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Abstract

In this article we present a modification of the algorithm for data discretized in the point values
introduced in [S. Amat, J. Ruiz, C.-W. Shu, On a new WENO algorithm of order 2r with improved
accuracy close to discontinuities, App. Math. Lett. 105 (2020), 106-298]. In the aforementioned work,
we managed to obtain an algorithm that reaches a progressive and optimal order of accuracy close to
discontinuities for WENQO-6. For higher orders, i.e. WENO-8, WENO-10, etc. We have found that the
previous algorithm presents some shadows in the detection of discontinuities, meaning that the order
of accuracy is better than the one attained by WENO of the same order, but not optimal.
article we present a modification of the smoothness indicators used in the original algorithm, oriented to
solve this problem and to attain a WENO-2r algorithm with progressive order of accuracy close to the
discontinuities. We also present proofs for the accuracy and explicit formulas for all the weights used for

In this

1 Introduction: Classical WENO algorithm

WENO (weighted essentially non oscillatory) algorithm [T, 21 B, 41 [5l [6] [7) 8, [, [T0] was designed to use the stencil
of ENO (essentially non oscillatory) algorithm [IT], 12] and to behave in a similar way close to discontinuities, while
WENQO is written using a convex combination of all the interpolating

polynomials that share the central interval of the global stencil used. In order to provide an adaptive approximation,
the weights of the combination are nonlinear and based on an efficient estimation of the smoothness of each sub-stencil

using what are called smoothness indicators [2].

In [I3] we proposed a generalization of the algorithm introduced

in[I4], where we aimed to provide a WENO-6 algorithm with improved accuracy close to singularities, while keeping
the maximum possible accuracy at smooth zones. It is known that WENO algorithm does not attain the maximum
possible accuracy close to discontinuities when there is more than one smooth sub-stencil. Although improving the
accuracy of classical WENO algorithm close to discontinuities, we find that the technique presented in [13] does not
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attain the maximum possible accuracy at some intervals when r grows. In this article we solve this problem using a
simple strategy that has to do with the design of the smoothness indicators of high order and we proof in general the
accuracy of the new algorithm. We also give explicit formulas for all the weights used in the algorithm Finally, we
particularize the proofs for low values of r that are the most used in practice.

Let’s now introduce how the WENO algorithm works. Let be X a uniform partition of the interval [a,b] in J
subintervals,

b—
X={w}ly wi=a+ih, h= J“.
We will consider the point value discretization of the piecewise smooth function f at the nodes x;,
. J
fi:f(.fbi),’L:O,...,J, f:{fi}i:O7 (1)

and we will suppose that discontinuities are located far enough from each other, meaning that in a stencil we can only
find one discontinuity.

In order to interpolate in the interval (x;—1,x;), WENO-2r algorithm uses the stencil {x;_,, - ,x;y,—1}, that is
composed of 2r nodes. Using the previous stencil, we can construct the convex combination,

r—1
I(aif)= Y wiph(a), (2)
k=0

with the positive weights w;, > 0, k = 0,--- ,r — 1 and assuring that Zz;é wy = 1. In the expression (), the rth
degree interpolation polynomials are denoted by pl(z). We construct the interpolation at the mid point of the interval

(zi—1,z;), that will be denoted as Ti1,

r—1
I(‘Tz;%;f) :ZWZPZWF%)- (3)
k=0

The values of the wy are forced to be those that allow to obtain order of accuracy 2r at 2;_1 when the stencil is smooth.

When interpolating the discretized function {f(x;)}?",, the objective is to obtain an interpolation polynomial that
satisfies,

py @i y) = flximy) + O(R*),

based on the big stencil {z;_,,- -+ ,Z;i;r—1}, through the convex combination of the r consecutive interpolation poly-
nomials of order r,

prlzioy) = flzi_y) + O(RH).

We start reviewing classical WENO algorithm and its properties. -
The classical WENO-2r interpolator, Z (z; f), imposes that the optimal weights are Cj, > 0, with k =0,...,r —1,
and Zz;é Cr =1, such that,

r—1
pgril (%‘7%) = Z CePh (331'7%) : (4)
k=0

A formula for the optimal weights is obtained in [4],

_ 1 2r
Cl = —— k=0,---,r—1. 5
k 22r—1 <2k+1>’ ’ T ( )
The weights @}, are designed [I] in order to satisfy at smooth zones that,
wp=Cp+O0(h"), k=0,---,r—1, (6)

with k < r — 1, assuring that the interpolation in ([B]) attains order of accuracy 2r when x = r — 1, and

F@iy) =T (g3 f) = O+, (™)



that matches the accuracy attained by the interpolation polynomial pgr_l (z) of 2r points. In [I],[2] the authors propose

the following expressions for the nonlinear weights,

oy _ Cr
k where @, = k

Wp = oo Cx I
Zj:o ; k

k=0, ,r—1, (8)

with Zz;é @y, = 1. In the previous expression, the parameter t is an integer that assures maximum order of accuracy
close to the discontinuities. The parameter ¢ > 0 is introduced to avoid divisions by zero and is usually forced to take
the size of the smoothness indicators at smooth zones. In our numerical tests, we will set it to e = 10716, The values

I + are called smoothness indicators for f(x) on each sub-stencil of r points. The expression for the f,: initially given

in [4] is,
B r—1 z; dl 2
p-yon [1 () as )
=1 Ti—1

In this paper, we generalize and improve the algorithms presented in [13, [14] achieving maximum order of accuracy
in the intervals close to the discontinuities for any value of r. We introduce the notation and review the previous
results in Section 2l In order to design the new algorithm, the optimal and nonlinear weights are presented in Section
Afterwards, new smoothness indicators and its properties are proved in Section [l In Section [, we analyze the
accuracy of the new method and finally we perform some experiments comparing the new method with the classical
WENO and the new method in Section

2 Review of previous results: The cases r =3 and r =4

In [13] [14] it was presented a new WENO-2r algorithm that improves the resolution of classical WENO algorithms
close to discontinuities. For WENO-6, i.e. r=3, the pattern of accuracy obtained with the new algorithm was
- O(h%),0(h%),0(h*),0(1),0(h*), O(h®), O(h®),- - -, that is the optimal accuracy that we can expect to obtain in
the presence of a singularity (the one obtained by the classical WENO is typically - - - , O(h®), O(h*),O(h*),0(1), O(h?),
O(h*),0(h®),--+). For higher orders, i.e. 7 = 4,5,---, and despite of the fact that the new algorithm obtains a better
accuracy than the classical WENO algorithm close to discontinuities, the theoretical pattern of accuracy obtained
was not optimal, being for r = 4, --- ,O(h®),0(h7),0(h%),0(h%),0(1),0(h%),0(h%), O(h7),O(h¥)---, or for r = 5,
-, 0(ht%), 0(h?),0(h®),0(h%),0(h%),0(1),0(h%), O(h%), O(RS), O(R®),O(R?)-- ., and so on.

The construction proposed in [13] was based on a progressive construction of the building polynomials of WENO
algorithm. This construction was based upon the observation that Lagrange interpolating polynomials of high order
can be constructed from polynomials of lower order using a dyadic architecture. For example, for r = 3 (stencil of 6
points) we use the polynomials of degree 3, p3(z),p3(z) and p3(z) to write polynomials of degree 4. For a stencil of 6
points there exist two different Lagrange interpolating polynomials of degree 4 (stencil of 5 points), and we will note
them as pg(x),pi(z). There also exists one polynomial of degree 5 (stencil of 6 points), that we will note as p5(z).
Now, it is clear that we can proceed to construct the polynomials of degree 4 using the polynomials of degree 3 as
building blocks, we use the following notation:

3 5
pé(wifl/z) = Cg,opg(%flp) + 03,1]9?(%—1/2) = gpg(xi—l/z) + §p§($i71/2)7

(10)
5 3
p?(%‘flm) = Cio’,1pﬁ($z‘—1/2) + 013,2]9%(%—1/2) = gp?(fci—l/z) + gpg(%ﬂp)-
And use the polynomials of degree 4 as building blocks to construct the polynomial of degree 5,
1 1
pg(fﬂi—l/z) = Oél,opé(ilfi—l/z) + O§,1pil(fi—1/2) = 5?3(%‘—1/2) + 5?%(%—1/2)- (11)

Once we have reached this point, in [I3] we proposed to use the vectors of optimal weights Cg, C7 in the classical
WENO algorithm. These vectors have as coordinates the weights in (0],

i (s ooy (35
CO_(CO7O,OO,1,0)_<8,8,0 ,

4_ (003 3y (053
Ci= (0701,1701,2) - (07878>



The stencil that we use in this case is composed of data at the positions {x;—3, x;—2, Ti—1, X4, Tit1, Tiy2}. It is clear
that it is convenient to use Cg when there is a discontinuity placed in (x;11, z;+2) and Cf if it is placed in the interval
(xi—3,mi—2). The objective is to obtain the weights in (&) for » = 3 if the stencil does not contain any discontinuities,
so that maximum accuracy is attained everywhere. In [I3] we proposed the weighted average of the vectors in (I2),

