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Abstract

Let H be an r-uniform hypergraph. The minimum positive co-degree of H,
denoted by &1 |(H), is the minimum k such that if S is an (r — 1)-set contained in
a hyperedge of H, then S is contained in at least k& hyperedges of H. For r > k fixed
and n sufficiently large, we determine the maximum possible size of an intersecting
r-uniform n-vertex hypergraph with minimum positive co-degree 5;21(7-[) >k and
characterize the unique hypergraph attaining this maximum. This generalizes the
Frdos-Ko-Rado theorem which corresponds to the case k = 1. Our proof is based
on the delta-system method.

1 Introduction

A hypergraph H is intersecting if for every pair of hyperedges h,h’ € FE(H) we have
hNh' # (. The celebrated theorem of Erdés, Ko and Rado [3] gives that for n > 2r, the
maximum size of an intersecting r-uniform n-vertex hypergraph is (:j) The Erdos-Ko-
Rado theorem is a cornerstone of extremal combinatorics and has many proofs, extensions
and generalizations, see the excellent survey of Frankl and Tokushige [T1] for a history of
extremal problems for intersecting hypergraphs. We call the unique hypergraph achieving
the maximum in the Erdos-Ko-Rado theorem a mazimal star, i.e., the hypergraph of all
hyperedges containing a given vertex.

The degree of a set of vertices S in a hypergraph H is the number of hyperedges
containing S, i.e., [{h € E(H) : S C h}|. Denote by d5(H) the minimum degree of an
s-element subset of the vertices of H. In this way, d;(#) is the standard minimum degree
of a vertex in H.

Huang and Zhao [16] considered a minimum degree version of the Erdds-Ko-Rado
theorem. In particular, they proved that for n > 2r + 1, if H is an intersecting r-uniform
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n-vertex hypergraph, then H has minimum degree §;(H) < (?:g) The Huang-Zhao [16]
proof uses the linear algebra method and later a combinatorial proof was given by Frankl
and Tokushige [10] for n > 3r. Kupavskii [I9] gave an extension of this result and showed
that for t < r and n > 2r+43t/(1—t/r), every intersecting r-uniform n-vertex hypergraph
H satisfies 6,(H) < ("-/~}).

In the more general hypergraph setting, Mubayi and Zhao [22] introduced the notion
of co-degree Turan numbers, i.e., the maximum possible value of §,_;(H) among all r-
uniform n-vertex hypergraphs H not containing a specified subhypergraph F. In their
paper they give several results that show that the co-degree extremal problem behaves
differently from the classical Turan problem.

Motivated by the degree versions of the Erd6s-Ko-Rado theorem and co-degree Turan
numbers we propose studying the following hypergraph degree condition.

Definition 1. Let H be a non-empty r-uniform hypergraph. The minimum positive co-
degree of H, denoted 6, |(H), is the mazimum k such that if S is an (r —1)-set contained
in a hyperedge of H, then S is contained in at least k distinct hyperedges of H.

Note that the empty hypergraph is a degenerate case; for simplicity we define its
positive co-degree to be zero.

As an example, let us examine hypergraphs that contain no Fs = {abc, abd, cde} to
compare the co-degree and positive co-degree settings. Frankl and Fiiredi [9] (see [17] for
a strengthening) showed that the complete balanced tripartite 3-uniform hypergraph has
the maximum number of hyperedges among all 3-uniform n-vertex Fj-free hypergraphs,
for n sufficiently large. This construction has minimum co-degree 0 and it is easy to see
that minimum co-degree at least 2 guarantees the existence of an F5. On the other hand,
the balanced tripartite hypergraph is Fs-free and has minimum positive co-degree n/3
and it can be shown that minimum positive co-degree strictly greater than n/3 implies
the existence of an Fj.

Note that for ordinary graphs (i.e. 2-uniform hypergraphs), the minimum positive co-
degree is simply the minimum degree of the non-isolated vertices, which in many extremal
problems we may assume is equal to the minimum degree. This suggests positive co-degree
as a reasonable notion of “minimum degree” in a hypergraph.

The positive co-degree condition has appeared in several other contexts. For example,
in [I8] the term d-full was used and the authors gave some simple lemmas for hypergraphs
with minimum positive co-degree (in the course of proving theorems about extremal
numbers for hypergraphs).

