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Abstract. Graph-limit theory focuses on the convergence of sequences of in-
creasingly large graphs, providing a framework for the study of dynamical

systems on massive graphs, where classical methods would become compu-

tationally intractable. Through an approximation procedure, the standard
ordinary differential equations are replaced by nonlocal evolution equations on

the unit interval. In this work, we adopt this methodology to prove the validity

of the continuum limit of random walks, a largely studied model for diffusion
on graphs. We focus on two classes of processes on dense weighted graphs, in

discrete and in continuous time, whose dynamics are encoded in the transition
matrix of the associated Markov chain, or in the random-walk Laplacian. We

further show that previous works on the discrete heat equation, associated to

the combinatorial Laplacian, fall within the scope of our approach. Finally,
we characterize the relaxation time of the process in the continuum limit.
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1. Introduction

Graphs are everywhere, they appear for example in physics, engineering, bio-
logy, climat science, expectedly every time discrete entities interact through links
of some nature [1]. They offer a conceptually simple but general enough model-
ing approach to real-life networks of various degrees of complexity. But as very
large graphs have become commonplace in scientific research and real-world appli-
cations – online social networks or the brain are relevant examples – a range of
graph-theoretical methods, algorithms and computational problems on graphs face
scalability issues. In a recent series of works on the continuum limit of graphs,
graphons have emerged as an appropriate limit object, defined when the number
of nodes goes to infinity [25, 6, 3, 24]. They offer a both elegant and efficient
workaround allowing for the analysis of massive graphs, while simultaneously pro-
viding a non-parametric network generation method that reaches far beyond the
classical stochastic block model [18]. The versatility of graphons and their prac-
tical interest is revealed in their present-day use in many diverse domains, e.g.
network identification [14], power network dynamics [21], epidemics spreading [35],
reaction-diffusion [20], synchronization of oscillators [27, 29] and game theory [31].
However, the majority of these examples focus on a specific type of diffusion, namely
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2 RANDOM WALKS ON DENSE GRAPHS AND GRAPHONS

Fickean diffusion, while alternative random-walk processes are usually preferred to
build network algorithms for node ranking [7] or community detection [10]. This
constitutes an important limitation that we address in this paper.

Diffusion on finite graphs is an extensive topic of research, which is relevant
both from a theoretical and an applied perspective, and is often modeled as some
variant of random walk process. Random walks on graphs are useful in many
ways. They can for example identify clusters of well-connected nodes, also known as
communities [34, 10], or measure the relative importance or centrality of the nodes
in a networked system [7, 23, 22], and as mentioned are a paradigm for various
diffusive and spreading processes on graphs [26]. There are overall three dominant
classes of random walks. The first one is the discrete-time walk, in which case the
walker performs a new jump at every discrete time step. The destination node of
the jump is uniformly chosen among the neighbors in the graph structure. Secondly
there is the continuous-time, node-centric variant. The difference resides in that
the jumps take place at any point in time, as dictated by a continuous random
variable governing the resting time of the walker on a node. Finally, the third class
corresponds to the continuous-time edge-centric walk, which can interestingly be
viewed as the discrete version of the heat equation. These are two different forms
of normal diffusion equations that can be derived from Fick’s law, that essentially
implies a flux from regions of high to low concentration, across a concentration
gradient. The difference between the node-centric and edge-centric processes is
clear when observing the matrices controlling their dynamics, the random-walk
and the combinatorial Laplacian respectively [32].

In this work, we first revisit existing results for the continuum limit of the dis-
crete heat equation and some nonlinear variants. This limit was the subject of a
series of papers recently [27, 28, 29], but a random walk interpretation is useful and
was still lacking. We then concentrate on the continuum limit of the node-centric
case, hence considering the limit of the random-walk Laplacian operator. In gen-
eral, for non-regular graphs, this operator differs from the combinatorial Laplacian,
which is often preferred in algorithmic implementations such as spectral cluster-
ing [36], because it properly accounts for the heterogeneous degree distributions
observed in real-life networks. The random-walk operator in this work shouldn’t
be confused with a another operator common in the machine learning community,
also called random-walk Laplacian, which has an established convergence to the
Laplace-Beltrami operator [17, 2].

Our approach is based on graph-limit theory [24], which does not rely on the
assumption that the data generating the graphs is sampled from a distribution
on a manifold [16, 33]. Our main contribution is to prove the convergence of the
space-discrete problem to a continuous problem in some appropriate setting. The
problem on the continuum then falls in the realm of nonlocal evolution equations,
as it is a volume-constrained diffusion problem [9]. Its analysis is limited to some
consequences of spectral theory applied to our operators.

Importantly, graph-limit theory defines a framework for the convergence of graphs
of increasing size, but it may as well be seen as a possibly random graph-generating
method. From that perspective, our work demonstrates that one may analyze the
continuum model, to draw valid conclusions regarding the dynamics on the graphs
generated by that model. As such, we answer positively the question of transferabil-
ity, showing that we can avoid the cost of repeatedly storing each graph, designing,
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visualizing or analyzing it, or computing the associated spectral properties, a com-
putationally demanding task for large graphs [30].

The paper is organized as follows. Section 2 contains the basics about graph-
limit theory, and introduces graphons as the limit objects of dense graph sequences.
A short presentation of the main random walk models opens section 3. Then
follows a random walk interpretation of the continuum limit of the heat equation
on graphs, before we focus on our main concern, the continuous-time node-centric
walk. Well-posedness of the continuum problem is the subject of section 4. The
main convergence results are presented in section 5. These results apply to dense
graphs, and follow from a semigroup approach. We distinguish between different
scenarios : first the discrete problem on graphs is sampled from the continuum
version, and then the other way around. We then proceed with an analysis of the
relaxation-time of the process based on spectral theory in section 6. In section 7
we revisit the discrete-time problem, before the conclusion of section 8.

2. Preliminaries

We first set the notation and recall definitions for various graph-related concepts,
following closely [37]. For the sake of self-consistency we then introduce key notions
about graph-limit theory [24].

2.1. Graphs. Let a G = (V,E) be a graph where V is a finite set of vertices (or
nodes), and E ⊂ V × V is the set of edges. We consider a symmetric adjacency
relation ∼ such that the graph is undirected. Each edge may be attributed a weight,
making the otherwise unweighted graph into a weighted one. Let |V | and |E|
respectively denote the number of vertices and edges. The density ρ of the graph
is the fraction of edges that are actually present, compared with the maximum

possible number of connections : ρ = |E|
(|V |2 )

. When it makes sense to take the limit

|V | → ∞, one says the graph is dense if |E| = O(|V |2), and sparse otherwise.
The number of neighbors of node v is denoted by deg(v). In weighted graphs,

str(v) stands for the weighted degree, or strength, of node v, namely the sum of the
weights of all edges attached to v. For the sake of simplicity, the notation str(v) will
henceforth also apply to unweighted graphs and will refer to the degree, thereby
identifying unweighted graphs with graphs with binary weights, either 0 or 1.