1 1 1/35 1 5 3 3 10 3 o _
CrCArci Ccr==Ci+-Cct=2(220 (0,5, )=(=,=, =) =(C3,C3,C3) =C3. 13
0000 T 01t =500 T 501 =51 500 ) T3 Vg 16716 16 (Go, €1, C3) (13)

The reader can observe how the construction reminds us a WENO algorithm computed in several steps in order to
grow once at a time the accuracy of the final interpolant. The obvious pace, leads us to define nonlinear weights for
replacing the constant weights in (I3]). We will represent the weights by

~ ~4
4 ap.0 -4 Qo1
Wo,o0= %1 1 A1 W01~ z1 | =1 (14)
ag o+ ag 4 &g o+ ag 4
with,
d4 _ 061;0 _ 1/2 d4 _ 06171 _ 1/2 (15)
0,0 — = = = ) 0,1 — 7. - 7 :
(e+1Igo)  (e+1Igp)t (e+1Ig,)t  (e+1g,)

The result of this process is an expression for the adapted optimal weights of the classical WENO algorithm, that
assure optimal accuracy for r = 3, and that replace the classical constant optimal weights C}, in (8],

C3 = (ég, C3,03) = ‘:fé,ng + @0,10%- (16)

The smoothness indicators I}‘ikl, k1 = 0,1 in ([I8) will be defined in Section M based on those introduced in [14} [15],
that work well for detecting kinks and jumps in the function if the data is discretized in the point values (). Thus,
finally, we apply WENO with the new nonlinear weights, i.e., we calculate:

k=0
with 3 43
i C
@2:%, and dzzik,,g)“ k:071727 (17)
S0 (e+1?)

being f,i’, k =0,1,2, the smoothness indicators proposed in [15].

For r = 4 and higher values of r, it is possible to follow similar steps. In order to design the new WENO-8 algorithm
we start with a stencil of 8 points composed of data placed at the positions {x;—4, x;—3, Ti—2, Ti—1, Ti, Tit1, Tit2, Tit+3 }-
In this case there exist four polynomials of degree four (stencil of five points), that will be noted by pg(z), pi(x), p3(z),
p3(z), three of degree five (stencil of six points), that we will denote by pg(x), p}(z), p3(z), two of degree six (stencil of
seven points), denoted as p§(z), p$(z) and one of degree seven (stencil of eight points), denoted as pf(z). The process
is similar as before: we try to obtain nonlinear optimal weights that assure the optimal accuracy that the data of the
stencil provides. As we did for » = 3, we write the polynomials of degree five using the polynomials of degree four as
building blocks,

3 7
pg(Ii—l/z) = Og,opé(iﬂi—l/z) + Ogﬂ’%(%—lp) = Epg(xi—lﬂ) + Epil(fi—l/z),
1 1
P (@im1/2) = CLapt (i1 /2) + Cfop3(@im1/2) = 51)‘11(%—1/2) + 5?3(%—1/2)7 (18)

7 3
pg(fﬂi—l/z) = Oé,zpé(xi—lﬂ) + Oé,gpg(ilfi—l/z) = Epé(xi—lﬂ) + l_Opg(Ii—l/Z)'

We write the polynomials of degree six using the polynomials of degree five as building blocks,

5 7
P8($i71/2) = Cg,opg(%ﬂﬁ) + Cg,lp?(%ﬂﬁ) = Epg(fci—l/z) + ﬁp?(%—1/2),
7

5
P?(iﬂiq/z) = 015,1]9?(%—1/2) + 015,2]92(%—1/2) = EP?(fci—l/z) + ﬁpg(%—1/2)'



In this last step, the polynomial of degree seven is written in terms of the two polynomials of degree six,

1 1
pS(wifl/z) = Cg,opg(%flﬂ) + 08‘71]9?(%71/2) = 5]?8(901'71/2) + 5]9?(3%71/2)- (20)
In a similar fashion as we did for 7 = 3, we construct the vectors of weights C§, C3, C3, that will have as coordinates
the constant weights in (IJ),

37

37 1
10" 10°

1 73
C§ = (Co,0:C5.1,0,0) = ( 0,0), CP = (0,C14,C15,0) = (0,5,2,()), C3 = (0,0,C3,,C33) = (O’O’To’ﬁ)' (21)

If we multiply the previous vectors by the constant weights calculated in (I9) and (20 we directly obtain the weights
that assure optimal accuracy at smooth zones, as they are the constant optimal weights used by the classical WENO-8
algorithm, i.e.

1/5 7 1 /7 5
o (CRo08 + C3.09) + C6 (1,03 + 1,09 = 5 (1508 + 153 ) + 5 (150 + 58

1771 22)
16’167 16 16

=(C0.C1,C3.C5) =C*

It is clear that we can replace the constant weights in (22]) by nonlinear weights. As before, we will represent by &Jé ko
5<[I<6and 0<k<6-1, k =k, k+ 1; the nonlinear weights are,

o= Q9,0 - Qg1 o= a1 o= ai 2 o = Q9,0 o6 — Q.1
0T A, +ag,T M agetag, Mt ap,ar,’ M ay +ab,’ MY af+ag, M af+af,’
(23)
with,
5 Og 0 5 C(g) 1 5 C{) 1 5 C{) 2 6 C(? 0 6 C(? 1
aS,=—200 g =0l g5 LU g L2 g6 00 g6 0L gy
L P T A S Py T v VA L Py TR AR e AV
that replacing the values of the C! k, given in (22) result in,
X 5/12 X 7/12 X 7/12 X 5/12 X 1/2 ) 1/2
o= = Ga= o moy T ey Me= = o= oy = oy (25)
(e+15,) (e+15,) (e+17,) (e+175) (e+150) (e+1g4)

Just as we did before, the adapted optimal weights are obtained replacing the fixed weights in ([22)) by the nonlinear
weights in ([23)),

C*=(C},C1,C3,C5) = @8)0 (98,003 + (‘DO,lc?) + 518,1 (@?,10? + @1,203) . (26)
The previous expression provides the nonlinear optimal weights C’,Z that are used to replace the optimal weights (_Z',Z

in (8) of the classical WENO algorithm. The smoothness indicators that appear in (26]) will be defined in Section [l
Analogously to the case r = 3, we apply the classical WENO algorithm with the new nonlinear weights:

3
oy )= olpb(e,y)
k=0
with 4 A4
A C
@é B %7 with di = 7]&4’{7 k:07172737 (27)
Zj:O Qa; (6 + Ik)

being f,‘c", k =0,1,2,3, the smoothness indicators defined in [15] [14].

We can generalize this process for any r. The difficulty lies in constructing smoothness indicators for each level
that are able to watch the discontinuities correctly. In the next section, we present the generalization of the algorithm
for order 2r and explicit expressions for all the weights.



3 General explicit expressions for new WENO-2r weights

Following the strategy described in previous section, we can construct a WENO-2r algorithm for any r with optimal
accuracy. In order to extend the results to any r we will use the following lemma.

Lemma 3.1. Let ber <1 <2r—2 and 0 < k < (2r—2) —1, if we denote as C,lcﬂk and C’,l€7kJrl the values which satisfy:

Pi (@is1y2) = Ch ipk(@iz1/2) + Cf py1Phsr (Ti1)2), (28)
then A—r+k+1)+1 2r—k)—1
. —-r+k+1)+ ! ! r—=k)—
— =1-— B W S—— 2
Ok,k 2(l + 1) 9 Ok,kJrl Ck,k 2([ + 1) ( 9)

Proof. Let be r <1 < 2r—2and 0 < k < (2r — 2) — [, the stencils used to obtain the interpolators pf:rl, p and
p§€+1 are {Ti—riky - s Timrhtitl s {Timrtks -« Ticrtk+l} a0d {@i—pikt1y .- Timptk4i+1 ) Tespectively, then using
Aitken’s interpolation process [16], from x; = a + ih, we get:

Li—rtk — Li—1/2

I+1
Py (Iz—%

Ti—r+k+l+1 — Ti—-1/2 l
= Ti— - Ti—
) Ti—ptk+i+1 —wi—r+kpk( 1/2) Ti—ptk+i+1 —wi—r+kpk+1( 1/2)
a+(@—r+k+l+1)h—(a+ (i—1/2)h) Lz 1) a+ (@ —r+kh—(a+ (—1/2)h) .
= i— L) —
at(i—r+ktl+Dh—(at(-r+R)h) 2 T i —r+k+i+Dh—(a+(i—r+k)h) k!
2l —r4 kD)1, 2r—k) -1,
= 20+ 1) Pk(%f%) 200+ 1) Pk+1($i7%)

= Cllc,kpgc(xiflﬂ) + Czlc,k+1pfc+1($i71/2)~

O

We make the same construction for any r, we start writing the polynomials of degree 2r — 1 as combination of
polynomials of degree 2r — 2,

Py Hwimy2) = Coly 20 2 (i1 y0) + OF 2P 2 (wim12)

and repeat the process for degree 2r — 2,

po Hwicrg2) = Colo oy P (wicaye) + Colp T (@i ),

PI A (@imy2) = CT°pY P (wimye) + CF5 P3P (wimay2),
for degree 2r — 3,

Py Y (@iy2) = O3 o wiaye) + G5 0T (@i 2),s

pU P (@iy2) = O Y @1 ye) + O 03 (@i 2),

1) = G o) + O ),

and so on, until we reach the polynomials of degree r + 1

plr+l(33i—1/2) =Cl [ (wi1y2) + Ol Pl 1 (Tic1y2), 1=0,...,r—2.

