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THE COMBINED INCOMPRESSIBLE QUASINEUTRAL LIMIT OF THE

STOCHASTIC NAVIER–STOKES–POISSON SYSTEM

DONATELLA DONATELLI AND PRINCE ROMEO MENSAH

Abstract. This paper deals with the combined incompressible quasineutral limit of the weak
martingale solution of the compressible Navier–Stokes–Poisson system perturbed by a stochastic
forcing term in the whole space. In the framework of ill prepared initial data, we show the
convergence in law to a weak martingale solution of a stochastic incompressible Navier–Stokes
system. The result holds true for any arbitrary nonlinear forcing term with suitable growth. The
proof is based on the analysis of acoustic waves but since we are dealing with a stochastic partial
differential equation, the existing deterministic tools for treating this second-order equation
breakdown. Although this might seem as a minor modification, to handle the acoustic waves in
the stochastic compressible Navier–Stokes system, we produce suitable dispersive estimate for
first-order system of equations, which are an added value to the existing theory. As a by-product
of this dispersive estimate analysis, we are also able to prove a convergence result in the case of
the zero-electron-mass limit for a stochastic fluid dynamical plasma model.

1. Introduction

This paper deals with a singular limit result for the following stochastically-forced compress-
ible Navier–Stokes–Poisson system

d̺ε + div(̺εuε) dt = 0,(1.1)

d(̺εuε) +
[
div(̺εuε ⊗ uε) + ε−2∇(̺ε)γ

]
dt =

[
ν1∆uε + (ν2 + ν1)∇divuε

+ ε−2̺ε∇V ε
]
dt+G(̺ε, ̺εuε) dW,(1.2)

λ2∆V ε = ̺ε − 1(1.3)

which is a simplified model (for instance, the temperature equation is not taken into account) to
describe the dynamics of a plasma where the compressible electron fluid interacts with its own
electric field against a constant charged ion background.
In the model (1.1)–(1.3), ν1, ν2 ≥ 0 are the viscosity constants, ε > 0 is the Mach number, λ
is the Debye length and the adiabatic exponent is γ > 3

2 . The independent variables (t, x, ω)

are contained in the random spacetime cylinder [0, T ]×R
3 ×Ω where T > 0 is a fixed constant

and Ω is the sample space of a probability space (Ω,F ,P). On the other hand, the dependent
variables are the charged density ̺(t, x) ∈ R≥0 = [0,∞), the velocity vector u(t, x) ∈ R

3,
the electrostatic potential V (t, x) ∈ R≥0, and to enforce stochasticity, the cylindrical Wiener
process W (t, ω). Since the system of equations (1.1)–(1.3) are mutually coupled, for simplicity,
we enforce randomness throughout the system by way of the Wiener process. Nevertheless, the
analysis to be performed remains valid if one assumes that all the dependent variables depend
on the random parameter.
Since the problem (1.1)–(1.3) is posed on the entire Euclidean space R3, we complement it with
the far-reach condition

̺→ 1, |u| → 0, as |x| → ∞(1.4)
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to describe the behaviour of the density and velocity field as they approach spatial infinity.
Recently, the existence of a weak martingale solution of the system (1.6)–(1.8) was carried out
in [19] for a fixed Mach number ε > 0 and fixed Debye length λ > 0. In analogy with the purely
fluid system studied in [5, 6, 34, 35, 39], the proof of the result in [19] relies on the multi-layer
approximation scheme initiated by Lions [31] and Feireisl, Novotný and Petzeltová [21] with
suitable adaptation due to the presence of the Poisson equation (1.3).
We recall that the Mach number ε is given by the ratio of the characteristic fluid velocity and
the sound speed and it is related with the fluid compressibility. In many real world phenomena,
the fluid velocities are smaller compared to the sound speed, therefore, it is of interest to con-
sider small values of ε and to perform the related asymptotic analysis. In the physical regime
of small Mach number, it is observed that the pressure is unable to generate density variations,
therefore, the asymptotic dynamics is described by the incompressible physical state. On the
other hand, the Debye length λ which is the coupling constant between the Navier–Stokes equa-
tions (1.1)-(1.2) and the Poisson equation (1.3) is a characteristic physical parameter related to
the phenomenon of the so-called “Debye shielding” [24] and in plasma physics, represents the
distance over which the usual Coulomb field is killed off exponentially by the polarization of the
plasma. In many cases, the Debye length is very small compared to the macroscopic length, so
it makes sense to consider the limit λ→ 0. This type of limit is called a quasineutral limit since
the charge density almost vanishes identically. If we consider the Poisson equation (1.3), we can
observe that under this regime, the particle density is constrained to be close to the background
density which is one in our case. Hence, we can also conclude in this case that the asymptotic
state is the incompressible one.
Because of the previous considerations, it makes sense to study the combined incompressible,
quasineutral limit. In this paper, we set

(1.5) λ2 = εβ, β > 0,

where the values of β will be determined later on and we perform the limit, as ε → 0, of the
following system,

d̺ε + div(̺εuε) dt = 0,(1.6)

d(̺εuε) +
[
div(̺εuε ⊗ uε) + ε−2∇(̺ε)γ

]
dt =

[
ν1∆uε + (ν2 + ν1)∇divuε

+ ε−2̺ε∇V ε
]
dt+G(̺ε, ̺εuε) dW,(1.7)

εβ∆V ε = ̺ε − 1.(1.8)

We will be able to show rigorously, in the setting of ill prepared initial data, that the target
dynamics is given by the stochastically-forced incompressible Navier–Stokes system.
The study of singular limits for fluid-type systems such as (1.6)–(1.8) has seen extensive work
done in the deterministic system starting with the pioneering work by Klainerman and Majda
[30]. The zero Mach number limit result for the equations (1.6)-(1.7) have been extensively stud-
ied in the deterministic setting. We cannot give an exhaustive review on these results so we refer
the reader to [13, 12, 10, 20, 14, 32, 38], the references within them as well as papers citing them.
In the stochastic setting, however, we only know of the results in [2, 5, 34, 35]. Nevertheless, re-
lated singular limit results in the stochastic setting also exist in [33] where the two-dimensional
stochastic incompressible Navier–Stokes equation is obtained from the three-dimensional sto-
chastic compressible Navier–Stokes–Coriolis equation and in [7] where the stochastic compress-
ible Euler equation is also derived from the stochastic compressible Navier–Stokes equation. It
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is worth noting that by adapting the method of convex integration, which was introduced by
De Lellis and Székelyhidi [11] in the context of fluid dynamics, one can show that the initial
value problem for the stochastic compressible Euler equation is actually ill-posed in the class of
weak (distributional) solutions, see [3]. We also mention [1] that constructs the relative energy
inequality for the stochastic compressible Navier–Stokes system and apply this inequality to
show weak-strong uniqueness results as well as to obtain the stochastic incompressible Euler
equation via a singular limit argument. Finally, we also mention the result [4] in which station-
ary solutions are constructed for the compressible Navier–Stokes system driven by stochastic
forces in the full range of adiabatic exponent γ > 3

2 available for existence theory.
In the last years, the quasineutral limit for the Navier–Stokes–Poisson system have also been
widely studied in the deterministic setting in the case of weak and strong solutions. For instance,
see [40] for the smooth solution setting with well-prepared initial data, or [27] in the case of weak
solutions both in the whole space and in the torus without restrictions on the viscous coefficients,
with well-prepared initial data. A more general analysis in the context of weak solutions and in
the framework of general initial data was performed in [17] where all the regularity and smallness
assumptions of the previous paper were removed. In the contest of combined quasineutral and
inviscid limit, we mention [26] and [16]. Finally in [18], the authors investigated, in the whole
space, the combined incompressible quasineutral limit of the isentropic Navier–Stokes–Poisson
system and obtained the convergence of weak solution of the Navier–Stokes–Poisson system to
the weak solution of the incompressible Navier–Stokes equations by means of dispersive esti-
mates of Strichartz’s type. However, to our present knowledge, there are no results available for
the combined low Mach and Debye length limit in the stochastic setting.
Our aim in this paper is to show in the framework of ill-prepared initial data that any such
family of solutions parametrised by this Debye length, converges weakly in law, as the Debye
length vanishes, to a solution of the stochastically-forced incompressible Navier–Stokes equation
which is weak in the sense of probability and also weak in the sense of distributions. This result
is virtually a stochastic analogue of [18] with mainly, three significant improvements. Firstly,
by introducing stochasticity in the model, we can account for turbulence in the physical system
whereas from a purely mathematical point of view, we are presented with additional difficul-
ties such as obtaining equivalent stochastic a priori estimates and compactness results. These
improvements are especially non-trivial at the heart of our analyses which is to show that the
gradient part (or the curl-free part) of our vector-valued dependent variables are not present
in the limit system. Indeed, in the case of ill-prepared initial data and incompressible limit
analysis, one of the main issue is the lost of compactness of the velocity field due to the presence
of acoustic waves. These are waves that oscillates at very high frequencies and are supported
by the gradient part of the velocity. Here, since we deal at the same time with the quasineutral
limit, we also have to consider the high plasma oscillations, namely, the presence of stiff terms
due to the electric field, whose oscillations could not be in general controlled only by the dis-
persion of the acoustic waves. Related to this last point is this second improvement of [18]. In
fact in [18], the analysis of the acoustic waves was performed by standard Strichartz estimates
for the wave equation. In this paper, we obtain better dispersive estimates by utilising the full
Klein–Gordon operator as opposed to just the wave operator. Indeed, the velocity field disperses
and oscillates and the Klein–Gordon operator is able to capture this duality. Moreover due to
the stochastic setting the acoustic equations must be handled in a rather different manner, we
have to produce new suitable dispersive estimate for first-order system of equations. As a result,
we get that the dispersive behaviour dominates on the high frequency time oscillations, therefore
the usual estimates of Strichartz-type are sufficient to pass to the limit in the velocity field and
to control the electric field’s time oscillations (plasma oscillation). The third improvement of
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[18] is connected to this last part. Due to the difference in the analysis of the acoustic waves,
we obtain a better range of admissible values of β in (1.5) required for the convergence of the
gradient part of the momentum and the velocity fields to zero and to perform the convergence
analysis for the electric field. We will give further details of the above-mentioned techniques in
the subsequent paragraphs where we describe the structure of this paper.
In our preliminary section, Section 2, we present some notations that will be used throughout
this document and also state some analytic tools for deterministic PDEs. Since we have intro-
duced a stochastic perturbation in (1.7), we also present in Section 2, the assumptions on the
noise coefficient which will ensure that we have a well-defined stochastic integral. Furthermore,
since our ultimate goal is to explore the interplay between solutions of two sets of a system of
equations, we also make precise, the notion of a solution to both systems. We finally end Section
2 with the statement of our main result, Theorem 2.5.
After our preliminary section, the rest of our paper is devoted to the proof of our main result.
We begin in Section 3 by obtaining uniform a priori estimates via energy methods for the rele-
vant sequence of functions. Among these will be the analysis of the momentum sequence which
we decompose into its solenoidal part (or divergence-free part) and gradient part (or curl-free
part) and treat these parts separately in Section 3.1 and Section 3.2 respectively. The treatment
of the gradient part of the momentum in Section 3.2 will be the most important analysis in this
paper. Here, our goal will be the derivation of dispersive estimates when we project the momen-
tum equation (1.7) onto weakly curl-free fields. This goal is achieved by tools from harmonic
analysis and in particular, Strichartz-type estimates for Klein-Gordon equation; a second-order
spacetime equation. Unfortunately, because we are dealing with a stochastic partial differential
equation, the existing deterministic tools for treating this second-order equation breakdown. In
particular, we can not replicate the analysis in [18] in our setting since we can not make sense
of a second-order SPDE. Therefore, we consider instead, a stochastic Klein-Gordon system of
two first-order coupled equations, see (3.51). By relying on the methods used in [34, 35] for the
analysis of acoustic waves in the stochastic compressible Navier–Stokes system, we produce a
similar dispersive estimate for our first-order system of equations. Since the treatment of the
Klein-Gordon operator (3.52) is clearly more complicated than the wave operator treated in
[34, 35], obtaining dispersive estimate in our context is also more tricky. Nevertheless, prelim-
inary analyses into low and high frequencies regimes, see Proposition 3.7, enables us to obtain
our goal of showing that the gradient part of the momentum sequence vanishes in the limit as
the Debye number goes to zero. We then end Section 3 by showing in Section 3.3 that the
corresponding gradient part of the velocity sequence also vanishes in the limit as the Debye
number goes to zero.
With all our crucial uniform estimates in hand, we proceed to show stochastic compactness of
these uniformly bounded functions in Section 4. Since some of our functions live in spaces which
are not Polish, our compactness arguments relies on the Jakubowski–Skorokhod representation
theorem [25] rather than the more conventional Prokhorov and Skorokhod theorems for func-
tions in Polish spaces.
To complete the proof of our main result, Theorem 2.5, we identify the incompressible stochastic
Navier–Stokes equation as our limit system in Section 5. Here, we follow the original approach
in [2, 34] (and later polished in [5]) to identify the limit system except for the treatment of the
term due to the electric field. This is a purely deterministic argument and we thus follow the
approach in [18].
A result related to Theorem 2.5 is the so called zero electron mass number limit result. Although
being a different scaled Navier–Stokes–Poisson system in the strict physical sense of the word,
formally speaking, this corresponds to setting β = 0 in (1.5)–(1.8) above and studying the limit
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as ε → 0. We, therefore, present in the Section 6, the exact scaled model and make rigorous,
the formal notion of getting a limiting system when β in (1.5)–(1.8) is set to zero. This is given
in Theorem 6.2 and we obtain the same limit system (i.e., the stochastic incompressible Navier–
Stokes equation) as we do for our combined incompressible quasineutral limit result, Theorem
2.5. Indeed, the proof of this zero electron mass number limit result reduces to a corollary
of the combined incompressible quasineutral limit result when one replaces the analysis of the
singular homogeneous Klein–Gordon equation (3.37) and its solution (3.38) with the analysis of
its non-singular version as presented in Proposition 6.1. Setting β = 0 everywhere else in the
proof of Theorem 2.5, completes the proof of Theorem 6.2.