A path between two nodes v, w is an ordered sequence of nodes [v1, . . . , vn] such
that v = v1, w = vn and vi ∼ vi+1, i = 1, . . . , n − 1. A graph is connected if
every pair of nodes is linked by a path. Let Mn be the space n× n matrices. The
adjacency matrix A ∈Mn of a graph G with n vertices is the square matrix where
Aij is the weight of the edge between nodes with labels i and j and zero if no such
edge exists. Unweighted graphs have binary adjacency matrix.

2.2. Graphons. Recent research [25, 6, 3, 24] provides a theoretical framework to
study convergence of dense graphs sequences. As a starting point, the so-called cut
(or rectangular) metric allows to define the notion of Cauchy sequence of graphs
of increasing number of nodes. Their limit object, called graphon, is a symmet-
ric Lebesgue-measurable function W : [0, 1]2 → [0, 1]1. Therefore, the space of

1Note that this choice of domain and range is somehow restrictive by comparison with other
works where graphons may be unbounded and only feature some integrability property. However,

we will work with the standard definition because it achieves the desired degree of generality.
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graphons is essentially the completion of the set of finite graphs seen as step func-
tions (see Section 2.3), endowed with the so-called cut metric2 which we introduce
hereafter in its graphon version [24, 27, 15]. The cut norm for graphons is given by

‖W‖� = sup
S,T⊂M[0,1]

∫∫
S×T

W (x, y)dxdy,

where the supremum is over measurable subsets of [0, 1]. The notation ‖W‖p refers

to the usual Lp norm of function defined on [0, 1]2, for 1 ≤ p ≤ ∞. The following
inequalities are immediate consequences of this definition, and of the inclusion
theorem of Lp spaces on finite measure spaces :

(1) ‖W‖� ≤ ‖W‖1 ≤ ‖W‖2 ≤ ‖W‖∞ ≤ 1.

Graphons are unique up to a composition with an invertible measure preserving
mapping φ : [0, 1] → [0, 1], which amounts to invariance of the limit graphon with
respect to a relabeling of the nodes of the graphs. The graphons Wφ defined by
Wφ(x, y) = W (φ(x), φ(y)) and W are in the same equivalence class. The cut metric
δ� between two graphons U and W is therefore defined by

(2) δ�(U,W ) = inf
φ∈L
‖Uφ −W‖�

where L is the space of the Lebesgue measurable bijections on the unit interval.
The definition is similar for the δp(·, ·) metrics based on the Lp norms, 1 ≤ p ≤ ∞.
Since two different graphons U,W can satisfy δ�(U,W ) = 0, strictly speaking δ�
is a metric only when we identify such graphons U and W [6]. Let us denote by W
the space of graphons after this identification.

It holds that the metric space (W, δ�) is compact, namely sequences of graphons
posses at least one convergent subsequence in the cut metric. Unless explicitly men-
tioned, in this work we assume convergence of graphons in the L2 norm topology.
Hence by completeness, Cauchy sequences in (W, ‖·, ·‖2) converge in the L2 metric,
and thus also in the δ2 and δ� metrics, the limit being the same.

Many attributes of graphs have natural counterparts in the realm of graphons.
A prominent example is the notion of strength, which plays a key role in this paper.

For a given graphon we let k(x) :=
∫ 1

0
W (x, y)dy denote the (generalized) degree

function. Since in this work graphons are bounded function W : [0, 1]2 → [0, 1], the
degree function is bounded, 0 ≤ k(x) ≤ 1 for all x ∈ [0, 1].

2.3. Graphs as step graphons and graphs from graphon models. The con-
nection between graphs and graphons is a two-way street. First, graphs can be
mapped to the graphon space through a step function representation of their ad-
jacency matrix. Let P = {P1, . . . , Pn} be a uniform partition of [0, 1], where
Pi =

[
i−1
n , in

)
for i = 1, . . . , n − 1, and Pn =

[
n−1
n , 1

]
. Then let η : Mn → W

be a mapping such that

(3) η(G)(x, y) =

n∑
i=1

n∑
j=1

AijχPi(x)χPj (y),

where χS is the indicator function of set S and A the adjacency matrix of graph
G. The mapping thus defines the step (or empirical) graphon η(G) associated to

2There is a different though equivalent notion of convergence for dense graph sequences. It is
called subgraph convergence, and is defined via associated sequences of induced subgraph densi-

ties [6].
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G. Similarly, η maps vectors u = (u1, . . . , un) to piecewise constant functions on
[0, 1], so that

(4) η(u)(x) =

n∑
i=1

uiχPi(x).

On the other hand, graphons can be considered as deterministic or (exchange-
able [12]) random graph models, but in this work we adopt and present the de-
terministic setting. Let W ∈ W be a graphon and let the integer n denote the
desired number of nodes in the graph. Then W generates a dense graph by assign-
ing weights to the edges, which can be done in two ways. In a first approach, the
weight Aij of the edge between two nodes i and j equals the mean value of W on
the corresponding cell of the partition of the unit square:

(5) Aij = n2
∫
Pi

∫
Pj

W (x, y)dxdy, i, j = 1, . . . , n.

This results in the so-called quotient graph W/P. One can prove that there is
almost everywhere point-wise convergence of the associated step graphon η(W/P)
to W ([6], lemma 3.2).

A second approach to generate a graph from a given graphon W ∈ W, is to
define

(6) Aij = W

(
i

n
,
j

n

)
, i, j = 1, . . . , n,

in a way that is reminiscent of W -random graphs [25]. Let us denote W[n] the

corresponding graph. Observe that η
(
W[n]

)
→ W point-wise at every point of

continuity of W [27].

2.4. Graphons as kernels of operators. Every graphon W ∈W can be consid-
ered as a kernel, allowing to formally define an integral operator W on functional
spaces on [0, 1] through

(7) Wf(x) =

∫ 1

0

W (x, y)f(y)dy.

The composition (product) of two such operators is given by

(8) UWf(x) =

∫ 1

0

(U ◦W )(x, y)f(y)dy,

where ◦ is the operator product between the graphon kernels, defined by

(9) (U ◦W )(x, y) =

∫ 1

0

U(x, z)W (z, y)dz, ∀x, y ∈ [0, 1].

Observe that in general, U ◦W is not a symmetric function. We denote W ◦n the
operator product of the kernel, as opposed to the point-wise product Wn(x, y) =
(W (x, y))n, which is associated to the operator Wn. It follows from eq. (9) that
W ◦n(x, y) =

∫
W (x, z1)W (z1, z2) . . .W (zn−1, y)dz1dz2 . . . dzn−1.
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3. Random walks and their continuum limit

The aim of this section is twofold. Firstly, we introduce the three main random
walk models. Secondly, we give a random walk perspective on the continuum
limit of the discrete heat equation, namely the edge-centric walk. We then formally
derive the continuum limit of the so-called node-centric walk. Our approach implies
edges are directed, because they are associated with possible moves of the walker,
with an origin and a destination. Therefore, the symmetry of the adjacency matrix
indicates there exists a reciprocal to each edge and that both have the same weight.
Further, we may assume that the graph is connected, otherwise the random walk
is considered independently on each connected component, that is, each connected
subgraph that is connected to no other additional node of the original graph.

