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Abstract

The aim of this paper is to investigate the rebinding effect, a phenomenon describing a “short-time memory” which

can occur when projecting a Markov process onto a smaller state space. For guaranteeing a correct mapping by the

Markov State Model, we assume a fuzzy clustering in terms of membership functions, assigning degrees of

membership to each state. The macro states are represented by the membership functions and may be overlapping.

The magnitude of this overlap is a measure for the strength of the rebinding effect, caused by the projection and

stabilizing the system. A minimal bound for the rebinding effect included in a given system is computed as the

solution of an optimization problem. Based on membership functions chosen as a linear combination of Schur

vectors we are thus able to to compute the minimal rebinding effect for non-reversible processes.

1 Introduction

Markov processes are memoryless stochastic processes with applications in many different kinds of areas. They are

employed to describe molecular systems like protein folding6 or ligand-binding processes16. Such processes act on

high dimensional state spaces and additionally require simulations on rather long time-scales in order to observe rare

conformational changes. Consequently, a reduction of dimension is aimed at, which can be realized by a projection

onto a smaller state space. The reduced model should represent the correct long-time behaviour of the process, while

being less complex. The existence of metastable sets can be exploited to create such a “Markov State Model” 1, 5, 24.

A well-established solution is the fuzzy clustering algorithm PCCA+, which identifies metastable sets with the aid

of membership functions χ = XA, being a linear combination of eigenvectors19.
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When projecting a process onto a finite state space, it may lose its Markov property, more precisely it can include

short-time memory effects. Such memory effects were detected in the context of ligand-binding-systems, where in

certain configurations significantly increased binding affinities were observed17. They are explained by an additional

memory caused by the projection: short time after a ligand unbounds from its target, it is assumed to be still nearby

and thus rebinds with a high probability. Consequently, this short-time memory is denoted as rebinding effect.

This memory effect is strongly related to the overlap of the membership functions χ determining the clustering.

Hence, knowing them makes it easy to compute the actual rebinding effect caused by this projection. However, in

many cases the original process and the membership functions are not known. For instance, a finite process can be

constructed as the solution of a differential equation and just be interpreted as the projection of a larger process.

In order to identify possible memory effects included in that system, it is favorable to estimate the rebinding effect.

This can be achieved by solving an optimization problem, revealing a minimal bound: Given a clustered system, how

much rebinding is included at least?

The computation of the minimal rebinding effect included in a given kinetics has been accomplished for reversible

processes in 2014 by Weber and Fackeldey22. In this paper, the formulation of the corresponding optimization

problem is extended onto non-reversible processes. This is achieved by employing the framework of GenPCCA, a

recent modification of PCCA+ by Fackeldey and Weber9 from 2017, which is based on Schur vectors instead of

eigenvectors and includes non-reversible processes. This generalization is of particular interest since many real-world

processes are non-reversible10.

A significant application of the presented topic lies in the area of computational drug design. In order to treat

diseases, ligands are designed such that they bind to pathogenic target molecules. Improving the binding affinity is

one important goal in drug design. For a precise prediction of the binding affinity, possible rebinding effects need to

be considered, since they can influence the binding behaviour.

The article is organized as follows. In section 2, we introduce the physical and mathematical framework which

is necessary to describe the time-evolution of molecular systems and their projections onto finite spaces. For that

purpose, the concept of a real Schur decomposition plays an important role and different possible shapes of such a

decomposition will be analyzed. Afterwards, we describe the rebinding effect in the context of a receptor-ligand system

and set in relation to the choice of the projection. In section 4, we present an optimization problem providing a lower

bound for the rebinding effect included in a given molecular kinetics, which is valid for reversible and nonreversible

processes. Finally, we validate the results on some illustrative examples in section 5.
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2 Projection of a Molecular System

A molecular system consisting of N particles can be represented in a 6N -dimensional phase space Γ = Ω × R3N ,

including the position and momentum coordinates of all particles. Since conformational changes are of particular

interest, such a system is usually described by a continuous transfer operator acting on configuration space Ω, see e.g.

15, 20. However, instead of considering the continuous case, we start directly with a discretized version acting on an

m-dimensional state space E = {1, . . . ,m}, being a subset of the configuration space. This process is characterized by

a finite transition matrix P := P (τ) ∈ Rm×m and a stationary distribution π ∈ Rm, which is assumed to be unique.

The micro states will be clustered conveniently, such that the resulting macro states represent the metastable

conformations of the molecular system. For considering non-reversible processes, the Schur decomposition is of

particular importance. In the following, we briefly summarize the mathematical concepts for these two main topics.

