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Abstract. In this work we address the problem of boundary feedback stabi-
lization for a geometrically exact shearable beam, allowing for large deflections
and rotations and small strains. The corresponding mathematical model may
be written in terms of displacements and rotations (GEB), or intrinsic variables
(IGEB). A nonlinear transformation relates both models, allowing to take advan-
tage of the fact that the latter model is a one-dimensional first-order semilinear
hyperbolic system, and deduce stability properties for both models. By apply-
ing boundary feedback controls at one end of the beam, while the other end is
clamped, we show that the zero steady state of IGEB is locally exponentially
stable for the H1 and H2 norms. The proof rests on the construction of a Lya-
punov function, where the theory of Coron & Bastin ’16 plays a crucial role.
The major difficulty in applying this theory stems from the complicated nature
of the nonlinearity and lower order term where no smallness arguments apply.
Using the relationship between both models, we deduce the existence of a unique
solution to the GEB model, and properties of this solution as time goes to +∞.
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1. Introduction and main results

Beam models describing the three-dimensional motion of thin elastic bodies un-
dergoing large deflections and rotations have found many applications in civil,
mechanical and aerospace engineering. Depending on the assumptions made on
the beam (material law, motion magnitude, shearing) there are various PDE mod-
els for flexible beams, e.g. the Euler-Bernoulli, Rayleigh and Timoshenko beam
equations accounting for small displacements and strains. However, when deflec-
tions and rotations are not small compared to the overall dimensions of the body,
and this is the case for modern highly flexible light weight structures, a geomet-
rically nonlinear model is needed. Examples include robotic arms [10] as well as
flexible aircraft wings [29] or wind turbine blades [37] designed to be lighter and
slender to improve aerodynamic efficiency.

The geometrically exact beam (GEB) model (see System (1)) and the intrinsic
geometrically exact beam (IGEB) model (see System (7)) discussed in this article
are such geometrically nonlinear models describing the motion of a beam in R3.
They take into account shearing without warping: cross sections remain plane,
do not change of shape, but may rotate independently from the motion of the
centerline. The beam may undergo large displacements of its centerline and large
rotations of its cross sections. Both systems are one-dimensional. The former,
a second-order nonlinear system of six equations, originates from the works of
Reissner [31] and Simo [32]. The latter, a first-order semilinear hyperbolic system
of twelve equations, originates from the work of Hodges [15, 16], and is of its own
interest in aeroelastic modelling and engineering, see [3, 29] and references therein.

The adjective intrinsic indicates that the equations make no reference to dis-
placements or rotations variables, and instead involve only so-called intrinsic vari-
ables (velocities and strains). Indeed, the IGEB model has velocities and strains
expressed in a body attached coordinate system as unknown states1, while the un-
known states of the GEB model are displacements and rotations expressed in a fixed
coordinate system. In fact, a nonlinear transformation N , defined in (5), allows
to express the unknowns of the IGEB model as a function of the unknowns of the
GEB model, thus directly deriving the IGEB model from the GEB model (see [39,
Sec. 2.3.2]). This transformation, going from a nonlinear system to a semilinear
and hyperbolic system, allows us to take advantage of the simpler structure of the
IGEB model to study the geometrically exact beam, while using this relationship
between both models to also deduce results on the GEB model.

Whereas the notions of well-posedness and stabilization of classical beam models
such as Euler-Bernoulli and Timoshenko models have been extensively studied in

1The unknown states of the IGEB model may also be taken as velocities, and forces and
moments (instead of strains), using a change of variable; see Remark 1.9.
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mathematical literature (see for instance [1, 2, 12, 14, 18, 26, 33, 40]), the GEB
and IGEB models have, to the best knowledge of the authors, not been addressed
in the literature. The main result of our work is, thus, a novel contribution in
this direction. We investigate the local exponential stabilization problem for the
IGEB model, in the case a vibrating beam with one clamped end and the other
being under feedback control. Using the transformation N , we also deduce the
existence of a unique solution, global in time, to the GEB model, and properties
of this solution as time goes to infinity.

Among the methods commonly used to study stability, we opt for using a so-
called quadratic Lyapunov functional. Our approach relies on the fact that the
IGEB model is a one-dimensional first-order hyperbolic system. For such systems,
Bastin & Coron [4, 5] have systematized the search of quadratic Lyapunov func-
tionals, giving sufficient criteria for their existence. More precisely, it is sufficient
to find a matrix-valued function Q fulfilling matrix inequalities that involve both
the coefficients appearing in the equations and the boundary conditions (and con-
sequently, the feedback control). In view of this, our task consists in finding an
appropriate feedback control and studying the IGEB model (energy of the beam,
coefficients), in order to prove that there exists such a function Q.

Up to the best of our knowledge, the stabilization result presented here is the first
result which makes use of the technique of [4, 5] in the context of precise mechanical
models for beams, such as the IGEB model. These results have been applied
to chemotaxis models or the Saint-Venant equations for instance. An additional
feature in our system is that the nonlinear term cannot be made arbitrarily small.

Here2 we consider a slender beam made of an isotropic linear-elastic material,
with constant geometrical and material parameters (density ρ > 0, cross section
area a > 0, shear modulus G > 0, Young modulus E > 0, area moments of inertia
I2, I3 > 0, shear correction factors k2 > 0, k3 > 0, and the factor k1 > 0 that
corrects the polar moment of area), and such that sectional principal axes are
aligned with the body-attached basis (see Section 1.3).

1.1. The models. Consider a beam of length ` > 0. We now describe the GEB
and IGEB models, and the transformation relating them.

The GEB model. The unknown states of the GEB model are the position of the
centerline and rotation matrix (p,R) : [0, `] × [0, T ] → R3 × SO(3). Here, SO(3)
denotes the special orthogonal group, namely, the set of unitary real matrices of size
3, with determinant equal to 1, also called rotation matrices. With the geometrical

2The IGEB model may be given for more general beams where the only assumption made is
the thinness of the beam and that the material is linear-elastic, see [3, 16, 27]. For simplicity, we
work under more restrictive assumptions, but the more general case is of practical interest (for
instance, for u-shaped plane wings).
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and material restrictions described above (following [35]), the dynamics of these
unknowns are given by the system3

ρa∂2
t p = ∂x(RS1Γ) in (0, `)× (0, T )

ρ∂t(RJW ) = ∂x(RS2Υ) + (∂xp)× (RS1Γ) in (0, `)× (0, T )

p(`, ·) = hp, R(`, ·) = hR for t ∈ (0, T )

−R(0, ·)S1Γ(0, ·) = h1(·), −R(0, ·)S2Υ(0, ·) = h2(·) for t ∈ (0, T )

p(·, 0) = p0(·), ∂tp(·, 0) = v0(·) for x ∈ (0, `)

R(·, 0) = R0(·), R(·, 0)W (·, 0) = w0(·) for x ∈ (0, `),

(1)

where the functions V,W,Γ,Υ: [0, `]× [0, T ]→ R3 depend nonlinearly on the un-
knowns p,R: they are the linear velocity, angular velocity, translational strain
and rotational strain (or curvature) of the beam respectively, defined by (see Foot-
note 3)

