
Graph pattern detection:
Hardness for all induced patterns and faster non-induced cycles

Mina Dalirrooyfard, Thuy Duong Vuong and Virginia Vassilevska Williams∗

Abstract

We consider the pattern detection problem in graphs: given a constant size pattern graph H and a
host graph G, determine whether G contains a subgraph isomorphic to H . We present the following new
improved upper and lower bounds:

• We prove that if a pattern H contains a k-clique subgraph, then detecting whether an n node host
graph contains a not necessarily induced copy ofH requires at least the time for detecting whether
an n node graph contains a k-clique. The previous result of this nature required that H contains a
k-clique which is disjoint from all other k-cliques of H .

• We show that if the famous Hadwiger conjecture from graph theory is true, then detecting whether
an n node host graph contains a not necessarily induced copy of a pattern with chromatic number
t requires at least the time for detecting whether an n node graph contains a t-clique. This implies
that: (1) under Hadwiger’s conjecture for every k-node pattern H , finding an induced copy of H
requires at least the time of

√
k-clique detection and size ω(n

√
k/4) for any constant depth circuit,

and (2) unconditionally, detecting an induced copy of a random G(k, p) pattern w.h.p. requires at
least the time of Θ(k/ log k)-clique detection, and hence also at least size nΩ(k/ log k) for circuits
of constant depth.

• We show that for every k, there exists a k-node pattern that contains a k− 1-clique and that can be
detected as an induced subgraph in n node graphs in the best known running time for k−1-Clique
detection. Previously such a result was only known for infinitely many k.

• Finally, we consider the case when the pattern is a directed cycle on k nodes, and we would like
to detect whether a directed m-edge graph G contains a k-Cycle as a not necessarily induced
subgraph. We resolve a 14 year old conjecture of [Yuster-Zwick SODA’04] on the complexity of
k-Cycle detection by giving a tight analysis of their k-Cycle algorithm. Our analysis improves the
best bounds for k-Cycle detection in directed graphs, for all k > 5.

∗minad@mit.edu, dvuong@mit.edu, virgi@mit.edu, MIT EECS and CSAIL

ar
X

iv
:1

90
4.

03
74

1v
1

 [
cs

.C
C

]
 7

 A
pr

 2
01

9

1 Introduction

One of the most fundamental graph algorithmic problems is Subgraph Isomorphism: given two graphs
G = (V,E) and H = (VH , EH), determine whether G contains a subgraph isomorphic to H . While the
general problem is NP-complete, many applications (e.g. from biology [2, 34]) only need algorithms for the
special case in which H is a small graph pattern, of constant size k, while the host graph G is large. This
graph pattern detection problem is easily in polynomial time: if G has n vertices, the brute-force algorithm
solves the problem in O(nk) time, for any H .

Two versions of the Subgraph Isomorphism problems are typically considered. The first is the in-
duced version in which one seeks an injective mapping f : VH 7→ V so that (u, v) ∈ EH if and only
if (f(u), f(v)) ∈ E. The second is the not necessarily induced version where one seeks an injective map-
ping f : VH 7→ V so that if (u, v) ∈ EH then (f(u), f(v)) ∈ E (however, if (u, v) /∈ EH , (f(u), f(v))
may or may not be an edge). It is not hard to show (e.g. via color-coding) that when k is a constant, any
algorithm for the induced version can be used to solve the not necessarily induced one (for the same pattern)
in asymptotically the same time, up to logarithmic factors.

This paper considers two settings of the graph pattern detection problem: (1) Finding induced patterns
of constant size k in dense n-node undirected graphs, where the runtime is measured as a function of n, and
(2) Finding not-necessarily induced patterns in sparse m-edge directed graphs; here we focus on k-Cycle
patterns, a well-studied and important case.

1.1 Hardness
A standard generalization of a result of Nešetril and Poljak [32] shows that the induced subgraph iso-

morphism problem for any k-node pattern H in an n-node host graph can be reduced in O(k2n2) time to
the k-Clique (or induced k-Independent Set (IS)) detection problem in kn-node graphs. Thus, for constant
k, k-Clique and k-IS are the hardest patterns to detect.

Following Itai and Rodeh [21], Nešetril and Poljak [32] showed that a k-Clique (and hence any induced
or not-necessarily induced k-node pattern) can be detected in an n node graph G asymptotically in time
C(n, k) := M(nbk/3c, ndk/3e, nd(k−1)/3e), where M(a, b, c) is the fastest known runtime for multiplying
an a × b by a b × c matrix. A simple bound for M(a, b, c) is M(a, b, c) ≤ abc/min{a, b, c}3−ω where
ω < 2.373 is the exponent of square matrix multiplication [42, 27], but faster algorithms are known (e.g. Le
Gall and Urrutia [18]). In particular, C(n, k) ≤ O(nωk/3) when k is divisible by 3.

The C(n, k) runtime for k-Clique detection has had no improvements in more than 40 years. Because of
this, several papers have hypothesized that the runtime might be optimal for k-Cliques (and k-Independent
Sets) (e.g. [1, 9, 28]).

Meanwhile, for some k-node patternsH that are not Cliques or Independent Sets, specialized algorithms
have been developed that are faster than the C(n, k) runtime for k-Clique. For instance, if H is a 3-node
pattern that is not a triangle or an independent set, it can be detected in G in linear time, much faster than
the C(n, 3) = O(nω) time for 3-Clique/triangle. Following work of [11, 33, 14, 23, 25], Vassilevska W.
et al. [44] showed that every 4-node pattern except for the 4-Clique and 4-Independent Set can be detected
in C(n, 3) = O(nω) time, much faster than the C(n, 4) runtime for 4-Clique. Blaeser et al. [5] recently
showed that for k ≤ 8 there are faster than C(n, k) time algorithms for all non-clique non-independent set
k-node patterns; for k ≤ 6, their runtime is C(n, k − 1). Independently, we were able to show the same
result, using an approach generalizing ideas from [44], see the Appendix.

A natural conjecture, consistent with the prior work so far is that for every k and every k-node pattern
H that is not a clique or independent set, one can detect it in an n node graph in time C(n, k − 1). Blaeser

1

et al. showed that for all k of the form 3 · 2` for integer `, there is a k-node pattern that (1) is at least as hard
to detect as k− 1-Clique and (2) can be detected in C(n, k− 1) time. We show that such a pattern exists for
all k ≥ 3 (Theorem 4.1).

While there exist k-node patterns that can be detected faster than k-Clique, it seems unclear how hard
k-node pattern detection actually is. For instance, it could be that for every k, there is some induced pattern
on k-nodes that can be detected in say nlog log(k) time, or even f(k)nc time, where c is independent of k. A
Ramsey theoretic result tells us that every k-node H either contains an Ω(log k) size clique or an Ω(log k)
size independent set. Hence intuitively, detecting any k-nodeH in an n node graph should be at least as hard
as detecting an Ω(log k) size clique in an n node graph. The widely believed Exponential Time Hypothesis
(ETH) [20] is known to imply that k-Clique cannot be solved in no(k) time [10]. Coupled with the Ramsey
result, ETH should intuitively imply that no matter which k-node H we pick, H-pattern detection cannot be
solved in no(log k) time.

Unfortunately, however, it is still open whether every pattern that contains a t-clique is as hard to detect
as a t-clique (see e.g. [5]1). In general, it is not clear what makes patterns hard to detect.

One of the few results related to this is by Floderus et al. [16] who showed that if a pattern H contains a
t-Clique that is disjoint from all other t-Cliques in H , then H is at least as hard to detect as a t-Clique. This
implied strong clique-based hardness results for induced k-path and k-cycle. However, the reduction of [16]
fails for patterns whose k-Cliques intersect non-trivially.

The main difficulty in reducing k-Clique to the detection problem for other graph patternsH can be seen
in the following natural attempt used e.g. by [16]. Say H has a k-clique K and let H ′ be the graph induced
by the vertices of H not in K. Let G = (V,E) be an instance of k-Clique. We’ll start by creating k copies
of V , V1, . . . , Vk. For every edge (u, v) of G, add an edge between the copies of u and v in different parts.
Every k-clique C of G appears in the new graph k! times; we’ll say that the main copy C̄ of C has the ith
vertex of C (in lexicographic order say) appearing in Vi. Now, add a copy H̄ ′ of H ′, using fresh vertices,
and for every edge (h, i) of H with h ∈ H ′ and i ∈ K, add edges from h ∈ H̄ ′ to all vertices in Vi. This
forms the new graph G′ and guarantees that if G has a k-clique C, G′ contains a copy of H which is just
C̄ together with H̄ ′. The other direction of the reduction fails miserably however. If G′ happens to have a
copy of H , there is no guarantee that any of the k-cliques of H would have a node from each Vi and hence
form a clique of G. As a simple counterexample (Figure 1) consider H as a 4-Cycle (1, 2, 3, 4) together
with a node 5 that has edges to all nodes of the 4-Cycle. Starting from a graph G, WLOG we would pick
K to be (1, 2, 5) and H ′ = 3, 4 and form G′ as described. Let H̄ ′ contain the nodes 3̄, 4̄ and let the parts
of G be V1, V2, V5. Now the reduction graph G′ might contain a copy of H even if G has no 3-cliques, as 4̄
could represent 5, and 1, 3 and 2, 4 could be represented by two nodes each in V1 and V5 respectively; see
Figure 1. Hence the copy of H wouldn’t use V2 at all and doesn’t represent a triangle in G.

One could try to modify the reduction, say by representing the nodes of H ′ by copies of the vertices of
G, as with K. However, the same issues arise, and they seem to persist in most natural reduction attempts.

With an intricate construction, we show how to overcome this difficulty. Our first main theorem is that
patterns that contain t-cliques are indeed at least as hard as t-Clique, and in fact we prove it for the not
necessarily induced case which automatically gives a lower bound for the induced case (Theorem 2.1 in the
body):

Theorem 1.1. Let G = (V,E) be an n-node, m-edge graph and let H be a k-node pattern such that H has
a t-clique as a subgraph. Then one can construct a new graph G∗ of at most nk vertices in O(k2m + kn)
time such that G∗ has a not necessarily induced subgraph isomorphic to H if and only if G has a t-clique.

1Blaser et al. [5] show that for the particular types of algorithms that they use a pattern that contains a k-clique cannot be found
faster than a k-clique, and they note that such a result is not known for arbitrary algorithms.

2

1 2

34

5

V1 V2

V5

4̄ 3̄

Figure 1: An example of how a simple reduction attempt fails to reduce 3-Clique to H . The edges between
the Vi are determined by the 3-Clique instance.

Note that since the not necessarily induced pattern detection can be solved with the induced version, a
lower bound for the not necessarily induced pattern detection gives a lower bound for the induced version.
Since for every k-node graphH , eitherH or its complement contains a clique of size Ω(log k), ETH implies
that no matter which k-node H we pick, induced H-pattern detection cannot be solved in no(log k) time.

Our second theorem shows that some patterns are even harder, as in fact the hardness of a pattern grows
with its chromatic number!

Our theorem relies on the widely believed Hadwiger conjecture [19] from graph theory which roughly
states that every graph with chromatic number t contains a t-clique as a minor. The Hadwiger conjecture is
known to hold for t ≤ 6 [36] and to almost hold for t = 7 [22] (It is equivalent to the 4-Color Theorem for
t = 5, 6 [36, 43, 35].). It also holds for almost all graphs [7]. Our lower bound theorem, which also proved
for the not necessarily induced case (Theorem 2.2 in the body) is:

Theorem 1.2. Let G = (V,E) be an n-node graph and let H be a k-node pattern with chromatic number
t, for t > 1. Then assuming that Hadwiger conjecture is true, one can construct G∗ on at most nk vertices
in O(n2k2) time such that G∗ has a not necessarily induced subgraph isomorphic to H if and only if G has
a t-clique.

This is the first connection between the Hadwiger conjecture and Subgraph Isomorphism, to our knowl-
edge. Let us see some exciting consequences of this theorem. First, we get that if t is the maximum of the
chromatic numbers of H and its complement, then an induced H is at least as hard as t-Clique to detect.
Now, it is a simple exercise that the maximum of the chromatic number of a k-node graph and its comple-
ment is at least

√
k. Thus, every induced H on k-nodes is at least as hard as

√
k-Clique. There are no easy

induced patterns.

Corollary 1.1. No matter what k-node H we take, under ETH and the Hadwiger Conjecture, the induced
subgraph isomorphism problem for H in n-node graphs cannot be solved in no(

√
k) time.

This is the first result of such generality.
A second consequence comes from circuit complexity. Rossman [37] showed that for any constant

integers k and d, any circuit of depth d requires size ω(nk/4) to detect a k-Clique. Because of the simplicity
of our reduction (it can be implemented in constant depth), we also obtain a circuit lower bound for induced
pattern detection for any H node subgraph:

3

Corollary 1.2. Let d and k be any integer constants. No matter what k-nodeH we take, under the Hadwiger
Conjecture, any depth d circuit for the induced subgraph isomorphism problem for H in n-node graphs
requires size ω(n

√
k/4).

A third consequence is that in fact almost all k-node induced patterns are very hard – at least as hard as
Θ(k/ log k)-Clique. Consider an Erdös-Renyi graph H from G(k, p) for constant p. It is known [7] that the
Hadwiger conjecture holds for H with high probability. Moreover, the chromatic number of such graphs
(and their complements) is with high probability Θ(k/ log k) [6]; meanwhile the clique and independent set
size is only O(log k). Thus our chromatic number theorem significantly strengthens our first theorem.

Corollary 1.3. For almost all k-node patternsH , under ETH, inducedH detection in n node graphs cannot
be done in no(k/ log k) time.

We also immediately obtain, via Rossman’s lower bound, that for almost all k-node patterns H , any
constant depth circuit that can detect an induced H requires size nΩ(k/ log k).

1.2 Detecting not-necessarily induced directed k-Cycles.
Some of the most striking difference between the complexity of induced and not-necessarily induced

subgraph detection is in the k-Path and k-Cycle problems. Since a k-Path and a k-Cycle both contain
an independent set on bk/2c nodes, the induced version of their subgraph detection problems is at least
as hard as detecting bk/2c-cliques, and needs C(n, bk/2c) time unless there is a breakthrough in Clique
detection. Thus also under ETH, induced k-Path and k-Cycle cannot be solved in no(k) time. Monien [30],
however, showed that for all constants k, a non-induced k-Path can be detected with constant probability in
linear time. Thus, for constant k, the non-induced k-Path problem has an essentially optimal (randomized)
algorithm. With the same ideas, a k-Cycle can be found in Õ(nω) time. Due to the tight relationship
between triangle detection and Boolean matrix multiplication (e.g. [40]), this runtime is often conjectured
to be optimal for dense graphs. For sparse graphs, however, there has been a lot of active research in
improving the runtime of k-Cycle detection, and it is completely unclear what the best runtime should be.

Alon, Yuster and Zwick [4] gave several algorithms for both directed and undirected cycle detection.
The bounds for directed graphs are as follows. For 3-Cycles (triangles) [4] gives an algorithm running in
time O(m2ω/(ω+1)) ≤ O(m1.41), which is still the fastest algorithm for the problem in sparse graphs. For
general k, one can find a k-Cycle in time O(m2−2/k) if k is even and in time O(m2−2/(k+1)) if k is odd.
These last algorithms do not use matrix multiplication.

Yuster and Zwick [46] set out to improve upon the general k-Cycle algorithms above using fast matrix
multiplication. They presented an algorithm that combines most known techniques for cycle detection and
works for arbitrary k ≥ 3. However, they were not able to analyze the complexity of their algorithm in
general. They showed that for k = 4, the algorithm runs in O(m(4ω−1)/(2ω+1)) ≤ O(m1.48) time, and that
for k = 5, it runs in time O(m3ω/(ω+2)) ≤ O(m1.63). Both bounds improve the runtimes from [4].

Already for k = 6 the analysis of the algorithm seemed very difficult. Yuster and Zwick ran computer
simulations to find the worst case runtime for k = 6 and beyond and came up with conjectures for what the
runtime should be for k = 6 and for all odd k. They also stated that for even k larger than 6, the runtime
expression is likely extremely complicated. Their conjectures have remained unproven for over 14 years.

