (59)

Since
inf

ut∈U
F (Vt, Zt, πt, ut) ≤ G(Vt, Zt) ≤ sup

πt∈Π
F (Vt, Zt, πt, ut),

Lemma 21 then implies that

λπ ≤ λ ≤ λu, for all (π, u) ∈ Π̃× U with feedback forms. (60)

On the other hand, from the uniqueness of the solution of the ergodic BSDE
(38), we know λ = λu∗

= λπ∗

with u∗ and π∗ given in (42). Thus, we have
established (59).

Step 2. We show that, for each (u, π) ∈ U × Π̃ with feedback forms,

λu = sup
π∈Π̃

lim sup
T↑∞

1

T
lnEPπ,u

(
e
∫

T
0

L(Vs,πs,us)ds
)
, (61)

λπ = inf
u∈U

lim sup
T↑∞

1

T
lnEPπ,u

(
e
∫

T
0

L(Vs,πs,us)ds
)
. (62)

We only prove (61), and the proof of (62) is analogous.

For arbitrary but fixed u ∈ U , from (58) we get, for every π̃ ∈ Π̃,

dY u
t = (− sup

πt∈Π
F (Vt, Z

u
t , πt, ut) + λu)dt+ (Zu

t )
T dWt

=
(
− sup

πt∈Π
F (Vt, Z

u
t , πt, ut) + λu + (Zu

t )
T (δπ̃t + ut)

)
dt+ (Zu

t )
TdW π̃,u

t ,

(63)
where W π̃,u defined via dW π̃,u = −(δπ̃t + ut)dt + dWt is a Brownian motion
under probability measure Pπ̃,u (see (55)). We observe that the function F (see
(23)) in (63) can be written as

F (Vt, Z
u
t , πt, ut) = L(Vt, πt, ut) + (Zu

t )
T (δπt + ut) +

1

2
|Zu

t |
2.
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Therefore, we rewrite the ergodic BSDE (63) as

Y u
0 − Y u

T + λuT

=

∫ T

0

sup
πt∈Π̃

(
L(Vt, πt, ut) + (Zu

t )
T δπt

)
− (Zu

t )
T δπ̃t +

1

2
|Zu

t |
2dt−

∫ T

0

(Zu
t )

TdW π̃,u
t ,

which follows that, for arbitrary π̃ ∈ Π̃,

eλ
uT+Y u

0 e−Y u
T E

( ∫ T

0

(Zu
t )

T dW π̃,u
t

)

=exp
( ∫ T

0

sup
πt∈Π̃

(
L(Vt, πt, ut) + (Zu

t )
T δπt

)
− L(Vt, π̃t, ut)− (Zu

t )
T δπ̃tdt

)

· e
∫

T
0

L(Vt,π̃t,ut)dt

≥ e
∫

T
0

L(Vt,π̃t,ut)dt.

Then, we obtain

eλ
uT+Y u

0 EPπ̃,u

[
e−Y u

T E
(∫ T

0

(Zu
t )

T dW π̃,u
t

)]
≥ EPπ̃,u

[
e
∫

T
0

L(Vt,π̃t,ut)dt
]
. (64)

We define the probability measure Qπ̃,u as follows

dQπ̃,u

dP

∣∣∣∣
Ft

= E

(∫ t

0

(δπ̃r + ur + Zu
r )

TdWr

)
.

Using the measure Qπ̃,u, from (64) we get

eλ
uT+Y u

0 EQπ̃,u

[
e−Y u

T

]
≥ EPπ̃,u

[
e
∫

T
0

L(Vt,π̃t,ut)dt
]
.

Thus, it holds

λu +
Y u
0

T
+

1

T
lnEQπ̃,u

[
e−Y u

T

]
≥

1

T
lnEPπ̃,u

[
e
∫

T
0

L(Vt,π̃t,ut)dt
]
. (65)

Similar to the proof of estimate (53), from the boundedness of Π and Jensen’s
inequality, there exists a constant C independent of T such that

1

C
≤ e−E

Qπ̃,u [Y u
T ] ≤ EQπ̃,u

(
e−Y u

T

)
≤ C, (66)

where the last inequality is obtained using Lemma 3.1 in [16]. It follows from
(65) and (66) that, for any π̃ ∈ Π̃,

λu ≥ lim sup
T↑∞

1

T
lnEPπ̃,u

[
e
∫

T
0

L(Vt,π̃t,ut)dt
]
.

with equality choosing π̃t = π∗
t , where π∗

t is given in (42).