(171'7%)



Thus, if we combine these equations we obtain,

2r— 1 2r—2, 2r— 2
Po xl Z C 0,50 p]o Z—1/2)
Jo=0
1 jo+1
_ 2r—2 2r—3, 2r—3
- Z COJO Z CJO Ji pJ1 (.%'17%)
Jo=0 J1=Jo
1 Jo+1 Jit+1
_ 2r—2 2r—3 2r—4, 2r— 4
- Z CO ,Jo Z Cao J1 Z CJl 2 Pio Ilf%)
Jo=0 J1=Jo J2=J1
Jo+1 Ji+1 Jr—3+1 Jr_2+1
2r 2 2r—3 2r—4 r+1 r
= Z 0,40 Z Cion Z Citgs |-+ Z G s E, Clrsjroa Py (Timg)
Jo=0 J1=Jo J2=J1 Jr—2=Jr—3 Jr—1=jr—2

(30)
In Figure [[l we show this process for any r. We can observe that the diagram shows a tree structure where from each
node C’,l“kl, with k1 = k or ky = k + 1, it is obtained two subnodes of the form O/ijcz with ko = k1 and ko = k1 + 1,
which allows an easy construction. The explicit values, C,lcy k, » are calculated using Eq. 29) of Lemma 3l Therefore,
it is easy to prove that the weights and the vector Cffl with 0 < k <r —2, are

3 2r—1
Citt = (C5,,Ch1,0,0,...,0) = 0,0,...,0
( 0,00 ~0,1» ) (2(7”—'—1),2(7”—'—1), s Yy ) )7

5 2r—3
Cc:tt = (0,07 ,,07,,0,...,0) = (0 0,...,0
( 117 127 ] 7) (72(7'4—1)72(7'4—1), 9 7)7
(31)
2r—3 5
Ccrti=1(0,...,0,C" r 0)=1(0,...,0 0
r—3 ( ) y D Y3 r—3) Yr—3,r—2> ) < ) ) 72(7‘4—1),2(7“4‘1)7 >’
2r —1 3
Cc*t:=(0,...,0,0,C"_ cr =(0,...,0,0 .
r—2 ( 2,r—2» r—2,r—1) ’ e ,2(7‘4—1),2(7‘4—1)
Hence, by construction, these weights satisfy
1 Jo+1 Ji+1 Jr—3+1
2r—2 2r—3 2r—4 r+1 r+1 (/T AT ~T ~T e
Moy ey ol > ot et =(Cy,Cr,...,Cr_,,Cr_)=C".
Jjo=0 J1=Jo J2=J1 Jr—2=jr—3

In order to design the nonlinear weights, we substitute in Eq. (B2) the values C,lc)kl, forl=r+1,...,2r — 2 and
0<k<(2r—2)—1,ki=kk+1by

l
o L - S S ]

dkk+akk+1
Cl
~1 kkl
& =2 k=k k+1,
ST

(33)

where [ .., are the smoothness indicators introduced in [I4] and that will be analyzed in detail in Section ETl Thus,
the nonlinear weights are defined as

1 Jo+1 Jji+1 Jr—3+1
_ (AT A ~r ~r _ ~2r—2 ~2r—3 ~2r—4 ~r+1 r+1
- (CO’Cl 1 CT*2’ Crfl) - Z “o,jo Z Wio 41 Z Wige |- Z R T 2er72
Jo=0 Jj1=Jjo J2=Jj1 Jr—2=Jr—3

(34)
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Figure 1: Diagram showing the structure of the optimal weights needed to obtain optimal order of accuracy.



Finally, for these weights, we apply the WENO algorithm described in Section [I] using the nonlinear optimal weights
in (34), i.e., we calculate

with

being again the f,’;, k=0,...,

Z Gy (x

—, with 642:07’2 k=0,...,7—1.

(e—l—I,:)’f7 (35)

r, the smoothness indicators defined in [15] [14].

In order to clarify this construction, we present the case r = 5 because r = 3 and r = 4 have already been displayed

in previous section.

3.1 The caser =5

In order to construct the nonlinear weights for r = 5, firstly, we calculate the vectors Cﬁ, with k£ = 0,1, 2,3, thus

C§ = (0,0,C3,,C54,0) = (00

Secondly, we obtain the expressions of the vectors:

~6
of = ap.0
00 C~V0 ot 0‘0,1 ,
~7
ol = ap.0
00 abo+ab,’
~8
o8 Q0,0
00 ago+ag,’
with,
6
dG _ C'O,O
0,0 = =
(e+18,)
» 5/14
@00 = 76 )t
(e+15,)
7
d’y _ C'O,O
0,0 = =
(e+15,)t
- 7/16
0,0 — = )
(e + I o)t
8
a5 Co.o
0,0 = )
(e+15,)t
. 1/2
“0,0 = N
(e+150)

~6
-6 Q9,1
wWo,1 = =6 L A6
aoo +0‘0,1
~7
~7 aOl
wO,l = = )
ab o +ag,
~8
-8 Qp,1
Wo1= =g =5 m .
O‘o,o 0‘0,1
6
6 CO,I
0,1 — = ’
(e—|—I§71)t
¢ _ 9/14
Qo1 = 76 \t’
(e+154)
7
O~é7 _ CO,I
0,1 — = ’
(e+15,)t
7 9/16
0,1 — = 3
(e+15,)t
3
dg _ C'0,1
0,1 — = )
(e+15,)t
s _ 12
Q0,1 = T 75 g
(e+154)

13 5 7
CG = (08707 Cg,la 07 Oa O) = (Za VR 07 Oa O) ) (3(::['i = (Oa Oila OiQa 07 O) = (07 Ea Ea 07 O) )
(36)
7 5 31
,0 CS=(0,0,0,C55,03,)=(0,0,0,=,= ).
12 12 )a ( y Uy Yy 3,3 3,4) y Yy 5454
~6 6‘?,1 ~6 6‘?2 ~6 dg,2 ~6 dgﬁ
Wi = y W12 = =5 =6 22 = = 6 » W23 = = ~
a7 1 +07 9 aj 1+ a7 Qg9+ Q33 Qg9+ Q33
~7 &Z,l ~7 6‘;,2
W11 y Wi = =7 =7 >
Qp 1+ 0q9 aj, +ai,
(37)
dﬁ . Clﬁ,l dﬁ _ 016,2 dﬁ _ 026,2 dﬁ . 026,3
11~ 7 7% o 12~ 7 7 0 2,2 = T = g 23 = T o s
(5+I16,1)t (€+If,2)t (€+I§,2)t (€+126,3)
6 1/2 &b — 1/2 a6 9/14 a6 _ 5/14
1,1 76 \t’ 12— 76 \t’ 0,0 — 76 \t’ 0.1 76 \t’
(e+174) (e+17,) (e+1355) (e+153)
di 1= 701751 07; 2 = 701732
(e+IT)07 7 (e+ 11,0
~I1: 9/16 64;2: 7/}6
To(eH T )Y T (e Iy
(38)

where Ik k> With 1=16,7,8, k=0,1,2 and k; = k, k + 1 are the smoothness indicators that will be defined in Section
[T All in all, we get the new nonhnear weights,

5= (égvéfvégvégvé??)

—Qg 0 (Wgo (&287008 + <Z’0,10?) + "Dg,l (@?,10? + @1,203))

3 3 L N (39)
+ Wo,l (wf,l (W?JC? + W1,2Cg,2) + WZ,Q (WS,QCS + W2,3Cg)) .



Now we can apply the classical WENO method using these weights as optimal weights. In the next section, we will
explain and prove the properties of the smoothness indicators used in the algorithm for any value of 7.

4 Smoothness indicators of high order

In this section we present the smoothness indicators that we have chosen and that allow to obtain optimal order of
accuracy close to the discontinuities. We will use those introduced in [I5], that work well for detecting kinks and
jumps in the function if the data is discretized in the point values (Il), we define them as:

. T B i dl . 2
Ip=> "n" 1/ 1<wpk(:zr)> de, k=0,...,r—1. (40)
1=2 Ti—

For r = 2,3, these weights satisfy several properties that allow to obtain the condition shown in Eq. (@) (see [17]).
In this section we extend these results for any . In [I3] we introduced the proof of the following theorem that we
reproduce here for completeness.

Theorem 4.1. Let be 0 < k < r — 1 and pj, the interpolator polynomial of f of degree r > 3 that uses the nodes of
the stencil S}, then at smooth zones, the smoothness indicator obtained through (40) satisfy,

Tr r 2
I = (R(}) (wi-1/2))” - (14 O(h?)).
Proof. Let be 0 < k < r —1 and pj, the interpolator polynomial of f of degree » > 3 that uses the nodes of the stencil

Sp. It is an 7 times continuously differentiable function in a neighborhood of the point x;_;/ = x; — h/2. Then, we
2
can write (p,(f)(:zr)) using the Taylor expansion of pg(x) as,

(000@) = (@O @) + @) @iaj)e — 2io1j2) + O — 20-1/2)2)

= ((pZ)(l)(iUi—1/2)>2 + ((pZ)(Hl)(gCi—l/z)(x - 951'71/2))2 + 2]91(@[)($i71/2)(]92)(l+1)(%‘—1/2)(55 - 951'71/2)
+2000) D (@im1/2) (PR) T2 (o1 2) (@ — wi1)2)? + O((x = m21/2)°).

