

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SIAM J. OPTIM. © 2021 Society for Industrial and Applied Mathematics
Vol. 31, No. 2, pp. 1079–1107

A DERIVATIVE-FREE METHOD FOR STRUCTURED
OPTIMIZATION PROBLEMS∗

ANDREA CRISTOFARI† AND FRANCESCO RINALDI†

Abstract. Structured optimization problems are ubiquitous in fields like data science and
engineering. The goal in structured optimization is using a prescribed set of points, called atoms,
to build up a solution that minimizes or maximizes a given function. In the present paper, we want
to minimize a black-box function over the convex hull of a given set of atoms, a problem that can
be used to model a number of real-world applications. We focus on problems whose solutions are
sparse, i.e., solutions that can be obtained as a proper convex combination of just a few atoms in
the set, and propose a suitable derivative-free inner approximation approach that nicely exploits the
structure of the given problem. This enables us to properly handle the dimensionality issues usually
connected with derivative-free algorithms, thus getting a method that scales well in terms of both the
dimension of the problem and the number of atoms. We analyze global convergence to stationary
points. Moreover, we show that, under suitable assumptions, the proposed algorithm identifies a
specific subset of atoms with zero weight in the final solution after finitely many iterations. Finally,
we report numerical results showing the effectiveness of the proposed method.

Key words. derivative-free optimization, decomposition methods, large-scale optimization

AMS subject classifications. 90C06, 90C30, 90C56

DOI. 10.1137/20M1337417

1. Introduction. In this paper, we consider an optimization problem of the
type

min
x∈M

f(x),(P0)

where M is the convex hull of a finite set of points A = {a1, . . . , am} ⊂ Rn called
atoms (some of them might not be extreme points ofM) and f : Rn → R is a contin-
uously differentiable function. We further assume that first-order information related
to the objective function is unavailable or impractical to obtain (e.g., functions are
expensive to evaluate or somewhat noisy). Since any point x ∈M can be written as a
convex combination of the atoms in A, problem (P0) can be equivalently reformulated
considering the simplicial representation of the feasible set:

min
w∈∆m−1

f(Aw),(P1)

where A =
[
a1 . . . am

]
∈ Rn×m and ∆m−1 = {w ∈ Rm : eTw = 1, w ≥ 0}, with e

being the vector made of all ones. Thus, each variable wi gives the weight of the ith
atom in the convex combination.

We are particularly interested in instances of problem (P1) that admit a sparse so-
lution, i.e., instances whose solutions can be obtained as a proper convex combination
of a small subset of atoms.

This occurs, e.g., when m� n (as a consequence of Carathéodory’s theorem [9]).
We would like to notice that this is not the only case that gives sparse solutions. We

∗Received by the editors May 12, 2020; accepted for publication (in revised form) January 15,
2021; published electronically April 1, 2021.

https://doi.org/10.1137/20M1337417
†Department of Mathematics “Tullio Levi-Civita,” University of Padua, Via Trieste, 63, 35121

Padua, Italy (andrea.cristofari@unipd.it, rinaldi@math.unipd.it).

1079

D
ow

nl
oa

de
d

04
/0

2/
21

 to
 1

47
.1

62
.2

2.
66

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

https://doi.org/10.1137/20M1337417
mailto:andrea.cristofari@unipd.it
mailto:rinaldi@math.unipd.it

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1080 ANDREA CRISTOFARI AND FRANCESCO RINALDI

can have polytopes with O(n) vertices that, thanks to their structure, can induce
sparsity anyway. A classic example is the `1 ball [6].

This black-box structured optimization problem is somehow related to sparse
atomic decomposition (see, e.g., [11, 21] and references therein). In such a context the
atomic structure can be exploited when developing tailored solvers for the problem.

There exists a significant number of real-world applications that fits our math-
ematical model. Interesting examples include, among others, black-box adversarial
attacks on deep neural networks with `1 or `∞ bounded perturbations (see, e.g.,
[8, 13, 27] and references therein) and reinforcement learning (see, e.g., [28, 41] and
references therein) with constrained policies.

In principle, problem (P1) can be tackled by any linearly constrained derivative-
free optimization (DFO) algorithm. A large number of those methods are available
in the literature. Nice overviews can be found in, e.g., [3, 16, 30, 33]. An important
class of methods is represented by direct-search schemes (see, e.g., [30] for further
details). Those approaches explore the objective function along suitably chosen sets
of directions that somehow take into account the shape of the feasible region around
the current iterate, and usually are given by the positive generators of an approximate
tangent cone related to nearby active constraints [31, 34]. The chosen directions both
guarantee feasibility and allow a decrease in the objective function value, when a
sufficiently small stepsize is taken. Line search techniques can also be used to better
explore the search directions [39]. Moreover, conditions for the active-set identification
are described in [35].

Another approach for the linearly constrained setting is proposed in [24], where
the authors introduce the notions of deterministic and probabilistic feasible descent
(they basically consider the projection of the negative gradient on an approximate
tangent cone identified by nearby active constraints). For the deterministic case, a
complexity bound for direct search (with sufficient decrease) is given. They further
prove global convergence with probability 1 when using direct search based on prob-
abilistic feasible descent, and derive a complexity bound with high probability.

The use of global optimization strategies combined with direct-search approaches
for linearly constrained problems has been investigated in [19, 47, 48].

Model-based approaches (see, e.g., [3, 16]) can also be used for solving linearly
constrained DFO problems. In [46], Powell described trust-region methods for qua-
dratic models with linear constraints, which are used in the LINCOA software [43],
developed by the same author for derivative-free linearly constrained optimization.
Moreover, an extension of Powell’s NEWUOA algorithm [44, 45] to the linearly con-
strained case has been developed in [25].

Since the derivative-free strategies listed above do not exploit the peculiar struc-
ture of problem (P1), they might get stuck when the problem dimensions increase.

Another way to deal with the original problem (P0) is by generating the facet-
inducing halfspaces that describe the feasible setM. In our case, the facet description
could be obtained from the atom list by means of suitable facet enumeration strategies
(see, e.g., [5]). This might obviously help in case m � n and the polytope has a
specific structure. We need to keep in mind that there exists a number of problems
where using the facet description is not a viable option. A first example is when A
is linear with respect to the problem dimension, but M does not have a polynomial
description in terms of facet-inducing halfspaces. Another interesting example is given
by problems where the inner description is not available and we only have an oracle
that generates our atoms. Furthermore, since we consider instances whose solutions
can be obtained using a very small number of atoms (usually much smaller than the

D
ow

nl
oa

de
d

04
/0

2/
21

 to
 1

47
.1

62
.2

2.
66

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A DF METHOD FOR STRUCTURED OPTIMIZATION 1081

dimension n), it would be better to exploit the vertex description when devising a
new method.

We hence propose a new algorithmic scheme that tries to take into account the
features of the considered problem, thus allowing us to solve large-scale instances. At
each iteration, our approach performs three different steps:

(i) it approximately solves a reduced problem whose feasible set is an inner de-
scription ofM (given by the convex hull of a suitably chosen subset of atoms);

(ii) it tries to refine the inner description of the feasible set by including new atoms;
(iii) it tries to remove atoms by proper rules in order to keep the dimensions of the

reduced problem small.
In more detail, the approximate minimization of the reduced problem is carried out
by means of a tailored algorithm that combines the use of a specific set of sparse
directions containing positive generators of the tangent cone at the current iterate
with a line search similar to those described in, e.g., [37, 38, 39]. Furthermore, the
addition/removal of new atoms guarantees an improvement of the objective function
whenever we approximately solve the reduced problem. Those key features enable
us to prove the convergence of the method and, under suitable assumptions, the as-
ymptotic finite identification of a specific subset of atoms with zero weight in the
final solution. This identification result has relevant implications on the computa-
tional side. The algorithm indeed keeps the reduced problem small enough along the
iterations when the final solution is sparse, thus guaranteeing a significant objective
function reduction even with a small budget of function evaluations.

The proposed method is somehow related to inner approximation approaches (see,
e.g., [7] and references therein) for convex optimization problems. Anyway, those
methods cannot be directly applied to the class of problems considered here due to
the following reasons:

• they require assumptions on the objective functions that might be hard to
verify in a DFO context;

• they normally use first-/second-order information to carry out the (approx-
imate) minimization of the reduced problem and to select new atoms to be
included in the inner description (see, e.g., [26, 42]).

In our framework, we only require smoothness of the objective function and use zeroth
order information (i.e., function evaluations) to approximately minimize the reduced
problem and to select a new atom. To the best of our knowledge this is the first
time that a complete theoretical and computational analysis of a derivative-free inner
approximation approach is carried out.

2. A basic algorithm for minimization over the unit simplex. In our
framework, we need an inner solver to approximately minimize the objective function
over a subset of atoms. This motivates us to design a tailored approach for problems
of the following form:

min
y∈∆m̄−1

ϕ(y),(2.1)

where ϕ : Rm̄ → R is a continuously differentiable function. The scheme of the
method, which we named DF-SIMPLEX, is reported in Algorithm 2.1. It combines
the use of a suitable set of sparse directions containing positive generators of the tan-
gent cone at the current iterate with a specific line search that guarantees feasibility.

We start by choosing a feasible point y0 ∈ ∆m̄−1 and some stepsizes α̂0
i , i =

1, . . . , m̄ (note that we have a starting stepsize for each component yi of the solution).
At each iteration k, we select a variable index jk such that ykjk is “sufficiently positive”

D
ow

nl
oa

de
d

04
/0

2/
21

 to
 1

47
.1

62
.2

2.
66

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1082 ANDREA CRISTOFARI AND FRANCESCO RINALDI

Algorithm 2.1. DF-SIMPLEX

1 Choose a point y0 ∈ ∆m̄−1, τ ∈ (0, 1], θ ∈ (0, 1), γ > 0, δ ∈ (0, 1) and α̂0
1, . . . , α̂

0
m̄ > 0

2 For k = 0, 1, . . .
3 Choose jk such that ykjk ≥ τ max

i=1,...,m̄
yki and let αk

jk
= 0

4 Set zk1 = yk

5 For i = 1, . . . , m̄
6 If (i 6= jk) then
7 Set d̃ = ei − ejk
8 Compute α and d by Line Search Procedure(zki , d̃, α̂

k
i , γ, δ)

9 If α = 0, then set α̂k+1
i = θα̂k

i

10 else set α̂k+1
i = α

11 else set α = 0 and d = 0
12 End if
13 Set αk

i = α, dki = d and zki+1 = zki + αk
i d

k
i

14 End for
15 Let ξi = α̂k+1

i , i ∈ {1, . . . , m̄} \ {jk}, and ξjk = α̂k
jk

16 Set α̂k+1
jk

= min
i=1,...,m̄

ξi

17 Set yk+1 = zkm̄+1
18 End for

Algorithm 2.2. Line Search Procedure(z, d, α̂, γ, δ)

1 Compute the largest ᾱ such that z + ᾱd ∈ ∆m̄−1 and set α = min{ᾱ, α̂}
2 If α > 0 and ϕ(z + αd) ≤ ϕ(z)− γα2, then go to line 6
3 Compute the largest ᾱ such that z − ᾱd ∈ ∆m̄−1 and set α = min{ᾱ, α̂}
4 If α > 0 and ϕ(z − αd) ≤ ϕ(z)− γα2, then set d = −d and go to line 6
5 Set α = 0 and go to line 10
6 Let β = min{ᾱ, α/δ}
7 While (α < ᾱ and ϕ(z + βd) ≤ ϕ(z)− γβ2)
8 Set α = β and β = min{ᾱ, α/δ}
9 End while

10 Return α, d

(see line 3 in Algorithm 2.1) and define the directions dki = ±(ei− ejk), for all indices
i 6= jk, where with ei ∈ Rm̄ we denote from now on the ith vector of the canonical
basis, i.e., the vector made of all zeros except for the ith component that is equal
to 1. Search directions of this form are related to those used in the 2-coordinate
descent method proposed in [17], with the difference that here, unlike in [17], first-
order information is not available, and then, both ei − ejk and ejk − ei must be
explored for all i 6= jk. Once these search directions are computed, for each of them
we perform a line search to get a sufficient reduction in the objective function and
we suitably update the values of the starting stepsizes α̂ki , i = 1, . . . , m̄. The line
search procedure is reported in Algorithm 2.2. It is similar to those described in, e.g.,
[37, 38, 39]. Notice that, in Algorithm 2.2, we have ᾱ = (zki)jk at line 1 and ᾱ = (zki)i
at line 3.