V = Rᵀ∂tp, W = vec(Rᵀ∂tR),

Γ = Rᵀ∂xp− e1, Υ = vec
(
Rᵀ∂xR−Rᵀ d

dx
R
)
,

(2)

where e1 = (1, 0, 0)ᵀ, and R ∈ H3(0, `; SO(3)) is a given function describing the
beam before deformation. Details on these functions and the unknown states are
provided in Section 1.3. The beam is clamped at x = `, as seen by the Dirichlet
boundary conditions in which hp ∈ R3 and hR ∈ R3×3 are constant. At the other
end, x = 0, Neumann boundary controls h1(t), h2(t) ∈ R3 in feedback form are
applied:

h1(t) = −µ1R(0, t)V (0, t), h2(t) = −µ2R(0, t)W (0, t),(3)

where the positive constants µ1, µ2 > 0 are feedback parameters. The initial
data are v0, w0 ∈ C2([0, `];R3), p0 ∈ H3(0, `;R3) and R0 ∈ H3(0, `; SO(3)). The
positive definite constant matrices J, S1, S2 ∈ R3×3 are defined in (13).

Remark 1.1 (External forces and moments). In this work we consider the case
of a freely vibrating beam, meaning that the external forces φ̄ and moments ψ̄ have
been set to zero. In the general case, with such forces and moments the governing

3 Here, u × ζ denotes the cross product between any u, ζ ∈ R3, and we shall also write
û ζ = u× ζ, meaning that û is the skew-symmetric matrix

û =

 0 −u3 u2
u3 0 −u1
−u2 u1 0

;

and for any skew-symmetric u ∈ R3×3, the vector vec(u) ∈ R3 is such that u = v̂ec(u).
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equations of (1) would read

ρa∂2
t p = ∂x(RS1Γ) + φ̄

ρ∂t(RJW ) = ∂x(RS2Υ) + (∂xp)× (RS1Γ) + ψ̄.
(4)

See also Remark 1.6 4).

The transformation. Departing from System (1), one obtains the IGEB model
described below, by applying the nonlinear transformation N

N : (p,R) 7−→ y =


V
W
Γ
Υ

 .(5)

The first six governing equations of the new system (7) are derived from the gov-
erning equations of (1), while the last six originate from the definition of Γ and Υ,
and are sometimes called compatibility conditions. The relationship between the
initial data of both systems is

(6) y0 =


(R0)ᵀv0

(R0)ᵀw0

(R0)ᵀ d
dx
p0 − e1

vec
(
(R0)ᵀ d

dx
R0 −Rᵀ d

dx
R
)
 .

The IGEB model. The IGEB model may be obtained from the GEB model by the
transformation described above or directly from mecahnics as in [15]. Its unknown
state y : [0, `]× [0, T ]→ Rd, where d = 12, takes the form

y =

[
v
s

]
,

where v, s : [0, `]× [0, T ]→ R6 are velocities and strains of the beam, respectively.
More precisely, v consists of the linear and angular velocities, while s consists of
the translational and rotational strains (see also Section 1.3). The dynamics of
these unknowns are given by the system

∂ty + A∂xy + B̄(x)y = ḡ(y) in (0, `)× (0, T )

v(`, ·) = 0 for t ∈ (0, T )

−C−1s(0, ·) = −µv(0, ·) for t ∈ (0, T )

y(·, 0) = y0(·) for x ∈ (0, `),

(7)

where y0 ∈ H1(0, `;Rd) is an initial datum. The boundary conditions correspond
to those given for the GEB model (1). The beam is clamped at the boundary x = `,
as seen by the homogeneous Dirichlet boundary condition. At x = 0, a "Neumann"
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feedback control of the form u(t) = −µv(0, t) is applied, where µ ∈ R6×6 is the
constant diagonal matrix defined by

µ = diag (µ1, µ1, µ1, µ2, µ2, µ2) with µ1, µ2 > 0.

and where, µ1, µ2 > 0 correspond to the feedback parameters introduced in (3).
The beam is characterized by the so-called mass and flexibility matrices M,C ∈
R6×6, defined in (12), which are both positive definite diagonal matrices depending
on the beam parameters previously introduced. The beam is also characterized by4

E ∈ C1([0, `],R6×6) which depends on the form of the beam before deformation
(i.e. on the initial strains) and is defined in (11).

Let us describe the coefficients and some of their properties. Denote by On the
square zero matrix of size n. The coefficients A ∈ Rd×d and B̄ ∈ C1([0, `];Rd×d)
are defined by

A =

[
O6 −(MC)−1

−I6 O6

]
, B̄ =

[
O6 −M−1EC−1

Eᵀ O6

]
.

Both A and B̄ depend on the material and geometry of the beam, while B̄ addi-
tionally depends on the initial strains. System (7) is hyperbolic, semilinear and
y ≡ 0 is a steady state. Indeed, we will see that the matrix A is hyperbolic, in the
sense that all its eigenvalues are real and one may find d associated independent
eigenvectors. It is important to note that B̄ has a specific structure which will be
used in the proof of the main results, and is not small (thus the perturbation is
not negligible). The nonlinearity ḡ ∈ C∞(Rd;Rd), is defined by

ḡ(y) = Ḡ(y)y,(8)

where, denoting y = (yᵀ1,y
ᵀ
2,y

ᵀ
3,y

ᵀ
4)ᵀ, with yi ∈ R3 for 1 ≤ i ≤ 4,

Ḡ(y) = −diag(M−1, I6)


ρaŷ2 O3 O3 Ŝ1y3

O3 ρŷ2J Ŝ1y3 Ŝ2y4

O3 O3 ŷ2 ŷ1

O3 O3 O3 ŷ2

 ,
and J, S1, S2 ∈ R3×3, defined in (13), are positive definite diagonal matrices de-
pending on the beam parameters. The nonlinearity is quadratic. More precisely,
one may easily see from the definition of ḡ, that its components ḡi ∈ C∞(Rd) for
1 ≤ i ≤ d, can be written in the form ḡi(y) =

〈
y , Ḡiy

〉
, where Ḡi ∈ Rd×d is a

constant symmetric matrix whose diagonal contain zeros only (implying that Ḡi is
indefinite). Both ḡ and its Jacobian matrix are zero when evaluated at the origin.

4We may assume that E is of higher regularity: E ∈ Ck([0, `];Rd×d), for k > 1.
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1.2. Main results. We will need to define compatibility conditions for System
(7). As for the unknown, we write the initial datum y0 as

y0 =

[
v0

s0

]
, with v0, s0 : [0, `]→ R6.

Definition 1.2. We say that the initial datum y0 ∈ H1(0, `;Rd) fulfills the zero-
order compatibility conditions if

v0(`) = 0 and C−1s0(0) = µv0(0),(9)

We say that y0 ∈ H2(0, `;Rd) fulfills the first-order compatibility conditions if it
fulfills (9) and, y1 ∈ H1(0, `;Rd) defined by

y1 = −Ady0

dx
− B̄y0 + ḡ(y0) =

[
v1

s1

]
also fulfills (9), where v0, s0 are replaced by v1, s1 respectively.