3.1. Random walks in discrete and continuous time. In discrete-time, we
introduce a random walk on a connected graph as a Markov chain where V is the
state-space and the transition probability from node vi to vj is encoded in the
matrix

(10) Tij =

{
1/ str (vi) if vi ∼ vj ,
0 otherwise.

Let p(`) = (p1(`), . . . , pn(`)) be the row vector of residence probabilities on the
nodes, that is, pi(`) is the probability that the walker is located on node number i
after ` steps. Then

(11) p(`+ 1) = p(`)T,

where T = D−1A. Here D denotes the diagonal matrix of the strengths, or degrees
in unweighted graphs. It follows from eq. (11) that for any ` ∈ N, p(`) = p(0)T `.

In the continuous-time node-centric variant, when the walker arrives on node
v, a probability density function ψv(t) determines the waiting-time until the next
jump, in which case a destination node is selected uniformly among the neighboring
ones. We limit ourselves to Poissonian walks, for which the waiting-time follows
a memoryless exponential distribution ψv(t) = µv exp(−µvt) with rate µv (t ≥ 0).
The master equation for ui(t), the probability to find the walker on node i at time
t, reads

(12) u̇i(t) =

N∑
j=1

µjuj
1

str(vj)
Aji − µiui, i = 1, . . . , n.

Assume that in eq. (12) the rate µj on the nodes is the same for all nodes, µj = κ > 0
for all j. Then κ sets the timescale, and after a scaling of time, t 7→ κt, under matrix
form the master equation eq. (12) rewrites

(13) u̇ = u(D−1A− I),

where u(t) = (u1(t), . . . , un(t)) is a row vector. The matrix Lrw = D−1A − I is
the random walk Laplacian. Moreover, it is easy to show that the discrete-time
walk and the continuous-time version share the same asymptotic state, and that it
is proportional to (str(v1), . . . , str(vn)).
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In the edge-centric variant3, the rate of the exponential distribution is propor-
tional to the degree of the node, µj = κ str(vj), allowing a constant rate of jump
across all edges of the graph. Hence in matrix form, Equation (12) rewrites

(14) u̇ = κu(A−D)

Here, L = A − D is called the combinatorial Laplacian of the graph. This model
exhibits a homogeneous asymptotic state. Observe that the number of jumps is not
trajectory-independent, as is the case in both the discrete- and continuous-time
node-centric walks.

3.2. Formal derivation of the continuum limit. Let us first take a closer look
at the edge-centric walk, and assume for simplicity an unweighted graph. If κ > 0,
then κdeg(vj) → ∞ if deg(vj) → ∞, which will happen for some if not all nodes
of a dense graph. The walker would perform jumps at an infinite rate, which is
physically unrealistic. Normalizing the rate of the process according to the number
of vertices avoids this situation. If κ becomes dependent on n, say κn = 1

n , the
resulting rate in each node remains bounded, κn deg(vj) ≤ 1 for all j independently
of the number of nodes. This explains the normalization that was required to justify
the continuum limit of eq. (14) in [27].

In contrast with the edge-centric model, no normalization of the rate parameter κ
of the node-centric walk is needed when the number of nodes grows to infinity, since
the rate does not depend on the structure of graph. The continuum limit therefore
directly applies to the unmodified discrete model. For a formal derivation in this
case, consider again the vector u(t) satisfying eq. (13) and the uniform partition
P = {P1, . . . , Pn} of [0, 1], with u(·, t) := η(u(t)) an associated step function on
the interval. Let kη denote the generalized degree function of the step graphon
η(G). Observe that this degree function is actually the normalized strength (or
also degree, when the graph is unweighted) of the nodes in G:

str(vi) = n

n∑
j=1

∫
Pj

Aijdy = n

n∑
j=1

∫
Pj

η(G)(x, y)dy = nkη(x)(15)

for all x ∈ Pi. It follows that

n∑
j=1

Aij
str (vj)

uj(t) =

n∑
j=1

n

∫
Pj

Aij
str (vj)

u(y, t)dy

=

n∑
j=1

n

∫
Pj

Aij
nkη(y)

u(y, t)dy =

∫ 1

0

η(G)(x, y)

kη(y)
u(y, t)dy,(16)

for every x ∈ Pi. Hence, the node-centric walk on the graph has an equivalent
continuum domain formulation

(17)
∂

∂t
u(x, t) =

∫ 1

0

η(G)(x, y)

kη(y)
u(x, t)dy − u(x, t).

3 The fact that this walk can be formulated in terms of edges dynamics, where the walker pas-
sively follows the activations of the edges explains the alternative designation of “fluid model” [26].

It is the graph version of the heat equation on a continuum.
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The goal of this work is to prove convergence in the appropriate norm of the solution
of eq. (17) to the solution of the evolution equation on the continuum

(18)
∂

∂t
w(x, t) =

∫ 1

0

W (x, y)

k(y)
w(y, t)dy − w(x, t),

where W is the limit graphon of η(G) in the L2 metric.
Observe that similarly, a discrete equation of the form eq. (13) is obtained start-

ing from eq. (18), when the graph is W/P or W[n].

4. Well-posedness of the continuum initial value problem

Before we prove the above-mentioned convergence, let us determine whether the
up-to-now formal eq. (18), together with initial condition w(x, 0) = g(x), defines a
well-posed initial-value problem (IVP).

4.1. Connectedness of the graphon. Care will be taken first regarding how con-
nectedness in the graph translates to graphons, and how it affects the integrability
of W/k. The following definition follows from [19, 24].

Definition 4.1. A graphon W is connected if
∫
S×([0,1]\S)W (x, y)dxdy > 0 for

every S ∈M[0, 1] with lebesgue measure µ(S) ∈ (0, 1).

Notice at this point that the connectedness (or lack thereof) of the graphs Gn of
the sequence does not imply that of their limit [19]. Indeed, one could always make
all the (otherwise disconnected) graphs of the sequence connected by a adding each
time a node connected to all other nodes. This would leave the limit unchanged.
And conversely, disconnecting one node in each connected graph of the sequence
would not change the limit either. Also note that if a graphon W is (dis)connected,
then so are all the kernels in the same equivalence class ([19], theorem 1.16). Let us
now look into the implications of connectedness of the graphon on the positiveness
of the degree function and hence on the definition of the random walk Laplacian
operator.

Proposition 4.2. Let W be a connected graphon, then k > 0 µ-almost everywhere
(a.e.).

Proof. Let Nx = {y ∈ [0, 1] : W (x, y) > 0} denote the neighborhood of x ∈ [0, 1]
in W . Since W is connected, µ(Nx) > 0 for µ-almost every x ([19], lemma 5.1) and
therefore,

(19) k(x) =

∫
Nx

W (x, y)dy > 0 for µ-a.e. x.

�

Remark 4.3. The connectedness of the graphon does not imply however that the
degree function is bounded away from zero, namely that there exists a constant c
such that 0 < c ≤ k on [0, 1]. Take for instance W (x, y) = xmym with m > 0, for
which k(x) = xm/(m+ 1).

