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József Balogh∗ Nathan Lemons† Cory Palmer‡

March 8, 2021

Abstract

Let H be an r-uniform hypergraph. The minimum positive co-degree of H,
denoted by δ

+
r−1(H), is the minimum k such that if S is an (r− 1)-set contained in

a hyperedge of H, then S is contained in at least k hyperedges of H. For r ≥ k fixed
and n sufficiently large, we determine the maximum possible size of an intersecting
r-uniform n-vertex hypergraph with minimum positive co-degree δ

+
r−1(H) ≥ k and

characterize the unique hypergraph attaining this maximum. This generalizes the
Erdős-Ko-Rado theorem which corresponds to the case k = 1. Our proof is based
on the delta-system method.

1 Introduction

A hypergraph H is intersecting if for every pair of hyperedges h, h′ ∈ E(H) we have
h ∩ h′ 6= ∅. The celebrated theorem of Erdős, Ko and Rado [3] gives that for n ≥ 2r, the
maximum size of an intersecting r-uniform n-vertex hypergraph is

(

n−1
r−1

)

. The Erdős-Ko-
Rado theorem is a cornerstone of extremal combinatorics and has many proofs, extensions
and generalizations, see the excellent survey of Frankl and Tokushige [11] for a history of
extremal problems for intersecting hypergraphs. We call the unique hypergraph achieving
the maximum in the Erdős-Ko-Rado theorem a maximal star, i.e., the hypergraph of all
hyperedges containing a given vertex.

The degree of a set of vertices S in a hypergraph H is the number of hyperedges
containing S, i.e., |{h ∈ E(H) : S ⊆ h}|. Denote by δs(H) the minimum degree of an
s-element subset of the vertices of H. In this way, δ1(H) is the standard minimum degree
of a vertex in H.

Huang and Zhao [16] considered a minimum degree version of the Erdős-Ko-Rado
theorem. In particular, they proved that for n ≥ 2r+1, if H is an intersecting r-uniform
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n-vertex hypergraph, then H has minimum degree δ1(H) ≤
(

n−2
r−2

)

. The Huang-Zhao [16]
proof uses the linear algebra method and later a combinatorial proof was given by Frankl
and Tokushige [10] for n ≥ 3r. Kupavskii [19] gave an extension of this result and showed
that for t < r and n ≥ 2r+3t/(1−t/r), every intersecting r-uniform n-vertex hypergraph
H satisfies δt(H) ≤

(

n−t−1
r−t−1

)

.
In the more general hypergraph setting, Mubayi and Zhao [22] introduced the notion

of co-degree Turán numbers, i.e., the maximum possible value of δr−1(H) among all r-
uniform n-vertex hypergraphs H not containing a specified subhypergraph F . In their
paper they give several results that show that the co-degree extremal problem behaves
differently from the classical Turán problem.

Motivated by the degree versions of the Erdős-Ko-Rado theorem and co-degree Turán
numbers we propose studying the following hypergraph degree condition.

Definition 1. Let H be a non-empty r-uniform hypergraph. The minimum positive co-
degree of H, denoted δ+r−1(H), is the maximum k such that if S is an (r−1)-set contained
in a hyperedge of H, then S is contained in at least k distinct hyperedges of H.

Note that the empty hypergraph is a degenerate case; for simplicity we define its
positive co-degree to be zero.

As an example, let us examine hypergraphs that contain no F5 = {abc, abd, cde} to
compare the co-degree and positive co-degree settings. Frankl and Füredi [9] (see [17] for
a strengthening) showed that the complete balanced tripartite 3-uniform hypergraph has
the maximum number of hyperedges among all 3-uniform n-vertex F5-free hypergraphs,
for n sufficiently large. This construction has minimum co-degree 0 and it is easy to see
that minimum co-degree at least 2 guarantees the existence of an F5. On the other hand,
the balanced tripartite hypergraph is F5-free and has minimum positive co-degree n/3
and it can be shown that minimum positive co-degree strictly greater than n/3 implies
the existence of an F5.

Note that for ordinary graphs (i.e. 2-uniform hypergraphs), the minimum positive co-
degree is simply the minimum degree of the non-isolated vertices, which in many extremal
problems we may assume is equal to the minimum degree. This suggests positive co-degree
as a reasonable notion of “minimum degree” in a hypergraph.

The positive co-degree condition has appeared in several other contexts. For example,
in [18] the term d-full was used and the authors gave some simple lemmas for hypergraphs
with minimum positive co-degree (in the course of proving theorems about extremal
numbers for hypergraphs).

In this paper we investigate the maximum size of an intersecting r-uniform n-vertex
hypergraph with positive co-degree at least k. As the condition δ+r−1(H) ≥ 1 is vacuous,
the maximum in this case is

(

n−1
r−1

)

as given by the Erdős-Ko-Rado theorem. The unique
construction achieving this bound has minimum positive co-degree 1. On the other hand,
as shown in Proposition 4, in an intersecting hypergraph the uniformity gives an upper
bound on the minimum positive co-degree, i.e., r ≥ k. Thus the range of interest for our
problem is 2 ≤ k ≤ r. In this range we prove that for n sufficiently large the maximum-
size intersecting hypergraph with minimum positive co-degree k is given by the following
hypergraph.