2. Preliminaries and Main Results

2.1. Notations. The following notations will the used throughout this work.

(1) For functions F and G and a variable p, we denote by F . G and F .p G, the existence
of a generic constant c > 0 and another such constant c(p) > 0 which now depends on p
such that F ≤ cG and F ≤ c(p)G respectively.

(2) We write K ⋐ R
3 if K ⊆ R

3 and K is compact.
(3) Let ∆−1 be the inverse of the Laplacian on R

3 and we denote byQ := ∇∆−1div and P :=
I−Q, Helmoltz decomposition onto gradient and solenoidal vector fields respectively.

(4) The homogeneous Sobolev space with differentiability m ∈ R and integrability q ≥ 1 is
denoted by Dm,q(R3), see [23], whereas

Lq
2(R

3) =
{
f ∈ L1

loc(R
3) : |f |χ{2|f |≤1} ∈ L2(R3), |f |χ{2|f |>1} ∈ Lq(R3)

}

is the Orlicz space of integrability q ≥ 1. The usual Lebesgue space of vectors which
are weakly solenoidal is denoted by Lq

div(R
3) with a similar notation for Sobolev spaces

W s,q
div(R

3), s ∈ R, Dm,q
div (R

3) and compactly supported smooth functions C∞
c,div(R

3).

2.2. Some analytic results. We collect in this section, some classical analytic results which
are required in the sequel. The following lemma gives some estimates for mollified functions, see
[12, 18].

Lemma 2.1. For κ ∈ (0, 1), let ℘κ be the usual mollifier. Then

(1) For any f ∈ D1,2(Rd), we have

‖f − [f ]κ‖Lp(Rd) .p κ
1−d

(

1

2
− 1

p

)

‖∇f‖L2(Rd)(2.1)

where [f ]κ := f ∗ ℘κ, p ∈ [2,∞) if d = 2 and p ∈ [2, 6] if d = 3.
(2) Furthermore,

‖[f ]κ‖Lp(Rd) .p κ
−s−d

(

1

r
− 1

p

)

‖f‖W−s,r(Rd)(2.2)

for any p, r ∈ [1,∞], r ≤ p and s ≥ 0.

2.3. Assumptions on the stochastic force. Let
(
Ω,F , (Ft)t≥0,P

)
be a stochastic basis

endowed with a right-continuous filtration (Ft)t≥0. Let W (t) be an (Ft)-cylindrical Wiener
process satisfying W (t) =

∑
k∈N βk(t)ek for t ∈ [0, T ] where (βk)k∈N is a family of mutually

independent Brownian motions and (ek)k∈N are orthonormal basis of a separable Hilbert space
U. Now consider the larger space U0 ⊃ U for which the embedding U →֒ U0 is Hilbert–Schmidt
and for which W has P-a.s. C([0, T ];U0) sample paths. To ensure that the stochastic integral
´ ·
0 G(̺, ̺u)dW is a well-defined (Ft)-martingale taking value in a suitable Hilbert space, we set

m = ̺u where 0 ≤ ̺ ∈ Lγ(R3) and u ∈ L2(R3) and let G(̺,m) : U → L1(K) for K ⋐ R
3 be
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defined as follows:
Assume there exist C1

c -functions gk : R3 × R≥0 × R
3 → R

3 such that

G(̺,m)ek = gk(·, ̺(·),m(·)),(2.3)
∑

k∈N

|gk(x, ̺,m)|2 . ̺2 + |m|2,
∑

k∈N

∣∣∇̺,m gk(x, ̺,m)
)∣∣2 . 1.(2.4)

2.4. Concepts of solution. We now define the notions of solution that we wish to consider.
A reader may refer to [5] for any terminology that they are not familiar with.

Definition 2.2. Let Λ be a Borel probability measure on L1(R3) × L1(R3). For ε > 0 fixed,
we say that

[
(Ωε,F ε, (F ε

t )t≥0,P
ε); ̺ε,uε, V ε,W ε

]
is a finite energy weak martingale solution of

(1.6)–(1.8) with initial law Λ provided:

(1) (Ωε,F ε, (F ε
t ),P

ε) is a stochastic basis with a complete right-continuous filtration and
W ε is a (F ε

t )-cylindrical Wiener process;
(2) the triplets (̺ε,uε, V ε) are (F ε

t )-adapted random distributions;
(3) there exists F ε

0 -measurable random variables (̺ε0, ̺
ε
0u

ε
0) such that Λ = P ◦ (̺ε0, ̺ε0uε

0)
−1;

(4) for all ψ ∈ C∞
c (R3) and φ ∈ C∞

c (R3) and all t ∈ [0, T ], the following

(2.5)

ˆ

R3

̺εψ dx =

ˆ

R3

̺ε0ψdx+

ˆ t

0

ˆ

R3

̺εuε · ∇ψ dxds,

ˆ

R3

̺εuε · φ dx =

ˆ

R3

̺ε0u
ε
0 · φ dx+

ˆ t

0

ˆ

R3

̺εuε ⊗ uε : ∇φ dxds

− ν1

ˆ t

0

ˆ

R3

∇uε : ∇φ dxds− (ν2 + ν1)

ˆ t

0

ˆ

R3

divuε divφ dxds

+
1

ε2

ˆ t

0

ˆ

R3

(̺ε)γdivφ dxds+
1

ε2

ˆ t

0

ˆ

R3

̺ε∇V ε · φ dxds

+

ˆ t

0

ˆ

R3

G(̺ε,mε) · φ dxdW ε

hold P
ε-a.s.

(5) the energy inequality

(2.6)

ˆ

R3

[
1

2
̺ε|uε|2 + 1

ε2
H(̺ε, 1) + εβ−2

∣∣∇V ε
∣∣2
]
(t) dx+ ν1

ˆ t

0

ˆ

R3

|∇uε|2 dxds

+ (ν2 + ν1)

ˆ t

0

ˆ

R3

|divuε|2 dxds ≤
ˆ

R3

[
1

2
̺ε0|uε

0|2 +
1

ε2
H(̺ε0, 1) + εβ−2

∣∣∇V ε
0

∣∣2
]
dx

+
1

2

ˆ t

0

ˆ

R3

(̺ε)−1
∑

k∈N

∣∣gk(x, ̺ε,mε)
∣∣2 dxds+

ˆ t

0

ˆ

R3

uε ·G(̺ε,mε) dxdW ε;

holds P-a.s. for a.e. t ∈ [0, T ] where

(2.7) H(̺ε, 1) =
1

(γ − 1)

[
(̺ε)γ − γ(̺ε − 1)− 1

]
.

Remark 2.3. At this point, we draw the reader’s attention to the differences in the noise terms
in (2.5) and (2.6) as opposed to their counterpart in [19]. This is because we have chosen a more
general noise in (1.7) compared to the version in [19] which is a multiple of the fluid’s density.
Beside the current version being more general, it also enjoys better estimates especially when
the density has low regularity.
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2.5. The limit system. We now give the precise definitions of a solution to the anticipated
limit system

(2.8)
div(U) = 0,

d(U) +
[
div(U⊗U)− ν1∆U+∇π

]
dt = G(1,U)dW

where π is the limit pressure.

Definition 2.4. If Λ is a Borel probability measure on L2
div(R

3), then we say that
[(Ω,F , (Ft),P),U,W ] is a weak martingale solution of (2.8) with initial law Λ provided:

(1) (Ω,F , (Ft),P) is a stochastic basis with a complete right-continuous filtration and W is
a (Ft)-cylindrical Wiener process;

(2) U is (Ft)-adapted and U ∈ Cw

(
[0, T ];L2

div(R
3)
)
∩ L2(0, T ;W 1,2

div (R
3)) P-a.s.;

(3) there exists F0-measurable random variable U0 such that Λ = P ◦ (U0)
−1,

(4) for all φ ∈ C∞
c,div(R

3) and for all t ∈ [0, T ], the following

ˆ

R3

U(t) · φ dx =

ˆ

R3

U(0) · φ dxds+

ˆ t

0

ˆ

R3

[
U⊗U− ν1∇U

]
: ∇φ dxds

+

ˆ t

0

ˆ

R3

G(1,U) · φ dxdW (s)

holds P-a.s.

The existence of weak martingale solution of (2.8) in the sense of Definition 2.4 above has
been shown in [8, 22] for bounded domain. For the case of the whole space, refer to [36, 34].

2.6. Main Results. We now state our main result. It establishes the convergence, as ε → 0,
of any family of solutions to (1.6)–(1.8) in the sense of Definition 2.2 to a solution of (2.8) in
the sense of Definition 2.4.