That k can be arbitrarily small influences the integrability of the kernelK(x, y) :=
W (x,y)
k(y) in eq. (18), as discussed in the following remark.
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Remark 4.4. The connectedness of the graphon does not imply that the integral
kernel K(x, y) is in Lp[0, 1]2 for p > 1. Consider for example the binary graphon
W = χxα+yα≤1 for α > 0, where the subscript xα + yα ≤ 1 is short for the set of
couples (x, y) ∈ [0, 1]2 such that the inequality is satisfied. By a direct integration,

k(x) = (1− xα)
1
α . The integral

(20) ‖K‖pp =

∫∫
xα+yα≤1

(1− yα)−
p
α dxdy =

∫ 1

0

(1− yα)
1−p
α dy

is finite if and only if p < 1 + α. Hence, K is in L2[0, 1] only if α > 1, and in
particular, the kernel K of the threshold graphon [11] obtained with α = 1 is not
square-integrable. However, using Fubini-Tonelli it is easy to show that ‖K‖1 = 1
for all connected graphons, such that K is always in L1[0, 1]2.

Based on the preceding remark, in order to ensure that the kernel is square
integrable, we will make the following assumption :

Assumption 4.5. There exists a constant c such that 0 < c ≤ k on [0, 1].

If W is bounded away from zero, so is k, but graphons with localized support
may still fulfill the assumption, as shown by Figure 1.
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1

0 0.25 0.5 0.75 1
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Figure 1. The stripe graphon W (x, y) = χ|x−y|≤1/4(x, y) (left
panel) and its degree function (right panel). Observe that the sup-
port of W is localized on a subset of the square, but k is bounded
away from zero.

4.2. The IVP with functions in L2[0, 1]. Resting on the operator in the right-
hand side of eq. (18), we come to the following definition.

Definition 4.6. Let W ∈W be a connected graphon that verifies assumption 4.5.
The random-walk Laplacian operator Lrw : L2[0, 1]→ L2[0, 1] is defined by

(21) Lrwf(x) =

∫ 1

0

W (x, y)

k(y)
f(y)dy − f(x).

By definition of W and assumption 4.5, K(x, y) = W (x, y)/k(y) is a Hilbert-
Schmidt kernel and K : L2[0, 1]→ L2[0, 1] defined by

(22) Kf(x) =

∫ 1

0

W (x, y)

k(y)
f(y)dy, ∀x ∈ [0, 1] and f ∈ L2[0, 1]
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is a compact Hilbert-Schmidt operator. Following definition 4.6, the continuum
IVP has the form

∂

∂t
w(x, t) = Lrww(x, t),(23a)

w(x, 0) = g(x) ∈ L2[0, 1].(23b)

Theorem 4.7. Let W ∈ W be connected and satisfying assumption 4.5. Then
there exists a unique classical solution to the initial-value problem eq. (23).

Proof. The operator K is linear, and continuous hence bounded. It follows that
Lrw is linear and bounded. Hence it is closed. Therefore, Lrw is the infinitesimal
generator of the (uniformly and thus) strongly continuous semigroup

(24) T rw(t) = eL
rwt :=

∞∑
`=0

t` (Lrw)
`

`!
.

Proposition 6.2 in [13] allows to conclude. �

Remark 4.8. (Classical solution) By definition of classical solution of the abstract
Cauchy problem eq. (23), the orbit maps t ∈ R+ 7→ w(x, t) ∈ L2[0, 1] are continu-
ously differentiable.

Remark 4.9. The asymptotic steady state w∞ of eq. (23) follows from Lrww∞ = 0
and is proportional to the degree, w∞ ∝ k.

4.3. Positivity. The continuum IVP eq. (23) would loose physical relevance if its
solution were to loose the positivity of the initial condition, w(·, 0) ≥ 0. Before we
proceed to a proof of positivity, let us first introduce a notation. For g ∈ L∞[0, 1],
and 1 ≤ p ≤ ∞, let Mg : Lp[0, 1] → Lp[0, 1] denote the multiplication operator
defined by Mgf(x) = g(x)f(x).

Proposition 4.10. Let W be a connected graphon satisfying assumption 4.5 and
let w(·, 0) = g ≥ 0 be the initial condition of IVP eq. (23). Then the classical
solution w(x, t) of the IVP satisfies w(·, t) ≥ 0 for all t ≥ 0.

Proof. Let us define L̃ =M1/kLrwMk, yielding by a direct calculation

(25) L̃f(x, t) =
1

k(x)

∫ 1

0

W (x, y)f(y, t)dy − f(x, t), ∀f ∈ L2[0, 1].

Further let u =M1/kw with w(x, t) the solution of eq. (23) such that

∂

∂t
u =M1/k

∂

∂t
w =M1/kLrww =M1/kLrwMku = L̃u.

Since w(·, t) ≥ 0 ⇐⇒ u(·, t) ≥ 0, it remains to prove the positivity of u(·, t).
Choose ε > 0 arbitrarily and let v(x, t) = u(x, t) + εt. Observe that L̃v = L̃u, and
hence

∂

∂t
v − L̃v =

∂

∂t
u+ ε− L̃u = ε.

Let us show v(x, t) reaches its minimum at some (a, 0), a ∈ [0, 1]. Assume by
contradiction that there exists (a, τ) ∈ [0, 1] × (0, T ) for some T > 0 such that
v(x, t) ≥ v(a, τ) for all x and t. It follows that

L̃v(a, τ) =
1

k(a)

∫ 1

0

W (a, y)v(y, τ)dy − v(a, τ) ≥ v(a, τ)

k(a)

∫ 1

0

W (a, y)dy − v(a, τ) = 0.
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Hence, ∂
∂tv(a, τ) = L̃v(a, τ) + ε = ε > 0 which is in contradiction with the assump-

tion of v attaining its minimum in (a, τ) with τ > 0, so τ = 0. We have thus proved
v(x, t) ≥ v(a, 0), so that

u(x, t) + εt = v(x, t) ≥ v(a, 0) = u(a, 0) =
g(a)

k(a)
≥ 0.

Since ε is arbitrary, this allows to conclude. �

4.4. The IVP with probability density functions. Let us observe that when
w(·, t) in eq. (23) is a probability density function, it is natural to consider w(·, t) ∈
L1[0, 1], and one may define Lrw as a mapping L1[0, 1] → L1[0, 1]. Indeed, as
in eq. (22) let us still write K the integral part of Lrw defined on L1[0, 1]. By
Fubini-Tonelli, the operator norm ‖K‖1,1 := ‖K‖L1[0,1]→L1[0,1] satisfies

‖K‖1,1 ≤ sup
||f ||1=1

∫
[0,1]2
|K(x, y)f(y)|dxdy = sup

||f ||1=1

∫
[0,1]

|f(y)|dy = 1.(26)

This, combined with the fact that ‖Kf‖1 = 1 if f = 1, shows that ‖K‖1,1 = 1, and

so even without assumption 4.5, Lrw is a bounded mapping of L1[0, 1] into itself.
Additionally, theorem 4.7 about the existence and unicity of a solution to the IVP
has a similar formulation and proof in the present case. Further, the positivity
established in section 4.3 also applies here, and this would still not require assump-
tion 4.5. The only significant change in the proof of proposition 4.10 would be to

use the auxiliary operator LrwMk instead of L̃ =M1/kLrwMk. When w(·, 0) ≥ 0

we further have conservation of the L1 norm :

(27)
∂

∂t
‖w(·, t)‖1 =

∂

∂t

∫ 1

0

|w(x, t)|dx =
∂

∂t

∫ 1

0

w(x, t)dx = 0.

