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HARNACK INEQUALITIES AND HÖLDER ESTIMATES

FOR MASTER EQUATIONS

ANIMESH BISWAS, MARTA DE LEÓN-CONTRERAS, AND PABLO RAÚL STINGA

Abstract. We study master equations of the form

(∂t + L)su = f in R× Ω

where L is a divergence form elliptic operator and Ω ⊆ R
n. These are nonlocal

equations of order 2s in space and s in time that take into account the values of u
everywhere in Ω and for past times. We show parabolic interior and boundary Harnack
inequalities and local parabolic Hölder continuity of solutions. To this end, we prove
a characterization of fractional powers of parabolic operators ∂t+L with a degenerate
parabolic extension problem.

1. Introduction

We study regularity estimates for master equations driven by fractional powers of
parabolic operators of the form

(1.1) Hsu(t, x) ≡ (∂t + L)su(t, x) = f(t, x) 0 < s < 1

for t ∈ R and x ∈ Ω, where Ω is an open subset of Rn, n ≥ 1, that may be unbounded,
and L is an elliptic operator subject to appropriate boundary conditions on ∂Ω.

Master equations are of great interest in mechanics, elasticity, biology and physics.
Consider, for example, the semipermeable membrane problem in biology, which is also
equivalent to the parabolic Signorini problem in elasticity. In this problem, we have an
anisotropic diffusion process happening inside a cell modeled as a region of points (x, y) ∈
R = Ω × (0,∞). The diffusion is driven by a parabolic equation ∂tU = −LU + ∂yyU ,
where U(t, x, y) is the pressure inside the cell at time t at the point (x, y) ∈ R. Here −L
is an elliptic operator in the variable x ∈ Ω. For instance, L can be the Laplacian −∆
in Ω or a divergence form operator as in (1.4). The bottom of the cell T = Ω×{y = 0}
is a semipermeable membrane, meaning that if the pressure U(t, x, 0) on the membrane
becomes smaller than the pressure φ(t, x) from outside, then fluid can enter the cell,
otherwise there is no flux. On the wall of the cell ∂Ω × (0,∞) one may assume that
pressure is zero, that is U = 0, or there is no flux, namely, ∂νU = 0, where ∂ν denotes
the exterior normal derivative at the boundary ∂Ω. As in [12], if we assume that the
membrane T is very thin, then the model becomes

(1.2)





∂tU = −LU + ∂yyU for t ∈ R, (x, y) ∈ R,
U(t, x, 0) ≥ φ(t, x) for t ∈ R, on T ,
−∂yU(t, x, 0) ≥ 0 on T ,
−∂yU(t, x, 0) = 0 whenever U > φ on T ,
U = 0 or ∂νU = 0 for t ∈ R, on the wall ∂Ω× (0,∞).
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Then, as done in [7], it can be seen that the flux is given by

−∂yU(t, x, 0) = (∂t + L)1/2U(t, x, 0) on T .
Moreover, the semipermeable membrane model (1.2) turns out to be equivalent to the
following obstacle problem on the membrane for u(t, x) := U(t, x, 0) when s = 1/2:





u ≥ φ for all (t, x) ∈ R× Ω

(∂t + L)su ≥ 0 for (t, x) ∈ R× Ω,

(∂t + L)su = 0 whenever u > φ,

u = 0 or ∂νu = 0 for t ∈ R, on ∂Ω.

This free boundary problem for 0 < s < 1 when L = −∆ and Ω = R
n was studied in

[4]. It can also be seen that the problem of biological invasions where there is a road
with fast diffusion considered in [5] is equivalent to a local-nonlocal system driven by a
local parabolic equation and a nonlocal equation as in (1.1), see [7]. Other applications
of master equations can be found in [2, 9, 19] and references therein.

As we will show, master equations as in (1.1) are nonlocal in space and time, and take
into account the past (memory). Generally speaking, these equations take the form

(1.3)

∫ ∞

0

∫

Ω
(u(t− τ, z)− u(t, x))K(t, x, τ, z) dz dτ = f(t, x)

for t ∈ R and x ∈ Ω, where K is some kernel. These are also related to continuous
time random walks, see [16]. L. A. Caffarelli and L. Silvestre proved Hölder estimates
for equations as in (1.3) when the right hand side f is bounded, see [9]. They assumed
some structural conditions on the kernel K that enforce regularity of u. On the other
hand, the most basic master equation is given by the fractional powers of the heat
operator (∂t −∆)su = f , and this case was analyzed in great detail in [19].

In general, the elliptic operator L we consider in (1.1) is a nonnegative operator of
the form

(1.4) L = − div(a(x)∇) + c(x)

in a domain Ω ⊆ R
n that may be unbounded. Here a(x) = (aij(x)) is a bounded,

measurable, symmetric matrix defined in Ω, satisfying the uniform ellipticity condition,
that is, for some Λ ≥ 1,

Λ−1|ξ|2 ≤ aij(x)ξiξj ≤ Λ|ξ|2
for a.e. x ∈ Ω, for all ξ ∈ R

n, and c(x) ∈ L∞
loc(Ω). Some concrete operators we consider

in (1.4) are the following:

(1) L = − div(a(x)∇) + c(x) in a bounded domain Ω with homogeneous Dirichlet or
Neumann (conormal) boundary condition. The potential function c(x) ≥ 0 and
c(x) ∈ L∞(Ω). If c(x) = 0 and a(x) = I, then we get −∆D and −∆N , the Dirichlet
and Neumann Laplacians, respectively.

(2) The harmonic oscillators L = −∆+ |x|2 and L = −∆+ |x|2 − n in Ω = Rn.

(3) The Laguerre differential operator L = 1
4 (−∆+|x|2+∑n

i=1
1
x2
i

(
α2
i − 1

4

)
), for αi > −1,

in Ω = (0,∞)n.

(4) The ultraspherical operator L = − d2

dx2 + λ(λ−1)
sin2 x

, for λ > 0, in Ω = (0, π).

(5) The Laplacian −∆ in Ω = R
n.

(6) The Bessel operator L = − d2

dx2 + λ(λ−1)
x2 , for λ > 0, in Ω = (0,∞).

Observe that in (2)–(6) the ellipticity constant is Λ = 1. The operators (2)–(4) arise in
classical orthogonal expansions and the Bessel operator in (6) appears when considering
radial-in-space solutions to (∂t −∆)su = f .
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The precise notion of Hs = (∂t+L)s is a delicate point. Indeed, a definition in terms
of the Fourier transform in time and the spectral resolution of L leads to considering the
multi-valued complex function z 7→ zs. In this paper, we develop a semigroup approach
that allows us to overcome this difficulty. Observe that, unlike the case treated in [19],
where L = −∆, the Fourier transform in space is not the most useful tool anymore
because L is not translation invariant and has nonsmooth coefficients, and, in general,
the domain Ω is not the whole space R

n. In addition, Hsu needs to be understood in
the weak sense, see Section 2 for more details.

By using our semigroup method for the concrete cases (1)–(6) we are able to obtain an
integro-differential formula for Hsu which shows that (1.1) is indeed a master equation
as in (1.3), but in divergence form.

Theorem 1.1. Let L be as in (1)–(6). If u, v ∈ Dom(Hs) ∩ C∞
c (R× Ω) then

〈Hsu, v〉 = 〈(∂t + L)su, v〉

=

∫ ∞

0

∫

R

∫

Ω

∫

Ω
Ks(τ, x, z)(u(t − τ, x)− u(t− τ, z))(v(t, x) − v(t, z)) dz dx dt dτ

+

∫ ∞

0

[ ∫

R

∫

Ω

(
1− e−τL1(x)

)

|Γ(−s)|τ1+s
u(t, x)v(t, x) dx dt

−
∫

R

∫

Ω
e−τL1(x)

(u(t − τ, x)− u(t, x))

|Γ(−s)|τ1+s
v(t, x) dx dt

]
dτ,

where

Ks(τ, x, z) =
Wτ (x, z)

2|Γ(−s)|τ1+s
,

Wτ (x, z) is the heat kernel for L, and

e−τL1(x) =

∫

Ω
Wτ (x, z) dz.

Remark 1.2. There are cases in which e−τL1(x) ≡ 1. This occurs, for example, when
L is as in (1.4) with c(x) = 0 and has either Neumann boundary condition or Ω = R

n,
or when L is the Laplacian −∆ on R

n. Then, in Theorem 1.1 we get

〈Hsu, v〉 =
∫ ∞

0

∫

R

∫

Ω

∫

Ω
Ks(τ, x, z)(u(t − τ, x)− u(t− τ, z))(v(t, x) − v(t, z)) dz dx dt dτ

−
∫ ∞

0

∫

R

∫

Ω

(u(t− τ, x)− u(t, x))

|Γ(−s)|τ1+s
v(t, x) dx dt dτ.

The second integral term above is equal to

−
∫

R

∫

Ω
(Dleft)

su(t, x)v(t, x) dx dt

where (Dleft)
s denotes the fractional power of the derivative from the left, which coincides

with the Marchaud fractional derivative, acting on the variable t ∈ R, see [6].

Remark 1.3. If the heat kernel Wτ (x, z) of L satisfies Gaussian bounds, then we can
obtain pointwise estimates for the kernel Ks(τ, x, z) in Theorem 1.1. Here we present
two cases for an operator L as in (1) for c ≡ 0.

(a) If Ω is a bounded domain and the coefficients a(x) are bounded and measurable
then, by the results of [11], we have the Gaussian upper bound

Wτ (x, z) ≤
C

τn/2
e−|x−z|2/(cτ) x, z ∈ Ω, τ > 0,
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for some constants C, c > 0. From here, it readily follows the estimate

Ks(τ, x, z) ≤
Λ

|x− z|n+2+2s + τn/2+1+s
, for every x, z ∈ Ω, τ > 0,

for some Λ > 0.
(b) If Ω = R

n and the coefficients a(x) are bounded and measurable then, by Aronson’s
estimates [3], we have the two-sided heat kernel Gaussian bound

C1

τn/2
e−|x−z|2/(c1τ) ≤Wτ (x, z) ≤

C2

τn/2
e−|x−z|2/(c2τ) x, z ∈ R

n, τ > 0,

for some constants C1, c1, C2, c2 > 0. Then, an upper bound for Ks(τ, x, z) as in (a)
holds, and we also have the lower bound

Ks(τ, x, z) ≥
λ

|x− z|n+2+2s
, when τ ∼ |x− z|2,

for some λ > 0.

These estimates show that (∂t + L)s is an equation of order s in time and 2s in space.

For master equations (1.1) with a general L as in (1.4) we prove parabolic interior
and boundary Harnack inequalities, local boundedness and parabolic Hölder regularity.
For notation see Section 2.

Theorem 1.4 (Parabolic interior Harnack inequality). Let L be as in (1.4). Let B2r be

a ball of radius 2r, r > 0, such that B2r ⊂⊂ Ω. There exists a constant c > 0 depending

only on n, s, Λ and r such that if u = u(t, x) ∈ Dom(Hs) is a solution to
{
Hsu = 0 for (t, x) ∈ R := (0, 1) ×B2r

u ≥ 0 for (t, x) ∈ (−∞, 1)× Ω,

then

sup
R−

u ≤ c inf
R+

u

where R− := (1/4, 1/2)×Br and R+ := (3/4, 1)×Br. Moreover, solutions u ∈ Dom(Hs)
to Hsu = 0 in R are locally bounded and locally parabolically α-Hölder continuous in R,
for some exponent 0 < α < 1 depending on n, Λ and s. More precisely, for any compact

set K ⊂ R there exists C = C(c,K,R) > 0 such that

‖u‖
C

α/2,α
t,x (K)

≤ C‖u‖L2(R×Ω).