It should be noticed that, in practice, shuffling the search directions used at each
iteration k can improve performances. All the theoretical results that will be shown
below can be easily adapted to that case.

2.1. Theoretical analysis. To analyze the theoretical properties of the algo-
rithm, let us first recall a stationarity condition for problem (2.1).

D
ow

nl
oa

de
d

04
/0

2/
21

 to
 1

47
.1

62
.2

2.
66

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A DF METHOD FOR STRUCTURED OPTIMIZATION 1083

Proposition 2.1. A feasible point y∗ of problem (2.1) is stationary if and only
if there exists λ∗ ∈ R such that, for all i = 1, . . . , m̄,

∇iϕ(y∗)

{
≥ λ∗ if y∗i = 0,

= λ∗ if y∗i > 0.
(2.2)

We now show that the line search strategy embedded in DF-SIMPLEX always ter-
minates in a finite number of steps.

Proposition 2.2. Line Search Procedure has finite termination.

Proof. We need to show that the while loop at lines 7–9 ends in a finite number of
steps. Arguing by contradiction, assume that this is not true. Then, within the while
loop we generate a divergent monotonically increasing sequence of feasible stepsizes
α’s, which contradicts the fact that ∆m̄−1 is a bounded set.

In the next proposition, we prove that the stepsizes αki generated using our line
search go to zero. This is a standard technical result that will be needed to show
convergence of the algorithm.

Proposition 2.3. Let {yk} be a sequence of points produced by DF-SIMPLEX.
Then,

lim
k→∞

αki = 0, i = 1, . . . , m̄.

Proof. For every fixed i ∈ {1, . . . , m̄}, we partition the iterations into two subsets
K ′ and K ′′ such that

αki = 0⇔ k ∈ K ′ and αki 6= 0⇔ k ∈ K ′′.

If K ′′ is a finite set, necessarily αki = 0 for all sufficiently large k and the result
trivially holds. If K ′′ is an infinite set, to obtain the desired result we need to show
that

lim
k→∞
k∈K′′

αki = 0.(2.3)

By instructions of the algorithm, for all k ∈ K ′′ we have that

ϕ(yk+1) ≤ ϕ(zki+1) ≤ ϕ(zki)− γ(αki)2 ≤ ϕ(yk)− γ(αki)2.

Combining these inequalities with the fact that ∆m̄−1 is a bounded set and ϕ is
continuous, it follows that {ϕ(yk)} converges and, since ϕ(yk)−ϕ(yk+1) ≥ γ(αki)2 for
all k ∈ K ′′, we get (2.3).

By taking into account Proposition 2.3, it is easy to get the following corollary,
related to the sequences of intermediate points {zki }, i = 1, . . . , m̄.

Corollary 2.4. Let {yk} be a sequence of points produced by DF-SIMPLEX. Then,

lim
k→∞

∥∥yk − zki ∥∥ = 0, i = 1, . . . , m̄.

We now give the proof of another important result for the global convergence
analysis. More specifically, we show that starting stepsizes α̂ki considered in the
algorithm go to zero as well.

D
ow

nl
oa

de
d

04
/0

2/
21

 to
 1

47
.1

62
.2

2.
66

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1084 ANDREA CRISTOFARI AND FRANCESCO RINALDI

Proposition 2.5. Let {yk} be a sequence of points produced by DF-SIMPLEX.
Then,

lim
k→∞

α̂ki = 0, i = 1, . . . , m̄.

Proof. For every fixed i ∈ {1, . . . , m̄}, we partition the iterations into three subsets
K1, K2, and K3 such that

αki 6= 0⇔ k ∈ K1, αki = 0, i 6= jk ⇔ k ∈ K2, and i = jk ⇔ k ∈ K3.(2.4)

From the instructions of the algorithm, we have that

α̂k+1
i = αki ≥ α̂ki ∀ k ∈ K1,(2.5)

α̂k+1
i = θα̂ki < α̂ki ∀ k ∈ K2,(2.6)

α̂k+1
i = min{α̂k+1

h , α̂ki } ≤ α̂ki h ∈ {1, . . . , m̄} \ {jk} ∀ k ∈ K3.(2.7)

If K1 is an infinite subset, using (2.5) and Proposition 2.3 we obtain

lim
k→∞
k∈K1

α̂k+1
i = 0,(2.8)

which, combined with (2.6) and (2.7), yields to the desired result. Therefore, in the
rest of the proof we assume K1 to be a finite set.

First, consider the case where K3 is a finite set, that is, there exists k̄ such that
k ∈ K2 for all k ≥ k̄. For each k ∈ K2, define lk as the largest iteration index such
that lk < k and lk ∈ K1 (if it does not exist, we let lk = 0). Also define qk as the
number of iterations belonging to K3 between lk and k. Therefore, there are k−lk−qk
iterations belonging to K2 between lk and k. From (2.6)–(2.7), it follows that

α̂k+1
i ≤ θk−lk−qk α̂lk+1

i .

Using the fact that both lk and qk are bounded from above (since both K1 and
K3 are finite sets), we have that limk→∞

k∈K2

θk−lk−qk = 0. Therefore, limk→∞
k∈K2

α̂k+1
i =

limk→∞ α̂k+1
i = 0 and the desired result is obtained.

Now, we consider the case where K3 is an infinite set and we distinguish two
subcases. If K2 is an infinite set, from (2.6) and (2.7) we have that lim k→∞

k∈K2∪K3

α̂k+1
i =

limk→∞ α̂k+1
i = 0 and the desired result is obtained. Else (i.e., if K2 is a finite set),

there exists k̃ such that k ∈ K3 for all k ≥ k̃ and, picking any index t ∈ {1, . . . , m̄}\{i},
we can partition the iterations into three subsets Q1, Q2, and Q3 such that

αkt 6= 0⇔ k ∈ Q1, αkt = 0, t 6= jk ⇔ k ∈ Q2, and t = jk ⇔ k ∈ Q3.

Since i ∈ K3 for all k ≥ k̃, we have that Q3 is a finite set and, with the same arguments
given above for the case where K3 is a finite set, we obtain that limk→∞ α̂kt = 0. Using
the fact that, from the instructions of the algorithm,

α̂k+1
i ≤ min

h∈{1,...,m̄}\{i}
α̂k+1
h ∀ k ∈ K3,

the desired result is obtained.

Now, we can state the main convergence result related to DF-SIMPLEX. In partic-
ular, we show that every limit point of the sequence {yk} generated by the proposed
method is stationary for problem (2.1).

D
ow

nl
oa

de
d

04
/0

2/
21

 to
 1

47
.1

62
.2

2.
66

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A DF METHOD FOR STRUCTURED OPTIMIZATION 1085

Theorem 2.6. Let {yk} be a sequence of points produced by DF-SIMPLEX. Then,
every limit point y∗ is stationary for problem (2.1).

Proof. Let us consider a subsequence such that

lim
k→∞, k∈K

yk = y∗

with K ⊆ {1, 2, . . .}. Since the set of indices {1, . . . , m̄} is finite, it is possible to
consider a further subsequence, still denoted by {yk}K without loss of generality,
such that jk = ̂ for all k ∈ K.

We first show that a real number ρ > 0 and an iteration k̄ ∈ K exist such that

(zki)̂ ≥ ρ ∀ k ≥ k̄, k ∈ K, i = 1, . . . , m̄.(2.9)

Let h̄ be any index such that y∗
h̄
> 0 and let ρ be a positive real number such that

y∗
h̄
≥ (4/τ)ρ. For all sufficiently large k ∈ K we have that yk

h̄
≥ (2/τ)ρ and, recalling

how we choose the index jk (see line 3 of Algorithm 2.1), for all sufficiently large
k ∈ K we obtain

yk̂ ≥ τ max
i=1,...,m̄

yki ≥ τykh̄ ≥ 2ρ.

Using Corollary 2.4, it follows that

lim
k→∞, k∈K

zki = y∗, i = 1, . . . , m̄,(2.10)

implying that (2.9) holds and y∗̂ > 0.
From (2.2) we have that y∗ is a stationary point if and only if a λ∗ ∈ R exists

such that

∇iϕ(y∗)

{
≥ λ∗ if y∗i = 0,

= λ∗ if y∗i > 0

for all i = 1, . . . , m̄. Since we have just proved that y∗̂ > 0, in our case we have that
y∗ is a stationary point if and only if

∇iϕ(y∗)

{
≥ ∇̂ϕ(y∗) if y∗i = 0,

= ∇̂ϕ(y∗) if y∗i > 0

for all i = 1, . . . , m̄.
So, assuming by contradiction that y∗ is not a stationary point, an index t must

exist such that one of the following two cases holds:
(i) y∗t = 0 and ∇tϕ(y∗) < ∇̂ϕ(y∗). By the mean value theorem, we can write

ϕ
(
zkt − α̂kt (et − e̂)

)
− ϕ(zkt) = −α̂kt∇ϕ(ukt)T (et − e̂),

where ukt = zkt −ωkt α̂kt (et−e̂) and ωkt ∈ (0, 1). Using Proposition 2.5 and (2.10),
we have that

lim
k→∞, k∈K

∇ϕ(ukt)T (et − e̂) = ∇ϕ(y∗)T (et − e̂) = ∇tϕ(y∗)−∇̂ϕ(y∗) < 0.

It follows that, for all sufficiently large k ∈ K,

ϕ
(
zkt − α̂kt (et − e̂)

)
> ϕ(zkt).(2.11)

D
ow

nl
oa

de
d

04
/0

2/
21

 to
 1

47
.1

62
.2

2.
66

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1086 ANDREA CRISTOFARI AND FRANCESCO RINALDI

Now, using Proposition 2.3 we have that, for all sufficiently large k ∈ K,

zkt + α̂kt (et − e̂) ∈ ∆m̄−1.(2.12)

Taking into account (2.12) and the instructions of the algorithm, for all suffi-
ciently large k ∈ K either αkt = 0 and

ϕ(zkt + α̂kt (et − e̂)) > ϕ(zkt)− γ(α̂kt)2,

or αkt 6= 0. In the latter case, combining (2.11) and (2.12) we have that, for
all sufficiently large k ∈ K, the algorithm does not move along the direction
e̂ − et, and then, dkt = et − e̂. Using Proposition 2.5 we also get that, for

all sufficiently large k ∈ K, zkt +
αk

t

δ (et − e̂) ∈ ∆m̄−1. Therefore, taking into
account the Line Search Procedure we have that

ϕ

(
zkt +

αkt
δ

(et − e̂)
)
> ϕ(zkt)− γ

(
αkt
δ

)2

for all sufficiently large k ∈ K. Using the mean value theorem in the two above
inequalities, we have that either

∇ϕ(νkt)T (et − e̂) > −γα̂kt or ∇ϕ(skt)T (et − e̂) > −γ
αkt
δ
,

where νkt = zkt +πkt α̂
k
t (et− e̂), with πkt ∈ (0, 1) and skt = zkt +ηkt [αkt /δ](et− e̂),

with ηkt ∈ (0, 1). Using Proposition 2.3, Proposition 2.5, and the continuity of
∇ϕ, we can take the limits for k →∞, k ∈ K, and we obtain∇ϕ(y∗)T (et−e̂) ≥
0, contradicting the fact that ∇tϕ(y∗) < ∇̂ϕ(y∗).

(ii) y∗t > 0 and ∇tϕ(y∗) 6= ∇̂ϕ(y∗). First note that since y∗̂ > 0, necessarily y∗t < 1
and, consequently, for all sufficiently large k ∈ K both the directions ±(et− e̂)
are feasible at zkt .

Now, assume that ∇tϕ(y∗) < ∇̂ϕ(y∗). Reasoning as in case (i), we obtain
∇ϕ(y∗)T (et−e̂) ≥ 0, thus getting a contradiction. Then, necessarily∇tϕ(y∗) >
∇̂ϕ(y∗) but, repeating again the same reasoning as in case (i) with minor
modifications, we obtain ∇ϕ(y∗)T (et−e̂) ≤ 0, getting a new contradiction and
thus proving the desired result.

2.2. Choice of the stopping condition. Now, we describe the stopping con-
dition employed in DF-SIMPLEX. As we will see in the next section, this is a key tool
for the theoretical analysis of the general inner approximation scheme that embeds
DF-SIMPLEX as solver of the reduced problem. Moreover, under the assumption that
∇f is Lipschitz continuous, we will show that the stationarity error of the solution
returned by DF-SIMPLEX is upper bounded by a term that depends on the tolerance
chosen in the stopping criterion (see Theorem 2.12 below).