In the remainder of the paper, for the sake of simplicity and in order to benefit
from the Hilbert space framework at a later stage, we will however assume that W
satisfies assumption 4.5. This allows to define Lrw as an operator acting on L2[0, 1]
and we do not use L1 but rather the stronger L2 norms also present in other works
about dynamics on graphons [27, 29].

5. Convergence on dense graphs

This section is divided in three parts. The first two parts show that the solution
of the discretized problem on W/P or W[n] converges to that of the continuum IVP
in norm ‖·‖C([0,T ],L2[0,1]) for any T > 0. The goal of the third part is to prove that

the discrete problem can be approximated by its continuum version.

5.1. Convergence on the quotient graph W/P. Let us start with two simple
lemmas.

Lemma 5.1. Let Aη : L2[0, 1] → L2[0, 1] be an integral operator with bounded
kernel Aη. Assume that Aη is a.e.-constant on every cell Pi × Pj of the uniform
partition of [0, 1]2. Further let f ∈ L2[0, 1] and define fη by

fη(x) = n

n∑
i=1

∫
Pi

f(y)dyχPi(x), ∀x ∈ [0, 1].

Then for all ` ∈ N0, it holds that A`ηf = A`ηfη.
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Proof. The proof in the case ` = 1 follows from a direct calculation, see for in-
stance [15], lemma 3. The claim for ` > 1 is a direct consequence since then

A`ηf = A`−1η Aηf = A`−1η Aηfη = A`ηfη.
�

Lemma 5.2. Let A,B : L2[0, 1]→ L2[0, 1] be two Hilbert-Schmidt integral operators
with respective kernels A and B defined on the unit square, with A ≤ β for some
constant β > 0. Then, for all f ∈ L2[0, 1] and ` ∈ N0

‖A`f − B`f‖2 ≤ β
`−1‖A−B‖2‖f‖2 + ‖(A`−1 − B`−1)Bf‖2.

Proof. Using the Minkowski inequality, we have

‖A`f − B`f‖2 = ‖A`−1Af − B`−1Bf‖2
= ‖A`−1Af −A`−1Bf +A`−1Bf − B`−1Bf‖2
= ‖A`−1(Af − Bf) + (A`−1 − B`−1)Bf‖2
≤ ‖A`−1(Af − Bf)‖2 + ‖(A`−1 − B`−1)Bf‖2.(28)

Now A`−1 is a Hilbert-Schmidt integral operator with kernel A◦(`−1). For such
operator, as a product of the Cauchy-Schwarz inequality it is known about the
operator norm ‖·‖ that ‖A`−1‖ ≤ ‖A◦(`−1)‖2, or equivalently

(29) ‖A`−1f‖2 ≤ ‖A
◦(`−1)‖2‖f‖2.

The first term in the right hand side of eq. (28) therefore satisfies

(30) ‖A`−1(Af − Bf)‖2 ≤ ‖A
◦(`−1)‖2‖Af − Bf‖2 ≤ β

`−1‖Af − Bf‖2
where we use ‖A◦(`−1)‖2 ≤ ‖A‖

`−1
2 ([15], lemma 6) and A(x, y) ≤ β for all 0 ≤

x, y ≤ 1 to obtain the last inequality. Using again eq. (29) with ` = 2, we also have
‖Af − Bf‖2 ≤ ‖A − B‖2‖f‖2 which, together with eq. (28) and eq. (30) leads to
the conclusion. �

Now we are in a place to formulate the convergence results. The continuous
formulation of the discrete problem associated to eq. (23) on the quotient graph
reads4

∂

∂t
u(x, t) = Lrw� u(x, t)(31a)

u(x, 0) = g�(x)(31b)

where the random walk Laplacian operator on W/P satisfies

(32) Lrw� f(x) =

∫ 1

0

η (W/P) (x, y)

k�(y)
f(y)dy − f(x), ∀f ∈ L2[0, 1],

and the initial condition is averaged on each cell of the partition as

(33) g�(x) = n

n∑
i=1

∫
Pi

g(y)dyχPi(x), ∀x ∈ [0, 1].

Based on the following proposition, operator Lrw� is well-defined.

4The subscript � refers to fact that the averaging is performed on square cells of [0, 1]2. To
lighten the notations, we do not refer explicitly to the number of nodes of the graph, so we write

u(x, t) instead of, for instance, u(n)(x, t).
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Proposition 5.3. Let W be a connected graphon satisfying assumption 4.5, then
the strength of every node of the quotient graph determined by the partition P =
{P1, . . . , Pn} of [0, 1] is positive.

Proof. The strength of the i-th node vi, i = 1, . . . , n, is given by str (vi) = nk�(x),
for every x ∈ Pi. We have

(34) k�(x) =

∫ 1

0

n∑
j=1

AijχPj (y)dy =
1

n

n∑
j=1

Aij , ∀x ∈ Pi,

where Aij was defined by eq. (5). Hence,

k�(x) = n

∫
Pi

n∑
j=1

∫
Pj

W (x′, y′)dy′dx′ = n

∫
Pi

∫ 1

0

W (x′, y′)dy′dx′ = n

∫
Pi

k(x′)dx′,

showing k�(x) ≥ c where c > 0 is the constant from assumption 4.5. �

Remark 5.4. It follows that the finite-dimensional IVP eq. (31) on the quotient
graph has a unique solution given by etL�g�.

Theorem 5.5 (Convergence with W/P). Let W be a connected graphon satisfying
assumption 4.5, and let w(x, t) be the solution of IVP eq. (23). Further let u(x, t)
be the solution of the associated discrete problem eq. (31). Then for all t ∈ R+ it
holds that

‖u(·, t)− w(·, t)‖2 → 0 as n→∞.
Proof. Using remark 5.4, by the Minkowski inequality we have

‖u(·, t)− w(·, t)‖2 =
∥∥etL�g� − etLg

∥∥
2

=

∥∥∥∥∥
∞∑
k=0

tk

k!
Lk�g� −

∞∑
k=0

tk

k!
Lkg

∥∥∥∥∥
2

≤ ‖g� − g‖2 +

∞∑
k=1

tk

k!

