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ON THE VANISHING OF DISCRETE SINGULAR CUBICAL

HOMOLOGY FOR GRAPHS

HÉLÈNE BARCELO, CURTIS GREENE, ABDUL SALAM JARRAH,
AND VOLKMAR WELKER

Abstract. We prove that if G is a graph without 3-cycles and 4-cycles, then
the discrete cubical homology of G is trivial in dimension d, for all d ≥ 2. We
also construct a sequence {Gd} of graphs such that this homology is non-trivial
in dimension d for d ≥ 1. Finally, we show that the discrete cubical homology
induced by certain coverings of G equals the ordinary singular homology of a
2-dimensional cell complex built from G, although in general it differs from
the discrete cubical homology of the graph as a whole.

1. Introduction

We will be concerned with properties of a discrete (singular) cubical homology
theory HCube(G) for undirected graphs G, originally defined by Barcelo, Capraro,
andWhite in [5] for general metric spaces. In this paper we develop a discrete subdi-
vision tool, facilitating computation and leading to the proofs of several conjectures
made in [6].

The homology theory defined in [5] had its roots in earlier work of Barcelo,
Kramer, Laubenbacher, and Weaver [7], which introduced a bi-graded family of dis-
crete homotopy groups, Aq

n(∆, x0) for simplicial complexes. Graphical (or equiva-
lently, 1-dimensional) versions of this homotopy theory were later studied by several
authors including Babson, Barcelo, de Longueville, and Laubenbacher [4], and also
Grigor’yan, Lin, Muranov, and Yau [13]. In 2006, the authors of [4] proposed the
problem of finding a corresponding discrete homology theory, and [5] provided a
solution in 2014. Another homology theory for digraphs was defined by Grigor’yan
et. al. in [13]. However, [6] showed that, although this theory agrees with that of
[5] in dimension 1, the two theories can differ in higher dimensions.

Aside from theoretical interest, motivation for studying discrete homotopy and
discrete homology of graphs also comes from applications in pure and applied math-
ematics. In 1973, while studying base exchange graphs of matroids, Maurer [20]
proposed a new notion of fundamental groups for graphs, π∗

1(G). As it turns out,
for any graph G, Maurer’s π∗

1(G) is isomorphic to A1
1(G). A physicist, Atkin [2, 3],

developed similar ideas (also in dimension 1) for applications to network analy-
sis. Both Atkin and Maurer used their theory to measure a form of connectivity
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of graphs pertinent to their applications but different from standard connectivity
measures in graph theory or algebraic topology. Recently, the theory has found
application, among others, in the study of complements of subspace arrangements
(Barcelo, Severs and White [8]), in coarse geometry (Delabie and Khukhro [11, 24],
and in finite metric spaces (Rieser [22]). More material on real world applications
can be found in [16].

In much of the work just described, the 3- and 4-cycles in a graph G play a
special role. For example, in [7] it is shown that for any graph, the discrete funda-
mental group A1

1(G) is isomorphic to the ordinary fundamental group π1(K(G)) of
the cell complex obtained by attaching 2-cells to the 3- and 4-cycles of G, viewed as
a 1-complex. This construction also appears in work of Lovász [18], who used topo-
logical arguments to obtain results about connectivity of graphs. For a discussion
placing this work in the more general context of topological methods in combina-
torics, see [9, Section 6]. Our first main result (Theorem 1.1) will also feature 3-
and 4-cycles in an essential way.

In [6], the authors developed tools for computing the discrete singular cubical
homology groups HCube

d (G) (see Section 2 of this paper for a precise definition) for
many families of graphs G. Since relevant chain groups grow super-exponentially in
rank, direct computation presents formidable difficulties, even for small graphs. For
example, when G = Z5, the pentagon (5-cycle) graph, the methods of [6] were not
sufficient to determine HCube

d (G) beyond d = 3. In the present paper we prove that
Z5 has vanishing discrete singular cubical homology in dimension d, for all d ≥ 2.
This result was conjectured in [6]. In fact we will prove a stronger conjecture, also
made in [6].

Theorem 1.1. Let G be any graph containing no 3-cycles or 4-cycles. Then
HCube

d (G) = (0) for all d ≥ 2.

Of course, in classical theory, where graphs are 1-dimensional CW-complexes,
all graphs have trivial homology in dimension d ≥ 2. However, the discrete cubical
homology of [5] is notably different: for example, 4-cycles are homologically trivial
in all dimensions. Examples of graphs with non-vanishing homology in dimension
d ≥ 2 exist (e.g., [5], [6]), but can be challenging to construct and verify. In that
spirit, we note that the following conjecture appears in [6], and remains open.

Conjecture 1.2. For any graph G, there exists an integer N such that HCube
d (G) =

(0) for all d ≥ N .

For arbitrarily large d, it is not obvious that there should exist graphs with
non-vanishing d-homology. Proposition 5.3 of [5] constructs an infinite sequence of
graphs {Gd}d≥1, such that

HCube
d+1 (Gd+1) = HCube

d (Gd) for all d ≥ 1.(1)

For appropriately chosen G1 this yields a sequence of graphs with non-vanishing
d-homology, for arbitrarily large d. However, the argument in [5] is not sufficient to
prove (1) in full generality, since it relies on a discrete version of the Mayer-Vietoris
sequence whose hypotheses are not satisfied for d > 1. In the present paper we will
show that a small modification of the definition of Gd in [5] makes the argument
correct, thus yielding a (different) sequence of graphs with non-vanishing homology
in arbitrarily high dimension.
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Our principal tool in proving Theorem 1.1 is a subdivision map that allows
computation of homology to be restricted to “small” singular cubes. This approach
is standard in classical treatments of singular homology, see e.g., [19], but for the
discrete cubical case the details are significantly different and new techniques are
required.

The paper is organized as follows. Section 2 reviews the basic definitions of
discrete cubical homology for graphs, following [5]. Section 3 defines the subdivision
map and proves the above mentioned conjecture whenG = Z5. In fact the argument
proves the same result for any cycle Zn with n ≥ 5. Section 4 introduces the
machinery necessary to extend the proof for G = Z5 to arbitrary graphs without 3-
cycles and 4-cycles. The key step is to show that every singular cube with codomain
G can be lifted to the universal covering graph of G. Once this has been established,
we show how the constructions used in Section 3 extend to the general case. In
Section 5 we show how to modify the construction in [5] to obtain an infinite
sequence of graphs {Gd}d≥1 such that Gd has non-vanishing homology in dimension
d. Section 6 concludes with general remarks about issues involved in generalizing
the results in this paper to arbitrary graphs.

Since we will be discussing and comparing several different homology theories
for graphs, it may be helpful to clarify our terminology in advance. Our primary
focus is on the discrete singular cubical homology of a graph G, defined in Section
2). It will be denoted by HCube(G) and occasionally called, simply, the discrete
cubical homology. If X is any topological space, one can construct a singular cubical
homology (e.g., [19]) and a singular simplicial homology (e.g., [15],[21]). Since these
are equal under assumptions relevant to this paper, they will both be called the
(ordinary) singular homology of X and denoted by HSing(X). We will also have
occasion to use the fact that HSing(X) ≈ HCell(X), the cellular homology of X ,
when X is a CW-complex.