Step 3. Finally, we readily obtain (56) from (59) in Step 1 and (61) and (62) in
Step 2.
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Remark 23 Note that

EPπ,u

(
e
∫

T
0

L(Vs,πs,us)ds
)

= EPu

(
e
∫

T
0

− 1
2 δ|πs|

2+δπT
s θ(Vs)ds+

∫
T
0

δπT
s dWs

)
= EPu

[
(Xπ

T )
δ

δ

]
·
δ

xδ
.

In turn, from (56), it is easy to check that λ is also the value for the following
game problem

λ = inf
u∈U

sup
π∈Π̃

lim sup
T↑∞

1

T
lnEPu

[
(Xπ

T )
δ

δ

]

= sup
π∈Π̃

inf
u∈U

lim sup
T↑∞

1

T
lnEPu

[
(Xπ

T )
δ

δ

]
.

Therefore, Theorem 22 can be viewed as an optimal investment model, and the
constant λ is the optimal long-term growth rate of the expected utility of wealth
with model uncertainty. Such asymptotic results on robust utility maximization
have been treated in [35] using the duality method and are related to “robust
large deviations” criteria to optimal long-term investment, that is, the investor
aims to maximize the portfolio’s growth rate exceeding some threshold C ∈ R

under the worst-case probability

sup
π∈Π̃

inf
u∈U

lim sup
T↑∞

1

T
lnPu

( 1
T

lnXπ
T ≥ C

)
.

6 Connection with classical expected utility max-

imization for long time horizons

We establish a link between the power robust forward process U (x, t) and the
long-time behaviour of the lower value function of the classical power robust
expected utility. For the latter, let [0, T ] be an arbitrary trading horizon and
we introduce the lower value function as follows

wT (x, v) = sup
π∈Π[0,T ]

inf
u∈U[0,T ]

EPu

[
(Xπ

T )
δ

δ
|Xπ

0 = x, V0 = v

]
, (x, v) ∈ R+ × R

d,

(67)
where the wealth process Xπ

s , s ∈ [0, T ], solving (5) with Xπ
0 = x, the stochastic

factor process Vs, s ∈ [0, T ], solving (2) with V0 = v, and u ∈ U[0,T ] means that
u belongs to U and is restricted to the time horizon [0, T ].

We recall that the optimal investment problem for the classical robust expected
utility has been considered in [10] via the stochastic control approach based
on BSDE, in [49] via the duality approach, and in [26] combining these two
methods.

29



Proposition 24 Let U (x, t) = xδ

δ
ey(Vt)−λt be the power robust forward perfor-

mance process as in (41). Then, there exists a constant L ∈ R, independent of
the initial states Xπ

0 = x and V0 = v, such that, for (x, v) ∈ R+ × R
d,

lim
T↑∞

wT (x, v)e
−λT−L

U(x, 0)
= 1.

Proof. Since the maxmin problem (67) is standard in the literature (see, for
example, [53]), we only demonstrate its main steps briefly. To this end, for each
π ∈ Π[0,T ] and u ∈ U[0,T ], we introduce the objective functional

wT (x, v, π, u) = EPu

[
(Xπ

T )
δ

δ
|Xπ

0 = x, V0 = v

]
.

We aim to find a saddle point (π∗, u∗) ∈ Π[0,T ] × U[0,T ] such that

wT (x, v, π, u
∗) ≤ wT (x, v, π

∗, u∗) ≤ wT (x, v, π
∗, u).

Then, it is clear that wT (x, v) = wT (x, v, π
∗, u∗). We claim that

wT (x, v) =
xδ

δ
eȲ0 , (68)

π∗
t = π∗(Vt, Z̄t), u∗

t = u∗(Vt, Z̄t), t ∈ [0, T ], (69)

with the mappings (π∗, u∗) given in (28) and (26), and (Ȳ , Z̄) being the unique
solution of the following BSDE

Ȳt =

∫ T

t

G(Vr , Z̄r)dr −

∫ T

t

(
Z̄r

)T
dWr , (70)

where the driver G is given in (22). The proof follows along similar arguments
as in Proposition 9 and Theorem 12, and thus omitted.

From Theorem 4.4 in [29], there exists a constant L ∈ R such that

lim
T↑∞

(Ȳ0 − λT − Y0) = L, (71)

where (Y, Z, λ) is the solution of ergodic BSDE (38). Finally, from (41), (68)
and (71) we have

lim
T↑∞

wT (x, v)e
−λT−L

U(x, 0)
= 1,

which completes the proof.