∥∥Lk�g� − Lkg∥∥2︸ ︷︷ ︸
(∗)

.(35)

Let us write Lrw = K − I where K is the operator previously defined in eq. (22)
and I is the identity operator. We have a similar decomposition Lrw� = K�−I for
the Laplacian of the step graphon. For k ≥ 1 and 0 ≤ m ≤ k let us write αmk =
(−1)m

(
k
m

)
, and consider (∗) in the right-hand side of eq. (35). Using Newton’s

binomial theorem we have∥∥Lk�g� − Lkg∥∥2 =
∥∥(K� − I)kg� − (Kk − I)g

∥∥
2

=

∥∥∥∥∥
k∑

m=0

αmkKk−m� g� −
k∑

m=0

Kk−mg

∥∥∥∥∥
2

≤

∥∥∥∥∥
k−1∑
m=0

αmk
(
Kk−m� g� −Kk−mg

)∥∥∥∥∥
2

+ ‖αkk (g� − g)‖2

with |αmk| =
(
k
m

)
and using lemma 5.1,

≤
k−1∑
m=0

(
k

m

)∥∥(Kk−m� −Kk−m
)
g
∥∥
2︸ ︷︷ ︸

(∗∗)

+‖(g� − g)‖2.(36)
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By assumption 4.5 and proposition 5.3 there exists some constant c > 0 such that
k�(y) ≥ c for all y ∈ [0, 1]. Further, 0 ≤W ≤ 1 on [0, 1]2, and so

(37) ‖K�‖2 =

∥∥∥∥η(W/P)

k

∥∥∥∥
2

= ‖η(W/P)‖2

∥∥∥∥1

k�

∥∥∥∥
2

≤ 1

c
=: β�,

where K� denotes the integral kernel of K�. For ` ∈ N0, let us define E` := K`�−K`
and E` := K`

� − K`. Then, applying lemma 5.2 successively ` − 1 times to (∗∗)
in eq. (36) with ` = k −m, we obtain

‖E`g‖2 ≤ β
`−1
� ‖E1‖2‖g‖2 + ‖E`−1Kg‖2

≤
(
β`−1� + β`−2�

)
‖E1‖2‖g‖2 + ‖E`−2K2g‖2

...

≤

`−1∑
j=1

β`−j�

 ‖E1‖2‖g‖2 + ‖E1K`−1g‖2,

and since E` is the kernel of E` if ` = 1,

≤

`−1∑
j=1

β`−j�

 ‖E1‖2‖g‖2 + ‖E1‖2‖K
`−1g‖2

and with ‖K`−1g‖2 ≤ ‖K◦(`−1)‖2‖g‖2 ≤ ‖K‖
`−1
2 ‖g‖2,

≤

‖K‖`−12 +

`−1∑
j=1

β`−j�

 ‖E1‖2‖g‖2

≤ `β`−1‖E1‖2‖g‖2,(38)

where the last inequality stems from β := max {‖K‖2, β�} ≥ 1. Combining eq. (36)
and eq. (38) yields

∥∥Lk�g� − Lkg∥∥2 ≤ k−1∑
m=0

(
k

m

)
(k −m)βk−m−1‖K� −K‖2‖g‖2 + ‖(g� − g)‖2

≤ βk−1
k−1∑
m=0

(
k

m

)
(k −m)‖K� −K‖2‖g‖2 + ‖(g� − g)‖2.(39)

From eqs. (35) and (39) we obtain

‖u(·, t)− w(·, t)‖2 ≤ ‖g� − g‖2 +

∞∑
k=1

tk

k!
‖(g� − g)‖2

+ ‖K� −K‖2‖g‖2
∞∑
k=1

tk

k!
βk−1

k−1∑
m=0

(
k

m

)
(k −m)

= ‖g� − g‖2e
t + ‖K� −K‖2‖g‖2

∞∑
k=1

tk

k!
βk−1

k−1∑
m=0

(
k

m

)
(k −m)
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and with
∑k−1
m=0

(
k
m

)
(k −m) = k2k−1,

= ‖g� − g‖2e
t + ‖K� −K‖2‖g‖2

∞∑
k=1

tk

k!
k(2β)k−1

≤ ‖g� − g‖2e
t + ‖K� −K‖2‖g‖2t

∞∑
k=1

(2βt)k−1

(k − 1)!

≤ ‖g� − g‖2e
t + ‖K� −K‖2︸ ︷︷ ︸

(∗∗∗)

‖g‖2te
2βt.(40)

By the Lebesgue differentiation theorem, g� → g pointwise for almost every x ∈
[0, 1] as n→∞, so that

(41) ‖g� − g‖2 −−−→n→0
0

by dominated convergence [27]. Let us consider (∗ ∗ ∗) in eq. (40) :

‖K� −K‖22 =

∫
[0,1]2

(
η(W/P)(x, y)

k�(x, y)
− W (x, y)

k(y)

)2

dxdy

≤ ess sup
y∈[0,1]

1

k2�(y)k2(y)

∫
[0,1]2

(
η(W/P)(x, y)k(y)−W (x, y)k�(y)

)2
dxdy

≤ β2

∫
[0,1]2

(
η(W/P)(x, y)(k(y)− k�(y))

)2
dxdy

+ β2

∫
[0,1]2

(
(W (x, y)− η(W/P)(x, y))k�(y)

)2
dxdy

and because ‖η(W/P)‖2 ≤ 1 and ‖k�‖2 ≤ 1,

≤ β2
(
‖k − k�‖22 + ‖W − η(W/P)‖22

)
.(42)

By the Cauchy-Schwarz inequality,

‖k − k�‖22 =

∫ 1

0

(∫ 1

0

(W (y, z)− η(W/P)(y, z)) dz

)2

dy

≤
∫ 1

0

∫ 1

0

(W (y, z)− η(W/P)(y, z))
2
dzdy

= ‖W − η(W/P)‖22,

which together with eq. (42) yields

(43) ‖K� −K‖22 ≤ 2β2‖W − η(W/P)‖22.

By the same argument leading to eq. (41), we have ‖W −η(W/P)‖2 → 0 as n→∞
which with eq. (43) implies

(44) ‖K� −K‖2 −−−→n→0
0.

Combining eqs. (40), (41), and (44) allows to conclude. �
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5.2. Convergence on the sampled graph W[n]. The case of the discrete problem
on W[n] can be handled similarly as the discrete problem on W/P, and the conver-
gence theorem follows mainly from the observation in section 2.3 that W[n] → W

at every point of continuity of W . The necessary convergence in L2 will follow
from the supplemental assumption that the graphon is almost everywhere continu-
ous. The discrete problem (in its step function form) associated to eq. (23) on the
sampled graph W[n] reads

∂

∂t
u(x, t) = Lrw[n]u(x, t)(45a)

u(x, 0) = g�(x)(45b)

where the random walk Laplacian operator on W[n] satisfies

(46) Lrw[n]f(x) =

∫ 1

0

η
(
W[n]

)
(x, y)

k[n](y)
f(y)dy − f(x), ∀f ∈ L2[0, 1],

and the initial condition is again averaged on each cell of the partition as in eq. (33).
One needs to assume sufficiently large n to guarantee k[n] to be bounded away from 0
and so the Laplacian to be well-defined.

Theorem 5.6 (Convergence with W[n]). Let W be a connected, almost every-
where continuous graphon satisfying assumption 4.5 and let w(x, t) be the solution
of IVP eq. (23). Further let u(x, t) be the solution of the associated discrete prob-
lem eq. (45). Then for all t ∈ R+ it holds that

‖u(·, t)− w(·, t)‖2 → 0 as n→∞.