In this paper we present an analysis of the running time of the Yuster-Zwick algorithm, proving the two
conjectures (for k = 6 and odd k). We give an analysis of the runtime for even k as well. Our bound is
tight, assuming that the matrix multiplication exponent ω is 2. For larger values of ω, the tight bound on the
runtime is a step function of ω that remains to be analyzed. Our final result is as follows:

4

Theorem 1.3. There is an algorithm for k-Cycle detection in m edge directed graphs (the Yuster-Zwick
algorithm) which runs in Θ̃(mck) time, where

• ck = ω(k + 1)/(2ω + k − 1) when k is odd,

• c4 = (4ω − 1)/(2ω + 1)

•

c6 =


10ω−3
4ω+3 , if 2 ≤ ω ≤ 13

6
22−4ω
17−4ω , if 13

6 ≤ ω ≤
9
4

11ω−2
4ω+5 , if 9

4 ≤ ω ≤
16
7

10−ω
7−ω , if 16

7 ≤ ω ≤
5
2

• ck ≤ (kω − 4/k)/(2ω + k − 2− 4/k) for all even k ≥ 4. This is tight for ω = 2.

Related Work. Vassilevska [41] showed thatKk−e (a k-clique missing an edge) can be found inO(nk−1)
time without using fast matrix multiplication, whereas the fastest algorithms for k-Clique without fast ma-
trix multiplication run in O(nk/ logk−1 n) time [39]; this was recently improved by Blaeser et al. [5]
who showed that every k node pattern except the k-Clique and k-Independent Set can be detected in time
O(nk−1). Before this, Floderus et al. [15] showed that 5 node patterns2 can be found in O(n4) time, again
without using fast matrix multiplication.

Some other related work includes improved algorithms for subgraph detection whenG has special struc-
ture (e.g. [24] and [17]). Other work counts the number of occurrences of a pattern in a host graph (e.g.
[25, 38, 12]). Finally, there is some work on establishing conditional lower bounds. Floderus et al. [16]
produced reductions from k-Clique (or k-Independent Set) to the detection problem of `-patterns for ` > k
(but still linear in k). They show for instance that finding an induced k-path is at least as hard as finding an
induced k/2-independent set. Lincoln et al. [28] give conditional lower bounds for not-necessarily induced
directed k-cycle detection. For instance, they show that if k-Clique requires essentially C(n, k) time, then
finding a directed k-Cycle in an m edge graph requires m2ωk/(3(k+1))−o(1) time. This lower bound is lower
than the upper bounds in this paper, but they do show that superlinear time is likely needed.

Detecting k-Cycles in undirected graphs is an easier problem, when k is an even constant. Yuster and
Zwick [45] showed that a k-Cycle in an undirected graph can be detected (and found) in O(n2) time for all
even constants k. Dahlgaard et al. [13] extended this result showing that k-Cycles for even k in m-edge
graphs can be found in time Õ(m2k/(k+1)). Their result implies that of [45], as by a result of Bondy and
Simonovits [8], any n node graph with ≥ 100kn1+1/k edges must contain a 2k-Cycle. When k is an odd
constant, the k-Cycle problems in undirected and directed graphs are equivalent (see e.g. [41]).

2 Lower bounds

In this section we consider the problem of detecting and finding a (not necessarily induced) copy of a
given small pattern graph H in a host graph G. This is the variant of subgraph isomorphism in which the
pattern H is fixed, on a constant k number of vertices, and G = (V,E) with |V | = n is given as an input.
We focus on the hardness of this problem: we show that any fixed pattern that has a t-clique as a subgraph,
is not easier to detect as a subgraph than a t-clique, formally stated as Theorem 2.1. First, we start by an

2All patterns except for K5, K4 + e, (3, 2)−fan, gem, house, butterfly, bull, C5, K1,4, K2,3 and their complements; for these
subgraphs the fastest runtime remained C(n, 5) ≤ O(n4.09).

5

easier case of the theorem where the pattern is t-chromatic to depict the main idea of our proof and then we
proceed with the proof of the theorem for all patterns. Recall that a proper vertex coloring of a graph is an
assignment of colors to each of its vertices such that no edge connects two identically colored vertices. If
the set of colors is of size c, we say that the graph is c-colorable. The chromatic number of a graph is the
smallest number c for which the graph is c-colorable, and we call such graph c-chromatic. In the second
part of this section, we prove a stronger lower bound using Hadwiger conjecture, showing that under this
conjecture any t-chromatic pattern is not easier to detect as a subgraph than a t-clique.

Theorem 2.1. LetG = (V,E) be an n-node graph and letH be a k-node pattern such thatH has a t-clique
as a subgraph. Then one can construct G∗ on at most nk vertices in O(k2m+ kn) time such that G∗ has a
(not necessarily induced) subgraph isomorphic to H if and only if G has a t-clique.

2.1 Simple case: t-Chromatic patterns
We show Theorem 2.1 when H is t-chromatic in addition to having a t-clique as a subgraph. Construct

G∗ as follows: For each v ∈ H , let Gv be a copy of the vertices of G as an independent set. For any two
vertices v and u in H where vu is an edge, add the following edges between Gv and Gu: for each w1 and
w2 in G, add an edge between the copy of w1 in Gv and the copy of w2 in Gu if and only if w1w2 is an edge
in G. So G∗ has nk vertices and since for each pair of vertices u, v ∈ H we have at most m edges between
Gu and Gv, the construction time is at most O(k2m+ kn).

Now we show that G has a t-clique as a subgraph if and only if G∗ has H as a subgraph. First suppose
that G has a t-clique, say T = v1, . . . , vt. Consider a t-coloring of the vertices of H , with colors 1, . . . , t.
For each w ∈ H , pick vi from Gw if w is of color i. Call the induced subgraph on these vertices H∗. We
show that H∗ is isomorphic to H: map each w ∈ H to the vertex picked from Gw in G∗. If w and w′ are
adjacent in H , then their colors are different, so the vertices that are picked from Gw and Gw′ are different
vertices of G, and they are part of the clique T , so they are adjacent. If w and w′ are not adjacent, we don’t
have any edges between Gw and Gw′ , so the vertices picked from them are not adjacent.

For the other direction, we show that if G∗ has H as a subgraph then G has a t-clique. Since H has
a t-clique as a subgraph, G∗ also has a t-clique as a subgraph. Suppose the vertices of this clique are
W = {w1, . . . , wt} where wi is a copy of vi ∈ G. Each pair of vertices of the clique are in different
copies of G, as these copies are independent sets. Moreover, for each i, j ∈ {1, . . . , t}, since wi and wj are
adjacent, they correspond to different vertices in G, so vi 6= vj . Since we connect two vertices in G∗ if their
corresponding vertices in G are connected, this means that vi and vj are connected in G. So v1, . . . , vt form
a t-clique in G.

2.2 General case
Define a t-clique covering of a pattern H to be a collection C of sets of vertices of H , such that the

induced subgraph on each set is t-colorable, and for any t-clique T of H , there is a set in C that contains
all the vertices of T . For example, in Figure 2, the graph Hex has the following 3-clique covering of size 2:
{{a1, a2, a3, a6}, {a3, a4, a5, a1, a6}}.

For each H we have at least one t-clique covering by considering the vertices of each t-clique of H as
one set. However we are interested in the smallest collection C. So for a fixed t, we define p(H) to be the
smallest integer r ≥ 1, such that there is a t-clique covering of H of size r. We call a t-clique covering of
size p(H) a minimum t-clique covering. For example, if H is t-colorable, p(H) = 1 as the whole vertex set
is the only set that the t-clique covering has. If H is not t-colorable but has a t-clique, then p(H) > 1.

Proof of Theorem 2.1. Let C = {C1, . . . , Cr} be a minimum t-clique covering ofH , where r = p(H).
The vertex set of G∗ is the following: For each vertex v ∈ C1, let Gv be a copy of the vertices of G as an

6

a1

a2

a3a4

a5
a6

Ga1

Ga2

Ga6

Ga3

a∗5

a∗4

E(G)

E(G)

Hex G∗

Figure 2: Graph Hex on the left. The largest clique of this graph is a triangle. Hex is 4-
chromatic, so p(Hex) > 1. We have p(Hex) = 2, as a minimum 3-clique covering for it is
{{a1, a2, a3, a6}, {a3, a4, a5, a1, a6}}. The graph G∗ is on the right, thick edges represent the way the
edges are specified according to E(G) between two copies of G.

independent set. For each vertex v ∈ V (H) \ C1, let v∗ be a copy of v in G∗. The edge set of G∗ is as
follows: For each two vertices v, u ∈ C1 that uv is an edge in H , add the following edges between Gv and
Gu: for each w1 and w2 in G, add an edge between the copy of w1 in Gv and the copy of w2 in Gu if and
only if w1w2 is an edge in G. For each two vertices u ∈ C1 and v ∈ V (H) \ C1 that uv is an edge in H ,
connect v∗ to all the vertices inGu. For each two vertices u, v ∈ V (H)\C1 that uv is an edge inH , connect
u∗ and v∗. The way G∗ is constructed is shown in Figure 2 for the particular pattern Hex with maximum
clique 3.

Now we show that G has a t-clique as a subgraph if and only if G∗ has H as a subgraph. First suppose
that G has a t-clique, say v1, . . . , vt. Consider a t-coloring of vertices of C1, with colors 1, . . . , t. Let H∗

be the subgraph on the following vertices in G∗: for each w ∈ C1, pick vi from Gw if w is of color i. For
each w ∈ V (H) \C1, pick w∗. We show that H is isomorphic to H∗: for each w ∈ C1, map w to the vertex
picked from Gw, and for each w ∈ V (H) \ C1, map w to w∗. If w, u ∈ C1 such that wu ∈ E(H), then
their colors are different in the t-coloring of C1, and so the vertices that are picked from Gw and Gu are
different vertices of G and part of the t-clique of G, so they are attached. If wu is not an edge, then there is
no edge between Gw and Gu. If w ∈ C1 and u ∈ V (H) \C1 and wu is an edge in H , then u∗ is attached to
all vertices in Gw including the vertex that is picked from Gw for H∗. If wu is not an edge, then there is no
edge between u∗ and Gw. If w, u ∈ V (H) \C1, then u∗, w∗ are both picked in H∗ and they are adjacent in
G∗ if and only if w and u are adjacent in H .

For the other direction, we show that if G∗ has a subgraph H∗ isomorphic to H , then G has a t-clique.
Let S1 = ∪v∈C1Gv. First suppose that H∗ has a t-clique T using vertices in S1. Since for each v ∈ C1,
Gv is an independent set, no two vertices of T are in the same Gv. So there are t vertices of H , v1, . . . , vt
such that T has a vertex in each Gvi . Let this vertex be a copy of wi ∈ G. Since for each i, j ∈ {1, . . . , t},
i 6= j, the copies of wi and wj are adjacent in G∗, we have that wi 6= wj and they are adjacent in G. So
{w1, . . . , wt} form a t-clique in G.

So assume that the induced subgraph on V (H∗) ∩ S1 in G∗ has no clique. As S1 has all the vertices
in G∗ that correspond to the vertices in C1, we define similar sets for other Cis. For i ∈ {2, . . . , p(H)},
let S′i = ∪v∈Ci∩C1Gv, S′′i = ∪v∈Ci\C1

v∗ and Si = S′i ∪ S′′i . First note that the induced subgraph on Si
is t-colorable: Consider the t-coloring of Ci. For each v ∈ Ci \ C1, color v∗ the same as v. For each
v ∈ Ci ∩ C1, color all vertices in Gv the same as v.

7

Now we show that any t-clique in H∗ is in one of the sets S2, . . . , Sp(H). This means that the collection
{S2∩V (H∗), . . . , Sp(H)∩V (H∗)} is a t-clique covering forH with size p(H)−1, which is a contradiction.
Consider a t-clique T = v1, . . . , vt in H∗. Each vi is in one of the copies of G or is a copy of a vertex in
H . So for each vi, there is some vertex wi ∈ H , such that vi ∈ Gwi and wi ∈ C1 if vi ∈ S1, or vi = w∗i
and wi /∈ C1 if vi /∈ S1. Since for each i, j, vi and vj are adjacent in G∗, this means that wi and wj are
different vertices in H and they are adjacent. So W = {w1, . . . , wt} form a clique in H . Since T /∈ S1,
wlog we can assume that v1 /∈ S1. So w1 /∈ C1. So the t-clique W is not in C1, and so it is in Ci, for some
2 ≤ i ≤ p(H). Hence, T ∈ Si. �

Corollary 2.1. Let H be a k-node pattern that has a t-clique or a t-independent set as a subgraph. Then
the problem of findingH as an induced subgraph in an n-node graph is at least as hard as finding a t-clique
in an O(n)-node graph.

2.3 A Stronger Lower Bound
One of the oldest conjectures in graph theory is Hadwiger conjecture which intoduces a certain structure

for t-chromatic graphs. Assuming that this conjecture is true, we show that any fixed pattern with chromatic
number t is not easier to detect as an induced subgraph than a t-clique. This strengthens the previous lower
bound because the size of the maximum clique of a pattern is at most its chromatic number, and moreover
there are graphs with maximum clique of size two but large chromatic number.

Conjecture 1 (Hadwiger’s Conjecture). Let H be a graph with chromatic number t. Then one can find t
disjoint connected subgraphs of H such that there is an edge between every pair of subgraphs.

Contracting the edges within each of these subgraphs so that each subgraph collapses to a single vertex
produces a t-clique as a minor of H . This is the property we are going to use to show that H is at least as
hard to detect as a t-clique. Our main theorem is as follows.

Theorem 2.2. Let G = (V,E) be an n-node graph and let H be a k-node t-chromatic pattern, for t > 1.
Then assuming that Hadwiger conjecture is true, one can construct G∗ on at most nk vertices in O(n2k2)
time such that G∗ has a (not necessarily induced) subgraph isomorphic to H if and only if G has a t-clique.

To prove Theorem 2.2, we use a similar approach as Theorem 2.1. The approach of Theorem 2.1 is
covering the maximum cliques of the pattern by a collection of subgraphs. However, since in Theorem
2.2 the pattern doesn’t necessarily have a t-clique, we cover another particular subgraph of the pattern, and
hence we introduce a similar notion as t-clique covering for this subgraph.

Let F be a graph with a vertex (not necessarily proper) coloring C : V (F)→ {1, . . . , t}. We say that F
has a Kt minor with respect to the coloring C if the vertices of each color induce a connected subgraph and
for every color there is an edge from one of the vertices of that color to one of the vertices of every other
color. For example, in Figure 2, consider the following coloring for Hex: Cex : {a1, . . . , a6} → {1, . . . , 4},
where Cex(a1) = Cex(a2) = 1, Cex(a3) = Cex(a4) = 2, Cex(a5) = 3 and Cex(a6) = 4. Clearly Hex has
a K4 minor with respect to the coloring Cex.

Let F and H be two fixed graphs, where F is t-chromatic. We say that H is (Kt, F) minor colorable if
there is a (not necessarily proper) coloring C : V (H) → {1, . . . , t} such that any induced copy of F in H
has a Kt minor with respect to C. For example, in Figure 3, the graph H ′ex has graph Hex (Figure 2) as a
4-chromatic subgraph, and it is (K4, Hex) minor colorable: There are exactly two copies ofHex inH ′ex, one
with vertex set {a1, . . . , a6} and one with vertex set {a1, a4, a5, a6, a7, a8}, and both have a K4 minor with
respect to the coloring given in Figure 3. Note that minor colorability and colorability are different: recall

8

a1

a2

a3a4

a5
a6

Ga1

Ga2

Ga6

Ga3

E(G)

G∗

a7

a8

H ′ex

matching

Ga7

Ga8

Ga5

Ga4

Figure 3: The 4-chromatic graph H ′ex on the left side has the coloring C ′ex which makes it (K4, Hex) minor
colorable: C ′ex(a1) = C ′ex(a2) = C ′ex(a7) = 1, C ′ex(a3) = C ′ex(a4) = C ′ex(a8) = 2, C ′ex(a5) = 3,
C ′ex(a6) = 4. On the right side we show how G∗ is constructed as it is described in the proof of Theorem
2.2. The double edges indicate a matching where nodes that are copy of the same vertex in G are connected.
The thick edges represent the way we add edges according to E(G).

that c-colorability of a graph for an integer c means that the graph has a proper coloring using c colors, and
the graph is c-chromatic if c is the smallest integer such that the graph is c-colorable.

Let H be a pattern and let F be a t-chromatic subgraph of H . As a generalization to a t-clique covering
of H , we define an F -covering of H to be a collection C of sets of vertices of H , such that the induced
subgraph of each set is (Kt, F) minor colorable, and each copy of F is completely inside one of the sets in
C.

For any graph H , we have at least one F -covering by considering the vertices of each copy of F as
one set where the (Kt, F) minor colorablitiy of each set comes from Conjecture 1. Similar to t-clique
coverings we are interested in the smallest collection C among all F -coverings. So for a fixed number t
and a t-chromatic subgraph F of H , we define pF (H) to be the smallest integer r ≥ 1, such that there is
an F -covering of H of size r. We call an F -covering of size pF (H) a minimum F -covering. Note that
pKt(H) = p(H). For example, in Figure 3, pHex(H ′ex) = 1, according to the coloring given in the figure.