The local existence and uniqueness of C0([0, T ];H1(0, `;Rd)) solutions to gen-
eral one-dimensional semilinear hyperbolic systems, and C0([0, T ];H2(0, `;Rd)) so-
lutions in the quasilinear case, have been addressed in [5] and [4, Appendix B],
respectively5. Both results apply to System (7), yielding Proposition 1.3 below.
This relies on the fact that A is hyperbolic, and on writing (7) in Riemann invari-
ants (also called characteristic or diagonal form of (7)) to verify that the system
fits in the framework of [4, 5].

Proposition 1.3 (Well-posedness). Let k ∈ {1, 2}, and assume that B̄ ∈ Ck([0, `];Rd×d).
Then, there exists δ0 > 0 such that the following holds. For any y0 ∈ Hk(0, `;Rd)
satisfying ‖y0‖Hk(0,`;Rd) ≤ δ0 and the (k − 1)-order compatibility conditions, there
exists a unique solution y ∈ C0([0, T ), Hk(0, `;Rd)) to (7) with T ∈ (0,+∞].
Moreover, T = +∞ if

‖y(·, t)‖Hk(0,`;Rd) ≤ δ0, for all t ∈ [0, T ).

Definition 1.4 (Local exponential stability). Let k ∈ {1, 2}. The steady state
y ≡ 0 of (7) is said to be locally Hk exponentially stable if there exist ε > 0,
α > 0 and η ≥ 1 such that the following holds. Let y0 ∈ Hk(0, `;Rd) fulfill
‖y0‖Hk(0,`;Rd) ≤ ε, and the (k − 1)-order compatibility conditions of (7). Then,

5The local and semi-global existence and uniqueness of C1([0, `]×[0, T ];Rd) solutions to general
one-dimensional quasilinear hyperbolic systems have been addressed in [38, Lem. 2.3, Th. 2.1]
(which is an extension of [25, Lem. 2.3, Th. 2.5] to nonautonomous systems), and these results
apply to (7) if y0 fulfills the first-order compatibility conditions. We recall that semi-global
existence means that for any T > 0, if the initial datum is sufficiently small then there exists a
unique solution until time T in C1([0, `]× [0, T ];Rd), see the above references for more detail.
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there exists a unique global in time solution y ∈ C0([0,+∞);Hk(0, `;Rd)) to (7).
Moreover,

‖y(·, t)‖Hk(0,`;Rd) ≤ ηe−αt‖y0‖Hk(0,`;Rd), for all t ∈ [0,+∞).

We may now state our main results.

Theorem 1.5. Let k ∈ {1, 2} and assume that B̄ ∈ Ck([0, `];Rd×d). For any feed-
back parameters µ1, µ2 > 0, the steady state y ≡ 0 of (7) is locally Hk exponentially
stable.

Idea of the proof. System (7) has for unknown state the physical variable y. To
study the stabilization problem, using that the matrix A is hyperbolic, we first
write this system in Riemann invariants. For this new system, the unknown state
is the diagonal variable r. The proof of stability amounts to finding a so-called Hk

quadratic Lyapunov functional, namely a functional of the form

L(t) =
k∑
j=0

∫ `

0

〈
∂jt r(x, t) , Q(x)∂jt r(x, t)

〉
dx(10)

for all t ∈ [0, T ), which, when r is in some ball of Ck−1([0, `] × [0, T ];Rd), is
equivalent to the squared Hk(0, `;Rd) norm of r(·, t) and has an exponential decay
with respect to time. In (10), r ∈ C0([0, T );Hk(0, `;Rd)) is the solution to (7) in
diagonal form. General criteria on Q ∈ C1([0, `];Rd×d) for the existence of such
Lyapunov functionals for one-dimensional first-order semilinear and quasilinear
hyperbolic systems are given in [5, Th. 10.2] and [4, Th. 6.10]. They take the
form of matrix inequalities involving the boundary conditions (hence, the feedback
control) of (18) as well as the coefficients appearing in the equations. Consequently,
it will be sufficient to look for Q = Q(x) fulfilling these criteria. Our choice of Q is
strongly linked to the expression of the energy of the beam (the sum of the kinetic
and elastic energy) which, as we will see, may be written in the form

ED(t) =

∫ `

0

〈
r(x, t) , QDr(x, t)

〉
dx,

for some constant matrix QD ∈ Rd×d. Indeed, we will use Q(x) = W (x)QD in the
proof, with a specific choice of weight matrix W (x) ∈ Rd×d.

Remark 1.6. A few remarks are in order.
1) If y ∈ C0([0,+∞);Hk(0, `;Rd)) is solution to (7) for some k ∈ {1, 2},

then y belongs to C0([0, `] × [0,+∞);Rd) in the case k = 1; while y ∈
C1([0, `] × [0,+∞);Rd) in the case k = 2, see [4, Cor. B.2] for detail.
Moreover, there exists η̄ > 0 such that

‖y‖Ck−1([0,`]×[0,+∞);Rd) ≤ η̄e−αt‖y0‖Hk(0,`;Rd).
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2) The nonlinearity ḡ ∈ C∞(Rd;Rd) is fixed and defined by (8), however we do
not make use of its specific value to obtain Proposition 1.3 and Theorem 1.5
(for k ∈ {1, 2}). Both would still hold if the map Ḡ in (8) is replaced by
any other Ḡ ∈ Ck(Rd;Rd×d) such that Ḡ(0) = 0.

3) It is interesting to note that if one substitutes the matrix µ for the precise
value M

1
2C−

1
2 , then the boundary condition at x = 0 in the IGEB model

in Riemann invariants (18) takes the form r+(0, t) = 0. This amounts to
giving a so-called transparent boundary condition at x = 0.

4) As explained in Remark 1.1, the beam is freely vibrating. It would be of
interest to study (7) with forces, moments applied to the beam, as it may
be subjected to gravity or aerodynamic forces for instance. Then, the term

M−1

[
Φ̄
Ψ̄

]
appears in the first six equations of (7), where Φ̄, Ψ̄ are R3-valued functions
representing the body-attached6 external forces and moments, respectively.
Consequently, the study of the steady states and the decay of the beam energy
(see Section 2.1), may not be straightforward anymore.

5) According to [4, Sec. 6.2.2], one may also obtain Hk stabilization for (7)
with k > 2, if B̄ ∈ Ck([0, `];Rd×d) and if (k − 1)-order compatibility condi-
tions (extending Definition 1.2) are fulfilled. The Lyapunov functional (10)
with time derivatives of the solution up to order k > 2, would then be used.

6) Theorem 1.5 still holds if one gives an homogeneous Neumann condition
s(`, t) = 0 at x = ` (free end) instead of considering clamped end. For
the IGEB model in diagonal form (18) this amounts to substituting the
present boundary condition for r−(`, t) = r+(`, t), leaving Proposition 2.4
and Proposition 3.1 unchanged. For the GEB model (1) this amounts to
replacing the Dirichlet conditions with Γ(`, t) = 0 and Υ(`, t) = 0, and the
beam energy EP remains nonincreasing (see Proposition 2.1).