In this paper we investigate the maximum size of an intersecting r-uniform n-vertex
hypergraph with positive co-degree at least k. As the condition 6 ,(H) > 1 is vacuous,
the maximum in this case is (::11 ) as given by the Erdds-Ko-Rado theorem. The unique
construction achieving this bound has minimum positive co-degree 1. On the other hand,
as shown in Proposition [4], in an intersecting hypergraph the uniformity gives an upper
bound on the minimum positive co-degree, i.e., r > k. Thus the range of interest for our
problem is 2 < k < r. In this range we prove that for n sufficiently large the maximum-
size intersecting hypergraph with minimum positive co-degree k is given by the following
hypergraph.

Definition 2. Given integers r > k > 1 an (r-uniform) k-kernel system is a hypergraph



H on vertex set V with edges € = {E € (‘:) | ENX| >k}, were X is a distinguished
subset of V' of size 2k — 1. The set X is called the kernel of H.

Clearly a k-kernel system is intersecting. Observe that the number of hyperedges in
an r-uniform n-vertex k-kernel system H is

mele T ok — 1\ (n— 2k + 1 % — 1\ (n— 2k + 1 .
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Note that a 1-kernel system is the hypergraph consisting of all hyperedges containing a
fixed vertex x, i.e., the maximal hypergraph in the Erdos-Ko-Rado theorem. Interestingly,
k-kernel systems appear as solutions to maximum degree versions of the Erdés-Ko-Rado
theorem. Let us give three examples.

First, a special case of a more general theorem of Frankl [7] implies that if #H is
a maximum-size intersecting r-uniform n-vertex hypergraph with maximum degree at
most 2(:‘:;’) + (f:g’), then H is a 2-kernel system, provided n is large enough.

Second, Erdds, Rothschild and Szemerédi (see [2]) posed the following problem: de-
termine the maximum size of an intersecting r-uniform n-vertex hypergraph H such that
each vertex contained in at most ¢|F(#H)| hyperedges for r > 3 and 0 < ¢ < 1. They
proved when ¢ = 2/3 and n large, then a 2-kernel system is the unique hypergraph at-
taining this maximum. Frankl [5] showed that for 2/3 < ¢ < 1 and n large enough, H
has no more hyperedges than a 2-kernel system. For 3/5 < ¢ < 2/3 and n large enough,
Fiiredi [5] showed that a 3-kernel system is one of six non-isomorphic hypergraphs attain-
ing this maximum. In the case when 1/2 < ¢ < 3/5 and n large enough, Frankl [5] showed
that H has no more hyperedges than a 3-kernel system, although the unique hypergraph
attaining this maximum is not isomorphic to a 3-kernel system.

Third, Lemons and Palmer [21] proved that 3-kernel systems are the r-uniform n-
vertex hypergraphs with the largest diversity, i.e., the difference between the number of
hyperedges and the maximum degree for n large enough (see [8, 20] for improvements to
the threshold on n).

The main result of our paper is as follows:

Theorem 3. Let H be an intersecting r-uniform n-vertexr hypergraph with minimum
positive co-degree 01 ((H) > k where 1 < k < r. If H has the mazimum number of
hyperedges, then H is a k-kernel system for n sufficiently large.

Theorem [ holds for n large, roughly double exponential in r. In Section [3] we give
two results that suggest that Theorem [ should hold for n at least cr*+2, where c is a
polynomial in k. It would be interesting to further refine the range of n as a function of r
and k where our results hold. Also, we only considered the positive co-degree of (r — 1)-
sets. We can define 6 (#H) to be the minimum £ such that if S is an s-set contained in
a hyperedge of H, then S is contained in at least k£ distinct hyperedges. There may be
interesting problems to be considered under this more general condition.

2 Proof of Theorem

First, let us observe that the uniformity of an intersecting hypergraph is always at least
the minimum positive co-degree.



Proposition 4. If H is a non-empty intersecting r-uniform n-vertex hypergraph with
minimum positive co-degree 0, |(H) > k, then r > k.

Proof. Assume, for the sake of a contradiction, that & > r. Let h = {1, 29, ..., 2.} be
a hyperedge of H. The (r — 1)-set h \ {21} has co-degree at least k, so there is a vertex
ZTrp1 € hosuch that (h\ {z1}) U{z,1} is a hyperedge of H. Similarly, the (r — 1)-set
(h\ {z1,22})U{x,11} has co-degree at least k, so there is a vertex x,,o ¢ hU{x, 1} such
that (h\ {1, 22}) U{z, 11,242} is a hyperedge of H. Because k > r, we can repeat this
process to obtain a hyperedge (h\ {z1,...,2,}) U{x,s1, ..., 22} = {@rs1, ..., 22} that
is in H. Now we have disjoint hyperedges h and {x,.1,..., 2.} in H which contradicts
the intersecting property. ]

An r-uniform hypergraph S is a sunflower if every pairwise intersection of the hy-
peredges is the same set Y, called the core of the sunflower. We call the sets h \ Y for
h € E(S) the petals of the sunflower S. Note that the petals are pairwise disjoint. Denote
the size of the core of a sunflower S by ¢(S).