Now we are ready to prove Theorem 2.2.
Proof of Theorem 2.2. We are going to mimic the proof of Theorem 2.1, and so we are going to

carefully choose a subgraph F and consider the minimum F -covering of it.
Let z be the largest integer such that every (z − 1)-node subgraph of H is t − 1 colorable. Let F be a

t-chromatic subgraph ofH on z nodes with maximum number of edges. Note that F is an induced subgraph
of H . In Figure 3, H = H ′ex is 4-chromatic and one can check that any subgraph on 6 vertices or less is 3
colorable. In this graph z = 7 and F = Hex.

Now suppose that C = {C1, . . . , Cr} is a minimum F -covering of H , where r = pF (H). Let f :
C1 → {1, . . . , t} be a (Kt, F) minor coloring of C1. Define the vertex set of G∗ as follows: For each vertex
v ∈ C1, let Gv be a copy of G as an independent set. For each vertex v ∈ V (H) \ C1, let v∗ be a copy
of v in G∗. The edge set of G∗ is as follows: For each pair of vertices u, v ∈ C1, if uv is not an edge in
H we don’t add any edges between Gu and Gv. If uv is an edge and f(u) = f(v), then add the following
edges between Gu and Gv: For each w ∈ G, add an edge between the copy of w in Gu and the copy of w
in Gv (So we have a complete matching between Gu and Gv). If uv is an edge and f(u) 6= f(v), then add
the following edges between Gu and Gv: for each w1 and w2 in G, add an edge between the copy of w1 in
Gu and the copy of w2 in Gv if and only if w1w2 is an edge in G. For each pair of vertices u ∈ C1 and

9

v ∈ V (H) \ C1 such that uv is an edge in H , add an edge between v∗ and all vertices in Gu. For each pair
of vertices u, v ∈ V (H) \C1 such that uv is an edge in H , add an edge between u∗ and v∗ in G∗. In Figure
3, H ′ex has a Hex-covering of size 1 which is the whole graph. On the right side of the figure we show how
G∗ is constructed.

Now we show that G has a t-clique as a subgraph if and only if G∗ has H as a subgraph. First, suppose
that G has a t-clique, say T = v1, . . . , vt. Let H∗ be the induced subgrpah on the following vertices in G∗:
for each w ∈ C1, pick vi from Gw if f(w) = i. For each w ∈ V (H) \ C1, pick w∗. We show that H is
isomorphic to H∗: for each w ∈ C1, map w to the vertex picked from Cw, and for each w ∈ V (H) \ C1,
map w to w∗. If u,w ∈ C1 and they are not adjacent, then there is no edge between Gu and Gw. If uw is
an edge in H , then if f(u) = f(w) = i, we picked vi from both Gu and Gw and hence there are adjacent
(note that in this case the edges between Gu and Gw form a complete matching). If f(u) 6= f(w), then
the vertices that we picked from Gu and Gw are copies of different vertices of the clique T , and so they
are adjacent in G∗. If u ∈ C1 and w ∈ V (H) \ C1 and uw is an edge in H , then w∗ is attached to all
vertices in Gu, so it is adjacent to the vertex chosen from Gu for H∗. If uw is not an edge, then there is no
edge between w∗ and Gu. If u,w ∈ V (H) \ C1, then u∗ and w∗ are connected in H∗ if and only if uw are
connected in H .

For the other direction, we show that if G∗ has a (not necessarily induced) subgraph H∗ isomorphic to
H , then G has a t-clique. Let S1 = ∪v∈C1Gv. First suppose that H∗ has a copy of F in S1. Let the vertices
of this copy be w1, . . . , wz . For each wi there is a vertex vi ∈ H such that wi ∈ Gvi . Now if for some i 6= j,
vi = vj , then the induced subgraph on {v1, . . . , vz} has less than z vertices, so it is t − 1 colorable (using
proper coloring). Now if we color wi the same color as vi, we get a proper coloring of this copy of F with
t − 1 colors, a contradiction to the chromatic number of F . So for each i 6= j, vi 6= vj . Now we show that
the induced subgraph on {v1, . . . , vz} in H is isomorphic to F . Call this subgraph F ′. We just showed that
|V (F ′)| = z. Since there is no edge between Gvi and Gvj if vi and vj are not connected, we have that F is a
subgraph of F ′, and so F ′ is not t−1 colorable, and since it is a subgraph ofH , it is t-chromatic. If F and F ′

are not isomorphic, then F ′ has more edges than F , which is a contradiction. So F and F ′ are isomorphic,
and in particular wi and wj are adjacent if and only if vi and vj are adjacent. Suppose that wi ∈ Gvi is the
copy of w′i in G. We show that {w′1, . . . , w′z} induces a t-clique in G. Consider the coloring f on C1. First
note that if vi and vj are adjacent vertices such that f(vi) = f(vj), then since wi and wj are adjacent, we
have w′i = w′j . Since F1 has a Kt minor with respect to the coloring f , the subgraph that each color induces
is connected, and so for each vi and vj with f(vi) = f(vj) = a we have w′i = w′j . This means that all wi’s
with f(vi) = a are copies of the same vertex, say ua. Now take a pair of colors, a, b ∈ {1, . . . , t}. There
are vertices vi and vj such that f(vi) = a, f(vj) = b and vivj is an edge in H . So wiwj is an edge in G∗,
and since a 6= b, w′i 6= w′j , and w′iw

′
j is an edge in G. Since w′i = ua and w′j = ub, we have that ua and ub

are different vertices and they are adjacent in G. So {w′1, . . . , w′z} = {u1, . . . , ut} induces a t-clique in G∗.
Now suppose that there is no copy of F in the induced subgraph on V (H∗) ∩ S1 in G∗. For i ∈

{2, . . . , pF (H)}, let S′i = ∪v∈Ci∩C1Gv, S′′i = ∪v∈Ci\C1
v∗ and Si = S′i ∪ S′′i . We prove that the collection

{S2 ∩ V (H∗), . . . , SpF (H) ∩ V (H∗)} is an F -covering for H∗, which means that pF (H) = pF (H∗) < r,
a contradiction.

First we show that any copy of F in H∗ is in one of Sis. Let F ∗ with vertex set {w1, . . . , wz} be a copy
of F in H∗. For each wi, there is a vi ∈ H where wi ∈ Gvi and vi ∈ C1 if wi ∈ S1, or wi = v∗i and vi /∈ C1

if wi /∈ S1. If vi = vj for some i 6= j, then F ∗ is t− 1 colorable (with proper coloring): the induced graph
on {v1, . . . , vz} has at most z−1 vertices and so it is t−1 colorable. Color wi the same as vi. From the way
we construct G∗ we know that if vi and vj are not connected, wi and wj are also not connected, and so this
coloring of F ∗ is proper. Since F ∗ is t-chromatic, this is a contradiction. So if we call the induced graph on

10

{v1, . . . , vz} ⊆ V (H) by FH , then |V (FH)| = z. We know that if wi and wj are connected, then vi and vj
are connected. So F is a subgraph of FH , and so FH is t-chromatic. If FH and F are not isomorphic, it
means that FH has more edges than F , which is a contradiction. So FH and F are isomorphic. Now Since
F ∗ is not in S1, wlog we can assume that w1 /∈ S1, and so w1 = v∗1 and v1 is not in C1. So FH /∈ C1 and
there is some i ≥ 2 such that FH ∈ Ci. So F ∗ is in Si.

Now we show that for each i ≥ 2, Si ∩ V (H∗) is (Kt, F)-minor colorable. Since Ci is (Kt, F)-minor
colorable, there is a coloring fi : Ci → {1, . . . , t} such that each induced copy of F in Ci has a Kt minor
with respect to fi. Let f∗i : Si ∩ V (H∗) → {1, . . . , t} be the following coloring: For each v ∈ Ci ∩ C1,
let f∗i (u) = fi(v) for all vertices u ∈ Si ∩ V (H∗) ∩ Gv. For each v ∈ Ci \ C1 where v∗ ∈ V (H∗),
let f∗i (v∗) = fi(v). Now if F ∗ = {w1, . . . , wz} is a copy of F in Si ∩ V (H∗), we know that the set
FH = {v1, . . . , vz} is a copy of F in Ci, where wi ∈ Gvi if wi ∈ S1 and wi = v∗i if wi /∈ S1. Note that
f(vi) = f∗i (wi) and vi and vj are adjacent if and only if wi and wj are adjacent. So since the subgraph
induced on vertices of any color in FH is connected, the subgraph induced on any color in F ∗ is also
connected. Moreover, since in fi for any pair of colors there is an edge between one of the vertices of that
color to one of the vertices of the other color, this property holds for f∗i . So Si ∩ V (H∗) is (Kt, F)-minor
colorable, and so we have an F -covering for H of size less than pF (H). �

Corollary 2.2. Let H be a pattern and let t be the maximum chromatic number of H and its complement.
Then under Hadwiger conjecture, finding an induced copy of H in an n-node graph is at least as hard as
finding a t-clique in an O(n)-node graph.

3 Induced pattern detection: Algorithms

In this section we focus on the algorithmic part of the induced pattern detection problem, starting with
some background on the problem. First, it is a simple and folklore exercise to show that if there is a T (n)
time algorithm that can detect whether G contains a copy of H , then one can also find such a copy in
O(T (n)) time: Partition the vertices V of G into k + 1 equal parts (wlog n is divisible by k + 1), for every
k-tuple of parts, use the detection algorithm in T (nk/(k + 1)) time to check whether the union of the parts
contains a copy of H . The moment a k-tuple of parts is detected to contain a copy of H , stop looking at
other k-tuples and recurse on the graph induced by the union of the k parts. (Stop the recursion when n is
constant, and brute force then.) Since every k node subgraph is contained in some k-tuple of the parts, the
algorithm is correct. The runtime is

t(n) ≤
log(1+1/k) n∑

i=1

(k + 1)T (n(k/(k + 1))i

≤ (k + 1)T (n)

∞∑
i=1

((k/(k + 1))2)i ≤ O(T (n)).

The second inequality above follows since T (n) ≥ Ω(n2) as the algorithm needs to at least read the input
and the input can be dense. Because of this, for some nondecreasing function g(n), T (n) = n2g(n). Hence
for any L ≥ 1, T (n/L) = n2/L2g(n/L) ≤ n2/L2g(n) = T (n)/L2. (Without this observation about
T (n), the analysis would incur at most a log n factor for finding from detection.) As finding and detection
are equivalent, we will focus on the detection version of the problem.

Recall from the introduction, C(n, k) := M(nbk/3c, ndk/3e, nd(k−1)/3e). Nešetril and Poljak [21]
showed that the pattern detection problem can be reduced to rectangular matrix multiplication. In par-

11

ticular, when k ≡ q mod 3, detecting a k node pattern in an n nodeG can be reduced inO(n(2k+q)/3) time
to the product of an nbk/3c × ndk/3e matrix by an ndk/3e × nd(k−1)/3e matrix.

Here we first recall the approach from [44], and then generalize the ideas there to obtain an approach for
all k to show that (1) for all k ≤ 6 and for all k-node H that is not a Clique or Independent Set, H can be
detected in O(C(n, k − 1)) time, whp, and (2) for all k ≥ 3, there is a pattern that can be detected in time
O(C(n, k − 1)), whp.

3.1 The approach from [44]
Vassilevska W. et al. [44] proposed the following approach for detecting a copy of H in G:

1. First obtain a random subgraph G′ of G by removing each vertex of G independently and uniformly
at random with probability 1/2.

2. Compute a quantity Q that equals the number of induced H in G′, modulo a particular integer q.

3. If Q 6= 0 mod q, return that G contains an induced H , and otherwise, return that G contains no
induced H with high probability.

The following lemma from [44] implies that (regardless of q), if G contains a copy of H , after the first
step, with constant probability, the number of copies of H in G′ is not divisible by q.

Lemma 3.1 ([44]). Let q ≥ 2 be an integer, G,H be undirected graphs. Let G′ be a random induced
subgraph of G such that each vertex is taken with probability 1

2 , independently. If there is at least one
induced-H in G, the number of induced-H in G′ is not a multiple of q with probability at least 2−|H|.

Now using Lemma 3.1, we can sample graph G′ from G, and with probability 2−k we have the number
of induced H is not divisible by q. To obtain higher probability, we can simply repeat this procedure.

Hence, it suffices to provide an algorithm for counting the number of copies of H modulo some integer.
The approach from [44] is to efficiently compute a quantity which is an integer linear combination Q =∑t

i=1 αinHi of the number of copies nHi in G of several different patterns H = H1, H2, . . . ,Ht, so that
some integer q divides the coefficients αi in front of nHi for i > 1 but q does not divide α1. Thus,Q = α1nH
mod q.

Suppose that d is the largest common divisor of α1 and q. Suppose that d 6= 1. Since q divides every αk
with k > 1, d must divide all αi. Hence, we could just consider Q/d in place of Q before taking things mod
q. Thus wlog α1 and q are coprime, and so α−1 exists in Zq. Hence, Qα−1 = nH mod q, and we can use
this quantity in step 2 of the approach above.

For instance, if H is K4 − e (the diamond), one can compute the square A2 of the adjacency matrix A
of G in O(nω) time, and compute

Q =
∑

(u,v)∈E

(
A2(u, v)

2

)
= nK4−e + 6nK4 ,

so that Q = nK4−e mod 6.
In prior work, the equations Q were obtained carefully for each particular 4 node pattern. In this sec-

tion we provide a general and principled approach of obtaining such quantities that can be computed in
O(C(n, k − 1)) time for k ≤ 6.

12

3.2 Setup
As mentioned earlier, two graphs H and H ′ are isomorphic if there is an injective mapping from the

vertex set of H onto the vertex set of H ′ so that edges and non-edges are preserved. We will represent this
mapping by presenting permutations of the vertices of H and H ′, i.e. for two graphs H and H ′ with vertex
orders H = (v1, . . . , vt) and H ′ = (w1, . . . , wt), we say H maps to H ′ if for each i and j, (vi, vj) ∈ E(H)
if and only if (wi, wj) ∈ E(H ′). Note that if H maps to H ′, H ′ maps to H as well.

We refer to k-node graphs as patterns, and we want to detect them in n-node graphs. We will assume
that every graph we consider is given with a vertex ordering, unless otherwise specified. We call a pattern
with an ordering labeled, and otherwise, the pattern is unlabeled. By the subgraph (v1, . . . , vh) in a graphG,
we mean the subgraph induced by these vertices, with this specified order when considering isomorphisms.

We partition all k-node patterns with specified vertex orders (there are 2(k2) many of these) into classes
and for each class we count the number of subgraphs in a given graph G which map to one of the graphs in
this class. Let k′ = bk−1

3 c. For a k-node pattern H = (v0, . . . , vk−1), define the class of k-node patterns
C(H) as follows:

Let F be the set of the following pairs of vertices: (v0, v1), . . . (v0, vk′) (We sometimes refer to these
pairs as the first k′ edges ofH). ThenH ′ = (w0, . . . , wk−1) ∈ C(H) if for all pairs of vertices (vi, vj) /∈ F ,
we have (vi, vj) ∈ E(H) if and only if (wi, wj) ∈ E(H ′). In other words, all graphs in a class agree on the
edge relation except possibly for the pairs in F .

Note that for any H ′ ∈ C(H), we have C(H ′) = C(H). So each k-node pattern is in exactly one class,
which is obtained by changing its first k′ edges. Figure 4 shows two classes of graphs for k = 4 (and hence
k′ = 1). In this case the set F consists of only one edge ((v0, v1)) and hence the graph classes are of size
two.

v0 v1 v2 v3 v0 v1 v2 v3

(a) class c1

v0 v1 v2 v3 v0 v1 v2 v3

(b) class c2

Figure 4: Two graph classes for k = 4. In both classes, the graphs in the class agree on all edges except the
edge v0v1

3.3 General Approach
Our goal is to detect an unlabeled pattern by counting the number of patterns in different classes of

graphs, which can be done as fast as the fastest algorithm for detecting k − 1-clique (i.e. C(n, k − 1)).
Theorem 3.1 states this result formally and we prove it at the end of this section. The graph classes possess
some useful properties which we introduce in Theorem 3.2 and Lemma 3.2 and provide their proofs in the
Appendix. Using these properties, we show how to use graph classes to detect unlabeled patterns.