Integrating the previous expression between x;_; and z;, replacing in [@0) and simplifying, we obtain the result, as
for I > 2 all the terms of the summation have a size smaller or equal than O(hS),

B=Yo [ (600@) = 3 (00O te) - 0+ 002) = (26 (i-12)) - (1 +0(2). O
=2 Ti-1 =2
The following proposition is proved in [15].
Proposition 4.2. Let be 0 <k <r, 1 <t and &, the nonlinear weights defined in Eq. [BE) then:
»=0(1), i f is smooth in S,
QO = O(h*™Y), if f is not smooth in Sj.
with m = 2 if the discontinuity is in the function and m = 1 if the discontinuity is in the first derivative.

We give the explicit form of f,: with K = 0,...,7r — 1 for r = 3,4. We represent the second order undivided
differences by 67 = f; — 2 fig1 + fir2, 67 = 67,4 — 67 and 6; = 67, — 6;. Taking into account the previous notation
for the differences, we can write the smoothness indicators in ({@Q) for r = 3 as,

7= 000, 307 002 + (0257
~ 4
I} = S(600)7 + 675005 + (02.5)% (1)

~ 4
I3 = 2(871)" = 671071 + (87-0)".

3



For r = 4 they can be written as:

~ 27 2107 22

Ié = _5;1745?74 54 45 4‘*’5‘S 4512 4T 5 240 (5 )2+ 3 (53 4) (51'274)27
I = 547(5;1 B 0 (6%,) + <53,3>2+ LR 4 H I LI

~ 89

Iél = 80 (5;1 2) + g (51372)2 + (51'272) - 6 5;1 2 51372 - g 5;1 2 5'272 + 51372 51'2727

~ 547 4

I3 = 210 (011)" + 3 (07 1)% 4 (671)% - 54 103 + 54 V07 =007

Once defined the smoothness indicators for the level r, we will construct the rest of indicators for each level from
2r — 2 to r + 1. Theorem [£.1] allows us to have a clearer vision about the behavior of the smoothness indicators. We
can see that they get a value that is O(h*) at smooth zones. As they can be expressed in terms of differences, they
get a value that is O(1) when their stencil contains a discontinuity.

In [13], in order to reduce the computational cost of the calculation of smoothness indicators of high order through
([0), we proposed to use a function of the smoothness indicators used by the classical WENO algorithm. For r = 3

we used as smoothness indicators of five points,
b, =L+ 1.

These smoothness indicators provide optimal accuracy for » = 3 in the sense that the pattern of accuracy obtained
close to a discontinuity is - -+, O(h®),0(h%),0(h*),0(1), O(h*),O(h?),O(hS),---. For r = 4 we proposed to use as
smoothness indicators of six and seven points I§ o, 1§ 1, 17 5, I8 o, 1§, defined as,
Io=1Ig+ 1, I§y=1,=0+1I3, I,=1I+I
76 FA 14, T4 76 74 FA 74 (44)
Ioo=1g + 17 + 1y, Ig, =17 +1; + I3

In this case, these smoothness indicators do not provide optimal accuracy, providing the typical pattern of accuracy
close to the discontinuity - -- , O(h®), O(h7), O(h®), O(h®),0(1), O(h®), O(h®),O(h7),O(h®),- - - instead of the optimal
one ---,0(h%),0(h7),0(h%),0(h*),0(1),0(h®),0(h®),O0(h"),O(h®),---. The reason is the following. Let’s observe
Figure @] that represents the stencil of eight points considered for r = 4. In this figure we have represented a
discontinuity in the interval (z;41,2i+2) (the case for the discontinuity in the interval (x;—3,2;—2) is symmetric).
Let’s now recall the expression of the interpolation proposed in [I3] and that we have reproduced in (2G]). The
smoothness indicators IS, and I§ | in (@) use the data placed at the positions, {x;_4,--- ,Ziro} and {z;_3,--- ,Ti13}
respectively. Looking at their expressions in ), it is clear that the weights @S, and @©f ; in (28) are both affected
by the discontinuity, so both of them will have O(1) accuracy. For a good apprdximatiori of the case represented in
Figure 2] @8)0 ~ 1 and Qg)l ~ 0 in order to keep the final weights close to the optimal ones. The problem would be
solved if &;il ~ 0 and &)32 ~ 0 but this is not possible, as the algorithm balances the weights in pairs of two, thus, if
one is close to zero the other one must be close to one. The problem is solved in this case if we select the smoothness
indicators in pairs as,

76 2O 74

Io,o = Iy, Io,1 = I3,

o=13, If, =1, (45)

75 475 74

11,1 :Ila 11,2213-
Now it is clear that @, watches the discontinuity and it gets a value &f , ~ 1 while @f ; ~ 0, cleaning the garbage
introduced if we use (@) and similarity for QZ,kl with £k = 0,1,k1 = k 4+ 1. With this strategy we only compute
the smoothness indicators of degree r, that are the ones used by the classical WENO algorithm, improving the

computational efficiency.
In the following subsection we give a general formula to compute the smoothness indicator for any r.



fia fis fiea fic1 fi fir1 fit2 fits

Ti—g Ti-3 Ti-2 Ti-1 Zi Tit1 Ti+2 Ti43
Figure 2: Representation of the values considered in the stencil and a discontinuity placed in the interval
[Tit1, Tiya)-

4.1 General smoothness indicators

In this subsection we provide a general formula to obtain any smoothness indicator I, in terms of the classical

WENO smoothness indicators f,: for ». We follow the same construction presented in all the section. We define the
different weights using the following formulas,

Definition 4.1. Let be l =7 +1,...,2r — 2, and f,:, with k = 0,...,7 — 1 the smoothness indicators showed in Fq.
{@Q), then we define the smoothness indicators at level | as:
=1, k=0,...,(2r—2)—1,

7l Tr (46)
Ik,k+l :Il—(’r‘—l)-‘,-k’ k:O,,(2T_2)_l

The idea is to detect in what part of the tree diagram is placed the discontinuity and to force that this branch
is automatically discarded through the values of the smoothness indicators and, consequently, the weights. Then
continue with the following sub-branch and again force the automatic discarding of this branch if the stencil contains
a discontinuity. We repeat this process in each pass until we obtain only one branch free of discontinuities.

We have already described the smoothness indicators for »r = 3 and » = 4. For r = 5, using Eq. ({@6]) we get:

fos,o = fg, fos,l = ff,
Ig,O = Ig? Ig,l = IZ;?’ 117,1 = 115’ 117,2 = 1457 (47)
IGo=13, Ig,=13, D=L, [I,=1I.

fi-s fi-a fi-3 fi—2 fie1 fi fit1 fiv2 fi+s fita

Ti—4 Ti—q Ti-3 Ti-2 Ti-1 ) Tit1 Tit2 Tit3 Titq
Figure 3: Representation of the values considered in the stencil and a discontinuity placed in the interval
[Tit1, Tia).

Finally, we prove the following important results that we will use in the next section in order to analyze the
accuracy of the new method.

Lemma 4.3. Let be 0 < k,ky < r —2 and ffl, n = k,k1 be smoothness indicators of f on the stencil S| =
{Zivn—rs  Tign} If [ € C"([Tign—r,Titn]), then

Ir — I, = o+,

Proof. Let py,py, be the two interpolating polynomials of f of degree r > 3 at nodes in the stencil S}, n =k, k1 at a
distance O(h), then if [ > 2:
We follow the sketch of the proof presented in [4], thus from (f®) — (p7)® = O(h™+1=1), we get

(PO = (@) = = (= G O) +2() @ = 7))
= (O h)? + (O h)0() (48)
_ O(hr-‘rl—l)7



if we substitute in @0l we obtain

o e [ oy
I ;h / (f )d;v

Ti—1

< Zhﬂ T (en0w) - (19@) e

Ti—1

_ Z h2l0(h7‘+1—l)

1=2
=O(h"?).
Finally,
ir Il <|I p2l-1 ' f(z() o I - p2l-1 - f(z)(x) 2d$
kT Z / ( ) k+1 ; /7( ) (49)
:0(m+3).
O

Proposition 4.4. Let ber+1<1<2r—2,0<k < (2r—2)—1 and f,lc . and I\ kt1 be smoothness indicators defined in

Def. [{-1] that can be expressed, following Theorem[{.1], through Taylor expansion as Ik w = (" (z i_l/g))2 (1+0(h?))

if the stencil is smooth, Ik,k = O(1) if the stencil is affected by a discontinuity in the function and f,lck = O(h) if the
stencil is affected by a discontinuity in the first derivative. In this case, any weights expressed as

sl

~1
a a
~l k.k ~1 k,k+1
Wpk == I ;W k+l = =1 =1 Py ) (50)
A k %,k+1 Qp kT O ki
with,
I l
&l Ck,k &l _ Ck,k-i—l (51)
k k= 71 +) k,k+1 — 71 +°
(e +1px) (€ + Thjor1)

with C',lg),C + C']lc),H_1 =1, will fall under one of the following cases:

1. If neither f,ik nor f,i’kﬂ are affected by a discontinuity, then (‘D%c,k = C’,ZCJC + O(h™1) and ‘I’é,kﬂ = C,lcykle +
O(h™1).