2.1 Fuzzy Clustering

Let 1 = λ1 > |λ2| ≥ · · · ≥ |λn| be the dominant spectrum of the transition matrix P , i.e. the eigenvalues of

largest absolute value which are well-separated from the rest of the spectrum. Let X = {X1, . . . , Xn} be a matrix of

associated real orthogonal Schur vectors, i.e. vectors fulfilling PX = XΛ, where Λ is a real Schur decomposition. Then

Λ is of block-triagonal shape and has λ1, . . . , λn as eigenvalues. According to GenPCCA9, membership functions

χ1, . . . , χn : E → [0, 1] can be built as a linear combination

χ = XA

of the dominant Schur vectors with a regular transformation matrix A ∈ Rn×n. Let 〈·, ·〉π be the π-weighted L2 scalar

product, by using a Galerkin projection, this choice of membership functions yields a matrix representation

Pc(τ) = S−1T = 〈χ, χ〉−1
π 〈χ, P (τ)χ〉π (1)

with two stochastic matrices S and T . They are given by

T = D−1〈χ, P (τ)χ〉π = D−1ATΛA and

S = D−1〈χ, χ〉π = D−1ATA,

(2)
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where D = diag(w1, . . . , wn) is the diagonal matrix consisting of the statistical weights

wi = 〈χi,1〉π

of the conformations χi, i.e. the probabilities of the clustered process to be in the conformations in equilibrium. The

clustered process can according to (1) and (2) as well be represented by

Pc = A−1ΛA. (3)

The transition rate matrix Q is related to the transition matrix via exp(τQ) = P (τ). The projection of a discretized

transition rate matrix Q ∈ Rm×m works similar to the above procedure and yields a matrix representation

Qc = A−1ΞA = 〈χ, χ〉−1
π 〈χ,Qχ〉π (4)

with the real Schur decomposition Ξ corresponding to the n dominant eigenvalues 0 = ξ1, ξ2 . . . , ξn of Q and A ∈ Rn×n

the transformation matrix obtained by GenPCCA9, providing an optimal solution. The eigenvalues of the transition

matrix and the transition rate matrix are related via

exp(ξi) = λi. (5)

The Schur decomposition of a reversible process is equal to its spectral decomposition. In that case, the Schur

matrices Λ,Ξ are diagonal matrices consisting of the real eigenvalues 1 = λ1 > · · · ≥ λn of P and 0 = ξ1 > · · · ≥ ξn

of Q. In contrast to the well-known clustering algorithm PCCA+7 providing a solution only for reversible processes,

the generalized version GenPCCA includes reversible as well as non-reversible processes. Apart from the fact that

GenPCCA takes Schur vectors instead of eigenvectors as input, the algorithm remains the same.

2.2 Reversibility – Non-reversibility

A Markov chain given by the transition matrix P ∈ Rm×m is reversible, if detailed balance is fulfilled, i.e. if the matrix

DP is symmetric. In this case, the diagonal matrix D = diag(π1, . . . , πm) consists of the entries of the stationary

distribution π = (π1 . . . πm)T ∈ Rm, i.e. π is a vector which meets πTP = πT .
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In contrast to most of the existing literature, we employ a real Schur decomposition instead of the spectral

decomposition for the clustering, because we are interested in an investigation including reversible as well as non-

reversible processes. In order to be feasible, the above presented algorithm requires real and orthogonal vectors

spanning an invariant subspace. Even though this procedure works for reversible processes using a set of dominant

eigenvectors, the requirements are not necessarily fulfilled for non-reversible processes. Some problems that can occur:

• P has real eigenvalues, but non-orthogonal eigenvectors,

• P is non-diagonalizable,

• P has complex eigenvalues, leading to complex eigenvectors.

Since reversibility of a process cannot be presumed for real-world processes (e.g. measuring errors), we employ the

generalized approach in terms of a real Schur decomposition instead of the spectral decomposition. This approach

avoids the aforementioned problems: the real Schur decomposition exists for all transition matrices P and yields a

set of real and orthogonal Schur vectors. We will be able to exploit the structure of the real Schur decomposition

Λ =



A1 ∗ · · · ∗

0 A2 · · · ∗
...

...
. . .

...

0 0 · · · An


.

induced by the spectrum of P . We obtain a block-triagonal shape with blocks Ai s.t. each 1 × 1-block corresponds

to a real eigenvalue and each 2× 2-block corresponds to a pair of complex conjugate eigenvalues.

Even though considering a decomposition with ordered blocks, e.g. according to 3, we have to bear in mind that

the real Schur decomposition is not unique. This has been discussed in 25.

3 Rebinding Effect

The projection of a molecular system on a smaller state space can lead to a short-time memory included in the

clustered process. This phenomena can occur in all kinds of processes when projecting them. We introduce it on an

easy example and show how it can be measured employing the mathematical tools from section 2.