Theorem 2.5. Let Λ be a given Borel probability measure on L2
div(R

3). For ε > 0 and γ > 3/2,

we let Λε be a family of Borel probability measures on
[
L1
x

]2
= L1(R3)× L1(R3) such that

(2.9) Λε
{
(̺,m) : |̺− 1| ≤ εM

}
= 1

holds for a deterministic constant M > 0 which is independent of ε > 0. For all p ∈ [1,∞), we
assume that the following moment estimate

(2.10)

ˆ

[L1
x]

2

∥∥∥∥
1

2

|m|2
̺

+
1

ε2
H(̺, 1) + εβ−2|∇V |2

∥∥∥∥
p

L1
x

dΛε(̺,m) .p 1,

holds uniformly in ε. Further assume that (2.3)– (2.4) holds and that the marginal law of
Λε corresponding to the second component converges to Λ weakly in the sense of measures on

L
2γ
γ+1 (R3). If

[(Ωε,F ε, (F ε
t ),P

ε); ̺ε,uε, V ε,W ε](2.11)

is a finite energy weak martingale solution of (1.6)–(1.8) in the sense of Definition 2.2 with
initial law Λε and for any δ > 0,

0 < β <
1

2 + δ
,(2.12)
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then

̺ε → 1 in law in L∞(0, T ;Lγ
loc(R

3)),

uε → U in law in
(
L2(0, T ;W 1,2(R3)), w

)

as ε→ 0 and U is a weak martingale solution of (2.8) in the sense of Definition 2.4 with initial
law Λ.

Remark 2.6. Notice that the conditions (2.9) and (2.10) correspond to the ill prepared initial
data setting. These are the minimum requirements that we can impose on initial data so that
the solutions of the Navier–Stokes–Poisson system are uniformly bounded as ε→ 0.

3. Uniform estimates

Without loss of generality, see [25], it suffices to consider the following family
[
(Ω,F , (Ft)t≥0,P); ̺

ε,uε, V ε,W
]

(3.1)

instead of (2.11), see also [5, Remark 4.0.4] and [35, Remark 6.2.15]. So by (2.6), we have that

(3.2)

ˆ

R3

[
1

2
̺ε|uε|2 + 1

ε2
H(̺ε, 1) + εβ−2

∣∣∇V ε
∣∣2
]
(t) dx+ ν1

ˆ t

0

ˆ

R3

|∇uε|2 dxds

+ (ν2 + ν1)

ˆ t

0

ˆ

R3

|divuε|2 dxds ≤
ˆ

R3

[
1

2
̺ε0|uε

0|2 +
1

ε2
H(̺ε0, 1) + εβ−2

∣∣∇V ε
0

∣∣2
]
dx

+
1

2

ˆ t

0

ˆ

R3

(̺ε)−1
∑

k∈N

∣∣gk(x, ̺ε,mε)
∣∣2 dxds+

ˆ t

0

ˆ

R3

uε ·G(̺ε,mε) dxdW ;

holds P-a.s. for a.e. t ∈ [0, T ]. By (2.4), we obtain

(3.3)

E sup
t∈[0,T ]

∣∣∣∣
ˆ t

0

ˆ

R3

1

̺ε

∑

k∈N

∣∣gk(x, ̺ε,mε)
∣∣2dxds

∣∣∣∣
p

. E

[
ˆ T

0

ˆ

K

1

̺ε

∑

k∈N

∣∣gk(x, ̺ε,mε)
∣∣2dxds

]p

. E

[
ˆ T

0

ˆ

K

1

̺ε

(
1

2
|̺εuε|2 + (̺ε)2

)
dxdt

]p
. E

[
ˆ T

0

ˆ

K

(
1

2
̺ε|uε|2 + ̺ε

)
dxdt

]p

. 1 + E

[
ˆ T

0

ˆ

R3

(
1

2
̺ε|uε|2 + 1

ε2
H(̺ε, 1)

)
dxdt

]p

where K ⋐ R
3 is the support of G, recall Section 2.3. Note that we have also used the following

uniform-in-ε inequality ̺ε . 1 + 1
ε2H(̺ε, 1) in the above. Also, it follows from the Burkholder–

Davis–Gundy’s inequality, Young’s inequality and a similar estimate as (3.3) that

(3.4)

E

(
sup

t∈[0,T ]

∣∣∣∣
ˆ t

0

ˆ

R3

uε ·G(̺ε,mε) dxdW

∣∣∣∣
)p

. E

[
ˆ T

0

∑

k∈N

(
ˆ

R3

√
̺εuε · 1√

̺ε
gk(x, ̺

ε,mε) dx

)2

dt

]p
2

. E

[
ˆ T

0

(
ˆ

R3

1

2
̺ε|uε|2

)(
ˆ

R3

1

̺ε

∑

k∈N

|gk(x, ̺ε,mε)|2 dx
)
dt

]p
2

. 1 + δ E

[
sup

t∈[0,T ]

ˆ

R3

1

2
̺ε|uε|2 dx

]p
+ C(δ)E

[
ˆ T

0

ˆ

R3

(
1

2
̺ε|uε|2 + 1

ε2
H(̺ε, 1)

)
dxdt

]p
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for any δ > 0. By taking the p-th moment in (3.2), using (3.3)–(3.4) and applying Gronwall’s
lemma, we obtain

(3.5)

E

[
sup

t∈[0,T ]

ˆ

R3

1

2
̺ε|uε|2 dx

]p
+ E

[
sup

t∈[0,T ]

ˆ

R3

1

ε2
H(̺ε, 1) dx

]p

+ E

[
sup

t∈[0,T ]

ˆ

R3

εβ−2
∣∣∇V ε

∣∣2 dx
]p

+ ν1E

[
ˆ T

0

ˆ

R3

|∇uε|2 dxdt
]p

+ (ν2 + ν1)E

[
ˆ T

0

ˆ

R3

|divuε|2 dxdt
]p

. 1 + E

(
ˆ

R3

[
1

2
̺ε0|uε

0|2 +
1

ε2
H(̺ε0, 1) + εβ−2

∣∣∇V ε
0

∣∣2
]
dx

)p

uniformly of ε > 0. Now since

(3.6)

E

(
ˆ

R3

[
1

2
̺ε0|uε

0|2 +
1

ε2
H(̺ε0, 1) + εβ−2

∣∣∇V ε
0

∣∣2
]
dx

)p

=

ˆ

[L1
x]

2

∣∣∣∣
ˆ

R3

[
1

2

|m|2
̺

+
1

ε2
H(̺, 1) + εβ−2

∣∣∇V
∣∣2
]
dx

∣∣∣∣
p

dΛε(̺,m) .p 1,

holds uniformly of ε > 0 by (2.10), it follows from (3.5) that

(3.7)

E

[
sup

t∈[0,T ]

∥∥∥∥
1

ε2
H(̺ε, 1)

∥∥∥∥
L1(R3)

]p
.p 1, E

[
sup

t∈[0,T ]

∥∥∥∥
1

2
̺ε|uε|2

∥∥∥∥
L1(R3)

]p
.p 1,

E

[
sup

t∈[0,T ]

∥∥∥εβ−2
∣∣∇V ε

∣∣2
∥∥∥
L1(R3)

]p
.p 1, E

[
ˆ T

0

∥∥∥|∇uε|2
∥∥∥
L1(R3)

dt

]p
.p 1

uniformly in ε for any p ∈ [1,∞). We also obtain from the last estimate in (3.7) combined with
Sobolev’s embedding that the estimate

E

[
ˆ T

0
‖uε‖2L6(R3) dt

]p
.p 1(3.8)

holds uniformly in ε. Furthermore, we have the following result.

Lemma 3.1. Let γ = min{γ, 2}. The following estimate

(3.9) E

[
sup

t∈[0,T ]
‖σε‖

Lγ
2
(R3)

]p
.p 1

holds uniformly in ε > 0 where

σε =
̺ε − 1

ε
(3.10)

is the density fluctuation.

Proof. The result follows from the deterministic case which is shown in for example [18, Eqn.
(23)], see also [32]. However, for further clarification and for the use in subsequent computation
below, we present the proof here.
First of all, just as in [18, Eqn. (23)], by using the convexity of the mapping z 7→ zγ−1−γ(z−1)
and the first estimate in (3.7), if γ < 2 (so that ε2 < εγ for ε > 0 small) we can conclude that

(3.11) E

[
sup

t∈[0,T ]

ˆ

R3

(
|σε|2χ2|σε|≤1 + |σε|γχ2|σε|>1

)
dx

]p
. 1
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uniformly in ε > 0 and when γ ≥ 2, we obtain

(3.12) E

[
sup

t∈[0,T ]

ˆ

R3

|σε|2dx
]p

. 1

uniformly in ε > 0 and thus our final result. �

Also, the regularity of the (scaled) product of density fluctuation and the electric field is given
in the lemma below.

Lemma 3.2. For all p ∈ [1,∞), the following estimates

E

[
sup

t∈[0,T ]
‖ε−1σε∇V ε‖W−l,2(R3)

]p
.p 1(3.13)

holds uniformly in ε provided l ≥ 1 + 3
2 .

Proof. First of all, we can use (3.10) to rewrite the Poisson equation (1.8) as εβ−1∆V ε = σε. By
using the following identity

∆V ε∇V ε = div(∇V ε ⊗∇V ε)− 1

2
∇|∇V ε|2,(3.14)

it follows that

ε−1σε∇V ε = εβ−2

(
div(∇V ε ⊗∇V ε)− 1

2
∇|∇V ε|2

)
.(3.15)

Now since for k ≥ 3
2 , the estimate

E

[
sup

t∈[0,T ]

∥∥∥εβ−2
∣∣∇V ε

∣∣2
∥∥∥
W−k,2(R3)

]p
.p 1(3.16)

follow from the continuous embedding L∞
t L

1
x →֒ L∞

t W
−k,2
x and the bottom-left estimate of (3.7),

the bound (3.13) holds true where l = k + 1. �

In addition, the following lemma holds true.

Lemma 3.3. For all p ∈ [1,∞), the following estimates

E

[
ˆ T

0
‖uε‖2W 1,2(R3) dt

]p
.p 1, E

[
ˆ T

0
‖σεuε‖2W−1,2(R3) dt

]p
.p 1

holds uniformly in ε.