Theorem 3.1. LetG be an n-node graph and let c be one of the classes of k-node patterns. We can count the
number of subgraphs inG which map to a pattern in c inO(C(n, k−1)) = O(M(nb

k−1
3
c, nd

k−1
3
e, nd

k−2
3
e))

time, which is the runtime of the fastest algorithm for detecting Kk−1.

Now we need to relate unlabeled patterns to pattern classes. Each unlabeled k-node pattern has k!
possible vertex orderings. We say that an unlabeled pattern H̃ embeds in class c if there is an ordering of
vertices of H̃ which is in c. Let U(c) be the set of unlabeled patterns that embed in c. For example, for the
classes c1 and c2 in Figure 4, U(c1) consists of the diamond (also called diam for abbreviation) and the paw

13

Figure 5: The diamond graph on the left and the paw graph on the right.

(depicted in Figure 5), and U(c2) consists of the diamond and K4. For each unlabeled pattern H̃ , let αc
H̃

denote the number of ways H̃ can be embedded in c, i.e. the number of vertex orderings of H̃ that put H̃
into c. In the example of Figure 4, αc1diam = 4 = αc2diam, αc1paw = 2 and αc2K4

= 24. In this example, the αc
H̃

numbers are all equal to |Aut(H̃)|, 3 each class contains at most one labeled copy of each H; in general,
this need not be the case.

Let nH̃ be the number of copies of H̃ in G. We have the following corollary:

Corollary 3.1. The number of (labeled) subgraphs in G which map to a pattern in c is
∑

H̃∈U(c) α
c
H̃
nH̃ .

The numbers αc
H̃

have some useful properties as shown in the next theorem.

Theorem 3.2. For any unlabeled pattern H̃ we have |Aut(H̃)| |αc
H̃

. Moreover, for any class c, we have

∑
H̃∈U(c)

αc
H̃

|Aut(H̃)|
= 2k

′
.

First note that this theorem gives us upper and lower bounds on the size of U(c). Each term in the above
summation contributes at least 1, so |U(c)| ≤ 2k

′
. Moreover since c has at least k′ + 1 labeled patterns

which have different numbers of edges, we have |U(c)| ≥ k′ + 1. So we get the following corollary.

Corollary 3.2. For any class c, we have 2k
′ ≥ |U(c)| ≥ k′ + 1.

Define bc
H̃

=
αc
H̃

|Aut(H̃)| . By Theorem 3.2, the number of subgraphs in G that map to a pattern in c

computed by Theorem 3.1 is of the following form:∑
H̃∈U(c)

bc
H̃
|Aut(H̃)|nH̃ (1)

So far we showed how each pattern class relates to unlabeled patterns. Now we show how we can obtain
different pattern classes from unlabeled patterns.

Lemma 3.2. Let H̃ be an unlabeled k-node pattern. For an arbitrary vertex with degree at least k′, consider
k′ of the edges attached to it; namely e1, . . . , ek′ . Let S be the set of all graphs obtained by removing any
number of the edges in {e1, . . . , ek′}. Then there is a class c, such that U(c) = S. Moreover, bc

H̃
= 1, and

H̃ is the pattern with maximum number of edges in c.

Applying Lemma 3.2 to our example, considerK4 as the initial pattern and consider an arbitrary edge of
it. Then the set S consists of the diamond and K4, and so U(c2) = S. Moreover, since |Aut(K4)| = 24 =

3Aut(H̃) is the automorphism group of H̃ .

14

αc2K4
, we have bc2K4

= 1. So by Theorem 3.2, bc2diam = 2 − 1 = 1. Similarly if we consider the diamond as
the initial pattern and take the edge between the degree three vertices, then the set S consists of the diamond
and the paw, and so U(c1) = S. Moreover, since |Aut(diam)| = 4 = αc1diam, we have bc1diam = 1, and
hence bc1paw = 1.

Now we are ready to show how to detect unlabeled patterns using graph classes. First let Br be the set
of unlabeled patterns H̃ such that r | |Aut(H̃)|. Note that we have Kk, K̄k ∈ Br for all r such that r|k!
(where Kk is the k-clique and K̄k is the k-Independent set). For a fixed unlabeled pattern H̃ which is not
the k-Independent Set or the k-Clique, the idea is to compute the sums of the form (1) for different pattern
classes c, such that a linear combination of these sums gives us a sum consisting of only the terms from H̃
and patterns H̃ ′ ∈ Br for some r such that r 6 | |Aut(H̃)|. More specifically, we want to compute a sum of
the following form:

|Aut(H̃)|nH̃ +
∑
H̃′∈Br

dH̃′ |Aut(H̃ ′)|nH̃′ (2)

where dH̃′ are some integers. Then using the fact that this sum is equal to |Aut(H̃)|nH̃ modulo r, by the
approach of Vassilevska W. et al. [44] we can assume with constant probability that r 6 |nH̃ , and hence we
can detect H̃ in G.

We provide the proof of Theorem 3.1, and in the next section we use our approach to show that for each
k, there is a pattern that can be detected in time O(C(n, k − 1)). Moreover, in the Appendix we show how
our approach is used to prove that any k-node pattern except k-clique and k-independent set can be detected
in O(C(n, k − 1)) time, for k ≤ 6.

3.4 Proof of Theorem 3.1
The general idea is to remove one vertex, divide the rest of the vertices into three (almost) equal parts.

Then form two matrices such that the first matrix captures the subgraphs isomorphic to the removed vertex
plus the first part, and the second matrix captures the subgraphs isomorphic to the removed vertex plus the
second and the third part, and then use matrix multiplication to count the number of subgraphs isomorphic
to the whole pattern in the host graph. We show the approach more formally below.

Let V (G) = {v1, . . . , vn}. Let H = (w0, . . . , wk−1) be an arbitrary pattern in c (so c = C(H)). Recall
that k′ = bk−1

3 c. Our algorithm consists of three steps. In step one, for each t = k − k′ − 1 vertices
vi1 , . . . , vit , we count the number of vertices u inG such that the subgraph (u, vi1 , . . . , vit) inGmaps to the
subgraph (w0, wk′+1, wk′+2, . . . , wk−1) in H . In step two, we count the number of k′-tuples (vj1 , . . . , vjk′)
such that the subgraph (vj1 , . . . , vjk′ , vi1 , . . . , vit) in G maps to the subgraph (w1, . . . , wk−1) in H . In step
three, we show how to combine the numbers obtained in the last two steps to get the resulting value.

Before we explain each step, here is some notation. Let k1 = dk−1
3 e and k2 = dk−2

3 e. Note that
k1, k2 ∈ {k′, k′ + 1} and k′ + k1 + k2 = k − 1. Define the set S to be all t-tuples p = (vi1 , . . . , vit) where
the subgraph induced by p maps to the subgraph (wk′+1, . . . , wk−1) in H . We can write each t-tuple p with
a pair of k1 and k2 tuples, p′ and p′′; i.e. p′ = (vi1 , . . . , vik1

) and p′′ = (vik1+1
, . . . , vit)

Step one: Construct two matrices B and C of sizes nk1 × n and n× nk2 as follows: For each k1-tuple
p1 = (vi1 , . . . , vik1

) and each vertex vh ∈ G, let Bp1,vh = 1 if the subgraph (vh, p1) in G maps to the sub-
graph (w0, wk′+1, . . . , wk′+k1) in H . Otherwise set it to 0. For each k2-tuple p2 = (vj1 , . . . , vjk2

) and each
vertex vh ∈ G, let Cvh,p2 = 1 if the subgraph (vh, p2) in G maps to the subgraph (w0, wk′+k1+1, . . . , wk−1)
in H . Otherwise set it to 0. Compute M = BC. For any p1 = (vi1 , . . . , vik1

) and p2 = (vj1 , . . . , vjk2
) such

that the t-tuple (p1, p2) ∈ S, we have Mp1,p2 is the number of vertices u such that the subgraph (u, p1, p2)
in G maps to the subgraph (w0, wk′+1, . . . , wk−1) in H .

15

Step two: Construct two matricesB′ andC ′ of sizes nk1×nk′ and nk
′×nk2 as follows: For each k1-tuple

p2 = (vi1 , . . . , vik1
) and each k′-tuple p1 = (vj1 , . . . , vjk′) inG, letB′p2,p1

= 1 if the subgraph (p1, p2) inG
maps to the subgraph (w1, . . . , wk′+k1) in H . Otherwise set it to 0. For each k2-tuple p3 = (vh1 , . . . , vhk′)
and each k′-tuple p1 = (vj1 , . . . , vjk′) in G, let C ′p1,p3

= 1 if the subgraph (p1, p3) in G maps to the
subgraph (w1, . . . , wk′ , wk′+k1+1, . . . , wk−1) in H . Otherwise set it to 0. Compute M ′ = B′C ′. For any
p2 = (vi1 , . . . , vik1

) and p3 = (vh1 , . . . , vhk2
) such that the t-tuple (p2, p3) ∈ S, we have M ′p1,p3

is the
number of k′-tuples p1 in G such that the subgraph (p1, p2, p3) in G maps to the subgraph (w1, . . . , wk−1)
in H .

Step three: Let r be the number of vertices wi in {w1, . . . , wk′}, such that the subgraph
(wi, wk′+1, . . . , wk−1) in H maps to the subgraph (w0, wk′+1, . . . , wk−1) in H . Compute the following
sum using matrices M and M ′: ∑

p∈S
(Mp′,p′′ − r)M ′p′,p′′ (3)

If r = 0, by the way we constructedM andM ′, each numberMp′,p′′M
′
p′,p′′ is the number of k′+1 tuples

(vi0 , . . . , vik′) such that the subgraph (vi0 , p
′, p′′) in G maps to the subgraph (w0, wk′+1, . . . , wk−1) in H ,

and the subgraph (vi1 , . . . , vik′ , p
′, p′′) in G maps to the subgraph (w1, . . . , wk−1) in H . So the number in

equation 3 is the number of subgraphs in G which map to a pattern in c. Now if r > 0, then each k′-tuple
that is counted in M ′p′,p′′ contains exactly r vertices that are also counted in Mp′,p′′ and cannot be used
simultaneously. So in this case, the number (Mp′,p′′ − r)M ′p′,p′′ counts the number of k′ + 1 tuples with the
property mentioned above.

Now we analyze the running time. M and M ′ in step one and two can be computed in
O(M(nb

k−1
3
c, n, nd

k−2
3
e)) and O(M(nb

k−1
3
c, nd

k−1
3
e, nd

k−2
3
e)) time, respectively, using rectangular matrix

multiplication. By checking all t-tuples of vertices in G in nt time, we can identify the set S, and then the
sum in step three can be computed in O(|S|) ≤ O(nt) time. Note that O(M(nb

k−1
3
c, nd

k−1
3
e, nd

k−2
3
e)) ≥

nmax (b k−1
3
c+d k−1

3
e,d k−1

3
e+d k−2

3
e) which is the size of the input in rectangular matrix multiplication, and

also we have t = k − 1 − k′ ≤ max (bk−1
3 c+ dk−1

3 e, d
k−1

3 e+ dk−2
3 e). So the total the running time

is O(M(nb
k−1

3
c, nd

k−1
3
e, nd

k−2
3
e)).

4 Patterns easier than cliques

Using the approach of Section 3, we show that for any k, there is a pattern that contains a k − 1-clique
and can be detected in O(C(n, k − 1)) time in an n-node graph G. Since this pattern has a k − 1-clique as
a subgraph, it is at least as hard as k − 1-clique to detect, which means that the runtime obtained for it is
tight, if we assume that the best runtime for detecting k−1-clique is O(C(n, k−1)). Let Hk

s be the k-node
pattern consisting of a (k − 1)-clique and a vertex adjacent to s vertices of the (k − 1)-clique. Assume that
s ≥ dk−1

2 e. If s 6= k − 2, then |Aut(Hk
s)| = s!(k − s− 1)!. For s = k − 2, |Aut(Hk

k−2)| = (k − 2)!2!. So
in all cases |Aut(Hk

s)| is divisible by s!(k − s− 1)!.

Theorem 4.1. Let k be any positive integer, and suppose that there exists s, dk−1
2 e ≤ s ≤ k − 1 − bk−1

3 c,
such that s+ 1 is a prime number. Then Hk

s can be detected in C(n, k − 1) time with high probability.

Proof. Let the vertex outside the (k− 1)-clique in Hk
s be v0. We know that if k′ = bk−1

3 c, there are at least
k′ vertices that are not attached to v0 because s ≤ k − 1 − k′. Let v1, . . . , vk′ be k′ of the vertices of the
(k − 1)-clique that v0 is not attached to. Let vk′+1, . . . , vk be the rest of the vertices. Consider the ordering
H = (v0, v1, . . . , vk) of Hk

s , and let c = p(H) be the class defined by H . Note that U(c), which is the set

16

of unlabeled graphs that can be embedded in c, is {Hk
s , H

k
s+1, . . . ,H

k
s+k′}. So the equation we get from

this class in time O(C(n, k − 1)) is Q =
∑k′

i=0 bi|Aut(Hk
s+i)|nHk

s+i
, where bi is some integer and b0 = 1

(by an argument similar to Lemma 3.2). Since s ≥ (k − 1)/2, we have that s + 1 > k − s − 1, and so
|Aut(Hk

s)| is not divisible by s+ 1, which means that the coefficient of nHk
s

in the equation is not divisible
by s+ 1. However, for all i ≥ 1, we have that |Aut(Hk

s+i)| is divisible by s+ 1. So Q is of the form (2) for
r = s+ 1, and hence we can detect Hk

s in time O(C(n, k − 1)) with high probability. �

Lemma 4.1. For any positive integer k ≥ 3, k 6= 14, there exists s such that dk−1
2 e ≤ s ≤ k − 1− bk−1

3 c
and s+ 1 is prime.

Proof. We are going to use two theorems about prime numbers in intervals. The first one is due to Loo [29]
that says for all n > 1, there is a prime number in (3n, 4n). The second theorem is due to Nagura [31] and
says that for all x ≥ 25, there is a prime number in [x, 6x/5].

First suppose that k = 6t+ i for two nonnegative integers t and i where 0 ≤ i ≤ 5 and i 6= 2. If i < 2,
let n = t, and otherwise let n = t + 1. We need a prime in the interval I = (dk−1

2 e, k − b
k−1

3 c + 1), and
since dk−1

2 e ≤ 3n and 4n ≤ k − bk−1
3 c + 1, there exists such a prime by the first theorem. Now assume

that i = 2. If t ≥ 8, then dk−1
2 e+ 1 ≥ 25, and so if x = dk−1

2 e+ 1, then 6x/5 ≤ k− bk−1
3 c and so there is

a prime in the interval I by the second theorem. Now suppose that t ≤ 7 and i = 2. For t = 1, 3, 4, 5, 6, 7,
the prime numbers in the interval I associated to each k are 5, 11, 17, 17, 23, 23 respectively. �

For k = 14, we show that we can detect Hk
7 in O(C(n, k − 1)) time. The approach is the same as

Theorem 4.1: we look at the class c where U(c) consists of Hk
7 , . . . ,H

k
11 and we consider the equation

Q =
∑4

i=0 bi|Aut(Hk
7+i)|nHk

7+i
which can be obtained in O(C(n, k − 1)) time, where b0 = 1 (by an

argument similar to Lemma 3.2). Now note that |Aut(Hk
7+i)| is divisible by 29 for all 0 < i ≤ 4, and

|Aut(Hk
7)| is not divisible by 29. So Q is of the form (2) for r = s + 1, and hence we can detect Hk

7 in
O(C(n, k − 1)) time, and hence we have the following corollary.

Corollary 4.1. For all k > 2, there is some swhere the k-node patternHk
s can be detected inO(C(n, k−1))

time with high probability.

5 Detecting non-induced directed cycles

In this Section we analyze an algorithm proposed by Yuster and Zwick [46], obtaining the fastest algo-
rithms for k-Cycle detection in sparse directed graphs, to date.

We begin by summarizing the algorithm.

5.1 Yuster and Zwick’s Algorithm
Let k ≥ 3 be a constant. Let G = (V,E) be a given directed graph with |V | = n, |E| = m. The

algorithm will find a k-Cycle in G if one exists. First, let us note that we can assume that G is k-partite with
partitions V0, . . . , Vk−1 so that the edges only go between Vi and Vi+1 mod k (for i ∈ {0, . . . , k−1}). This is
because we can use the Color-Coding technique [3]: if we assign each vertex v a color c(v) ∈ {0, . . . , k−1}
independently uniformly at random and then place v into Vc(v), removing edges that are not between adjacent
partitions Vi and Vi+1 mod k, then any k-Cycle will be preserved with probability ≥ 1/kk. The procedure
can be derandomized at the cost of a O(log n) factor in the runtime.