Relying on the above theorem, we obtain the following result on the GEB model.

Theorem 1.7. Let µ1, µ2 > 0. There exists ε > 0, C1 > 0 and C2 > 0 such that
the following holds. Assume that v0, w0 ∈ C2([0, `];R3), R,R0 ∈ H3(0, `; SO(3)),
hR ∈ SO(3), p0 ∈ H3(0, `;R3) and hp ∈ R3, with hp = p0(`) and hR = R0(`).
Assume that the function y0 ∈ H2(0, `;Rd) defined by (6) fulfills the first-order
compatibility conditions of (7), as well as ‖y0‖H2(0,`;Rd) ≤ ε.

6The relationship between φ̄, ψ̄ and Φ̄, Ψ̄ is φ̄ = RΦ̄ and ψ̄ = RΨ̄ (see Remark 1.8).
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Then, there exists a unique solution (p,R) ∈ C2([0, `]× [0,+∞);R3×SO(3)) to
(1) with feedback (3). Furthermore, for all (x, t) ∈ [0, `]× [0,+∞),

|∂tp(x, t)|+ ‖∂tR(x, t)‖+ |Γ(x, t)|+ |Υ(x, t)| ≤ C1e
−C2t.

Under the assumptions of Theorem 1.7, one knows by Theorem 1.5 that for
ε > 0 small enough there exists a unique solution y ∈ C0([0,+∞);H2(0, `;Rd))
to (7). The solution (p,R) given by Theorem 1.7 is in fact related to y by the
transformation N defined in (5).

1.3. Mechanical setting. We will now present the meaning of the unknown
states of the IGEB and GEB models. To this end, we begin by describing the
geometry of the underlying beam. The beam is idealized as a centerline, and a
family of cross sections, the centerline running along the geometric centers of the
cross sections. Let {ei}3

i=1 = {(1, 0, 0)ᵀ, (0, 1, 0)ᵀ, (0, 0, 1)ᵀ}.
Before deformation, the position of the centerline p : [0, `] → R3 and the orien-

tation of the cross sections, are both known. The latter is given by the columns
{bi}3

i=1 of a rotation matrix R : [0, `] → SO(3). We assume that b1 = dp
dx
, im-

plying that p is parametrized by its arclength. At any time t > 0, the position
p : [0, `] × [0, T ] → R3 of the centerline and the orientation of the cross sections,
given by the columns {bi}3

i=1 of a rotation matrix R : [0, `] × [0, T ] → SO(3), are
both unknown. As shear deformation is allowed, b1 is not necessarily tangent to
the centerline. The sets {bi(x)}3

i=1 and {bi(x, t)}3
i=1 are body-attached basis, with

origin p(x) and p(x, t) respectively.
Let the set Ωs ⊂ R3 be the beam when straight, untwisted, and such that

the position of its centerline is given by the map x 7→ xe1 defined on [0, `]. We
may write it as Ωs =

⋃
x∈[0,`] a(x) where a(x) is the cross section intersecting the

centerline at xe1. Then, the beam before deformation and the beam at time t > 0
take the form Ωc = {p̄(X) : X ∈ Ωs} and Ωt = {p̄(X, t) : X ∈ Ωs} respectively,
where for X = (x, ξ2, ξ3)ᵀ ∈ Ωs

p̄(X) = p(x) +R(x)(ξ2e2 + ξ3e3), p̄(X, t) = p(x, t) + R(x, t)(ξ2e2 + ξ3e3).

We call Ωs, Ωc and Ωt straight-reference configuration, curved-reference configu-
ration and current configuration of the beam, respectively. We refer to Fig. 1 for
visualization. The vector ξ2e2 + ξ3e3 is the position of X within a(x).

Remark 1.8 (Body-attached variable). The unknown states of the IGEB model
are body-attached variables in the sense explained below. We consider two kinds
of coordinate systems: one is {ei}3

i=1 which is fixed in space and time, the other is
the body-attached basis {bi}3

i=1. We then make the difference between two kinds of
vectors in R3: global and body-attached. Consider two vectors u :=

∑3
i=1 uiei and

U :=
∑3

i=1 Uiei of R3, the former being a global vector and the latter being the
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p(x, t)
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•

•

Ωt

1

Figure 1. The beam in straight-reference Ωs, curved-reference Ωc,
and current Ωt configurations.

body-attached representation of u. By this, we mean that the components of u are
its coordinates with respect to the global basis {ei}3

i=1, while the components of U
are coordinates of the vector u with respect to the body-attached basis {bi}3

i=1. In
other words u =

∑3
i=1 Uib

i. Both vectors are then related by the identity u = RU
since bi = Rei, and we may also call u the global representation of U .

We have seen that the unknown state y of the IGEB model (7) consists of the
velocities v and strains s, and we want now to give the meaning of these variables
in terms of positions and rotations. They are

v =

[
V
W

]
, s =

[
Γ
Υ

]
where V,W,Γ,Υ: [0, `] × [0, T ] → R3 are the functions defined in (2), and are all
body-attached variables. One may note that the translational strain also writes as
Γ = Rᵀ∂xp−Rᵀ d

dx
p. The initial strain matrix E ∈ C1([0, `];R6×6) is defined by

E =

[
Υ̂c O3

ê1 Υ̂c

]
, where Υc = vec

(
Rᵀ d

dx
R
)
.(11)

The map Υc : [0, `]→ R3 is the rotational strain in the curved-reference configura-
tion (i.e. before deformation). If the beam is straight and untwisted with centerline
p(x) = xe1 before deformation, then R is the identity matrix and Υc = 0.

Let us introduce the so-called mass matrix M and flexibility matrix C. In gen-
eral, for beams made of linear-elastic material, these matrices are positive definite
(eventually, M positive semi-definite), symmetric and dependent on x. However,
in this work, from our assumptions on the material and geometry of the beam,
M,C ∈ R6×6 are both positive definite constant diagonal matrices. They are
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defined by

C = diag(S1, S2)−1, M = ρ diag
(
aI3, J

)
,(12)

where J ∈ R3×3, called the inertia matrix, and S1, S2 ∈ R3×3, are positive definite
diagonal matrices defined by

J = diag
(
(I2 + I3)k1, I2, I3

)
and

S1 = a diag(E, k2G, k3G)

S2 = J diag(G,E,E).
(13)

Remark 1.9 (Mass and flexibility matrices). The flexibility matrix relates the
stresses F (i.e. vector of body-attached internal forces Φ and moments Ψ) to the
strains by F = C−1s, while the flexibility matrix relates the momenta P to the
velocities by P = Mv. In this work, the unknown state y consists of velocities
and strains. One can choose the internal forces and moments Φ,Ψ as unknowns
instead of strains Γ,Υ using the above relationship. The obtained system would
have similar properties to (7).