Given a tolerance ε > 0, a standard choice in direct-search methods is to terminate
the algorithm when a suitable steplength control parameter falls below ε. In our case,
this means that α̂ki ≤ ε, i = 1, . . . , m̄. Additionally, we prevent each α̂ki from becoming
smaller than ε. In particular, at line 9 of Algorithm 2.1 instead of setting α̂k+1

i = θα̂ki
we use the following rule:

α̂k+1
i = max{θα̂ki , ε}.(2.13)

We see that if ε = 0, we have exactly the rule reported in the scheme of Algorithm 2.1.
In order to stop the algorithm, we also require that no progress is made along any
feasible direction, that is αki = 0 for all i 6= jk.

D
ow

nl
oa

de
d

04
/0

2/
21

 to
 1

47
.1

62
.2

2.
66

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A DF METHOD FOR STRUCTURED OPTIMIZATION 1087

Summarizing, given ε > 0, we use (2.13) to update each α̂k+1
i at line 9 of Algo-

rithm 2.1 and we terminate the algorithm at the first iteration k such that

α̂ki = ε ∀ i ∈ {1, . . . , m̄} and αki = 0 ∀ i 6= jk.(2.14)

In the next proposition it is shown that this stopping condition is well defined.

Proposition 2.7. Given ε > 0, the stopping condition (2.14) is satisfied by
DF-SIMPLEX after a finite number of iterations.

Proof. First note that, in view of (2.13), we have that

α̂ki ≥ ε ∀ k ≥ 0, ∀ i ∈ {1, . . . , m̄}.

Now we show that an iteration k̄ exists such that

α̂ki = ε ∀ k ≥ k̄, ∀ i ∈ {1, . . . , m̄}.(2.15)

Proceeding by contradiction, assume that this is not true. Then, an infinite subse-
quence {yk}K⊆{0,1,...} and an index i ∈ {1, . . . , m̄} exist such that

α̂ki > ε ∀ k ∈ K.(2.16)

Using the same arguments given in the proof of Proposition 2.3, we have that

lim
k→∞

αki = 0.(2.17)

Then, to obtain the desired contradiction with (2.16) we can reason similarly as in
the proof of Proposition 2.5, with minor changes that are now described. Define K1,
K2 and K3 as in (2.4). The following relations hold:

α̂k+1
i = αki ≥ α̂ki ≥ ε ∀ k ∈ K1,(2.18)

ε ≤ α̂k+1
i = max{θα̂ki , ε} ≤ α̂ki ∀ k ∈ K2,(2.19)

ε ≤ α̂k+1
i ≤ α̂ki ∀ k ∈ K3.(2.20)

From (2.18) and (2.17), we see that K1 cannot be an infinite set. So, we only have
to consider the cases where K1 is finite. If K3 is also a finite set (and then K2 is
an infinite set), we can define lk and qk as in the proof of Proposition 2.5 and for all
k ∈ K2 we obtain ε ≤ α̂k+1

i ≤ max{θk−lk−qk α̂lk+1
i , ε}. It follows that α̂ki = ε for all

sufficiently large iterations. If K3 is an infinite set, we distinguish two subcases. If K2

is also an infinite set, from (2.19) and (2.20) again we have α̂ki = ε for all sufficiently
large iterations. Else (i.e., if K2 is a finite set), we can reason as in the last part of the
proof of Proposition 2.5, defining in the same way the index t and the three subsets
Q1, Q2, and Q3, obtaining that Q3 is a finite set and, with the same arguments given
above for the case where K3 is a finite set, αkt = ε for all sufficiently large iterations.
Using the fact that ε ≤ α̂k+1

i ≤ minh∈{1,...,m̄}\{i} α̂
k+1
h for all k ∈ K3, also in this case

we obtain that α̂ki = ε for all sufficiently large iterations. So, (2.15) holds.
Finally, to conclude the proof now we show that, for all sufficiently large iterations,

αki = 0 for all i 6= jk. Proceeding by contradiction, assume that this is not true.
Then, an infinite subsequence {yk}K⊆{0,1,...} and an index i ∈ {1, . . . , m̄} exist such

that αki > 0 for all k ∈ K. From the instructions of the algorithm we have that
α̂k+1
i = αki ≥ α̂ki ≥ ε for all k ∈ K. Since, using again the same arguments given

in the proof of Proposition 2.3, we have that limk→∞ αki = 0, we thus obtain a
contradiction.

D
ow

nl
oa

de
d

04
/0

2/
21

 to
 1

47
.1

62
.2

2.
66

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1088 ANDREA CRISTOFARI AND FRANCESCO RINALDI

2.3. Additional stationarity results. Using the stopping condition (2.14)
with a given tolerance ε > 0, we want to show that, when ∇f is Lipschitz continuous,
the solution ȳ returned by DF-SIMPLEX satisfies the condition

max
y∈∆m̄−1

−∇ϕ(ȳ)T (y − ȳ) ≤ Cε(2.21)

for a suitable constant C > 0. Note that ȳ is stationary if and only if

max
y∈∆m̄−1

−∇ϕ(ȳ)T (y − ȳ) = 0,

thus the quantity given in (2.21) provides a measure for the stationarity error at ȳ.
The desired error bound can be obtained by suitably adapting standard results

of direct-search methods for linearly constrained problems (see [31, 34]). In order to
carry out the analysis, we first need to recall a few definitions and to point out some
geometric properties of the search directions used in DF-SIMPLEX.

To this extent, it is convenient to consider a reformulation of problem (2.1) as an
inequality constrained problem of the following form:

min
y
ϕ(y)

s.t. cTi y ≤ bi, i = 1, . . . , m̄+ 2,
(2.22)

where c1 = e, c2 = −e, ci+2 = −ei, i = 1, . . . , m̄, and b1 = 1, b2 = −1, bi+2 = 0,
i = 1, . . . , m̄.

Let us recall the definition of active constraints, tangent cone, and normal cone
for the above problem.

Definition 2.8. Let y be a feasible point of problem (2.22). We say that a con-
straint ci is active at y if cTi y = bi. We also indicate with Z(y) the index set of active
constraints at y, that is, Z(y) = {i : cTi y = bi}.

Definition 2.9. Let y be a feasible point of problem (2.22). We indicate with
N(y) the normal cone at y, defined as the cone generated by the active constraints
at y:

N(y) =

v ∈ Rm̄ : v =
∑
i∈Z(y)

λici, λi ≥ 0, i ∈ Z(y)

 .

We also indicate with T (y) the tangent cone at y, defined as the polar of N(y):

T (y) =
{
v ∈ Rm̄ : vT d ≤ 0 ∀ d ∈ N(y)

}
.

It is easy to see that the tangent cone T (y) at a feasible point y of problem (2.22)
can be equivalently described as follows:

T (y) = {v ∈ Rm̄ : eT v = 0, vi ≥ 0, i : yi = 0}.(2.23)

Now, for every iteration k of DF-SIMPLEX, let Dk be the set of all the search
directions in {±(ei−ejk), i = 1, . . . , m̄, i 6= jk} that are feasible at yk (where a search
direction d is said to be feasible at yk if there exists ᾱ > 0 such that y + αd ∈ ∆m̄−1

for all α ∈ (0, ᾱ]). The next remark describes an important property of the set Dk.

Remark 2.10. For every iteration k of DF-SIMPLEX, Dk is a set of generators for
the tangent cone T (yk).

D
ow

nl
oa

de
d

04
/0

2/
21

 to
 1

47
.1

62
.2

2.
66

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A DF METHOD FOR STRUCTURED OPTIMIZATION 1089

From now on, given a vector v and a convex cone C, we define vC as the projection
of v onto C. Thus, vT (y) is the projection of v onto T (y) and vN(y) is the projection
of v onto N(y).

Before stating the desired result, we also need the following lemma to show that,
for any vector v ∈ Rm̄ and for any iteration k, a direction d ∈ Dk exists such that the
inner product vT d is lower bounded by ‖vT (yk)‖ up to some constant.

Lemma 2.11. For every iteration k of DF-SIMPLEX, we have that

max
d∈Dk

vT d ≥
‖vT (yk)‖
2(m̄− 1)

∀ v ∈ Rm̄.

Proof. We first observe that any vector σ ∈ T (yk) can be expressed as a non-
negative linear combination of the vectors in Dk with coefficients |σi| ≤ ‖σ‖, that
is,

σ =
∑
i6=jk
i : σi 6=0

sign(σi)(ei − ejk)|σi|.(2.24)

Now, pick any vector v ∈ Rm̄ and, for the sake of simplicity, define u1, . . . , u|Dk| the

directions in Dk. It follows that there exist nonnegative coefficients λ1, . . . , λ|Dk|,

with 0 ≤ λi ≤ ‖vT (yk)‖, i = 1, . . . , |Dk|, such that vT (yk) =
∑|Dk|
i=1 λiui, and then,

vT vT (yk) =
∑|Dk|
i=1 λiv

Tui. Therefore, an index i ∈ {1, . . . , |Dk|} exists such that

λiv
Tui ≥

1

|Dk|
vT vT (yk) ≥

1

2(m̄− 1)
vT vT (yk) ≥

1

2(m̄− 1)
‖vT (yk)‖2,

where the last inequality follows from the property of the projection. Since we have
0 ≤ λi ≤ ‖vT (yk)‖, the result is obtained.

We are finally ready to provide a bound on the stationarity error for the solution
returned by DF-SIMPLEX.

Theorem 2.12. Assume that ∇ϕ is Lipschitz continuous with constant L and the
stopping condition (2.14) is used with a given tolerance ε > 0. Then, the solution ȳ
returned by DF-SIMPLEX is such that

max
y∈∆m̄−1

−∇ϕ(ȳ)T (y − ȳ) ≤ Cε,

where C = 2
√

2(m̄− 1)(2L+ γ).

Proof. Let k be the last iteration of DF-SIMPLEX, so that yk = ȳ. In view of
Lemma 2.11, used with v = −∇ϕ(ȳ), we have that a d ∈ Dk exists such that

−∇ϕ(ȳ)T d ≥
∥∥[−∇ϕ(ȳ)]T (ȳ)

∥∥
2(m̄− 1)

.(2.25)

Since in (2.14) we require αki = 0 for all i 6= jk (i.e., no progress is made along
any feasible direction), from the instructions of the algorithm and the Line Search

Procedure we have that

ϕ(ȳ + αd) > ϕ(ȳ)− γα2(2.26)

D
ow

nl
oa

de
d

04
/0

2/
21

 to
 1

47
.1

62
.2

2.
66

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1090 ANDREA CRISTOFARI AND FRANCESCO RINALDI

with

0 < α ≤ ε,(2.27)

where the last inequalities for α follow from the fact that each α̂ki is required to be
equal to ε in (2.14). By the mean value theorem, ϕ(ȳ+αd)−ϕ(ȳ) = α∇ϕ(ȳ+ηαd)T d
for some η ∈ (0, 1). Thus, from (2.26), we obtain α∇ϕ(ȳ+ηαd)T d+γα2 > 0. Dividing
both terms by α, we get ∇ϕ(ȳ + ηαd)T d + γα > 0. Now, we subtract ∇ϕ(ȳ)T d to
both terms of the above inequality, obtaining

[∇ϕ(ȳ + ηαd)−∇ϕ(ȳ)]T d+ γα > −∇ϕ(ȳ)T d.

Using the fact that ∇ϕ is Lipschitz continuous, we have [∇ϕ(ȳ+ ηαd)−∇ϕ(ȳ)]T d ≤
Lηα‖d‖2 ≤ 2Lα, where the last inequality follows from the fact that η ∈ (0, 1) and
‖d‖ =

√
2. Then, 2Lα + γα > −∇ϕ(ȳ)T d. Combining this inequality with (2.25)

and (2.27), we get ‖[−∇ϕ(ȳ)]T (ȳ)‖ < 2ε(m̄ − 1)(2L + γ). To conclude the proof, we
thus have to show that

max
y∈∆m̄−1

−∇ϕ(ȳ)T (y − ȳ) ≤
√

2
∥∥[−∇ϕ(ȳ)]T (ȳ)

∥∥.(2.28)

Since, by polar decomposition, every vector v ∈ Rm̄ can be written as v = vT (ȳ)+vN(ȳ)

(see, e.g., [49]) we have −∇ϕ(ȳ) = [−∇ϕ(ȳ)]T (ȳ) + [−∇ϕ(ȳ)]N(ȳ). Therefore, for any
y ∈ ∆m̄−1 we can write

−∇ϕ(ȳ)T (y − ȳ) = [−∇ϕ(ȳ)]TT (ȳ)(y − ȳ) + [−∇ϕ(ȳ)]TN(ȳ)(y − ȳ).(2.29)

In order to upper bound the right-hand-side term of the above inequality, we first
write

[−∇ϕ(ȳ)]TT (ȳ)(y − ȳ) ≤
∥∥[−∇ϕ(ȳ)]T (ȳ)

∥∥‖y − ȳ‖ ≤ √2
∥∥[−∇ϕ(ȳ)]T (ȳ)

∥∥,(2.30)

where the last inequality follows from the fact that both y and ȳ belong to ∆m̄−1.
Moreover, we have that y − ȳ ∈ T (ȳ). Therefore, from the definition of the tangent
cone, we also have that

[−∇ϕ(ȳ)]TN(ȳ)(y − ȳ) ≤ 0.(2.31)

From (2.29), (2.30), and (2.31), we conclude that

−∇ϕ(ȳ)T (y − ȳ) ≤
√

2
∥∥[−∇ϕ(ȳ)]T (ȳ)

∥∥ ∀ y ∈ ∆m̄−1,

that is, (2.28) holds and the result is obtained.