3.1 Mathematical Model of Receptor-Ligand System

The binding behaviour of a simple receptor-ligand system is formalized as follows. A ligand (L) can bind to a receptor

(R) and form a receptor-ligand complex (LR) which can dissociate again into its original components. This process
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can be represented by a reaction equation

L + R
kon


koff

LR. (6)

Being a process in chemical equilibrium, the law of mass action states that the ratio between the concentration of

reactants and products is constant. The corresponding dissociation constant kd is given by

kd =
koff

kon
=

[L] · [R]

[LR]
,

where [L] represents the concentration of unbound ligands, [R] the concentration of unoccupied receptors and [LR]

the concentration of receptor-ligand complexes, respectively. This constant is used to describe the binding affinity

between a ligand and a receptor, that is how strongly the ligand can bind to his particular receptor. If the dissociation

constant is small, then there are relatively many complexes in comparison to unbound molecules, and for this reason,

the binding affinity between the ligand and the receptor is high. The association constant ka is the inverse of the

dissociation constant

ka =
kon

koff
=

[LR]

[L] · [R]
.

There are different factors which can influence the binding affinity of a process. It depends on the nature of the

constituent molecules, like their shape, size and possible charge. The binding affinity of a particular ligand-protein

interaction can also significantly change with solution conditions, e.g. temperature, pH or salt concentration. For

instance, a higher temperature leads to a faster movement of the molecules and therefore increases the probability

of binding events. In general, high-affinity binding results in a higher degree of occupancy of the receptors than it is

the case for low-affinity binding; the residence time does not correlate13.

Starting from the reaction equation (6), we claim that a ligand can be found in two different macro states:

“unbound” (L) or “bound” (LR). Then the probabilities of the ligand to be in one of these states are described by

the probability vector xT = 1
s ([L], [LR]), where s = [L] + [LR] = const. is the normalization constant. This leads to

an ordinary differential equation

ẋT = xTQc.
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The matrix Qc consists of the rates of reaction,

Qc =

−ka[R] ka[R]

kd −kd

 , (7)

where ka and kd are the association and dissociation constants. It corresponds to the transition rate matrix of a

Markov chain, that means it describes a memoryless process.

(a) “unbound” (b) “bound” (c) Spatial constellation

after dissociation.

(d) Spatial arrangement

at arbitrary time.

Figure 1: (a) & (b): Two possible macro states of a ligand-binding system. (c)& (d): Rebinding effect: these two
configurations represent the same macro state (“unbound”) and are not distinguishable in model (7), even though
different binding probabilities are expected by the receptor-ligand-distance on the microscopic scale.
The two possible macro states for a ligand-binding-system consisting of one receptor and one ligand are depicted

in figure 1 (a) & (b). We notice that the spatial arrangement of the receptor and the ligand in the unbound state is

not included in the above model. Therefore, we cannot distinguish if, at a given time, the receptor and the ligand

are close to each other or not.

By switching from the macroscopic to the microscopic point of view, we find out that the stochastic process

modelled by (7) is actually not memoryless. That is due to the spatial arrangement of the system after a receptor-

ligand-complex dissociated. Shortly after such a dissociation, it is more likely that the corresponding receptor and

ligand will bind again, since they are still close to each other. Such a binding shortly after a dissociation is called

a rebinding event. The memory effect which thereby occurs is called rebinding effect. On large timescales, this

effect diminishes since the favorable spatial situation is not given anymore and the system is more likely to be rather

mixed again. Thus, Markovianity can be spoiled by the rebinding effect, as depicted in figure 1 (c) & (d).

In order to measure the magnitude of the rebinding effect, we interpret model (7) as the projection of a larger

system. A crisp clustering does not yield a correct model and should be replaced by the fuzzy approach. Accord-

ingly, we consider the macro states “unbound” and “bound” as overlapping states. This allows a micro state to be

in the “unbound” macro state with a high degree of membership to the “bound” state, for instance shortly after a
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dissociation, which could be interpreted as an “almost bound” state. Thus, if these states are strongly overlapping,

then a high rebinding effect can be expected. In the next sections, we quantify the rebinding effect by its relation to

the magnitude of overlap of the conformations.

The rebinding effect and its occurence in natural science has been described and analyzed by several authors12, 17.

In chemistry, it has been discussed in the context of clustered receptors and clustered ligands, e.g. multivalent

systems4, 11, 18. A mathematical investigation of the rebinding effect has been realized by Weber et al21, 22.

3.2 Measuring the Rebinding Effect

We analyze the matrix representation Pc = S−1T of the Markov State Model. The stochastic matrix T represents

the dynamical behaviour ot the process, though the Markov State Model differs from T by

SPc(τ) = T.