To present the parabolic boundary Harnack inequality, let Ω0 ⊂ Ω and x̃ ∈ ∂Ω0 such
that B2r(x̃) ⊂ Ω, for some r > 0 fixed. Suppose that, up to a rotation and translation,
B2r(x̃) ∩ ∂Ω0 can be represented as the graph of a Lipschitz function g : Rn−1 → R in
the en = (0, . . . , 0, 1)-direction, such that g has Lipschitz constant M > 0. Thus,

Ω0 ∩B2r(x̃) = {(x′, xn) : xn > g(x′)} ∩B2r(x̃)

∂Ω0 ∩B2r(x̃) = {(x′, xn) : xn = g(x′)} ∩B2r(x̃).

Fix a point (t0, x0) ∈ (−2, 2) × Ω0 such that t0 > 1.

Theorem 1.5 (Parabolic boundary Harnack inequality). Let L be as in (1.4). Assume

the geometric conditions on Ω0 and Ω described above. Then there exists a constant

C > 0 depending on n, Λ, r, M , s, t0 − 1 and g, such that if u(t, x) ∈ Dom(Hs) is a

solution to {
Hsu = 0 for (t, x) ∈ (−2, 2) × (Ω0 ∩B2r(x̃))

u ≥ 0 for (t, x) ∈ (−∞, 2)× Ω
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such that u vanishes continuously on (−2, 2) × ((Ω \ Ω0) ∩B2r(x̃)) then

sup
(−1,1)×(Ω0∩Br(x̃))

u(t, x) ≤ Cu(t0, x0).

The main tool to prove Theorems 1.4 and 1.5 is an extension problem characterization
for the fractional operators (∂t + L)s. Observe that, in general, L as in (1.4) may have
discrete or continuous spectrum in different Hilbert spaces. The extension problem we
present here not only works for (1.4), but for any fractional operator of the form (∂t+L)

s,
where L is a nonnegative normal linear operator in a Hilbert space L2(Ω) with some
positive measure dη.

Theorem 1.6 (Extension problem). Let L be a nonnegative normal linear operator on

L2(Ω) and H = ∂t + L. Let u ∈ Dom(Hs). For (t, x) ∈ R× Ω and y > 0 we define

(1.5)

U(t, x, y) =
y2s

4sΓ(s)

∫ ∞

0
e−y2/(4t)e−τHu(t, x)

dτ

τ1+s

=
1

Γ(s)

∫ ∞

0
e−re−

y2

4r
Hu(t, x)

dr

r1−s

=
1

Γ(s)

∫ ∞

0
e−y2/(4r)e−rH(Hsu)(t, x)

dr

r1−s
.

Then U(·, ·, y) ∈ Dom(H) for each y > 0, U ∈ C∞((0,∞);L2(R×Ω))∩C([0,∞);L2(R×
Ω)) and U ∈ L2((0,∞);Dom(H), y1−2sdy) Moreover, U is a solution to

(1.6)




〈HU, v〉 =

〈
1−2s
y ∂yU + ∂yyU, v

〉
L2(R×Ω)

for each v ∈ Dom(H) and y > 0

lim
y→0+

U(t, x, y) = u(t, x) in L2(R× Ω)

such that

lim
y→∞

〈U, v〉L2(R×Ω) = 0, for every v ∈ L2(R× Ω)

and

sup
y>0

|〈y1−2s∂yU, v〉L2(R×Ω)| ≤ Cs‖u‖Hs‖v‖Hs , for every v ∈ Dom(Hs).

In addition, for every v ∈ Dom(Hs),

− 1

2s
lim
y→0+

〈y1−2s∂yU, v〉L2(R×Ω) =
|Γ(−s)|
4sΓ(s)

〈Hsu, v〉

= − lim
y→0+

〈U(·, ·, y) − U(·, ·, 0)
y2s

, v
〉
L2(R×Ω)

.

Theorem 1.6 shows that the solution u to the nonlocal problem Hsu = f is charac-
terized by the solution U to the local problem (1.6). Another main novelty is the set of
explicit formulas for the solution U we discovered in (1.5). Observe that U is given in
terms of the semigroup generated by H acting either on u or on f = Hsu.

Extension problems as the one in Theorem 1.6 have proven to be very useful for several
applications. For example, the extension problem allows to find a monotonicity formula
and prove regularity estimates for free boundary problems for fractional powers of the
heat operator [4]. Also, they are central tools for the numerical analysis of fractional
equations using finite elements methods [17].

The reader will notice that our semigroup methodology is very general and has wide
applicability. Indeed, we can also consider other master equations (∂t + L)su = f in
different settings. For example, the elliptic operator L can be the Laplace–Beltrami
or the conformal Laplacian on a manifold, a subelliptic operator on a Lie group (like
a Carnot or Heisenberg group), the Laplacian in infinite dimensions (Wiener space),
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the Laplacian on a lattice, or nonsymmetric operators like nondivergence form elliptic
operators and operators associated to Dirichlet forms in Hilbert spaces. More generally,
it is enough for L to be the generator of a uniformly bounded C0-semigroup as in [13]
because, in that case, the semigroup {e−τH}τ≥0 will be well defined. Applications and
generalizations to these cases will appear elsewhere.

In view of our results, we expect parabolic Harnack inequalities to hold for (1.3) in
the general case of [9]. This remains an open problem for which a different technique
that is not based on extension problems needs to be found.

In Section 6 we develop a transference method for fractional powers of parabolic
operators that allows us to transfer the Harnack inequalities and Hölder estimates for
(∂t + L)su = f from Theorems 1.4 and 1.5 to other master equations of the form
(∂t+ L̄)

sū = f̄ . Here, formally, L̄ = (U ◦W )−1 ◦L◦ (U ◦W ), where U is a multiplication
operator by a smooth positive function and W is a smooth change of variables operator.
This method is particularly useful when L̄ is one of the following elliptic operators having
gradient term.

(7) The Ornstein–Uhlenbeck operator L = −∆+2x ·∇ in Ω = R
n with the Gaussian

measure.
(8) The Laguerre operators

• L =
∑n

i=1

(
−xi ∂2

∂x2
i
− (αi + 1) ∂

∂xi
+ xi

4

)
,

• L = 1
4(−∆+ |x|2 −∑n

i=1
2αi+1
xi

∂
∂xi

),

• L =
∑n

i=1

(
−xi ∂2

∂x2
i
− ∂

∂xi
+ xi

4 +
α2
i

4xi

)
,

• L =
∑n

i=1

(
−xi ∂2

∂x2
i
− (αi + 1− xi)

∂
∂xi

)
,

for αi > −1 in Ω = (0,∞)n, with their corresponding Laguerre measures.

(9) The ultraspherical operator L = − d2

dx2 − 2λ cot x d
dx + λ2, for λ > 0 in Ω = (0, π)

with the measure dη(x) = sin2λ x dx.

(10) The Bessel operator L = − d2

dx2 − 2λ
x

d
dx , for λ > 0 in Ω = (0,∞) with the measure

dη(x) = x2λdx.

These are related to classical orthogonal expansions and can be obtained by transference
from the operators L listed in (2)–(6). Transference techniques in the elliptic case
have been widely used in harmonic analysis, see [1], and also for fractional elliptic
PDEs, see [20]. We also point out that pointwise formulas for the nonlocal operators
(∂t + L)su(t, x) when L is as in (7)–(10) can be deduced exactly as in Theorem 1.1 by
using the corresponding heat kernels. Details are left to the interested reader.

Theorem 1.7 (Transference method). If Theorems 1.4 and 1.5 hold true for solutions

u ∈ Dom(Hs) to (∂t + L)su = 0, where L is as in (1.4), then they also hold true for

solutions ū ∈ Dom(H̄s) to (∂t + L̄)sū = 0.

A very detailed study of the master equation (∂t −∆)su = f in Ω = R
n was carried

out in [19]. There are many significant challenges in our work with respect to that
one. As we mentioned before, one notices that while defining the operator (∂t −∆)s in
[19], the authors use the Fourier transform both the space and times variables. They
are able to find explicit pointwise formulas for (∂t −∆)su(t, x) and also for the inverse
(∂t − ∆)−sf(t, x). In general, our operators L have nonsmooth coefficients and the
domains Ω are not Rn. Therefore, the use of the Fourier transform in the space variable
is not the most adequate approach. Instead, we take advantage of the spectral resolution
of L. As a result of our generality, we do not have any explicit expression for the kernel
in the master equation formulation, see Theorem 1.1, rather bounds coming from heat
kernel estimates, see Remark 1.3. Theorem 1.6 for (∂t−∆)s was also proved in [19], and
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an explicit formula for U(t, x, y) was given using a Poisson kernel. In such expression
for U , one can directly take derivatives inside the integral sign to prove that U is a
classical solution and satisfies the extension equation pointwise. In turn, in our case,
to prove that U is a solution we need to establish the weak formulation, see Sections 3
and 4. In terms of regularity, [19] uses the symmetries of the Laplacian and the heat
semigroup characterizations of Hölder and Zygmund spaces to prove parabolic Schauder
estimates in a very elegant, quick way. In contrast, in [8], a compactness method needed
to be developed to prove interior and boundary Schauder estimates for (1.1). Finally,
in this paper we are able to transfer Harnack inequalities from one set of operators to
another set of operators because our Theorems 1.4 and 1.5 hold for very general elliptic
operators L. This would not be possible by just using the results in [19].

The paper is organized as follows. In Section 2 we provide the precise definition of
(∂t + L)s and prove Theorem 1.1. Section 3 contains the proof of the general parabolic
extension problem (Theorem 1.6) and Section 4 explains how to apply it when L is an
elliptic operator in divergence form. The proof of Theorems 1.4 and 1.5 are given in
Section 5. Finally, the transference method (Theorem 1.7) and the proof of Harnack
inequalities and Hölder estimates for (∂t + L)su = f , where L is as in (7)–(10), are
presented in Section 6.

2. Definition and integro-differential formula

In this section we present the precise definition of Hsu(t, x) = (∂t + L)su(t, x) and
show that in general this is a master operator.

Let L be a nonnegative normal linear operator on a Hilbert space L2(Ω) with some
positive measure dη. For concreteness and simplicity of the presentation, we will assume
that L has discrete spectrum and dη is the Lebesgue measure. We will also assume for
simplicity that the eigenfunctions of L are real-valued. We can always obtain the general
result by using the Spectral Theorem, the Fourier transform, the Hankel transform, the
corresponding orthogonal expansions with respect to dη, etc.