2. If I} ., is affected by a singularity, then @ ,, = 1+ O(h*™) and @} ;,,, = O(h*™).
3. If f,lck is affected by a singularity then cbfc’kJrl =1+ O(h*™) and C’D;c,k = O(h?m),
4. If f,l“k and illc,k-i-l are affected by a singularity then (112716 =0(1) and (‘ch,k—i-l =0(1).
With m = 2 if the discontinuity is in the function and m =1 if the discontinuity is in the first derivative.

Proof. We follow the ideas presented in [4]. Let be r +1 <1 < (2r — 2) and 0 < k < (2r — 2) — [, by Def. AT}
fllc,k = f]:, fllc,kJrl = fle(rfl)Jrk = flzlv (52)
being k1 =1 — (r — 1) + k, doing algebraic manipulations, we have
L + 1 T r t—1 7o\ 7
(eIt " (eHIp )t I, — I Z e+ I,
L ° €+ IT 7

T
(e+17)? e+ s

then, using Lemma M.3] the previous equality transforms into,

1 _1+0(h )
(e +1Ip)t (e+17)0




If there is no singularity affecting f,:k = INI’; or f,’;_kﬂ = f,:l then, using Eq. (E3]), we have

Chk cl Cp (140" l )
N (1] )* (1)t (e+17))* Crx(L+O(R™1))
w = = — = — =
BT Gl Chisn Chi , Clin  GealFOG) - Cly — Cf (14O 1) + O,y
o 7 L= (S LI v5 1 AL eu TN (e T,)? (et I7,)?

=Ch,+O().
Analogously,
(D%c,kJrl = Cllc.,kJrl +O(h™).
(54)

If, following Theorem [1] f,ik = K (1 + O(h?)) if the stencil is smooth and f,ik = O(1) if the stencil is affected by a
discontinuity and we consider that € is small enough, then,

1. If the stencil contains a singularity that only affects the smoothness indicator f,lc_’kﬂ, then f,lcyk = (h?p"(i—1/2)) 2 (14

O(h?)) = O(h*™) with m = 2 if the discontinuity is in the function and m = 1 if the discontinuity is in the first
derivative, and I}MJr1 = O(1). Then,

ol Cllc,k(e + fllc,kJrl)t B Cllc,k(e + illc,kJrl)t B Cllc,k(e + illc,kJrl)t 1
kk — = = - = mt\ = 2mt
Cllc,k(e + Illc,kJrl)t + Cllc,kJrl(e + Illc,k)t Cllc,k(e + Illc,kJrl)t + O(h?mt) Cllc,k(e + Illc,k+1)t 1+ %O(E(iif}ck)ﬂ)t
=14+ O(tht)7
- Chpga (e + 1 4)" O(h?mt) N
B = At 22k - = o2,

CL(e+ Il )M+ Ol (e+IL )t O(1) +O(h?m)
(55)
2. The case when the stencil contains a singularity that only affects the smoothness indicator I ; can be obtained
by symmetry.

3. If f,lck and f,lg),ﬂ_l are affected by a singularity then,

Ollc,k(e"'fllc,kﬂ)t _ Cllc,k(€+jllc,k+1)t _ Cé,k(€+fﬁk+1)t 1 _
— = = = m — n = O(h2mt -
Chale+ IL i)'+ Chyga (e + IL)T O plet I )t + 020 Cpy(e + I} 4y 1+ G0
~ 1 Ollc,k+1(f+ Illc,k)t

Wk k+1 = 5 - 5 =0(1).
Cllc,k(e + Illc,kJrl)t + O pyr (e + Illc,k)t

~[ _
Wi,k =

o),

(56)
O

5 Analysis of the accuracy
Now we can try to analyze the accuracy of each individual dyadic WENO algorithm that we perform at every step of
the new construction. In general, to prove the accuracy of this algorithm we will need three steps:

1. Obtaining the value that the nonlinear optimal weights get for each position of the discontinuity.

2. Checking the error obtained between the weights of the classical WENO (that is performed at the last step)
obtained using the nonlinear optimal weights and the weights that provide optimal accuracy.

3. Checking the accuracy obtained by classical WENO interpolation.



5.1 Analysis of the accuracy for any r

We present in this section a general study of the accuracy of the new algorithm using the formulas described in Section
Therefore, the weights are given by:

1 Jo+1 Jji+1 Jr—3+1
~r AT ~r ~r _ ~2r—2 ~2r—3 ~2r—4 ~r4+1 r+1
(Co, O, Crg, COry) = Z “0,jo Z Yo, Z Wiga | Z @5, g 5n2Cie
Jo=0 J1=Jo J2=J1 Jr—2=Jr—3

wherethevalueswkk withl=7r+1,...,2r=2,0<k<(2r—2)—l; ki =k+1and C"" being 0 < k <r — 2 are

defined in Egs. (33) and @1). The coordlnates of the vector (&f, ..., @l _;) have been defined in Eq. (35), i.e.
(Dzzzrci]i~ > k:Oa 7T_17
—o O
e (57)
Ay = k k=0,...,r—1
(e+Ip)t

We analyze the different possibilities,

e Firstly, we suppose that any discontinuity does not cross the stencil {z;_,...,Z;4r—1} then by Prop. E4 we
getforalll=r+1,...,2r—2,0<k < (2r—2)—1and k; = k+ 1 that

djk,kl - O]é,kl + O(hr_l)

Then, by construction of the optimal weights, Eq. ([B0),

~T ~T _ r r—1
(@ wli_1)=(Cf, ..., O™ ™)
1 Jo+1 Jji+1 Jr—3+1
_ ~2r—2 ~2r 3 ~2r—4 ~r+1 r+1 r—1
- 2 : “o,50 “Wio .1 z : Wirge |- 2 : wjr737j7‘72cjr72 T + O(h )
Jjo=0 J1 Jo 2=] Jr—2=jr—3
1 J0+1 J1+1 Jr—3+1
_ 2r—2 2r—3 2r—4 r+1 r+1 r—1
- OO,jo C]O;]l OJ17J2 T Z C]T 3,Jr— 2er72 T + O(h )
Jjo=0 Jj1=Jjo J2=Jj1 Jr—2=Jr—3
__ (T r—1
=(Cq,..., O(h"™™ %)

o If there exists a discontinuity at [z;—1,x;] by Prop. B4, for all i =r+1,...,2r — 2,0 < k < (2r — 2) — [ and
k1 =k+1 we get:

Wk k1 T =0(1).
e By symmetry, we only analyze when there exists an isolated discontinuity at an interval [z;—11i,, Titio], lo =
1,...,7 — 1 (analogously, we obtain the equivalent symmetric results for [2;—, 41y, Timrtig+1]s lo = 0,..., 7 — 2).

In order to study these cases, we prove the following results.

Lemma 5.1. Let be @}, k =0,...,r — 1, be the nonlinear weights defined in Eq. [BH). If there exists 0 <ly <r —1
such that Iy is affected by a discontinuity and

(Cp,on G = (Ch + O, ..., Ch_ + O(h®), 0(h>™), ..., O(h*™))

with Zﬁf;ol Cr=1,1<s<2mt, m =2 if the discontinuity is in the function and m = 1 if the discontinuity is in the
first derivative, then:

s =CL+ 0O, 0<k<l,
@p =O0(h*™), lh<k<r-1

Proof. This is a direct consequence of the fact that Zlo ‘or=1. O



Lemma 5.2. Let be 0 < lg < r—1. If there exists a discontinuity at [Xiy1,—1, Titiy], then for alllo+(r—1) <1< 2r—2
the nonlinear weights defined in Eq. B3]) satisfy:

Do =1+ O(W™™), &g, = O(R*™) (58)
With m = 2 if the discontinuity is in the function and m = 1 if the discontinuity is in the first derivative.

Proof. 1t is clear that as l[p > 0, then the smoothness indicator fg is not affected by the discontinuity. However, if
lo+ (r—1) <1< 2r—2, then:

l—(r=1)—-r<0<lo=lo+(r—-1)—-(r—-1)<Ii-(r—1).

Thus, the discontinuity crosses the stencil used to calculate I~l’”_ (r—1) then, by the definition of the smoothness indicators

in ({#4)), we get:

Iio=15, Ioy=1_(1),
and by Prop. [£4] the result is obtained, i.e.
(:)070 == 1 + O(hzmt)7 (:)é)l == O(hQ?TLt)'
O

Lemma 5.3. Let be 0 < lop < r—1. If there exists a discontinuity at [Titi,—1, Titi,], then for allr+1 <1 <lg+(r—2)
the nonlinear weights defined in Eq. B3) satisfy:

‘Dfm = Ollc,k +O(h" ), @fc,kﬂ = Cllc,k-i-l +OM™Y, 0<k<ly+(r—2)—1, (59)
being C’,lc)k1 with k1 =k, k+ 1 defined in Eq. (29).