1.4. Brief state of the art. Up to the best of our knowledge, global in time
existence and uniqueness of C0 or C1 solutions in [0, `] × [0,∞) to (7) is not
provided by general results present in the literature, even though one may find
such results for quasilinear and semilinear problems similar to (7). For instance,
in the case of initial value problems, [24, Ch. 4] assumes dissipativity of the lower
order terms (B̄y and ḡ(y) here) and [6] gives a relaxation of this assumption, [36]
considers C0(R;L1(R;Rn)) solutions when there is not any linear lower order term
(B̄y here) and the quadratic term satisfies certain constraints (which are satisfied
by ḡ here); while in the case of initial boundary value problems, [24, Ch. 5]
assumes dissipativity of the boundary conditions and the absence of linear lower
order terms, [19] gives a growth restriction on the lower order terms.

Stabilization of beam equations by means of feedback boundary controls goes
back to [30] for the string, [18] for the Timoshenko beam; see also [14, 9, 26, 40] and
the references therein for other linear and nonlinear beam models. As metionned
earlier, we focus of the Lyapunov approach to prove stability. For one-dimensional
first-order hyperbolic systems, such as (7), several results of stabilization under
boundary control are shown by means of quadratic Lyapunov functionals in [4]
and the references therein. There, when the system does not have any lower order
term such as B̄y and ḡ(y) here (systems of conservation laws), the exponential
stability may rely on the dissipativity of the boundary conditions alone. However,
when lower order terms are present (systems of balance laws) the equations must
also be taken into consideration. Some systems of nonlinear balance laws with
a uniform steady state may be seen as systems of nonlinear conservation laws
perturbed by the lower order terms: if the perturbation is small enough then the
C1- exponential stability is preserved, see [4, Th. 6.1]. See also [11] for two by two
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quasilinear systems with small lower order terms. System (7) does have dissipative
boundary conditions, however the perturbation is not small (see Remark 2.3).
Concerning general linear, semilinear and quasilinear systems, assumptions on both
the boundary conditions and the system’s coefficients are required in [4, Pr. 5.1],
[5, Th. 10.2], [13] and [4, Th. 6.10] for L2, H1, C1 and H2 exponential stability
respectively.

1.5. Notation. Let m,n ∈ N andM ∈ Rn×n. Here, the identity and null matrices
are denoted by In ∈ Rn×n and On,m ∈ Rn×m, and we use the abbreviation On =
On,n. The transpose, determinant and trace ofM , and the matrix with components
|Mi,j| for i, j ∈ {1 . . . n}, are denoted by Mᵀ, det(M), tr(M) and |M | respectively.
We use the notation ‖M‖ = sup|ξ|=1 |Mξ|, where | . | is the Euclidean norm. The
inner product in Rn is denoted 〈· , ·〉. The symbol diag( · , . . . , · ) denotes a (block-
)diagonal matrix composed of the arguments. We denote by D+(n) the set of
positive definite diagonal matrices of size n. We denote by Jacxf the Jacobian
matrix of any f = f(x) such that f ∈ C1(Rn;Rm). Finally, we use the shortened
notations L2(0, `) = L2(0, `;Rd) and Hm(0, `) = Hm(0, `;Rd).

1.6. Outline. In Section 2, we explain how the feedback control is chosen (Sec-
tion 2.1), derive the diagonal form of System (7) (Section 2.2), and study the energy
for the diagonal system in order to gain information of use in the next section (Sec-
tion 2.3). In Section 3 and Section 4, we prove the main results Theorem 1.5 and
Theorem 1.7, respectively.

2. Beam energy and Riemann invariants

2.1. Choice of the feedback. To choose the boundary feedback control, we first
look at the GEB model and the corresponding energy EP of the beam described
below: we choose the feedback in such a way that the energy of the beam is
nonincreasing. As the nonlinear transformation (5) permits to obtain the IGEB
model (7) from the GEB model (1), we use the corresponding feedback for the
IGEB model. The energy is by definition

EP(t) = K(t) + V(t).(14)

where K is the kinetic energy and V the elastic energy (or strain energy). For the
type of beam considered here, K and V are given by

K(t) =

∫ `

0

[
ρa|V (x, t)|2 + ρ

〈
W (x, t) , JW (x, t)

〉]
dx

V(t) =

∫ `

0

[〈
Γ(x, t) , S1Γ(x, t)

〉
+
〈
Υ(x, t) , S2Υ(x, t)

〉]
dx

(15)

where V,W,Γ,Υ are defined in (2).
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Proposition 2.1. If p ∈ C2([0, `] × [0, T ];R3) and R ∈ C2([0, `] × [0, T ]; SO(3))
are solution to System (1) with the boundary feedback control (3), then t 7→ EP(t)
is nonincreasing on [0, T ].

Proof of Proposition 2.1. We study the derivative of the energy of the beam. At
first, we assume that external forces and moments are applied, as in (4), in order
to point out how considering a freely vibrating beam is of help. Let us denote
w = RW . After some substantial calculus making use, namely, of the definition
of V,W,Γ,Υ, of the invariance of the cross product in R3 under rotation (i.e.
R̂ξ = R ξ̂Rᵀ for any ξ ∈ R3), of integration by parts, and of the governing system
(4), we arrive at

d

dt
EP(t) = 2

∫ `

0

(〈
∂tp(x, t) , φ̄(x, t)

〉
+
〈
w(x, t) , ψ̄(x, t)

〉)
dx

+ 2
〈
∂tp(`, t) ,R(`, t)S1Γ(`, t)

〉
+ 2
〈

vec
[
R(`, t)ᵀ∂tR(`, t)

]
, S2Υ(`, t)

〉
− 2
〈
∂tp(0, t) ,R(0, t)S1Γ(0, t)

〉
− 2
〈
w(0, t) ,R(0, t)S2Υ(0, t)

〉
.

The boundary terms at x = ` are equal to zero since p(`, ·) and R(`, ·) are constant
in time, while the integral is equal to zero since φ̄ ≡ ψ̄ ≡ 0. The last two terms in
the above right-hand side are equal to 2 〈∂tp(0, ·) , h1(·)〉 and −2 〈w(0, ·) , h2(·)〉, re-
spectively. Hence, (3) yields that d

dt
EP(t) = −2 (µ1|∂tp(0, t)|2 + µ2|w(0, t|2) which

is less than or equal to zero for all t ∈ [0, T ]. �

2.2. Transformation to Riemann invariants. The following lemma, which fol-
lows from straightforward matrix multiplications, yields that A is hyperbolic.

Lemma 2.2. Let D ∈ R6×6 be the positive definite diagonal matrix defined by

D = (MC)−1/2.(16)

Then, the matrix A may be diagonalized as A = L−1DL, where the matrices D,
L, L−1 ∈ Rd×d are defined by

D = diag(−D,D), L =

[
I6 D
I6 −D

]
, L−1 =

1

2

[
I6 I6

D−1 −D−1

]
.