Therefore, suppose that L has a countable sequence of eigenvalues and eigenfunctions
(λk, φk)k≥0 such that 0 ≤ λ0 < λ1 ≤ λ2 ≤ · · · ր ∞ and so that {φk}k≥0 forms an
orthonormal basis of L2(Ω). In the case in which λ0 = 0 (for instance, for the Neumann
Laplacian) we assume that all the functions involved have zero integral mean over Ω.
With this, any function u(t, x) ∈ L2(R× Ω) can be written as

u(t, x) =
1

(2π)1/2

∫

R

∞∑

k=0

ûk(ρ)φk(x)e
itρ dρ,

where

uk(t) =

∫

Ω
u(t, x)φk(x) dx

and ûk(ρ) is the Fourier transform of uk(t) with respect to the variable t ∈ R:

ûk(ρ) =
1

(2π)1/2

∫

R

uk(t)e
−iρt dt.

The domain of the operator Hs ≡ (∂t + L)s, 0 ≤ s ≤ 1, is defined as

Dom(Hs) =

{
u ∈ L2(R ×Ω) : ‖u‖2Hs :=

∫

R

∞∑

k=0

|iρ+ λk|s|ûk(ρ)|2 dρ <∞
}
.
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For u ∈ Dom(Hs) we define Hsu as a bounded linear functional on Dom(Hs) that
acts on any v ∈ Dom(Hs) by

(2.1) 〈Hsu, v〉 ≡
∫

R

∞∑

k=0

(iρ+ λk)
sûk(ρ)v̂k(ρ) dρ

where v̂k(ρ) denotes the complex conjugate of v̂k(ρ). We have

‖u‖2Hs = 〈Hs/2u,Hs/2u〉 for any 0 ≤ s ≤ 1.

Notice that we need to appropriately decide which s-power of the complex number
(iρ+λk) we are taking. We are able to clarify this by developing a semigroup technique,
in which the Gamma function plays a crucial role. The method permits us to show
that (2.1) is indeed a master equation, or nonlocal in space and time integro-differential
operator, in divergence form. Observe as well that Dom(Hs) encodes the boundary
condition on L.

As the family of eigenfunctions {φk}k≥0 is an orthonormal basis of L2(Ω), we can
write the semigroup {e−τL}τ≥0 generated by L as

〈e−τLϕ,ψ〉L2(Ω) =

∞∑

k=0

e−τλkϕkψk =

∫

Ω

∫

Ω
Wτ (x, z)ϕ(z)ψ(x) dz dx

for any ϕ,ψ ∈ L2(Ω), where ϕk =

∫

Ω
ϕφk dx and ψk =

∫

Ω
ψφk dx. As it happens for

(1.4) and all the other cases (1)–(9), we will always assume that the heat kernel for L is
symmetric and nonnegative:

Wτ (x, z) =Wτ (z, x) ≥ 0.

Since ∂t and L commute, we define, for any u ∈ L2(R× Ω),

e−τHu(t, x) = e−τL(e−τ∂tu)(t, x) = e−τL(u(t− τ, ·))(x)
in the sense that, for any v ∈ L2(R× Ω),

(2.2)

〈e−τHu, v〉L2(R×Ω) =

∫

R

∞∑

k=0

e−τ(iρ+λk)ûk(ρ)v̂k(ρ) dρ

=

∫

R

∞∑

k=0

e−τλkuk(t− τ)vk(t) dt

=

∫

R

∫

Ω

∫

Ω
Wτ (x, z)u(t − τ, z)v(t, x) dz dx dt.

Lemma 2.1. Let 0 < s < 1. If u ∈ Dom(Hs) then

Hsu =
1

Γ(−s)

∫ ∞

0

(
e−τHu− u

) dτ

τ1+s

in the sense that, for any v ∈ Dom(Hs),

〈Hsu, v〉 = 1

Γ(−s)

∫ ∞

0

(
〈e−τHu, v〉L2(R×Ω) − 〈u, v〉L2(R×Ω)

) dτ

τ1+s
.

Proof. Let u, v ∈ Dom(Hs). We will use the following numerical formula with the
Gamma function that comes from performing the analytic continuation to Re(z) > 0 of
the function that maps t ∈ [0,∞) to ts, see [6, 19],

(2.3) (iρ+ λk)
s =

1

Γ(−s)

∫ ∞

0
(e−τ(iρ+λk) − 1)

dτ

τ1+s
, ρ ∈ R.
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The integral above is absolutely convergent. Then, in (2.1) we have

〈Hsu, v〉 =
∫

R

∞∑

k=0

[
1

Γ(−s)

∫ ∞

0
(e−τ(iρ+λk) − 1)

dτ

τ1+s

]
ûk(ρ)v̂k(ρ) dρ.

On one hand,
∫ 1/|iρ+λk|

0
|e−τ(iρ+λk) − 1| dτ

τ1+s
≤ C|iρ+ λk|

∫ 1/|iρ+λk |

0
τ−s dτ = C|iρ+ λk|s.

On the other hand,
∫ ∞

1/|iρ+λk |
|e−τ(iρ+λk) − 1| dτ

τ1+s
≤ C

∫ ∞

1/|iρ+λk|
τ−1−s dτ = C|iρ+ λk|s.

Since u, v ∈ Dom(Hs), Fubini’s Theorem and (2.2) allow us to get the conclusion. �

Proof of Theorem 1.1. For u, v ∈ Dom(Hs)∩C∞
c (R×Ω) we have, by Lemma 2.1, up to

the multiplicative constant 1/Γ(−s),

〈Hsu, v〉 =
∫ ∞

0

(
〈e−τLu(· − τ, ·), v(·, ·)〉L2 (R×Ω) − 〈u, v〉L2(R×Ω)

) dτ

τ1+s

=

∫ ∞

0

[ ∫

R

∫

Ω

∫

Ω
Wτ (x, z)u(t− τ, z)v(t, x) dz dx dt−

∫

R

∫

Ω
u(t, x)v(t, x) dx dt

]
dτ

τ1+s
.

The integral in brackets can be rewritten as

(2.4)

∫

R

∫

Ω

∫

Ω
Wτ (x, z)(u(t − τ, z)− u(t− τ, x))v(t, x) dz dx dt

+

∫

R

∫

Ω

(
e−τL1(x)u(t− τ, x)− u(t, x)

)
v(t, x) dx dt.

By exchanging the roles of x and z and using that Wτ (z, x) = Wτ (x, z), the integrals
above are also equal to

(2.5)

−
∫

R

∫

Ω

∫

Ω
Wτ (x, z)(u(t − τ, z)− u(t− τ, x))v(t, z) dx dz dt

+

∫

R

∫

Ω

(
e−τL1(x)u(t− τ, x)− u(t, x)

)
v(t, x) dx dt.

By adding (2.4) and (2.5), we get that, up to the multiplicative constant 1/|Γ(−s)|,

2〈Hsu, v〉 =
∫ ∞

0

[ ∫

R

∫

Ω

∫

Ω
Wτ (x, z)(u(t − τ, x)− u(t− τ, z))(v(t, x) − v(t, z)) dz dx dt

+ 2

∫

R

∫

Ω

(
u(t, x)− e−τL1(x)u(t − τ, x)

)
v(t, x) dx dt

]
dτ

τ1+s
.

For the operators L in (1)–(6) we always have the Gaussian estimate

|Wτ (x, z)| ≤ C
e−|x−z|2/(cτ)

τn/2

(see, for instance, [1, 3, 10, 11]). Observe that u, v can be extended by zero outside of
R× Ω so we can regard them as functions in C∞

c (Rn+1). Then
∣∣∣∣
∫ ∞

0

∫

Ω

∫

Ω
Wτ (x, z)

∫

R

(u(t− τ, x)− u(t− τ, z))(v(t, x) − v(t, z)) dt dz dx
dτ

τ1+s

∣∣∣∣

=

∣∣∣∣
∫ ∞

0

∫

Ω

∫

Ω
Wτ (x, z)

∫

R

eiτρ(û(ρ, x)− û(ρ, z))(v̂(ρ, x)− v̂(ρ, z)) dρ dz dx
dτ

τ1+s

∣∣∣∣
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≤
∫

R

∫

Ω

∫

Ω
|û(ρ, x)− û(ρ, z)||v̂(ρ, x)− v̂(ρ, z)|

[ ∫ ∞

0
Wτ (x, z)

dτ

τ1+s

]
dz dx dρ

≤ C

∫

R

∫

Rn

∫

Rn

|û(ρ, x) − û(ρ, z)|2
|x− z|n+2s

dz dx dρ+ C

∫

R

∫

Rn

∫

Rn

|v̂(ρ, x)− v̂(ρ, z)|2
|x− z|n+2s

dz dx dρ

= C

∫

R

(
‖(−∆)s/2û(ρ, ·)‖2L2(Rn) + ‖(−∆)s/2v̂(ρ, ·)‖2L2(Rn)

)
dρ

= C

∫

Rn+1

|ξ|2s
(
|FRn+1(u)(ρ, ξ)|2 + |FRn+1(v)(ρ, ξ)|2

)
dξ dρ

where in the last identity we use Plancherel’s identity in R
n and FRn+1 denotes the

Fourier transform in (t, x) ∈ R
n+1. The last integral above is finite because u, v ∈

C∞
c (Rn+1). Therefore, we can write 〈Hsu, v〉 as the sum of

1

2|Γ(−s)|

∫ ∞

0

∫

R

∫

Ω

∫

Ω
Wτ (x, z)(u(t − τ, x)− u(t− τ, z))(v(t, x) − v(t, z)) dz dx dt

dτ

τ1+s

and
1

|Γ(−s)|

∫ ∞

0

∫

R

∫

Ω

(
u(t, x)− e−τL1(x)u(t− τ, x)

)
v(t, x) dx dt

dτ

τ1+s
.

The conclusion readily follows from here. �

Remark 2.2. In Theorem 1.1 we have assumed that u and v are smooth with compact
support. We can relax this assumption as soon as we are able to show that for any
u, v ∈ Dom(Hs) we have

∫

R

∫

Ω

∫

Ω
|û(ρ, x)− û(ρ, z)||v̂(ρ, x)− v̂(ρ, z)|

[ ∫ ∞

0
Wτ (x, z)

dτ

τ1+s

]
dz dx dρ <∞.

This is true, for instance, in the case when L is as in (1) with either Dirichlet or Neumann
boundary conditions, and with c(x) = 0. Indeed, by the results in [10], if u, v ∈ Dom(Hs)
then it follows that u, v ∈ L2(R; Dom(Ls)).

3. Proof of Theorem 1.6

We begin with an important preliminary result.

Lemma 3.1. Let 0 < s < 1. Denote by Kν(z) the modified Bessel function of the second

kind and order ν. For y > 0 and λ ∈ C with Re(λ) > 0 we define

(3.1)

Is(y, λ) =
21−s

Γ(s)
(y
√
λ)sKs(y

√
λ)

=
1

Γ(s)

∫ ∞

0
e−te−

y2

4t
λ dt

t1−s

=
y2s

4sΓ(s)

∫ ∞

0
e−y2/(4r)e−rλ dr

r1+s

=
1

Γ(s)

∫ ∞

0
e−y2/(4τ)e−τλλs

dτ

τ1−s
.

Then the integrals are absolutely convergent. Fix any s and λ as above. Then

(1) Is(y, λ) is a smooth function of y ∈ (0,∞).
(2) For each y > 0, Is(y, λ) satisfies the equation

(3.2) λu− 1− 2s

y
∂yu− ∂yyu = 0.