3. Optimize, refine, and drop algorithm. In principle, we might use barycen-
tric coordinates to represent the feasible set of problem (P0), thus obtaining a new
problem of the form given in (P1) that might be solved by DF-SIMPLEX (or any other
solver for linearly constrained optimization). Unfortunately, since the number of vari-
ables in problem (P1) is the same as the number of atoms in A, when |A| increases
(keep in mind that this is often the case in our context), it gets hard to obtain a rea-
sonable solution within the given budget of function evaluations. We further notice
that in our context good points usually lie in small dimensional faces of the feasible
set (i.e., only a small number of atoms is needed to assemble those points). This is
the reason why we propose an inner approximation scheme to tackle the problem.

D
ow

nl
oa

de
d

04
/0

2/
21

 to
 1

47
.1

62
.2

2.
66

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A DF METHOD FOR STRUCTURED OPTIMIZATION 1091

At a given iteration k, our method considers a reduced problem by approximating
the set M with the convex hull of a set Ak ⊆ A and tries to suitably improve this
description by including/removing atoms according to some given rule. We can now
describe in depth the three main phases that characterize our approach.

Let Ak be the matrix whose columns are the atoms in Ak. First, in the opti-
mize phase, we use DF-SIMPLEX to compute an approximate solution of the following
reduced problem:

min
y∈∆|Ak|−1

ϕk(y),(3.1)

where ϕk(y) = f(Aky). In particular, we run DF-SIMPLEX on problem (3.1) until a
given tolerance εk is reached, according to the stopping condition discussed in sub-
section 2.2.

In the second phase, the refine phase, we try to get a better inner description
of M by choosing an atom aik ∈ A \ Ak, with ik ∈ {1, . . . ,m}, that guarantees
improvement of the objective value (we use Rk to indicate the set that, if nonempty,
is a singleton composed by the atom to be added to Ak). In practice, we randomly
pick the atoms in A\Ak, with no repetition, and we stop when we find one satisfying
a sufficient decrease condition.

Finally, in the last phase (drop phase), we get rid of some atoms in Ak thanks
to a simple selection rule (we will use the notation Dk to indicate the set of atoms
to be removed from Ak). This tool enables us to keep the dimension of the reduced
problem small enough along the iterations.

The detailed scheme is reported in Algorithm 3.1. We would like to notice that
the parameters γ and θ can be different from those used in DF-SIMPLEX.

We first introduce suitable optimality conditions for (P0) that will be exploited
in the theoretical analysis of our algorithmic framework.

Algorithm 3.1. Optimize, Refine & Drop (ORD) algorithm

1 Choose {εk} ↘ 0, A0 ⊆ A, ai0 ∈ A0, set x0 = ai0 , y0 = ei0 ∈ R|A0|, µ̂0 ∈ (0, 1),
γ > 0 and θ ∈ (0, 1)

2 For k = 0, 1, . . .

Optimize phase
3 Let Ak be the matrix with the atoms in Ak as columns (so that xk = Akyk)
4 Run DF-SIMPLEX from yk to compute an approximate solution ȳk of

problem (3.1) with tolerance εk

5 Set x̄k = Akȳk

Refine phase
6 If there exists an index ik ∈ {1, . . . ,m} and a scalar µk ∈ [µ̂k, 1] such that

f(x̄k + µk(aik − x̄
k)) ≤ f(x̄k)− γ(µk)2, aik ∈ A \ A

k,

then set xk+1 = x̄k + µk(aik − x̄k), Rk = {aik} and µ̂k+1 = µ̂k

7 Else set xk+1 = x̄k, Rk = ∅ and µ̂k+1 = θµ̂k

Drop phase
8 Choose a subset Dk ⊆ {a ∈ Ak such that a = Akeh and ȳkh = 0}

9 Let Ak+1 = Ak ∪Rk \ Dk, and set yk+1 ∈ ∆|Ak+1|−1 such that

xk+1 =
∑

ai∈Ak+1

aiy
k+1
i

10 End for

D
ow

nl
oa

de
d

04
/0

2/
21

 to
 1

47
.1

62
.2

2.
66

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1092 ANDREA CRISTOFARI AND FRANCESCO RINALDI

Proposition 3.1. A feasible point x∗ of problem (P0) is stationary if and only if

∇f(x∗)T (a− x∗) ≥ 0 ∀ a ∈ A.

Now, we prove that the stepsize used to define the sufficient decrease in the atom
selection of the second phase (see line 6 of Algorithm 3.1) goes to zero. This result
will be needed in the global convergence analysis of the method.

Proposition 3.2. Let {xk} be a sequence of points produced by Algorithm 3.1.
Then,

lim
k→∞

µ̂k = 0.

Proof. We partition the iterations into two subsets K1 and K2 such that

µ̂k+1 = µ̂k ⇔ k ∈ K1 and µ̂k+1 = θµ̂k ⇔ k ∈ K2,(3.2)

that is, the iterations in K1 are those where the test at line 6 of Algorithm 3.1 is
satisfied, while the iterations in K2 are those where that test is not satisfied. From
line 6 of Algorithm 3.1, for all k ∈ K1 we have that

f
(
xk+1

)
= f

(
x̄k + µk

(
aik − x̄k

))
≤ f(x̄k)− γ(µk)2 ≤ f(xk)− γ(µk)2,

where f(x̄k) ≤ f(xk) in the last inequality follows from the fact that x̄k = Akȳk

and ȳk is obtained from DF-SIMPLEX with a starting point yk satisfying xk = Akyk.
Therefore, if K1 is infinite, using the fact that f is continuous and the feasible set is
bounded it follows that {f(xk)} converges and

lim
k→∞
k∈K1

µk = 0.(3.3)

Since µ̂k ≤ µk for all k ∈ K1, it follows that {µ̂k}K1
→ 0. Taking into account that

µ̂k+1 = θµ̂k for all k ∈ K2, we obtain that the desired holds if K1 is infinite.
If K1 is finite, there exists k̄ such that k ∈ K2 for all k ≥ k̄. For each k ∈ K2,

define lk as the largest iteration index such that lk < k and lk ∈ K1 (if it does not
exist, we let lk = 0). Therefore, there are k− lk iterations belonging to K2 between lk
and k, implying that µ̂k+1 ≤ θk−lk µ̂lk+1. Using the fact that lk is bounded from above
(since K1 is finite), we have that limk→∞

k∈K2

θk−lk = 0. Therefore, limk→∞
k∈K2

µ̂k+1 = 0 and

the desired result is obtained.

We thus get the following useful corollary.

Corollary 3.3. Let {xk} be a sequence of points produced by Algorithm 3.1.
Then,

lim
k→∞

∥∥xk+1 − x̄k
∥∥ = 0.

Proof. As in the proof of Proposition 3.2, let us define K1 and K2 satisfying (3.2).
If K1 is a finite set, from the instructions of the algorithm we have that an iteration k̃
exists such that xk+1 = x̄k for all k ≥ k̃ and the desired result is obtained. If K1 is an
infinite set, by the same arguments used in the proof of Proposition 3.2 we get (3.3),
that is,

lim
k→∞
k∈K1

∥∥xk+1 − x̄k
∥∥ = 0,

and the desired result is obtained since xk+1 = x̄k for all k ∈ K2.

D
ow

nl
oa

de
d

04
/0

2/
21

 to
 1

47
.1

62
.2

2.
66

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A DF METHOD FOR STRUCTURED OPTIMIZATION 1093

In the next theorem, we prove global convergence of the proposed algorithm.

Theorem 3.4. Let {xk} be a sequence of points produced by Algorithm 3.1. Then,
(at least) one limit point x∗ exists such that x∗ is stationary for problem (P0).

Proof. Using Proposition 3.2, the fact that the feasible set of every reduced prob-
lem (3.1) is bounded, and the fact that A is a finite set, there exists an infinite subset
of iterations K ⊆ {0, 1, . . .} such that

Ak = Ā ∀ k ∈ K; lim
k→∞
k∈K

ȳk = y∗; µk+1 < µk ∀ k ∈ K.

Since Ak is constant for all k ∈ K, also the matrix Ak and the function ϕk are the
same for all k ∈ K, and let us denote them by Ā and ϕ̄, respectively. Hence, we also
have

lim
k→∞
k∈K

xk = Āy∗ = x∗.

Taking into account Proposition 3.1, to obtain the desired result we have to show that

∇f(x∗)T (a− x∗) ≥ 0 ∀ a ∈ Ā,(3.4a)

∇f(x∗)T (a− x∗) ≥ 0 ∀ a ∈ A \ Ā.(3.4b)

To prove (3.4a), for all iterations k ∈ K consider the points ȳk, which are re-
turned by DF-SIMPLEX when the stopping condition (2.14) is satisfied. Since the set
of directions used in DF-SIMPLEX is finite, without loss of generality we can assume
that, for all k ∈ K, the set of feasible directions at ȳk used in the last iteration of
DF-SIMPLEX is the same for all k ∈ K. Let us denote this set of directions by D. Since
the stopping condition (2.14) requires that no progress is made along any direction,
from the instructions of DF-SIMPLEX we have that, at any iteration k ∈ K,

ϕ̄(ȳk + αd) > ϕ̄(ȳk)− γα2 ∀ d ∈ D

with 0 < α ≤ εk. By the mean value theorem, ϕ̄(ȳk+αd)−ϕ̄(ȳk) = α∇ϕ̄(ȳk+ηkαd)T d
for some ηk ∈ (0, 1). Then, for any k ∈ K,

∇ϕ̄
(
ȳk + ηkαd

)T
d ≥ −γα ≥ −γεk ∀ d ∈ D.

Using the fact that ηk ∈ (0, 1), α ≤ εk, and εk → 0, we have that

lim
k→∞
k∈K

(
ȳk + ηkαd

)
= y∗ ∀ d ∈ D.

Therefore, from the continuity of ∇ϕ̄ it follows that

∇ϕ̄(y∗)T d ≥ 0 ∀ d ∈ D.(3.5)

Now consider any point y ∈ ∆|Ā|−1. Reasoning as in the last part of the proof of
Theorem 2.12, we have that y − y∗ ∈ T (y∗). Moreover, it is easy to verify that
the set D∗ = {d ∈ D such that d is feasible at y∗} is a set of generators for T (y∗).
Therefore, denoting by d1, . . . , d|D∗| the directions that form the set D∗, we have that

y − y∗ =
∑|D∗|
i=1 λidi, with λi ≥ 0, i = 1, . . . , |D|. Taking into account (3.5), it follows

that

∇ϕ̄(y∗)T (y − y∗) =

|D∗|∑
i=1

λi∇ϕ̄(y∗)T di ≥ 0 ∀ y ∈ ∆|Ā|−1.

D
ow

nl
oa

de
d

04
/0

2/
21

 to
 1

47
.1

62
.2

2.
66

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1094 ANDREA CRISTOFARI AND FRANCESCO RINALDI

Then, for all y ∈ ∆|Ā|−1 we have that

0 ≤ ∇ϕ̄(y∗)T (y − y∗) = [ĀT∇f(Āy∗)]T (y − y∗) = ∇f(Āy∗)T [Ā(y − ȳ∗)]
= ∇f(x∗)T (Āy − x∗).

Since conv(Ā) = {x ∈ Rn : x = Āy, y ∈ ∆|A|−1}, we obtain that

∇f(x∗)T (x− x∗) ≥ 0 ∀ x ∈ conv(Ā),

implying that (3.4a) holds.
To prove (3.4b), note that, from the instructions of the algorithm, we have that

µk+1 < µk only when the test at line 6 is not satisfied. Hence, for all k ∈ K,

f
(
x̄k + µk

(
a− x̄k

))
> f(x̄k)− γ(µk)2 ∀ a ∈ A \ Ā.