Let f(r,p) denote the minimum integer such that an r-uniform hypergraph with
f(r,p) hyperedges contains a sunflower with p petals. The Sunflower Lemma of Erdds
and Rado [4] claims that f(r,p) < rl(p — 1)". The determination of f(r,p) is a well-
known open problem in combinatorics. A recent breakthrough by Alweiss, Lovett, Wu
and Zhang [T] gives a bound on f(r, p) of about (logr) 1+,

In general we cannot force a sunflower to have a core of a specified size unless we
increase the number of hyperedges in the host hypergraph. Mubayi and Zhao (Lemma 6
in [23]) gives conditions for the existence of a sunflower with a core of bounded size.

Lemma 5 (Mubayi and Zhao, [23]). Fiz integers r > 3, k > 1 and p > 1 and let
C = C(r,p) be a large enough constant. If G is an r-uniform n-vertex hypergraph with

|E(G)] = Cn™* 71,
then G contains a sunflower with p petals and core of size at most k.

Observe that Lemma [3]is sharp in the order of magnitude of n. Indeed, the r-uniform
n-vertex hypergraph consisting of all hyperedges containing a fixed set Y of k41 vertices
contains (::ll:j) hyperedges, but no sunflower with a core of size at most k£ as any two
hyperedges intersect in at least k4 1 vertices. We remark that the problem to determine
the best constant C' in Lemma [ is interesting in its own right. In the Appendix at the
end of the paper we give a new proof of Lemma [B] that gives an improvement to C'.

We will need a lower bound on the size of a core of a sunflower in an intersecting

hypergraph.

Lemma 6. If S is a sunflower with at least r + 1 petals in an intersecting r-uniform
hypergraph G with 6. (G) > k, then the core Y of S satisfies |Y| > k.

Proof. For the sake of contradiction, assume that the core Y of § is small, i.e., |Y| < k.
Observe that Y is a transversal of G, i.e., every hyperedge of G intersects Y. Indeed,
as the petals of the sunflower S are pairwise vertex-disjoint, each hyperedge of G must
intersect the core Y in order to intersect each of the at least r + 1 hyperedges associated
with the petals of the sunflower.



Now let Y’ be a minimum transversal in G. Thus |Y’'| < |Y| < k and the minimality
of Y’ guarantees the existence of a hyperedge h that intersects Y’ in exactly one element.
The (r—1)-set h\ Y’ is contained in at most k& — 1 hyperedges of G; one for each element
of Y’. This contradicts the positive co-degree condition on G. O

Proof of Theorem Bl Let H be an intersecting r-uniform n-vertex hypergraph with min-
imum positive co-degree 6. ,(H) > k where 1 < k < r. Moreover, suppose that H has
the maximum number of hyperedges. We will show that H is a k-kernel system for n
sufficiently large.

We have observed that a k-kernel system has minimum positive co-degree at least k,
so we may assume that

|E(H)| > (%k_ 1) (”;Q_k; 1) =Q(n"").

Therefore, for n large enough, Lemmas [l and [ guarantees the existence of a sunflower S
with p = (r+1)r*~! petals and core of size k. Denote the core of S by Y = {y1, o, ..., s}
Note that in order to apply Lemmal[d we need that the following inequality is satisfied:

2% —1\ (n—2k+1 i
> s
()T e

where C'= C(r, p) is the constant from Lemma [l This is satisfied when
(2r — 2k)*
nz (D)
k
The value C' = (pr2")? given in [23] follows from a theorem of Fiiredi [15].

Claim 7. There is a set of vertices Z = {z1,22,...,2xk_1} such that ZNY = and
Z Uy} is the core of a sunflower with r + 1 petals.

C.

Proof. We will prove the following stronger claim: For 0 < i < k — 1, there is a set of
vertices Z; = {21, 22, ..., 2} such that YN Z; = 0 and Z; U{yw, Yr_1, ..., Yyir1} is the core
of a sunflower S; with (r + 1)r*=1=% petals. The claim follows from the case i = k — 1.