17

Now that we have a k-partitem-edgeG, we are looking for a cycle v0 ∈ V0 → v1 ∈ V1 → . . .→ vk−1 ∈
Vk−1 → v0. Let us partition the vertices V into log n degree classes: Wj = {v ∈ V | deg(v) ∈ [2j , 2j+1)}.
We refer to a degree class Wj by its index j, for simplicity of notation.

For all (log n)k choices of degree classes (f0, . . . , fk−1) with fr ∈ {0, . . . , log n} for all r, we will be
looking for a k-Cycle v0 → v1 → . . . → vk−1 → v0 such that for all j ∈ {0, . . . , k − 1}, vj ∈ Vj ∩Wfj

(i.e. vj has degree roughly 2fj).
It will make sense for the degrees of the cycle vertices to be expressed in terms of the number of edgesm.

For this reason, when we are considering a k-tuple of degree classes (f0, . . . , fk−1), we will let mdj = 2fj ,
so dj = fj/ logm, and we will be talking about degree classes (d0, . . . , dk−1) instead.

Now, let us fix one of the degree classes d = (d0, . . . , dk−1). There are two approaches for finding a
k-Cycle v0 → v1 → . . .→ vk−1 → v0 such that vj ∈ Vj and vj has degree roughly mdj :

1. For each j ∈ {0, . . . , k − 1} we know that the number of vertices in Vj of degree roughly mdj

is O(m1−dj). Thus, in O(m2−dj) time we can run BFS from each node in Vj of such degree and
determine whether there is a k-Cycle going through it.

2. Let p, q ∈ {0, . . . , k − 1}. Let’s denote by Bd
p,q the |Vp| × |Vq| Boolean matrix such that for all

vp ∈ Vp, vq ∈ Vq, Bd
p,q[vp, vq] = 1 if and only if there is a path vp → vp+1 mod k → . . . → vq

(indices mod k) so that each vr ∈ Vr and the degree of vr is roughly mdr .

The approach here is pick a particular pair i, j ∈ {0, . . . , k − 1} and compute Bd
i,j and Bd

j,i. Then
one can find a pair of vertices vi ∈ Vi, vj ∈ Vj such that Bd

i,j [vi, vj] = Bd
j,i[vj , vi] = 1, if such a pair

exists, at an additional cost of the number of nonzero entries in Bd
i,j and Bd

j,i which is dominated by
the runtime of computing these matrices.

For a fixed degree class d = (d0, . . . , dk−1), let P di,j be the minimum such that Bd
i,j can be computed in

Õ(mP d
i,j) time. There are three ways to compute Bd

i,j :

(a) Compute Bd
i,j−1 and then for every vertex vj−1 ∈ Vj−1 of degree roughly mdj−1 , go through all of

its outneighbors vj in Vj (only of degree roughly mdj) and set Bd
i,j [vi, vj] to 1 for every vi ∈ Vi for

which Bd
i,j−1[vi, vj−1] = 1.

(b) Similar to above but reversing the roles of j − 1 and i: Compute Bd
i+1,j and then for every vertex

vi+1 ∈ Vi+1 of degree roughly mdi+1 , go through all of its inneighbors vi in Vi (only of degree
roughly mdi) and set Bd

i,j [vi, vj] to 1 for every vj ∈ Vj for which Bd
i+1,j [vi+1, vj] = 1.

(c) For some r with i < r < j, compute Bd
i,r and Bd

r,j and compute their Boolean product to obtain Bd
i,j .

The exponent of the runtime of (a) is recursively bounded as P di,j ≤ P di,j−1 + dj−1 as in the worst case,

the number of nonzero entries in Bd
i,j could be Õ(mP d

i,j−1). Similarly, the runtime of (b) is bounded by
P di,j ≤ P di+1,j + di+1. The runtime of (c) is bounded by

P di,j ≤ min
i<r<j

max{P di,r, P dr,j ,M(1− di, 1− dr, 1− dj)},

M(a, b, c) is the smallest g such that one can multiply anma×mb by anmb×mc matrix inO(mg) time. We
will not use the known fast rectangular matrix multiplication algorithms (e.g.[26, 18]) here, but for clarity
instead will use the estimate M(a, b, c) ≤ a+ b+ c− (3− ω) min{a, b, c}.

18

We get the inductive definition.

P di,i+1 = 1, ∀j 6= i+1, P di,j = min{P di,j−1+dj−1, P
d
i+1,j+di+1, min

i<r<j
max{P di,r, P dr,j ,M(1−di, 1−dr, 1−dj)}}.

(4)
For d = (d0, . . . , dk−1), define

Ck(d0, . . . , dk−1) = min
0≤i<j≤k−1

max{P di,j , P dj,i}.

The algorithm above runs in Θ̃(mck) time, where

ck = max
d=(d0,...,dk−1)

min

{
min

0≤i≤k−1
(2− di), Ck(d0, . . . , dk−1)

}
.

Yuster and Zwick were only able to analyze ck for k ≤ 5. In particular, they showed that c3 = 2ω/(ω+
1), c4 = (4ω − 1)(2ω + 1), c5 = 3ω/(ω + 2). While they were not able to analyze ck for k > 5, using
extensive numerical experiments, they came up with conjectures about the structure of ck for all odd k and
for k = 6. They did not propose a conjecture for larger even k.

Conjecture 2. 4 For all odd k ≥ 3, ck ≤ (k+ 1)ω/(2ω+k− 1); if ω ≤ 2k
k−1 , ck = (k+ 1)ω/(2ω+k− 1).

Conjecture 3. 5

c6 =


10ω−3
4ω+3 , if 2 ≤ ω ≤ 13

6
22−4ω
17−4ω , if 13

6 ≤ ω ≤
9
4

11ω−2
4ω+5 , if 9

4 ≤ ω ≤
16
7

10−ω
7−ω , if 16

7 ≤ ω ≤
5
2

(5)

We prove these conjectures, and in addition prove upper bounds on ck that are tight when ω = 2.

5.2 The runtime of Yuster-Zwick’s algorithm for finding k-Cycles
Here we prove Conjectures 3 and 2, and in addition we give bounds for all even k that are tight when

ω = 2. This proves Theorem 1.3 from the introduction. Let Ck denote the k-Cycle.
To highlight the result for even cycles for which there wasn’t even a conjectured runtime, we split it into

its separate theorem:

Theorem 5.1. For all even k ≥ 4, ck ≤
kω− 4

k

2ω+k−2− 4
k

. This bound is tight for ω = 2.

5.3 Setup: Basic Lemmas

For simplicity’s sake, we write Pi,j for P (d0,..,dk−1)
i,j when (d0, .., dk−1) is fixed. Here and in what fol-

lows, all indices are considered modulo k. Visualizing these indices as k points arranging counterclockwise
on a circle would make the following definitions and inequalities more intuitive.

4The conjecture given in [46] states that ck = (k + 1)ω/(2ω + k − 1). However, we discover that ck ≤ 2− 2
k+1

< (k+1)ω
2ω+k−1

when ω > 2k
k−1

.
5The conjecture given in [46] had a slight typo in the first case - the denominator stated there was (4ω+4) instead of (4ω+3).

However, looking at the numerical experiments given to us by Uri Zwick we saw that it should be corrected, and indeed we prove
that the corrected version is correct.

19

Definition 5.1. For any index r, and δ ≥ 0, r is δ-low if dr < δ, and δ-high otherwise.

Definition 5.2. For any two indices i, j, let `(i, j) = (j − i + 1) (mod k) and f(i, j) =
∑i+`(i,j)−1

r=i dr.
Note that `(i, j) ≥ 0. When `(i, j) = 0 (i.e. i = j + 1), f(i, j) =

∑j
r=j+1 dr = 0.

Repeatedly applying inequality P dw,y ≤ P dw,y−1 + dy−1, which is derived from Equation (4), gives
P dw,y ≤ 1 + f(w + 1, y − 1)

Lemma 5.1. Suppose that dr ≤ δ ≤ di, dj . Let j0 ∈ {i, j} such that dj0 = min{di, dj}.

1. If P dj,i, P
d
i,r, P

d
r,j ≤ B and Ck(d0, · · · , dk−1) > B then M(1− di, 1− dj , 1− dr) > B

2. If M(1 − di, 1 − dj , 1 − dr) ≥ B ≥ ω(1 − δ) then dr + dj0 ≤ ω − B − (ω − 2)δ ≤ 2δ, and
dr ≤ ω −B − (ω − 2)δ − δ.

Proof. 1. Suppose thatM(1−di, 1−dj , 1−dr) ≤ B. Using the matrix multiplication rule gives P di,j ≤
max{P di,r, P dr,j ,M(1−di, 1−dj , 1−dr)} ≤ B. But then Ck(d0, · · · , dk−1) ≤ max{P di,j , P dj,i} ≤ B,
a contradiction.

2. Suppose that dr + dj0 > ω −B − (ω − 2)δ, then: M(1− di, 1− dj , 1− dr) = 3− di − dj − dr −
(3− ω)(1−max{di, dj , dr}) = 2− (dr + dj0) + (ω − 2)(1−max{di, dj}) < 2− (ω −B − (ω −
2)δ) + (ω − 2)(1− δ) = B (contradiction).

That B ≥ ω(1 − δ) implies dr + dj0 ≤ ω − B − (ω − 2)δ ≤ 2δ. This together with dj0 ≥ δ imply
dr ≤ ω −B − (ω − 2)δ − δ.

�

Lemma 5.2. For any two indices i, j, and integer t ≤ k−2. If di, dj ≥ δ and there are no t+ 1 consecutive
δ-low indices r such that i < r < j then Pi,j ≤ max{1 + tδ, ω(1− δ)}.

As a consequence, if there are no t + 1 consecutive δ-low indices then Ck(d0, ..., dk−1) ≤ max{1 +
tδ, ω(1− δ)}.

Proof. Let i = i0, i1, . . . , iz = j be the indices within {i, i+1, . . . , j} (indices mod k) such that dib ≥ δ for
each b ∈ {0, . . . , z}. Since there are no consecutive t + 1 δ-low indices, for each b, Pib,ib+1

≤ 1 + tδ,
using the rule Pw,y ≤ Pw,y−1 + dy−1. Now we can use the matrix multiplication rule to get Pi,j ≤
max{1 + tδ,M(1− δ, 1− δ, 1− δ)}. �

5.4 Finding odd cycles
Here we prove Yuster and Zwick’s conjecture that the exponent ck of the runtime when k is odd and

ω ≤ 2k
k−1 is ω(k+1)/(2ω+k−1). When k is odd and ω > 2k

k−1 , using only rule 1 and 2(a), (b) in Algorithm
5.1, one can prove ck ≤ 2− 2

k+1 < (k + 1)ω/(2ω + k − 1) (see Theorem 3.4 of [4]).
Let t := bk−1

2 c, h := k − t− 1. Note that t ≤ h ≤ t+ 1 and 2h ≤ k.
Let δ ≥ 0 be a parameter to be specified later. Let B := 1 + tδ. Assume that B ≥ ω(1 − δ). Pick

arbitrary 0 ≤ d0, · · · , dk−1 ≤ 1. Below, we write Ck in place of Ck(d0, · · · , dk−1) for simplicity. We need
to prove that Ck ≤ B.

By Lemma 5.2, if there are no t+ 1 consecutive δ-low indices then Ck ≤ max{1 + tδ, ω(1− δ)} = B.
Now, consider the case when there are at least t+ 1 consecutive δ-low indices. WLOG, we can assume that
there exists s ∈ [0, h−1] such that indices 0 and s are δ-high and indices r are δ-low for all s+1 ≤ r ≤ k−1.
That there are at most s− 1 ≤ h− 2 < t indices r such that 0 < r < s and Lemma 5.2 implies P0,s ≤ B.

20

Our proof for upper bounds on Ck will proceed as follow: suppose Ck > B, we use Lemma 5.3 to derive
multiple inequalities of form di + dr ≤ ω − B − (ω − 2)δ ≤ 2δ where r ∈ {i + t, i − t}, then sum these
inequalities together to get f(R+ 1, R− 1) ≤ 2tδ, which implies Ck ≤ B by Lemma 5.4.

Lemma 5.3. Consider indices i, j, r where 0 ≤ i ≤ j ≤ s < r ≤ k−1 and f(r+1, i−1), f(j+1, r−1) ≤
tδ. If Ck > B then dr ≤ ω −B − (ω − 2)δ − δ, and dr + min{di, dj} ≤ ω −B − (ω − 2)δ ≤ 2δ.

Proof. P0,s ≤ B by Lemma 5.2. That max{f(s+1, r−1), f(r+1, k−1)} ≤ max{f(j+1, r−1), f(r+
1, i− 1)} ≤ tδ implies max{Ps,r, Pr,0} ≤ B. Also, dr ≤ δ ≤ d0, ds, so dr ≤ ω −B − (ω − 2)δ − δ ≤ 2δ
by Lemma 5.1.

WLOG, assume di ≤ dj . If di ≤ δ then di+dr ≤ ω−B− (ω−2)δ− δ+ δ = ω−B− (ω−2)δ. Else,
δ ≤ di ≤ dj . Since 0 ≤ i ≤ j ≤ s, by Lemma 5.2, Pi,j ≤ B. That f(r + 1, i − 1), f(j + 1, r − 1) ≤ tδ
implies Pr,i, Pj,r ≤ B. Also, dr ≤ δ ≤ di ≤ dj , so di + dr ≤ ω −B − (ω − 2)δ by Lemma 5.1. �

Lemma 5.4. If there exists index R, 0 ≤ R ≤ k − 1 such that f(R+ 1, R− 1) ≤ 2tδ then Ck ≤ B
Proof. For every index r ∈ [R+ 1, R− 2]:

PR,r+1 + Pr,R ≤ (1 + f(R+ 1, r)) + (1 + f(r + 1, R− 1)) = 2 + f(R+ 1, R− 1) ≤ 2 + 2tδ = 2B,

so either PR,r+1 ≤ B or Pr,R ≤ B.
Note that PR,R+1 = 1 ≤ B, so there exists index r∗ := max{r|R + 1 ≤ r ≤ R − 1 ∧ PR,r ≤ B}.

If r∗ = R − 1, then PR,R−1 ≤ B and PR−1,R = 1 ≤ B so Ck ≤ max{PR,R−1, PR−1,R} ≤ B. If
r∗ ≤ R − 2, then either PR,r+1 ≤ B or Pr,R ≤ B. By definition of r∗, PR,r+1 > B, so Pr,R ≤ B and
Ck ≤ max{PR,r, Pr,R} ≤ B. �

To use 5.3, we need Definition 5.3 to ensure the preconditions, and Definition 5.4 to get rid of the
min{., .} symbol.

Definition 5.3. For any integer q, arc (i, j) is q-low if f(i, j) ≤ δ(`(i, j)− q) and q-high otherwise.

Lemma 5.5. Consider indices i, j such that s+1 ≤ i ≤ j+1 ≤ k. If (i, j) is q-low then (i′, j′) is q-low for
any s+1 ≤ i′ ≤ i and j ≤ j′ ≤ k−1. If (i, j) is q-high then (i′, j′) is q-high for any i ≤ i′ ≤ j′+1 ≤ j+1.

Proof. Since dr ≤ δ∀s+ 1 ≤ r ≤ k − 1,

f(i′, j′) = f(i′, i−1)+f(i, j)+f(j+1, j′) ≤ `(i′, i−1)δ+(`(i, j)−q)δ+ `(j+1, j′)δ = (`(i, j)−q)δ.

The second statement follows by taking the contrapositive of the first. �

Lemma 5.6. For any indices i, j such that s + 1 ≤ i ≤ j + 1 ≤ k, (i, j) is 0-low. If Ck > B then (i, j) is
(h− s)-high

Proof. Our earlier assumption about δ-low indices implies dr ≤ δ∀s+ 1 ≤ r ≤ k − 1. Thus

f(i, j) =

j∑
r=i

dr ≤
j∑
r=i

δ = δ(`(i, j)− 0).

Recall that P0,s ≤ B by Lemma 5.2. If (i, j) is (h − s)-low then so is (s + 1, k − 1) by Lemma 5.5. But
then

f(s+ 1, k − 1) ≤ δ(`(s+ 1, k − 1)− (h− s)) = δ(k − s− 1− (k − t− 1− s)) = δt = B − 1

⇒ Ck ≤ max{P0,s, P
d
s,0} ≤ max{P0,s, 1 + f(s+ 1, k − 1)} ≤ B.

�

21

Definition 5.4. Define sequences (an), (bn) for n ∈ {0, · · · , s} as follows:

a0 = 0, b0 = s, (an, bn) =

{
(an−1 + 1, bn−1) if dan ≤ dbn
(an−1, bn−1 − 1) else

Clearly, (an) is weakly increasing, (bn) is weakly decreasing and bn−an = s−n ≥ 0. Let T := as = bs.