2. Background: discrete cubical homology of graphs

We will briefly review the definitions relevant to this paper, referring the reader
to [6] for more details and examples, and also to [12] for graph theory definitions
and terminology. For any positive integer n, let [n] := {1, . . . , n}. Throughout
the paper, all homology computations will be done over a commutative ring with
identity, denoted R.

For d ≥ 1, the discrete d-cube Qd is the graph with vertex set

V (Qd) =
{

(a1, . . . , ad)
∣

∣ ai ∈ {0, 1}, 1 ≤ i ≤ d
}

,

and edge set E(Qd) consisting of those pairs of vertices {a, b} differing in exactly
one position. By convention, Q0 is the 1-vertex graph with no edges.

If G and H are simple graphs, i.e. undirected graphs without loops or multiple
edges, a graph homomorphism (or graph map) σ : G −→ H is a map from V (G) to
V (H) such that, if {a, b} ∈ E(G) then either σ(a) = σ(b) or {σ(a), σ(b)} ∈ E(H).
A graph homomorphism σ : Qd −→ G is called a singular d-cube on G.

For each d ≥ 0, let LCube
d (G) be the free R-module generated by all singular

d-cubes on G. For d ≥ 1 and each i ∈ [d], we define two face maps f+
i and f−

i from
LCube
d (G) to LCube

d−1 (G) such that, for σ ∈ LCube
d (G) and (a1, . . . , ad−1) ∈ Qd−1:

f+
i σ(a1, . . . , ad−1) := σ(a1, . . . , ai−1, 1, ai, . . . , ad−1),

f−
i σ(a1, . . . , ad−1) := σ(a1, . . . , ai−1, 0, ai, . . . , ad−1).
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For d ≥ 1, a singular d-cube σ is called degenerate if σ does not depend on at least
one of its variables, that is, f+

i σ = f−
i σ, for some i ∈ [d]. Otherwise, σ is called

non-degenerate. By definition every 0-cube is non-degenerate.
For each d ≥ 0, let DCube

d (G) be the R-submodule of LCube
d (G) generated by

all degenerate singular d-cubes, and let CCube
d (G) = LCube

d (G)/DCube
d (G), whose

elements are called d-chains. Clearly, the cosets of non-degenerate d-cubes freely
generate CCube

d (G).
Furthermore, for each d ≥ 1, define the boundary operator

∂Cube
d : LCube

d (G) −→ LCube
d−1 (G)

such that, for each singular d-cube σ,

∂Cube
d (σ) =

d
∑

i=1

(−1)i
(

f−
i σ − f+

i σ
)

and extend linearly to all chains in LCube
d (G). When there is no danger of confusion,

we will abbreviate ∂Cube
d as ∂d. If one sets LCube

−1 (G) = DCube
−1 (G) = (0) then one

can define ∂Cube
0 as the trivial map from LCube

0 (G) to LCube
−1 (G).

It is easy to check that, for d ≥ 0, ∂d[DCube
d (G)] ⊆ DCube

d−1 (G) and ∂d∂d+1σ = 0
(see [5]). Hence, using the same notation, we may define a boundary operator
∂d : CCube

d (G) −→ CCube
d−1 (G), and CCube(G) = {CCube

d (G), ∂d}d≥0 is a chain complex
of free R-modules.

Definition 2.1. For d ≥ 0, denote by HCube
d (G) the dth homology group of the

chain complex CCube(G). In other words, HCube
d (G) := Ker ∂d/Im∂d+1.

We denote singular d-cubes σ : Qd → G by sequences of length 2d, where the
ith term is the value of σ on the ith vertex, and the vertices of Qd are indexed in
colexicographic order. For example, if G is a path with vertices labeled {1, 2, 3},
then the sequence (1, 2, 2, 1, 2, 3, 3, 2) represents the singular 3-cube with labels as
illustrated below.

000 100

010 110

001 101

011 111

1 2

2 1

2 3

3 2

By convention, we will represent each coset in CCube
d (G) by the unique coset repre-

sentative in which all terms are non-degenerate.

3. Subdivision Map for the Pentagon

In this section we prove that HCube
d (G) = (0) for all d ≥ 2 when G = Z5. The

key step is to reduce the computation to considering singular cubes σ : Qd → Z5

whose image has size at most 2.

Definition 3.1. For any graph G,

C
(2)
d (G) = {σ ∈ Cd(G)

∣

∣ |Im(σ)| ≤ 2}.
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Theorem 3.2 (Subdivision for Z5). For all d ≥ 1, there exists a map Sd : Cd(Z5) →
Cd(Z5) such that

(1) Sd is a chain map.

(2) Im(Sd) ⊆ C
(2)
d (Z5).

(3) There exists maps hd−1 : Cd−1(Z5) → Cd(Z5) and hd : Cd(Z5) → Cd+1(Z5)
such that
(i) for all σ ∈ Cd(Z5), σ − Sd(σ) = hd−1∂d(σ) + ∂d+1hd(σ), and

(ii) for all σ ∈ C
(2)
d (Z5), hd(σ) ∈ C

(2)
d+1(Z5).

Before proving Theorem 3.2 we will show that it implies one of our principal
results.

Corollary 3.3. For all d ≥ 1, HCube
d (C(Z5)) = HCube

d (C(2)(Z5)).

Proof. We may represent the maps defined in Theorem 3.2 by the following dia-
gram.

· · ·
∂

// Cd+1
∂

//

S
��

I
""

Cd
∂

//

S
��hd

��☞
☞
☞
☞
☞
☞
☞
☞
☞
☞
☞
☞
☞
☞
☞
☞
☞

I
""

Cd−1

S
��

∂
//

hd−1

��☞
☞
☞
☞
☞
☞
☞
☞
☞
☞
☞
☞
☞
☞
☞
☞

I

""

· · ·

· · ·
∂

// C
(2)
d+1 ∂

//

i

��

C
(2)
d ∂

//

i

��

C
(2)
d−1

i

��

∂
// · · ·

· · ·
∂

// Cd+1
∂

// Cd
∂

// Cd−1
∂

// · · ·

Property (3i) defines a chain homotopy between the identity map I and iS where
i denotes the inclusion map from C(2) to C. Since S and i are chain maps, they
induce maps S∗ : H(C) → H(C(2)) and i∗ : H(C(2)) → H(C) on homology, and chain
homotopy implies I∗ = (iS)∗ = i∗S∗. Since S∗ has a left inverse, it is injective.

By property (3ii) we can also regard hd as a map from C
(2)
d to C

(2)
d+1, and we

obtain the following similar diagram.