We proceed by induction on 7. The base case 7 = 0 is immediate as Zy = ) and Sy = S
is a sunflower with core Zo U{yk, Yr_1,...,y1} = Y with (r+ 1)7*~! petals. Now suppose
1 > 0 and the statement holds for ¢ — 1. Let §;_; be a sunflower given by the inductive
hypothesis.

For each petal P in S,y consider the (r — 1)-set P U Z;_ 1 U{yk,...,¥yir1} = P U
Zi 1 UAYk, -, v} \ {v:}. By the positive co-degree condition on H, the set P U Z; 1 U
{Yk,...,yis1} is contained in k hyperedges of H. Therefore, as ¢ < k — 1, there is a
vertex x(P) such that z(P) & {y1,va,...,v:} and {x(P)} UPUZ;_1 U{yp,...,Yis1} is a
hyperedge of H.

Now suppose there are distinct vertices x1, xo, . . ., x,,1 among the vertices in {z(P) :
P is a petal in S}. Let Py, Py, ..., P, be the petals corresponding to these vertices, i.e.,
{x;}UPUZ; 1 U{yp,...,yis1} € E(H) for j=1,2,...,r+1. Then Z, 1 U{yk, ..., Yit1}
is the core of size k — 1 of a sunflower with petals P; U {z;} for j =1,2,...,r +1in H.
This contradicts Lemma [0l Therefore, there are at most r distinct vertices among the

bt



vertices in {x(P) : P is a petal in S;_;}. This implies that there is a vertex = that is the
vertex z(P) for at least 1|E(S;_1)| > (r + 1)r*=2~(~1 petals P in ;1. Put 2, = = and
Zi ={21,2,...,%} and let S; be the sunflower consisting of (r + 1)r*~1~% hyperedges of
S;_1 containing x = z;. Observe that Z; U {yk,...,y;41} is the core of the sunflower S;
with (r + 1)rk=17¢ petals. O

Let Sz be a sunflower with r + 1 petals and core Z U {y;} given by Claim [l There
are at most (r + 1)(r — k) 4+ (k — 1) vertices disjoint from Y spanned by Sz. As S has
(r + 1)r*=1 petals, we may choose r + 1 petals of S that are vertex-disjoint from the
vertices of Sz. Call the resulting sunflower Sy. Note that Sy has r + 1 petals and core
Y.

Claim 8. For every petal P in Sz and every y € Y we have that P U Z U {y} is a
hyperedge in H.

Proof. Observe that the (r — 1)-set PU Z is contained in the hyperedge P U Z U {y;}, so
by the positive co-degree condition P U Z is contained in k£ hyperedges of H. Moreover,
each of these hyperedges must intersect every hyperedge in the sunflower Sy. As Sy has
at least 2 petals, each of the k hyperedges containing PUZ must contain a distinct vertex

of Y. O

We now continue with a technical claim that will imply the theorem.

Claim 9. For every k-setT' C'Y U Z we have:
(1) QUT € E(H) for every petal Q of Sy,
(2) (YUZ)\T)U{s}UP € E(H) for every s € T and petal P of Sy.

Proof. We proceed by induction on ¢ = |T'N Z|. Note that ¢t < k— 1. When t = 0 we
have that 7' =Y, then (1) is immediate as Q UY € E(Sy) C H and (2) follows from
Claim

Let t > 0 and suppose the statement of the claim holds for all smaller values of . As
0<t<k—1,thereexistsa z€ ZNT and ay € Y \ T. Fix an arbitrary petal @ of Sy.
Put 77 =T U{y} \ {z} and note that |7 N Z| =t — 1. Therefore, by induction, we have
QUT € E(H) and (YUZ)\T")U{s'}UP € E(H) for every s’ € T" and petal P of Sy.

By the positive co-degree condition, the (r — 1)-set Q UT"\ {y} is contained in at
least k hyperedges. Moreover, Q UT"\ {y} is disjoint from the hyperedges of the form
(YUZ)\T')U{y} U P where P is a petal of Sz. As Sz has r + 1 petals and H is
intersecting, this implies that the k hyperedges containing QQ UT"\ {y} each intersect the
k-set (Y UZ)\T)U{y}. In particular, (QUT"\ {y})U{z} = QUT is a hyperedge of
H. This proves (1).