Definition 2. Given integers r ≥ k ≥ 1 an (r-uniform) k-kernel system is a hypergraph
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H on vertex set V with edges E = {E ∈
(

V

r

)

: |E ∩ X| ≥ k}, were X is a distinguished
subset of V of size 2k − 1. The set X is called the kernel of H.

Clearly a k-kernel system is intersecting. Observe that the number of hyperedges in
an r-uniform n-vertex k-kernel system H is

|E(H)| =

max{r,2k−1}
∑

i=k

(

2k − 1

i

)(

n− 2k + 1

r − i

)

≥

(

2k − 1

k

)(

n− 2k + 1

r − k

)

= Ω(nr−k).

Note that a 1-kernel system is the hypergraph consisting of all hyperedges containing a
fixed vertex x, i.e., the maximal hypergraph in the Erdős-Ko-Rado theorem. Interestingly,
k-kernel systems appear as solutions to maximum degree versions of the Erdős-Ko-Rado
theorem. Let us give three examples.

First, a special case of a more general theorem of Frankl [7] implies that if H is
a maximum-size intersecting r-uniform n-vertex hypergraph with maximum degree at
most 2

(

n−3
r−2

)

+
(

n−3
r−3

)

, then H is a 2-kernel system, provided n is large enough.
Second, Erdős, Rothschild and Szemerédi (see [2]) posed the following problem: de-

termine the maximum size of an intersecting r-uniform n-vertex hypergraph H such that
each vertex contained in at most c|E(H)| hyperedges for r ≥ 3 and 0 < c < 1. They
proved when c = 2/3 and n large, then a 2-kernel system is the unique hypergraph at-
taining this maximum. Frankl [5] showed that for 2/3 ≤ c < 1 and n large enough, H
has no more hyperedges than a 2-kernel system. For 3/5 < c < 2/3 and n large enough,
Füredi [5] showed that a 3-kernel system is one of six non-isomorphic hypergraphs attain-
ing this maximum. In the case when 1/2 < c ≤ 3/5 and n large enough, Frankl [5] showed
that H has no more hyperedges than a 3-kernel system, although the unique hypergraph
attaining this maximum is not isomorphic to a 3-kernel system.

Third, Lemons and Palmer [21] proved that 3-kernel systems are the r-uniform n-
vertex hypergraphs with the largest diversity, i.e., the difference between the number of
hyperedges and the maximum degree for n large enough (see [8, 20] for improvements to
the threshold on n).

The main result of our paper is as follows:

Theorem 3. Let H be an intersecting r-uniform n-vertex hypergraph with minimum
positive co-degree δ+r−1(H) ≥ k where 1 ≤ k ≤ r. If H has the maximum number of
hyperedges, then H is a k-kernel system for n sufficiently large.

Theorem 3 holds for n large, roughly double exponential in r. In Section 3 we give
two results that suggest that Theorem 3 should hold for n at least crk+2, where c is a
polynomial in k. It would be interesting to further refine the range of n as a function of r
and k where our results hold. Also, we only considered the positive co-degree of (r− 1)-
sets. We can define δ+s (H) to be the minimum k such that if S is an s-set contained in
a hyperedge of H, then S is contained in at least k distinct hyperedges. There may be
interesting problems to be considered under this more general condition.

2 Proof of Theorem 3

First, let us observe that the uniformity of an intersecting hypergraph is always at least
the minimum positive co-degree.
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Proposition 4. If H is a non-empty intersecting r-uniform n-vertex hypergraph with
minimum positive co-degree δ+r−1(H) ≥ k, then r ≥ k.

Proof. Assume, for the sake of a contradiction, that k > r. Let h = {x1, x2, . . . , xr} be
a hyperedge of H. The (r − 1)-set h \ {x1} has co-degree at least k, so there is a vertex
xr+1 6∈ h such that (h \ {x1}) ∪ {xr+1} is a hyperedge of H. Similarly, the (r − 1)-set
(h \ {x1, x2})∪{xr+1} has co-degree at least k, so there is a vertex xr+2 6∈ h∪{xr+1} such
that (h \ {x1, x2})∪ {xr+1, xr+2} is a hyperedge of H. Because k > r, we can repeat this
process to obtain a hyperedge (h \ {x1, . . . , xr}) ∪ {xr+1, . . . , x2r} = {xr+1, . . . , x2r} that
is in H. Now we have disjoint hyperedges h and {xr+1, . . . , x2r} in H which contradicts
the intersecting property.

An r-uniform hypergraph S is a sunflower if every pairwise intersection of the hy-
peredges is the same set Y , called the core of the sunflower. We call the sets h \ Y for
h ∈ E(S) the petals of the sunflower S. Note that the petals are pairwise disjoint. Denote
the size of the core of a sunflower S by c(S).