Theorem 5.2. Let p, q be integers in [0, h − s − 1]. Let ∆ := p − q. For every index i, let i∆ := i + ∆.
Let m = s − h + t ≤ s. We say condition (p, q) holds if (s + 1, b∆m + t − 1) is p-low, (s + 1, b∆m + t) is
(p+ 1)-high, (a∆

m − t+ 1, k− 1) is q-low and (a∆
m − t, k− 1) is (q+ 1)-high, and property (p, q, B) holds

if condition (p, q) implies Ck ≤ B.

1. If condition (p, q) holds and Ck > B then:

(a) ∀n ∈ {0, ..,m} :

f(a∆
n − t+ 1, an − 1) ≤ tδ (6)

f(bn + 1, b∆n + t− 1) ≤ tδ (7)

dr + dr∆−t ≤ ω −B − (ω − 2)δ ≤ 2δ ∀r, 0 ≤ r < an (8)

dr + dr∆+t ≤ ω −B − (ω − 2)δ ≤ 2δ ∀r, bn < r ≤ s (9)

(b) f(bm + 1, am − 1) ≤ 2tδ

2. Property (p, q, B) holds when k is odd i.e. if k is odd and condition (p, q) holds, then Ck ≤ B.

0
1

am = bm

3

4

s

6 bm + t− 1

bm + t

am − t

am − t+ 1

11

12

Figure 6: A visualization of the setup of Theorem 5.2 when k = 13, t = h = 6, s = h− 1 = 5,∆ = 0 and
am = bm = 2.

Proof. We prove 5.2.1(a) by induction on n for n ∈ {0, ..,m}. First, observe a useful fact:

Fact 5.1. ∀n ∈ {0, ..,m}: (s+1, b∆n + t−1) is p-low, (s+1, a∆
n − t−1) is (p+1)-high, (a∆

n − t+1, k−1)
is q-low, (b∆n + t+ 1, k − 1) is (q + 1)-high.

22

Proof of Fact 5.1. Since 0 ≤ p, q ≤ h− s− 1,

s+ 1− h ≤ ∆ ≤ h− s− 1.

Also,
a∆
n − t− 1 = a∆

n + k − t− 1 = a∆
n + h.

Sequence (an) defined in 5.4 is weakly increasing and am = bm − (h− t) ≤ s− (h− t) so:

k − 2 ≥ (s− (h− t)) + (h− s− 1) + h ≥ a∆
m + h ≥ a∆

n + h ≥ 0 + (s+ 1− h) + h = s+ 1,

where we use a∆
i = ai + ∆.

Therefore, s+1 ≤ a∆
n −t−1 < a∆

n −t+1 ≤ a∆
m−t+1 and (a∆

m−t+1, k−1) is q-low so (a∆
n −t+1, k−1)

is q-low by Lemma 5.5. That bm − am = s−m = h− t implies s+ 1 ≤ a∆
n − t− 1 ≤ a∆

m + h ≤ b∆m + t.
Also, (s+ 1, b∆m + t) is (p+ 1)-high so (s+ 1, a∆

n − t− 1) is (p+ 1)-high by Lemma 5.5.
Analogously (but note that (bn) is decreasing), (s + 1, b∆n + t − 1) is p-low and (b∆n + t + 1, k − 1) is

(q + 1)-high. �

Now, let us proceed with the inductive proof.
Base case, n = 0:
By Fact 5.1, (s+ 1, b∆0 + t− 1) is p-low. We have ∆ = p− q ≤ p, so:

f(s+ 1, b∆0 + t− 1) ≤ δ(`(s+ 1, b∆0 + t− 1)− p) ≤ δ(`(s+ 1, b∆0 + t− 1)−∆) < tδ

By Fact 5.1, (a∆
0 − t+ 1, k − 1) is q-low. We have −∆ = q − p ≤ q, so:

f(a∆
0 − t+ 1, k − 1) ≤ δ(`(a∆

0 − t+ 1, a0 − 1)− q) ≤ δ(`(a∆
0 − t+ 1, a0 − 1)− (−∆)) < tδ

Since a0 = 0 and b0 = s, inequalities (6) and (7) are proved. Inequalities (8) and (9) are trivially true.
Suppose 5.2.1(a) is true for n − 1 where m ≥ n ≥ 1. WLOG, assume dan−1 ≤ dbn−1 . The case

dan−1 > dbn−1 is analogous.
By Definition 5.4, an = an−1 + 1, bn = bn−1. Thanks to inductive assumption, we only need to show:

dan−1 + da∆
n−1−t

≤ ω −B − (ω − 2)δ

and
f(a∆

n − t+ 1, an − 1) ≤ tδ.

Below, write R in place of a∆
n−1 − t = a∆

n − t− 1 = a∆
n + h for simplicity’s sake. From proof of Fact 5.1,

s+ 1 ≤ R ≤ a∆
m + h ≤ k − 2.

By the inductive assumption, f(R + 1, an−1 − 1) = f(a∆
n−1 − t + 1, an−1 − 1) ≤ tδ and f(bn−1 +

1, b∆n−1 + t−1) ≤ tδ. By Definition 5.4, h− t+1 = s− (m−1) ≤ s− (n−1) = bn−1−an−1, soR−1 =
a∆
n−1+h ≤ b∆n−1+t−1. Also, bn−1+1 ≤ s+1 ≤ R, so f(bn−1+1, R−1) ≤ f(bn−1+1, b∆n−1+t−1) ≤ tδ.

By Lemma 5.3, dan−1 + dR ≤ ω −B − (ω − 2)δ ≤ 2δ.
By the inductive assumption and the above statement, ∀0 ≤ i ≤ an−1 : di ≤ 2δ − di∆−t. Hence:

f(0, an−1) ≤
an−1∑
i=0

(2δ − di∆−t) = 2`(0, an−1)δ −
a∆
n−1−t∑
i=0∆−t

di = 2`(0, an−1)δ − f(0∆ − t, R) (10)

23

Recall that an = an−1 + 1, so R = a∆
n−1 − t = a∆

n − t − 1. By Fact 5.1, (s + 1, R) is (p + 1)-high.
Since 0∆ − t ≥ k+ (s+ 1− h)− t ≥ s+ 1, by Lemma 5.5, (0∆ − t, R) is also (p+ 1)-high. By Fact 5.1,
(a∆
n − t+ 1, k − 1) is q-low. These together with equation (10) imply:

f(a∆
n − t+ 1, an − 1) = f(a∆

n − t+ 1, k − 1) + f(0, an−1)

≤ (`(a∆
n − t+ 1, k − 1)− q)δ + 2`(0, an−1)δ − f(0∆ − t, R)

≤ (`(a∆
n − t+ 1, k − 1)− q)δ + 2`(0, an−1)δ − (`(0∆ − t, a∆

n−1 − t)− (p+ 1))δ

= ((t− an −∆− 1− q) + 2(an−1 + 1)− (an−1 + 1− (p+ 1)))δ

= tδ,

where the simplification in the last two lines follows from an = an−1 + 1 and ∆ = p− q.
Hence, 5.2.1(a) is still true for n, so is true for all n ∈ {0, ..,m}.
Now, we prove 5.2.1(b). Note that b∆m − a∆

m = bm − am = s −m = h − t, so b∆m + t = a∆
m + h. By

5.2.1(a)’s inequalities (8), (9):

2δm ≥
am−1∑
i=0

(di + di∆−t) +
s∑

j=bm+1

(dj + dj∆+t) =

am−1∑
i=0

di +

a∆
m+h∑

i=h∆+1

di +
s∑

j=bm+1

dj +
s∆+t∑

j=b∆m+t+1

dj

= f(0, am − 1) + f(h∆ + 1, a∆
m + h) + f(bm + 1, s) + f(a∆

m + h+ 1, s∆ + t)

= f(0, am − 1) + f(bm + 1, s) + f(h∆ + 1, s∆ + t)

(11)

That |∆| ≤ h− s− 1, 2h ≤ k and h− 1 ≤ t implies

h∆ = h+ ∆ ∈ [h− (h− s− 1), h+ (h− s− 1)] ⊆ [s+ 1, k − 1],

and s∆ + t+ 1 ∈ [s− (h− s− 1) + t+ 1, s+ (h− s− 1) + t+ 1] ⊆ [s+ 1, k − 1].
By Lemma 5.6:

f(s+ 1, h∆) ≤ `(s+ 1, h∆)δ = (h∆ − s)δ = (h+ ∆− s)δ
f(s∆ + t+ 1, k − 1) ≤ `(s∆ + t+ 1, k − 1)δ = (h− s∆)δ = (h−∆− s)δ

(12)

Summing equations in (12) with equation (11) gives:

2tδ = 2δm+ (h+ ∆− s)δ + (h−∆− s)δ
≥ f(0, am − 1) + f(bm + 1, s) + f(h∆ + 1, s∆ + t) + f(s+ 1, h∆) + f(s∆ + t+ 1, k − 1)

= f(0, am − 1) + f(bm + 1, s) + f(s+ 1, k − 1)

= f(bm + 1, am − 1)

(13)

Now, we prove 5.2.2. When k is odd, h = t, m = s, and am = bm = as = bs = T . Suppose that
Ck > B, then f(T + 1, T − 1) ≤ 2tδ by 5.2.1(b), thus Ck ≤ B by lemma 5.4. �

To finish the proof, we prove property (p, q, B) implies Ck ≤ B.

Lemma 5.7. Suppose that property (p, q, B) holds ∀0 ≤ p, q ≤ h− s− 1.

24

1. Let p, q,∆ be integers such that 0 ≤ p, q ≤ h− s− 1, and ∆ = p− q. If (s+ 1, b∆m + t− 1) is p-low
and (a∆

m − t, k − 1) is (q + 1)-high, then Ck ≤ B. Analogously, if (a∆
m − t+ 1, k − 1) is q-low and

(s+ 1, b∆m + t) is (p+ 1)-high then Ck ≤ B

2. Ck ≤ B

Proof. 1. We prove the first statement by induction on ∆ = p−q. The second one follows by symmetry.
We induct on ∆ where s+ 1− h ≤ ∆ ≤ h− s− 1

Base case: ∆ = h − s − 1. Since 0 ≤ p, q ≤ h − s − 1, p = h − s − 1, q = 0. By Lemma 5.6,
(s+ 1, b∆m+ t) is (p+ 1)-high and (a∆

m− t+ 1, k−1) is q-low, so Ck ≤ B because property (p, q, B)
holds.

Suppose Lemma 5.7 is true for ∆′ = ∆ + 1, we prove it is also true for ∆. ∀ index i, let i∆
′

:=
i+ ∆′ = i∆ + 1.

If (s+1, b∆m+ t) = (s+1, b∆
′

m + t−1) is not (p+1)-high, i.e. is (p+1)-low: Since a∆′
m − t > a∆

m− t
and (a∆

m− t, k−1) is (q+1)-high, by Lemma 5.5, (a∆′
m − t, k−1) is (q+1)-high. Apply induction’s

assumption for ∆′ = p+ 1− q, we have Ck ≤ B.

If (a∆
m − t+ 1, k− 1) = (a∆′

m − t, k− 1) is not q-low, i.e. is q-high: Since b∆
′

m + t− 1 > b∆m + t− 1
and (s + 1, b∆m + t − 1) is p-low, by Lemma 5.5, (s + 1, b∆

′
m + t − 1) is p-low. Apply induction’s

assumption for ∆′ = p− (q − 1), we have Ck ≤ B.

The remaining case is (s+ 1, b∆m + t) is (p+ 1)-high and (a∆
m− t+ 1, k− 1) is q-low, thus condition

(p, q) holds. Then Ck ≤ B because of property (p, q, B).

Hence Lemma 5.7 is true.

2. Suppose for contradiction that Ck > B. By Lemma 5.6, there exists q ∈ N, 0 ≤ q ≤ h− s− 1 such
that (am − t, k − 1) is (q + 1)-high and q-low.

If (s+ 1, bm + t) is (q + 1)-low: Since (am − t, k − 1) is (q + 1)-high, so is (am − t+ 1, k − 1) by
Lemma 5.5. Let p = q + 1,∆ = p − q = 1. Since (s + 1, b∆m + t − 1) = (s + 1, bm + t) is p-low,
(a∆
m − t, k − 1) = (am − t+ 1, k − 1) is (q + 1)-high, Ck ≤ B by Sublemma 5.7.1 (contradiction).

If (s+1, bm+t−1) is q-high: Let p = q−1,∆ = p−q = −1. Since (s+1, b∆m+t) = (s+1, bm+t−1)
is (p + 1)-high, (a∆

m − t + 1, k − 1) = (am − t, k − 1) is q-low, Ck ≤ B by Sublemma 5.7.1
(contradiction). So (s+ 1, bm + t− 1) is q-low.

If (am− t+1, k−1) is q-high: Since (s+1, bm+ t−1) is q-low, so is (s+1, bm+ t) by Lemma 5.5.
Let p′ = q, q′ = q− 1,∆ = p′− q′ = 1. Since (a∆

m− t, k− 1) = (am− t+ 1, k− 1) is (q′+ 1)-high,
(s+ 1, b∆m + t− 1) = (s+ 1, bm + t) is p′-low, Ck ≤ B by Sublemma 5.7.1 (contradiction).

Hence (s+ 1, bm + t) is (q + 1)-high, (s+ 1, bm + t− 1) is q-low, (am − t, k − 1) is (q + 1)-high,
(am− t+ 1, k− 1) is q-low. In other words, condition (q, q) holds, so Ck ≤ B by property (q, q, B).

�

Suppose k is odd. Set B := 1 + tδ = ω(1 − δ), then B = (k + 1)ω/(2ω + k − 1). Lemma 5.7 and
5.2.2 together imply Ck ≤ B. Since the choice d0, · · · , dk−1 is arbitrary, ck ≤ B.

Now we show that the bound is tight and that ck = B for some choice of the degrees. Assume ω ≤ 2k
k−1 .

Set d0 = · · · = dk−1 = δ. Every matrix multiplication ”costs” M(1 − δ, 1 − δ, 1 − δ) = B, and rule 1 in
Algorithm 5.1 ”costs” 2− δ ≥ B. Using only the rules 2(a), (b) ”costs” at least 1 + tδ = B in total. Hence,
Ck(δ, · · · , δ) = B, and the bound in Conjecture 2 is tight for ω ≤ 2k

k−1 .

25

5.5 Finding 6-Cycles
Here we prove Conjecture 3 on the runtime of Yuster-Zwick’s algorithm for finding 6-Cycles.
Let B be a value dependent on ω to be specified later. Let δ := B−1

2 . Assume that δ ∈ [0, 1] and
B ≥ ω(1−δ). Fix a degree class (d0, · · · , d5), and denoteC6(d0, · · · , d5) byC6. We want to proveC6 ≤ B.
By lemma 5.2, if there exists no 3 consecutive δ-low indices then C6 ≤ max{1 + 2δ, ω(1− δ)} = B. If all
indices are δ-low, then C6 ≤ max{P0,3, P3,0} ≤ 1 + max{d1 + d2, d4 + d5} ≤ 1 + 2δ = B. Now, consider
the case when there exists 3 consecutive δ-low indices, and at least 1 δ-high index. WLOG, we can assume
that indices 3, 4, 5 are δ-low and index 0 is δ-high. Suppose for contradiction that C6 > B. We will prove
certain strict upper bounds on B, which leads to a contradiction when we set B to be equal to those upper
bounds. Then we will conclude that C6 ≤ B, thus also proving the bound for c6.

We need the following lemma:

Lemma 5.8. Suppose that d0 ≥ δ and d3, d4, d5 < δ.

(a) If C6 > B and d2 ≥ δ then: B < 10ω−3
4ω+3 and B < 15−2ω

11−2ω

(b) If C6 > B and d2 < δ and d1 ≥ δ then:

• If ω ≤ 9
4 : B < 10ω−3

4ω+3 and B < 22−4ω
17−4ω

• If ω > 9
4 : B < 11ω−2

4ω+5

• If ω ≤ 5
2 : B < 10−ω

7−ω

(c) If d1, d2 < δ, then C6 ≤ B.

The proof of Lemma 5.8 only involves linearly combining inequalities derived from Equation (4). We
include the full proof of Lemma 5.8 in the Appendix. Now, we continue on the proof of Conjecture 3.

To show a lower bound B on c6, we show a tuple (d0, · · · , d5), termed the ”hard-case degree class”,
where C6(d0, · · · , d5) = B. Computing C6(d0, .., d5) given a tuple (d0, ..., d5) can be done via a constant
size linear program.