(3) lim
y→0+

Is(y, λ) = 1.
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(4) −y1−2s∂yIs(y, λ) =
Γ(1− s)

4s−1/2Γ(s)
λsI1−s(y, λ).

(5) The following estimates hold:

(5.a) |Is(y, λ)| ≤ 1.
(5.b) There is a constant Cs > 0 such that

|Is(y, λ)| ≤ Cs(y|λ|1/2)s−1/2e− cos(arg(λ)/2)y|λ|1/2 as y → ∞.

(5.c) There is a constant Cs > 0 such that

|λIs(y, λ)| +
∣∣ 1
y∂yIs(y, λ)

∣∣+ |∂yyIs(y, λ)| ≤ Cs
|λ|s
y2−2s

for every y > 0.

(6) The function Is(λ, y) is the unique C∞ solution to (3.2) such that

lim
y→0

Is(y, λ) = 1, lim
y→∞

Is(y, λ) = 0, and y1−2s∂yIs(y, λ) ∈ L∞
y ([0,∞)).

Proof. It is well known that for ν arbitrary (see [15, eq. (5.10.25)])

Kν(z) =
1

2

(z
2

)ν
∫ ∞

0
e−te−z2/4tt−ν−1dt for | arg z| < π

4
.

As Kν = K−ν we get the second identity in (3.1). Moreover, since Re(λ) > 0, we have

that |e− y2

4t
λ| ≤ 1, so that the first integral in (3.1) is absolutely convergent. The third

identity follows from the change of variables r = y2/(4t). The last one for λ > 0 is
obtained from the third one via the change of variables τ = y2/(4rλ), and the general
case of Re(λ) > 0 follows from the case of λ > 0 by analytic continuation.

Now (1) is easy to check by differentiating under the integral sign. Indeed, since

(3.3) |∂y(y2se−y2/(4τ))| =
∣∣∣
(
2sy2s−1 − y2s+1

2τ

)
e−y2/(4τ)

∣∣∣ ≤ Csy
2s−1e−y2/(cτ),

we get

∂yIs(y, λ) =

∫ ∞

0
∂y

(
y2s

4sΓ(s)
e−y2/(4r)

)
e−rλ dr

r1+s
.

Similarly for higher order derivatives. For (2) we can use integration by parts to get

λIs(y, λ) = − y2s

4sΓ(s)

∫ ∞

0
e−y2/(4r)∂re

−rλ dr

r1+s

=
y2s

4sΓ(s)

∫ ∞

0
∂r

(e−y2/(4r)

r1+s

)
e−rλ dr

=
y2s

4sΓ(s)

∫ ∞

0

(
∂yy +

1− 2s

y
∂y

)(e−y2/(4r)

r1+s

)
e−rλ dr

= ∂yyIs(y, λ) +
1− 2s

y
∂yIs(y, λ).

The proof of (3) follows readily from the second identity in (3.1) and dominated con-
vergence. By using that the Bessel function Kν satisfies

∂

∂z
[zνKν(z)] = −zνKν−1(z) = −zνK1−ν(z)

we immediately obtain (4). Observe that (5.a) is clear from the second identity in (3.1).
The asymptotic estimate (see [15, eq. (5.11.9)])

Kν(z) = Cz−1/2e−z
(
1 +O(|z|−1)

)
as |z| → ∞, | arg z| < π − δ, δ > 0,
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implies (5.b). To prove (5.c), observe that the function g(t) = e−
y2

4t
Re(λ)ts−1 has a

maximum at t = y2Re(λ)
4(1−s) which is gmax = Cs

Re(λ)s−1

y2−2s . Hence,

|Is(y, λ)| ≤
1

Γ(s)

∫ ∞

0
e−tg(t) dt ≤ Cs

Re(λ)s−1

y2−2s
.

The estimate for 1
y∂yIs(y, λ) follows from (4) and (5.a). We can bound ∂yyIs(y, λ)

by using (3.2) and the previous two estimates. We see from (5.b) that Is(y, λ) → 0 as
y → ∞. To prove (6), let J(y) be a smooth solution to (3.2) such that limy→0+ J(y) = 0,

limy→∞ J(y) = 0 and |y1−2s∂yJ(y)| ≤ C for all y ≥ 0. Multiply (3.2) by y1−2sJ(y) and
integrate by parts to get

∫ ∞

0
y1−2sRe(λ)|J(y)|2 dy +

∫ ∞

0
y1−2s|∂yJ(y)|2 dy = 0.

Since Re(λ) > 0, it follows that J(y) ≡ 0. �

Remark 3.2. The fact that Bessel functions can be used to treat extension problems
was first observed in [18]. In here we have extended [18] to apply to the case when
λ is complex-valued. See also [19] for solutions to the extension problem in terms of
integral representations of Bessel functions for the particular case of (∂t−∆)s, in which
λ = iρ+ |ξ|2.

For the sake of simplicity and concreteness of the presentation we next assume that L
is a nonnegative, normal linear operator in L2(Ω), with countable eigenvalues and real
eigenfunctions and with a nonnegative, symmetric heat kernel, as in Section 2. Recall
that if the first eigenvalue is λ0 = 0 (as in the Neumann Laplacian) then we assume
that all the functions involved have zero spatial mean. The general case follows by using
the Spectral Theorem or the spectral resolution of the corresponding operator (like the
Fourier transform or the Hankel transform). Details are left to the interested reader.

Proof of Theorem 1.6. Let us denote U(y) = U(·, ·, y), for y > 0, where U is given by
(1.5). Since

(3.4)
y2s

4sΓ(s)

∫ ∞

0
e−y2/(4τ) dτ

τ1+s
= 1

we find that, for any v = v(t, x) ∈ L2(R× Ω),

∣∣〈U(y), v〉L2(R×Ω)

∣∣ ≤ y2s

4sΓ(s)

∫ ∞

0
e−y2/(4τ)‖e−τHu‖L2(R×Ω) ‖v‖L2(R×Ω)

dτ

τ1+s

≤ ‖u‖L2(R×Ω) ‖v‖L2(R×Ω)

so that

(3.5) 〈U(y), v〉L2(R×Ω) =
y2s

4sΓ(s)

∫ ∞

0
e−y2/(4τ)〈e−τHu, v〉L2(R×Ω)

dτ

τ1+s
<∞.

In particular, for each y > 0, U(y) ∈ L2(R× Ω), with

‖U(y)‖L2(R×Ω) ≤ ‖u‖L2(R×Ω).

In addition, by using (2.2) and (3.1) from Lemma 3.1,

〈U(y), v〉L2(R×Ω) =

∫

R

∞∑

k=0

ûk(ρ)v̂k(ρ)Is(y, iρ+ λk) dρ
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and

U(y) =
1

(2π)1/2

∫

R

∞∑

k=0

ûk(ρ)Is(y, iρ+ λk)φk(x)e
iρt dρ.

Next, by using Lemma 3.1 parts (5.a) and (5.c),
∫

R

∞∑

k=0

|iρ+ λk||ûk(ρ)|2|Is(y, iρ+ λk)|2 dρ ≤ Cs

y2−2s

∫

R

∞∑

k=0

|iρ+ λk|s|ûk(ρ)|2 dρ <∞,

we get that U(y) ∈ Dom(H) for each y > 0. Then, for any v ∈ Dom(H), (see (2.1))

〈HU(y), v〉 =
∫

R

∞∑

k=0

ûk(ρ)v̂k(ρ)(iρ+ λk)Is(y, iρ+ λk) dρ.

Let us check that U ∈ C∞((0,∞);L2(R× Ω)) and that, for any k ≥ 1,

∂ky 〈U(y), v〉L2(R×Ω) = 〈∂kyU(y), v〉L2(R×Ω).

Indeed, first notice that

(3.6) |〈e−τHu, v〉L2(R×Ω)| ≤ e−τλi ‖u‖L2(R×Ω) ‖v‖L2(R×Ω)

where i = 0 if λ0 6= 0 and i = 1 if λ0 = 0. Here we have used that

‖e−τHu‖2L2(R×Ω) =

∞∑

k=i

e−2τλk

∫

R

|uk(t− τ)|2 dt ≤ e−2τλi‖u‖2L2(R×Ω).

By using (3.3),

∫ ∞

0

∣∣∣∣∂y
(

y2s

4sΓ(s)
e−y2/(4τ)

)
〈e−τHu, v〉L2(R×Ω)

∣∣∣∣
dτ

τ1+s

≤ Csy
2s−1 ‖u‖L2(R×Ω) ‖v‖L2(R×Ω)

∫ ∞

0
e−τλie−y2/(cτ) dτ

τ1+s

so we can differentiate under the integral sign in (3.5). Similarly it can be done for
higher order derivatives and we get U(y) ∈ C∞((0,∞);L2(R× Ω)).

Observe that, by the first equation in (3.1),
∫ ∞

0
y1−2s‖U‖2H1 dy =

∫ ∞

0
y1−2s

∫

R

∞∑

k=0

|iρ+ λk||ûk(ρ)|2|Is(y, iρ + λk)|2 dρ dy

=

∫

R

∞∑

k=0

|iρ+ λk||ûk(ρ)|2
∫ ∞

0
y1−2s|Is(y, iρ + λk)|2 dy dρ

≤ Cs

∫

R

∞∑

k=0

|iρ+ λk|1+s|ûk(ρ)|2
∫ ∞

0
y|Ks(y

√
iρ+ λk)|2 dy dρ.

To estimate the integral in dy, let r = y|
√
iρ+ λk| and θ = arg(

√
iρ+ λk), hence∫ ∞

0
y|Ks(y

√
iρ+ λk)|2 dy = |iρ+ λk|−1

∫ ∞

0
r|Ks(re

iθ)|2dr ≤ Cs|iρ+ λk|−1,

In the last inequality we used the fact that

(3.7) Ks(z) ∼ Csz
−s as z → 0, and Ks(z) ∼ z−1/2e−z as z → ∞,

see [15]. Then,
∫ ∞

0
y1−2s‖U‖2 dy ≤ Cs

∫

R

∞∑

k=0

|iρ+ λk|s|ûk(ρ)|2 dρ = Cs ‖u‖2Hs <∞
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so U ∈ L2((0,∞);Dom(H), y1−2sdy).
For v ∈ Dom(H), by Lemma 3.1, we have that

〈HU(y), v〉 =
∫

R

∞∑

k=0

ûk(ρ)v̂k(ρ)(iρ+ λk)Is(y, iρ+ λk) dρ

=

∫

R

∞∑

k=0

ûk(ρ)v̂k(ρ)
(
1−2s
y ∂y + ∂yy

)
Is(y, iρ+ λk) dρ

=
〈(

1−2s
y ∂y + ∂yy

)
U(y), v

〉
L2(R×Ω)

.

By Lemma 3.1 and Dominated Convergence Theorem,

lim
y→0

〈U(y), v〉L2(R×Ω) =

∫

R

∞∑

k=0

ûk(ρ)v̂k(ρ) dρ = 〈u, v〉L2(R×Ω)

and
(3.8)

〈−y1−2s∂yU(y), v〉L2(R×Ω) =
Γ(1− s)

4s−1/2Γ(s)

∫

R

∞∑

k=0

(iρ+ λk)
sûk(ρ)v̂k(ρ)I1−s(y, iρ + λk) dρ

→ Γ(1− s)

4s−1/2Γ(s)
〈Hsu, v〉, as y → 0+.