Let f(r, p) denote the minimum integer such that an r-uniform hypergraph with
f(r, p) hyperedges contains a sunflower with p petals. The Sunflower Lemma of Erdős
and Rado [4] claims that f(r, p) ≤ r!(p − 1)r. The determination of f(r, p) is a well-
known open problem in combinatorics. A recent breakthrough by Alweiss, Lovett, Wu
and Zhang [1] gives a bound on f(r, p) of about (log r)r(1+o(1)).

In general we cannot force a sunflower to have a core of a specified size unless we
increase the number of hyperedges in the host hypergraph. Mubayi and Zhao (Lemma 6
in [23]) gives conditions for the existence of a sunflower with a core of bounded size.

Lemma 5 (Mubayi and Zhao, [23]). Fix integers r ≥ 3, k ≥ 1 and p ≥ 1 and let
C = C(r, p) be a large enough constant. If G is an r-uniform n-vertex hypergraph with

|E(G)| ≥ Cnr−k−1,

then G contains a sunflower with p petals and core of size at most k.

Observe that Lemma 5 is sharp in the order of magnitude of n. Indeed, the r-uniform
n-vertex hypergraph consisting of all hyperedges containing a fixed set Y of k+1 vertices
contains

(

n−k−1
r−k−1

)

hyperedges, but no sunflower with a core of size at most k as any two
hyperedges intersect in at least k+1 vertices. We remark that the problem to determine
the best constant C in Lemma 5 is interesting in its own right. In the Appendix at the
end of the paper we give a new proof of Lemma 5 that gives an improvement to C.

We will need a lower bound on the size of a core of a sunflower in an intersecting
hypergraph.

Lemma 6. If S is a sunflower with at least r + 1 petals in an intersecting r-uniform
hypergraph G with δ+r−1(G) ≥ k, then the core Y of S satisfies |Y | ≥ k.

Proof. For the sake of contradiction, assume that the core Y of S is small, i.e., |Y | < k.
Observe that Y is a transversal of G, i.e., every hyperedge of G intersects Y . Indeed,
as the petals of the sunflower S are pairwise vertex-disjoint, each hyperedge of G must
intersect the core Y in order to intersect each of the at least r+ 1 hyperedges associated
with the petals of the sunflower.
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Now let Y ′ be a minimum transversal in G. Thus |Y ′| ≤ |Y | < k and the minimality
of Y ′ guarantees the existence of a hyperedge h that intersects Y ′ in exactly one element.
The (r− 1)-set h \Y ′ is contained in at most k− 1 hyperedges of G; one for each element
of Y ′. This contradicts the positive co-degree condition on G.

Proof of Theorem 3. Let H be an intersecting r-uniform n-vertex hypergraph with min-
imum positive co-degree δ+r−1(H) ≥ k where 1 ≤ k ≤ r. Moreover, suppose that H has
the maximum number of hyperedges. We will show that H is a k-kernel system for n
sufficiently large.

We have observed that a k-kernel system has minimum positive co-degree at least k,
so we may assume that

|E(H)| ≥

(

2k − 1

k

)(

n− 2k + 1

r − k

)

= Ω(nr−k).

Therefore, for n large enough, Lemmas 5 and 6 guarantees the existence of a sunflower S
with p = (r+1)rk−1 petals and core of size k. Denote the core of S by Y = {y1, y2, . . . , yk}.

Note that in order to apply Lemma 5 we need that the following inequality is satisfied:

(

2k − 1

k

)(

n− 2k + 1

r − k

)

≥ Cnr−k−1,

where C = C(r, p) is the constant from Lemma 5. This is satisfied when

n ≥
(2r − 2k)r−k

(

2k−1
k

) C.

The value C = (pr2r)2
r

given in [23] follows from a theorem of Füredi [15].

Claim 7. There is a set of vertices Z = {z1, z2, . . . , zk−1} such that Z ∩ Y = ∅ and
Z ∪ {yk} is the core of a sunflower with r + 1 petals.

Proof. We will prove the following stronger claim: For 0 ≤ i ≤ k − 1, there is a set of
vertices Zi = {z1, z2, . . . , zi} such that Y ∩Zi = ∅ and Zi ∪{yk, yk−1, . . . , yi+1} is the core
of a sunflower Si with (r + 1)rk−1−i petals. The claim follows from the case i = k − 1.

We proceed by induction on i. The base case i = 0 is immediate as Z0 = ∅ and S0 = S
is a sunflower with core Z0∪{yk, yk−1, . . . , y1} = Y with (r+1)rk−1 petals. Now suppose
i > 0 and the statement holds for i − 1. Let Si−1 be a sunflower given by the inductive
hypothesis.

For each petal P in Si−1 consider the (r − 1)-set P ∪ Zi−1 ∪ {yk, . . . , yi+1} = P ∪
Zi−1 ∪ {yk, . . . , yi} \ {yi}. By the positive co-degree condition on H, the set P ∪ Zi−1 ∪
{yk, . . . , yi+1} is contained in k hyperedges of H. Therefore, as i ≤ k − 1, there is a
vertex x(P ) such that x(P ) 6∈ {y1, y2, . . . , yi} and {x(P )} ∪ P ∪Zi−1 ∪ {yk, . . . , yi+1} is a
hyperedge of H.