· · ·
∂

// C
(2)
d+1 ∂

//

i

��

I

  

C
(2)
d ∂

//

i

��

hd

��☞
☞
☞
☞
☞
☞
☞
☞
☞
☞
☞
☞
☞
☞
☞

I

  

C
(2)
d−1

i

��

∂
//

hd−1

��☞
☞
☞
☞
☞
☞
☞
☞
☞
☞
☞
☞
☞
☞
☞

I

  

· · ·

· · ·
∂

// Cd+1
∂

//

S
��

Cd
∂

//

S
��

Cd−1

S
��

∂
// · · ·

· · ·
∂

// C
(2)
d+1 ∂

// C
(2)
d ∂

// C
(2)
d−1 ∂

// · · ·

This describes a homotopy between I : C(2) → C(2) and Si : C(2) → C(2). Hence, for
the induced maps on homology, we have I∗ = (Si)∗ = S∗i∗ which proves that S∗ has
a right inverse. Hence S∗ is surjective, and we conclude that it is an isomorphism
of homology.

�

Proof of Theorem 3.2. We will first construct, for any integer N ≥ 2, an operator
SN : Cd(Z5) → Cd(Z5) which maps a singular cube σ ∈ Cd(Z5) to a sum of Nd

singular cubes. Then, in order to ensure property (3i) of Theorem 3.2 we will
specialize to N = d.
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The construction proceeds in several steps, which we will first illustrate by a small
example with N = 3, d = 2. Consider the singular 2-cube σ = (1, 2, 2, 3) ∈ C2(Z5)
illustrated by the following picture.

00 10

01 11

1 2

2 3

σ

The steps in the construction of S3(σ) are as follows:

Step 1: Lift σ to a graph map σ̃ : Q2 → Z. In this case, the above picture also
represents σ̃, but this may not be true in general.

Step 2: Subdivide Q2, creating a grid Q3
2 with nine small subsquares. Extend σ̃ to

a map σ̃3 : Q3
2 → Q by computing weighted averages along lines.

Step 3: Round down, obtaining a map ⌊σ̃3⌋ : Q3
2 → Z, and then reduce mod 5,

obtaining a map [σ̃3] : Q3
2 → Z5.

The results of steps 2 and 3, constructing σ̃3 and [σ̃3], may be represented as follows:

1 2

2 3

1 2

2 3

4/3 5/3

4/3

5/3

7/3 8/3

7/3

8/3

5/3 2

2 7/3

1 1

1

1

2 2

2

2

1 2

2 2

σ̃3 [σ̃3]

Step 4: Finally, define S3(σ) to be the sum of the (non-degenerate) small subcubes
appearing in [σ̃3]. That is,

S3(σ) = 2(1, 1, 1, 2) + 3(1, 2, 2, 2) + (2, 2, 2, 3).

Next we explain the construction of SN in general, and show that it satisfies prop-
erty (1) of Theorem 3.2.

Definition 3.4 (Discrete N -grid in dimension d). For any d,N ≥ 1, let

QN
d = {(a1, . . . , ad) | ai ∈ {0, . . . , N} }.

Lemma 3.5 (Lifting lemma). If σ : Qd → Z5 is a singular d-cube, there exists a
graph map σ̃ : Qd → Z such that the diagram

Qd
σ̃

//

σ
;;

Z // Z5

commutes. This map is unique up to translation of its image.
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Proof of Lemma 3.5. Choose v0 = (0, . . . , 0) in Qd as a basepoint, and define
σ̃(v0) ∈ Z to be the minimal positive representative of the residue class of σ(v0) ∈
Z5. Define σ̃ on all of Qd by extending along paths from v0 by the following rules:
if σ̃(v) = k ∈ Z has been defined, and u is adjacent to v in Qd, then

(2) σ̃(u) =











k if σ(u) = σ(v)

k + 1 if σ(u) = σ(v) + 1 mod 5

k − 1 if σ(u) = σ(v) − 1 mod 5.

It is clear that if σ̃ is well defined, then it is a graph map. To show that it is well
defined, it suffices to show that applying (2) iteratively defines σ̃ unambiguously
around any loop in Qd. For completeness, we sketch a short proof of this fact,
which is probably well known.

Suppose γ = (v0, v1, . . . , v2k = v0) is a loop of length 2k in Qd. We may represent
γ as a loop in the Boolean lattice 2d, where v0 corresponds to the empty set and
steps consist of additions or deletions of elements in [d]. If additions and deletions
of elements x ∈ [d] are encoded by x and x̄, respectively, then γ may be represented
by a word in these symbols. For example, w = 353̄25̄3 represents the path

∅ −→ 3 −→ 35 −→ 5 −→ 25 −→ 2 −→ 23.

A word w represents a path in Qd if and only if for each x ∈ [d], the occurrences
of x and x̄ in w form an alternating subsequence beginning with x. It represents
a loop if an only if, for all x, the sequence also ends with x̄. The property of
representing a loop is preserved if we transpose symbols wi and wi+1, where wi = x
or x̄, wi+1 = y or ȳ, and x 6= y. Consequently, if w represents a loop γ(w) beginning
and ending at ∅, we can transform w by adjacent transpositions into a word of the
form w∗ = xx̄yȳ · · · zz̄ with the same properties. Further, if σ̃(w) is the result of
applying σ̃ to the loop γ(w) in Qd, it is straightforward to show (by examining
a small number of cases) that transforming adjacent letters in w does not do not
change the endpoint of σ̃(w). Since γ(w∗) obviously maps to a closed loop in Z5,
the same must be true of γ(w), and we are done. �

Next we extend σ̃ to the interior of QN
d , obtaining a map σ̃N : QN

d → Q.

Definition 3.6 (Weighted Q-averaging). Suppose σ : Qd → Z5 is a graph map,
and σ̃ : Qd → Z extends σ as described in Lemma 3.5. Define σ̃N : QN

d → Q as
follows: if (a1, . . . , ad) is a vertex of QN

d , then

(3) σ̃N (a1, . . . , ad) =
∑

v=(ǫ1,...,ǫd)

wv(a1, . . . , ad)σ̃(ǫ1, . . . , ǫd),

where the sum is over all vertices v = (ǫ1, . . . , ǫd) ∈ Qd, where ǫi ∈ {0, 1}, and
where the weights wv(a1, . . . , ad) are defined by

(4) w(ǫ1,...,ǫd) =

d
∏

i=1

{

1− ai

N
if ǫi = 0

ai

N
if ǫi = 1.

It is easy to see that for fixed (a1, . . . , ad) we have
∑

v

wv(a1, . . . , ad) = 1.

Thus, σ̃N (a1, . . . , ad) is a weighted average of σ̃(v), over all vertices v of Qd, tak-
ing values in Q. Furthermore, formula Definition 3.6 is equivalent to a recursive
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construction, where σ̃N is first defined on edges of Qd, then extending to higher di-
mensional faces by computing weighted averages along lines between corresponding
points on opposing faces (in any order).

Lemma 3.7. If σ : Qd → Z5 is a graph map, then for any adjacent vertices u, v of
QN

d , we have

(5)
∣

∣ σ̃N (u)− σ̃N (v)
∣

∣ ≤ 1/N.