The proof is similar as for theorem 5.5.

Remark 5.7. The initial condition could have been sampled in a similar fashion as
the graphon, to yield the step function g[n] =

∑n
i=1 g

(
i
n

)
χPi . Almost everywhere

continuity of g would ensure that ‖g− g[n]‖2 → 0 when n→∞, and would be part
of the hypothesis of a convergence theorem. The proof of theorem 5.6 would only
require minor changes, which are similar to those discussed next in the new context
of section 5.3.

5.3. Convergence for a sequence of discrete problems. This time we consider
a sequence of problems defined on graphs with increasing number of nodes. We
assume the sequence of dense connected graphs, say (Gn), converges to a limit
graphon W in the L2 metric, in the sense that ‖η(Gn)−W‖2 → 0 as n→∞. Let
kn denote the degree function of the empirical graphon η(Gn). Consider the family
of discrete problems under the mapping η

∂

∂t
u(x, t) = Lrwn u(x, t)(47a)

u(x, 0) = gn(x) ∈ L2[0, 1],(47b)

where the random walk Laplacian operator Lrwn satisfies

(48) Lrwn f(x) =

∫ 1

0

η (Gn) (x, y)

kn(y)
f(y)dy − f(x), ∀f ∈ L2[0, 1].

Similarly as before, we write Lrwn = Kn − I.
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Theorem 5.8 (Convergence with (Gn)). Let (Gn) be a sequence of connected
graphs that converges to a connected graphon W satisfying assumption 4.5. Let
w(x, t) be the solution of the IVP eq. (23) associated to W with initial condition
w(·, 0) = g ∈ L2[0, 1]. Further let u(x, t) be the solution of the corresponding dis-
crete problem eq. (47), and assume that ‖gn − g‖2 → 0 as n → ∞. Then for all
t ∈ R+ it holds that

‖u(·, t)− w(·, t)‖2 → 0 as n→∞.

Proof. The proof follows the same steps as for theorem 5.5. However, using lemma 5.1
to obtain eq. (36) is now prohibited due to the initial condition of a discrete problem
no longer resulting from an averaging of the continuous IVP. Consider a sufficiently
large n such that the degree function of the empirical graphon satisfies kn ≥ c for
some constant c > 0. Not relying this time on lemma 5.1, we write

‖K`−mn gn −Kk−mg‖2 = ‖K`−mn gn −K`−mn g +K`−mn g −Kk−mg‖2
≤ ‖K`−mn (gn − g)‖2 + ‖(K`−mn −K`−m)g‖2,

with the first term in the right-hand side newly present. Following the same steps
leading to eq. (36), we obtain

∥∥Lkngn − Lkg∥∥2 ≤ k−1∑
m=0

(
k

m

)
‖K`−mn (gn − g)‖2

+

k−1∑
m=0

(
k

m

)∥∥(Kk−mn −Kk−m
)
g
∥∥
2

+ ‖(gn − g)‖2,

where again the first term right of the inequality is new. In fashion similar to the

proof of theorem 5.5, with β := max
{
‖K‖2,

∥∥∥ 1
kn

∥∥∥
∞

}
we have

‖u(·, t)− w(·, t)‖2 ≤
∞∑
k=1

tk

k!

k−1∑
m=0

(
k

m

)
‖K`−mn (gn − g)‖2

+ ‖gn − g‖2e
t + ‖Kn −K‖2‖g‖2te

2βt.

Using ‖Kk−m‖ ≤ βk−m ≤ βk and
∑k−1
m=0

(
k
m

)
≤ 2k, we have

∞∑
k=1

tk

k!

k−1∑
m=0

(
k

m

)
‖K`−mn (gn − g)‖2 ≤

∞∑
k=1

tk

k!
2kβk‖(gn − g)‖2 = ‖(gn − g)‖2e

2βt,

leading to

‖u(·, t)− w(·, t)‖2 ≤ ‖gn − g‖2
(
et + e2βt

)
+ ‖Kn −K‖2‖g‖2te

2βt.

�

6. Relaxation

The evolution of a system towards its asymptotic state w∞ starting from any
initial condition is know as relaxation. The so-called relaxation time characterizes
the rate of this evolution. In the continuum limit of the node-centric walk, it is
determined by the spectral properties of K, in a way reminiscent of random walks
on finite graphs. For the node-centric continuous-time walk, we will show now that
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this rate can be exponential. Let us define a normalized adjacency operator, which
is then used in the definition of a normalized Laplacian.

Definition 6.1 (Normalized adjacency operator). Under assumption 4.5, let the
normalized adjacency operator be the integral operator Anorm : L2[0, 1]→ L2[0, 1]
defined by Anorm =M1/

√
k KM√k.

Observe that under assumption 4.5 the kernel W (x, y)/
√
k(x)k(y) of Anorm is

square-integrable and symmetric. Hence Anorm is a compact, self-adjoint Hilbert-
Schmidt integral operator and the Hilbert-Schmidt theorem applies. Therefore,
there exists an orthonormal basis of eigenfunctions {φm} with associated eigenval-
ues θm, so that operator Anorm has the canonical form

(49) Anorm =

∞∑
m=1

θm (φm, ·)φm.

The operator Lnorm := Anorm − I is the associated normalized (or sometimes

also called symmetric) Laplacian. Note that for ` ∈ N, (Anorm)
`

has eigenfunc-

tions φm and eigenvalues θ`m, and that (Lrw)
`

=M√k (Lnorm)
`M1/

√
k. Combined

with eq. (49) this yields the singular value decomposition

eL
rwt =M√k

 ∞∑
`=0

t`

`!

( ∞∑
m=1

θm (φm, ·)φm − I

)`M1/
√
k

=M√k

 ∞∑
`=0

t`

`!

( ∞∑
m=1

(θm − 1) (φm, ·)φm

)`M1/
√
k

=M√k

( ∞∑
m=1

∞∑
`=0

t`

`!
λ`m (φm, ·)φm

)
M1/

√
k

=

∞∑
m=1

eλmt
(
φm√
k
, ·
)√

kφm(50)

with λm = θm− 1 the eigenvalues of Lnorm. By letting ψm = φm√
k

and ζm =
√
kφm,

the solution of IVP eq. (23) reads

(51) w(x, t) =

∞∑
m=1

eλmt (ψm, g) ζm(x).

The following proposition allows for a characterization of the rate of the relaxation
towards w∞.

Proposition 6.2. Let W be a graphon satisfying assumption 4.5, then the eigen-
values λm of Lnorm are non-positive reals, and the largest eigenvalue is zero. If
moreover W is connected, then the eigenvalue zero has multiplicity one.