By the mean value theorem, for any a ∈ A \ Ā we can write

f
(
x̄k + µk

(
a− x̄k

))
− f(x̄k) = µk∇f

(
x̄k + ηkµk

(
a− x̄k

))T (
a− x̄k

)
for some ηk ∈ (0, 1). Therefore,

∇f
(
x̄k + ηkµk

(
a− x̄k

))T (
a− x̄k

)
> −γµk ∀ k ∈ K.

From Proposition 3.2 and the fact that ηk ∈ (0, 1), we have that

lim
k→∞
k∈K

(
x̄k + ηkµk

(
a− x̄k

))
= x∗.

Therefore, taking into account that µk → 0 and that ∇f is continuous, we obtain

0 ≤ lim
k→∞
k∈K

∇f
(
x̄k + ηkµk

(
a− x̄k

))T (
a− x̄k

)
= ∇f(x∗)T (a− x∗).

Since the above relation holds for all a ∈ A \ Ā, we finally get (3.4b).

4. Identification property of ORD. In our problem, every feasible point is
expressed as a (not necessarily unique) convex combination of the atoms ai ∈ A.
In this section we show that, under suitable assumptions, some atoms that are not
needed to express the optimal solution are identified and discarded by ORD in a finite
number of iterations. Loosely speaking, from a certain iteration we are guaranteed
that the set Ak does not contain “useless” atoms. Before showing this property, we
report a useful intermediate result.

Proposition 4.1. Let x∗ be a stationary point of problem (P0) and let w∗ ∈
∆m−1 be any vector such that x∗ = Aw∗. Then, for every atom ai ∈ A such that
∇f(x∗)T (ai − x∗) > 0, we have that w∗i = 0.

Proof. Consider the reformulation of problem (P0) in (2.1) with ϕ(w) = f(Aw).
Let w∗ be any feasible point of problem (2.1) such that x∗ = Aw∗. Since x∗ is
stationary for problem (P0) and conv(A) = {x ∈ Rn : x = Aw,w ∈ ∆m−1}, we have
that

∇f(x∗)T (Aw − x∗) ≥ 0 ∀ w ∈ ∆m−1.

Moreover, for all w ∈ ∆m−1 we can write

∇f(x∗)T (Aw − x∗) = [AT∇f(Aw∗)]T (w − w∗) = ∇ϕ(w∗)T (w − w∗).

D
ow

nl
oa

de
d

04
/0

2/
21

 to
 1

47
.1

62
.2

2.
66

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A DF METHOD FOR STRUCTURED OPTIMIZATION 1095

It follows that ∇ϕ(w∗)T (w − w∗) ≥ 0 for all w ∈ ∆m−1, that is, w∗ is stationary for
problem (2.1) and satisfies the following KKT conditions with multipliers λ∗ ∈ R and
v∗ ∈ Rm:

∇ϕ(w∗)− λ∗e− v∗ = 0,(4.1a)

eTw∗ = 1,(4.1b)

(v∗)Tw∗ = 0,(4.1c)

w∗ ≥ 0,(4.1d)

v∗ ≥ 0.(4.1e)

From (4.1a) we can write

v∗ = ∇ϕ(w∗)− λ∗e,(4.2)

and then, by (4.1c) we get that 0 = (v∗)Tw∗ = (∇ϕ(w∗)− λ∗e)Tw∗. Using (4.1b) we
obtain that λ∗ = ∇ϕ(w∗)Tw∗, which, combined with (4.2), yields to

v∗ = ∇ϕ(w∗)− (∇ϕ(w∗)Tw∗)e.

So, for all h = 1, . . . ,m we have that

v∗h = ∇ϕ(w∗)T (eh − w∗) = [AT∇f(Aw∗)]T (eh − w∗) = ∇f(x∗)T (Aeh −Aw∗)
= ∇f(x∗)T (ah − x∗).

Therefore, if ∇f(x∗)T (ai − x∗) > 0 for an atom ai ∈ A, this means that v∗i > 0
and (4.1c), (4.1d), and (4.1e) yield to w∗i = 0, thus proving the desired result.

In the next theorem, we assume that xk → x∗ (this is pretty standard in the
analysis of active-set identification properties) and show that, for k sufficiently large,
the atoms satisfying the condition of Proposition 4.1 are not included in Ak. To
obtain such a result, we set Dk as follows:

Dk = {a ∈ Ak such that a = Akeh and ȳkh = 0}.(4.3)

Theorem 4.2. Let {xk} be a sequence of points produced by Algorithm 3.1, where
Dk is computed as in (4.3). Assume that limk→∞ xk = x∗. Then, an iteration k̄ exists
such that, for all k ≥ k̄,

∇f(x∗)T (a− x∗) > 0, a ∈ A ⇒ a /∈ Ak.

Proof. Let a ∈ A be an atom such that

∇f(x∗)T (a− x∗) > 0.(4.4)

First, we want to show that

a /∈ Rk ∀ sufficiently large k.(4.5)

Arguing by contradiction, assume that (4.5) is not true. Then, an infinite subset of
iterations K ⊆ {0, 1 . . .} exists such that a ∈ Rk for all k ∈ K. From the instructions
of the algorithm, we have that

f
(
x̄k + µk

(
a− x̄k

))
≤ f(x̄k)− γ(µk)2 ∀ k ∈ K.

D
ow

nl
oa

de
d

04
/0

2/
21

 to
 1

47
.1

62
.2

2.
66

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1096 ANDREA CRISTOFARI AND FRANCESCO RINALDI

By the mean value theorem, we can write

f
(
x̄k + µk

(
a− x̄k

))
− f(x̄k) = µk∇f

(
x̄k + ηkµk

(
a− x̄k

))T (
a− x̄k

)
for some ηk ∈ (0, 1), and then

∇f
(
x̄k + ηkµk

(
a− x̄k

))T (
a− x̄k

)
≤ −γµk ∀ k ∈ K.

From Corollary 3.3 and the fact that ‖x̄k − x∗‖ ≤ ‖x̄k − xk+1‖ + ‖xk+1 − x∗‖, it
follows that {x̄k} → x∗. Taking also into account that ηk ∈ (0, 1) and {µk} → 0
(from Proposition 3.2), we have that

lim
k→∞
k∈K

(
x̄k + ηkµk

(
a− x̄k

))
= x∗.

Therefore, using the continuity of ∇f we obtain

0 ≥ lim
k→∞
k∈K

∇f
(
x̄k + ηkµk

(
a− x̄k

))T (
a− x̄k

)
= ∇f(x∗)T (a− x∗),

which contradicts (4.4). Thus, (4.5) holds.
Now, to prove the desired result we proceed by contradiction. Namely, we assume

that an infinite subset of iterationsK ⊆ {0, 1 . . .} exists such that a ∈ Ak for all k ∈ K.

In view of (4.5), an iteration k̂ ∈ K must exist such that

a ∈ Ak \ Dk ∀ k ≥ k̂, k ∈ K.(4.6)

Using the fact thatA is a finite set and the feasible set of every restricted problem (3.1)
is compact, without loss of generality we can assume that Ak is constant for all
k ∈ K and that {ȳk} converges to y∗ (passing to a further subsequence if necessary).
Namely,

Ak = Ā ∀ k ∈ K,(4.7a)

lim
k→∞
k∈K

ȳk = y∗.(4.7b)

Since Ak is constant for all k ∈ K, also the matrix Ak and the function ϕk are the
same for all k ∈ K, and let us denote them by Ā and ϕ̄, respectively. From the
previous relations, and taking into account Proposition 3.2, we also have

x∗ = lim
k→∞
k∈K

xk = lim
k→∞
k∈K

x̄k = lim
k→∞
k∈K

Āȳk = Āy∗.

Moreover, let us denote by ı̂ the column index of the matrix Ā that corresponds to
the atom a, that is, Āeı̂ = a.

From (4.6) and (4.3), necessarily ȳkı̂ > 0 for all k ≥ k̂, k ∈ K. Since the set
of directions used in DF-SIMPLEX is finite, for all k ∈ K we can assume that the
directions used in the last iteration of DF-SIMPLEX are the same, having the form
±(eh− e̂), h = 1, . . . , |Ā|, h 6= ̂, for some ̂ ∈ {1, . . . , |Ā|}, with ȳk̂ > 0 for all k ∈ K.
In particular, recalling the rule for computing the search directions in DF-SIMPLEX

and that the stopping condition (2.14) requires that no progress is made along any
direction, we have that

ȳk̂ ≥ τ/|Ā| ∀ k ∈ K.(4.8)

D
ow

nl
oa

de
d

04
/0

2/
21

 to
 1

47
.1

62
.2

2.
66

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A DF METHOD FOR STRUCTURED OPTIMIZATION 1097

Moreover, e̂ − eı̂ is a feasible direction at ȳk for all k ≥ k̂, since ȳkı̂ > 0. So, using
again the fact that the stopping condition (2.14) requires that no progress is made
along any direction, from the instructions of DF-SIMPLEX we have that

ϕ̄
(
ȳk + α(e̂ − eı̂)

)
> ϕ̄(ȳk)− γα2, k ≥ k̂, k ∈ K,

with 0 < α ≤ εk. By the mean value theorem, we can write

ϕ̄
(
ȳk + α(e̂ − eı̂)

)
− ϕ̄(ȳk) = α∇ϕ̄

(
ȳk + ηkα(e̂ − eı̂)

)T
(e̂ − eı̂)

for some ηk ∈ (0, 1). Then

∇ϕ̄
(
ȳk + ηkα(e̂ − eı̂)

)T
(e̂ − eı̂) ≥ −γα, k ≥ k̂, k ∈ K.

Since ηk ∈ (0, 1), α ≤ εk, and {εk} → 0, we have that

lim
k→∞
k∈K

(ȳk + ηkα(e̂ − eı̂)) = y∗.

Therefore, from the continuity of ∇ϕ̄ and using again the fact that {εk} → 0, we
obtain that

0 ≤ ∇ϕ̄(y∗)T (e̂ − eı̂) = [ĀT∇f(Āy∗)]T (e̂ − eı̂) = ∇f(x∗)T (Āe̂ − Āeı̂).

Let us denote by ã the atom that corresponds to the ̂th column of Ā, that is, Āe̂ = ã
(also recall that Āeı̂ = a). Then

0 ≤ ∇f(x∗)T (ã− a) = ∇f(x∗)T (x∗ − a) +∇f(x∗)T (ã− x∗).(4.9)

Now, consider the vector w∗ ∈ ∆m−1, obtained from y∗ by adding the zero com-
ponents corresponding to the atoms in A \ Ā, so that Aw∗ = Āy∗ = x∗. We can
assume, without loss of generality, that ã is also the ̂th column of the full matrix
A. Using (4.8), we can hence write w∗̂ > 0. So, from Proposition 4.1 and station-

arity of x∗, we have that ∇f(x∗)T (ã − x∗) = 0. Using this equality in (4.9), we get
∇f(x∗)T (a− x∗) ≤ 0, thus contradicting (4.4).

4.1. Enhancing the drop phase by gradient estimates. Removing from Ak

all the atoms with zero weight might be too “aggressive” a strategy (i.e., some of the
atoms removed at the first iterations might be useful in the subsequent iterations).
Then, we can define a more sophisticated rule to build Dk by using approximations
of ∇ϕk(ȳk). In particular, at every iteration k we can set

Dk =
{
a ∈ Ak such that a = Akeh, ȳ

k
h = 0 and (gk)T (eh − ȳk) ≥ 0

}
,(4.10)

where the vector gk is an approximation of ∇ϕk(ȳk) satisfying

‖∇ϕk(ȳk)− gk‖ ≤ rk,(4.11)

with {rk} being a sequence of positive scalars converging to zero (we will discuss later
how to compute gk efficiently such that (4.11) holds).

The rationale behind this choice lies in the fact that

∇ϕk(ȳk)T
(
eh − ȳk

)
=
[
(Ak)T∇f(x̄k)

]T
(eh − ȳk) = ∇f(x̄k)T

(
a− x̄k

)
,

and then a good approximation of ∇ϕk(ȳk) can help us to predict, in a neighborhood
of x∗, the atoms a ∈ A such that ∇f(x∗)T (a−x∗) > 0. We now show that this choice
of Dk ensures the same theoretical properties seen above for (4.3).