Proof. First of all, if we decompose R
3 into

{
x ∈ R

3 : 2|ρ− 1| ≤ 1
}

and
{
x ∈ R

3 : 2|ρ− 1| ≥ 1
}
,

then we obtain,

(3.17)

E

[
ˆ T

0
‖uε‖2L2(R3) dt

]p
≤ E

[
2 sup
t∈[0,T ]

∥∥̺ε − 1
∥∥
Lγ(R3)

ˆ T

0

∥∥uε
∥∥2
L

2γ
γ−1 (R3)

dt

]p

+ E

[
2 sup
t∈[0,T ]

∥∥̺ε|uε|2
∥∥
L1(R3)

]p
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for any p ∈ [1,∞). Next, we interpolate uε between L2(R3) and L6(R3) which yields

(3.18)

E

[
2 sup
t∈[0,T ]

∥∥̺ε − 1
∥∥
Lγ(R3)

ˆ T

0

∥∥uε
∥∥2
L

2γ
γ−1 (R3)

dt

]p

≤ 2p

{(
E

[
ˆ T

0

∥∥uε
∥∥2
L2(R3)

dt

]p1
(

1− 3

2γ

)) p
p1

+

(
E

[
sup

t∈[0,T ]

∥∥̺ε − 1
∥∥
Lγ(R3)

]p2)
p
p2

(
E

[
ˆ T

0

∥∥|∇uε|2
∥∥
L1(R3)

dt

]p3 3

2γ

) p
p3

}

uniformly in ε for all p1, p2, p3 ∈ [1,∞) such that 1
p1

+ 1
p2

+ 1
p3

≤ 1
p . Now since

(
E

[
sup

t∈[0,T ]

∥∥̺ε − 1
∥∥
Lγ(R3)

]p2)
p
p2

.p ε
2p
γ(3.19)

follow from (3.9), we obtain from (3.17)–(3.18) and the top-right estimate of (3.7), the following
estimate

E

[
ˆ T

0
‖uε‖2L2(R3) dt

]p
.p 1

uniformly in ε > 0. Thus, together with the last estimate in (3.7), we obtain the first estimate
in Lemma 3.3. To show the second estimate in Lemma 3.3, we fist note that by interpolating
between (3.8) and the first estimate of Lemma 3.3 which we have just shown, we can conclude
that

(3.20) E

[
ˆ T

0
‖uε‖2L4(R3) dt

]p
+ E

[
ˆ T

0
‖uε‖2

L
2γ
γ−1 (R3)

dt

]p
. 1

holds uniformly in ε. Now if γ = 2, then by using the L4
x-estimate of (3.20) above as well as

(3.9), we gain that for some p1, p2 ∈ (1,∞) such that 1
p = 1

p1
+ 1

p2
,

(3.21)

E

[
ˆ T

0
‖σεuε‖2

L
4
3 (R3)

dt

]p
≤
(
E

[
sup

t∈[0,T ]
‖σε‖2L2(R3)

]p1) p
p1

×
(
E

[
ˆ T

0
‖uε‖2L4(R3) dt

]p2) p
p2

. 1

uniformly in ε. Similarly, if γ = γ (so that γ < 2) we can use the Lr
x-estimate of (3.20) where

r = 2γ
γ−1 to obtain for some p1, p2 ∈ (1,∞) ,

(3.22)

E

[
ˆ T

0
‖σεuε‖2

L
2γ
γ+1 (R3)

dt

]p
≤
(
E

[
sup

t∈[0,T ]
‖σε‖2Lγ (R3)

]p1) p
p1

×
(
E

[
ˆ T

0
‖uε‖2

L
2γ
γ−1 (R3)

dt

]p2) p
p2

. 1

uniformly in ε. We can therefore draw our conclusion from (3.21)–(3.22) and the continuous
embedding

L2
(
0, T ;L

4

3 + Lq(R3)
)
→֒ L2

(
0, T ;W−1,2(R3)

)

which holds for every q ≥ 6
5 . Note that 2γ

γ+1 ∈ (65 ,
4
3 ) when γ = γ < 2. �
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As a result of Lemma 3.3, we obtain the following lemma.

Lemma 3.4. For all p ∈ [1,∞) and any ball Bm ⊂ R
3 of radius m ∈ N, there exists a constant

am > 0 such that the following estimates

E

[
sup

t∈[0,T ]
‖σε‖Lγ(Bm)

]p
+ E

[
sup

t∈[0,T ]
‖̺εuε‖

L
2γ
γ+1 (Bm)

]p
+ E

[
sup

t∈[0,T ]
‖̺ε‖Lγ (Bm)

]p
.p am

holds uniformly in ε where γ = min{γ, 2}.
Proof. The first (local) estimate follow from the global estimate (3.9). For the second, see for
example [34, (23) or (38)]. The third estimate is shown in [2, (3.7)] where the torus is now
replaced with a ball. �

In order to be able to prove compactness result in the next section we recover more refined
estimates on the soleinoidal and gradient part of the momentum.

3.1. Analysis of the solenoidal part of momentum.

Lemma 3.5. For any ϑ ∈ (0, 12) and some l ≥ 1, the following estimate

E ‖P (̺εuε)‖p
Cϑ([0,T ];W−l,2(R3))

. 1

holds uniformly in ε for some p ∈ [1,∞).

Proof. Since ε−2̺ε∇V ε = ε−1σε∇V ε + ε−2∇V ε, we can use (1.8) and (3.14) to rewrite (1.7) as

(3.23)

d(̺εuε) +

[
div(̺εuε ⊗ uε) +

1

ε2
∇(̺ε)γ

]
dt =

[
ν1∆uε + (ν2 + ν1)∇divuε

+ εβ−2div(∇V ε ⊗∇V ε)− 1

2
εβ−2∇|∇V ε|2 + 1

ε2
∇V ε

]
dt+G(̺ε, ̺εuε) dW

whose projection onto P is

(3.24)
dP(̺εuε) + P

[
div(̺εuε ⊗ uε)− ν1∆uε − εβ−2div(∇V ε ⊗∇V ε)

]
dt

= PG(̺ε, ̺εuε) dW

in the sense of distributions. To be more precise, for all φ ∈ C∞
c,div(R

3) and all t ∈ [0, T ], the
following

(3.25)

ˆ

R3

̺εuε(t) · φ dx =

ˆ

R3

̺ε0u
ε
0 · φ dx+

ˆ t

0

ˆ

R3

̺εuε ⊗ uε : ∇φ dxds

− ν1

ˆ t

0

ˆ

R3

∇uε : ∇φ dxds− εβ−2

ˆ t

0

ˆ

R3

∇V ε ⊗∇V ε : ∇φ dxds

+

ˆ t

0

ˆ

R3

G(̺ε, ̺εuε) · φ dxdW

hold P-a.s. Similar to [2, Proposition 3.6], we can now divide the above into the following

(3.26) Y ε(t) := P(̺ε0u
ε
0) +

ˆ t

0
P
[
div(̺εuε ⊗ uε)− ν1∆uε − εβ−2div(∇V ε ⊗∇V ε)

]
ds

and

Zε(t) :=

ˆ t

0
PG(̺ε, ̺εuε) dW (s).(3.27)
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Given that the embedding L1
x →֒ W−l,2

x is continuous for l > 3
2 , we obtain for any t1, t2 ∈ [0, T ]

and θ > 1,

E
∥∥Y ε(t2)− Y ε(t1)

∥∥θ
W−l,2(R3)

. E

(∣∣∣∣
ˆ t2

t1

ˆ

R3

(
̺εuε ⊗ uε − ν1∇uε − εβ−2∇V ε ⊗∇V ε

)
: ∇φ dxds

∣∣∣∣

)θ

. E

(
ˆ t2

t1

ˆ

R3

|̺εuε ⊗ uε|dxds+ ν1

ˆ t2

t1

ˆ

R3

|∇uε|dxds+
ˆ t2

t1

ˆ

R3

|εβ−2∇V ε ⊗∇V ε|dxds
)θ

. E

(
ˆ t2

t1

∥∥∥̺ε
∣∣uε
∣∣2
∥∥∥
L1(R3)

ds

)θ

+ E

(
ˆ t2

t1

∥∥∥
∣∣∇uε

∣∣2
∥∥∥
L1(R3)

ds

)θ

+ E

(
ˆ t2

t1

∥∥∥εβ−2
∣∣∇V ε

∣∣2
∥∥∥
L1(R3)

ds

)θ

.

If we now use (3.7), then it follows that

(3.28) E
∥∥Y ε(t2)− Y ε(t1)

∥∥θ
W−l,2(R3)

. |t2 − t1|
θ
2 .

Also, since the noise term is of compact support, then similar to (3.3), we also obtain from the

continuous embedding L1
x →֒W−l,2

x , l > 3
2 , and the bound (2.4),

(3.29)

E
∥∥Zε(t2)− Zε(t1)

∥∥θ
W−l,2(R3)

. E

[
ˆ t2

t1

∑

k∈N

‖gk(x, ̺ε, ̺εuε)‖2W−l,2(R3)

] θ
2

. E

[
ˆ t2

t1

∑

k∈N

(
ˆ

K

√
̺ε

1√
̺ε

|gk(x, ̺ε, ̺εuε)|dx
)2

ds

] θ
2

. E

[
ˆ t2

t1

(
ˆ

K
̺ε dx

)(
ˆ

K

1

̺ε

∑

k∈N

|gk(x, ̺ε, ̺εuε)|2 dx
)
ds

] θ
2

. E

[
ˆ t2

t1

(
ˆ

K

[
1 +

1

ε2
H(̺ε, 1)

]
dx

)(
ˆ

K

[1
2
̺ε|uε|2 + ̺ε

]
dx

)
ds

] θ
2

. |t2 − t1|
θ
2

(
1 + E sup

t∈[0,T ]

∥∥∥∥
1

2
̺ε|uε|2

∥∥∥∥
θ

L1(R3)

+ E sup
t∈[0,T ]

∥∥∥∥
1

ε2
H(̺ε, 1)

∥∥∥∥
θ

L1(R3)

)

where K ⋐ R
3 is the support of the noise-term and hence our claim follow from the Kolmogorov

continuity criterion since we have the estimate (3.7). �

3.2. Analysis of the gradient part of momentum: acoustic system. The aim of this
section is to analyse the gradient part of the momentum and, in particular, to show that any
family of such vector fields converges strongly to zero. The weak convergence of the gradient
part of momentum is strictly related to the so called plasma oscillation and to the propagation of
the acoustic waves. Therefore the first step is to recover the equations satisfied by the acoustic
waves and to investigate the related dispersive properties which will allow us to estimate the
gradient part of the momentum and the density fluctuation. In order to achieve this, we first
note that as a result of (2.7), (3.10) and (3.15), for all ψ ∈ C∞

c (R3) and φ ∈ C∞
c (R3) and all
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t ∈ [0, T ], we can rewrite the system (2.5) as

(3.30)

ε

ˆ

R3

σεψ dx = ε

ˆ

R3

σε0 ψdx+

ˆ t

0

ˆ

R3

̺εuε · ∇ψ dxds,

ε

ˆ

R3

̺εuε · φ dx = ε

ˆ

R3

̺ε0u
ε
0 · φ dx+ γ

ˆ t

0

ˆ

R3

σε divφ dxds+

ˆ t

0

ˆ

R3

1

ε
∇V ε · φ dxds

+ ε

ˆ t

0

ˆ

R3

(Fε
1 + F

ε
2) : ∇φ dxds+ ε

ˆ t

0

ˆ

R3

(F ε
1 + F ε

2 ) divφ dxds

+ ε

ˆ t

0

ˆ

R3

G(̺ε, ̺εuε) · φ dxdW

P-a.s. where

F
ε
1 := (̺εuε ⊗ uε)− εβ−2(∇V ε ⊗∇V ε), F

ε
2 := −ν1∇uε,(3.31)

F ε
1 :=

1

ε2
(γ − 1)H(̺ε, 1) + εβ−2 1

2
|∇V ε|2, F ε

2 := −(ν1 + ν2)divu
ε(3.32)

are such that by (3.7), we have

(3.33)

E

[
ˆ T

0
‖Fε

1‖2L1(R3) dt

]p
.p 1, E

[
ˆ T

0
‖Fε

2‖2L2(R3) dt

]p
.p 1

E

[
ˆ T

0
‖F ε

1 ‖2L1(R3) dt

]p
.p 1, E

[
ˆ T

0
‖F ε

2 ‖2L2(R3) dt

]p
.p 1

uniformly in ε.
Our aim now is to analyse the oscillating waves generated in the system (3.30) by projecting the
system onto its (weakly) curl-free part or gradient part. For this reason, it suffices to consider
test functions ψ ∈ C∞

c (R3) and ∇φ = φ ∈ C∞
c (R3) such that for all t ∈ [0, T ], we have

(3.34)