This “deviation” of the Markov State Model Pc(τ) from the coupling matrix T is caused by the overlap of the

membership functions, included in the matrix S. If S is equal to the identity matrix, then the Markov State Model

is solely determined by T . If S is close to the identity matrix, then Pc(τ) is close to T and not strongly influenced by

S. The more the overlap matrix S differs from the identity matrix, the more the Markov State Model Pc(τ) differs

from the transition matrix T . This is due to the rebinding events. The larger this deviation, the larger the occurring

memory effects. Thus, the rebinding effect, a memory effect provoked by a projection, can be measured by the matrix

S. The more the membership functions are overlapping, the more the matrix S deviates from the identity matrix

and thereby includes stronger memory effects.

Thus, the rebinding effect can be measured by the trace of the matrix S, being the sum of its diagonal elements.

It can lie between 0, implying very much rebinding, and n, implying no rebinding. This approach to measure the

rebinding effect has been introduced by Weber and Fackeldey22 and will be used in the next section to detect a

minimal bound for the rebinding effect included in a projected system.

4 Optimization Problem

Commonly, we are mainly concerned to compute the projection of a large process and, of particular interest, to

analyze how such a projection introduces memory effects in the clustered process. In most of the cases though, we

do not know the continuous transfer operator or infinitesimal generator describing a system. Instead, we are often

given a finite matrix, for instance stemming from experimental data or as the solution of a differential equation. In
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either case, such a finite matrix can be interpreted as a projection, since it is basically a model for an originally

continuous process, describing the movement of molecules in R3.

Assume we are in the situation that we only know the projected process Qc. Nevertheless, we would like to know

how much rebinding is included in that system, originating from the unknown projection. Since we don’t know on

which membership functions the projection is based on, we can only compute an estimation for that. Considering

all possible membership functions, how much rebinding is included at least in the system? In other words, how

strongly overlapping are the membership functions at least?

In 22 it is shown that the overlap matrix S from (1) provides a measure for the quantity of the rebinding effect. In

particular, being close to the identity matrix implies a low rebinding, while high outer diagonal elements of S result

in a high rebinding effect. In order to reveal the actual impact of the rebinding effect, we set it in relation to the

stability of the clustered system Qc. Afterwards, we formulate an optimization problem in order to deduce a lower

bound for the rebinding effect included in a given system. For the sake of simplicity, we assume in the further course

that the transition rates can be measured experimentally. Accordingly, we examine the given transition rate matrix

Qc of a process.

4.1 Relevance of the Rebinding Effect

If the eigenvalues ξi of Qc are close to 0, then the macro states are very stable in the sense that the probability to

stay inside of such a state is close to 1. The trace of Qc corresponds to the sum of the dominant eigenvalues of Q.

Thus, we can measure the stability of the molecular system by the quantity F := −trace(Qc). If F is close to 0, then

the system is very stable, while it is less stable for a high value of F . We want to set the stability F in relation to

the measure of the rebinding effect, the overlap matrix S.

Let Qc be the projected infinitesimal generator of a process and Pc(τ) the corresponding projected transfer operator

with the matrix representation Pc(τ) = S−1T , then according to 22, the quantity F := −trace(Qc) can be measured

by

F = τ−1(log(det(S))− log(det(T ))). (8)

The coupling matrix T describes the stochastic movement of the process and in particular, encodes the metastable

behaviour between the conformations. Large diagonal elements result in a strong metastability and a slow process,

while higher outer diagonal elements lead to faster transitions between the metastable sets. On the other hand,
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the overlap matrix S merely includes informations about the crispness of the membership functions, implying the

magnitude of the rebinding effect.

Equation (8) shows that both determinants of S and T influence the stability of the system, though in opposite

directions. If det(T ) is close to 1, then F is low and consequently the process is rather stable. If det(T ) is small, then

the process is rather unstable, since F is high. A high determinant of T leads to a high metastability of the system

and thus describes a slower process, while a low determinant implies higher outer diagonal elements of T and thus,

makes the process faster.

In contrast, if det(S) is close to 1, then the first term in (8) vanishes and hence, S barely contributes to the

stability, which is instead mainly determined by T . On the other hand, if det(S) is close to 0, the system becomes

more stable. This means that a higher overlap of the membership functions, and thus a strong rebinding effect,

leads to a more stable process.

At first sight, it sounds plausible to equalize the stability of a system to its slowness. A slow system has rare

transitions and thereby implies a stable system. However, a stable system does not necessarily imply a slow system.

Instead, a rather fast system can gain a certain stability by the rebinding effect. The “fast” system has frequent

transitions between its metastable sets. However, in case of a strong rebinding, the quitting of a metastable set can

with high probability be followed by an immediate return to the previous state. Thus, the rapidness of the process

can to a certain extent be compensated by the rebinding effect. Concluding, we can differentiate between two factors

leading to a high stability:

• det(T ) high: The conformations have a high metastability and are well-separated. Therefore, transitions between

the metastable sets are rare and the process is slow.