D
ow

nl
oa

de
d

04
/0

2/
21

 to
 1

47
.1

62
.2

2.
66

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1098 ANDREA CRISTOFARI AND FRANCESCO RINALDI

Theorem 4.3. Let {xk} be a sequence of points produced by Algorithm 3.1, where
Dk is computed as in (4.10). Assume that limk→∞ xk → x∗. Then, an iteration k̄
exists such that, for all k ≥ k̄,

∇f(x∗)T (a− x∗) > 0, a ∈ A ⇒ a /∈ Ak.

Proof. The first part of the proof is identical to the one given for Theorem 4.2.
Namely, we assume that a ∈ A is an atom such that (4.4) holds and we obtain (4.5).
To prove the desired result, we then proceed by contradiction, assuming that an
infinite subset of iterations K ⊆ {0, 1 . . .} exists such that a ∈ Ak for all k ∈ K. In

view of (4.5), an iteration k̂ ∈ K must exist such that (4.6) holds. Now, assuming
without loss of generality that {yk} satisfies (4.7), and using the same definitions of
subsequences, matrices, and indices given in the proof of Theorem 4.2, from (4.10)
we have that two possible cases (that will be shown to lead to a contradiction) can

occur for k ≥ k̂, k ∈ K: either (i) ȳkı̂ > 0 or (ii) ȳkı̂ = 0 and (gk)T (eı̂ − ȳk) < 0.
Since, by the same arguments used in the proof of Theorem 4.2, the first case cannot
occur infinite times, necessarily ȳkı̂ = 0 and (gk)T (eı̂− ȳk) < 0 for all sufficiently large
k ∈ K. Taking into account (4.11), for all k ∈ K we can write∣∣∇ϕ̄(ȳk)T

(
eı̂ − ȳk

)
− (gk)T

(
eı̂ − ȳk

)∣∣ =
∣∣∣(∇ϕ̄(ȳk)− gk

)T (
eı̂ − ȳk

)∣∣∣
≤
∥∥∇ϕ̄(ȳk)− gk

∥∥ ∥∥eı̂ − ȳk∥∥ ≤ √2rk.

Therefore, for all k ∈ K we have that

(gk)T
(
eı̂ − ȳk

)
≥
√

2rk +∇ϕ̄(ȳk)T
(
eı̂ − ȳk

)
=
√

2rk +
[
ĀT∇f(Āȳk)

]T (
eı̂ − ȳk

)
=
√

2rk +∇f(x̄k)
(
Āeı̂ − Āȳk

)
=
√

2rk +∇f(x̄k)
(
a− x̄k

)
.

From the continuity of ∇f and the fact that {rk} → 0, taking the limits we obtain

lim inf
k→∞
k∈K

(gk)T
(
eı̂ − ȳk

)
≥ ∇f(x∗)T (a− x̄∗) > 0,

leading to a contradiction with the fact that (gk)T (eı̂ − ȳk) < 0 for all k ∈ K.

Now, we describe how to compute gk in such a way that condition (4.11) is
satisfied. Since point ȳk is obtained in the optimize phase by running DF-SIMPLEX

with a tolerance εk, we can simply use the sample points produced in the last iteration
of DF-SIMPLEX plus one additional sample point not belonging to ∆|Ak|−1, that is,

ȳk − εk
√

2
|Ak|e, to perform a simplex gradient computation in R|Ak| (see, e.g., [29] for

definition of simplex gradient). The last sample point is needed to have a poised
sample set. In more detail, let ȳk, sk1 , . . . , s

k
r be all the available sample points, with

r ≥ |Ak|, and let us denote Y k = {ȳk, sk1 , . . . , skr}. Moreover, let

Sk =
[
sk1 − ȳk . . . skr − ȳk

]
, bk =

[
ϕk(sk1)− ϕk(ȳk) . . . ϕk(skr)− ϕk(ȳk)

]T
.

We compute gk as the least-squares solution of (Sk)T g = bk. Under the assumption
that ∇f is Lipschitz continuous with constant L, if the sample set Y k is poised (i.e., if
the columns of (Sk)T are linearly independent) from Theorem 3.1 in [18] it follows that
‖∇ϕk(ȳk)− gk‖ ≤ (|Ak|1/2 L2 ‖(Σ

k)−1‖)νk, where νk is the radius of the smallest ball
centered at ȳk enclosing the points sk1 , . . . , s

k
r , and Σk is obtained from the reduced

D
ow

nl
oa

de
d

04
/0

2/
21

 to
 1

47
.1

62
.2

2.
66

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A DF METHOD FOR STRUCTURED OPTIMIZATION 1099

singular value decomposition of ST /νk, that is, ST /νk = UkΣk(V k)T , for proper
matrices Uk and V k.

In our case, νk =
√

2εk for all sufficiently large k (it follows from the stopping
condition used in DF-SIMPLEX combined with the fact that {εk} → 0 and the fact
that all the directions have norm equal to

√
2). Clearly, νk → 0 as εk → 0. Moreover,

it is easy to see that Y k is poised (it follows from the fact that DF-SIMPLEX uses
directions of the form ±(ei − ejk) and we also considered an additional sample point
along the direction −e). Using the notion of Λ-poisedness as given in [14, 15], it is
also easy to see that ‖(Σk)−1‖ is upper bounded by a constant Λ for all sufficiently
large iterations.1

5. Numerical experiments. In this section, we analyze in depth the practical
performances of the ORD algorithm. We carried out all our tests in MATLAB R2020b
on an Intel Core i7-9700 with 16 GB RAM memory and used data and performance
profiles [40] when comparing the method with other algorithms. Specifically, let S be
a set of algorithms and P a set of problems. For each s ∈ S and p ∈ P , let tp,s be the
number of function evaluations required by algorithm s on problem p to satisfy the
condition

f(xk) ≤ fL + τ(f(x0)− fL),(5.1)

where 0 < τ < 1 and fL is the best objective function value achieved by any solver on
problem p. Then, data and performance profiles of solver s are respectively defined
as follows:

ds(κ) =
1

|P |
|{p ∈ P : tp,s ≤ κ(np + 1)}| ,

ρs(ι) =
1

|P |

∣∣∣∣{p ∈ P :
tp,s

min{tp,s′ : s′ ∈ S}
≤ ι
}∣∣∣∣ ,

where np is the dimension of problem p.

5.1. Preliminary results. We first chose the following 25 objective functions
from the literature (see, e.g., [1, 23]): Arwhead, Cosine, Cube, Diagonal 8, Extended
Beale, Extended Cliff, Extended Denschnb, Extended Denschnf, Extended Freuden-
stein & Roth, Extended Hiebert, Extended Himmelblau, Extended Maratos, Extended
Penalty, Extended PSC1, Extended Rosenbrock, Extended Trigonometric, Extended
White & Holst, Fletchcr, Genhumps, Mccormk, Power, Quartc, Sine, Staircase 1,
Staircase 2. Then, we built the test problems by randomly generating the atoms
with a uniform distribution in [0, 10]n. We would like to highlight that there was
no relevant redundancy in the generated atoms. In cases where the atoms in A are
highly redundant, it is possible to remove useless atoms by solving a sequence of linear
programs. This redundancy test might anyway have a significant computational cost
(especially when both the dimension of the problem and the number of the atoms are
large).

In the first experiment, we compared ORD with the following algorithms:
• DF-SIMPLEX, the solver proposed in section 2 for minimization over the unit

simplex;

1We can identify Ỹ k ⊆ Y k, with |Ỹ k| = |Ak|, such that Ỹ k is Λ̃-poised in the ball centered
at ȳk with radius νk, and this implies that Y k is Λ-poised in the same ball with Λ = |Ak|1/2Λ̃
(see [16, p. 63]), which, in turn, implies that Y k is poised and, from Theorem 2.9 in [15], that∥∥(Σk)−1

∥∥ ≤ |Ak|1/2Λ̃ ≤ mΛ̃.

D
ow

nl
oa

de
d

04
/0

2/
21

 to
 1

47
.1

62
.2

2.
66

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1100 ANDREA CRISTOFARI AND FRANCESCO RINALDI

• LINCOA [43], a trust-region-based solver for linearly constrained problems;
• NOMAD (v3.9.1) [2, 4], a solver for nonlinearly constrained problems imple-

menting the mesh adaptive direct search algorithm (MADS);
• PSWARM [47], a global optimization solver for linearly constrained problems

combining pattern search and particle swarm;
• SDPEN [36], a solver for nonlinearly constrained problems based on a sequential

penalty approach.
When running our tests on DF-SIMPLEX and LINCOA, we used formulation (P1) to
represent the problems (note that m̄ = m for DF-SIMPLEX in this case). Since PSWARM

and SDPEN handle only inequality constraints, they were run by suitably rewriting (P1)
as an inequality constrained problem. Namely, we used the substitution y1 = 1 −∑n
i=2 yi to eliminate the variable y1, so that the new problem has only the constraints∑n
i=2 yi ≤ 1 and yi ≥ 0, i = 2, . . . , n.

We considered two different versions for NOMAD. The first one, referred to as
NOMAD 1, uses the same formulation as the one used for PSWARM and SDPEN. The second
one, referred to as NOMAD 2, considers the formulation (P0) and works in the original
space Rn using a nonquantifiable black-box constraint that indicates only if x belongs
to M or not (this is carried out by solving a linear program).

We are interested in analyzing the performances of the algorithms for different
ratios m/n, with m the number of atoms and n the number of variables. Notice that
this might affect the sparsity of the final solution (i.e., the number of atoms needed
to assemble x∗). In particular, from Carathéodory’s theorem [9] we expect that the
larger the ratio m/n, the sparser the solution. ORD should hence be more efficient
than the competitors for larger values of m/n.

So, we fix n = 10 and set m ∈ {n, 5n, 10n, 20n}. In ORD we stopped the algorithm
at the first iteration k that fails the test at line 6 of Algorithm 3.1 and such that

µ̂k ≤ 10−4

maxai∈A\Ak‖ai − x̄k‖
.

In DF-SIMPLEX we used the stopping condition described in subsection 2.2, with ε =
10−4. In all the other algorithms, the parameters were set to their default values.
Moreover, we used a budget of 100(n + 1) function evaluations for every algorithm
and we set the starting point as a randomly chosen vertex of ∆n−1.

We report, in Figure 1, the data and performance profiles related to the experi-
ment. Taking a look at the plots, we see that ORD clearly outperforms the competitors
as the ratio m/n increases (and we get a sparser solution). More specifically, the av-
erage sparsity levels (i.e., the average percentage of atoms with zero weight) of the
solutions found by ORD are 62.00% form = n, 87.92% form = 5n, 92.68% form = 10n,
and 96.08% for m = 20n.

In the second experiment, we considered the largest ratio m/n, obtained with
m = 20n, and set the value of n to 20 and 50. For these new experiments, we decided
to only run NOMAD 2. There are two main reasons why we did that. First, NOMAD 2

works in the original n-dimensional space, while NOMAD 1 works in an m-dimensional
space (20 times larger than n in these experiments). Second, the maximum number
of variables that NOMAD can handle is 1000, hence there is no way to run NOMAD 1 on
the largest problems anyway.

In Figure 2 we report the data and performance profiles related to the new
experiment, including only the four solvers that got the best performances, that
is, ORD, DF-SIMPLEX, LINCOA, and SDPEN. We see that ORD clearly outperforms the
other solvers. We would also like to note that the average running time for ORD and

D
ow

nl
oa

de
d

04
/0

2/
21

 to
 1

47
.1

62
.2

2.
66

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A DF METHOD FOR STRUCTURED OPTIMIZATION 1101

0 20 40 60 80 100

0

0.5

1
Data Prof. = 1e-3

0 20 40 60 80 100

0

0.5

1
Data Prof. = 1e-5

10 20 30 40

0

0.5

1
Perf. Prof. = 1e-3

10 20 30 40

0

0.5

1
Perf. Prof. = 1e-5

(a) n = 10, m = 10

0 20 40 60 80 100

0

0.5

1
Data Prof. = 1e-3

0 20 40 60 80 100

0

0.5

1
Data Prof. = 1e-5

10 20 30 40 50

0

0.5

1
Perf. Prof. = 1e-3

10 20 30 40 50

0

0.5

1
Perf. Prof. = 1e-5

(b) n = 10, m = 50

0 20 40 60 80 100

0

0.5

1
Data Prof. = 1e-3

0 20 40 60 80 100

0

0.5

1
Data Prof. = 1e-5

20 40 60 80 100

0

0.5

1
Perf. Prof. = 1e-3

20 40 60 80 100

0

0.5

1
Perf. Prof. = 1e-5

(c) n = 10, m = 100

0 20 40 60 80 100

0

0.5

1
Data Prof. = 1e-3

0 20 40 60 80 100

0

0.5

1
Data Prof. = 1e-5

50 100 150 200 250 300

0

0.5

1
Perf. Prof. = 1e-3

50 100 150 200 250 300

0

0.5

1
Perf. Prof. = 1e-5

(d) n = 10, m = 200

Fig. 1. Comparisons among ORD, DF-SIMPLEX, LINCOA, NOMAD 1, PSWARM, SDPEN, and NOMAD 2

for different ratios m/n.