εβ+1

ˆ

R3

σεψ dx = εβ+1

ˆ

R3

σε0 ψdx+ εβ
ˆ t

0

ˆ

R3

̺εuε · ∇ψ dxds,

εβ+1

ˆ

R3

̺εuε · ∇φdx = εβ+1

ˆ

R3

̺ε0u
ε
0 · ∇φdx+ γεβ

ˆ t

0

ˆ

R3

σε ∆φdxds

+

ˆ t

0

ˆ

R3

∇∆−1σε · ∇φdxds+ εβ+1

ˆ t

0

ˆ

R3

(Fε
1 + F

ε
2) : ∇2φdxds

+ εβ+1

ˆ t

0

ˆ

R3

(F ε
1 + F ε

2 )∆φdxds+ εβ+1

ˆ t

0

ˆ

R3

G(̺ε, ̺εuε) · ∇φdxdW

P-a.s. where we have used the relation
ˆ t

0

ˆ

R3

1

ε
∇V ε · ∇φdxds = − 1

εβ

ˆ t

0

ˆ

R3

σεφdxds =
1

εβ

ˆ t

0

ˆ

R3

∇∆−1σε · ∇φdxds(3.35)

which follows from the Poisson equation (1.8). If we now set Ψε = ∆−1div(̺εuε) so that
∇Ψε = Q(̺εuε), then we observe that solving (3.34) is exactly the same as solving the following
stochastic inhomogeneous Klein–Gordon system of equation

(3.36)

εβ+1dσε + εβ∆Ψε dt = 0,

εβ+1d∇Ψε +
(
γεβ∇−∇∆−1

)
σε dt = εβ+1

[
Qdiv(Fε

1 + F
ε
2) +∇(F ε

1 + F ε
2 )
]
dt

+ εβ+1QG(̺ε, ̺εuε) dW,

in the sense of distributions. Our goal now is to derive dispersive estimates for the above system.
To do this, we first consider the homogeneous part of (3.36) and rescale time for simplicity. To
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be more precise, we consider the following scaled (deterministic)1 homogeneous Klein–Gordon
equation

(3.37)

dσε + εβ∆Ψε dt = 0,

d∇Ψε +
(
γεβ∇−∇∆−1

)
σε dt = 0,

σε(0) = σε0; ∇Ψε(0) = ∇Ψε
0

where Ψε = ∆−1div(̺εuε) is such that ∇Ψε = Q(̺εuε) and σε are a solution pair of (3.37) given
explicitly by

(3.38)

∇Ψε(·, t) = 1

2
exp

(
i
√
εβ(1− γεβ∆) t

)
(
∇Ψε

0(·) −
i
√
εβ(1− γεβ∆)

εβ
∇∆−1σε0(·)

)

+
1

2
exp

(
− i
√
εβ(1− γεβ∆) t

)
(
∇Ψε

0(·) +
i
√
εβ(1− γεβ∆)

εβ
∇∆−1σε0(·)

)
,

σε(·, t) = 1

2
exp

(
i
√
εβ(1− γεβ∆) t

)
(
σε0(·) +

iεβ∆√
εβ(1− γεβ∆)

Ψε
0(·)
)

+
1

2
exp

(
− i
√
εβ(1− γεβ∆) t

)
(
σε0(·) −

iεβ∆√
εβ(1− γεβ∆)

Ψε
0(·)
)
.

Before we continue, we also remark that by substituting the first equation of (3.37) into the
second and taking the divergence of the resulting equation, one obtains the dispersive equation
satisfied by the density fluctuation,

∂ttσ
ε − εβ

(
γεβ∆− 1

)
σε = 0(3.39)

which is more reminiscent of the ‘standard’ homogeneous Klein–Gordon equation especially if
γ = ε = 1. Since our ultimate goal is to add a stochastic forcing term to the Klein–Gordon
equation, its first-order form (3.37) rather than its second-order form (3.39) is appropriate.

Remark 3.6. We want to point out that compared to the wave equation, the Klein–Gordon
equation in both its formulations (3.39) or (3.37) has the property to fully and accurately describe
the properties of our system. Indeed, as would be shown shortly, analysing the Klein–Gordon
equation (3.37) rather than the wave equation as was done in [18], will lead to better dispersive
estimates by capturing both oscillatory (plasma oscillations) and dispersive (acoustic waves)
behaviours present in our system. Consequently, we also obtain a better bound for β in (1.5)
required for the convergence to zero of the gradient part of the velocity and momentum fields
and to perform the convergence analysis for the electric field. In particular, we will show that
for any δ > 0, the aforementioned convergence results will hold true provided that β ∈ (0, 1

2+δ )

(compare with the values of β obtained in [18, Theorem 3.3]).

Let us first state and prove the following L2
x−L2

x Strichartz estimate for any family (∇Ψε, σε)ε>0

of solution pair of (3.37).

Proposition 3.7. Let β > 0 be a constant. For any p ∈ [1,∞) and r ∈ [1,∞], the solution pair
(∇Ψε, σε) of (3.37) satisfy the estimate

E ‖∇Ψε‖p
Lr
(
0,T ;L2(R3)

) + E ‖σε‖p
Lr
(
0,T ;L2(R3)

) . 1

ε3β

(
E ‖σε0‖pL2(R3)

+ E ‖∇Ψε
0‖pL2(R3)

)

1Here, by ‘deterministic’, we mean that there is no stochastic forcing term in the equation. The functions can
however depend on a random parameter.
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uniformly in ε for σε0 ∈ Lp(Ω;L2(R3)) and ∇Ψε
0 ∈ Lp(Ω;L2(R3)).

Proof. First of all, we observe that by considering the solution pair (∇Ψε, σε) given by (3.38) in
Fourier space yields the following

(3.40)

iξiΨ̂
ε(ξ, t) =

1

2
exp

(
i
√
εβ(1 + γεβ |ξ|2) t

)
(
iξiΨ̂

ε
0(ξ) +

i
√
εβ(1 + γεβ|ξ|2)

εβ
iξi|ξ|−2σ̂ε0(ξ)

)

+
1

2
exp

(
− i
√
εβ(1 + γεβ |ξ|2) t

)
(
iξiΨ̂

ε
0(ξ)−

i
√
εβ(1 + γεβ|ξ|2)

εβ
iξi|ξ|−2σ̂ε0(ξ)

)
,

σ̂ε(ξ, t) =
1

2
exp

(
i
√
εβ(1 + γεβ |ξ|2) t

)
(
σ̂ε0(ξ)−

iεβ |ξ|2√
εβ(1 + γεβ|ξ|2)

Ψ̂ε
0(ξ)

)

+
1

2
exp

(
− i
√
εβ(1 + γεβ |ξ|2) t

)
(
σ̂ε0(ξ) +

iεβ |ξ|2√
εβ(1 + γεβ |ξ|2)

Ψ̂ε
0(ξ)

)
.

In order to estimate Ψ̂ε, σ̂ε, we have to distinguish between high and low frequencies. For sim-
plicity we set 1 to be the constant for the upper (lower) boundary of the low (high) frequencies.
We recall that by Plancherel’s theorem,

‖σε(x, ·)‖2L2(R3) =

ˆ

R3

|σ̂ε(ξ, ·)|2 dξ(3.41)

and since | exp
(
± i
√
εβ(1 + γεβ |ξ|2) t

)
| = 1 holds independently of t > 0, it follows that

(3.42) |σ̂ε(ξ, t)|2 . |σ̂ε0(ξ)|2 +mε(ξ)|iξiΨ̂ε
0(ξ)|2

where mε(ξ) is the Fourier multiplier given by

mε(ξ) =
εβ|ξ|2

1 + γεβ |ξ|2 .(3.43)

Now given that ε > 0, ε→ 0 and γ > 3
2 , we have the following:

A : if 0 < εβ < |ξ| ≤ 1, then 0 < mε(ξ) ≤ 1
γ+1 <

2
5 ,

B : if 0 < εβ < 1 < |ξ| <∞, then 0 < mε(ξ) < 1
γ <

2
3

where cases A corresponds to the low-frequency regime and case B is the high-frequency regime.
In all cases, we see that the multiplier mε(ξ) is bounded uniformly in ε > 0 and so it follow from
(3.42) that for any p ∈ [1,∞) and r ∈ [1,∞],

E ‖σε‖p
Lr
(
0,T ;L2(R3)

) . E ‖σε0‖pL2(R3)
+ E ‖∇Ψε

0‖pL2(R3)
(3.44)

uniformly in ε for σε0 ∈ Lp(Ω;L2(R3)) and ∇Ψε
0 ∈ Lp(Ω;L2(R3)). Now similar to (3.42), one

observes that

(3.45) |iξiΨ̂ε(ξ, t)|2 . |iξiΨ̂ε
0(ξ)|2 +

1

εβ
nε(ξ)|σ̂ε0(ξ)|2

where nε(ξ) is the Fourier multiplier given by

nε(ξ) =
εβ

mε(ξ)
=

1 + γεβ|ξ|2
|ξ|2 .(3.46)

Therefore, taking into account that ε > 0, ε→ 0, we have the following:

A : if 0 < εβ < |ξ| ≤ 1, then 0 ≤ nε(ξ) < γ+1
ε2β

,

B : if 0 < εβ < 1 < |ξ| <∞, then 0 < nε(ξ) < γ+1
ε2β

.
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We can thus conclude from (3.45) that

(3.47) |iξiΨ̂ε(ξ, t)|2 .γ |iξiΨ̂ε
0(ξ)|2 +

1

ε3β
|σ̂ε0(ξ)|2.

Just as we did for (3.44), we can conclude from (3.47) that for any p ∈ [1,∞) and r ∈ [1,∞],

E ‖∇Ψε‖p
Lr
(
0,T ;L2(R3)

) .γ
1

ε3β

(
E ‖σε0‖pL2(R3)

+ E ‖∇Ψε
0‖pL2(R3)

)
(3.48)

uniformly in ε > 0. Summing (3.44) and (3.48) finishes the proof. �

Lemma 3.8. Let β > 0 be a constant. Then for any δ > 0 and for any p ∈ [1, 2], the following
estimate

E

[
ˆ T

0

∥∥Q[̺εuε]κ
∥∥2
L2(R3)

dt

]p
.p ε

1−(2+δ)β ,(3.49)

holds uniformly in ε > 0 for some kernel κ > 0. Furthermore,

Q(̺εuε) → 0 in Lp
(
Ω;L2

(
0, T ;L

2γ
γ+1

loc (R3)
))

(3.50)

holds as ε→ 0 provided 0 < β < 1
2+δ .

Proof. First of all, let us rewrite the system (3.36) as follows,

(3.51)

εβ+1d

[
σε

∇Ψε

]
= A

[
σε

∇Ψε

]
dt− εβ+1

[
0

Qdiv(Fε
1 + F

ε
2) +∇(F ε

1 + F ε
2 )

]
dt

+ εβ+1

[
0

QGε

]
dWt

where Gε := G(̺ε, ̺εuε) and where

A := −
[

0 εβdiv

γεβ∇−∇∆−1 0

]
.(3.52)

is an infinitesimal generator of a C0-semigroup S(t) with domain

Dom(A) =
{
[σ,∇Ψ]T : σ ∈W 1,2(R3), ∇Ψ,∆Ψ ∈ L2(R3)

}
.