• det(S) low: A high rebinding effect makes the process more stable, since transitions out of a metastable set can

be compensated by a fast transition back. In particular, a rapidly mixing process, det(T )� 1, can be stabilized

by the rebinding effect.

A stable system is naturally reached by a strongly metastable matrix T , though can likewise be obtained for a weaker

metastable matrix T , if much rebinding is included.

4.2 Lower Bound for the Rebinding Effect

In order to determine the stability of a system, it is of interest to know how much rebinding is included. We compute a

lower bound to find out how much rebinding we are guaranteed at least. In order to derive an optimization problem,

let us first remember how S is determined. The transition matrix P ∈ Rm×m is projected onto a finite-dimensional
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state space via membership functions χ as a linear combination of the dominant Schur vectors with a regular matrix

A. The choice of the matrix A determines S and in particular the magnitude of rebinding. In order to estimate the

rebinding effect included in a system, we take into consideration all feasible transformation matrices A, see19.

Similar to22, we formulate an optimization problem to reveal which choice of A results in the lowest rebinding

effect, measured by an optimal matrix Sopt. This problem is equivalent to finding the largest possible determinant

of S.

We are interested in the rebinding effect included in the clustered system Qc. If we know the employed membership

functions χ or the transformation matrix A, then we can easily compute the real rebinding effect which is encoded

in the overlap matrix S = D−1ATA.

Given a finite matrix Qc and a Schur decomposition Ξ with the corresponding Schur vectors as columns of the matrix

X, the starting point to construct the optimization problem is given by

QcX = XΞ. (9)

Then Ξ is of block-triagonal shape, according to section 2. Since we assume that the dominant eigenvalue λ1 = 1 is

unique, the first column of X corresponds to the first Schur vector X1 := (1, . . . , 1)T . By (4), we see that A−1 is a

matrix of Schur vectors for the Schur decomposition Ξ as well.

Assuming a reversible process, then the Schur decomposition is equal to the spectral decomposition and results in

a diagonal eigenvalue matrix Ξ. Therefore the columns of A−1 consist of multiples of the eigenvectors Xj , yielding

A−1 =


1

... α2X2 · · · αnXn

1

 (10)

with α1 = 1 and α2, . . . , αn ∈ R. However, the diagonal shape of Ξ is not guaranteed for a non-reversible process.

Instead, it may contain 2×2-blocks, which have to be considered. For the case of such a 2×2-block, the two associated

Schur vectors are not linear independent and thus cannot be simply built as a multiple of the corresponding Schur

vectors from X.

We therefore take a different path, by employing an optimization procedure. To keep things simple, we consider a
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Schur decomposition with Schur Matrix Ξ ∈ R3×3

Ξ =

0 0 0

0 ∗ ♠
0 ♣ ∗


, (11)

where the ∗ denote non-zero entries (the real parts of the eigenvalues of Qc) and ♣ is non-zero only in the case of

complex eigenvalues. ♣ and ♠ equal zero in the reversible case. Note, that the first row of Ξ is always zero in Markov

processes. Given the matrix X of Schur vectors associated to Ξ, we aim to reveal the necessary structure of A−1 such

that

AQcA
−1 = Ξ.

Because the membership vectors χ should sum up to one, the first column of A−1 consists only of ones, i.e.

A−1 =
1 ∗ ∗
1 ∗ ∗
1 ∗ ∗


.

The fact, that S is a stochastic matrix is leads to a further side constraint

Sij ≥ 0 ∀i, j . (12)

This means, that (ATA)i,j ≥ 0 ∀i, j.

Let e1 = (1 0 0)T and e = (1 1 1)T we can summarize these constraints in the following set

C = {A ∈ R3×3|AQcA−1 = Ξ and A−1e1 = e and ATA ≥ 0}.

Based on these relations, we can formulate an optimization problem. We know that a determinant of S close to 1

results in a low rebinding effect. Thus, in order to find a lower bound, we try to maximize det(S), or equivalently

minimize |det(S) − 1|, since S is a stochastic matrix having 1 as largest possible determinant. Then the objective

function of the optimization problem is given by

minA∈C |det(S)− 1| , (13)
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where several side constraints have to be included, which lead to a stochastic matrix S.

A feasible solution of this optimization problem is a matrix S fullfilling all side contraints, but not necessarily being

an optimum. Any feasible solution of optimization problem (13) will be called a real overlap matrix Sreal, while an

actual optimum will be called an optimal overlap matrix Sopt. Clearly, we get det(Sreal) ≤ det(Sopt) ≤ 1.