In order to prove (2), let us fix an arbitrary petal P of Sz. Observe that the (r—1)-set

(YUZ\T)UP = (Y UZ)\(T"U{z}\{y}) U P =((YUZ)\T)\{z}U{yjuP

is contained in the hyperedge (Y U Z)\ T U {y} U P € E(H) whose existence is given
by the inductive hypothesis on (2) with y = s’ € T". Therefore, the positive co-degree
condition guarantees that the (r —1)-set (Y U Z)\ T)U P is contained in k hyperedges.
In order for these hyperedges to intersect the r + 1 hyperedges () U T for each petal )

6



of Sy, we have that each set of the form (Y U Z)\T)U{s} UP for s € T must be a
hyperedge of H. O

We are now ready to complete the proof of Theorem [Bl Suppose that there is a
hyperedge h € E(H) such that |hN(YUZ)| < k—1. Then there exists a k-set T’ C YUZ
such that T is disjoint from h. Moreover, as Sy has at least r + 1 petals, there is a petal
@ in Sy that is disjoint from h. By Claim [0 we have that TUQ € E(H) which is disjoint
from h € E(H). This violates the intersecting property of H, a contradiction.

Therefore, every hyperedge h € F(H) intersects Y U Z in at least k vertices. This
implies that H is a subhypergraph of a k-kernel system, i.e., as H is edge-maximal, it is
exactly a k-kernel system. O

Remark. Observe that the proof of Theorem [3] gives a stability result. In particular, if
‘H has enough edges to apply Lemma [ then we have that H is a subhypergraph of a
k-kernel system.

3 Improved thresholds on n

We now show that in the case k < 3, Theorem [ holds for n > ¢r**2. In Theorem
we need n to be at least double exponential in r. Recall that two hypergraphs A and
B are cross-intersecting if for every pair of hyperedges A € E(A) and B € E(B) we
have AN B # (). Also, a transversal for a hypergraph H is a set of vertices T" such that
T N h # () for every hyperedge h € E(H). The transversal number () is the minimum
t such that there is a transversal T" of H of size t.

We begin with a simple bound on the size of an intersecting hypergraph H with
transversal number 7(H) = t. Stronger results for 7(H) = 3 and 7(H) = 4 are given by
Frankl [6] and Frankl, Ota and Tokushige [12], but we include an argument for the sake
of completeness and as our argument holds for all n and ¢.

Lemma 10. Fixn > r >t. Let H be an intersecting r-uniform n-vertex hypergraph with
transversal number T7(H) > t. Then

E(H)| < rt(”‘t).

r—t

Proof. Let us construct a t-uniform hypergraph 7 with |E(7)| < r* such that for every
h € E(H) there exists a b’ € E(T) with b’ C h. The existence of 7 immediately implies
the lemma as |E(H)| < |E(T)|("5)).

We proceed iteratively. First select an arbitrary hyperedge hy € E(H). For each
vertex v, € hy, the set {v;} is not a transversal of H, so there is a hyperedge hy € E(H)
that is disjoint from {v;}. For each vertex vy € hy, the set {vy,v9} is not a transversal
of H, so there is a hyperedge hy € F(H) that is disjoint from {vy,v2}. We continue this
process to select a set of ¢ distinct vertices v1,vs,...,v;. Let T be the collection of all
t-sets constructed in this way. Note that in each step there are at most r choices for the
vertex vy, so |E(T)| < rt.

Now it remains to show that for every h € E(H) there exists an ' € E(T) with
h' C h. Observe that at each step i, our hyperedge h must intersect h;, so there is



a choice of vertex in h; N h. Therefore, there is at least one r-set constructed that is
contained in h. O

We first consider the case of minimum positive co-degree at least 2.

Proposition 11. Fixr > 3 and let n > %r‘l. Let H be an intersecting r-uniform n-vertex
hypergraph with minimum positive co-degree 6, {(H) > 2. If H has the mazimum number
of hyperedges, then H is a 2-kernel system.

Proof. We distinguish three cases based on the minimum transversal size 7(#) of H.
Case 1: 7(H) = 1.

Then there is a vertex x in each hyperedge of H. Fix a hyperedge h € E(H) and
observe that the (r — 1)-set h\ {x} is contained in exactly one hyperedge which violates
the positive co-degree condition.

Case 2: 7(H) > 3.
Then Lemma [I0 gives

pool < ("7 0)

which for n > %T4 is smaller than 3(::;’), a contradiction.
Case 3: 7(H) = 2.