Proof. In order to prove this lemma, we only have to analyze if the discontinuity crosses the stencils used to calculate
I7 and I[_(T_l)+k. In the first case, the stencil is {z;—r4k, ..., Zitk}, as

E<lp+(r—2)—1<lo+(r—=2)—(r+1)=1y -3,
then the discontinuity does not cross it. In second case the stencil is {@; i (r—1)4k—r»- - - s Titi—(r—1)+k}, frOmM
l—(r—1D)4+k<l—(r—-1+lo+(r—2)—-1l=1y—1.
Using Prop. [£.4] we get the result. O

Lemma 5.4. Let be 1 <o <r — 1. If there exists a discontinuity at [Tiy1,—1, Tit1,], then

1 jo+1 Jig—3+1
ro A r - ~r—2+lg ~r—3+lg ~r4+1 r+1 2mt
(C5,Cr, . Cry) = @p PRI AL I > O O | ] o)
Jjo=0 J1=Jjo Jig—2=Jig—3

with Cffl, k=0,...,7r—1 defined in Eq. (&) and
déﬂ;kl ~1 _ Cllf,kl
) Ay = (

— kM =k k41 60
€+I]l€7k1)t ' ( )

~

Wiy = 27 21—
R A e A
where jllm/ﬁ are the smoothness indicators defined in Section [{.1, C’,lg)k1 defined in Eq. 29), m = 2 if the discontinuity

is in the function and m = 1 if the discontinuity is in the first derivative.
Also,

(@5, @, @l_y) = (Co + O™ 1), C7 + O(h™1),...,CF _, + O™~ 1), 0(h*™), ..., 0(h*™)) (61)

r—1

being
lo—1

Pt () = Z Crpp(zi1/2)
k=0



Proof. We suppose that 1 < lp < r — 1, we denote as:

lo+7r— 1 lo+r—2 lo+r—2
Py (zie 1/2 E COOJO pj?) (%‘4/2)

Jo=0
1 Jjo+1
_ lo+r—2 lo+r—3, lo+r—3 .
- Z COJO Z C]O;]l Py ($1*1/2)
Jjo=0 Jj1=Jjo
1 jo+1 Jig—3+1 Jig—2+1
. l0+r 2 lo+7r—3 r+1 s T .
- Z CO ,Jo 2 : Cj();jl z : szoﬁe,jzofz z : Cj10727j1071pj1071($1—1/2)
Jo=0 J1=Jjo Jlg—2=J19—3 Jlg—1=Jig—2
lo—1

= Z C’/ZPZ(%—Uz)-
k=0

(62)
Then, by Eq. (34) and Lemma [5.2] we have that:
1 Jo+1 Jig—3+1
(Cy,Cr . Gy =Y a2 | Y al e | Yoo wt LG FomP
jo=0 J1=jo Jig—2=i1g 3
And by Lemmas 5.1l and 53] we obtain:
(@5, @7, @l_1) = (Co + O™, Cy + O(h™™Y),...,Ch_y + O(h"™1), 0(h*™*), ..., O(h*™)).
O

Theorem 5.5. Let be 1 < lyp < r —1 and @}, defined in Eq. B5), if f is smooth in [x;—r, Titr—1] \ Q and f has a
discontinuity at £ then

r—1
~ o2y,  if Q=0;
T, o _ Zil — - ) : ) 63
I;kapk(% 2) f(x 2) { O(h -i-lo)7 if Q= [Tip1y-1,Tir1y); (63)
Proof. Let be 1 <y <7 —1, then
r—1 r—1
Z@Zp};(%—%) - f(xi—%) = wppg (T ) PéoJrT 1(9Cz 1/2) ‘f‘plﬁr 1(551'71/2) - f(%_%)
k=0 k=0
r—1 .
= 3" (@F — Cpph(x;_1) + O(h™*)
k=0
l()—l
= 3@ - Wil s) — flaiiaye) Z Gl (2 s) + O(h'1)
k=0 k=lo
— O(hr71+r+1) 4 O(tht) 4 O(hr+lg)
O(hrHO)

O

Finally, if lo = 1, then we obtain the WENO classic interpolation and the order in the interval [x;, ;11] is O(h"T1).
We determine the value of the parameter ¢ in (). The polynomial obtained with the new WENO technique must
satisfy the following properties:

e It is a piecewise interpolation polynomial composed of polynomials of degree r.

e Every polynomial must satisfy the following property, that is equivalent to the ENO property [14], but that
assures a progressive order of accuracy:



— The classical WENO weight related to any smooth stencil will verify
wyp = 0(1).
— If the function f has a singularity, then the corresponding &y will verify
op=0(h"1).
Corollary 5.6. The new WENO algorithm satisfies the previous property if t > r for jumps in the function and the
first derivative.

Proof. The proof is straightforward from equation (61I]) in Lemma[5.4l We can see that assuring that 2m¢ > 2r — 1 is
enough. If t = r the previous inequality is satisfied for jumps in the function or the first derivative. In fact, for jumps

in the function it is enough if ¢ = ceil (QT; 1), being ceil the operation of rounding to the upper closest integer. O

6 Numerical experiments

This section is dedicated to present some numerical experiments aimed to test the theoretical results obtained in
previous sections. We will show results related to the order of accuracy and the computational time of WENO-6,
WENO-8 and WENO-10 algorithms.

The accuracy will be checked through a grid refinement analysis. We will consider the function,

f) = 219 — 29 + 28 — 427 + 25 + 25 + 2t + 23 + 522 + 3z, a<z<0,
Tl = (210 — 229 + 328 — 827 — 225 + 2% — 22* — 323 — 522+ 0.5z), 0<x <D,

where we will give 1 the values 7 = 0, 1. In the first case the function presents a discontinuity in the first derivative and
in the second case a discontinuity in the function. If we set = 0, then we will consider the interval (a,b) = (—=§,1—F).
The reason is that we want to assure, if possible, that at all the stages of the grid refinement analysis, the singularity
does not fall at a grid point. If the discontinuity does fall at a grid point, then the classical WENO strategy (or
the new one) always provide an approximation of order O(h"*1), as there is always one smooth stencil, and the grid
refinement analysis does not show the real accuracy of the algorithms. If 7 = 1, then we will just consider the interval
(a,b) = (—=0.5,0.5). For all the experiments we have chosen ¢ = r and € = 10716 in () and (33).

Tables [I] and 2] present a grid refinement analysis for the new WENO-6 and the classical WENO-6. Tables [3 and (]
present the same refinement analysis for the WENO-8 algorithms. Tables Bl and [@ present the results for the WENO-10
algorithms. All the previous tables have been obtained for the function in (64)) with 7 = 0, that presents a jump in
the first derivative.

Tables[l and 8 (WENO-6), @ and I (WENO-8), [Tl and 2| (WENO-10), show the same analysis but, in this case,
for n = 1, so ([64)) presents a jump in the function.

In all the aforementioned tables we use 2° initial points. The errors e; are presented for interpolated data at
gridpoints around the discontinuity. The interval that contains the discontinuity is always denoted as x9;. It is clear
that the accuracy is reduced step by step using the new algorithm. Classical WENO-2r algorithm is not capable of this
adaption and tipically attains O(h"*!) accuracy at the interpolations which stencils cross the discontinuity. Tables Bl
@ BIE @ 0 01 and M2 only present complete results to the left of the discontinuity as the accuracy is symmetric.
In order to obtain the computational time, we perform 500 executions of each subroutine and obtain the mean. The
computational times obtained show that the cost is similar for both algorithms for small values of r, but that it grows
for the new algorithm as r grows.

(64)

7 Conclusions

In this work we have generalized the algorithm introduced in [I4] [I3] for data discretized in the point values. We have
given explicit expressions for all the weights and we have proved in general that the accuracy attained with this new
WENO-2r strategy is optimal for any value of r. We have also proposed an strategy to use the smoothness indicators
of order 7, i.e. those used by the classical WENO algorithm, as smoothness indicators of high order, using a tree
structure, in order to optimize the computational cost of the new algorithm. We have presented numerical results that
support the theoretical conclusions reached. We have also presented numerical estimations of the computational time
that show that for low values of r the new algorithm and the classical WENO algorithm perform similar.



T2i-7 2i-5 Z2i-3 T2i-1 Z2i+1 Z2i+3 L2i45 - Comp. t.
i e; log, (*:T) € log, (e:l) € log, (h‘i]) € log, (F;]) € log, (ﬁ‘i]) e log, (F:]) € log, (921)
5 | 1.575e-08 - 7.772e-09 - 5.103e-06 - 8.277e-03 - 1.690e-06 - 3.041e-08 - 2.846e-08 - 4.214e-04
6 | 1.477e-10 6.737 8.152¢-10 3.253 4.968¢-08 6.683 9.953e-03 -0.266 1.065¢-07 3.988 2.929¢-10 6.698 3.453e-10 6.365 6.374e-04
7 | 1.731e-12 6.414 3.586e-11 4.507 3.319e-09 3.904 1.764e-04 5.818 1.697e-05 -7.316 1.847e-08 -5.979 4.733e-12 6.189 1.103e-03
8 | 2.420e-14 6.160 1.205e-12 4.895 2.127e-10 3.964 1.764e-04 -0.000 1.694e-08 9.969 1.168e-12 13.949 6.724e-14 6.137 1.720e-03
9 | 3.539¢-16 6.096 3.884e-14 4.955 1.346e-11 3.982 1.764e-04 0.000 2.981e-11 9.150 3.656e-14 4.997 1.000e-15 6.071 2.788¢-03
10 | 5.204e-18 6.087 1.232e-15 4.979 8.466¢-13 3.991 1.761e-04 0.003 1.697e-12 4.135 1.198e-15 4.931 1.540e-17 6.021 4.401e-03

Table 1: Grid refinement analysis for the new WENO-6 algorithm for the function in (64]) and n = 0.