Now suppose there are distinct vertices x1, x2, . . . , xr+1 among the vertices in {x(P ) :
P is a petal in S}. Let P1, P2, . . . , Pr+1 be the petals corresponding to these vertices, i.e.,
{xj}∪Pj∪Zi−1∪{yk, . . . , yi+1} ∈ E(H) for j = 1, 2, . . . , r+1. Then Zi−1∪{yk, . . . , yi+1}
is the core of size k − 1 of a sunflower with petals Pj ∪ {xj} for j = 1, 2, . . . , r + 1 in H.
This contradicts Lemma 6. Therefore, there are at most r distinct vertices among the
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vertices in {x(P ) : P is a petal in Si−1}. This implies that there is a vertex x that is the
vertex x(P ) for at least 1

r
|E(Si−1)| ≥ (r + 1)rk−2−(i−1) petals P in Si−1. Put zi = x and

Zi = {z1, z2, . . . , zi} and let Si be the sunflower consisting of (r + 1)rk−1−i hyperedges of
Si−1 containing x = zi. Observe that Zi ∪ {yk, . . . , yi+1} is the core of the sunflower Si

with (r + 1)rk−1−i petals.

Let SZ be a sunflower with r + 1 petals and core Z ∪ {yk} given by Claim 7. There
are at most (r + 1)(r − k) + (k − 1) vertices disjoint from Y spanned by SZ . As S has
(r + 1)rk−1 petals, we may choose r + 1 petals of S that are vertex-disjoint from the
vertices of SZ . Call the resulting sunflower SY . Note that SY has r + 1 petals and core
Y .

Claim 8. For every petal P in SZ and every y ∈ Y we have that P ∪ Z ∪ {y} is a
hyperedge in H.

Proof. Observe that the (r− 1)-set P ∪Z is contained in the hyperedge P ∪Z ∪ {yk}, so
by the positive co-degree condition P ∪ Z is contained in k hyperedges of H. Moreover,
each of these hyperedges must intersect every hyperedge in the sunflower SY . As SY has
at least 2 petals, each of the k hyperedges containing P ∪Z must contain a distinct vertex
of Y .

We now continue with a technical claim that will imply the theorem.

Claim 9. For every k-set T ⊂ Y ∪ Z we have:

(1) Q ∪ T ∈ E(H) for every petal Q of SY ,

(2) ((Y ∪ Z) \ T ) ∪ {s} ∪ P ∈ E(H) for every s ∈ T and petal P of SZ .

Proof. We proceed by induction on t = |T ∩ Z|. Note that t ≤ k − 1. When t = 0 we
have that T = Y , then (1) is immediate as Q ∪ Y ∈ E(SY ) ⊂ H and (2) follows from
Claim 8.

Let t > 0 and suppose the statement of the claim holds for all smaller values of t. As
0 < t ≤ k − 1, there exists a z ∈ Z ∩ T and a y ∈ Y \ T . Fix an arbitrary petal Q of SY .
Put T ′ = T ∪ {y} \ {z} and note that |T ′ ∩Z| = t− 1. Therefore, by induction, we have
Q∪T ′ ∈ E(H) and ((Y ∪Z) \T ′)∪{s′}∪P ∈ E(H) for every s′ ∈ T ′ and petal P of SZ .

By the positive co-degree condition, the (r − 1)-set Q ∪ T ′ \ {y} is contained in at
least k hyperedges. Moreover, Q ∪ T ′ \ {y} is disjoint from the hyperedges of the form
((Y ∪ Z) \ T ′) ∪ {y} ∪ P where P is a petal of SZ . As SZ has r + 1 petals and H is
intersecting, this implies that the k hyperedges containing Q∪T ′ \ {y} each intersect the
k-set ((Y ∪ Z) \ T ) ∪ {y}. In particular, (Q ∪ T ′ \ {y}) ∪ {z} = Q ∪ T is a hyperedge of
H. This proves (1).

In order to prove (2), let us fix an arbitrary petal P of SZ . Observe that the (r−1)-set

((Y ∪ Z) \ T ) ∪ P = ((Y ∪ Z) \ (T ′ ∪ {z} \ {y})) ∪ P = ((Y ∪ Z) \ T ′) \ {z} ∪ {y} ∪ P

is contained in the hyperedge (Y ∪ Z) \ T ′ ∪ {y} ∪ P ∈ E(H) whose existence is given
by the inductive hypothesis on (2) with y = s′ ∈ T ′. Therefore, the positive co-degree
condition guarantees that the (r− 1)-set ((Y ∪Z) \ T )∪P is contained in k hyperedges.
In order for these hyperedges to intersect the r + 1 hyperedges Q ∪ T for each petal Q
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of SY , we have that each set of the form ((Y ∪ Z) \ T ) ∪ {s} ∪ P for s ∈ T must be a
hyperedge of H.