Let {z,y} be a minimum transversal of . Consider the (r — 1)-uniform hypergraphs
Hy ={h\{z}:he E(H)and hn{z,y} ={z}} and H, = {h\{y}: h € E(H) and hN
{z,y} = {y}}. First observe that this pair of hypergraphs is cross-intersecting as H is
intersecting. Now observe that any hyperedge h € E(H,) is a set of size r — 1 that is
contained in a hyperedge of H. Thus, h has co-degree at least 2, therefore must be a
member of H,. This implies that H, = H,, therefore H, is intersecting.

Now if H, = H, is not a maximal star, then by the Erdés-Ko-Rado theorem we have

E(H)| <2(Z:§’) + (Zii) =3(7:§) * (ﬁig)’

i.e., H has fewer hyperedges than a 2-kernel system, a contradiction. Therefore, every
hyperedge of H, contains a fixed vertex z. This implies that every hyperedge of H
contains at least two of {z,y, z}, i.e., maximality implies that H is a 2-kernel system. [

We now turn to the case when £ = 3. We will need two lemmas. The first is due to
Frankl (Proposition 1.4 in [7]).

Lemma 12 (Frankl, [7]). Let A and B be cross-intersecting hypergraphs on vertex set
[N] such that A is a-uniform and B is (a + 1)-uniform and intersecting. If N > 2a + 1,

then N
A8 < (7).

with equality if and only if either B is empty and A has size (]Z) or both A and B are
mazimal stars containing the same a fived vertex q.

The next lemma gives the size of a minimum transversal for a hypergraph with min-
imum co-degree at least k.



Lemma 13. Fizr > 3, k> 2 and let n > 2(%1;1)71(7“—16)7““1. Let H be an intersecting
r-uniform n-vertex hypergraph with minimum positive co-degree 5" (H) > k. If H has
the mazimum number of hyperedges, then H has transversal number T(H) = k.

Proof. First suppose that 7(H) < k. As in the proof of Lemma [@] let X be a minimal
transversal for H and consider a hyperedge h that intersects X in exactly one element.
Such a hyperedge exists as otherwise X is not minimal. The (r—1)-set h\ X is contained
in at most k& — 1 hyperedges of H; one for each element of X. This contradicts the
co-degree condition on H.

Now suppose that 7(H) > k. Lemma [0 gives |E(H)| < 7””1("_]“_1). On the

r—k—1
other hand, our construction has at least (Qkk_ 1) ("_ik;l) hyperedges. Therefore, for

n > 2(%,;1)71(7“ — k)r**1 we have a contradiction, thus, 7(H) = k. O
Finally, we need a technical definition to construct auxiliary hypergraphs from H.

Definition 14. Let H be an r-uniform hypergraph and let T be a fixed set of vertices in
H. For a subset S C T define

HE={h\S:hec EH) and hnT = S},

i.e., HL is the (r—|S|)-uniform hypergraph constructed by removing S from each hyperedge
of H that intersects T in exactly S.

T

T1X2..Ts when S5 = {:El, T2y ... al‘s}~

For ease of notation we will often denote H% by H

Theorem 15. Fix r > 3 and let n > 2r°. Let H be an intersecting r-uniform n-vertex
hypergraph with minimum positive co-degree 6, | (H) > 3. If H has the mazimum number
of hyperedges, then H is a 3-kernel system.

Proof. By Lemma [[3] we may assume the minimum transversal size of H is 7(H) = 3.
Let X = {z,y, 2} be a minimum transversal of H.

Consider the three (r — 1)-uniform hypergraphs HX, 'H‘;( and HX. First observe that
any pair of these hypergraphs is cross-intersecting as H is intersecting. Now observe that
any hyperedge h € E(HX) is a set of size 7 — 1 that is contained in a hyperedge of H,
therefore h has co-degree at least 3. This implies that h is also a member of H;" and HZ .
Thus, all three hypergraphs H.', H,’,H2 are the same. Moreover, this implies that #H;'
is intersecting.

We distinguish three cases based on 7(HX).

Case 1: 7(HX) = 1.

Let u be a transversal of HX. Every hyperedge of HX, ’H;( ,HX contains u, therefore,
every hyperedge of H contains at least two vertices from {z,y, z,u}. Put T'= X U{u} =
{z,y,z,u}.

Claim 16. The siz hypergraphs H1, for a,b € T = {x,y,z,u} are equal.