Proof of Lemma 3.7. If d = 1 this is immediate. Suppose, inductively, that we
have proved Lemma 3.7 for maps with domain QN

d−1. Then it holds for adjacent

vertices on the outer faces of QN
d , by the inductive construction of σ̃N . Suppose

that (u, v) is an interior edge of QN
d . Draw lines perpendicular to (u, v), meeting

opposite faces of QN
d at points p, q, r and s, as shown:

p

q

u

v

r

s

By hypothesis, both σ̃N (p)−σ̃N (q) and σ̃N (r)−σ̃N (s) lie in the interval [−1/N, 1/N ],
and we also have

σ̃N (u) = ασ̃N (p) + (1− α)σ̃N (r), and

σ̃N (v) = ασ̃N (q) + (1− α)σ̃N (s)

for some α ∈ [0, 1]. It follows that σ̃N (u) − σ̃N (v) is a convex combination of
σ̃N (p)− σ̃N (q) and σ̃N (r) − σ̃N (s), and hence lies in [−1/N, 1/N ] as claimed. �

Definition 3.8. If σ : Qd → Z5 is a graph map, then ⌊σ̃N⌋ : QN
d → Z is the map

obtained by rounding down σ̃N at each vertex of QN
d . That is,

(6) ⌊σ̃N⌋(a1, . . . , ad) = ⌊σ̃N (a1, . . . , ad)⌋.

Finally, define

(7) [σ̃N ](a1, . . . , ad) = ⌊σ̃N ⌋(a1, . . . , ad) mod 5 ∈ Z5.

Corollary 3.9. Suppose that σ : Qd → Z5 is a graph map, and [σ̃N ] : QN
d → Z5 is

defined as in (7). Then

(1) [σ̃N ] : QN
d → Z5 is a graph map.

(2) If N ≥ d and u, v are any vertices of a small subcube in QN
d , then

∣

∣[σ̃N ](u)− [σ̃N ](v)
∣

∣ ≤ 1.

In particular, the image of σ̃N restricted to each of the small subcubes in QN
d has

size at most two.

Proof of Corollary 3.9. Statement (1) follows immediately from Lemma 3.7 and the
elementary fact that if α, β ∈ R and |α− β| ≤ 1, then

∣

∣⌊α⌋ − ⌊β⌋
∣

∣ ≤ 1. Statement
(2) follows from Lemma 3.7 and the fact that any two vertices in Qd can be linked
by a path of length ≤ d. �

Now we are finally in a position to define SN , by summing the restrictions of
[σ̃N ] to each of the small subcubes of QN

d .
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Definition 3.10. For any d ≥ 1, N ≥ 2, define SN : Cd(Z5) → Cd(Z5) by setting

SN (σ) =
∑

qd∈QN
d

[σ̃N ]
∣

∣qd,

where σ a generator of Cd(Z5), and the sum is over all of the Nd small subcubes qd
of QN

d .

The next corollary includes the first two parts of Theorem 3.2.

Corollary 3.11. (1) For all d ≥ 1, N ≥ 2, the map SN is a chain map.
(2) If σ is a generator of Cd(Z5), then each summand of Sd(σ) is a graph map

with image of size at most 2.

Proof of Corollary 3.11. The essential step in proving (1) is to show that the defi-

nition of [σ̃N ] on a face f ǫ
iQ

N
d of QN

d agrees exactly with the definition of [(̃f ǫ
i σ)N ]

on QN
d−1. We leave the verification of this fact to the reader. Internal cancellation

of faces of small cubes then implies identity ∂dS
N (σ) = SN (∂dσ). Statement (2) is

a consequence of Corollary 3.9. �

It remains to prove part (3) of Theorem 3.2. We will define maps hd−1 and hd

and show that for all σ ∈ Cd(Z5),

(8) ∂d+1hd(σ) = σ − Sd(σ) − hd−1∂d(σ)± degenerate terms.

The argument generally follows [19, §7.7], where a similar construction is used to
obtain an analogous result for ordinary cubical simplicial homology. However, there
are significant variations, including the need for subdivisions SN with N > 2 and
also for more than two levels in the definition of hd and hd−1.

Definition 3.12. For σ ∈ Cd(Z5), we define hd by the following process.

(1) First construct a Q-labeling γ̃(σ) of the (d + 1)-dimensional grid Qd
d+1 =

{(a1, . . . , ad+1) | 0 ≤ ai ≤ d} as follows:
(a) The bottom face (ad+1 = 0) is σ̃d (the second step in constructing

Sd(σ)).
(b) The top face (ad+1 = d) is Td(σ), defined by the rule

Td(σ)(a1, . . . , ad) = σ̃(ā1, . . . , ād), āi =

{

0 if ai = 0

1 if ai > 1.

(c) Along each line from (a1, . . . , ad, 0) to (a1, . . . , ad, d), assign labels by
computing equally spaced averages between γ̃(σ)(a1, . . . , ad, 0) and
γ̃(σ)(a1, . . . , ad, d).

(2) Transform γ̃(σ) into a Z-labeling ⌊γ̃(σ)⌋ by rounding down, and then into
a Z5 labeling [γ̃(σ)] by reducing mod 5.

(3) Define hd(σ) to be (−1)d+1 times the sum of the dd small subcubes in
[γ̃(σ)].

This construction is designed to embody a proof of (8) for a single value of d. For
that purpose, hd−1 must be defined compatibly with hd, and not independently.
More precisely, hd−1 is defined as in Definition 3.12, but on a grid of type Qd

d, not
Qd

d−1. It will follow that the side faces of hd(σ) appear as images of hd−1 applied
to the faces of σ.

The following partially labeled diagram illustrates the construction of h2 : C2(G) →
C3(G) for a generic singular 2-cube σ = (a, b, c, d).



10 BARCELO, GREENE, JARRAH, AND WELKER

a b

c d

a b

c d

b

c d d

d

ab

ac abcd bd

cd

According to Definition 3.12, the vertex at the centroid of the grid should be labeled

1

2

(

d+
a+ b+ c+ d

4

)

=
a+ b + c+ 5d

8
.

Proof of Theorem 3.2, Part (3i). The main difficulty is showing that the labeling
[γ̃] defines a graph map from Qd

d+1 to Z5. Once this is done, verifying statement
(3i) reduces to a purely formal calculation.

Lemma 3.13. If σ ∈ Cd(Z5), then in the Q-labeling γ̃(σ), every pair of adjacent
labels differs by at most 1.