Now, for every v ∈ Dom(Hs), since Is(0, iρ + λk) = 1,

1

y2s
〈U(y)− U(0), v〉L2(R×Ω) =

∫

R

∞∑

k=0

ûk(ρ)v̂k(ρ)
Is(y, iρ+ λk)− 1

y2s
dρ.

From the third equation in (3.1), (3.4) and (2.3) we get

Is(y, iρ+ λk)− 1

y2s
=

1

4sΓ(s)

∫ ∞

0
e−y2/(4τ)

(
e−τ(iρ+λk) − 1

) dτ

τ1+s

→ Γ(−s)
4sΓ(s)

(iρ+ λk)
s, as y → 0+.

Moreover, by applying Lemma 3.1(4) and (5.a),

|Is(y, iρ+ λk)− 1|
y2s

≤ 1

y2s

∫ y

0
|∂rIs(r, iρ + λk)| dr

≤ Cs

y2s
|iρ+ λk|s

∫ y

0
r2s−1 dr = Cs|iρ+ λk|s.

Thus, as u, v ∈ Dom(Hs), by Dominated Convergence Theorem,

lim
y→0+

1

y2s
〈U(y)− U(0), v〉L2(R×Ω) =

Γ(−s)
4sΓ(s)

∫

R

∞∑

k=0

(iρ+ λk)
sûk(ρ)v̂k(ρ) dρ

=
Γ(−s)
4sΓ(s)

〈Hsu, v〉.

For any v ∈ L2(R× Ω), by (3.6) and Lemma 3.1, we have

(3.9)
|〈U(y), v〉L2(R×Ω)| ≤ ‖u‖L2(R×Ω)‖v‖L2(R×Ω)

y2s

4sΓ(s)

∫ ∞

0
e−τλie−

y2

4τ
dτ

τ1+s

= ‖u‖L2(R×Ω)‖v‖L2(R×Ω)Is(y, λi),

where i = 0 if λ0 6= 0 and i = 1 if λ0 = 0. Since Is(y, λi) → 0 as y → ∞, we get that U
weakly vanishes as y → ∞.
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If v ∈ Dom(Hs) then we see from Lemma 3.1(5.a) and (3.8) that

|〈y1−2s∂yU, v〉L2(R×Ω)| ≤ Cs‖u‖Hs‖v‖Hs , for all y ≥ 0.

�

4. Extension problem for parabolic operators in divergence form

In this section we specialize the extension characterization for (∂t + L)s in Theorem
1.6 to the case when L is a divergence form elliptic operator.

Let Ω ⊂ R
n be a (possibly unbounded) domain and

Lu = − div(a(x)∇u) + c(x)u in Ω,

where a(x) = (aij(x)) is a bounded, measurable, symmetric matrix defined in Ω, satis-
fying the uniform ellipticity condition, that is, for some Λ > 0

Λ−1|ξ|2 ≤ aij(x)ξiξj ≤ Λ|ξ|2

for a.e. x ∈ Ω, for all ξ = (ξi)
n
i=1 ∈ R

n, and c(x) ∈ L∞
loc(Ω). Let f ∈ L2(Ω). For

u ∈ L2(Ω), Lu = f in Ω in the weak sense means that ∇u ∈ L2(Ω), c1/2u ∈ L2(Ω) and∫

Ω
a(x)∇u∇v dx+

∫

Ω
c(x)uv dx =

∫

Ω
fv dx,

for every v ∈ C∞
c (Ω). For the sake of concreteness, we assume that, under appropriate

boundary conditions on ∂Ω, L has a countable family of nonnegative eigenvalues and
real eigenfunctions (λk, φk)

∞
k=0 such that the set {φk}∞k=0 forms an orthonormal basis

for L2(Ω). For more general cases when the spectrum is continuous, see Remark 4.3.
As before, if the first eigenvalue λ0 = 0 then we assume that all the functions involved
have zero spatial mean. In particular,

Lφk = λkφk for all k ≥ 0 in the weak sense.

Therefore, if we define

H1
L(Ω) ≡ Dom(L) =

{
u ∈ L2(Ω) :

∞∑

k=0

λk|uk|2 <∞
}

where uk =

∫

Ω
uφk dx, then, for any u, v ∈ H1

L(Ω),

∫

Ω
a(x)∇u∇v dx+

∫

Ω
c(x)uv dx =

∞∑

k=0

λkukvk.

The operators listed in (1)–(4) in the Introduction satisfy the conditions above.
Now, the extension equation takes the form

∂tU = y−(1−2s) divx,y(y
1−2sB(x)∇x,yU)− c(x)U,

where

B(x) =

[
a(x) 0
0 1

]

is also uniformly elliptic. Let us denote D = {(x, y) : x ∈ Ω, y > 0} ⊂ R
n+1. The

weight ω(x, y) = |y|1−2s belongs to the Muckenhoupt class A2(R
n+1). Define H1

L,y(D)

as the set of functions w = w(x, y) ∈ L2(D, y1−2sdxdy) such that

[w]2H1
L,y(D) :=

∫ ∞

0

∫

Ω
y1−2s

(
a(x)∇w∇w + c(x)w2

)
dx dy +

∫ ∞

0

∫

Ω
y1−2s|∂yw|2 dx dy

=

∫ ∞

0
y1−2s

∞∑

k=0

λk|wk(y)|2 dy +
∫ ∞

0

∫

Ω
y1−2s|∂yw|2 dx dy <∞,
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where wk(y) =

∫

Ω
w(x, y)φk(x) dx, under the norm

‖w‖2H1
L,y(D) = ‖w‖2L2(D,y1−2sdxdy) + [w]2H1

L,y(D).

Theorem 4.1. Consider the extension problem in Theorem 1.6 with L is as above. Then

U , defined in (1.5), belongs to L2(R;H1
L,y(D))∩C∞((0,∞);L2(R×Ω))∩C([0,∞);L2(R×

Ω)) and for any fixed y > 0 and v ∈ C∞
c (R× Ω),

〈HU, v〉 =
∫

R

∫

Ω

(
1−2s
y ∂y + ∂yy

)
Uv dt dx = y2s−1

∫

R

∫

Ω
∂y(y

1−2s∂yU)v dt dx.

In particular, U is a weak solution to the parabolic extension problem



∂tU = y−(1−2s) divx,y(y

1−2sB(x)∇x,yU)− c(x)U for (t, x, y) ∈ R× Ω× (0,∞)

−y1−2s∂yU
∣∣∣
y=0+

= Γ(1−s)

4s−1/2Γ(s)
Hsu for (t, x) ∈ R× Ω

in the following sense: for any V (t, x, y) ∈ C∞
c (R× Ω× [0,∞)),

(4.1)

∫

R

∫

Ω
U∂tV dx dt =

∫

R

∫

Ω

(
a(x)∇xU∇xV + c(x)UV

)
dx dt

−
∫

R

∫

Ω

(
1−2s
y ∂y + ∂yy

)
UV dx dt

and∫ ∞

0

∫

R

∫

Ω
y1−2sU∂tV dx dt dy =

∫ ∞

0

∫

R

∫

Ω
y1−2s

(
B(x)∇x,yU∇x,yV + c(x)UV

)
dx dt dy

− Γ(1− s)

4s−1/2Γ(s)
〈Hsu, V (t, x, 0)〉.

Proof. We have already proved in the general extension result, Theorem 1.6, that
U(·, ·, y) ∈ C∞((0,∞);L2(R× Ω)) ∩ C([0,∞);L2(R× Ω)).

Let us next check that U(t, x, y) ∈ L2(R;H1
L,y(D)). We found in (3.9) that

‖U(y)‖L2(R×Ω) ≤ ‖u‖L2(R×Ω)Is(y, λi)

where i = 0 if λ0 6= 0 and i = 1 if λ0 = 0. Then, from (3.1),

(4.2)

∫ ∞

0
y1−2s‖U(y)‖2L2(R×Ω) dy ≤ Cs‖u‖2L2(R×Ω)

∫ ∞

0
y1−2s(y

√
λi)

2sK2
s (y

√
λi) dy

= Cs‖u‖2L2(R×Ω)λ
s−1
i

∫ ∞

0
rK2

s (r)dr <∞.

In the last inequality we used (3.7). We are left to show that

∫

R

∫ ∞

0
y1−2s

∞∑

k=0

λk|Uk(t, y)|2 dy dt+
∫

R

∫ ∞

0

∫

Ω
y1−2s|∂yU(t, x, y)|2 dx dy dt <∞,

where, for any k ≥ i, for i = 0 if λ0 6= 0 and i = 1 if λ0 = 0,

Uk(t, y) = 〈U(t, ·, y), φk(·)〉L2(Ω)

=
y2s

4sΓ(s)

∫ ∞

0
e−y2/(4τ)〈e−τLu(t− τ, ·), φk(·)〉L2(Ω)

dτ

τ1+s

=
y2s

4sΓ(s)

∫ ∞

0
e−y2/(4τ)e−τλkuk(t− τ)

dτ

τ1+s
.
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From here and (3.1) we see that∫

R

|Uk(t, y)|2 dt ≤ ‖uk‖2L2(R)|Is(y, λk)|2.

Therefore, as done in (4.2),
∫

R

∫ ∞

0
y1−2s

∞∑

k=0

λk|Uk(t, y)|2 dy dt ≤
∞∑

k=0

λk‖uk‖2L2(R)

∫ ∞

0
y1−2s(y

√
λk)

2sK2
s (y

√
λk) dy

≤ Cs

∞∑

k=0

λsk‖uk‖2L2(R) <∞.

Next, observe that

∂yU(t, x, y) = Csy
2s−1

∞∑

k=0

[ ∫

R

ûk(ρ)(iρ+ λk)
sI1−s(y, iρ+ λk)e

iρtdρ

]
φk(x)

and then

‖∂yU‖2L2(R×Ω) = Csy
2s

∞∑

k=0

∫

R

|ûk(ρ)|2|iρ+ λk|1+s|K1−s(y
√
iρ+ λk)|2 dρ.

Hence,
∫ ∞

0
y1−2s‖∂yU‖2L2(R×Ω) dy

= Cs

∞∑

k=0

∫

R

|ûk(ρ)|2|iρ+ λk|1+s

∫ ∞

0
y|K1−s(y

√
iρ+ λk)|2 dy dρ.

To estimate the integral in dy, we write r = y|
√
iρ+ λk| and θ = arg

(√
iρ+ λk

)
to get

∫ ∞

0
y|K1−s(y

√
iρ+ λk)|2 dy =

1

|iρ+ λk|

∫ ∞

0
r|K1−s(re

iθ)|2 dr ≤ Cs

|iρ+ λk|
,

because of (3.7). Whence,
∫ ∞

0
y1−2s‖∂yU‖2L2(R×Ω) dy ≤ Cs

∞∑

k=0

∫

R

|ûk(ρ)|2|iρ+ λk|sdρ <∞.

Thus U(t, x, y) ∈ L2(R;H1
L,y(D)), as desired.

Let V ∈ C∞
c (R× Ω× [0,∞)). The action of ∂tU on V is given by

∂tU(V ) = −
∫

R

U∂tV dt

for a.e. (x, y) ∈ Ω× [0,∞). For a fixed y, we already know that

〈HU,V 〉 =
∫

R

∫

Ω

(
1−2s
y ∂y + ∂yy

)
UV dt dx = y2s−1

∫

R

∫

Ω
∂y(y

1−2s∂yU)V dt dx.