We have showed that the discounted classical power robust expected utility
converges to the power robust forward performance process as the investment
horizon tends to infinite. This result is obtained via the relationship between
BSDE and ergodic BSDE. Then it seems natural and interesting to consider the
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connection of the optimal strategies between these two investment problems. In
fact, from (42) we get that the optimal investment strategy to each scenario

α∗(t, ut) = ProjΠ(
θ(Vt) + Zt + ut

1− δ
),

where (Y, Z, λ) is the solution of ergodic BSDE (38). Similar arguments conclude
that for classical expected utility problem (67), the optimal investment strategy
has the form

α∗
T (t, ut) = ProjΠ(

θ(Vt) + Z̄t + ut

1− δ
),

where (Ȳ , Z̄) is the unique solution of BSDE (70). Since the projection operator
on a closed convex set is Lipschitz continuous, the convergence of α∗

T to α∗ boils
down to the convergence of

EP[

∫ T

0

|Zt − Z̄t|
2dt] → 0, as T → ∞. (72)

However, (72) is yet to be established. Hence, although we have established
a connection of the robust forward performance process with the correspond-
ing classical robust expected utility, it is still an open problem to prove the
convergence of the associated optimal trading strategies.

7 Logarithmic robust forward performance pro-

cesses with negative realization processes

In this section, we provide an example to show the advantage of our stochastic
differential approach to solve homothetic robust forward investment problems
compared with the classical saddle point argument. For simplicity of the calcu-
lations, we consider the following situation:

i) a single stock and single stochastic factor model (i.e., n = d = 1 in state
equations (1) and(2)).

ii) U = [0, 1], Π = [0, 1], the market price of the risk θ ∈ [−1, 0].

iii) a logarithmic robust forward performance process,

U(x, t) = lnx+ f(Vt, t)

with a quadratic form on the realization process γ in (11), i.e.,

γt,s(u) =

∫ s

t

1

2
|us|

2ds, (73)

which expresses the cumulative evaluation of the model Pu predicted by the
investor in [t, s]. Herein, since we consider negative realization processes, we
choose the parameter τ = −1 without loss of generality. Using similar arguments
to Theorem 12, we obtain the following results.
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Theorem 25 Let (Ỹt, Z̃t, λ̃) = (ỹ(Vt), z̃(Vt), λ̃), t ≥ 0, be the unique Markovian
solution of (38) with the generator

G̃(v, z) = max
π∈Π

min
u∈U

F̃ (v, z, π, u),

where F̃ (v, z, π, u) = − 1
2π

2 + πθ(v) + (π+ z)u− 1
2u

2. Then, the process U(x, t),
(x, t) ∈ R+ × [0,∞) , given by

U(x, t) = lnx+ ỹ(Vt)− λ̃t,

is a logarithmic robust forward performance process with realization process γ
given in (73) and parameter τ = −1. Moreover, the optimal portfolio weight

π̃∗, and the worst-case scenario strategy β̃∗ responding to each portfolio weight
π are given as follows

π̃∗
t = π̃∗(Vt, z̃(Vt)), β̃∗(t, πt) = β̃∗(z̃(Vt), πt),

where the mappings (π̃∗, β̃∗) have the form

π̃∗(v, z) =





θ(v) + 1, if 1
2 − z ≥ θ(v) + 1;

1
2 − z, if θ(v) ≤ 1

2 − z ≤ θ(v) + 1;
θ(v), if 1

2 − z ≤ θ(v),

and

β̃∗(z, π) =

{
1, if π + z ≤ 1

2 ;
0, otherwise.

It is easy to check that the saddle point for this forward investment problem
does not exist since F̃ is concave both in variables π and u. Therefore, the clas-
sical saddle point argument can not be applied directly, whereas our stochastic
differential game approach provides an alternative and efficient way to address
this problem.

8 Conclusion

This paper provides a stochastic differential game framework to construct a
class of forward performance processes with model uncertainty. In particular,
the homothetic robust forward process in factor form is represented in terms
of the Markovian solution of ergodic BSDE. The approach and results may
be extended in several directions. First, one may consider a general realization
process γ with parameter τ not necessarily zero. Second, it would be interesting
to prove the convergence of the finite time horizon optimal investment strategy
to its forward counterpart as time horizon becomes large. Both are left for the
future research.
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