Proof of Lemma 3.13. In the original σ, every pair of labels (adjacent or not) differs
by at most d. This property carries over to σ̃d, and every new edge in γ̃(σ) is
obtained by subdividing a segment from one of the original labels to a label of σ̃d

into d equal pieces. Hence the lengths of these pieces are at most d× (1/d) = 1. �

As we have observed in Corollary 3.9, rounding preserves the property that labels
of adjacent vertices differ by at most 1, and reducing mod 5 translates this into
adjacency in Z5. It follows that [γ̃(σ)] defines a graph map from Qd

d+1 to Z5.
The proof of statement (8) is now straightforward. When the top face (ad+1 = d)

is expanded into small cubes, it consists of σ plus degenerate terms. When the
bottom face (ad+1 = 0) is expanded, it is exactly Sd(σ). Furthermore, the sign
(−1)d+1 of hd(σ) has been chosen exactly so that the terms in σ − Sd(σ) appear
with correct signs in the expansion of ∂d+1hd(σ). It is easy to see that the remaining
terms (aside from σ) coming from the top face are all degenerate. Finally, hd−1

has been defined exactly so that terms in the expansion of ∂d+1hd(σ) arising from
faces other than ad+1 = 0 and ad+1 = d are are accounted for (with proper sign)
by hd−1∂d(σ). This completes the proof of part (3i) of Theorem 3.2. �

Proof of Theorem 3.2, Part (3ii). We must show that if σ has two labels, then
every non-degenerate cube in the expansion of hd(σ) has two labels. Suppose σ has
two labels, and that these are mapped to t and t+1 by the lifting of σ to σ̃. Then
the top face Td(σ) has these same labels, and the bottom face σ̃d has rational labels
in the interval [t, t+1]. By construction, the remaining labels of hd(σ) all lie in the
interval [t, t+ 1]. When these are rounded down, the results will again all be equal
to t or t+ 1, and the result follows. �
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This completes the proof of Theorem 3.2. �

Theorem 3.2 shows that computing the homology of Z5 can be reduced to com-
puting the homology of the chain complex C(2)(Z5), i.e. the complex generated by
singular cubes whose image has size ≤ 2. The second main result of this section
shows that the complex C(2)(Z5) has trivial homology in all dimensions d ≥ 2.

Theorem 3.14. For all d ≥ 2, Hd(C(2)(Z5)) = (0), and consequently Hd(C(Z5)) =
(0).

Proof of Theorem 3.14. Let e = (i, i + 1) (mod 5) be an edge of Z5. For d ≥ 0,
define

C
(e)
d (Z5) = {σ ∈ Cd(Z5) | Im(σ) ⊆ e}.

Clearly, for d ≥ 1 we have ∂[C
(e)
d (Z5)] ⊆ C

(e)
d−1(Z5). Furthermore, for d ≥ 1 we have

Cd(Z5) =
⊕

e C
(e)
d (Z5). It follows that for d ≥ 2, Hd(C(Z5)) ≈

⊕

e Hd(C(e)(Z5)).

But Hd(C(e)(Z5)) is the dth homology of a contractible graph , and hence is trivial
for all d > 0 (see [6] for precise definitions, and for a proof of this result). �

4. Graphs without 3-Cycles or 4-Cycles

In this section we will extend Theorem 3.2, Corollary 3.3, and Theorem 3.14 to
arbitrary graphs G containing no 3-cycles or 4-cycles.

Theorem 4.1. Suppose that G is a graph with no 3-cycles or 4-cycles. Then, for
d ≥ 1 there exists a map Sd : Cd(G) → Cd(G) such that

(1) Sd is a chain map,

(2) Im(Sd) ⊆ C
(2)
d (G), and

(3) for d ≥ 1, Sd induces an isomorphism of homology Sd
∗ : Hd(C(G)) →

Hd(C(2)(G)).

Furthermore, for d ≥ 2, Hd(C(2)(G)) = (0).

Proof. The proof will follow the steps in Section 3, showing that with small ad-
justments, all of the arguments generalize. In fact, the only significant challenge
is generalizing Lemma 3.5, proving that singular cubes σ with Im(σ) = G can be
lifted to a setting where averages can be computed. This will require constructing
the universal covering graph U(G) of a graph G, the discrete analog of a familiar
topological object (see, e.g. [21],[15]).

Definition 4.2 (Graph coverings). Suppose that G is a connected (undirected)
graph.

(1) A covering of G by a graph G̃ is a map p : G̃ → G such that for all x̃ ∈ G̃,
p maps the star Ex̃ of x̃ (the set of edges adjacent to x̃) bijectively onto the
star Ep(x̃) of p(x̃).

(2) A universal covering graph U(G) of G is a graph with a covering map

u : U(G) → G, such that for any covering p : G̃ → G there exists a covering

map v : U(G) → G̃ such that u = pv.

Much of the theory of topological coverings carries over to graphs, considered
as 1-dimensional cell complexes. Universal covering graphs seem to have been first
constructed explicitly in [1]; see also, e.g., [17], [23] for other applications. For our
purposes, we need the properties of U(G) stated in the following lemma.
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Lemma 4.3. Suppose that G is a finite connected graph. Then

(1) U(G) exists and is unique up to isomorphism.
(2) If G is a tree, then U(G) = G; otherwise U(G) is an infinite tree.
(3) Suppose that G is a graph without 3-cycles and 4-cycles, and σ : Qd → G is

a graph map for some d ≥ 1. Then there exists a graph map σ̃ : Qd → U(G)
such that σ = uσ̃.

(4) For any q ∈ Qd, the map σ̃ in (3) may be chosen so that σ̃(q) = q̃, where q̃
is any element of u−1(σ(q)), and σ̃ is uniquely determined by that choice.

Sketch of Proof. U(G) may be constructed by fixing a basepoint v0 in G, and then
defining the vertex set of U(G) to be the set of paths (v0, v1, . . . , vk) in G that are
“non-backtracking”, i.e., vi−1 6= vi+1 for i = 1, . . . , k− 1. Define the edges of U(G)
to be pairs of paths of the form ((v0, v1, . . . , vk), (v0, v1, . . . , vk, vk+1)). The covering
map u : U(G) → G sends (v0, v1, . . . , vk) to vk. The vertex ṽ0 = (v0) ∈ U(G) will
be called the root of U(G). It is clear that U(G) is a tree, and (2) is immediate.

The proof of (3) is as in Lemma 3.5, except that instead of explicit rules to extend
σ̃ along paths in Qd, we use “stars” to guide the construction. More precisely, if
σ̃(v) = x̃ ∈ U(G) has been defined, and u is adjacent to v in Qd, define σ̃(u) = x̃
if σ(u) = σ(v), and otherwise, if σ(u) = v′ ∈ Eσ(v), define σ̃(u) to be the unique
vertex in Ex̃ whose image under p equals v′. The argument that σ̃ is well defined
is exactly the same as in Lemma 3.5. Verification of (4) is left to the reader. �

A more general version of Lemma 4.3(3) for arbitrary covering graphs G̃ appears
in [14]. However, in the present paper we require only the special case where

G̃ = U(G), and the argument here is self-contained.
We proceed with the sequence of lemmas need to prove Theorem 4.1, always

assuming that G is a finite connected graph without 3-cycles or 4-cycles. In the
remainder of the proof, we will assume that σ is a singular d-cube, and σ̃ has been
(uniquely) constructed so that if q0 = (0, 0, . . . , 0) ∈ Qd and σ(q0) = x0 ∈ G, then
σ̃(q0) = x̃0 ∈ u−1(x0) has been chosen so that x̃0 is at least distance d+2 from the
root ṽ0 of U(G).

By construction, U(G) is a discrete infinite tree. We can embed U(G) into a

“continuous” tree U(G), obtained by identifying each edge in U(G) with a unit

interval in R. Next define a metric d on U(G) by setting d(x, y) equal to the length

(under the induced metric) of the unique path from x to y, for all x, y ∈ U(G).