Note thatD = ρ−
1
2 diag (E, k2G, k3G, G, E, E)

1
2 . We will denote the diagonal

entries of D by {λi}di=1, as they are the eigenvalues of A. These include two
repeated values since λ1 = λ5 = λ6 and λi = −λi−6 for i > 6. We have

λ7 =
√
ρ−1E, λ8 =

√
ρ−1k2G, λ9 =

√
ρ−1k3G, λ10 =

√
ρ−1G.(17)
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Applying the change of variable r = Ly in System (7), yields its diagonal form
∂tr + D∂xr +B(x)r = g(r) in (0, `)× (0, T )

r−(`, t) = −r+(`, t) for t ∈ (0, T )

r+(0, t) = κ r−(0, t) for t ∈ (0, T )

r(x, 0) = r0(x) for x ∈ (0, `),

(18)

with unknown state r : [0, `] × [0, T ] → Rd, where r0 = Ly0, B = LB̄L−1 and
g(r) = Lḡ(L−1r). In line with the sign of the diagonal entries of D, we denote

r =

[
r−
r+

]
, where r−, r+ ∈ R6,

for any r ∈ Rd. The map B ∈ C1([0, `];Rd×d) has the form

B =

[
DEᵀ −M−1EDM DEᵀ + M−1EDM
−DEᵀ −M−1EDM −DEᵀ + M−1EDM

]
,

for E, M defined in (11)-(12). Note that (B+Bᵀ)(x) is indefinite for all x ∈ [0, `],
since its trace is equal to zero. Similarly to ḡ, the nonlinear map g ∈ C∞(Rd;Rd)
has the form g(r) = G(r)r with G(r) = LḠ(L−1r), where Ḡ is defined in (8). Its
components gi ∈ C∞(Rd), for 1 ≤ i ≤ d, are quadratic forms with respect to
r ∈ Rd, as gi(r) =

〈
r ,Gir

〉
where the constant symmetric matrix Gi ∈ Rd×d is

defined by

Gi =

{
(L−1)ᵀ(Ḡi + λi+6Ḡ

i+6)L−1 if i ≤ 6

(L−1)ᵀ(Ḡi−6 − λiḠi)L−1 if i > 6,

in terms of the symmetric matrices {Ḡi}di=1 which characterize ḡ. Note that r ≡ 0
is a steady state of (18) and (Jacr g)(0) = 0. The matrix κ ∈ R6×6 is diagonal and
depends on the feedback parameters µ1, µ2 > 0 introduced in (3). It is defined by

κ = (MD + µ)−1(MD − µ),(19)

The diagonal entries of κ belong to (−1, 1) as they have the form b−c
b+c

for b, c > 0.

Remark 2.3. System (7) has dissipative boundary conditions (see [4, Sec. 4.1]),
in the sense that ρ∞(K) := inf

{
R∞(ΛKΛ−1) : Λ ∈ D+(d)

}
< 1, where

K =

[
O6 −I6

κ O6

]
, R∞(M) = max

1≤i≤d

d∑
j=1

|Mij|.

Indeed, for Λ = diag ((1 + ε)|κ|, I6), if ε > 0 is small enough then R∞(ΛKΛ−1) <
1. However, the perturbation (Br+ g(r)) is not small in general, in the sense that
its derivative with respect to r evaluated at zero (which is equal to B) may not be
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assumed arbitrarily small. Indeed, for instance, for a straight, untwisted beam with
centerline p(x) = xe1 before deformation, one has ‖B‖ = max{λ8, λ9, aI

−1
2 λ9, aI

−1
3 λ8}.

Well-posedness and stabilization. One may define compatibility conditions for Sys-
tem (18) similarly to Definition 1.2 for System (7). For k ∈ {1, 2}, the initial datum
r0 = Ly0 fulfills the (k − 1)-order compatibility conditions of (7) if and only r0

fulfills the (k − 1)-order compatibility conditions of (18). As for Proposition 1.3,
[4, 5] yields a local existence result for (18). Furthermore, we can study the sta-
bility of the diagonal system (7) in order to obtain the same result for the system
in physical variables (18).

Indeed, let k ∈ {1, 2}. Assume that the steady state r ≡ 0 of (18) is locally
Hk exponentially stable, in the sense of Definition 1.4 applied to (18) instead of
(7). In other words, assume that there exist ε > 0, α > 0 and η ≥ 1 such that
for any r0 ∈ Hk(0, `) fulfilling ‖r0‖Hk(0,`) ≤ ε and the (k − 1)-order compatibility
conditions of (18), there exists a unique solution r ∈ C0([0,+∞);Hk(0, `)) to (18),
and

‖r(·, t)‖Hk(0,`) ≤ ηe−αt‖r0‖Hk(0,`), for all t ∈ [0,+∞).

Let ε̄, ᾱ, η̄ > 0 be defined by ε̄ = ε‖L‖−1, ᾱ = α and η̄ = η‖L‖‖L−1‖. Then, the
steady state y ≡ 0 of the IGEB model (7) is locally Hk exponentially stable in the
sense of Definition 1.4 with the constants (ε, α, η) replaced with (ε̄, ᾱ, η̄).

2.3. Energy of the beam. Here, we see that the boundary conditions of (18)
are chosen in such a way that the energy of the beam is nonincreasing. From the
definitions of M,C, S1, S2 in (12)-(13), one observes that the energy (14)-(15) also
writes as

EP(t) =

∫ `

0

〈
V
W
Γ
Υ

 , QP


V
W
Γ
Υ


〉
dx, with QP = diag

(
M,C−1

)
,(20)

where V,W,Γ,Υ are defined in (2). Since the transformation from GEB to IGEB
is y = (V ᵀ,W ᵀ,Γᵀ,Υᵀ)ᵀ, and the change of variable r = Ly leads to the diagonal
form (18) of IGEB, we expect that the map t 7→ ED(t) defined by

ED(t) =

∫ `

0

〈
r(x, t) , QDr(x, t)

〉
dx, with QD = (L−1)ᵀQPL−1,(21)

is also nonincreasing if r is solution to (18), as the definitions of ED and EP coincide.
As C−1 = D2M (see (16)), we observe that QD rewrites as:

QD =
1

4

[
I6 D−1

I6 −D−1

] [
M O6

O6 D2M

] [
I6 I6

D−1 −D−1

]
=

1

2

[
M O6

O6 M

]
.(22)
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For the sake of clarity and in order to illustrate the structure of the coefficients,
we provide a proof below. In particular, the following proposition implies that if
r ∈ C1([0, `]× [0, T ];Rd) is solution to (18) then ‖r(·, t)‖L2(0,`) is bounded on [0, T ].

Proposition 2.4. Assume that r is the unique solution to (18) in C1([0, `] ×
[0, T ];Rd). Then, the map t 7→ ED(t), defined by (21), is nonincreasing on [0, T ].

Proof. Let r be as in Proposition 2.4. Using the governing system, integration by
parts with the fact that QD and D commute, one deduces that
dED

dt
=

1

2

[〈
r−(`, t) ,MDr−(`, t)

〉
−
〈
r+(`, t) ,MDr+(`, t)

〉
−
〈
r−(0, t) ,MDr−(0, t)

〉
+
〈
r+(0, t) ,MDr+(0, t)

〉]
+ 2

∫ `

0

〈
r ,QD(Br + g(r))

〉
dx.