Given the properties of A and the fact that the noise operator is Hilbert–Schmidt, it follows
from [9, Theorems 6.5, 6.7, 7.2] that a mild solution

(3.53)

[
σε

∇Ψε

]
(t) = S

(
t

εβ+1

)[
σε0

∇Ψε
0

]
−
ˆ t

0
S

(
t− s

εβ+1

){[
0

Qdiv(Fε
1 + F

ε
2) +∇(F ε

1 + F ε
2 )

]}
ds

+

ˆ t

0
S

(
t− s

εβ+1

)[
0

QGε

]
dWs

of (3.51) exists and this mild solution is identical to the weak solution which one can verify to
be (3.34). In (3.53),

(3.54) S (t)

[
σε0(·)

∇Ψε
0(·)

]
=

[
σε(·, t)
∇Ψε(·, t)

]
,

given explicitly by the pair (3.38) is the solution to the homogeneous problem (3.37).
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To obtain proper estimates for the solution to (3.53), we first regularise. Since (3.53) is linear
in Ψε,Fε, F ε and Gε, by convolution with the usual mollifier ℘κ and the use of Proposition 3.7
(with the choice of p = r = 2), we obtain

(3.55) E

∥∥∥∥∥S(t)
[

[σε0]κ

∇[Ψε
0]κ

]∥∥∥∥∥

2

L2(0,T ;L2(R3))

.
1

ε3β
E

∥∥∥∥∥

[
[σε0]κ

∇[Ψε
0]κ

] ∥∥∥∥∥

2

L2(R3)

uniformly in ε > 0 so that after rescaling t/εβ+1 7→ t, recall (3.51), we obtain

(3.56) E

∥∥∥∥∥S
(

t

εβ+1

)[
[σε0]κ

∇[Ψε
0]κ

]∥∥∥∥∥

2

L2(0,T ;L2(R3))

. ε1−2β
E

∥∥∥∥∥

[
[σε0]κ

∇[Ψε
0]κ

]∥∥∥∥∥

2

L2(R3)

with a constant independent of ε > 0. To treat the deterministic retarded operator on the
right-hand side of (3.53), we use the semigroup property and a similar bound as (3.56) to get

(3.57)

E

∥∥∥∥∥

ˆ t

0
S

(
t− s

εβ+1

){[
0

Qdiv
(
[Fε

1]κ + [Fε
2]κ
)
+∇

(
[F ε

1 ]κ + [F ε
2 ]κ
)
]}

ds

∥∥∥∥∥

2

L2(0,T ;L2(R3))

= E

∥∥∥∥
ˆ t

0
S

(
t

εβ+1

)
S

( −s
εβ+1

){
Qdiv

(
[Fε

1]κ + [Fε
2]κ
)
+∇

(
[F ε

1 ]κ + [F ε
2 ]κ
)}

ds

∥∥∥∥
2

L2((0,T )×R3)

. ε1−2β
E

∥∥∥∥
ˆ t

0
S

( −s
εβ+1

){
Qdiv

(
[Fε

1]κ + [Fε
2]κ
)
+∇

(
[F ε

1 ]κ + [F ε
2 ]κ
)}

ds

∥∥∥∥
2

L2(R3)

.

However, due to Jensen’s inequality, the fact that the semigroup is isometric in L2 and the
continuity of Q, we obtain

(3.58)

E

∥∥∥∥
ˆ t

0
S

( −s
εβ+1

){
Qdiv

(
[Fε

1]κ + [Fε
2]κ
)
+∇

(
[F ε

1 ]κ + [F ε
2 ]κ
)}

ds

∥∥∥∥
2

L2(R3)

. E

ˆ t

0

∥∥div
(
[Fε

1]κ + [Fε
2]κ
)∥∥2

L2(R3)
ds+ E

ˆ t

0

∥∥∇
(
[F ε

1 ]κ + [F ε
2 ]κ
)∥∥2

L2(R3)
ds.

If we now choose s = r = 1 and p = 2 in (2.2) to estimate F
ε
1 and F ε

1 and choose s = 1 and
p = r = 2 in (2.2) to estimate F

ε
2 and F ε

2 , then it follows from (3.58) and (3.33) that

(3.59)

E

ˆ t

0

∥∥div
(
[Fε

1]κ + [Fε
2]κ
)∥∥2

L2(R3)
ds+ E

ˆ t

0

∥∥∇
(
[F ε

1 ]κ + [F ε
2 ]κ
)∥∥2

L2(R3)
ds

. κ−
5

2E

ˆ t

0

(
‖div Fε

1‖2W−1,1(R3) + ‖∇F ε
1 ‖2W−1,1(R3)

)
ds

+ κ−1
E

ˆ t

0

(
‖div Fε

2‖2W−1,2(R3) + ‖∇F ε
2 ‖2W−1,2(R3)

)
ds

. κ−
5

2

for any κ > 0 small. If we now choose κ = ε2δβ/5 for any δ > 0, then from (3.57)–(3.59), we
have shown that the estimate

(3.60)
E

∥∥∥∥∥

ˆ t

0
S

(
t− s

εβ+1

){[
0

Qdiv
(
[Fε

1]κ + [Fε
2]κ
)
+∇

(
[F ε

1 ]κ + [F ε
2 ]κ
)
]}

ds

∥∥∥∥∥

2

L2(0,T ;L2(R3))

. ε1−(2+δ)β
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holds uniformly in ε > 0. Now similar to the arguments on [34, Page 26], if we let gε
i :=

gi(̺
ε, ̺εuε), then we can use Itô’s isometry, properties of the semigroup, the continuity of Q

and a similar argument as in (3.56) above to obtain

(3.61)

E

∥∥∥∥∥

ˆ t

0
S

(
t− s

εβ+1

)[
0

Q[Gε]κ

]
dW (s)

∥∥∥∥∥

2

L2(0,T ;L2(R3))

. ε1−2β
E

ˆ t

0

∑

i∈N

∥∥[gε
i ]κ
∥∥2
L2(R3)

ds

. ε1−2βκ−
5

2E

ˆ t

0

∑

i∈N

∥∥gε
i

∥∥2
W−1,1(K)

ds . ε1−(2+δ)β
E

ˆ t

0

∑

i∈N

∥∥gε
i

∥∥2
L1(K)

ds . ε1−(2+δ)β

uniformly in ε where K ⋐ R
3 is the support of the noise, recall (2.3)–(2.4). By combining the

estimates (3.56) and (3.60)–(3.61), we get from (3.53) that

(3.62) E

∥∥∥∥∥

[
[σε]κ

∇[Ψε]κ

]∥∥∥∥∥

2

L2(0,T ;L2(R3))

. ε1−(2+δ)β

holds uniformly in ε > 0 for any δ > 0 so in particular,

(3.63) E ‖Q[̺εuε]κ‖2L2(0,T ;L2(R3)) . ε1−(2+δ)β

holds uniformly in ε > 0 since ∇Ψε = Q(̺εuε). Thus, we have shown (3.49) for p = 2. The
other cases of p ∈ [1, 2) follow from Hölder inequality when one considers a random variable X
as the product 1×X.
To show (3.50), we use the continuity of Q, the second estimate in Lemma 3.4 and the fact that
2γ
γ+1 < 2 to obtain for any ball Bm ⊂ R

3 of radius m ∈ N,

(3.64)

lim
ε→0

E

[
ˆ T

0

∥∥Q(̺εuε)
∥∥2
L

2γ
γ+1 (Bm)

dt

]p
.p,m lim

ε→0
E

[
ˆ T

0

∥∥Q[̺εuε]κ
∥∥2
L2(R3)

dt

]p

+ lim
ε→0

lim
κ→0

E

[
ˆ T

0
‖[̺εuε]κ − (̺εuε)‖2

L
2γ
γ+1 (Bm)

dt

]p

The right-hand side converges strongly to zero due to (3.49) and the second estimate of Lemma
3.4 provided that β < 1

2+δ for any δ > 0. �

3.3. Analysis of the gradient part of velocity. By relying on the analysis of the gradient
part of momenta given in Lemma 3.8, we can now show that the gradient part of the family of
velocities also vanishes in the limit.

Lemma 3.9. Let β > 0 be a constant. Then for any δ > 0, the following estimates

E

[
ˆ T

0

∥∥Q(uε)
∥∥2
L2(R3)

dt

]p
.p ε

1−(2+δ)β ,

holds uniformly in ε > 0 for any p ∈ [1, 2] and

Q(uε) → 0 in Lp
(
Ω;L2

(
(0, T )× R

3
))

(3.65)

as ε→ 0 provided that 0 < β < 1
2+δ .

Proof. To prove the above lemma, we first note that since uε = [̺εuε]κ − ε[σεuε]κ + uε − [uε]κ,
the following inequality

E

[
ˆ T

0
‖Q(uε)‖2L2(R3) dt

]p
.p J1 + J2 + J3
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holds where, thanks to Lemma 3.8 the inequality

J1 := E

[
ˆ T

0

∥∥Q[̺εuε]κ
∥∥2
L2(R3)

dt

]p
.p ε

1−(2+δ)β

holds uniformly in ε > 0 for any δ > 0. By using (2.2), the second estimate in Lemma 3.3 and
the continuity of Q, we also have

J2 := E

[
ˆ T

0

∥∥εQ[σεuε]κ
∥∥2
L2(R3)

dt

]p
. ε2p κ−2p

E

[
ˆ T

0
‖σεuε‖2W−1,2(R3) dt

]p
. ε2p κ−2p

uniformly in ε > 0. Finally, by using (2.1), it follows that

J3 := E

[
ˆ T

0

∥∥Q(uε)−Q[uε]κ
∥∥2
L2(R3)

dt

]p
. κ2pE

[
ˆ T

0
‖∇uε‖2L2(R3) dt

]p
. κ2p

holds uniformly in ε > 0. By choosing κ = ε1/2 in the estimates for J2 and J3, we have thus
shown that

E

[
ˆ T

0
‖Q(uε)‖2L2(R3) dt

]p
. ε1−(2+δ)β

hence our final results. �

4. Compactness

We now have all the required estimates so we proceed with showing compactness. For this,
we let

• L[̺ε] be the law of ̺ε on the space χ̺ := Cw([0, T ];L
γ
loc(R

3)),
• L[uε] be the law of uε on the space χu := (L2(0, T ;W 1,2(R3), w),

• L[̺εuε] be the law of ̺εuε on the space χ̺u := L2(0, T ;L
2γ
γ+1

loc (R3)),
• L[W ] be the law of W on the space χW := C([0, T ];U0)

and let L[̺ε,uε, ̺εuε,W ] be the joint law of χ = χ̺ × χu ××̺u × χW .

Lemma 4.1. Let β > 0 be a constant such that for any δ > 0, we have 0 < β < 1
2+δ . The

collection {L[̺ε,uε, ̺εuε,W ] : ε ∈ (0, 1)} is tight on χ.

Proof. We start by showing that the collection {L[̺ε] : ε ∈ (0, 1)} is tight on χ̺. From the
continuity equation (1.6) and the second uniform bound in Lemma 3.4, it follows that for any
ball Bm ⊂ R

3 of radius m ∈ N, there exists a constant am > 0 such that the bound

E

[
sup

t∈[0,T ]

∥∥∂t̺ε
∥∥
W

−1,
2γ
γ+1 (Bm)

]p
. am

holds uniformly in ε > 0 for any p ∈ [1,∞). As such, there exists a Lipschitz continuous
representation of the density sequence (not relabelled) satisfying

E
∥∥̺ε
∥∥p
C0,1([0,T ];W

−1,
2γ
γ+1 (Bm))

. am(4.1)

uniformly in ε > 0. Furthermore, by [37, Corollary B.2], for any sequence of positive numbers
(am)m∈N and any sequence of balls (Bm)m∈N, the set

Km =
{
̺ ∈ χ̺ : ‖̺‖L∞(0,T ;Lγ(Bm)) + ‖̺‖

C0,1([0,T ];W
−1,

2γ
γ+1 (Bm))

≤ am, m ∈ N

}
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is relatively compact in χ̺ for all γ ≥ 3
5 . If we now take the complement of Km, then we find

that there exist an m ∈ N such that by the third uniform bound in Lemma 3.4 and (4.1)

L[̺ε](KC
m) = P

(
‖̺ε‖L∞(0,T ;Lγ(Bm)) + ‖̺ε‖

C0,1([0,T ];W
−1,

2γ
γ+1 (Bm))

> am

)

≤ P

(
‖̺ε‖L∞(0,T ;Lγ(Bm)) >

am
2

)
+ P

(
‖̺ε‖

C0,1([0,T ];W
−1,

2γ
γ+1 (Bm))

>
am
2

)

≤ 4

a2m
E

(
‖̺ε‖2L∞(0,T ;Lγ(Bm)) + ‖̺ε‖2

C0,1([0,T ];W
−1,

2γ
γ+1 (Bm))

)
.