This will allow us to compute weighted averages αx+(1−α)y, for any x, y ∈ U(G)

and α ∈ [0, 1], by identifying the path from x to y in U(G) with a segment in R.
More precisely:

Definition 4.4. Suppose that x, y ∈ U(G) and α ∈ [0, 1]. Define αx+ (1− α)y to
be the unique point p in the path from x to y such that d(x, p) = αd(x, y).

Given σ : Qd → G and its extension σ̃ : Qd → U(G), we will define an extension

σ̃N of σ̃ to the grid QN
d = {(a1, . . . , ad) | 0 ≤ ai ≤ N}, taking values in U(G). The

construction is similar to the one in Section 3, using weighted averages along paths
in U(G). However, verifying that σ̃N is a graph map requires extra care because
the computation is not necessarily being carried out within a fixed interval in R.

Definition 4.5 (Definition of σ̃N ). Given σ : Qd → G and its lift σ̃ : Qd → U(G),

define σ̃N : QN
d → U(G) as follows.
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(1) For each edge inQd parallel to the first coordinate axis, i.e., from (0, ǫ2, . . . , ǫd)
to (1, ǫ2, . . . , ǫd), for some sequence of ǫi ∈ {0, 1}, subdivide the path in

U(G) from σ̃(0, ǫ2, . . . , ǫd) to σ̃(1, ǫ2, . . . , ǫd) intoN pieces withN−1 equally
spaced points. Map the points (k,Nǫ2, . . . , Nǫd) ∈ σ̃N , 1 ≤ k ≤ N − 1, to

these N − 1 points in U(G).
(2) Inductively, assume that values of σ̃N have been assigned to all (i − 1)-

faces of QN
d that are parallel to the first i − 1 coordinate vectors, i.e.,

faces of the form {(a1, . . . , ai−1, Nǫi, . . . , Nǫd)}, where ǫi, . . . , ǫd are fixed
elements of {0, 1} and the ai range over all possible values in {0, . . . , N}. For
each sequence a1, . . . , ai−1, extend σ̃N to points in the interior of the line
from (a1, . . . , ai−1, 0, . . . , 0) to (a1, . . . , ai−1, N, . . . , N) by subdividing the

segment in U(G) from σ̃(a1, . . . , ai−1, 0, . . . , 0) to σ̃(a1, . . . , ai−1, N, . . . , N)
into N equal pieces, and assigning values of σ̃ to interior points accordingly.
This step assigns values of σ̃N to all i-faces of QN

d .
(3) Repeat step (2) until i = N .

In order to verify that σ̃N has the desired properties, we will need the following
result, which is a generalization of Lemma 3.7.

Lemma 4.6. Suppose that x, y, u, v ∈ U(G), and suppose d(x, y) ≤ δ and d(u, v) ≤
δ, where δ ≤ 1. Then for any α, 0 ≤ α ≤ 1, we have d(αx+(1−α)u, αy+(1−α)v) ≤
δ.

Proof. If x, y, u and v all lie on a single path in U(G), we can identify this path with
an interval in R and, for example, the point αx+ (1−α)y may be computed using
ordinary real arithmetic. In this interval we have x−y ∈ [−δ, δ] and u−v ∈ [−δ, δ],
which imply

(9) (αx+ (1 − α)u)− (αy + (1− α)v) = α(x− y) + (1− α)(u − v) ∈ [−δ, δ],

as desired. If x, y, u and v do not lie on a single path, then some additional argument
is needed.

Let p = αx+ (1− α)u and q = αy + (1− α)v, where these points are computed

in U(G) as defined as in Definition 4.4, using the metric on U(G).

Since d(x, y) ≤ 1, x and y must either lie on a single edge of U(G), or on two
adjacent edges, and u and v are situated similarly. Up to obvious permutations of
the labels, there are only two configurations representing the possible arrangements

of x, y, u and v in U(G), as shown in the following diagrams.

y

x

u v

y

x u

v

In both diagrams, the doubled lines represent the portions of the xu and yv paths
that overlap, and the red and green segments represent portions that do not overlap.
The overlapping portion must be non-empty, but could consist of a single point.

Let T = T (x, y, u, v) denote the (metric) subtree of U(G) obtained by taking
the union of the paths from x to u and y to v. Let T ⊆ R denote an interval in
R obtained by taking the union of two intervals obtained by mapping each of the



14 BARCELO, GREENE, JARRAH, AND WELKER

xu and yv paths isometrically into R, in such a way that the overlapping portions
coincide. For example, T might look like this, with p and q included:

y x u vp q

In this picture, only the segment represented by the doubled lines is guaranteed to
be isometric to the corresponding segment in U(G).

If p and q both lie in doubled portion (as they do in the picture above), the
calculation in (9) applies, and the desired inequality follows. In fact, (9) applies
unless p and q both lie in the red region or both lie in the green region, since in
all other cases the relevant components of (9) in T may be computed using real
arithmetic in T .

The remaining cases are easy to deal with, since if p and q both lie in the
red region or the green region, then d(p, q) is bounded by d(x, y) or d(u, v), as
appropriate. By assumption, both of these distances are ≤ δ, and the conclusion
follows. �

Definition 4.7 (Analog of Definition 3.8). Define maps ⌊·⌋ : U(G) → U(G) (round-
ing), and [·] : U(G) → G (residue), as follows:

(1) If x̄ ∈ U(G), and x̄ lies in an edge e, define ⌊x̄⌋ to be the vertex of e closest
to the root ṽ0.

(2) If x̃ ∈ U(G), define [x̃] = u(x̃), the projection of x̃ onto G.

Lemma 4.8. If x̄, ȳ ∈ U(G) and d(x̄, ȳ) ≤ 1, then d(⌊x̄⌋, ⌊ȳ⌋) ≤ 1. If x̃, ỹ ∈ U(G)
and d(x̃, ỹ) ≤ 1, then d([x̃], [ỹ)] ≤ 1.

Proof. These statements are elementary. �

Definition 4.9 (Analog of Definition 3.10). If σ : Qd → G and σ̃N : QN
d → U(G)

is the map defined above, define [σ̃N ] : QN
d → G by

[σ̃N ](a1, . . . , ad) =
[

⌊σ̃N (a1, . . . , ad)⌋
]

.

Finally, define SN(σ) to be the sum (in Cd(G)) of the small subcubes appearing in
[σ̃N ].

The following corollary is easily proved using Lemma 4.6 and Lemma 4.8.

Corollary 4.10 (Analog of Corollary 3.11). (1) [σ̃N ] is a graph map from QN
d

to G.
(2) If n ≥ d, then every small subcube appearing in [σ̃N ] has at most two labels.

In other words, SN : Cd(G) → C
(2)
d (G).

To complete the proof of Theorem 4.1 we must construct maps hd : Cd(G) →
Cd+1(G) and hd−1 : Cd−1(G) → Cd(G) and show that they define a chain homotopy.
To establish part (1) of Theorem 4.1, the constructions of hd and hd−1 in Section
3 carry over with almost no change. The only non-trivial step is showing that hd

and hd−1 are defined by graph maps on the generators of Cd(G) and Cd−1(G), but
this is a straightforward consequence of Lemma 4.6 and Lemma 4.8. Once these
details are established, the arguments proving parts (2) and (3) carry over as well,
and the proof of Theorem 4.1 is complete. �
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Figure 1. Graph G2 = G×4
1 , obtained from G1 = Z5.