0 20 40 60 80 100

0

0.5

1
Data Prof. = 1e-3

0 20 40 60 80 100

0

0.5

1
Data Prof. = 1e-5

100 200 300 400

0

0.5

1
Perf. Prof. = 1e-3

100 200 300 400

0

0.5

1
Perf. Prof. = 1e-5

(a) n = 20, m = 400

0 20 40 60 80 100

0

0.5

1
Data Prof. = 1e-3

0 20 40 60 80 100

0

0.5

1
Data Prof. = 1e-5

100 200 300 400 500

0

0.5

1
Perf. Prof. = 1e-3

100 200 300 400 500

0

0.5

1
Perf. Prof. = 1e-5

(b) n = 50, m = 1, 000

Fig. 2. Comparisons among ORD, DF-SIMPLEX, LINCOA, and SDPEN for different values of n and
m = 20n.

D
ow

nl
oa

de
d

04
/0

2/
21

 to
 1

47
.1

62
.2

2.
66

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1102 ANDREA CRISTOFARI AND FRANCESCO RINALDI

0 20 40 60 80 100

0

0.5

1
Data Prof. = 1e-3

0 20 40 60 80 100

0

0.5

1
Data Prof. = 1e-5

2 4 6 8 10

0

0.5

1
Perf. Prof. = 1e-3

2 4 6 8 10

0

0.5

1
Perf. Prof. = 1e-5

(a) n = 100, m = 2, 000

0 20 40 60 80 100

0

0.5

1
Data Prof. = 1e-3

0 20 40 60 80 100

0

0.5

1
Data Prof. = 1e-5

1 2 3 4 5 6

0

0.5

1
Perf. Prof. = 1e-3

1 2 3 4 5 6

0

0.5

1
Perf. Prof. = 1e-5

(b) n = 200, m = 4, 000

0 20 40 60 80 100

0

0.5

1
Data Prof. = 1e-3

0 20 40 60 80 100

0

0.5

1
Data Prof. = 1e-5

2 4 6 8 10

0

0.5

1
Perf. Prof. = 1e-3

2 4 6 8 10

0

0.5

1
Perf. Prof. = 1e-5

(c) n = 500, m = 10, 000

Fig. 3. Comparisons between ORD and DF-SIMPLEX on large-scale instances.

DF-SIMPLEX, both written in MATLAB, is smaller than 0.1 seconds for n = 20 and
smaller than 1 second for n = 50. It is the same order of magnitude as SDPEN but is
much smaller than LINCOA, which on average took about 50 seconds for n = 20 and
about 650 seconds for n = 50.

In the final experiment, the aim was to analyze the behavior of the ORD algorithm
on relatively large-scale instances. We thus considered once again the largest ratio
m/n = 20 and set the value of n to 100, 200, and 500. Taking into account the
previous results, we only compared ORD with DF-SIMPLEX in this case.

The data and performance profiles related to the comparisons, reported in
Figure 3, confirm once again the effectiveness of ORD. In this case, we observed an
increased difference between the two considered algorithms in the CPU time required
to solve the problem: ORD on average took about 3 seconds for n = 100, about 30
seconds for n = 200, and less than 490 seconds for n = 500, while DF-SIMPLEX took
less than 1 second for each problem with n ∈ {100, 200} and on average less than 3
seconds for the problems with n = 500. This difference is mainly due to the computa-
tion of the simplex gradient that ORD performs in the drop phase. Anyway, ORD never
exceeded 490 seconds for solving a problem.

The numerical experiments demonstrate that the methods exploiting the structure
of the feasible region (i.e., ORD, DF-SIMPLEX, and LINCOA) outperform the others. This
is not surprising as the latter methods are designed to tackle more general optimization
problems.

5.2. Black-box adversarial machine learning. Adversarial examples are ma-
liciously perturbed inputs designed to mislead a machine learning model at test time.
In many fields, such as sign identification for autonomous driving, the vulnerability
of a model to such examples might have relevant security implications. An adver-
sarial attack hence consists in taking a correctly classified data point x0 and slightly

D
ow

nl
oa

de
d

04
/0

2/
21

 to
 1

47
.1

62
.2

2.
66

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A DF METHOD FOR STRUCTURED OPTIMIZATION 1103

modifying it to create a new data point that leads a given model to misclassification
(see, e.g., [10, 13, 22] for further details).

We now consider a classifier that takes a vector x ∈ Rn as an input and outputs
F (x) ∈ Rp, where [F (x)]i ∈ [0, 1] represents the confidence score for class i = 1, . . . , p,
i.e., the predicted probability that x belongs to that class, and

∑p
i=1[F (x)]i = 1.

In many real-world applications, the internal configuration of such a classifier is
unknown, and one can only access its input and output, i.e., one can only compute
F (x). In this case, we can perform a so-called black-box adversarial attack on the
model [12, 13].

We formulate our problem as a maximum allowable attack [12, 22], namely,

min f(x0 + x)

s.t. ‖x‖p ≤ ε,
(5.2)

where f is a suitably chosen attack loss function, x0 is a correctly classified data point,
x is the additive noise/perturbation, ε > 0 denotes the magnitude of the attack, and
p ≥ 1. We set p = 1 in the formulation (5.2), thus getting a maximum allowable
`1-norm attack. It is easy to see that M = {x ∈ Rn : ‖x‖1 ≤ ε} = conv(A), with
A = {±εei, i = 1, . . . , n}, i.e., M is a polytope with 2n vertices (and then, m = 2n).
This makes the problem fitting our model (P0), and also gets sparsity in the final
solution. We focus on untargeted attacks, i.e., we aim to move a data point away from
its current class, and use the loss function proposed in [13]:

f(z) = max

{
log[F (z)]t0 −max

i 6=t0
log[F (z)]i,−χ

}
,(5.3)

where t0 is the original class, χ is a nonnegative parameter, and log 0 is defined
as −∞. The rationale behind the use of this loss function is that, when log[F (z)]t0 −
maxi6=t0 log[F (z)]i ≤ 0, the sample z is not classified as the original label t0, thus
obtaining the desired misclassification. Moreover, the parameter χ can ensure a gap
between log[F (z)]t0 and maxi6=t0 log[F (z)]i.

In our experiments related to adversarial attacks, we set χ = 0 for the loss func-
tion (5.3), as in [10, 13], and chose the parameter ε in problem (5.2) by means of
a parameter selection, using up to 20 different values. We obtained ε values in the
range [0.0012n, 0.5059n]. We thus solved (5.2) using ORD (our best solver in the pre-
liminary experiments), LINCOA, and SDPEN (the best competitors in the preliminary
experiments). Note that an attack is successful only when the objective value is equal
to χ, i.e., equal to 0 in our case. Therefore, in all the algorithms we inhibited any
other stopping criterion (that we are allowed to control) and set the maximum num-
ber of objective function evaluations equal to 100(n+ 1). Moreover, we set the target
objective value equal to 0 for both ORD and LINCOA (this option is not available for
SDPEN). It is important to notice that for all the successful attacks we found solutions
with a number of nonzero entries smaller than 3%.

5.2.1. Adversarial attacks on binary logistic regression models. First, we
performed untargeted black-box attacks on binary logistic regression models. We used
all the datasets from the LIBSVM web page (https://www.csie.ntu.edu.tw/∼cjlin/
libsvm/) with a number of features between 100 and 2,000 and a number of training
samples less than 50,000. Here is the complete list: a1a, a2a, a3a, a4a, a5a, a6a, a7a,
a8a, a9a, colon-cancer, madelon, mushrooms, w1a, w2a, w3a, w4a, w5a, w6a, w7a,
and w8a.

D
ow

nl
oa

de
d

04
/0

2/
21

 to
 1

47
.1

62
.2

2.
66

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

https://www.csie.ntu.edu.tw/~cjlin/libsvm/
https://www.csie.ntu.edu.tw/~cjlin/libsvm/

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1104 ANDREA CRISTOFARI AND FRANCESCO RINALDI

We used the training set to build an `2-regularized logistic regression model by
means of the LIBLINEAR software [20] (a built-in cross validation was used to choose
the regularization parameter) for all 20 datasets. Then, we randomly selected, for
each class and each dataset, a correctly classified test sample x0 and used it in
problem (5.2), thus getting 40 adversarial attacks. A built-in LIBLINEAR func-
tion was used to compute the probability estimates [F (x)]1 and [F (x)]2 in the loss
function (5.3).

In Table 1(a), we report, for each solver, the percentage of successful attacks and
the average CPU time (in seconds). We further report, in Figure 4(a), the percentage
of successful attacks versus the required number of simplex gradients. We see that
ORD solves all the problems within a few function evaluations, while LINCOA and SDPEN

solve only 77.50% and 30.00% of the problems, respectively. Moreover the CPU time
for ORD is always less than 1 second and, on average, is smaller than LINCOA and SDPEN

of 4 and 2 orders of magnitude, respectively.

5.2.2. Adversarial attacks on deep neural networks. In the second exper-
iment, we considered images of handwritten digits from the MATLAB digits dataset.
This dataset has 10,000 28-by-28 grayscale images of all digits, divided into 10 classes
of 1,000 samples each. The dataset was randomly split using a ratio 90:10 into train-
ing and testing sets. The training set was then used to build a deep neural network
with the same architecture as the one described in the examples related to deep learn-
ing networks for classification available in MATLAB (see https://it.mathworks.com/
help/deeplearning/ug/create-simple-deep-learning-network-for-classification.html for
further details).

We performed untargeted attacks on this deep neural network using ORD, LINCOA,
and SDPEN (notice that n = 784 and m = 1568 in this case). For each class, we
randomly selected a correctly classified sample x0 from the validation set and used
it in the definition of problem (5.2). Note that each pixel must be a number in the
interval [0, 255]. We hence scaled each variable in the range [0, 1]. In this case, our
formulation (5.2) has a further set of constraints, that is, x0 + x ∈ [0, 1]n. In order to
get rid of those box constraints, we followed the approach described in [10, 13] and
used a transformation of the form xi = (1 + tanh ζi)/2− (x0)i with ζ ∈ Rn.

In Table 1(b), we report the percentage of successful attacks and the average CPU
time for each solver. We further report, in Figure 4(b), the percentage of successful
attacks versus the required number of simplex gradients. We see that ORD gets a 100%
success rate with an average CPU time of around 1.5 seconds and a small amount of
simplex gradients, while LINCOA and SDPEN have a success rate lower than 50% and a
much larger CPU time.

In Figure 5(a), we can see the images obtained with all the attacks applied by ORD.
We notice that the new images are overall very similar to the original ones, differing,
on average, in less than 0.7% of the pixels.

Table 1
Adversarial attacks: performance comparison of the DFO methods.

(a) Binary logistic regression models

Alg. Success rate Avg time (s)

ORD 100.00% 0.04
LINCOA 77.50% 421.78
SDPEN 30.00% 6.80

(b) MATLAB digits dataset

Alg. Success rate Avg time (s)

ORD 100.00% 1.48
LINCOA 40.00% 1125.93
SDPEN 10.00% 129.69

D
ow

nl
oa

de
d

04
/0

2/
21

 to
 1

47
.1

62
.2

2.
66

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

https://it.mathworks.com/help/deeplearning/ug/create-simple-deep-learning-network-for-classification.html
https://it.mathworks.com/help/deeplearning/ug/create-simple-deep-learning-network-for-classification.html

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A DF METHOD FOR STRUCTURED OPTIMIZATION 1105

0 5 10 15 20 25 30 35

simplex gradients

0

20

40

60

80

100

%
 s

uc
ce

ss
fu

l a
tta

ck
s

(a) Binary logistic regression
models

0 2 4 6 8 10 12

simplex gradients

0

20

40

60

80

100

%
 s

uc
ce

ss
fu

l a
tta

ck
s

(b) MATLAB Digits Dataset

0 1 2 3 4 5

simplex gradients

0

20

40

60

80

100

%
 s

uc
ce

ss
fu

l a
tta

ck
s

(c) Cifar-10 Dataset

Fig. 4. Adversarial attacks on binary logistic regression models (a), on the MATLAB digits
dataset (b), and on the Cifar-10 dataset (c): percentage of successful attacks versus number of
simplex gradients.