But now,

〈HU,V 〉 = −
∫

R

∞∑

k=0

ûk(ρ)Is(y, iρ + λk)iρV̂k(ρ, y) dρ

+

∫

R

∞∑

k=0

λkûk(ρ)Is(y, iρ+ λk)V̂k(ρ, y) dρ

= −
∫

R

∞∑

k=0

ûk(ρ)Is(y, iρ + λk)∂̂tVk(ρ, y) dρ
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+

∫

R

∞∑

k=0

λkûk(ρ)Is(y, iρ+ λk)V̂k(ρ, y) dρ

= −
∫

R

∫

Ω
U∂tV dx dt+

∫

R

∫

Ω

(
a(x)∇xU∇xV + c(x)UV

)
dx dt.

Thus, (4.1) follows.
Let us multiply (4.1) by y1−2s and integrate in dy to obtain

∫ ∞

0

∫

R

∫

Ω
y1−2s∂tU(V ) dx dt dy = −

∫ ∞

0

∫

R

∫

Ω
y1−2s

(
a(x)∇xU∇xV + c(x)UV

)
dx dt dy

+

∫ ∞

0

∫

R

∫

Ω
y1−2s

(
1−2s
y ∂y + ∂yy

)
UV dx dt dy.

Let 0 < a < b < ∞. Since U ∈ C∞((0,∞);L2(R × Ω)) we can apply Fubini’s Theorem
and integration by parts to get

∫ b

a

∫

R

∫

Ω
y1−2s

(
1−2s
y ∂y + ∂yy

)
UV dx dt dy

=

∫

R

∫

Ω

∫ b

a
∂y(y

1−2s∂yU)V dy dt dx

= −
∫ b

a

∫

R

∫

Ω
y1−2s∂yU∂yV dy dx dt+

∫

R

∫

Ω
y1−2s∂yUV dx dt

∣∣y=b

y=a
.

By letting a→ 0 and b→ ∞, we have
∫ ∞

0

∫

R

∫

Ω
y1−2s

(
1−2s
y ∂y + ∂yy

)
UV dx dt dy

= −
∫ ∞

0

∫

R

∫

Ω
y1−2s∂yU∂yV dy dx dt− lim

y→0+

∫

R

∫

Ω
y1−2s∂yUV dx dt.

To conclude,

lim
y→0

∫

R

∫

Ω

(
y1−2s∂yUV

)
dx dt = lim

y→0

∫

R

∫

Ω
y1−2s∂yU

(
V (t, x, y) − V (t, x, 0)

)
dx dt

+ lim
y→0

∫

R

∫

Ω
y1−2s∂yUV (t, x, 0) dx dt

= 0− Γ(1− s)

4s−1/2Γ(s)
〈Hsu, V (·, ·, 0)〉,

where for the last identity we have used (3.8), the fact that V ∈ C∞
c (R × Ω × [0,∞))

and Dominated Convergence Theorem. Indeed,
∣∣∣∣
∫

R

∫

Ω
y1−2s∂yU

(
V (t, x, y) − V (t, x, 0)

)
dx dt

∣∣∣∣
2

≤ Cs‖u‖2Hs‖V (·, ·, y) − V (·, ·, 0)‖2Hs

≤ Cs‖u‖2Hs‖V (·, ·, y) − V (·, ·, 0)‖2H1

≤ Cs,Λ‖u‖2Hs

{
‖V (·, ·, y) − V (·, ·, 0)‖2L2(R×Ω) +

∫

R

∫

Ω
|∂t(V (t, x, y)− V (t, x, 0))|2 dx dt

+

∫

R

∫

Ω
|∇x(V (t, x, y) − V (t, x, 0))|2 dx dt+

∫

R

∫

Ω
|c(x)||V (t, x, y)− V (t, x, 0)|2 dx dt

}

→ 0 as y → 0.

�
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Lemma 4.2 (Reflection extension). Let L and U be as in Theorem 4.1. Let Ω0 ⊂ Ω be

a bounded domain and (T0, T1) ⊂ R. Suppose that

lim
y→0+

〈y1−2s∂yU, V 〉L2(R×Ω) = 0

for all V ∈ C∞
c ((T0, T1) × Ω0 × [0,∞)). Fix Y0 > 0. Then, the even extension Ũ of U

in the variable y, defined by

(4.3) Ũ(t, x, y) =

{
U(t, x, y) for 0 ≤ y < Y0

U(t, x,−y) for − Y0 < y < 0

is a weak solution to the degenerate parabolic equation

(4.4) ∂tŨ = |y|−(1−2s) divx,y(|y|1−2sB(x)∇x,yŨ)− c(x)Ũ

in (T0, T1)× Ω0 × (−Y0, Y0).

Proof. Let V ∈ C∞
c ((T1, T2)× Ω0 × (−Y0, Y0)). We shall prove that

∫ T1

T0

∫ Y0

−Y0

∫

Ω0

|y|1−2sŨ∂tV dx dy dt

=

∫ T1

T0

∫ Y0

−Y0

∫

Ω0

|y|1−2s
(
B(x)∇x,yŨ∇x,yV + c(x)ŨV

)
dx dy dt.

Let δ > 0. From (4.1), for any y > 0,
∫

R

∫

Ω
U∂tV dx dt =

∫

R

∫

Ω

(
a(x)∇xU∇xV + c(x)UV

)
dx dt

−
∫

R

∫

Ω
|y|2s−1∂y(|y|1−2s∂yU)V dx dt.

By multiplying this equation by |y|1−2s, integrating in y ∈ (δ, Y0), and using integration
by parts we get

∫ T1

T0

∫ Y0

δ

∫

Ω0

|y|1−2sŨ∂tV dx dy dt

=

∫ T1

T0

∫ Y0

δ

∫

Ω0

|y|1−2s
(
B(x)∇x,yŨ∇x,yV + c(x)ŨV

)
dx dy dt

+

∫ T1

T0

∫

Ω0

δ1−2s∂yU(t, x, δ)V (t, x, δ) dx dt.

From here we readily get

∫ T1

T0

∫

δ<|y|<Y0

∫

Ω0

|y|1−2sŨ∂tV dx dy dt

=

∫ T1

T0

∫

δ<|y|<Y0

∫

Ω0

|y|1−2s
(
B(x)∇x,yŨ∇x,yV + c(x)ŨV

)
dx dy dt

+

∫ T1

T0

∫

Ω0

δ1−2s∂yU(t, x, y)|y=δV (t, x,−δ) dx dt

+

∫ T1

T0

∫

Ω0

δ1−2s∂yU(t, x, δ)V (t, x, δ) dx dt.

The conclusion follows by taking δ → 0 in this last identity. �
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Remark 4.3. If the elliptic operator L has continuous spectrum, then all the previous
results are still valid. Indeed, one needs to use the corresponding spectral resolution.

Consider, for example, L = −∆ in Ω = R
n. We can use Fourier transform F in the

variables t and x to define the operator (∂t + L)s as

〈(∂t −∆)su, v〉L2(Rn+1) =

∫

R

∫

Rn

(iρ+ |ξ|2)sFu(ρ, ξ)Fv(ρ, ξ) dξ dρ.

The analogous to the expression

u(t, x) =

∞∑

k=0

uk(t)φk(x)

in this case is just

u(t, x) =
1

(2π)n/2

∫

Rn

û(t, ξ)eiξ·x dξ

where the Fourier transform is taken in the x variable by leaving t fixed. The eigenvalues
and eigenfunctions (λk, φk)

∞
k=0 are replaced by (|ξ|2, eix·ξ)ξ∈Rn .

Consider another example, the Bessel operator L = − d2

dx2 + λ(λ−1)
x2 , for λ > 0, in

Ω = (0,∞). In this case we can use Hankel transform in x and Fourier transform in t.

Let φy(x) = (yx)1/2Jλ−1/2(yx), x, y > 0, where Jν denotes the Bessel function of the

first kind with order ν. Then Lφy(x) = y2φy(x) and the eigenvalues and eigenfunctions
(λk, φk)

∞
k=0 are replaced by (y2, φy(x))y>0. The Hankel transform in the variable x is

defined as

Hu(t, y) =
∫ ∞

0
u(t, x)φy(x) dx

and, since H−1 = H, we can write

u(t, x) =

∫ ∞

0
Hu(t, y)φy(x) dy.

With this, we can let

〈(∂t + L)su, v〉 =
∫

R

∫ ∞

0
(iρ+ y2)sHû(ρ, y)Hv̂(ρ, y) dy dρ.

Similarly, Lemma 4.2 holds in all these cases.

5. Proof of Theorems 1.4 and 1.5

Proof of Theorem 1.4. Consider the extension U of u given by Theorems 1.6 and 4.1. If
u ≥ 0 in (−∞, 1)×Ω then, since the heat kernel for L is nonnegative, the first formula in

(1.5) gives that U ≥ 0 in (0, 1)×B2r × [0, 2). Lemma 4.2 with Y0 = 2 implies that Ũ , as
defined by (4.3), is a nonnegative weak solution to (4.4) in (t, x, y) ∈ (0, 1)×B2r×(−2, 2).
The parabolic Harnack inequality due to Ishige [14] gives the existence of a constant
CH > 0 such that

sup
R−

u(t, x) = sup
R−

Ũ(t, x, 0) ≤ sup
R−×(−1,1)

Ũ(t, x, y)

≤ CH inf
R+×(−1,1)

Ũ(t, x, y)

≤ CH inf
R+

Ũ(t, x, 0) = CH inf
R+

u(t, x).

Now we prove the local boundedness and Hölder estimates on u. By using the results

in [14] we get that Ũ is locally bounded and locally parabolically Holder continuous of
order 0 < α < 1 in R. Let K be a compact subset of R. We have

‖Ũ‖L∞(K×(−1,1)) ≤ C‖Ũ‖L2(R×(−2,2)) = 2C‖U‖L2(R×(0,2)).
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Since ‖U‖L2(R×(0,2)) ≤ C‖u‖L2(R×Ω), we obtain

‖u‖L∞(K) ≤ ‖Ũ‖L∞(K×(−1,1)) ≤ C‖u‖L2(R×Ω).

Next, from the local Hölder continuity of Ũ ,

[u]
C

α/2,α
t,x (K)

= [Ũ ]
C

α/2,α
t,x (K∩{y=0})

≤ C‖Ũ‖L∞(K×(−1,1)) ≤ C‖u‖L2(R×Ω).

�

Remark 5.1. If in Theorem 1.4 we substitute B2r by an open set and Br by a compact
set contained in the open set, the result remains valid and the constant c also depends
on both sets.

Proof of Theorem 1.5. For simplicity, and without loss of generality, we will assume that

x̃ = 0. Let Ũ be the reflection in y of the extension U of u. By Lemma 4.2, Ũ is a
nonnegative weak solution to (4.4) in (t, x, y) ∈ (−2, 2)× (B2r(0) ∩Ω0)× (−2r, 2r) that
vanishes continuously in (t, x, y) ∈ (−2, 2) × ((Ω \ Ω0) ∩B2r(0)) × {0}.