4.3 Interpretation

The real rebinding effect is high if the determinant of Sreal is low. Thus, a small determinant of Sopt implies a high

rebinding effect, while a large determinant of Sopt gives us only few information about the actual quantity of the

rebinding effect, it could be either large or small. Unfortunately, a reversible process Qc yields a trivial solution of

optimization problem (13) and therefore, provides us with no information, as it has been shown in22. That means

that for every such process, it is possible to find a transformation matrix A which causes no rebinding. Consequently,

a nontrivial estimation for the rebinding effect can be obtained only for a nonreversible system Qc. In particular,

only systems with at least three states are of interest to examine, since Qc is reversible for n = 2. For instance, the

example from section 3 describing a receptor-ligand system on two macro states “bound” and “unbound” yields the

trivial solution.

Optimization problem (13) is a generalized version of the minimization problem for reversible processes from22.

Due to the block-triagonal shape of Ξ, it requires a case distinction of the different Schur blocks. However, it includes

reversible as well as non-reversible processes. For a reversible system, where the Schur decomposition consists of 1×1-

blocks corresponding to the dominant eigenvalues, they coincide. Thus, with this generalization, we can compute the

minimal rebinding effect for any system, independent of the reversibility or non-reversibility of the original process.

The quality of this estimation will be evaluated in the next chapter by means of an exemplary reversible process,

which will be slightly perturbed to non-reversibility by introducing such a 2× 2-block. The solution of optimization

problem (13) will be computed in the following for some illustrative examples.

5 Numerical Examples

The results from section 4 will be verified analyzing two illustrative examples: an artificial process indicating the role

of the non-reversibility towards the minimal rebinding effect and a ‘real-world’ process describing a chemical reaction.
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5.1 Artificial Example

We consider a system given by the Schur decomposition

Λ =



1 0 0 0 0

0 0.99 ε 0 0

0 −γ 0.98 + δ 0 0

0 0 0 0.005 0

0 0 0 0 0.001


, (14)

with ε, γ, δ > 0. The corresponding transition matrix is computed by P = XΛX−1, with a set of Schur vectors X. If

Λ is a diagonal matrix, then this equation represents the eigenvalue problem of a reversible process P . By introducing

non-zero values for ε, γ and δ, the system gets non-reversible. This example is of particular interest, since we examine

different systems, yet having the same Schur vectors and very similar Schur decompositions. However, these small

changes in the Schur decomposition lead to different results when it comes to computing the minimal rebinding effect.

Having three dominant eigenvalues, the matrix (14) describes a system on three metastable sets. Accordingly,

we examine different clustering on a three-dimensional state space. For that aim, we employ several transformation

matrices A ∈ R3×3, turning the dominant Schur vectors X ∈ R5×3 into membership functions χ ∈ R5×3. We generate

200 random feasible transformation matrices A and examine the rebinding effect caused by this projection. Finally,

we compare this real rebinding effect with the minimal rebinding effect included in the clustered system, as the

solution of optimization problem (13).

0 0.01 0.02 0.03
0

0.2

0.4

0.6

0.8

1

(a) Minimal and real rebinding

effect compared to the degree of

non-reversibility of Qc.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

(b) The minimal rebinding effect

compared to the real rebinding

effect included in Qc.

Figure 2: The system P is clustered with 200 randomly generated transformation matrices A for the parameters
ε = δ = γ = 0.
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The degree of non-reversibility can be measured by ‖DQc −QTc D‖1. We investigate the minimal rebinding effect

det(Sopt) depending on the degree of non-reversibility of the clustered system Qc. For all examined systems, we

observe a considerable correlation between the lower bound of the rebinding effect and the non-reversibility of the

system: the more non-reversible the system, the larger the minimal rebinding effect. For the reversible case, where

all outer-diagonal elements in (14) are 0, this correlation is very strong, see figure 2 (a), though it can be a rather

good or a rather bad estimation, see figure 2 (b).

Inserting a small outer-diagonal perturbation ε = 0.004 leads to a non-reversible process. For different clusterings,

the minimal rebinding effect behaves similar to the reversible case, yet being slightly more uneven, see figure 3.
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(a) Minimal and real rebinding

effect compared to the degree of

non-reversibility of Qc.
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(b) The minimal rebinding effect

compared to the real rebinding

effect included in Qc.

Figure 3: The system P is clustered with 200 randomly generated transformation matrices A for the parameters
ε = 0.004, δ = γ = 0.

A further perturbation δ = 0.01 increases the non-reversibility of the system and leads to a non-diagonalizable

matrix P . The minimal rebinding effect for the clusterings is presented in figure 4.
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(a) Minimal and real rebinding

effect compared to the degree of

non-reversibility of Qc.
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(b) Minimal rebinding effect com-

pared to the real rebinding effect

included in Qc.

Figure 4: The system P is clustered with 200 randomly generated transformation matrices A for the parameters
ε = 0.004, δ = 0.01, γ = 0.
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The general tendency of the results is similar for all tested parameters: while the quality of the estimation can

be either good or bad, there is a clearly visible correlation between the minimal rebinding effect det(Sopt) and the

non-reversibility of Qc. However, this correlation seems to diminish the more we ‘perturb’ the original process from

reversibility. This weakened correlation implies that for originally non-reversible systems, the quality of the estimation

is less predictable.