We are now ready to complete the proof of Theorem 3. Suppose that there is a
hyperedge h ∈ E(H) such that |h∩ (Y ∪Z)| ≤ k−1. Then there exists a k-set T ⊂ Y ∪Z
such that T is disjoint from h. Moreover, as SY has at least r+ 1 petals, there is a petal
Q in SY that is disjoint from h. By Claim 9 we have that T ∪Q ∈ E(H) which is disjoint
from h ∈ E(H). This violates the intersecting property of H, a contradiction.

Therefore, every hyperedge h ∈ E(H) intersects Y ∪ Z in at least k vertices. This
implies that H is a subhypergraph of a k-kernel system, i.e., as H is edge-maximal, it is
exactly a k-kernel system.

Remark. Observe that the proof of Theorem 3 gives a stability result. In particular, if
H has enough edges to apply Lemma 5, then we have that H is a subhypergraph of a
k-kernel system.

3 Improved thresholds on n

We now show that in the case k ≤ 3, Theorem 3 holds for n ≥ crk+2. In Theorem 3
we need n to be at least double exponential in r. Recall that two hypergraphs A and
B are cross-intersecting if for every pair of hyperedges A ∈ E(A) and B ∈ E(B) we
have A ∩ B 6= ∅. Also, a transversal for a hypergraph H is a set of vertices T such that
T ∩ h 6= ∅ for every hyperedge h ∈ E(H). The transversal number τ(H) is the minimum
t such that there is a transversal T of H of size t.

We begin with a simple bound on the size of an intersecting hypergraph H with
transversal number τ(H) = t. Stronger results for τ(H) = 3 and τ(H) = 4 are given by
Frankl [6] and Frankl, Ota and Tokushige [12], but we include an argument for the sake
of completeness and as our argument holds for all n and t.

Lemma 10. Fix n ≥ r ≥ t. Let H be an intersecting r-uniform n-vertex hypergraph with
transversal number τ(H) ≥ t. Then

|E(H)| ≤ rt
(

n− t

r − t

)

.

Proof. Let us construct a t-uniform hypergraph T with |E(T )| ≤ rt such that for every
h ∈ E(H) there exists a h′ ∈ E(T ) with h′ ⊂ h. The existence of T immediately implies
the lemma as |E(H)| ≤ |E(T )|

(

n−t

r−t

)

.
We proceed iteratively. First select an arbitrary hyperedge h1 ∈ E(H). For each

vertex v1 ∈ h1, the set {v1} is not a transversal of H, so there is a hyperedge h2 ∈ E(H)
that is disjoint from {v1}. For each vertex v2 ∈ h2, the set {v1, v2} is not a transversal
of H, so there is a hyperedge h3 ∈ E(H) that is disjoint from {v1, v2}. We continue this
process to select a set of t distinct vertices v1, v2, . . . , vt. Let T be the collection of all
t-sets constructed in this way. Note that in each step there are at most r choices for the
vertex vi, so |E(T )| ≤ rt.

Now it remains to show that for every h ∈ E(H) there exists an h′ ∈ E(T ) with
h′ ⊂ h. Observe that at each step i, our hyperedge h must intersect hi, so there is
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a choice of vertex in hi ∩ h. Therefore, there is at least one r-set constructed that is
contained in h.

We first consider the case of minimum positive co-degree at least 2.

Proposition 11. Fix r ≥ 3 and let n ≥ 1
3
r4. Let H be an intersecting r-uniform n-vertex

hypergraph with minimum positive co-degree δ+r−1(H) ≥ 2. If H has the maximum number
of hyperedges, then H is a 2-kernel system.

Proof. We distinguish three cases based on the minimum transversal size τ(H) of H.

Case 1: τ(H) = 1.

Then there is a vertex x in each hyperedge of H. Fix a hyperedge h ∈ E(H) and
observe that the (r − 1)-set h \ {x} is contained in exactly one hyperedge which violates
the positive co-degree condition.

Case 2: τ(H) ≥ 3.

Then Lemma 10 gives

|E(H)| ≤ r3
(

n− 3

r − 3

)

which for n ≥ 1
3
r4 is smaller than 3

(

n−3
r−2

)

, a contradiction.

Case 3: τ(H) = 2.

Let {x, y} be a minimum transversal of H. Consider the (r− 1)-uniform hypergraphs
Hx = {h \ {x} : h ∈ E(H) and h∩ {x, y} = {x}} and Hy = {h \ {y} : h ∈ E(H) and h∩
{x, y} = {y}}. First observe that this pair of hypergraphs is cross-intersecting as H is
intersecting. Now observe that any hyperedge h ∈ E(Hx) is a set of size r − 1 that is
contained in a hyperedge of H. Thus, h has co-degree at least 2, therefore must be a
member of Hy. This implies that Hx = Hy, therefore Hx is intersecting.