Proof. Tt is enough to show that E(HZ,) C E(HL) for any three vertices a,b,c € T. Let
h € E(HL) and consider the (r — 1)-set h U {a}. By the co-degree condition on H we
have that h U {a} is contained in at least three hyperedges. Each of these hyperedges
includes at least two vertices from {x,y, z,u}, so h U {a} is contained in the hyperedge

hU{a,c},ie., he E(HL). O



Observe that H, and H!, are cross-intersecting, which implies that 7, is intersect-

ing. Now if H, is not a maximal star, then by the Erdés-Ko-Rado theorem we have

\E(H)| <6(Z:§) +4<Z:§) + (Z:j) = 10<Z:§> +5<Z:i) + (Z:g)

i.e., H has fewer hyperedges than a 3-kernel system, a contradiction. Therefore, every
hyperedge of H,, contains a fixed vertex v. As the six hypergraphs M/, for a,b €
T = {x,y, z,u} are equal, we have that every hyperedge of H contains at least three of
{z,y, z,u,v}, i.e., maximality implies that # is a 3-kernel system.

Case 2: T7(H)) = 2.

Let u, v be a minimal transversal of HX, i.e., every hyperedge of HX contains at least
one of u,v. As HX = 'Hf = HX, we have that every hyperedge of H contains at least
two vertices from T' = {z,y, z,u,v}. Moreover, H], = H], = HI, and "], =H] = HI,
and each of these (r — 2)-uniform hypergraphs is non-empty (as otherwise u, v would not
be a minimal transversal). Note that there is no hyperedge that intersects 7" in exactly u

and v, so HI is empty. For simplicity, we consider the empty hypergraph as intersecting.

Claim 17. The hypergraph HZ, is intersecting for every a,b € T = {z,y, z, u,v}.

Proof. Suppose not. Then there are hyperedges A, B € E(HL) such that ANB = (. By
the co-degree condition, the (r—1)-set AU{a} is contained in at least three hyperedges of
‘H. Since each hyperedge of ‘H contains at least two elements from 7', there is a hyperedge
AU {a,c} where ¢ € T'\ {a,b}. Similarly, the (r — 1)-set B U {b} is contained in some
hyperedge B U {b,d} where d € T \ {a,b,c}. However, the hyperedges A U {a,c} and
B U {b,d} are disjoint which violates the intersecting property of H. O

Now for any a,b € T" we have ’H%\ (o a0d HI, are cross-intersecting, ’Hg\ (apy 15 (1=3)-
uniform and HZ, is (r — 2)-uniform and intersecting. Therefore, as n — 5 > 2(r — 3) + 1,
we may apply Lemma [I2] to get

n—>
CTATRRECY I ()

|E(H)| =D _|E(HE)| < 10(?:2) +5<Z:i) " (Z:g))

SCT

Thus

As H has the maximum number of hyperedges, we must have equality above. There-
fore, we must have that for every a,b € T, the hypergraphs ’Hg\ {ab} and HZ, have the

form of one of the two extremal constructions in Lemma In particular, H, is either
empty or a maximal star. As HI, = H], = ML, and H], = H], = H!, are non-empty,
each is a maximal star. The hypergraphs H, and H/, are cross-intersecting which im-
plies that all six of these these maximal stars share the same fixed vertex ¢q. Therefore,
we can replace minimal transversal u, v of HX with ¢, a contradiction.

Case 3: 7(HY) > 3.
Then Lemma [I0 gives



The remaining hyperedges of ‘H are counted by ?—[fyz and H2 for a,b € {z,y,2}. We need
a simple claim. Recall that the shadow of an r-uniform hypergraph G is the collection of

all (r — 1)-sets contained in a hyperedge of G. We denote the shadow of G by A(G).

Claim 18. For each hyperedge h € E(H,.) there is some hyperedge g € E(H;) that
contains h. Thus,

|E(H;)| < JAH)|-
Proof. Let h be an arbitrary hyperedge of ’Hi( Consider the (r — 1)-set A = h U {y}.

The set A has co-degree at least 3, so it is contained in three hyperedges of H; one such
hyperedge is AU{z}, another could be AU {x}, so there exists at least one hyperedge of
the form AU{w} where w & {x,y, z}. However, AN{z,y, 2z} = {y}, so (AU{w})\{y} €

By Claim [I§ we have

B(HE)| < |AKD)| < (r — DIEGL)| < (”jj‘;)

Finally, |E('Hi§z)| < (?:g’) Thus,

|E(H)| < (Z N ;’) +3(rt 4+ %) (n B 4)

r—4

which is less than 10(::;’) for n > 215, a contradiction. O

In order to extend the technique used in this section to reprove our theorem for
minimum positive co-degree k > 4 we would need to distinguish additional cases based
on the transversal size of HX. Some of these cases can be addressed with Lemmas
and [I2, but probably new ideas will be needed.
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Appendix

We now give an improvement to Lemma [Bl which we believe is of independent interest.
Recall that f(r, p) is the minimum integer such that an r-uniform hypergraph with f(r, p)
hyperedges contains a sunflower with p petals.