Using the boundary conditions, the boundary terms in the above right-hand side
reduce to 1

2
〈r−(0, t) , (κ2 − I6)MDr−(0, t)〉, which is nonpositive since the diagonal

entries of κ belong to (−1, 1). It remains to see that the last term of above right-
hand side is null. The product QDB is skew-symmetric since it writes as

QDB =

[
−(B − Bᵀ) −(B + Bᵀ)
B + Bᵀ B − Bᵀ

]
, for B = 1

2
EDM,(23)

hence 〈r ,QDBr〉 = 0 for all r ∈ Rd. By definition of QD and g, 〈r ,QDg(r)〉 = 0
for all r ∈ Rd if and only if 〈y ,QP ḡ(y)〉 = 0 for any y ∈ Rd. The latter holds
directly by definition of QP and ḡ. Indeed, denoting y = (yᵀ1,y

ᵀ
2,y

ᵀ
3,y

ᵀ
4)ᵀ, with

y1,y2,y3,y4 ∈ R3, one has〈
y ,QP ḡ(y)

〉
=− ρa

〈
y1 , ŷ2y1

〉
− ρ
〈
y2 , ŷ2Jy2

〉
−
〈
y1 , Ŝ1y3y4

〉
−
〈
y2 , Ŝ1y3y3

〉
−
〈
y2 , Ŝ2y4y4

〉
−
〈
y3 , S1ŷ2y3

〉
−
〈
y3 , S1ŷ1y4

〉
−
〈
y4 , S2ŷ2y4

〉
,

where the first two terms of the above right-hand side are null, while the remaining
terms also writes as the sum of

〈
Ŝ1y3y1 + Ŝ2y4y2 + ŷ1S1y3 + ŷ2S2y4 ,y4

〉
and〈

Ŝ1y3y2 + ŷ2S1y3 ,y3

〉
which are both equal to zero. �

Remark 2.5 (Structure of B). An interest in going through the proof of Propo-
sition 2.4 is a resulting observation on the structure of B that will be used in the
proof of Theorem 1.5. While B is neither skew-symmetric nor positive or negative
semi-definite, one observes that the product QDB not only is skew-symmetric, but
also has the specific form (23).

3. Proof of Theorem 1.5

We will show that the steady state r ≡ 0 of (18) is locally H1 and H2 exponen-
tially stable, in order to prove Theorem 1.5.
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3.1. Strategy and proof. Applying Proposition 3.1 given below is sufficient to
prove the main result Theorem 1.5, and is equivalent to finding a quadratic Lya-
punov functional for System (18).

For any M ∈ D+(d), we denote M = diag(M−,M+), where M−,M+ ∈ D+(6).

Proposition 3.1. Assume that B ∈ Ck([0, `];Rd×d). Assume that there exists
Q ∈ C1([0, `];D+(d)) such that:

κ2Q+(0)−Q−(0) and Q−(`)−Q+(`) are negative semi-definite;(24)

and, for any x ∈ [0, `],
d

dx
Q(x)D−Q(x)B(x)−B(x)ᵀQ(x) is negative definite.(25)

Then, the steady state r ≡ 0 of (18) is locally H1 and H2 exponentially stable.

Remark 3.2. The condition (24) concerns the feedback control, while (25) con-
cerns coefficients appearing in the equations. The conditions for Hk stability are
the same for both order k ∈ {1, 2} and we also use the same feedback control.

Proof of Proposition 3.1. This proposition is a special case of the general results
[5, Th. 10.2] for k = 1 and [4, Th. 6.10] for k = 2, given for one-dimensional first-
order semilinear and quasilinear hyperbolic systems, respectively. In these results,
exponential stability is granted if the matrix d

dx
Q(x)D−Q(x)F (x)− F (x)ᵀQ(x),

where F (x) is the derivative with respect to r of the perturbation (i.e. the lower
order terms) evaluated at zero, and the matrix

−
[
Q−(0)D O6

O6 Q+(`)D

]
+

[
O6 −I6

κ O6

]ᵀ [
Q−(`)D O6

O6 Q+(0)D

] [
O6 −I6

κ O6

]
are negative definite and negative semi-definite, respectively. Since (Jacrg)(0) = 0,
the derivative of (Br − g(r)) with respect to r, evaluated at r ≡ 0, is equal to B,
yielding the condition (25). Moreover, the second matrix also writes as the prod-
uct diag (κ2Q+(0)−Q−(0) , Q−(`)−Q+(`)) diag (D ,D) which is negative semi-
definite if and only if (24) holds. �

Our objective is to apply Proposition 3.1 in order to prove Theorem 1.5.

Let us recall the notation we have used so far. The mass matrix M and well
as the inertia matrix J are defined in (13). Their diagonal entries are denoted
{Mi}3

i=1 and {Ji}3
i=1. The initial strain matrix E = E(x) and initial curvature

Υc = Υc(x) are defined in (11), and the components of the latter are denoted
{Υci}3

i=1. The matrix D and the eigenvalues {λi}di=1 of A are defined in (16) and
(17).
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We now introduce some matrices, constants and functions that will be involved
in the proof of Theorem 1.5. The constant Cκ ∈ (0, 1), which characterizes the
matrix κ defined in (19), is defined by

Cκ = max
1≤i≤6

κ2
i ,(26)

where {κi}6
i=1 are the diagonal entries of κ. The positive definite diagonal matrix

Λ ∈ Rd×d, depends on the beam parameters and is defined by

Λ = diag(MD,MD).(27)

The map Θ ∈ C1([0, `];Rd×d), depends not only on the beam parameters but also
on the initial strains. It is defined by

Θ = −
[

O6 EDM + (EDM)ᵀ

EDM + (EDM)ᵀ O6

]
.(28)

Observe that Θ is indefinite, as it is symmetric and its trace equals zero. Moreover,
for any x ∈ [0, `], the largest eigenvalue of Θ(x) is denoted σΘ(x)

d . The map x 7→
σ

Θ(x)
d is continuous on [0, `] since x 7→ Θ(x) belongs to C0([0, `];Rd×d), see [7, Coro.

VI.1.6].
Let us now introduce the continuous functions q1, q2 ∈ C0([0, `]) which are the

object of the next lemma. They are defined by

q1(x) = max
1≤i≤6

θi(x), q2(x) = σ
Θ(x)
d

(
min

1≤i≤6
Miλi+6

)−1

,(29)

where {θi}6
i=1 ⊂ C0([0, `]) are the following nonnegative functions:

θ1 =
∣∣1− λ8λ

−1
7

∣∣ |Υc3|+
∣∣1− λ9λ

−1
7

∣∣ |Υc2|, θ4 =
∣∣∣1− λ7J2

λ10J1

∣∣∣|Υc3|+
∣∣∣1− λ7J3

λ10J1

∣∣∣|Υc2|,

θ2 =
∣∣1− λ7λ

−1
8

∣∣ |Υc3|+
∣∣1− λ9λ

−1
8

∣∣ |Υc1|+ 1, θ5 =
aλ9

λ7J2

+
∣∣∣1− λ10J1

λ7J2

∣∣∣|Υc3|+
∣∣∣1− J3

J2

∣∣∣|Υc1|,

θ3 =
∣∣1− λ7λ

−1
9

∣∣ |Υc2|+
∣∣1− λ8λ

−1
9

∣∣ |Υc1|+ 1, θ6 =
aλ8

λ7J3

+
∣∣∣1− λ10J1

λ7J3

∣∣∣|Υc2|+
∣∣∣1− J2

J3

∣∣∣|Υc1|.