As a first step we flatten the boundary of Ω0 inside B2r(0). We use a bi-Lipschitz
transformation Ψ such that Ψ(0) = 0 and Ψ(Ω0 ∩ B2r(0)) = Ω1, where Ω1 is a new
domain with flat boundary at xn = 0, which can be extended as constant in t and y.
Without loss of generality we can assume that the flat part of B2r(0) ∩ R

n
+ is the flat

part of the new domain Ω1. Then the transformed function Ũ1 := Ũ ◦Ψ−1 satisfies the
same type of degenerate parabolic equation with bounded measurable coefficients in the
domain (−2, 2)×(Rn

+∩B2r(0))×(−2r, 2r) and vanishes continuously on (−2, 2)×((Rn \
R
n
+) ∩B2r(0)) × {0}.
As a second step, we define a transformation which maps Rn+1 \ {xn ≤ 0, y = 0} into

R
n+1 ∩ {xn > 0} and is extended to be constant in t. This construction is standard, see

[19]. After this transformation is performed, we obtain a function Ũ2 that solves again
a degenerate parabolic equation with bounded measurable coefficients in the domain
(−2, 2)×(Rn

+∩B2r(0))×(−2r, 2r) and that vanishes continuously for (t, x, y) ∈ (−2, 2)×
{(x′, 0, y) : (x′)2 + y2 < (2r)2}.

Now we can apply the boundary Harnack inequality of Ishige [14] to Ũ2 to get

sup
(−1,1)×(Ω∩Br(0))

u(t, x) = sup
(−1,1)×(Rn

+
∩Br(0))

Ũ2(t, x, 0) ≤ CŨ2(t0, x̃0, 0) = u(t0, x0),

where x̃0 is the point obtained from x0 via the two transformations. �

Remark 5.2. If in Theorem 1.5 we substitute B2r(x̃) by an open set and Br(x̃) by
another open subset of the first one, the result remains still valid and the constant C
also depends on both open sets.

6. Transference Method

In this section we assume that

Lu = − div(a(x)∇u) + c(x)u in Ω

is an operator as in Section 4.

6.1. Change of variables. Let Ω̃ ⊂ R
n be a domain and h : Ω → Ω̃ be a smooth change

of variables from x ∈ Ω into x̃ = h(x) ∈ Ω̃, that is, h is one-to-one, onto and differentiable

with inverse h−1 : Ω̃ → Ω differentiable as well. We denote by Jh(x) = |det∇h(x)|, for
x ∈ Ω, and Jh−1(x̃) = |det∇h−1(x̃)|, for x̃ ∈ Ω̃. Let us define the change of variables
application

W : L2(Ω̃, Jh−1dx̃) → L2(Ω, dx)
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as

W (f̃)(x) = f̃(h(x)) for x ∈ Ω.

Then W is one-to-one, onto and, for any f ∈ L2(Ω, dx),

W−1(f)(x̃) = f(h−1(x̃)), x̃ ∈ Ω̃.

It is readily seen that

‖Wf̃‖L2(Ω,dx) = ‖f̃‖L2(Ω̃,Jh−1dx̃)
.

Let {φk}∞k=0 be the orthonormal basis of L2(Ω, dx) consisting of eigenfunctions of L.

We claim that {φ̃k :=W−1φk}∞k=0 is an orthonormal basis of L2(Ω̃, Jh−1dx̃). Indeed, by
changing variables,

∫

Ω̃
φ̃k(x̃)φ̃ℓ(x̃)Jh−1(x̃) dx̃ =

∫

Ω
φk(x)φℓ(x) dx = δkℓ.

Also, if f̃ ∈ L2(Ω̃, Jh−1dx̃) is orthogonal to each φ̃k then

0 =

∫

Ω̃
f̃(x̃)φ̃k(x̃)Jh−1(x̃) dx̃ =

∫

Ω
W (f̃)(x)φk(x) dx

for all k ≥ 0, which gives f̃ = 0, and the orthonormal set {φ̃k}∞k=0 is complete in

L2(Ω̃, Jh−1dx̃).
If u ∈ Dom(L) and we define ũ =W−1u = u ◦h−1 then we can write u =Wũ = ũ ◦h

and the change rule gives

uxi(x) =
n∑

k=1

ũx̃k
(h(x))(∇h(x))ki

where (∇h(x))ki =
(∂hk(x)

∂xi

)
ki

denotes the ki-th entry of the matrix ∇h(x). From the

definition of the action of L on u we have, for any v ∈ Dom(L),

〈Lu, v〉 =
∫

Ω

( n∑

i,j=1

aij(x)uxi(x)vxj (x) + c(x)u(x)v(x)
)
dx

=

∫

Ω

[ n∑

k,ℓ=1

( n∑

i,j=1

aij(x)(∇h(x))ki(∇h(x))ℓj
)
ũx̃k

(h(x))ṽx̃ℓ
(h(x)) + c(x)u(x)v(x)

]
dx

=

∫

Ω̃

(
ã(x̃)∇ũ∇ṽ + c̃(x̃)ũṽ

)
Jh−1(x̃) dx̃

where

ãkl(x̃) =

n∑

i,j=1

aij(h−1(x̃))(∇h(h−1(x̃)))ki(∇h(h−1(x̃)))ℓj

and

c̃(x̃) = c(h−1(x̃)).

With this identity we define a new operator L̃ in the following way. Let ũ, ṽ ∈ L2(Ω̃, Jh−1dx̃)
such that u =Wũ and v =Wṽ belong to Dom(L). We define

〈L̃ũ, ṽ〉 := 〈Lu, v〉.
With this, (λk, φ̃k)

∞
k=0 are the eigenvalues and eigenfunctions of L̃, where λk are the

eigenvalues of L. Moreover,

Dom(L̃) =
{
ũ ∈ L2(Ω̃, Jh−1dx̃) :

∞∑

k=0

λkũ
2
k <∞

}
,
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where ũk =

∫

Ω̃
ũφ̃kJh−1(x̃) dx̃. We also notice that, if ũ ∈ L2(Ω̃, Jh−1dx̃) and v ∈

L2(Ω, dx) then
∫

Ω
(Wũ)(x)v(x) dx =

∫

Ω̃
ũ(x̃)(W−1v)(x̃)Jh−1(x̃) dx̃.

Then we can formally write

〈L̃ũ, ṽ〉 = 〈L(Wũ), (Wṽ)〉 = 〈W−1LWũ, ṽ〉,
or

L̃ =W−1 ◦ L ◦W.

6.2. Multiplication operator. Let M = M(x) ∈ C∞(Ω) be a positive function. We
define the multiplication operator

U : L2(Ω,M(x)2dx) → L2(Ω, dx)

as

U(ŭ)(x) =M(x)ŭ(x),

for ŭ ∈ L2(Ω,M(x)2dx). If {φk}∞k=0 is the orthonormal basis of L2(Ω, dx) consisting of

eigenfunctions of L then {φ̆k = U−1φk}∞k=0 is an orthonormal basis of L2(Ω,M(x)2dx).
Now given u ∈ Dom(L) we define ŭ(x) = U−1u(x) =M(x)−1u(x), so that

uxi(x) =M(x)ŭxi(x) +Mxi(x)ŭ(x).

Therefore, for any v ∈ Dom(L),

〈Lu, v〉 =
∫

Ω

(
aij(x)uxivxj + c(x)uv

)
dx

=

∫

Ω

[
aij(x)

(
ŭxi +

Mxi(x)

M(x)
ŭ

)(
v̆xj +

Mxj(x)

M(x)
v̆

)
+ c(x)ŭv̆

]
M(x)2 dx.

This allows us to define the operator L̆ in the following way. For ŭ, v̆ ∈ L2(Ω,M(x)2dx)
such that u = U(ŭ) =M · ŭ and v = U(v̆) =M · v̆ are in Dom(L), we define

〈L̆ŭ, v̆〉 := 〈Lu, v〉.

With this, (λk, φ̆k)
∞
k=0 are the eigenvalues and eigenfunctions of L̆, where λk are the

eigenvalues of L. Whence,

Dom(L̆) =
{
ŭ ∈ L2(Ω,M(x)2dx) :

∞∑

k=0

λkŭ
2
k <∞

}
,

where ŭk =

∫

Ω
ŭφ̆kM(x)2 dx =

∫

Ω
uφk dx = uk. Observe that

∫

Ω
U(ŭ)(x)v(x) dx =

∫

Ω
ŭ(x)U−1v(x)M(x)2 dx.

Then we can formally write

〈L̆ŭ, v̆〉 = 〈L(Uŭ), (Uv̆)〉 = 〈U−1LUŭ, v̆〉,
or

L̆ = U−1 ◦ L ◦ U.
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6.3. Composition of multiplication and change of variables. We consider the
following composition of the multiplication operator U with the change of variables
operator W :

U ◦W : L2(Ω̃,M(h−1(x̃))2Jh−1dx̃) → L2(Ω, dx).

Notice that if f̄ ∈ L2(Ω̃,M(h−1(x̃))2Jh−1dx̃) then
∫

Ω
|[(U ◦W )f̄ ](x)|2 dx =

∫

Ω̃
|f̄(x̃)|2M(h−1(x̃))2Jh−1(x̃) dx̃.

By using a similar technique as we used in cases of W and U separately, we can define

a new operator L̄ in the following way. For ū, v̄ ∈ L2(Ω̃,M(h−1(x̃))2Jh−1dx̃) such that
u := (U ◦W )ū and v := (U ◦W )v̄ are in Dom(L) we let

〈L̄ū, v̄〉 = 〈Lu, v〉.
By proceeding as in the previous cases we can formally write

L̄ = (U ◦W )−1 ◦ L ◦ (U ◦W ).

6.4. Transference method from (∂t+L)
s to (∂t+L̄)

s. Now we consider the parabolic
operators H = ∂t + L and H̄ = ∂t + L̄, where L and L̄ are as above. If ū = ū(t, x̃) is a

function of t ∈ R and x̃ ∈ Ω̃ then the composition operator will act on ū by leaving the
variable t fixed:

(U ◦W )ū(t, x) =M(x)ū(t, h(x)), for x ∈ Ω,

so that

U ◦W : L2(R, dt;L2(Ω̃,M(h−1(x̃))2Jh−1dx̃)) → L2(R, dt;L2(Ω, dx)) = L2(R× Ω).

Recall that

Dom(H) =
{
u ∈ L2(R× Ω) :

∫

R

∞∑

k=0

|(iρ+ λk)||ûk(ρ)|2 dρ <∞
}

and that, for u ∈ Dom(H) any v ∈ C∞
c (R× Ω),

〈Hu, v〉L2(R×Ω) =

∫

R

∫

Ω

(
− uvt +

n∑

i,j=1

aij(x)uxi(t, x)vxj (t, x) + c(x)u(t, x)v(t, x)
)
dx dt.