AT Tois T2i-3 Toi—1 Z2i41 L2i43 T2igs " Comp. t.
i € log, (mil ) € log, (ﬁ:l ) € log, (mil ) € log, (t«(ix) € log, (rfi. ) € log, (t«(ix) € log, (rfi. )
5 | 1.574e-08 - 2.815e-07 - 9.477e-06 - 8.190e-03 - 1.712e-06 - 3.683e-07 - 2.851e-08 - 5.273e-04
6 | 1.477e-10 6.736 1.170e-08 4.589 5.403e-08 7.454 9.953e-03 -0.281 1.102e-07 3.958 2.454e-08 3.908 3.453e-10 6.367 5.239¢-04
7 | 1.731e-12 6.414 7.822¢-10 3.903 3.320e-09 4.025 1.764e-04 5.818 2.292e-05 -7.700 3.058e-07 -3.639 4.732e-12 6.189 1.021e-03
8 | 2.420e-14 6.160 4.963e-11 3.978 2.127e-10 3.964 1.764e-04 -0.000 3.343e-08 9.421 8.320e-10 8.522 6.724e-14 6.137 1.939e-03
9 | 3.539¢-16 6.096 3.124e-12 3.990 1.346e-11 3.982 1.764¢-04 0.000 3.263¢-11 10.001 6.540e-12 6.991 1.000e-15 6.071 2.191e-03
10 | 5.204e-18 6.087 1.959¢-13 3.995 8.466¢-13 3.991 1.757e-04 0.005 1.698¢e-12 4.264 3.921e-13 4.060 1.518e-17 6.042 3.821e-03
Table 2: Grid refinement analysis for the classical WENO-6 algorithm for the function in (64) and n = 0.
- Taig T2i-7 T2i-5 T2i-3 Ti-1 241 Tyiq3- Comp. t.
i e; log, (F:ﬁ) e logy (%) e; log, (n‘%) e logy (%) e; log, ((i“) e logy (F:J e; log, (Ei“) P
5 | 3.333e-11 - 1.963e-09 - 1.881e-08 - 2.532e-08 - 7.269e-03 - 3.938e-08 - 2.776e-08 - 7.601e-04
6 | 2.557e-13 7.026 1.275e-11 7.267 1.663e-10 6.821 2.061e-09 3.619 9.342¢-03 -0.362 1.133e-09 5.119 3.104e-10 6.483 7.292¢-04
7 | 6.106e-16 8.710 9.177e-14 7.118 1.713e-12 6.601 8.588¢-11 4.585 1.543¢-04 5.920 1.717¢-06 -10.565 1.735¢-08 -5.805 1.508¢-03
8 | 6.939¢-18 6.459 6.939¢-16 7.047 2.212e-14 6.275 2.846e-12 4.916 1.543e-04 -0.000 7.363e-11 14.509 4.880e-14 18.440 2.334e-03
9 0 - 5.204e-18 7.059 3.105¢-16 6.155 9.115e-14 4.964 1.543e-04 0.000 8.792¢-14 9.710 6.436¢-16 6.245 3.927e-03
10 | 1.735e-18 - 0 - 4.337e-18 6.162 2.880e-15 4.984 1.539e-04 0.004 2.823e-15 4.961 9.324e-18 6.109 5.832e-03

Table 3: Grid refinement analysis for the new WENO-8 algorithm for the function in (64]) and n = 0.

T 29 T2i-7 T2i-5 T2i-3 T2i-1 L2i+1 L2i43 - Comp. t.
i € log, (e:+ ) e logs (ﬁ) € log, (e:ﬁ) e logy (%) €; log, (e,‘il) e logs (F:]) €; logs (eil)
5 | 4.966e-11 - 2.203e-09 - 4.532e-08 - 1.464e-07 - 7.246e-03 - 3.933e-08 - 2.134e-09 - 7.055e-04
6 | 2.583e-13 7.587 1.554e-10 3.825 5.618e-10 6.334 2.064e-09 6.148 9.341e-03 -0.366 1.136e-09 5.113 3.685e-10 2.533 5.396e-04
7 | 6.106e-16 8.724 5.924e-12 4.713 2.193e-11 4.679 8.588e-11 4.587 1.543e-04 5.919 4.457e-06 -11.938 4.902e-07 -10.377 1.110e-03
8 0 - 1.924e-13 4.944 7.17le-13 4.934 2.846e-12 4.916 1.543e-04 -0.000 2.158e-10 14.334 1.420e-10 11.753 1.684e-03
9 0 - 6.113e-15 4.976 2.287e-14 4.971 9.115e-14 4.964 1.543e-04 0.000 8.977e-14 11.231 2.510e-14 12.466 2.795e-03
10 | 1.735e-18 - 1.926e-16 4.989 7.225e-16 4.984 2.880e-15 4.984 1.530e-04 0.012 2.823e-15 4.991 7.082e-16 5.148 4.822¢-03
Table 4: Grid refinement analysis for the classical WENO-8 algorithm for the function in (64) and n = 0.
i T2i9 Toi-7 T2i-5 Ti-3 T2i-1 Toi- - Comp. t.
i e; log, mil ) e; log, (ﬁ:l ) e log, (mil ) e; log, (t«(ix) e log, (rfi. ) e; log, ((fﬁ) e log, (rfi. ) !
5 | 1.762e-11 - 1.201e-11 - 2.408e-11 - 1.603e-10 - 3.584e-09 - 5.429e-08 - 7.261e-03 - 6.430e-04
6 | 3.96%-15 12.116 3.136e-15 11.903 2.054e-14 10.195 3.414e-13 8.875 2.284e-11 7.294 4.842¢-10 6.809 9.331e-03 -0.362 9.058e-04
7 | 2.776e-17 7.160 1.388e-17 7.820 1.388e-17 10.531 9.853e-16 8.437 1.651e-13 7.112 5.031e-12 6.589 1.389e-04 6.070 1.897e-03
8 | 1.388e-17 1.000 6.939¢-18 1.000 6.939¢-18 1.000 1.388e-17 6.150 1.256e-15 7.039 6.553e-14 6.263 1.389e-04 -0.000 3.224e-03
9 0 - 3.469¢-18 1.000 3.469e-18 1.000 1.735e-18 3.000 6.939%-18 7.500 9.259¢-16 6.145 1.389e-04 0.000 6.051e-03
10 | 3.469e-18 - 1.735e-18 1.000 0 - 1.735e-18 0.000 0 - 1.214e-17 6.253 1.377e-04 0.012 8.830e-03

Table 5: Grid refinement analysis for the new WENO-10 algorithm for the function in (64]) and n = 0.
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X2i—5

L2i—3

T2i—1

Zoj -

i1 Z2i—9 T2i—7 Comp. t.
i e; log, (*:T) € log, (e:l) € log, (h‘i]) € log, (F;]) € log, (ﬁ‘i]) e log, (F:]) € log, (921)
5 | 1.683e-11 - 1.143e-11 - 9.436e-10 - 4.340e-09 - 1.873e-08 - 6.983e-08 - 7.263e-03 - 8.538e-04
6 | 3.886e-15 12.080 3.081e-15 11.857 8.765¢-12 6.750 3.566¢-11 6.927 1.081e-10 7.436 4.843e-10 7172 9.331e-03 -0.362 6.782¢-04
7 | 1.388e-17 8.129 0 - 9.374e-14 6.547 3.779e-13 6.560 1.135e-12 6.574 5.031e-12 6.589 1.389-04 6.070 1.213e-03
8 | 1.388e-17 0.000 6.939¢-18 - 1.263e-15 6.214 5.020e-15 6.234 1.493e-14 6.249 6.553¢-14 6.263 1.389e-04 -0.000 1.894e-03
9 0 - 0 - 1.735e-17 6.186 7.286e-17 6.107 2.134e-16 6.129 9.259¢-16 6.145 1.389e-04 0.000 3.582¢-03
10 0 - 1.7350-18 B 0 - 173518 | 5392 | 3409c-18 | 5.043 | 1214017 | 6.253 | 1.351c-:04 | 0.041 | 5.0350-03

Table 6: Grid refinement analysis for the classical WENO-10 algorithm for the function in (64]) and n = 0.

g7 T2i—5 T2i—3 i1 Z2i41 L2i43 T2igs " Comp. t.
i € log, (mil ) € log, (ﬁ:l ) € log, (mil ) € log, (t«(ix) € log, (rfi. ) € log, (t«(ix) € log, (rfi. ) !
5 | 1.575e-08 - 7.924e-09 - 7.042e-07 - 4.343e-01 - 1.674e-06 - 3.041e-08 - 2.846e-08 - 4.581e-04
6 | 1.477e-10 6.737 8.152¢-10 3.281 4.890e-08 3.848 4.579¢-01 -0.076 1.057e-07 3.985 2.929¢-10 6.698 3.453e-10 6.365 5.692e-04
7 | 1.731e-12 6.414 3.586e-11 4.507 3.319¢-09 3.881 5.152e-01 -0.170 6.714e-09 3.977 2.432e-11 3.590 4.732e-12 6.189 1.214e-03
8 | 2.420e-14 6.160 1.205e-12 4.895 2.127e-10 3.964 5.078e-01 0.021 4.275e-10 3.973 1.046e-12 4.539 6.717e-14 6.139 1.662e-03
9 | 3.539¢-16 6.096 3.884e-14 4.955 1.346e-11 3.982 5.041e-01 0.011 2.700e-11 3.985 3.653¢-14 4.840 9.992¢-16 6.071 2.816e-03
10 | 5.204e-18 6.087 1.232¢-15 4.979 8.466¢-13 3.991 5.022¢-01 0.005 1.697e-12 3.992 1.221e-15 4.903 1.110e-16 3.170 4.345¢-03

Table 7: Grid refinement analysis for the new WENO-6 algorithm for the function in (64]) and n = 1.