Now if Hx = Hy is not a maximal star, then by the Erdős-Ko-Rado theorem we have

|E(H)| < 2

(

n− 3

r − 2

)

+

(

n− 2

r − 2

)

= 3

(

n− 3

r − 2

)

+

(

n− 3

r − 3

)

,

i.e., H has fewer hyperedges than a 2-kernel system, a contradiction. Therefore, every
hyperedge of Hx contains a fixed vertex z. This implies that every hyperedge of H
contains at least two of {x, y, z}, i.e., maximality implies that H is a 2-kernel system.

We now turn to the case when k = 3. We will need two lemmas. The first is due to
Frankl (Proposition 1.4 in [7]).

Lemma 12 (Frankl, [7]). Let A and B be cross-intersecting hypergraphs on vertex set
[N ] such that A is a-uniform and B is (a + 1)-uniform and intersecting. If N > 2a + 1,
then

|A|+ |B| ≤

(

N

a

)

,

with equality if and only if either B is empty and A has size
(

N

a

)

or both A and B are
maximal stars containing the same a fixed vertex q.

The next lemma gives the size of a minimum transversal for a hypergraph with min-
imum co-degree at least k.
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Lemma 13. Fix r ≥ 3, k ≥ 2 and let n ≥ 2
(

2k−1
k

)−1
(r−k)rk+1. Let H be an intersecting

r-uniform n-vertex hypergraph with minimum positive co-degree δ+r−1(H) ≥ k. If H has
the maximum number of hyperedges, then H has transversal number τ(H) = k.

Proof. First suppose that τ(H) < k. As in the proof of Lemma 6, let X be a minimal
transversal for H and consider a hyperedge h that intersects X in exactly one element.
Such a hyperedge exists as otherwise X is not minimal. The (r−1)-set h\X is contained
in at most k − 1 hyperedges of H; one for each element of X . This contradicts the
co-degree condition on H.

Now suppose that τ(H) > k. Lemma 10 gives |E(H)| ≤ rk+1
(

n−k−1
r−k−1

)

. On the

other hand, our construction has at least
(

2k−1
k

)(

n−2k+1
r−k

)

hyperedges. Therefore, for

n ≥ 2
(

2k−1
k

)−1
(r − k)rk+1 we have a contradiction, thus, τ(H) = k.

Finally, we need a technical definition to construct auxiliary hypergraphs from H.

Definition 14. Let H be an r-uniform hypergraph and let T be a fixed set of vertices in
H. For a subset S ⊂ T define

HT
S = {h \ S : h ∈ E(H) and h ∩ T = S},

i.e., HT
S is the (r−|S|)-uniform hypergraph constructed by removing S from each hyperedge

of H that intersects T in exactly S.

For ease of notation we will often denote HT
S by HT

x1x2...xs

when S = {x1, x2, . . . , xs}.

Theorem 15. Fix r ≥ 3 and let n ≥ 2r5. Let H be an intersecting r-uniform n-vertex
hypergraph with minimum positive co-degree δ+r−1(H) ≥ 3. If H has the maximum number
of hyperedges, then H is a 3-kernel system.

Proof. By Lemma 13 we may assume the minimum transversal size of H is τ(H) = 3.
Let X = {x, y, z} be a minimum transversal of H.

Consider the three (r− 1)-uniform hypergraphs HX
x , H

X
y and HX

z . First observe that
any pair of these hypergraphs is cross-intersecting as H is intersecting. Now observe that
any hyperedge h ∈ E(HX

x ) is a set of size r − 1 that is contained in a hyperedge of H,
therefore h has co-degree at least 3. This implies that h is also a member of HX

y and HX
z .

Thus, all three hypergraphs HX
x ,H

X
y ,H

X
z are the same. Moreover, this implies that HX

x

is intersecting.
We distinguish three cases based on τ(HX

x ).

Case 1: τ(HX
x ) = 1.

Let u be a transversal of HX
x . Every hyperedge of HX

x ,H
X
y ,H

X
z contains u, therefore,

every hyperedge of H contains at least two vertices from {x, y, z, u}. Put T = X ∪{u} =
{x, y, z, u}.

Claim 16. The six hypergraphs HT
ab for a, b ∈ T = {x, y, z, u} are equal.

Proof. It is enough to show that E(HT
ab) ⊆ E(HT

ac) for any three vertices a, b, c ∈ T . Let
h ∈ E(HT

ab) and consider the (r − 1)-set h ∪ {a}. By the co-degree condition on H we
have that h ∪ {a} is contained in at least three hyperedges. Each of these hyperedges
includes at least two vertices from {x, y, z, u}, so h ∪ {a} is contained in the hyperedge
h ∪ {a, c}, i.e., h ∈ E(HT

ac).
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Observe that HT
xy and HT

zu are cross-intersecting, which implies that HT
xy is intersect-

ing. Now if HT
xy is not a maximal star, then by the Erdős-Ko-Rado theorem we have

|E(H)| < 6

(

n− 5

r − 3

)

+ 4

(

n− 4

r − 3

)

+

(

n− 4

r − 4

)

= 10

(

n− 5

r − 3

)

+ 5

(

n− 5

r − 4

)

+

(

n− 5

r − 5

)

,

i.e., H has fewer hyperedges than a 3-kernel system, a contradiction. Therefore, every
hyperedge of Hxy contains a fixed vertex v. As the six hypergraphs HT

ab for a, b ∈
T = {x, y, z, u} are equal, we have that every hyperedge of H contains at least three of
{x, y, z, u, v}, i.e., maximality implies that H is a 3-kernel system.