5. Non-vanishing Homology in High Dimensions

In this section we will construct an infinite sequence of graphs {Gd}d≥0 such
that HCube

d (Gd) 6= (0) for all d. The construction is inspired by [5, Definition 5.2]
but includes some additional (necessary) details.

In the following definition, if G and H are graphs, G�H denotes the graph with
vertex set V (G) × V (H) and edges {(g1, h1), (g2, h2)}, where either g1 = g2 and
{h1, h2} ∈ E(H) or h1 = h2 and {g1, g2} ∈ E(G).

Definition 5.1. Let G be a graph.

(1) If N is a positive integer, let G×N denote the graph (G� IN )/ ∼ , where IN
is the path with vertex set {0, . . . , N} and ∼ identifies each of the subgraphs
{0} ×G and {N} ×G to single points, denoted 0 and N , respectively.

(2) Define the sequence {Gd}d≥1 by setting G1 = G, and Gd+1 = G
×(d+3)
d for

d ≥ 1.

Theorem 5.2. If G is any graph, and the sequence {Gd}d≥1 is constructed as in
Definition 5.1 then HCube

d+1 (Gd+1) = HCube
d (Gd) for all d ≥ 1.

For example, if G = G1 = Z5, then for the graph G2 shown in Figure 1, we have
HCube

2 (G2) = R.
The proof of Theorem 5.2 depends on the following lemma.

Lemma 5.3. If G is any graph, and σ : Qd → G×N is a singular d-cube, then if
N ≥ d+ 1, the image of σ cannot contain both 0 and N .

Proof. Since σ is a graph map, d(σ(x), σ(y)) ≤ d(x, y) for all x, y ∈ Qd. Since
diameter(Qd) = d and d(0, N) = N in G×N , the result follows. �

Proof of Theorem 5.2. Fix d ≥ 1, and define A = Gd+1 − 0 and B = Gd+1 − d+ 3.
It follows from Lemma 5.3 that

Ck(Gd+1) = Ck(A) + Ck(B)
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for all k ≤ d + 2. This enables us to derive a segment of the Mayer-Vietoris
sequence for A,B and Gd+1. More precisely, for k = d, d + 1, d + 2 we have short
exact sequences

(10) 0 // Ck(A ∩B)
i

// Ck(A)⊕ Ck(B)
j

// Ck(Gd+1) // 0

where i(x) = (x,−x) for all x ∈ A ∩ B and j(x, y) = x + y for all x ∈ A, y ∈ B.
Using standard arguments (e.g. [15, §2.1]) one obtains the following exact sequence
in homology:

HCube(Cd+1(A))⊕HCube(Cd+1(B))
j∗
−→ HCube(Cd+1(Gd+1))(11)

∆
−→ HCube(Cd(A ∩B))

i∗−→ HCube(Cd(A)⊕HCube(Cd(B)).

We emphasize that (11) is not meant to be part of a full Mayer-Vietoris sequence,
since the sequences (10) are not guaranteed to be exact for k > d+ 2. In (11) the
map ∆ may be defined as follows: if [x] ∈ HCube(Cd+1(Gd+1)), write x = yA + yB,
where yA ∈ Cd+1(A) and yB ∈ Cd+1(B). Then ∆[x] = [∂yA] = [−∂yB] ∈ Cd(A∩B).

It follows from results in [6, §4] that HCube(Ck(A)) = HCube(Ck(B) = (0) for
k ≥ 1, since A and B are contractible (in the sense of [7]) to single-point graphs.
Furthermore, HCube(Cd(A∩B)) ≈ HCube(Cd(Gd)) since Gd is a deformation retrac-
tion (in the sense of [6, §4]) of A ∩B. Hence (11) reduces to the exact sequence

0
j∗
−→ HCube(Cd+1(Gd+1))

∆
−→ HCube(Cd(Gd))

i∗−→ 0,

and the proof is complete. �

We do not know if our construction of Gd+1 in Definition 5.1 is “tight”, i.e.
whether Theorem 5.2 would hold if we defined Gd+1 = G×N

d for some smaller value
of N . Our proof depends on the choice of N = d+3 but, for example, computation
shows that if G = G1 = Z5, then the graph G′

2 = G×3
1 also has homology equal to R

in dimension 2. It would be interesting to explore whether d+3 in Definition 5.1(2)
could be reduced to d+ 2 in general.

6. Final Remarks

The main results in this paper (and much more) could be proved more easily if
we had a complete Mayer-Vietoris theory at our disposal. As in classical treatments
(e.g. [15],[21]), the main tool in would be a “covering lemma” stating that if a graph
G can be covered (set-theoretically) by a family of subgraphs K = {Ki} satisfying
appropriate “neighborhood” conditions, thenHCube(C(G)) = HCube(CK(G)), where

CK
d = {σ ∈ Cd(G) | Im(σ) ⊆ Ki for some i}.

In fact for graphs G with no 3-cycles or 4-cycles, the subdivision techniques in
Sections 3 and 4 of this paper provide such a theory, but it is of little independent
value because all homology groups are trivial in dimension d ≥ 2.

It is tempting to speculate that for arbitrary graphs, the covering space argu-
ments in Section 4 might be modified and/or extended to prove something like the
following:

Conjecture 6.1. Let G be a graph, and let K = {Ki} be a covering of G by
subgraphs such that every edge, 3-cycle, and 4-cycle of G is contained in some Ki.
Then HCube(G) ≈ HCube(CK(G)).
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However, this conjecture is false: for example, if G = Q3, the 3-cube, then
HCube

2 (G) = (0) by Corollary 4.3 of [6]. On the other hand, if K is the covering of
G by its six quadrilateral faces, then direct computation (omitted here) shows that
HCube

2 (CK(G)) = R.
While it falls short of providing a Mayer-Vietoris theory for HCube(G), the fol-

lowing proposition does help identify what HCube(CK(G)) is computing, and may
be of independent interest.

Proposition 6.2. Let G be a graph, and suppose that K is the covering of G by its
edges, 3-cycles, and 4-cycles. Then HCube(CK(G)) ≈ HSing(G∗), where the latter
denotes the singular homology of the cell complex G∗ obtained from G (considered
as a 1-complex) with 3- and 4-cycles filled in as 2-dimensional cells.

Proof. For the proof it will be convenient to consider the cellular homologyHCell(G∗)
instead of HSing(G∗). By [15, Theorem 2.35] HSing(X) ≈ HCell(X) for any CW-
complex. In particular, it suffices to show that HCube(CK(G)) ≈ HCell(G∗).