4

a2m

hence the collection {L[̺ε] : ε ∈ (0, 1)} is tight on χ̺.
Next, to show that the collection {L[̺εuε] : ε ∈ (0, 1)} is tight on χ̺u, we first note that
̺εuε = P(̺εuε) +Q(̺εuε) where the gradient part of the momenta satisfy (3.50). On the other
hand, by the continuity of P, the second estimate of Lemma 3.4 and Lemma 3.5, we can deduce
that there exists a constant am > 0 such that for any ball Bm ⊂ R

3 of radius m ∈ N, the
solenoidal part of the momenta satisfy the following estimates

E

[
sup

t∈[0,T ]
‖P(̺εuε)‖

L
2γ
γ+1 (Bm)

]p
+ E ‖P (̺εuε)‖p

Cϑ([0,T ];W−l,2(Bm))
.p am

uniformly in ε. Tightness on χ̺u thus follow from the compact embedding

L∞
(
0, T ;L

2γ
γ+1 (Bm)

)
∩ Cϑ

(
[0, T ];W−l,2(Bm)

)
→֒ Cw

(
[0, T ];L

2γ
γ+1 (Bm)

)
(4.2)

and the fact that Cw

(
[0, T ];L

2γ
γ+1 (Bm)

)
is contained in χ̺u.

Now, using the first estimate of Lemma 3.3, we can conclude that the collection {L[uε] : ε ∈
(0, 1)} is tight on χu and since L[W ] is a Radon measure on the Polish space χW , it is tight.
This completes the proof. �

With the tightness result, Lemma 4.1 in hand, we can now conclude from the Jakubowski–
Skorokhod representation theorem [25], the following result.

Proposition 4.2. Let β > 0 be a constant such that for any δ > 0, we have 0 < β < 1
2+δ . There

exist a complete probability space (Ω̃, F̃ , P̃) with χ-valued random variables

(˜̺, Ũ,M̃, W̃ ) and (˜̺ε, Ũε,M̃ε, W̃ ε)ε∈(0,1),

such that up to subsequence (not relabelled)

(1) for all ε ∈ (0, 1), the joint laws

L[ ˜̺ε, Ũε,M̃ε, W̃ ε] and L[̺ε,uε, (̺εuε),W ]

coincide on χ;
(2) the law L[ ˜̺, Ũ,M̃, W̃ ] on χ is a Radon measure;
(3) as ε→ 0, we have that the following convergence

˜̺ε → ˜̺ in χ̺(4.3)

Ũε → Ũ in χu(4.4)

M̃ε → M̃ in χ̺u(4.5)

W̃ ε → W̃ in χW(4.6)

holds P̃-a.s.
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A direct consequence of the equality of laws as established in Proposition 4.2 is that

M̃ε = ˜̺εŨε(4.7)

holds P̃-a.s. Also, in combination with Lemma 3.4, (3.65) and (3.50), we can deduce that the
following convergence

˜̺ε → 1 in Cw

(
[0, T ];Lγ

loc(R
3)
)
,(4.8)

Q(Ũε) → 0 in L2
(
(0, T ) × R

3
)
,(4.9)

Q(M̃ε) → 0 in L2
(
0, T ;L

2γ
γ+1

loc (R3)
)
,(4.10)

holds P̃-a.s. as ε→ 0. Furthermore, we can show the following result.

Lemma 4.3. Let β > 0 be a constant such that for any δ > 0, we have 0 < β < 1
2+δ . The

following convergence

P(M̃ε) → M̃ in L2
(
0, T ;L

2γ
γ+1

loc (R3)
)
,(4.11)

P(Ũε) → M̃ in L2
(
0, T ;L

2γ
γ+1

loc (R3)
)

(4.12)

holds P̃-a.s. as ε→ 0 and finally,

Ũ = M̃(4.13)

holds P̃-a.s.

Proof. The first result (4.11) is an immediate consequence of (4.5) and (4.10). The second result
(4.12) is however slightly trickier since χu in (4.4) is only endowed with the weak topology.
Nevertheless, since equality of laws holds true, by observing that

P(Ũε) = Q(˜̺εŨε) + P(˜̺εŨε)−Q(Ũε)− ε σ̃εŨε =: I1 + I2 + I3 + I4

where σ̃ε = ˜̺ε−1
ε , we deduce from (3.21)–(3.22) (noting that 2γ

γ+1 <
4
3 when γ < 2) that

I4 → 0 in L2
(
0, T ;L

2γ
γ+1

loc (R3)
)

(4.14)

holds P̃-a.s. as ε → 0. The convergence (4.12) therefore follow from (4.7), (4.9), (4.10) and
(4.11). Finally, (4.13) follow from (4.5) and (4.7) as well as the fact that from (4.4) (4.8), one
can deduce that

˜̺εŨε ⇀ Ũ in L1
(
0, T ;L1

loc(R
3)
)

(4.15)

holds P̃-a.s. �

5. Identification of the limit system

On the new probability space (Ω̃, F̃ , P̃), it follows from [5, Theorem 2.9.1] that W̃ ε =∑
k∈N ekβ̃

ε
k is a cylindrical Wiener process with respect to the following filtration

F̃
ε
t = σ

(
σt[ ˜̺

ε] ∪ σt[Ũε] ∪
⋃

k∈N

σt[β̃
ε
k])

)
, t ∈ [0, T ]
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for all ε > 0, thus, F̃ ε
t is non-anticipative with respect to W̃ ε. By using [5, Lemma 2.9.3] and

Proposition 4.2, we can pass to the limit ε→ 0 to conclude that

F̃t = σ

(
σt[ ˜̺] ∪ σt[Ũ] ∪

⋃

k∈N

σt[β̃k])

)
.

is non-anticipative with respect to W̃ . It therefore follow that W̃ is a cylindrical Wiener process
with respect to (F̃t)t≥0 by virtue of [5, Lemma 2.1.35, Corollary 2.1.36].
Furthermore, due to the equality of laws from Proposition 4.2, in combination with [5, Theorem
2.9.1] (see also [35, Theorem 2.4.31]), we can conclude with the following.

Corollary 5.1. Let ε > 0 and εβ∆Ṽ ε = ˜̺ε−1 where β > 0. Then [(Ω̃, F̃ , (F̃ ε
t )t≥0, P̃), ˜̺

ε, Ũε, Ṽ ε, W̃ ε]
is a finite energy weak martingale solution of (1.6)–(1.8) in the sense of Definition 2.2 with ini-

tial law Λ̃ε.

We now have all the tools to identify the limit in the weak formulation of our system. We will
only show in detail, how to deal with the deterministic part of the momentum equation since
the identification of the continuity equation is quite standard and can be found in [2] and [34]
while for the stochastic integral, we will show just the main steps.

Lemma 5.2. Let β > 0 be a constant such that for any δ > 0, we have 0 < β < 1
2+δ , for all

t ∈ [0, T ] and φ ∈ C∞
c,div(R

3), let

M(̺,u, V )t :=

ˆ

R3

̺u(t) · φ dx−
ˆ

R3

̺u(0) · φ dx−
ˆ t

0

ˆ

R3

̺u⊗ u : ∇φ dxds

+ ν1

ˆ t

0

ˆ

R3

∇u : ∇φ dxds−
ˆ t

0

ˆ

R3

(
̺− 1

ε2
∇V

)
· φ dxds.

Then M(˜̺ε, Ũε, Ṽ ε)t →M(1, Ũ, Ṽ )t P̃-a.s. as ε→ 0.

Proof. To begin with, we use (4.4) and (4.8) to conclude that for all t ∈ [0, T ] and φ ∈ C∞
c,div(R

3),
ˆ

R3

˜̺εŨε(t) · φ dx−
ˆ

R3

˜̺εŨε(0) · φ dx+ ν1

ˆ t

0

ˆ

R3

∇Ũε : ∇φ dxds

→
ˆ

R3

˜̺Ũ(t) · φ dx−
ˆ

R3

˜̺Ũ(0) · φ dx+ ν1

ˆ t

0

ˆ

R3

∇Ũ : ∇φ dxds

P̃-a.s. as ε→ 0. Now since we have

˜̺εŨε ⊗ Ũε = PŨε ⊗ PŨε + (˜̺ε − 1)Ũε ⊗ Ũε + PŨε ⊗QŨε +QŨε ⊗ PŨε +QŨε ⊗QŨε,

it follows from (4.8), (4.9), (4.12) and (4.13) that for all t ∈ [0, T ] and φ ∈ C∞
c,div(R

3),
ˆ t

0

ˆ

R3

˜̺εŨε ⊗ Ũε : ∇φ dxds→
ˆ t

0

ˆ

R3

Ũ⊗ Ũ : ∇φ dxds

P̃-a.s. as ε→ 0.
For the last term of M(̺,u, V )t which includes the potential V in the convergence analysis we
have to distinguish between γ < 2 and γ ≥ 2.
If γ ∈ (32 , 2), as a result of Corollary 5.1, we can conclude from (3.11) that

Ẽ

[
sup

t∈[0,T ]
‖σ̃ε‖γ

Lγ(R3)

]p
.p 1(5.1)
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holds uniformly in ε > 0 for any p ∈ [1,∞) where

σ̃ε =
˜̺ε − 1

ε
.

Now since

sup
t∈[0,T ]

∥∥ε
β−2

2 ∇Ṽ ε
∥∥
L2(R3)

. sup
t∈[0,T ]

∥∥ε
β−2

2 ∇Ṽ ε
∥∥2
L2(R3)

= sup
t∈[0,T ]

∥∥εβ−2|∇Ṽ ε|2
∥∥
L1(R3)

,

and

sup
t∈[0,T ]

‖ ˜̺ε − 1‖Lγ (R3) . sup
t∈[0,T ]

‖ ˜̺ε − 1‖γ
Lγ (R3)

= εγ sup
t∈[0,T ]

‖σ̃ε‖γ
Lγ(R3)

,

holds uniformly in ε > 0, from (3.8) and (5.1) and it follows that if γ ∈ (32 , 2), then

(5.2) sup
t∈[0,T ]

∥∥∥∥
˜̺ε − 1

ε2
∇Ṽ ε

∥∥∥∥
L

2γ
γ+2 (R3)

. εγ−β/2−1 → 0

P̃-a.s. as ε→ 0 provided that

β < 2(γ − 1),
3

2
< γ < 2.(5.3)

On the other hand, if γ ≥ 2, then we obtain for any 2 < q < 6 and its Hölder conjugate q′ > 0,

(5.4)

∣∣∣∣
ˆ t

0

ˆ

R3

(
˜̺ε − 1

ε2
∇Ṽ ε

)
· φ dxds

∣∣∣∣ . ε−1 sup
t∈[0,T ]

∥∥∇Ṽ ε · φ
∥∥
W 1,q′ (R3)

‖σ̃ε‖L2(0,T ;W−1,q(R3))

. ε−1‖φ‖
W

1,
2q
q−2 (R3)

(
sup

t∈[0,T ]