Case 2: τ(HX
x ) = 2.

Let u, v be a minimal transversal of HX
x , i.e., every hyperedge of HX

x contains at least
one of u, v. As HX

x = HX
y = HX

z , we have that every hyperedge of H contains at least
two vertices from T = {x, y, z, u, v}. Moreover, HT

xu = HT
yu = HT

zu and HT
xv = HT

yv = HT
zv

and each of these (r− 2)-uniform hypergraphs is non-empty (as otherwise u, v would not
be a minimal transversal). Note that there is no hyperedge that intersects T in exactly u
and v, so HT

uv is empty. For simplicity, we consider the empty hypergraph as intersecting.

Claim 17. The hypergraph HT
ab is intersecting for every a, b ∈ T = {x, y, z, u, v}.

Proof. Suppose not. Then there are hyperedges A,B ∈ E(HT
ab) such that A∩B = ∅. By

the co-degree condition, the (r−1)-set A∪{a} is contained in at least three hyperedges of
H. Since each hyperedge of H contains at least two elements from T , there is a hyperedge
A ∪ {a, c} where c ∈ T \ {a, b}. Similarly, the (r − 1)-set B ∪ {b} is contained in some
hyperedge B ∪ {b, d} where d ∈ T \ {a, b, c}. However, the hyperedges A ∪ {a, c} and
B ∪ {b, d} are disjoint which violates the intersecting property of H.

Now for any a, b ∈ T we haveHT
T\{a,b} andHT

ab are cross-intersecting, H
T
T\{a,b} is (r−3)-

uniform and HT
ab is (r − 2)-uniform and intersecting. Therefore, as n− 5 > 2(r − 3) + 1,

we may apply Lemma 12 to get

|E(HT
ab)|+ |E(HT

T\{a,b})| ≤

(

n− 5

r − 3

)

.

Thus

|E(H)| =
∑

S⊆T

|E(HT
S )| ≤ 10

(

n− 5

r − 3

)

+ 5

(

n− 5

r − 4

)

+

(

n− 5

r − 5

)

.

As H has the maximum number of hyperedges, we must have equality above. There-
fore, we must have that for every a, b ∈ T , the hypergraphs HT

T\{a,b} and HT
ab have the

form of one of the two extremal constructions in Lemma 12. In particular, HT
ab is either

empty or a maximal star. As HT
xu = HT

yu = HT
zu and HT

xv = HT
yv = HT

zv are non-empty,
each is a maximal star. The hypergraphs HT

xu and HT
yv are cross-intersecting which im-

plies that all six of these these maximal stars share the same fixed vertex q. Therefore,
we can replace minimal transversal u, v of HX

x with q, a contradiction.

Case 3: τ(HX
x ) ≥ 3.

Then Lemma 10 gives

|E(HX
x )| ≤ (r − 1)3

(

(n− 1)− 3

(r − 1)− 3

)

≤ r3
(

n− 4

r − 4

)

.
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The remaining hyperedges of H are counted by HX
xyz and HX

ab for a, b ∈ {x, y, z}. We need
a simple claim. Recall that the shadow of an r-uniform hypergraph G is the collection of
all (r − 1)-sets contained in a hyperedge of G. We denote the shadow of G by ∆(G).

Claim 18. For each hyperedge h ∈ E(HX
yz) there is some hyperedge g ∈ E(HX

x ) that
contains h. Thus,

|E(HX
yz)| ≤ |∆(HX

x )|.

Proof. Let h be an arbitrary hyperedge of HX
yz. Consider the (r − 1)-set A = h ∪ {y}.

The set A has co-degree at least 3, so it is contained in three hyperedges of H; one such
hyperedge is A∪{z}, another could be A∪ {x}, so there exists at least one hyperedge of
the form A∪{w} where w 6∈ {x, y, z}. However, A∩{x, y, z} = {y}, so (A∪{w})\{y} ∈
E(HX

y ) = E(HX
x ).

By Claim 18 we have

|E(HX
yz)| ≤ |∆(HX

x )| ≤ (r − 1)|E(HX
x )| ≤ r4

(

n− 4

r − 4

)

.

Finally, |E(HX
xyz)| ≤

(

n−3
r−3

)

. Thus,

|E(H)| ≤

(

n− 3

r − 3

)

+ 3(r4 + r3)

(

n− 4

r − 4

)

which is less than 10
(

n−5
r−3

)

for n ≥ 2r5, a contradiction.