0 noise

+

6

=

1 noise

+

6

=

2 noise

+

0

=

3 noise

+

2

=

4 noise

+

3

=

5 noise

+

6

=

6 noise

+

8

=

7 noise

+

8

=

8 noise

+

2

=

9 noise

+

3

=

(a) MATLAB Digits Dataset

airplane noise

+

bird

=

automobile noise

+

truck

=

bird noise

+

frog

=

cat noise

+

dog

=

deer noise

+

cat

=

dog noise

+

deer

=

frog noise

+

airplane

=

horse noise

+

dog

=

ship noise

+

airplane

=

truck noise

+

automobile

=

(b) Cifar-10 Dataset

Fig. 5. Adversarial attacks applied by ORD on the MATLAB digits dataset (a) and on the Cifar-
10 dataset (b). In each triple, we have on the left the original image with the correct label, on the
right the new image with the misclassified label, and in the middle the additive noise.

Finally, we considered the Cifar-10 dataset [32] and the trained network de-
scribed in the MATLAB examples related to the training of residual networks for
image classification (for details see https://it.mathworks.com/help/deeplearning/ug/
train-residual-network-for-image-classification.html). The dataset contains 50,000
samples in the training set and 10,000 samples in the validation set, where each
image is 32-by-32 with three color channels (thus getting n = 3072 and m = 6144).

We performed untargeted adversarial attacks on this deep neural network only
using ORD (due to the large dimension of the problems, LINCOA and SDPEN do not give
good results in terms of success rate and/or CPU time). We used the same procedure
as the one used for the attacks on the MATLAB digits dataset.

We report, in Figure 4(c), the percentage of successful attacks versus the required
number of simplex gradients. We can see that ORD achieves a 100% success rate (with
an average CPU time of slightly more than 30 seconds) using a few simplex gradients.
In Figure 5(b), we can see the images obtained with all the attacks applied by ORD.
They are quite similar to the original ones, differing in about 0.2% of the pixels on
average.

D
ow

nl
oa

de
d

04
/0

2/
21

 to
 1

47
.1

62
.2

2.
66

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

https://it.mathworks.com/help/deeplearning/ug/train-residual-network-for-image-classification.html
https://it.mathworks.com/help/deeplearning/ug/train-residual-network-for-image-classification.html

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1106 ANDREA CRISTOFARI AND FRANCESCO RINALDI

Acknowledgments. The authors would like to thank the two anonymous re-
viewers for their comments and suggestions that helped to improve the paper. The
authors also thank Tom M. Ragonneau and Zaikun Zhang for kindly sharing their
MATLAB interface for the LINCOA software.

REFERENCES

[1] N. Andrei, An unconstrained optimization test functions collection, Adv. Model. Optim., 10
(2008), pp. 147–161.

[2] C. Audet, S. L. Digabel, C. Tribes, and V. R. Montplaisir, The NOMAD Project, https:
//www.gerad.ca/nomad.

[3] C. Audet and W. Hare, Derivative-Free and Blackbox Optimization, Springer, New York,
2017.

[4] C. Audet, S. Le Digabel, and C. Tribes, NOMAD User Guide, Tech. Report G-2009-37,
Les cahiers du GERAD, 2009, https://www.gerad.ca/nomad/Downloads/user guide.pdf.

[5] D. Avis, D. Bremner, and R. Seidel, How good are convex hull algorithms?, Comput. Geom.,
7 (1997), pp. 265–301.

[6] F. Bach, R. Jenatton, J. Mairal, G. Obozinski, et al., Convex optimization with sparsity-
inducing norms, Optim. Mach. Learn., 5 (2011), pp. 19–53.

[7] D. P. Bertsekas, Convex Optimization Algorithms, Athena Scientific, Belmont, MA, 2015.
[8] W. Brendel, J. Rauber, and M. Bethge, Decision-based adversarial attacks: Reliable attacks

against black-box machine learning models, in Proceedings of the International Conference
on Learning Representations, 2018.

[9] C. Carathéodory, Über den variabilitätsbereich der koeffizienten von potenzreihen, die
gegebene werte nicht annehmen, Math. Ann., 64 (1907), pp. 95–115.

[10] N. Carlini and D. Wagner, Towards evaluating the robustness of neural networks, in Pro-
ceedings of the IEEE Symposium on Security and Privacy, IEEE, 2017, pp. 39–57.

[11] V. Chandrasekaran, B. Recht, P. A. Parrilo, and A. S. Willsky, The convex geometry
of linear inverse problems, Found. Comput. Math., 12 (2012), pp. 805–849.

[12] J. Chen, D. Zhou, J. Yi, and Q. Gu, A Frank-Wolfe Framework for Efficient and Effective
Adversarial Attacks, arXiv:1811.10828, 2018.

[13] P.-Y. Chen, H. Zhang, Y. Sharma, J. Yi, and C.-J. Hsieh, ZOO: Zeroth order optimiza-
tion based black-box attacks to deep neural networks without training substitute models,
in Proceedings of the 10th ACM Workshop on Artificial Intelligence and Security, 2017,
pp. 15–26.

[14] A. R. Conn, K. Scheinberg, and L. N. Vicente, Geometry of interpolation sets in derivative
free optimization, Math. Program., 111 (2008), pp. 141–172.

[15] A. R. Conn, K. Scheinberg, and L. N. Vicente, Geometry of sample sets in derivative-free
optimization: Polynomial regression and underdetermined interpolation, IMA J. Numer.
Anal., 28 (2008), pp. 721–748.

[16] A. R. Conn, K. Scheinberg, and L. N. Vicente, Introduction to Derivative-Free Optimiza-
tion, MOS-SIAM Ser. Optim. 8, SIAM, Philadelphia, 2009.

[17] A. Cristofari, An almost cyclic 2-coordinate descent method for singly linearly constrained
problems, Comput. Optim. Appl., 73 (2019), pp. 411–452.

[18] A. L. Custódio and L. N. Vicente, Using sampling and simplex derivatives in pattern search
methods, SIAM J. Optim., 18 (2007), pp. 537–555.

[19] Y. Diouane, S. Gratton, and L. N. Vicente, Globally convergent evolution strategies for
constrained optimization, Comput. Optim. Appl., 62 (2015), pp. 323–346.

[20] R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J. Lin, LIBLINEAR: A library
for large linear classification, J. Mach. Learn. Res., 9 (2008), pp. 1871–1874.

[21] Z. Fan, H. Jeong, Y. Sun, and M. P. Friedlander, Atomic decomposition via polar
alignment: The geometry of structured optimization, Found. Trends Optim., 3 (2020),
pp. 280–366.

[22] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,
A. Courville, and Y. Bengio, Generative adversarial nets, in Advances in Neural Infor-
mation Processing Systems, 2014, pp. 2672–2680.

[23] N. I. Gould, D. Orban, and P. L. Toint, CUTEst: A constrained and unconstrained testing
environment with safe threads for mathematical optimization, Comput. Optim. Appl., 60
(2015), pp. 545–557.

[24] S. Gratton, C. W. Royer, L. N. Vicente, and Z. Zhang, Direct search based on probabilistic
feasible descent for bound and linearly constrained problems, Comput. Optim. Appl., 72
(2019), pp. 525–559.

D
ow

nl
oa

de
d

04
/0

2/
21

 to
 1

47
.1

62
.2

2.
66

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

https://www.gerad.ca/nomad
https://www.gerad.ca/nomad
https://www.gerad.ca/nomad/Downloads/user_guide.pdf
https://arxiv.org/abs/1811.10828

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A DF METHOD FOR STRUCTURED OPTIMIZATION 1107

[25] E. A. Gumma, M. Hashim, and M. M. Ali, A derivative-free algorithm for linearly constrained
optimization problems, Comput. Optim. Appl., 57 (2014), pp. 599–621.

[26] D. W. Hearn, S. Lawphongpanich, and J. A. Ventura, Restricted simplicial decomposition:
Computation and extensions, in Computation Mathematical Programming, Springer, New
York, 1987, pp. 99–118.

[27] A. Ilyas, L. Engstrom, A. Athalye, and J. Lin, Black-box adversarial attacks with lim-
ited queries and information, in Proceedings of the International Conference on Machine
Learning, 2018, pp. 2137–2146.

[28] L. P. Kaelbling, M. L. Littman, and A. W. Moore, Reinforcement learning: A survey, J.
Artificial Intelligence Res., 4 (1996), pp. 237–285.

[29] C. T. Kelley, Iterative Methods for Optimization, Frontiers in Appl. Math. 18, SIAM,
Philadelphia, 1999.

[30] T. G. Kolda, R. M. Lewis, and V. Torczon, Optimization by direct search: New perspectives
on some classical and modern methods, SIAM Rev., 45 (2003), pp. 385–482.

[31] T. G. Kolda, R. M. Lewis, and V. Torczon, Stationarity results for generating set search
for linearly constrained optimization, SIAM J. Optim., 17 (2007), pp. 943–968.

[32] A. Krizhevsky and G. Hinton, Learning Multiple Layers of Features from Tiny Images,
Technical report, 2009.

[33] J. Larson, M. Menickelly, and S. M. Wild, Derivative-free optimization methods, Acta
Numer., 28 (2019), pp. 287–404.

[34] R. M. Lewis and V. Torczon, Pattern search methods for linearly constrained minimization,
SIAM J. Optim., 10 (2000), pp. 917–941.

[35] R. M. Lewis and V. Torczon, Active set identification for linearly constrained minimization
without explicit derivatives, SIAM J. Optim., 20 (2010), pp. 1378–1405.

[36] G. Liuzzi, S. Lucidi, and M. Sciandrone, Sequential penalty derivative-free methods for
nonlinear constrained optimization, SIAM J. Optim., 20 (2010), pp. 2614–2635.

[37] S. Lucidi and M. Sciandrone, A derivative-free algorithm for bound constrained optimization,
Comput. Optim. Appl., 21 (2002), pp. 119–142.

[38] S. Lucidi and M. Sciandrone, On the global convergence of derivative-free methods for un-
constrained optimization, SIAM J. Optim., 13 (2002), pp. 97–116.

[39] S. Lucidi, M. Sciandrone, and P. Tseng, Objective-derivative-free methods for constrained
optimization, Math. Program., 92 (2002), pp. 37–59.

[40] J. J. Moré and S. M. Wild, Benchmarking derivative-free optimization algorithms, SIAM J.
Optim., 20 (2009), pp. 172–191.

[41] A. Y. Ng and M. Jordan, PEGASUS: A policy search method for large MDPs and POMDPs,
in Proceedings of the 16th Conference on Uncertainty in Artificial Intelligence, 2000,
pp. 406–415.

[42] M. Patriksson, Nonlinear Programming and Variational Inequality Problems: A Unified Ap-
proach, Appl. Optim. 23, Springer, New York, 2013.

[43] M. J. Powell, LINCOA, https://en.wikipedia.org/wiki/LINCOA.
[44] M. J. Powell, The NEWUOA software for unconstrained optimization without derivatives, in

Large-Scale Nonlinear Optimization, Springer, New York, 2006, pp. 255–297.
[45] M. J. Powell, Developments of NEWUOA for minimization without derivatives, IMA J.

Numer. Anal., 28 (2008), pp. 649–664.
[46] M. J. Powell, On fast trust region methods for quadratic models with linear constraints, Math.

Program. Comput., 7 (2015), pp. 237–267.
[47] A. I. F. Vaz and L. N. Vicente, A particle swarm pattern search method for bound constrained

global optimization, J. Global Optim., 39 (2007), pp. 197–219.
[48] A. I. F. Vaz and L. N. Vicente, PSwarm: A hybrid solver for linearly constrained global

derivative-free optimization, Optim. Methods Softw., 24 (2009), pp. 669–685.
[49] E. H. Zarantonello, Projections on convex sets in Hilbert space and spectral theory, in Con-

tributions to Nonlinear Functional Analysis, Elsevier, Amsterdam, 1971, pp. 237–424.

D
ow

nl
oa

de
d

04
/0

2/
21

 to
 1

47
.1

62
.2

2.
66

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

https://en.wikipedia.org/wiki/LINCOA

	Introduction
	A basic algorithm for minimization over the unit simplex
	Theoretical analysis
	Choice of the stopping condition
	Additional stationarity results

	Optimize, refine, and drop algorithm
	Identification property of ORD
	Enhancing the drop phase by gradient estimates

	Numerical experiments
	Preliminary results
	Black-box adversarial machine learning
	Adversarial attacks on binary logistic regression models
	Adversarial attacks on deep neural networks

	References