∥∥∇Ṽ ε
∥∥
L2(R3)

+ sup
t∈[0,T ]

∥∥∆Ṽ ε
∥∥
L2(R3)

)
‖σ̃ε‖L2((0,T )×R3)

P̃-a.s. for all t ∈ [0, T ] and φ ∈ C∞
c,div(R

3). However, by using the Poisson equation (1.8), the

estimate (3.12) and the bottom left estimate of (3.7), we obtain

(5.5) sup
t∈[0,T ]

∥∥∇Ṽ ε
∥∥
L2(R3)

+ sup
t∈[0,T ]

∥∥∆Ṽ ε
∥∥
L2(R3)

. ε
2−β
2 + ε1−β

uniformly in ε > 0. Now by using the equality of laws given by Proposition 4.2 and Sobolev
embedding in time, we can conclude from (3.12) that σ̃ε is P̃-a.s. square-integrable in spacetime
and thus

[σ̃ε]κ → σ̃ε in L2((0, T ) × R
3)(5.6)

P̃-a.s. as κ→ 0. On the other hand, by (3.62), [σ̃ε]κ can be bounded in terms of ε > 0. Therefore
by writing σ̃ε = [σ̃ε]κ + (σ̃ε − [σ̃ε]κ), we can conclude by using the equality of laws given by

Proposition 4.2, (5.6) and the acoustic estimate (3.62), that P̃-a.s.,

‖σ̃ε‖L2((0,T )×R3) . ε1−(2+δ)β(5.7)

holds uniformly in ε > 0 for any δ > 0. If we now substitute (5.7) and (5.5) into (5.4), then

P̃-a.s. ,

(5.8)

∣∣∣∣
ˆ t

0

ˆ

R3

(
˜̺ε − 1

ε2
∇Ṽ ε

)
· φ dxds

∣∣∣∣ . ε1−β(5/2+δ) + ε1−β(3+δ) . ε1−β(3+δ)

holds uniformly in ε > 0 when γ ≥ 2. In this case, convergence to zero as ε → 0 holds true
provided that

β <
1

3 + δ
.(5.9)



INCOMPRESSIBLE QUASINEUTRAL LIMIT OF THE STOCHASTIC NAVIER–STOKES–POISSON SYSTEM 25

Since 0 < β < 1
2+δ for any δ > 0 the two conditions (5.3), (5.9) are satisfied and our final result

holds true. �

To pass to the limit in the stochastic integral, we need the following analogous version of [5,
Lemma 2.6.6] on the whole space, see [35, Lemma 2.4.35]. We refer to the former for the proof.

Lemma 5.3. Let U ⊂ U0 be a separable Hilbert space and let
(
Ω,F ,P

)
be a complete probability

space. For n ∈ N, let Wn be an
(
Fn

t

)
-cylindrical Wiener process such that

Wn →W in C
(
[0, T ];U0

)
in probability

with W =
∑

k∈N ekβk. Also, for each n ∈ N, let Φn be an (Fn
t )-progressively measurable

stochastic process belonging to L2
(
0, T ;L2

(
U;W l,2(R3)

))
P-a.s. for some l ∈ R and for which,

Φn → Φ in L2
(
0, T ;L2

(
U;W l,2(R3)

))
in probability.

Then after possible change on a measure zero set in Ω× (0, T ), we gain
ˆ ·

0
Φn dWn →

ˆ ·

0
ΦdW in L2

(
0, T ;W l,2(R3)

)
in probability

and that Φ is a progressively measurable process with respect to the following filtration.

σ

( ∞⋃

k=1

σt
[
Φek

]
∪ σt

[
βk
])

where in the above, (βk)k∈N is a family of mutually independent Brownian motions and (ek)k∈N
are orthonormal basis of a separable Hilbert space U.

Moving on, we combine the assumptions on the noise term (2.3)–(2.4) with the limits (4.8)–
(4.10) (also recall (4.7)) and Lemma 4.3 which allow us to obtain the convergence

G(˜̺ε, ˜̺εŨε) → G(1, Ũε) in L2
(
0, T ;L2(U;W

−l,2(R3))
)

(5.10)

P̃-a.s. for some l > 0. For the details, we refer the reader to [5, Page 294] which was done for
a more restrictive assumption on the noise coefficient due to the lack of compactness for the
gradient part of the velocity field. Nevertheless, an analogous analysis holds true for the less
restrictive noise assumption (2.4) as already illustrated in the proof of [34, Lemma 11]. If we

then combine (5.10) with the convergence (4.6) for W̃ ε, we are able to pass to the limit in the
stochastic integral by virtue of Lemma 5.3.
By collecting the various results above, we can finally conclude with the following result which
ends the proof of the main Theorem 2.5

Theorem 5.4. The following [(Ω̃, F̃ , (F̃t)t≥0, P̃); Ũ, W̃ ] is a weak martingale solution of (2.8)
on R

3 in the sense of Definition 2.4 with the initial law Λ.

6. Related singular limits: the zero-electron-mass limit

In this section we analyse a further singular limit related to plasma physics which, although
it has a different physical meaning compared to the previous one, can be handled, from a
mathematical point of view, with the same tools developed in the previous sections. We recall
that a plasma consists of a negatively charged elections qe = −1 of mass me, a positively charged
ion qi = +1 of mass mi and a negligible amount of neutral particles. If we let ̺e = ̺e(t, x) ∈ R≥0

and ue = ue(t, x) ∈ R
3 (respectively, ̺i = ̺i(t, x) ∈ R≥0 and ui = ui(t, x) ∈ R

3) be the scaled
density and mean velocity of the electron (respectively, ion) and we let V = V (t, x) be the scaled
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electric potential, then on the macroscopic level, a viscous Newtonian plasma subject to random
forces satisfy the following (suitably scaled) damped Navier–Stokes–Poisson system

d̺α + div(̺αuα) dt = 0,(6.1)

d(̺αuα) +

[
div(̺αuα ⊗ uα) +

1

δα
∇p(̺α)

]
dt =

[
ν1∆uα + (ν2 + ν1)∇divuα

+
qα

δα
̺α∇V

]
dt+

1

τα
̺αuα dt+

1

τα
G(̺α, ̺αuα) dWα,(6.2)

λ2∆V = ̺e − ̺i(6.3)

where α = e, i are indexes standing for electrons and ions, τα > 0 are the scaled relaxation
times, λ > 0 is the Debye length and

p(̺α) = a(̺α)γ(6.4)

is the isentropic pressure with a > 0 and γ > 3
2 being the adiabatic exponent. In addition,

δα =
mαv20
kBT0

is a dimensionless parameter where kB is the Boltzmann constant and v0 and T0
are the typical velocity and temperature values respectively for the plasma. See [28, 29] for
the deterministic counterpart of the above system and [35, Section 1.1] for the modelling of
stochastic fluids.
Since it is well-known that the electron mass me is far smaller than the ion mass mi, i.e.,
me ≪ mi, movements of ions are far limited with respect to movements of electrons on a
finite observation time. In other words, on a time scale that one observes the first ‘reasonable’
movement in the electrons, the ions are essentially stationary. This difference in time scales
offers justification to decouple the system and study separately, the evolution of ions or that of
the electrons. Moreover, since the parameter δα is the ratio between the electron and the ion
mass (for details see [28]) then the limit δα → 0 makes sense and, since we assume that the ion
density is given, this limit goes under the name of zero electron mass limit.

6.1. Evolution of the electrons. Hence we consider the ion density given and we concentrate
on just the electrons so that the superscript α = e. Since the ions and electrons are coupled only
through the Poisson equation, for simplicity, we set ̺i = 1 as our background charged ion. We
also assume that the relaxation times τα are fixed and that the plasma is not subject to drift.
With these assumptions in hand, for ε > 0 small, we set the dimensionless parameter δe, which
is proportional to the electron mass me, to ε2 i.e. δe = ε2. We also set λ = a = τ = 1, ̺e = ̺ε,
ue = uε, V = V ε, W e =W and analyse the following system

d̺ε + div(̺εuε) dt = 0,(6.5)

d(̺εuε) +
[
div(̺εuε ⊗ uε) + ε−2∇(̺ε)γ

]
dt =

[
ν1∆uε + (ν2 + ν1)∇divuε

− ε−2̺ε∇V
]
dt+G(̺ε, ̺εuε) dW,(6.6)

∆V = ̺ε − 1,(6.7)

as ε→ 0.
For completness we mention that an equivalent formulation of the system (6.5)–(6.7) is given
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by rescaling the electric potential as V = ε2Ṽ and reads as follows,

d̺ε + div(̺εuε) dt = 0,(6.8)

d(̺εuε) +
[
div(̺εuε ⊗ uε) + ε−2∇(̺ε)γ

]
dt =

[
ν1∆uε + (ν2 + ν1)∇divuε

− ̺ε∇Ṽ
]
dt+G(̺ε, ̺εuε) dW,(6.9)

ε2∆Ṽ = ̺ε − 1.(6.10)

We observe that from a purely mathematical point of view, the system (6.5)–(6.7) corresponds
to (1.6)–(1.8) when β = 0. This observation can be made rigorous.
Indeed, by adapting the proof of Proposition 3.7 to the case β = 0, we can prove the following
result for the acoustic system.

Proposition 6.1. For any p ∈ [1,∞) and r ∈ [1,∞], the solution pair (∇Ψε, σε) of the system

(6.11)

dσε +∆Ψε dt = 0,

d∇Ψε +
(
γ∇−∇∆−1

)
σε dt = 0,

σε(0) = σε0; ∇Ψε(0) = ∇Ψε
0

satisfy the estimate

E ‖∇Ψε‖p
Lr
(
0,T ;L2(R3)

) + E ‖σε‖p
Lr
(
0,T ;L2(R3)

) . E ‖σε0‖pL2(R3)
+ E ‖∇Ψε

0‖pL2(R3)

uniformly in ε for σε0 ∈ Lp(Ω;L2(R3)) and ∇Ψε
0 ∈ Lp(Ω;L2(R3)).

Then, by following the same line of arguments of the proof of the Theorem 2.5, we obtain
the stochastic case the following zero-electron-mass number limit result (for the deterministic
setting compare with [15]).

Theorem 6.2. Let Λ be a given Borel probability measure on L2
div(R

3). For ε > 0 and γ > 3/2,

we let Λε be a family of Borel probability measures on
[
L1
x

]2
= L1(R3)× L1(R3) such that

(6.12) Λε
{
(̺,m) : |̺− 1| ≤ εM

}
= 1

holds for a deterministic constant M > 0 which is independent of ε > 0. For all p ∈ [1,∞), we
assume that the following moment estimate

(6.13)

ˆ

[L1
x]

2

∥∥∥∥
1

2

|m|2
̺

+
1

ε2
H(̺, 1) +

1

ε2
|∇V |2

∥∥∥∥
p

L1
x

dΛε(̺,m) .p 1,

holds uniformly in ε. Further assume that (2.3)– (2.4) holds and that the marginal law of
Λε corresponding to the second component converges to Λ weakly in the sense of measures on

L
2γ
γ+1 (R3). If

[(Ωε,F ε, (F ε
t ),P

ε); ̺ε,uε, V ε,W ε](6.14)

is a finite energy weak martingale solution of (6.5)–(6.7) in the sense of Definition 2.2 with
initial law Λε, then

̺ε → 1 in law in L∞(0, T ;Lγ
loc(R

3)),

uε → U in law in
(
L2(0, T ;W 1,2(R3)), w

)

as ε→ 0 and U is a weak martingale solution of (2.8) in the sense of Definition 2.4 with initial
law Λ.
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