In order to extend the technique used in this section to reprove our theorem for
minimum positive co-degree k ≥ 4 we would need to distinguish additional cases based
on the transversal size of HX

x . Some of these cases can be addressed with Lemmas 10
and 12, but probably new ideas will be needed.
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Appendix

We now give an improvement to Lemma 5 which we believe is of independent interest.
Recall that f(r, p) is the minimum integer such that an r-uniform hypergraph with f(r, p)
hyperedges contains a sunflower with p petals.

Lemma 19. Fix integers r ≥ 3, k ≥ 1 and p ≥ 1 and let n be large enough. If G is an
r-uniform n-vertex hypergraph with

|E(G)| ≥ 2rr−kf(r, prr−k)

(

n− k − 1

r − k − 1

)

,

then G contains a sunflower with p petals and core of size at most k.

This replaces the value of C = (pr2r)2
r

in Lemma 5 with C = 2rr−kf(r, prr−k) which
is significantly smaller when using the bound on f(r, prr−k) from [1].

Proof. For the sake of a contradiction, suppose that G contains no sunflower with p petals
and core of size at most k.

Iteratively remove from G a sunflower S with exactly prc(S)−k petals such that at
each step we choose a sunflower with minimum available core size c(S). Let t be the
number of steps in this sunflower removal procedure. Note that t grows with n as at each
step we remove at most prr−k hyperedges from G and we only need constant number of
hyperedges to guarantee the existence of a sunflower with prc(S)−k petals. In particular,
we have

t ≥
|E(G)| − f(r, prr−k)

prr−k
≥

|E(G)|

2prr−k

for n large enough.
The core of each removed sunflower is of size at least k + 1 and at most r − 1.

Therefore, there is some integer s such that there are at least t/r cores of size s among
the removed sunflowers. Some of these cores may be identical. Let us compute the
maximum multiplicity of a core Y . There are at most

(

n−|Y |
r−|Y |

)

hyperedges containing Y

and each removed sunflower with core Y has exactly pr|Y |−k hyperedges. Therefore, the
maximum multiplicity of a core Y is at most

1

pr|Y |−k

(

n− |Y |

r − |Y |

)

≤
1

pr

(

n− k − 1

r − k − 1

)
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for n ≥ r. Therefore, there is a collection of at least

(t/r)pr

(

n− k − 1

r − k − 1

)−1

≥ p
|E(G)|

2prr−k

(

n− k − 1

r − k − 1

)−1

≥ f(r, prr−k)

distinct cores of size s. Let Y1, Y2, . . . , Yq be these cores and let Si be the sunflower with
core Yi for i = 1, 2, . . . , q. Note that each of these sunflowers has exactly prs−k petals.

Let t be the first step in the sunflower removal procedure in which a sunflower with
core of size s is chosen to be removed. This implies that all later cores are of size at
least s. Now we will show that there is a sunflower B with core of size less than s and
prc(B)−k petals among the hyperedges in the sunflowers S1,S2, . . . ,Sq. Before removing
the sunflower in step t, all hyperedges of the sunflowers S1,S2, . . . ,Sq are still in H.
Therefore, the sunflower B with core of size less than s could be chosen in step t, this
will contradict the choice of t.

We may think of the s-sets Y1, . . . , Yq as an s-uniform hypergraph on the vertex set
of H. As q ≥ f(r, prr−k) ≥ f(s, prr−k) ≥ f(s, prs−k), the s-sets Y1, . . . , Yq contain an
s-uniform sunflower A with prs−k petals and core Y ∗ of size less than s. By relabelling,
we may suppose that Yi is a member of A for i = 1, 2, . . . , prs−r. Note that the petals
Yi \Y

∗ of A are pairwise disjoint by definition. The sunflower A is not in the hypergraph
H as it is s-uniform. However, each hyperedge of A is the core of some sunflower Si in H.
Therefore, we will use the members of A to identify an r-uniform sunflower B with core
Y ∗ in H. The main idea will be carefully choose a petal from each sunflower Si whose
core is a member of A. To this end, define B as follows:

First pick any hyperedge of S1; denote it by h1. Now suppose we have chosen ℓ hyper-
edges h1, h2, . . . , hℓ that form a sunflower with core Y ∗. The union of these hyperedges
contains ℓ(r − |Y ∗|) vertices outside of Y ∗. Therefore, as long as

prs−k > ℓ(r − |Y ∗|), (1)

there is a petal Yi \ Y ∗ of A that is disjoint from each of the hyperedges h1, h2, . . . , hℓ.
The corresponding sunflower Si with core Yi has

prs−k > ℓ(r − |Y ∗|)

petals by (1). Therefore, there is a petal P of Si that is also disjoint from the hyperedges
in h1, h2, . . . , hℓ. Let hℓ+1 be the hyperedge P ∪ Yi. Now we have a sunflower with ℓ + 1
petals and core Y ∗. We may repeat this procedure as long as ℓ satisfies (1), i.e., until
ℓ = prs−k−1 . This implies that the number of petals in sunflower B is at least

prs−k−1.

As B has core Y ∗ of size c(B) < s we have a contradiction to the choice of sunflower in
step t.
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