Lemma 19. Fiz integers r > 3, k> 1 and p > 1 and let n be large enough. If G is an
r-uniform n-vertex hypergraph with

£ = 25 (17T,

then G contains a sunflower with p petals and core of size at most k.

This replaces the value of C'= (pr2")?" in Lemma [ with C' = 2r"* f(r, pr"=*) which
is significantly smaller when using the bound on f(r, pr™=*) from [].

Proof. For the sake of a contradiction, suppose that G contains no sunflower with p petals
and core of size at most k.

Iteratively remove from G a sunflower S with exactly pre®)=* petals such that at
each step we choose a sunflower with minimum available core size ¢(S). Let t be the
number of steps in this sunflower removal procedure. Note that ¢ grows with n as at each
step we remove at most pr" ¥ hyperedges from G and we only need constant number of
hyperedges to guarantee the existence of a sunflower with pro®)=F petals. In particular,

we have -
@)= [0 | |EG)
prrfk 2p7«rfk

t

for n large enough.

The core of each removed sunflower is of size at least k£ + 1 and at most r» — 1.
Therefore, there is some integer s such that there are at least t/r cores of size s among
the removed sunflowers. Some of these cores may be identical. Let us compute the
maximum multiplicity of a core Y. There are at most (Zf:m) hyperedges containing Y
and each removed sunflower with core Y has exactly pr!¥!=* hyperedges. Therefore, the
maximum multiplicity of a core Y is at most

Lo (n=Y[\ 1 n—k—1
priYI=k\r —|Y|) =~ pr\r—k—1
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for n > r. Therefore, there is a collection of at least

r—k—1 — 2prmRF\r—k—1
distinct cores of size s. Let Y7,Y5, ..., Y, be these cores and let S; be the sunflower with
core Y; for i = 1,2,...,q. Note that each of these sunflowers has exactly pr®=* petals.

Let t be the first step in the sunflower removal procedure in which a sunflower with
core of size s is chosen to be removed. This implies that all later cores are of size at
least s. Now we will show that there is a sunflower B with core of size less than s and
preB=k petals among the hyperedges in the sunflowers Si, S, . .. , S, Before removing
the sunflower in step ¢, all hyperedges of the sunflowers S;,S,,...,S, are still in H.
Therefore, the sunflower B with core of size less than s could be chosen in step ¢, this
will contradict the choice of ¢.

We may think of the s-sets Y7,...,Y, as an s-uniform hypergraph on the vertex set
of H. As q > f(r,pr"=) > f(s,pr"=%) > f(s,pr®™"), the s-sets Yi,...,Y, contain an
s-uniform sunflower A with pr®=* petals and core Y* of size less than s. By relabelling,
we may suppose that Y; is a member of A for i« = 1,2,...,pr*"". Note that the petals
Y\ Y* of A are pairwise disjoint by definition. The sunflower A is not in the hypergraph
‘H as it is s-uniform. However, each hyperedge of A is the core of some sunflower S; in H.
Therefore, we will use the members of A to identify an r-uniform sunflower B with core
Y* in H. The main idea will be carefully choose a petal from each sunflower S; whose
core is a member of A. To this end, define B as follows:

First pick any hyperedge of S;; denote it by h;. Now suppose we have chosen ¢ hyper-
edges hq, ha, ..., hy that form a sunflower with core Y*. The union of these hyperedges
contains ((r — |Y*|) vertices outside of Y*. Therefore, as long as

preh > U = |Y7)), (1)

there is a petal Y; \ Y* of A that is disjoint from each of the hyperedges hy, ho, ..., hy.
The corresponding sunflower S; with core Y; has

Pt > U = Y7))

petals by (). Therefore, there is a petal P of S; that is also disjoint from the hyperedges
in hy, ho, ..., hy. Let hyyq be the hyperedge P UY;. Now we have a sunflower with ¢ + 1
petals and core Y*. We may repeat this procedure as long as ¢ satisfies (), i.e., until
¢ = pr*=#=1 | This implies that the number of petals in sunflower B is at least

st—k—l.
As B has core Y* of size ¢(B) < s we have a contradiction to the choice of sunflower in
step t. ]
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