5.2 Electron Densities

The occurrence of some kind of rebinding effect can be observed in all different types of processes when projecting

them. The actual meaning of this effect has to be interpreted for each system individually. We present a process

describing the change of electron densities during a pericyclic chemical reaction, examined in 8, 26.

Formic acid is a molecule consisting of one carbon atom C, two oxygen atoms O and two hydrogen atoms H. In such

H

O

C

H

O

H

O

C

H

O

O

C

H

O

H

O

H

C

O

O

Figure 5: Chemical reaction in formic acid dimer.

a system, reactions between the individual molecules take place, building hydrogen-bonded dimers, as depicted in

figure 5. An H-atom which is attached to an O-atom moves to the O-atom of another molecule and vice versa. These

reactions are caused by double proton tunneling14. During that process, the electron density changes accordingly. The

formic acid dimer cannot satisfactorily be described by one single Lewis formula. The two forms presented in figure

5 are mesomeric formulas of this dimer. Thus, it is expected that the separation between these two types cannot be

strict and the rebinding effect should be relevant. This process can be represented by a reversible transition matrix

P consisting of the time-dependent electron densities π(t), as described by8. Clustering it into four metastable sets
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using GenPCCA and transforming it into a transition rate matrix yields

Qc =



−2.0040 1.6859 0.1490 0.1690

1.6192 −2.0010 0.1724 0.2095

0.1451 0.1747 −1.9548 1.6350

0.1632 0.2106 1.6217 −1.9955


.

The membership functions of this clustering are represented depending on the angle θ in figure 6. We notice that

0 90 180 270 360

0

0.2

0.4

0.6

0.8

1

O C O O C O

Figure 6: Membership functions obtained by GenPCCA.

the four metastable conformations correspond to the angular regions of the O-atoms. That means that high electron

densities are detected around the O-atoms, which is plausible since the H-atoms tend to be attached to an O-atom.

Even though clustered with GenPCCA, having the objective of maximizing the crispness, we identify rather strongly

overlapping membership functions in figure 6 and expect a high rebinding effect. However, solving optimization

problem (13) for Qc yields a lower bound

det(Sopt) = 1,

providing us with no information, which can be explained by the reversibility of the clustered system, observed by

‖DQc−QTc D‖1 = 0. Knowing the membership functions χ and the stationary distribution π of the original process,

we can compute the real rebinding effect as

det(Sreal) = det(D−1〈χ, χ〉π) = 0.2925,

corresponding to a strong overlap of the membership functions. Rebinding in this context can be interpreted similar

to the rebinding in receptor-ligand-systems: Shortly after a H-atom unbinds from an O-atom moving forward to
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Metastable subset 1 2 3 4

Statistical weight 0.2406 0.2556 0.2520 0.2518

Metastability T (τ1) 0.5811 0.5827 0.5884 0.5815

Metastability Pc(τ1) 0.7077 0.7084 0.7135 0.7082

Metastability T (τ2) 0.7571 0.7577 0.7622 0.7577

Metastability Pc(τ2) 0.9980 0.9980 0.9980 0.9980

Table 1: Influence of rebinding to the stability of Pc for different lag-times τ1, τ2.

the O-atom of a different molecule, it is still spatially close and attracted to its previous O-atom and therefore can

rebind to it. That is one factor contributing to the stability of the four conformations. The quantitative influence of

the rebinding effect on the stability of the clustered system is visualized in figure 7 and 8 for two different lag-times

τ1 = 0.2 and τ2 = 0.001. The metastability of the coupling matrix T is enhanced by the significant overlap of the

membership functions, yielding a strongly metastable transition matrix Pc = S−1T . This confirms the result from

section 3: the rebinding effect stabilizes a system by “compensating” a rather weak metastability of the conformations.
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matrix T .
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(b) Strongly metastable matrix

Pc = S−1T .

Figure 7: Coupling matrix and projected transition matrix for a lag-time τ1 = 0.2.
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(b) Strongly metastable matrix

Pc = S−1T .

Figure 8: Coupling matrix and projected transition matrix for a small lag-time τ2 = 10−3.
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5.3 An almost reversible process

Only the matrix Qc is needed to estimate the minimal rebinding effect. If this matrix is reversible, then the minimal

rebinding effect cannot be effectively provided, as the previous section 5.2 has shown. Thus, non-reversibility of Qc

is the crucial prerequisite for the estimation of the rebinding effect which has also been demonstrated in Sec. 5.1.

There are examples where the detailed process is (almost) reversible, but the projection Qc is not. Such an example

will be discussed now.