For δ = B−1
2 , B ≥ ω(1 − δ) = ω 3−B

2 iff B ≥ 3ω
ω+2 and δ ∈ [0, 1] iff B ∈ [1, 3]. Set B to be the RHS

of equation (5). It is easy to check that, for every value of ω ∈ [2, 3], B ≥ 3ω
ω+2 and B ∈ [1, 3], so all the

conditions in lemma 5.8 are satisfied. By Lemma 5.8(c), we only need to prove C6 ≤ B when d2 ≥ δ and
when d2 < δ, d1 ≥ δ.

(a) If 2 ≤ ω ≤ 13
6 then B = 10ω−3

4ω+3 . Lemma 5.8(a), (b) imply B < 10ω−3
4ω+3 , which is a contradiction. So

C6 ≤ B as needed. The ”hard-case degree class” is (4δ
3 , δ, δ,

2δ
3 ,

2δ
3 ,

2δ
3).

(b) If 13
6 ≤ ω ≤

9
4 thenB = 22−4ω

17−4ω . Lemma 5.8(a), (b) implyB < max{15−2ω
11−2ω ,

22−4ω
17−4ω} = 22−4ω

17−4ω , which
is a contradiction. The ”hard-case degree class” is (2−B, 7B−10

4 , 6−3B
4 , 2−B

2 , 2−B
2 , 2B − 3).

(c) If 9
4 < ω ≤ 16

7 thenB = 11ω−2
4ω+5 . Lemma 5.8(a), (b) implyB < max{10ω−3

4ω+3 ,
11ω−2
4ω+5 } = 11ω−2

4ω+5 , which
is a contradiction. The ”hard-case degree class” is (8δ

7 ,
8δ
7 ,

6δ
7 ,

4δ
7 ,

4δ
7 ,

6δ
7).

(d) If 16
7 ≤ ω ≤

5
2 then B = 10−ω

7−ω . Lemma 5.8(a), (b) imply B < max{15−2ω
11−2ω ,

10−ω
7−ω } ≤

10−ω
7−ω , which is

a contradiction. The ”hard-case degree class” is (2−B, 2−B, 2B − 3, 2−B
2 , 2−B

2 , 2B − 3).

26

5.6 Finding even cycles
Here we analyze the algorithm when k is even. We will show that our analysis is tight when ω = 2.
When k is even, h = t + 1. Let β := δ th < δ, then B = 1 + tδ = 1 + hβ. Set B = (ω − 2)(1 −

δ) + (1 − δ) + (1 − β) ≥ ω(1 − δ). Note that, B =
kω− 4

k

2ω+k−2− 4
k

. To prove Theorem 5.1, we fix arbitrary

d0, · · · , dk−1 and prove Ck := Ck(d0, · · · , dk−1) ≤ B. We define s, (an), (bn) same as in Subsection 5.4.
If s = 0 then P0,h ≤ 1 + `(1, h− 1)δ = B and Ph,0 ≤ 1 + `(h+ 1, k − 1)δ = B, so Ck ≤ B. Below, we
assume that s ≥ 1. Note that ω − B − (ω − 2)δ = δ + β. As in Subsection 5.4, we will sum inequalities
of the form di + dr ≤ δ + β to get f(bs + 1, as − 1) ≤ tδ + hβ = 2tδ, then use Lemma 5.4 and 5.7 to
conclude that Ck ≤ B.

Lemma 5.9. Suppose that Ck > B.

1. ∀r, h ≤ r ≤ s+ h: dr ≤ β

2. For every index r, s + 1 ≤ r ≤ h − 1 : dr + dr+h ≤ δ + β. Equilvalently, for every index r,
s+ h+ 1 ≤ r ≤ k − 1 : dr + dr−h ≤ δ + β

3. If index i satisfied s+1 ≤ i ≤ i+s−1 ≤ k−1, then f(s+1, i−1)+f(i+s, k−1) ≤ (t−s)δ+(h−s)β

Proof. 1. Since s + 1 ≤ hr ≤ h + s ≤ h + h − 1 = k − 1, f(s + 1, r − 1) ≤ `(s + 1, r − 1)δ ≤
`(s+ 1, h+ s− 1)δ = tδ and f(r+ 1, k− 1) ≤ `(r+ 1, k− 1)δ ≤ `(h+ 1, k− 1) = tδ. By lemma
5.3, dr ≤ β.

2. If dr ≤ β then dr + dr+h ≤ β + δ.

If dr ≥ β then M(1− dr, 1− d0, 1− ds) ≤ B. Clearly, Ps,r ≤ 1 + f(s+ 1, r − 1) ≤ 1 + tδ = B,
and P0,s ≤ B by lemma 5.2, so P0,r ≤ max{P0,s, Ps,r,M(1 − dr, 1 − d0, 1 − ds)} ≤ B. Clearly,
Pr,r+h, Pr+h,0 ≤ B. So, by Lemma 5.1, M(1−dr, 1−dr+h, 1−d0) ≥ B. Since dr, dr+h ≤ δ ≤ d0,
dr + dr+h ≤ ω −B − (ω − 2)d0 ≤ ω −B − (ω − 2)δ = δ + β.

3. We have two cases: either i ≤ h or i+ s− 1 ≥ h+ s. These two cases are symmetrically equivalent.
We can assume i ≤ h; the remaining case is analogous. Since i− 1 ≤ h− 1, by 5.9.2:

f(s+ 1, i− 1) + f(s+ h+ 1, i+ h− 1) =

i−1∑
r=s+1

(dr + dr+h) ≤ (i− s− 1)(δ + β)

Since i+ s ≤ h+ s, by 5.9.1, f(i+ s, h+ s) ≤ `(i+ s, h+ s)β = (h− i+ 1)β.

Since s + 1 ≤ i + h ≤ 2h ≤ k and dr ≤ δ∀s + 1 ≤ r ≤ k − 1, f(i + h, k − 1) =
∑k−1

r=i+h dr ≤
`(i+ h, k − 1)δ = (k − i− h)δ. Hence:

f(s+ 1, i− 1) + f(i+ s, k − 1)

= f(s+ 1, i− 1) + f(i+ s, h+ s) + f(h+ s+ 1, i+ h− 1) + f(i+ h, k − 1)

≤ (i− s− 1)(δ + β) + (h− i+ 1)β + (k − i− h)δ = (t− s)δ + (h− s)β

�

27

Lemma 5.10. Consider integers p, q ∈ [0, h− s− 1] and ∆ := p− q. Suppose condition (p, q) holds.
Suppose dr + dr∆+t ≤ δ + β∀bs < r ≤ bm. If ∃n ∈ {0, · · · ,m} : f(a∆

n − h + 1, an − 1) ≤ tδ and
∀r ∈ [an, as) : dr + dr∆−h ≤ δ + β, then Ck ≤ B.

Suppose dr + dr∆−t ≤ δ + β∀am ≤ r < as. If ∃n ∈ {0, · · · ,m} : f(bn + 1, b∆n + h − 1) ≤ tδ and
∀r ∈ (bs, bn] : dr + dr∆+h ≤ δ + β, then Ck ≤ B.

Proof. We prove the first statement by induction on n ∈ {0, · · · ,m}. The second statement is analogous.
Suppose for contradiction Ck > B. By 5.2.1(a), dr + dr∆+t ≤ δ + β∀bm < r ≤ s, so dr + dr∆+t ≤
δ + β∀bs < r ≤ s, so

f(bs + 1, s) + f(b∆s + 1 + t, s∆ + t) ≤ (s− bs) (14)

Base case: n = 0. Since ∀r, a0 ≤ r < as : dr+dr∆−h ≤ δ+β, f(a0, as−1)+f(a∆
0 −h, a∆

s −h−1) ≤
(as−a0)(δ+β). Since a∆

s −h−1 = b∆s +k−h−1 = b∆s +t, f(a∆
0 −h, a∆

s −h−1)+f(b∆s +1+t, s∆+t) =
f(a∆

0 − h, s∆ + t). Combining these with (14) gives f(0, as − 1) + f(a∆
0 − h, s∆ + t) + f(bs + 1, s) ≤

(s− bs + as − a0)(δ + β) = s(α+ β).
Since a0 = 0, |∆| ≤ h − s − 1, s + 1 ≤ a∆

0 − h ≤ 0∆ − h + s − 1 = s∆ + t ≤ k − 1. By
5.9.3, f(s + 1, a∆

0 − h − 1) + f(s∆ + t + 1, k − 1) ≤ (t − s)δ + (h − s)β. So, f(bs + 1, as − 1) ≤
s(δ + β) + (t− s)δ + (h− s)β = tδ + hβ = 2tδ. Since as = bs = T , Ck ≤ B by lemma 5.4.

Suppose Lemma 5.10 is true for n− 1 ≤ m− 1. We show that it is still true for n.
If an = an−1 then we are done. Else, an = an−1 + 1, bn = bn−1 and dan−1 ≤ dbn−1 . We show

f(a∆
n−1 − h + 1, an−1 − 1) ≤ tδ and dan−1 + da∆

n−1−h
≤ δ + β, then conclude that Ck ≤ B using the

inductive assumption..
Consider R = a∆

n − h = a∆
n−1 − h + 1. Note that bn − an = s − n ≥ s − m = 1, so R − 1 =

a∆
n −h− 1 = a∆

n + t ≤ b∆n + t− 1, so f(bn + 1, R− 1) ≤ f(bn + 1, b∆n + t− 1) ≤ tδ by 5.2.1(a). Clearly,
f(R+ 1, an − 1) = f(a∆

n − h+ 1, an − 1) ≤ tδ. So dR ≤ β by Lemma 5.3.
Note that f(a∆

n−1 − h+ 1, an−1 − 1) = f(a∆
n − h+ 1, an − 1) + dR − dan−1 ≤ tδ + (dR − dan−1).

If dR ≤ dan−1 then f(a∆
n−1−h+1, an−1−1) ≤ tδ. Since bn = bn−1 and a∆

n−1−h−1 < a∆
n −h−1 =

R− 1, f(bn−1 + 1, a∆
n−1 − h− 1) ≤ f(bn + 1, R− 1) ≤ tδ. So dan−1 + da∆

n−1−h
≤ δ + β by Lemma 5.3,

thus Ck ≤ B by inductive assumption.
If dan−1 ≤ dR ≤ β: Since dr + dr−h ≤ δ + β∀an ≤ r < as. By 5.2.1(a), dr + dr−t ≤ δ + β∀0 ≤ r <

an−1 ≤ am. Hence, f(0, an−1− 1) + f(0∆− t, a∆
n−1− 1− t) ≤ an−1(δ+β) and f(an, as− 1) + f(a∆

n −
h, a∆

s − 1 − h) ≤ (as − an)(δ + β). Since 0∆ − h ∈ [s + 1, k − 1], dan−1 + d0∆−h ≤ β + δ. Summing
these three inequalities with (14) gives: f(0, as − 1) + f(0∆ − h, s∆ + t) + f(bs + 1, s) ≤ s(δ + β). So
Ck ≤ B by same argument as in base case. �

Now, we prove that property (p, q, B) holds, then conclude that Ck ≤ B using lemma 5.7.

Proof. Suppose for contradiction that condition (p, q) holds but Ck > B. By 5.2.1(b), f(bm+ 1, am−1) ≤
2tδ. Note that m = s − 1 and bm − am = 1. Let R := a∆

m − h, then R + 1 = b∆m + h. Since
f(R + 1, am − 1) + f(bm + 1, R) = f(bm + 1, am − 1) ≤ 2tδ, either f(a∆

m − h + 1, am − 1) ≤ tδ or
f(bm + 1, b∆m + h− 1) ≤ tδ. WLOG, assume dam ≤ dbm , then as = am + 1, bs = bm.

If f(a∆
m − h + 1, am − 1) ≤ tδ: Note that f(bm + 1, a∆

m − h − 1) = f(bm + 1, a∆
m + t) = f(bm +

1, b∆m + t − 1) ≤ tδ by 5.2.1(a). So dam + da∆
m−h ≤ δ + β by lemma 5.3. First statement of lemma 5.10

(note that bs = bm) for n = m gives Ck ≤ B (contradiction).
If f(bm + 1, b∆m + h − 1) ≤ tδ: Note that f(b∆m + h + 1, am − 1) = f(a∆

m − t + 1, am − 1) ≤ tδ by
5.2.1(a). So dam + da∆

m−t = dam + db∆m+h ≤ δ + β. Second statement of lemma 5.10 for n = m gives
Ck ≤ B (contradiction). �

28

Assume ω = 2. Set d0 = 2β, d1 = · · · = dt = δ, dt+1 = · · · = dk−1 = β. Note that M(1 − 2β, 1 −
δ, 1 − β) = M(1 − δ, 1 − δ, 1 − β) = B, 2 − δ ≥ 2 − 2β ≥ B and tδ = 2β + (t − 1)β = B − 1. Thus,
using rule 1. or 2.(c) ”costs” at least B, and using only rules 2.(a) and 2.(b) costs at least B in total. So
Ck(d0, · · · , dk−1) = B, thus the bound is tight for ω = 2.

6 Acknowledgments

We would like to thank Uri Zwick for pointing us to the open problem of analyzing the Yuster-Zwick
algorithm.

29

References

[1] Amir Abboud, Arturs Backurs, and Virginia Vassilevska Williams. If the current clique algorithms are
optimal, so is valiant’s parser. In IEEE 56th Annual Symposium on Foundations of Computer Science,
FOCS 2015, Berkeley, CA, USA, 17-20 October, 2015, pages 98–117, 2015.

[2] N. Alon, P. Dao, I. Hajirasouliha, F. Hormozdiari, and S. Cenk Sahinalp. Biomolecular network motif
counting and discovery by color coding. Bioinformatics, 24(13):i241–i249, 2008.

[3] N. Alon, R. Yuster, and U. Zwick. Color-coding. J. ACM, 42(4):844–856, 1995.

[4] N. Alon, R. Yuster, and U. Zwick. Finding and counting given length cycles. Algorithmica, 17:209–
223, 1997.

[5] Markus Bläser, Balagopal Komarath, and Karteek Sreenivasaiah. Graph pattern polynomials. CoRR,
abs/1809.08858, 2018.

[6] B. Bollobás. The chromatic number of random graphs. Combinatorica, 8(1):49–55, 1988.

[7] B. Bollobás, P.A. Catlin, and P. Erdös. Hadwiger’s conjecture is true for almost every graph. European
Journal of Combinatorics, 1(3):195 – 199, 1980.

[8] A. Bondy and M. Simonovits. Cycles of even length in graphs. Journal of Combinatorial Theory,
16:97–105, 1974.

[9] Karl Bringmann and Philip Wellnitz. Clique-based lower bounds for parsing tree-adjoining grammars.
In 28th Annual Symposium on Combinatorial Pattern Matching, CPM 2017, July 4-6, 2017, Warsaw,
Poland, pages 12:1–12:14, 2017.

[10] Jianer Chen, Benny Chor, Mike Fellows, Xiuzhen Huang, David W. Juedes, Iyad A. Kanj, and Ge Xia.
Tight lower bounds for certain parameterized np-hard problems. Inf. Comput., 201(2):216–231, 2005.

[11] D. Corneil, Y. Perl, and L. Stewart. A linear recognition algorithm for cographs. SIAM Journal on
Computing, 14(4):926–934, 1985.

[12] Radu Curticapean, Holger Dell, and Dániel Marx. Homomorphisms are a good basis for counting small
subgraphs. In Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing,
STOC 2017, Montreal, QC, Canada, June 19-23, 2017, pages 210–223, 2017.

[13] Søren Dahlgaard, Mathias Bæk Tejs Knudsen, and Morten Stöckel. Finding even cycles faster via
capped k-walks. In Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing,
STOC 2017, Montreal, QC, Canada, June 19-23, 2017, pages 112–120, 2017.

[14] F. Eisenbrand and F. Grandoni. On the complexity of fixed parameter clique and dominating set. Theor.
Comp. Sci., 326(1-3):57–67, 2004.

[15] Peter Floderus, Miroslaw Kowaluk, Andrzej Lingas, and Eva-Marta Lundell. Detecting and counting
small pattern graphs. In Algorithms and Computation - 24th International Symposium, ISAAC 2013,
Hong Kong, China, December 16-18, 2013, Proceedings, pages 547–557, 2013.

30

[16] Peter Floderus, Miroslaw Kowaluk, Andrzej Lingas, and Eva-Marta Lundell. Induced subgraph iso-
morphism: Are some patterns substantially easier than others? Theor. Comput. Sci., 605:119–128,
2015.