Proof. That the eigenvalues are reals results from Lnorm being a self-adjoint oper-
ator on L2[0, 1]. Let λ be an eigenvalue of Lnorm associated to φ. Then λ is given
by the Rayleigh quotient

(52) λ =
(λφ, φ)

(φ, φ)
=

(Lnormφ, φ)

(φ, φ)
.
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Consider the numerator in the right-hand side of eq. (52). For all f ∈ L2[0, 1] we
can write

(Lnormf, f) =

∫ 1

0

∫ 1

0

W (x, y)√
k(x)

√
k(y)

f(x)f(y)dxdy −
∫ 1

0

f2(x)dx

=
1

2

(
2

∫ 1

0

∫ 1

0

√
W (x, y)√
k(x)

√
W (x, y)√
k(y)

f(x)f(y)dxdy

−
∫ 1

0

∫ 1

0

W (x, y)

k(x)
f2(x)dxdy −

∫ 1

0

∫ 1

0

W (x, y)

k(y)
f2(y)dxdy

)

= −1

2

∫ 1

0

∫ 1

0

(√
W (x, y)√
k(x)

f(x)−
√
W (x, y)√
k(y)

f(y)

)2

dxdy,(53)

which is non-positive. The claim that zero is an eigenvalue follows from the fact
that Lnorm

√
k(x) = 0 on [0, 1]. Finally, let us show that the nullspace of Lnorm

has dimension one if W is connected. By defining g = M1/
√
kf on [0, 1], we have

to show that if the right-hand side of eq. (53) is zero, namely

(54) − 1

2

∫∫
[0,1]2

W (x, y) (g(x)− g(y))
2
dxdy = 0,

then g has to be a constant function on [0, 1]. By contradiction, assume that there
exists some non-constant function g that verifies eq. (54). For simplicity, consider
the case that g = c1 on some S ∈ M[0, 1] with µ(S) ∈ (0, 1), and g = c2 on
Sc := [0, 1] \ S, with c1, c2 ∈ R, c1 6= c2. The reasoning would be similar if g is a
piecewise constant function on any other partition of [0, 1], and can be extended by
density to any not piecewise constant g. Based on eq. (54), we can write
(55)

0 =

∫∫
[0,1]2

W (x, y) (g(x)− g(y))
2
dxdy ≥

∫∫
S×Sc

W (x, y) (g(x)− g(y))
2
dxdy,

and the integral in the right-hand side is zero. Since W is connected, we have∫∫
S×ScW (x, y)dxdy > 0, and hence there exists a positive-measured subset E × F

of S × Sc such that W > 0 on E × F . Therefore, g(x) − g(y) = 0 for almost
every (x, y) ∈ E × F . But then, since g = c1 on E ⊂ S, g = c1 on F ⊂ Sc, a
contradiction. �

Remark 6.3 (Spectral gap). The last claim of proposition 6.2 means that the spec-
tral gap of Lnorm, namely the positive difference between the largest and the second
largest eigenvalue, is nonzero when the graphon is connected with degree function
bounded away from zero. Observe that if k is not bounded away from zero, we
may no longer write Anorm =M1/

√
k KM√k because 1/

√
k is not bounded. This

implies that the spectrum of Lrw can no longer be deduced directly from the spec-
trum of the compact self-adjoint operator Lnorm. However, the eigenvalues of Lrw
may in some cases be computed directly, see example 6.4 hereafter. If the graphon
is not connected, one can analyze the dynamics on each connected component in-
dependently, as follows from the decomposition introduced in [19]. Therefore, it
only remains to consider relaxation in the case of a connected graphon where as-
sumption 4.5 is not satisfied, meaning k(x) becomes arbitrarily small on positive
measured subsets of [0, 1], and such that K is still well-defined. In this situation
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the eigenvalues of the generally non-self-adjoint operator Lrw may be embedded in
the continuous spectrum whilst in the discrete or discretized version, the spectrum
is composed only of eigenvalues and there can be a positive spectral gap as a result
of connectedness in a finite graph.

Example 6.4 (Eigenvalues of Lrw on a separable graphon). Consider the sepa-
rable5 graphon W (x, y) = xy. The degree function is k(x) = x/2, in which case

Lrw = K − I with Kf(x) = 2x
∫ 1

0
f(y)dy. Any eigenvalue λK of K satisfies

(56) 2x

∫ 1

0

φK(y)dy = λKφK(x), x ∈ [0, 1],

where φK is an eigenfunction. It suffices to subtract one to the eigenvalues of K
and to hold the same eigenfunctions to obtain the eigenpairs of Lrw. From (56),
one finds λK = 1 with the one-dimensional eigenspace span{x}, or λK = 0 with the
infinite-dimensional eigenspace {1}⊥. Observe these spaces are not orthogonal, but
their sum is L2[0, 1].

7. Extension to the discrete-time walk

The analysis of the node-centric continuous-time walk carries over to the discrete-
time version eq. (11). The corresponding IVP on the continuum reads

w(·, `+ 1) = Kw(·, `), ` ∈ N0(57a)

w(·, 0) = w0 ∈ L2[0, 1],(57b)

with solution given by w(·, `) = K`w0 for every ` ∈ N.
Following the same steps as in sections 3.2, 4, and 5, we obtain a similar conver-

gence result on the quotient graph W/P. Indeed, the proof in continuous time al-
ready contains the necessary bound on the operator norm of the difference K`−K`�,
see eq. (38). The same holds true on the sampled graph W[n] and for a sequence
of discrete problems. Analogously as for eq. (51), the spectral expansion of the
solution of the discrete-time IVP eq. (57) reads

(58) w(·, `) =

∞∑
m=1

λ`m (ψm, w0) ζm, ` ≥ 0.

8. Conclusion

There are two main arguments motivating this work. On the one hand, random
walks and Laplacians play a central role in the study of graphs, and a better un-
derstanding of their behavior on graphons has a clear mathematical interest, with
theoretical and algorithmic objectives. On the other hand, even though large net-
works become ever more common in numerous fields of research, a rigorous study
of the continuum limit of the different types of random walks on graphs was still
lacking.

This paper is intended as a first step towards a systematic study of classes of
random walks on discrete domains, relying on the adequate framework provided
by graph-limit theory. We have first shown that the continuum-limit of the dis-
crete heat equation [27] could be interpreted as the limit of a rescaled edge-centric

5The graphon W (x, y) is separable if it can be written as W (x, y) = ζ(x)ζ(y) for some func-
tion ζ.
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continuous-time Poisson random walk. We have then studied the continuum limit
of the remaining two fundamental classes of random walks on graphs, which com-
plement the discrete heat equation : the discrete-time walk, and its continuous-time
generalization. A final part of the document was devoted to spectral aspects of the
introduced random walk Laplacian operator, thereby allowing for a characterization
of the relaxation time of the process.

The world of random walks is a very broad one, and this initial work calls
for extensions. A promising research direction would consist in generalizing the
semigroup approach developed here, or the one in [27, 28, 29], to the diverse classes
of random walk processes omitted here, for instance walks on temporal or directed
networks. A second line of research could focus on the case of sparse graphs, and
the way they affect the approximation procedure we have applied. Sparsity is
indeed known to be the norm rather than the exception in real-life networks. Such
extension was already provided for the graph-limit version of the heat equation,
using Lp graphons [5, 28, 20]. Another possible venue of investigation could follow
from recent work on sparse exchangeable graphs generated via graphon processes
or graphexes [3, 4, 8].
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