Figure 9: From the invariant density of the manipulated SQRA-process, one can compute a free energy landscape
(taking the negative logarithm of the entries of the invariant density vector). One can clearly see, that this energy
landscape is tilted to the right lower corner of the state space.

We consider an invariant density with 6 Gaussians which are arranged in a circle. The domain is then decomposed

into 30 × 30 boxes (grid). In each center point pi of the 900 Boxes {Bi}i=1,...,900 we evauated the corresponding

invariant density πi. The transition rates qij of the transition matrix Q ∈ R900×900 were computed according to the

square root approximation 23, i.e.

qij =

√
πj
πi

for neighbouring boxes Bi and Bj . We remark that there also exist other methods to assemble the rate matrix Q,

for instance the milestoning method 24, where not the full state space but only the part with the metastabilities is

discretized. In order to provide a non-reversible process, all transitions which go from a box with a smaller index

to a box with a higher index are multiplied with a factor 1.2. Using the GenPCCA method the 900× 900 matrix is
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projected onto a 3× 3-matrix Qc. The resulting projection is:

Qc =


−0.0263 0.0219 0.0044

0.0025 −0.0174 0.0149

0.0022 0.0195 −0.0217

 .

Based on the results of GenPPCA, with membership functions χ = XA, the real rebinding effect is given by

det(Sreal) = 0.0031. In order to estimate this effect from the matrix Qc, we first compute the eigenvalues of Qc which

are real valued. Thus, the pattern of the Schur matrix Ξ depends on our decision whether the original process is

reversible or not. If we assume, that the original process is non-reversible (which is indeed the case), then only ♣ in

(11) is zero, otherwise, ♣ and ♠ are supposed to be zero.

In order to maximize the determinant of the matrix S with constraints A ∈ C, the global optimization problem

has been solved by a multi-start ansatz (500 starts) and with a quadratic penalty function approach.

In the non-reversible setting we find an optimal linear transformation matrix A leading to a rebinding effect of

det(Sopt) = 0.7446. The original process Q is almost reversible. Assuming a reversible original process further restricts

the set C of feasible transformation matrices, the estimate becomes “better” (lower determinant). In this case, the

optimal linear transformation matrix A leads to an estimated rebinding effect of det(Sopt) = 0.3179. In both cases,

the correct pattern of Ξ with the eigenvalues of Qc on its diagonal has been revealed. In the non-reversible case

we get ♠ = 0.0036 (the true value is 0.0001, we overestimated the non-reversibility of the original process). In the

reversible case we get by construction ♠ = 0. Thus, the knowledge about the reversibility or non-reversibility of the

original process can improve the estimate of the rebinding effect a lot. In other words, computing the minimal possible

rebinding effect of non-reversible processes provides just a rough estimate as Sec. 5.2 and Sec. 5.3 have demonstrated.

6 Conclusion

In this paper, two recent research topics were combined by extending the computation of a lower bound for the

rebinding effect onto non-reversible processes. The generalized fuzzy clustering algorithm GenPCCA has been

employed to obtain the optimal membership functions as a linear combination of the dominant Schur vectors. The

overlap of the membership functions is crucial for a correct mapping, though influences the observed stability of the

system. The more overlap, the more stable the macro states appear to be.

This phenomenon is denoted as rebinding effect because of its occurrence in receptor-ligand-systems, where

this ‘spatial memory’ leads to an increased probability for a fast rebinding after the dissociation of a receptor-

ligand-complex. Under the assumption of a fuzzy clustering χ = XA, the minimal rebinding effect included in
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Figure 10: Left: One of the three membership functions obtained by GenPCCA applied to the original process. Right:
Applying the optimized transformation matrix (the result of the optimization problem) to the original Schur vectors
also leads to a partition of unity set of membership functions χopt. The shape of these functions are similar to those
of the original process, but they are not feasible membership functions anymore. The plotted function has values
between −0.8735 and 1.4020 and has a similar shape compared to the left one.

a given kinetics has been computed as the solution of an optimization problem, considering reversible as well as

non-reversible processes by using Schur vectors X. This optimization problem has been tested for some numerical

examples, showing that the quality of the estimation can be good or bad, yet becomes less predictable for large

degrees of non-reversibility of Qc.

Knowing the rebinding effect of a system can be of particular relevance for applications like computational drug

design, where it is essential to correctly predict binding affinities in order to evaluate the expected efficiency of a newly

designed drug. Since many real-world processes are non-reversible, it was important to add this case to the already

existing optimization problem for reversible processes. This extension yields an estimation for the rebinding effect

of a clustered system, without the necessity to know if the original process was actually reversible or non-reversible.

In this paper, the rebinding effect has been tackled from a rather theoretical perspective. For further research,

it could be of interest to combine and extend the obtained results with the outcomes from molecular dynamics

simulations.

A first approach towards this method can be found in 2. However this article now, contains substantial changes.
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