[17] Fedor V. Fomin, Daniel Lokshtanov, Venkatesh Raman, Saket Saurabh, and B. V. Raghavendra Rao.
Faster algorithms for finding and counting subgraphs. J. Comput. Syst. Sci., 78(3):698–706, 2012.

[18] Francois Le Gall and Florent Urrutia. Improved rectangular matrix multiplication using powers of
the coppersmith-winograd tensor. In Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA 2018, New Orleans, LA, USA, January 7-10, 2018, pages 1029–1046,
2018.

[19] H. Hadwiger. Ungelöste probleme nr. 20. Elemente der Mathematik, 12:121, 1957.

[20] Russell Impagliazzo and Ramamohan Paturi. On the complexity of k-sat. J. Comput. Syst. Sci.,
62(2):367–375, 2001.

[21] A. Itai and M. Rodeh. Finding a minimum circuit in a graph. SIAM J. Computing, 7(4):413–423, 1978.

[22] Ken-ichi Kawarabayashi and Bjarne Toft. Any 7-chromatic graphs has K7 or K4, 4 as A minor. Com-
binatorica, 25(3):327–353, 2005.

[23] T. Kloks, D. Kratsch, and H. Müller. Finding and counting small induced subgraphs efficiently. Inf.
Proc. Letters, 74(3-4):115–121, 2000.

[24] Miroslaw Kowaluk and Andrzej Lingas. A fast deterministic detection of small pattern graphs in graphs
without large cliques. In WALCOM: Algorithms and Computation, 11th International Conference and
Workshops, WALCOM 2017, Hsinchu, Taiwan, March 29-31, 2017, Proceedings., pages 217–227,
2017.

[25] Miroslaw Kowaluk, Andrzej Lingas, and Eva-Marta Lundell. Counting and detecting small subgraphs
via equations. SIAM J. Discrete Math., 27(2):892–909, 2013.

[26] François Le Gall. Faster algorithms for rectangular matrix multiplication. In 53rd Annual IEEE
Symposium on Foundations of Computer Science, FOCS 2012, New Brunswick, NJ, USA, October
20-23, 2012, pages 514–523, 2012.

[27] François Le Gall. Powers of tensors and fast matrix multiplication. In International Symposium on
Symbolic and Algebraic Computation, ISSAC ’14, Kobe, Japan, July 23-25, 2014, pages 296–303,
2014.

[28] Andrea Lincoln, Virginia Vassilevska Williams, and Ryan Williams. Tight hardness for shortest cycles
and paths in sparse graphs. In Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA ’18, pages 1236–1252, 2018.

[29] Andy Loo. On the primes in the interval [3n, 4n]. arXiv preprint arXiv:1110.2377, 2011.

[30] B. Monien. How to find long paths efficiently. Annals of Discrete Mathematics, 25:239 – 254, 1985.

[31] Jitsuro Nagura. On the interval containing at least one prime number. Proceedings of the Japan
Academy, 28(4):177–181, 1952.

31

[32] J. Nešetřil and S. Poljak. On the complexity of the subgraph problem. Commentationes Math. Univer-
sitatis Carolinae, 26(2):415–419, 1985.

[33] Stephan Olariu. A simple linear-time algorithm for computing the center of an interval graph. Inter-
national Journal of Computer Mathematics, 34:121–128, 1990.

[34] N. Przulj, D. G. Corneil, and I. Jurisica. Efficient estimation of graphlet frequency distributions in
protein–protein interaction networks. Bioinformatics, 22(8):974–980, 2006.

[35] Neil Robertson, Daniel Sanders, Paul Seymour, and Robin Thomas. The four-colour theorem. Journal
of Combinatorial Theory, Series B, 70(1):2 – 44, 1997.

[36] Neil Robertson, Paul Seymour, and Robin Thomas. Hadwiger’s conjecture for k6-free graphs. Com-
binatorica, 13(3):279–361, 1993.

[37] Benjamin Rossman. On the constant-depth complexity of k-clique. In Proceedings of the Fortieth
Annual ACM Symposium on Theory of Computing, STOC ’08, pages 721–730, 2008.

[38] V. Vassilevska and R. Williams. Finding, minimizing, and counting weighted subgraphs. In Proc.
STOC, pages 455–464, 2009.

[39] Virginia Vassilevska. Efficient algorithms for clique problems. Inf. Process. Lett., 109(4):254–257,
2009.

[40] V. Vassilevska Williams and R. Williams. Subcubic equivalences between path, matrix and triangle
problems. In Proc. FOCS, pages 645–654, 2010.

[41] Virginia Vassilevska Williams. Efficient algorithms for path problems in weighted graphs. Ph.D.
Thesis, Carnegie Mellon University, 2008.

[42] Virginia Vassilevska Williams. Multiplying matrices faster than Coppersmith-Winograd. In Proceed-
ings of the 44th Symposium on Theory of Computing Conference, STOC 2012, New York, NY, USA,
May 19 - 22, 2012, pages 887–898, 2012.

[43] K. Wagner. Über eine eigenschaft der ebenen komplexe. Mathematische Annalen, 114(1):570–590,
1937.

[44] Virginia Vassilevska Williams, Joshua R. Wang, Richard Ryan Williams, and Huacheng Yu. Finding
four-node subgraphs in triangle time. In Proceedings of the Twenty-Sixth Annual ACM-SIAM Sympo-
sium on Discrete Algorithms, SODA 2015, San Diego, CA, USA, January 4-6, 2015, pages 1671–1680,
2015.

[45] R. Yuster and U. Zwick. Finding even cycles even faster. In Proc. ICALP, pages 532–543, 1994.

[46] R. Yuster and U. Zwick. Detecting short directed cycles using rectangular matrix multiplication and
dynamic programming. In Proc. SODA, pages 247–253, 2004.

32

7 Appendix

7.1 Induced pattern detection for k ≤ 6

When k ∈ {5, 6}, we have k′ = 1. Consider a class c. By Corollary 3.2, U(c) has exactly two patterns
which differ in only one edge e, namely H̃ and H̃\e. By Theorem 3.2, bc

H̃
+bc

H̃\(e) = 2, so bc
H̃

= bc
H̃\(e) = 1.

So for any class c and any unlabeled pattern H̃ that embeds in c, we have αc
H̃

= |Aut(H̃)|. Moreover by
Lemma 3.2, there is some class c such that U(c) consists of H̃ and H̃ \ {e}, where e is an arbitrary edge in
H̃ .

Hence by Theorem 3.1 and Corollary 3.1, for any unlabeled pattern H̃ which has at least one edge, we
can compute nH̃ |Aut(H̃)| + nH̃\e|Aut(H̃ \ e)| in O(M(n, n2, n)) time for k = 5 and O(M(n, n2, n2))

time for k = 6. Now we give an algorithm which detects any fixed pattern H̃ in a graph G, where H̃ is not
the k-Clique or the k-Independent Set.

Let e1, . . . , eh be an arbitrary permutation of all the edges of H̃ . Let H̃i = H̃ \ {e1, . . . , ei−1} where
H̃1 = H̃ . Compute qi = nH̃i

|Aut(H̃i)| + nH̃i+1
|Aut(H̃i+1)|. Compute Q =

∑h
i=1(−1)iqi. In fact,

Q = nH̃ |Aut(H̃)| + (−1)hnH̃h+1
|Aut(H̃h+1)|, which is of the form (2) for r = k!, since H̃h+1 is the k-

Independent Set. So we can detect all 5-node patterns in time O(M(n, n2, n)) ∈ O(nω+1), and all 6-node
patterns in time O(M(n, n2, n2)) ∈ O(nω+2).

7.2 Omitted proofs
Proof of Theorem 3.2. Let H = (w0, . . . , wk−1) be an arbitrary pattern in c. Define bc

H̃
to be the number

of ways we can specify the edges w0w1, . . . , w0wk′ so that the resulting vertex order maps to a vertex order
of H̃ . Note that this is independent of the choice of H , because all edges except the k′ edges mentioned are
the same for allH ∈ c. For each of these bc

H̃
vertex orderings, we can apply |Aut(H̃)| automorphisms to get

a different ordering that maps to it. So all these orderings make the αc
H̃

possible ways H̃ can be embedded
in c; hence αc

H̃
= bc

H̃
· |Aut(H̃)|. Now note that the total number of ways we can specify the k′ edges

w0w1, . . . , w0wk′ is 2k
′
, so

∑
H̃∈U(c)

αc
H̃

|Aut(H̃)| =
∑

H̃∈U(c) b
c
H̃

= 2k
′

Proof of Lemma 3.2. Let H = (w0, w1, . . . , wk−1) be an ordering of the vertices of H̃ such that ei =
w0wi for each i ∈ {1, . . . , k′}. Now each pattern H ′ ∈ C(H) differs from H only in those k′ edges, so the
unlabeled version of H ′ is obtained from H̃ by removing some of ei edges. So C(H) ⊆ S. Now consider
H̃ ′ ∈ S. Since H̃ ′ is obtained from H̃ , we can consider the same ordering of vertices for it. Call this vertex
order H ′. So H ′ and H differ only in the k′ first edges, so H ′ ∈ C(H). Hence S ⊆ U(c) which shows that
U(c) = S.

Now since the number of ways we can embed H in class c is 1 (we have to put an edge between all the
k′ pairs of vertices), we have bc

H̃
= 1.

Proof of Lemma 5.8. For r ∈ {0, · · · , 5}: If B < C6, we get B < C6 ≤ 2− dr, dr < 2− B. Note that
2 ≤ ω ≤ 3.

(a) By Lemma 5.2, P0,2 ≤ max{1 + 2δ, ω(1 − δ)} ≤ B. This and B < C6 imply B < P2,0. Hence
1 + 2δ = B < P2,0 ≤ 1 + d3 + d4 + d5, so d3 + d4 + d5 ≥ 2δ = −(B − 1).

For r ∈ {3, 4, 5}, max{Pr,0, P2,r} ≤ 1 + max{f(r + 1, 5), f(3, r − 1)} ≤ 1 + 2δ = B. By lemma
5.1, M(1− d0, 1− d2, 1− dr) > B, which means:

(ω − 2)d0 + d2 + dr < ω −B (15)

33

Summing (15) for r ∈ {3, 4, 5} with −(d3 + d4 + d5) < −(B − 1) gives:

(ω − 2)d0 + d2 < ω −B − B − 1

3
(16)

Summing (15) for r = 3 with −(ω − 2)d0 ≤ −(ω − 2)δ gives:

d2 + d3 ≤ ω − (ω − 2)δ −B ≤ ω − (ω − 2)δ − ω(1− δ) = 2δ

⇒ P1,4 ≤ 1 + d2 + d3 ≤ 1 + 2δ = B ⇒ B < C6 ≤ max{P1,4, P4,1} ≤ max{B,P4,1}
⇒ B < P4,1 ≤ 1 + d5 + d0 ⇒ 2δ < d0 + d5

Summing (15) for r = 5 with −(d5 + d0) < −2δ = −(B − 1) gives:

(ω − 3)d0 + d2 < ω −B − (B − 1) (17)

Summing (15) for r = 5, −(d5 + d0) < −(B − 1) and d0 < 2−B gives:

(ω − 2)d0 + d2 < ω −B − (2B − 3) (18)

Multiplying (15) with 3−ω ≥ 0, (17) with ω− 2 ≥ 0 and summing them gives: d2 ≤ 5ω
3 −B

2ω
3 − 1

Since d2 > δ = B−1
2 , B−1

2 < d2 ≤ 5ω
3 −B

2ω
3 − 1, which implies B < 10ω−3

4ω+3

Multiplying (18) with 3−ω ≥ 0, (17) with ω−2 ≥ 0 and summing them gives: d2 ≤ 7−ω−B(5−ω).
Thus B−1

2 < d2 ≤ 7− ω −B(5− ω), which implies B < 15−2ω
11−2ω

(b) P3,0 ≤ 1 + d4 + d5 ≤ 1 + 2δ = B ⇒ B < P0,3 ≤ 1 + d1 + d2 ⇒ 2δ < d1 + d2. Analogously,
2δ < d0 + d5

For r ∈ {0, 1}: If dr ≥ 2δ then C6 ≤ 2 − dr ≤ 2(1 − δ) ≤ ω(1 − δ) ≤ B. So dr ≤ 2δ, thus
max{P5,1, P0,2} ≤ max{1+d0, 1+d1} ≤ B. Clearly P1,2 = P5,0 = 1 ≤ B,P2,5 ≤ 1+d3+d4 ≤ B.
So P5,r, Pr,2, P2,5 ≤ B. By Lemma 5.1, M(1− dr, 1− d5, 1− d2) > B, which means:

(ω − 2)dr + d2 + d5 < ω −B (19)

Summing (19) for r = 0 with −(ω − 2)(d0 + d5) ≤ −(ω − 2)2δ = −(ω − 2)(B − 1) gives:

d2 + (3− ω)d5 < ω −B − (ω − 2)(B − 1) (20)

Summing (19) for r = 1 with −(ω − 2)(d1 + d2) ≤ −(ω − 2)2δ = −(ω − 2)(B − 1) gives:

d5 + (3− ω)d2 < ω −B − (ω − 2)(B − 1) (21)

For r ∈ {3, 4}: max{P1,r, Pr,0} ≤ 1 + max{f(2, r − 1), f(r + 1, 5)} ≤ 1 + 2δ = B, and P0,1 =
1 ≤ B. By Lemma 5.1, M(1− d0, 1− d1, 1− dr) > B, which means:

(ω − 2)d0 + d1 + dr < ω −B, r ∈ {3, 4} (22)

Summing (22) for r ∈ {3, 4}, 2δ − d3 − d4 ≤ d5, 2δ − d1 ≤ d2 and (ω − 2)(2δ − d0) ≤ (ω − 2)d5

gives:

(ω − 3

2
)d5 + d2 > −(ω −B) + (ω − 1

2
)(B − 1) (23)

34

If ω ≤ 9
4 : Multiplying (20) by ω− 3

2 > 0, (23) by ω−3 ≤ 0 and summing them gives: (2ω− 9
2)d2 <

3
2(ω−B)− 3

2(B−1). Since d5 ≤ δ = B−1
2 and 2ω− 9

2 ≤ 0, (2ω− 9
2)B−1

2 < 3
2(ω−B)− 3

2(B−1),
which implies B < 10ω−3

4ω+3 .

Subtracting (20) by (23) gives: (9
2−2ω)d5 < 2(ω−B)−(2ω− 5

2)(B−1). Since d5 ≥ (B−1)−d0 ≥
(B − 1)− (2−B) and 9

2 − 2ω ≥ 0, (9
2 − 2ω)((B − 1)− (2−B)) < 2(ω−B)− (2ω− 5

2)(B − 1),
which implies B < 22−4ω

17−4ω

If ω > 9
4 : Multiplying (20) by 2ω2− 9ω+ 11 > 0, (21) by 4ω− 9 > 0, (23) by 2(ω− 2)(ω− 4) < 0,

and summing them gives: 0 < (7ω − 14)(ω − B) − 2(2ω − 1)(ω − 2)(B − 1), which implies
B < 11ω−2

4ω+5

If ω ≤ 5
2 : Note that d2 ≥ (B − 1) − d1 ≥ (B − 1) − (2 − B) = 2B − 3, d5 ≥ (B − 1) − d0 ≥

(B−1)−(2−B) = 2B−3. Summing (20) with−d2 ≤ −(2B−3) and (ω−3)d5 ≤ (ω−3)(2B−3)
gives: 0 < ω −B − (ω − 2)(B − 1)− (4− ω)(2B − 3), which implies B < 10−ω

7−ω

(c) P3,0 ≤ 1+d4 +d5 ≤ 1+2δ = B,P0,3 ≤ 1+d1 +d2 ≤ 1+2δ = B, so C6 < max{P0,3, P3,0} ≤ B.

35

	1 Introduction
	1.1 Hardness
	1.2 Detecting not-necessarily induced directed k-Cycles.

	2 Lower bounds
	2.1 Simple case: t-Chromatic patterns
	2.2 General case
	2.3 A Stronger Lower Bound

	3 Induced pattern detection: Algorithms
	3.1 The approach from four-nodes
	3.2 Setup
	3.3 General Approach
	3.4 Proof of Theorem ??

	4 Patterns easier than cliques
	5 Detecting non-induced directed cycles
	5.1 Yuster and Zwick's Algorithm
	5.2 The runtime of Yuster-Zwick's algorithm for finding k-Cycles
	5.3 Setup: Basic Lemmas
	5.4 Finding odd cycles
	5.5 Finding 6-Cycles
	5.6 Finding even cycles

	6 Acknowledgments
	7 Appendix
	7.1 Induced pattern detection for k6
	7.2 Omitted proofs