Let K∗ be the cover of G∗ by its edges, triangles, and quadrangles. Note that G∗

has a natural CW-structure and each element of the cover is a closed subcomplex
of G∗. First, by construction there is a natural bijection between K and K∗. For
any non-empty subset σ ⊆ K let Kσ be the intersection of the elements of σ.
Correspondingly, for any non-empty subset σ∗ ⊆ K∗ let K∗

σ∗ be the intersection of
the elements of σ∗.
Claim 1: For any non-empty σ ⊆ K and the corresponding σ∗ ⊆ K∗ we have

HCube
∗ (Kσ) ≈ HCell

∗ (K∗
σ∗).

Moreover, both are trivial in homological dimensions ≥ 1.
Proof of Claim 1: For σ ⊆ K with |σ| > 1, Kσ and K∗

σ∗ are both either empty, one
or two points, or a path of length 1 or 2. On these graphs and spaces the discrete
cubical and cellular homology theories coincide and are trivial in dimensions ≥ 1.

For σ ⊆ K with |σ| = 1, either both Kσ and K∗
σ∗ are edges, Kσ is a triangle

graph and K∗
σ∗ is a solid triangle, or Kσ is a quadrangle graph and K∗

σ∗ is a solid
quadrangle. The cellular homology groups of a solid quadrangle and a solid triangle
are trivial in homological dimension ≥ 1, as are the discrete cubical homology
groups of a quadrangle and a triangle graph. This proves the claim.
Claim 2: Let τ ⊆ σ ⊆ K. Then the induced maps

HCube
0 (Kσ) → HCube

0 (Kτ ) and HCell
0 (K∗

σ∗) → HCell
0 (K∗

τ∗)

are either both isomorphisms, both 0 maps, or both are projections of a rank 2 onto
a rank 1 homology group.
Proof of Claim 2: It follows from an analysis of the proof of the previous claim that
all homology groups in dimension 0 are of rank 1 unless the intersection is empty
(in which case it is 0) or the intersection is a two point set (in which case it is of
rank 2). Now the assertion follows by inspecting the cases.

Let N(K) be the nerve of the covering K, that is, the simplicial complex whose
p-simplices are the subcollections of K of size p + 1 with non-empty intersection.
For p ≥ 0, let N (p)(K) denote the set of faces of dimension p in N(K). Note that
by the above arguments the nerve is the same for K and K∗. From the given data
we build, in the usual way (see, e.g., [10, Chap. 7]), two double complexes
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CCube
p,q (G) =

⊕

σ∈N(p)(K)

CCube
q (Kσ)

and

CCell
p,q (G) =

⊕

σ∈N(p)(K)

CCell
q (K∗

σ∗)

where for • ∈ {Cube,Cell} the vertical differential C•
p,q −→ C•

p,q−1 is the differential
in the cubical or cellular homology theory, and the horizontal differential C•

p,q −→
C•

p−1,q is induced by the inclusion maps combined with the sign of the differential

of the nerve, seen as a simplicial complex. More precisely, let σ ∈ N (p)(K), τ ⊆ σ
and |τ | ∈ N (p−1)(K). It follows that Kσ ⊆ Kτ and τ = σ \ {j} for some j ∈ σ.
Thus τ appears in the simplicial boundary of σ with some sign ǫσ,τ . Now the
differential C•

p,q −→ C•
p−1,q is the sum of the maps C•

q (Kσ) → C•
q (Kτ ), for all

τ ⊆ σ, |τ | ∈ N (p−1)(K), induced by inclusion and multiplied by ǫσ,τ .
The two double complexes yield with respect to the vertical differential a spec-

tral sequence (see, e.g., [10, Chapter 7]) with E1 page given by E1
p,q(Cube) =

⊕

σ∈N(p)(K)H
Cube
q (Kσ) and E1

p,q(Cell) =
⊕

σ∈N(p)(K) H
Cell
q (K∗

σ∗). From the first

claim we already know that E1
p,q(Cube) ≈ E1

p,q(Cell) and E1
p,q(Cube) = E1

p,q(Cell) =
0 for q ≥ 1.

Next we consider the differentials of the E1 pages in both cases. Note that
for • ∈ {Cube,Cell} the differential of E1

p,q(•) → E1
p−1,q(•) is induced as follows.

Consider σ ∈ N (p) and let τ0, . . . , τp be its maximal faces. Then we have a map in
homology

H•
q(Kσ) →

p−1
⊕

i=0

H•
q(Kτi)

induced by the sum of the inclusion maps weighted with the sign of the simplicial
differential. This map in turn induces the differential on E1

p,q(•). By the second
claim the maps in homology (if they are not trivial) coincide for both theories. As
a consequence the differentials on the E1-pages are the same and so E2

p,q(Cube) ≈

E2
p,q(Cell).

Since E1
p,q(Cube) = E1

p,q(Cell) 6= 0 implies q = 0 the same holds true for Es
p,q(•)

and s ≥ 2. But the differential on the sth page maps Es
p,q(•) → Es

p−s,q+1−s(•).

This shows that the differential of the sth page is trivial for all s ≥ 2. Thus both
sequences have the same limit and the limit is obtained on the E2-page, with non-
zero entries concentrated on the bottom row.

For any double complex {Cp,q}, one can construct not only a spectral sequence

{Er}, but also a second (transposed) spectral sequence {Ẽr} using horizontal dif-

ferentials (instead of vertical) to define Ẽ1, and then constructing subsequent pages
by the usual rules. In this case, it is well known (e.g. [25, Chap. 5]) that both {Er}
and {Ẽr} compute the same homology, namely, the homology of the total complex
{TCd}d≥0, where TCd =

⊕

p+q=d Cp,q.

In our situation, it can be shown (see [10, Chap. 7] for an example of the

argument) that {Ẽr(Cube)} and {Ẽr(Cell)} both converge on the second page Ẽ2,
with non-zero entries concentrated in the first column. In that column we have

Ẽ2
0,d(Cube) ≈ HCube

d (CK(G)) and Ẽ2
0,d(Cell) ≈ HCell

d (G∗)
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Figure 2. Graph G = 1-skeleton of octahedron.

for all d ≥ 0. Combining all of the above information, we obtain, for all d ≥ 0,

HCube
d (CK(G)) ≈ Ẽ2

0,d(Cube) ≈ E2
d,0(Cube)

≈ E2
d,0(Cell) ≈ Ẽ2

0,d(Cell) ≈ HCell
d (G∗)

as claimed, and the proof is complete. �

As a somewhat non-trivial illustration of Proposition 6.2, let G be the 1-skeleton
of an octahedron, as illustrated in Figure 2. Here K is the covering of G consisting
of 12 edges, 8 triangles, and 3 quadrangles. Computation (omitted) shows that

HCube
2 (CK(G)) = HSing

2 (G∗) = R4. On the other hand, it follows from Corollary
4.6 in [6] (or can be shown directly) that HCube

2 (C(G)) = (0).
Our results and observations highlight the special role played by graphs without

3- and 4-cycles, and indeed, for these graphs, the discrete and ordinary singular
cubical homology theories agree completely. It would be interesting to establish
the precise connections between the two theories for more general graphs. While
results like Proposition 6.2 might provide information about HCube(CK(G)) for a
covering K, they do not give us information about HCube(G) directly, and a richer
theory is needed to help bridge this gap.
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