C o7 L2i—5 Z2i-3 i1 Z2i41 L2i43 L2i45 - Comp. t.
i e; log, (F:ﬁ) e logy (%) e; log, (n‘%) e logy (%) e; log, ((i“) e logy (F:J e; log, (Ei“)
5 | 1.574e-08 - 1.560e-07 - 7.042e-07 - 4.634e-01 - 1.674e-06 - 3.665e-07 - 2.851e-08 - 4.929e-04
6 | 1.477¢e-10 6.736 1.163e-08 3.746 4.890e-08 3.848 4.742¢-01 -0.033 1.057e-07 3.985 2.446e-08 3.906 3.453e-10 6.367 6.711e-04
7 | 1.731e-12 6.414 7.821e-10 3.894 3.319¢-09 3.881 5.067¢-01 -0.095 6.714e-09 3.977 1.560e-09 3.971 4.732¢-12 6.189 1.235¢-03
8 | 2.420e-14 6.160 4.963e-11 3.978 2.127e-10 3.964 5.035e-01 0.009 4.275e-10 3.973 9.912e-11 3.976 6.728e-14 6.136 1.567e-03
9 | 3.539¢-16 6.096 3.124e-12 3.990 1.346e-11 3.982 5.019e-01 0.005 2.700e-11 3.985 6.247e-12 3.988 8.882¢-16 6.243 2.527e-03
10 | 5.204e-18 6.087 1.959e-13 3.995 8.466e-13 3.991 5.011e-01 0.002 1.697e-12 3.992 3.920e-13 3.994 1.110e-16 3.000 4.038¢-03

Table 8: Grid refinement analysis for the classical WENO-6 algorithm for the function in (64) and n = 1.

T 29 T2i-7 T2i-5 L2i—3 T2i-1 T2i41 T2i43 - Comp. t.
i € log, (;T) e logs (ﬁ) € log, (e:ﬁ) e logy (%) €; log, (e,‘il) e logs (F:]) €; logs (eil)
5 | 3.333e-11 - 1.963e-09 - 1.881e-08 - 4.447e-09 - 3.636e-01 - 3.940e-08 - 2.776e-08 - 5.207e-04
6 | 2.557e-13 7.026 1.275e-11 7.267 1.663e-10 6.821 2.061e-09 1.110 4.152e-01 -0.191 1.133e-09 5.120 3.104e-10 6.483 7.497e-04
7 | 6.106e-16 8.710 9.178¢-14 7.118 1.713e-12 6.601 8.588e-11 4.585 5.379e-01 -0.374 6.366e-11 4.153 3.810e-12 6.348 1.391e-03
8 | 6.93%-18 6.459 6.939¢-16 7.047 2.212e-14 6.275 2.846e-12 4.916 5.194e-01 0.050 2.548e-12 4.643 4.741e-14 6.328 2.160e-03
9 0 - 5.204e-18 7.059 3.105e-16 6.155 9.115e-14 4.964 5.099e-01 0.027 8.682e-14 4.875 8.882e-16 5.738 3.836e-03
10 | 1.735e-18 - 0 - 4.337e-18 6.162 2.880e-15 4.984 5.051e-01 0.014 2.887e-15 4.911 1.110e-16 3.000 6.112e-03

Table 9: Grid refinement analysis for the new WENO-8 algorithm for the function in (64]) and n = 1.

c @9 Li—7 T2i—5 i3 T2i—1 T2i41 L2343 Comp. t.

i e; log, (”‘;l> e; log, (m‘:l) e log, (’:»l) e; log, (t«(ix) e log, (rfi.) e; log, ((fﬁ) e log, (rfi.)

5 | 4.966e-11 - 1.558e-09 - 4.137e-09 - 4.447e-09 - 4.455e-01 - 3.940e-08 - 2.211e-09 - 4.224e-04
6 | 2.583e-13 7.587 1.554e-10 3.326 5.605e-10 2.884 2.061e-09 1.110 4.653e-01 -0.063 1.133e-09 5.120 3.668e-10 2.592 5.530e-04
7 | 6.106e-16 8.724 5.924e-12 4.713 2.193e-11 4.676 8.588e-11 4.585 5.111e-01 -0.135 6.366e-11 4.153 1.692e-11 4.438 1.070e-03
8 0 - 1.924e-13 4.944 7.171e-13 4.934 2.846e-12 4.916 5.057e-01 0.015 2.548e-12 4.643 6.493e-13 4.703 1.596e-03
9 0 - 6.113e-15 4.976 2.287e-14 4.971 9.115e-14 4.964 5.030e-01 0.008 8.682¢-14 4.875 2.220e-14 4.870 2.431e-03
10 | 1.735e-18 - 1.926e-16 4.989 7.225e-16 4.984 2.880e-15 4.984 5.016e-01 0.004 2.887e-15 4.911 7.772e-16 4.837 4.763e-03
Table 10: Grid refinement analysis for the classical WENO-8 algorithm for the function in (64) and n = 1.
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211 2i-9 T2i-7 2i-5 T2i-3 T2i-1 Toi- - Comp. t.
i e; log, (*:T) € log, (e:l) € log, (e::]) € log, (F;]) € log, (‘::»1) e log, (F:]) € log, (921)
5 | 1.762e-11 - 1.201e-11 - 2.408e-11 - 1.603e-10 - 3.585¢e-09 - 5.425e-08 - 2.985e-01 - 5.433e-04
6 | 3.969¢-15 12.116 3.136e-15 11.903 2.051e-14 10.197 3.414e-13 8.876 2.284e-11 7.294 4.842¢-10 6.808 3.686e-01 -0.304 8.558¢-04
7 | 2.776e-17 7.160 1.388e-17 7.820 1.388e-17 10.529 9.853e-16 8.437 1.651e-13 7.112 5.031e-12 6.589 5.640e-01 -0.614 1.669e-03
8 | 1.388e-17 1.000 6.939¢-18 1.000 6.939¢-18 1.000 1.388e-17 6.150 1.256e-15 7.039 6.553¢-14 6.263 5.329e-01 0.082 2.946e-03
9 0 - 3.469¢-18 1.000 3.469¢-18 1.000 1.735e-18 3.000 6.939¢-18 7.500 9.259¢-16 6.145 5.167e-01 0.045 5.356e-03
10 | 3.469e-18 1.735e-18 1.000 0 - 1.735e-18 0.000 0 - 1.214e-17 6.253 5.085e-01 0.023 8.741e-03

Table 11: Grid refinement analysis for the new WENO-10 algorithm for the function in (64) and n = 1.

CT2i-11

Z2i-9

L2i—7

Z2i-5

L2i—3

i1

Zoj- -

Comp. t.
i € log, (ﬁ) € log, (ﬁ) € log, (rfﬁ) € log, ((fﬁ) € log, (’:»l) € log, (t«(ix) € log, (rfi.) P
5 | 1.683e-11 - 1.143e-11 - 9.434e-10 - 3.901e-09 - 1.192e-08 - 5.425e-08 - 4.077e-01 - 4.379e-04
6 | 3.886e-15 12.080 3.081e-15 11.857 8.765e-12 6.750 3.566e-11 6.773 1.081e-10 6.785 4.842¢-10 6.808 4.452e-01 -0.127 6.103e-04
7 | 1.388e-17 8.129 0 - 9.374e-14 6.547 3.779%-13 6.560 1.135e-12 6.573 5.031e-12 6.589 5.213e-01 -0.228 1.043e-03
8 | 1.388e-17 0.000 6.939e-18 - 1.263e-15 6.214 5.020e-15 6.234 1.493e-14 6.249 6.553e-14 6.263 5.109e-01 0.029 1.610e-03
9 0 - 0 - 1.735e-17 6.186 7.286e-17 6.107 2.134e-16 6.129 9.259¢-16 6.145 5.056e-01 0.015 3.243e-03
10 0 1.735e-18 - 0 - 1.735e-18 5.392 3.469¢-18 5.943 1.214e-17 6.253 5.029e-01 0.008 4.713e-03

Table 12: Grid refinement analysis for the classical WENO-10 algorithm for the function in ([64)) and n = 1.
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