Now, for ū ∈ L2(R, dt;L2(Ω̃,M(h−1(x̃))2Jh−1dx̃)) such that u := (U ◦W )ū ∈ Dom(H),
and v := (U ◦W )v̄, we define the parabolic operator

〈H̄ū, v̄〉 := 〈Hu, v〉.
As a matter of fact, we can write,

〈Hu, v〉L2(R×Ω) =

∫

R

∫

Ω

[
−M(x)ū(t, h(x))M(x)v̄t(t, h(x))

+

n∑

i,j=1

aij(x)
(
Mxi(x)ū(t, h(x)) +

n∑

k=1

M(x)ūx̃k
(t, h(x))(∇h(x))ki

)

×
(
Mxj(x)v̄(t, h(x)) +

n∑

ℓ=1

M(x)v̄x̃ℓ
(t, h(x))(∇h(x))ℓj

)

+ c(x)M(x)ū(t, h(x))M(x)v̄(t, h(x))

]
dx dt

=

∫

R

∫

Ω̃

[
− ūv̄t
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+
n∑

i,j=1

aij(h−1(x̃))

(
Mxi(h

−1(x̃))

M(h−1(x̃))
ū+

n∑

k=1

ūx̃k
(∇h(h−1(x̃)))ki

)

×
(
Mxj (h

−1(x̃))

M(h−1(x̃))
v̄(t, x̃) +

n∑

ℓ=1

v̄x̃ℓ
(∇h(h−1(x̃)))ℓj

)

+ c(h−1(x̃))ūv̄

]
M(h−1(x̃))2Jh−1 dx̃ dt

= 〈H̄ū, v̄〉
By using a similar argument as before we can formally write

H̄ = (U ◦W )−1 ◦H ◦ (U ◦W ).

Next, for u ∈ Dom(H) set uk(t) =

∫

Ω
uφk dx, and write

u(t, x) =
∞∑

k=0

uk(t)φk(x).

We know from the previous discussion that (λk, φ̄k)
∞
k=0 is the family of eigenvalues and

eigenfunctions of L̄, where

φ̄k(x̃) =
1

M(h−1(x̃))
φk(h

−1(x̃)) for x ∈ Ω̃.

So if u(t, x) ∈ L2(R, dt;L2(Ω̃,M(h−1(x̃))2Jh−1dx̃)), then

ū(t, x̃) =
∞∑

k=0

ūk(t)
1

M(h−1(x̃))
φk(h

−1(x̃)).

But

ūk(t) =

∫

Ω̃
ū(t, x̃)φ̄k(x̃)M

2(h−1(x̃))Jh−1 dx̃ =

∫

Ω
u(t, x)φk(x) dx = uk(t).

Hence,

〈H̄ū, v̄〉 = 〈Hu, v〉 =
∫

R

∞∑

k=0

(iρ+ λk)ûk(ρ)v̂k(ρ) dρ =

∫

R

∞∑

k=0

(iρ+ λk)̂̄uk(ρ)̂̄vk(ρ) dρ.

Therefore, for any 0 ≤ s ≤ 1,

〈H̄sū, v̄〉 =
∫

R

∞∑

k=0

(iρ+ λk)
ŝ̄uk(ρ)̂̄vk(ρ) dρ = 〈Hsu, v〉.

Whence, we can formally write

H̄s = (U ◦W )−1 ◦Hs ◦ (U ◦W ).

Proof of Theorem 1.7. Let us first show how to transfer Theorem 1.4. Let ū ∈ Dom(H̄s)
be a solution to {

H̄sū = 0 in (0, 1) × Õ

ū ≥ 0 in (−∞, 1)× Ω̃,

for some open set Õ ⊂ Ω̃. From the definition, 〈H̄sū, v̄〉 = 〈Hsu, v〉, where u = (U ◦W )ū

and v = (U ◦ W )v̄. Then, by taking any v ∈ C∞
c ((0, 1) × O), where O = h−1(Õ),

we can let v̄ = (U ◦ W )−1v ∈ C∞
c ((0, 1) × Õ) and thus conclude that Hsu = 0 in

(0, 1)×h−1(Õ) = (0, 1)×O. Also u ≥ 0 in (−∞, 1)×h−1(Ω̃) = (−∞, 1)×Ω. Let J̃ be a
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compact subset of Õ. Then h−1(J̃) is a compact subset of O and, by Harnack inequality
for Hs, (see Remark 5.1),

sup
( 1
4
, 1
2
)×h−1(J̃)

u ≤ C inf
( 3
4
,1)×h−1(J̃)

u.

Since M(x) is strictly positive, continuous and bounded in h−1(J̃),

sup
( 1
4
, 1
2
)×h−1(J̃)

Wū ≤ C ′ inf
( 3
4
,1)×h−1(J̃)

Wū.

The change of variable h is a smooth diffeomorphism, so that

sup
( 1
4
, 1
2
)×J̃

ū ≤ C ′ inf
( 3
4
,1)×J̃

ū.

Thus Harnack inequality holds for H̄s. Let K̃ be a compact subset of (0, 1) × Õ. Then

K = h−1(K̃) is a compact subset of (0, 1)×O and u is parabolically Hölder continuous
in K with

‖u‖
C

α/2,α
t,x (K)

≤ C‖u‖L2(R×Ω) = C‖ū‖
L2(R,dt;L2(Ω̃,M(h−1(x̃))2Jh−1dx̃))

.

Notice that ū(t, x̃) = [(U ◦W )−1u](t, x̃) = 1
M(h−1(x̃))

u(t, h−1(x̃)), which, for any (ti, xi) =

(ti, h
−1(x̃i)) ∈ K, i = 1, 2, gives

|ū(t1, x̃1)− ū(t2, x̃2)| =
∣∣∣∣
u(t1, x1)

M(x1)
− u(t2, x2)

M(x2)

∣∣∣∣

≤
∣∣∣∣
u(t1, x1)

M(x1)
− u(t1, x1)

M(x2)

∣∣∣∣+
∣∣∣∣
u(t1, x1)

M(x2)
− u(t2, x2)

M(x2)

∣∣∣∣
≤ C‖M−1‖Cα

x (K)‖u‖Cα/2,α
t,x (K)

d((t1, x1), (t2, x2))
α

≤ C ′‖ū‖L2(R,dt;L2(Ω̃,M(h−1(x̃))2Jh−1dx̃))
d((t1, x̃1), (t2, x̃2))

α

where d denotes the parabolic distance. In the last identity we used the fact that h−1

is a smooth diffeomorphism.
Let us next transfer the boundary Harnack inequality of Theorem 1.5. Again, for

simplicity and without loss of generality, we consider x̃ = 0. Let ū ∈ Dom(H̄s) be a
solution to {

H̄sū = 0 in (−2, 2) × (Ω̃0 ∩ B̃2r(0))

ū ≥ 0 in (−∞, 2) × Ω̃,

such that ū vanishes continuously on (−2, 2)× ((Ω̃ \ Ω̃0)∩ B̃2r(0)). Let (t0, x̃0) be a fixed

point in (−2, 2) × Ω̃0 such that t0 > 1. Then Hsu = 0 in (−2, 2) × (Ω0 ∩ h−1(B̃2r(0))),

where Ω0 = h−1(Ω̃0), u ≥ 0 in (−∞, 2)×Ω and, as h is a smooth diffeomorphism, we can

also see that u = (U ◦W )ū vanishes continuously in (−2, 2)× ((Ω \Ω0)∩ h−1(B̃2r(0))).

We assume, again for simplicity, that h(0) = 0 and let K = h−1(B̃r(0)). Then 0 ∈ K

and K is compactly contained in h−1(B̃2r(0))). We know that (see Remark 5.2)

sup
(−1,1)×(Ω0∩K)

u(t, x) ≤ Cu(t0, x0),

for C > 0. Since M > 0 is bounded and continuous, and h is a smooth diffeomorphism,

sup
(−1,1)×(Ω̃0∩B̃r(0))

ū(t, x̃) ≤ C ′ū(t0, x̃0).

�
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Remark 6.1. As it was explained in Remark 4.3, one can check that if the differential
operator L has continuous spectrum, then all the previous transference results are still
valid.

Now we use the transference method of Theorem 1.7 to prove the following result.

Theorem 6.2. Theorems 1.4 and 1.5 hold true for solutions u to (∂t+L)
su = f , where

L is any of the elliptic operators in (7)–(10).

Proof. We have already proven Theorem 6.2 for the elliptic operators L in (2)–(6).
Transference from (2) to (7). In this case, Hs = (∂t − ∆ + |x|2 − n)s in R × Ω =

R × R
n with Lebesgue measure and with zero boundary condition at infinity whereas

H̄s = (∂t−∆+2x ·∇)s in R× Ω̃ = R×R
n with Gaussian measure π−n/4e−|x|2/2dx. For

the transference we use h(x) = x and M(x) = π−n/4e−|x|2/2.

Transference from (3) to (8). In all these examples we have Ω̃ = Ω. In the first
three cases we start with Hs = (∂t − 1

4(∆ + |x|2 +∑n
i=1

1
x2
i

(
α2
i − 1

4

)
))s, for αi > −1, in

R × Ω = R × (0,∞)n. By using the transference method we can obtain the result for
the other Laguerre systems.

• For H̄s = (∂t +
∑n

i=1(−xi ∂2

∂x2
i
− (αi + 1) ∂

∂xi
+ xi

4 ))
s with measure xα1

1 · · · xαn
n dx,

which is related to the Laguerre system lαk , we choose h(x) = (x21, x
2
2, . . . , x

2
n)

and M(x) = 2n/2x
α1+1/2
1 · · · xαn+1/2

n .

• For H̄s = (∂t+
1
4 (−∆+ |x|2)−∑n

i
2αi+1
4xi

∂
∂xi

)s with measure x2α1+1
1 · · ·x2αn+1

n dx,

which is related to the Laguerre system ψα
k , we choose h(x) = x and M(x) =

x
α1+1/2
1 · · · xαn+1/2

n .

• For H̄s = (∂t +
∑n

i=1(−xi ∂2

∂x2
i
− ∂

∂xi
+ xi

4 +
α2
i

4xi
))s with Lebesgue measure, which

is related to the Laguerre system Lα
k , we choose h(x) = (x21, x

2
2, . . . , x

2
n) and

M(x) = 2n/2x
1/2
1 · · · x1/2n .

In the last case, we start with Hs = (∂t− 1
4(∆+ |x|2+

∑n
i=1

1
x2
i

(
α2
i − 1

4

)
)− α+1

2 )s. Thus,

we apply the transference method for H̄s = (∂t+
∑n

i=1(−xi ∂2

∂x2
i
−(αi+1−xi) ∂

∂xi
))s with

measure xα1

1 e−x1 · · · xne−xndx, which is related to the Laguerre polynomials system Lα
k ,

by choosing h(x) = (x21, x
2
2, . . . , x

2
n) and M(x) = 2n/2e−|x|2/2x

α1+1/2
1 · · · xαn+1/2

n .

Transference from (4) to (9). In this case, Hs = (∂t − d2

dx2 + λ(λ−1)

sin2 x
)s in R × Ω =

R × (0, π) with Lebesgue measure, and H̄s = (∂t − d2

dx2 − 2λ cot x d
dx + λ2)s in R × Ω̃ =

R × (0, π) with measure sin2λ xdx. For the transference method we use h(x) = x and
M(x) = (sinx)λ.

Transference from (6) to (10). Here Ω = Ω̃ = (0,∞), Hs = (∂t − d2

dx2 + λ2−λ
x2 )s in

R × (0,∞) with Lebesgue measure and H̄s = (∂t − d2

dx2 − 2λ
x

d
dx)

s in R × (0,∞) with

measure x2λdx. For the transference method we use h(x) = x and M(x) = xλ. �
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