Lemma 3.3. Let m ∈ {1, 2}. Assume that w−, w+ ∈ C1([0, `]) are positive func-
tions such that w+(`) ≤ w−(`) and

dw−
dx

> 0,
dw+

dx
< 0, min

{∣∣∣dw−
dx

∣∣∣ , ∣∣∣dw+

dx

∣∣∣} > (w+ − w−)qm, in [0, `].

Then, for all x ∈ [0, `], the matrix S := diag
(
− dw−

dx
I6,

dw+

dx
I6

)
Λ + (w+ − w−)Θ is

negative definite.

Proof of Lemma 3.3. Let x ∈ [0, `]. Let us start with m = 1. By [17, Def. 6.1.9,
Coro. 7.2.3], if a matrix is strictly diagonally dominant with negative diagonal
entries, then it is negative definite. Since diag

(
− dw−

dx
(x)I6,

dw+

dx
(x)I6

)
Λ is negative
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definite and the diagonal entries of (w+(x)−w−(x))Θ(x) are null, S(x) is negative
definite if(

diag
(∣∣∣dw−

dx
(x)
∣∣∣ I6,

∣∣∣dw+

dx
(x)
∣∣∣ I6

)
Λ
)
i
> (w+(x)− w−(x))

d∑
j=1

|Θij(x)|(30)

holds for all i ∈ {1 . . . d}. By the definition of Θ and Λ, (30) is equivalent to

min
{∣∣∣dw−

dx

∣∣∣ , ∣∣∣dw+

dx

∣∣∣} > (w+ − w−)θi, where θi =
6∑
j=1

∣∣∣(M−1DEDM + Eᵀ
)
i,j

∣∣∣,
holding for all i ∈ {1 . . . d}, where we omitted the argument x for clarity. It
remains to look into the definition of E,M and D to deduce that each θi of the
above equation has the form given above Lemma 3.3. This finishes the proof for
the case m = 1.

We now consider the case m = 2. Denote by {σMi }ni=1 the eigenvalues of an
Hermitian matrix M ∈ Rn×n in nondecreasing order (then the largest eigenvalue
of M is σMn ). Weyl’s Theorem [17, Th. 4.3.1, Coro. 4.3.15] provides the bound
σM1+M2
i ≤ σM1

i +σM2
n on the eigenvalues of the sum of Hermitian matricesM1,M2 ∈

Rn×n. Hence, the eigenvalues of S(x) necessarily satisfy

σ
S(x)
i ≤ −min

{∣∣∣dw−
dx

(x)
∣∣∣ , ∣∣∣dw+

dx
(x)
∣∣∣} ( min

1≤i≤6
Miλi+6

)
+ (w+(x)− w−(x))σ

Θ(x)
d ,

and they are all negative if the above right-hand side is negative. �

Lemma 3.4. Let c > 0. There exists ϕ ∈ C1([0, `]) such that

ϕ(x) > 0,
dϕ

dx
(x) > 0,

dϕ

dx
(x) > 2c (ϕ(`)− ϕ(x)), for all x ∈ [0, `],(31)

and 0 < ϕ(0) < ϕ(`) may be chosen arbitrarily.

Proof of Lemma 3.4. Notice that (31) is equivalent to

0 < ϕ(0) < ϕ(`), d
dx
ϕ(x) > 2c (ϕ(`)− ϕ(x)), for all x ∈ [0, `].(32)

Let α = 2c. The inequality dϕ
dx
> 2c(ϕ(`)− ϕ) is equivalent to

eαx( d
dx
ϕ(x) + α(ϕ(x)− ϕ(`))) > 0, for all x ∈ [0, `].(33)

In the above left-hand side, one recognizes the derivative of x 7→ eαx(ϕ(x)−ϕ(`)),
hence (33) holds if and only if d

dx
(eαx(ϕ(x)− ϕ(`))) ≥ ε for some ε > 0. Integrating

this inequality over [0, x] and isolating the term ϕ(x) on one side, this is equivalent
to ϕ(x) ≥ ϕ(`) − e−αx(ϕ(`) − ϕ(0) − εx). We choose as a candidate the function
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ϕ(x) := ϕ(`) − e−αx(ϕ(`) − ϕ(0) − εx). Equality at x = ` is true if and only if
ε = ϕ(`)−ϕ(0)

`
, which is positive if and only if ϕ(`) > ϕ(0). Then, ϕ writes as

ϕ(x) = ϕ(`)− e−αx
(
1− x`−1

)
(ϕ(`)− ϕ(0)),(34)

and fulfills dϕ
dx

> 2c(ϕ(`) − ϕ) by construction. Assuming that ϕ(0) > 0, the
function ϕ defined by (34) now satisfies (32), and this concludes the proof. �

We are in position to prove the first main result.

Proof of Theorem 1.5. To apply Proposition 3.1, one should find a mapQ ∈ C1([0, `];D+(d))
fulfilling the three matrix inequalities in (24)-(25). Note that (25) cannot hold if
Q is constant, since the trace of QB + BᵀQ is null (implying that this matrix is
indefinite). Hence, it appears that Q should be chosen in such a way that (25)
holds due to the presence of d

dx
QD. We will proceed as follows:

1) Step 1: Based on Remark 2.5, we choose Q = diag(w−I6, w+I6)QD as an
Ansatz, where QD is the matrix that characterizes the beam energy for the
diagonal system (18), and w−, w+ ∈ C1([0, `]) are positive weights.

2) Step 2: As QB + BᵀQ is indefinite, we choose the monotonicity of the
weights in such a way that d

dx
QD is negative definite. By means of Lemma 3.3,

we obtain more explicit conditions on the weights which are sufficient for
the matrix inequalities (24)-(25) to be fulfilled.

3) Step 3: We show that such weights exist with the help of Lemma 3.4.

Step 1: Ansatz for Q. In Section 2.3, we have seen that the energy of the beam for
the IGEB model in Riemann invariants is characterized by the matrix QD, defined
in (22). Furthermore, we have seen that the product QDB has the specific form
given in Remark 2.5. Let the functions w−, w+ ∈ C1([0, `]) be such that

w− > 0, w+ > 0, in [0, `].(35)

To simplify the task of finding Q, we choose the following ansatz for Q:

Q(x) = W (x)QD, where W = diag (w−I6, w+I6) ,(36)

and w−, w+ are called weights. The matrix Q defined by (36) fulfills the conditions
of Proposition 3.1 if and only if

w+(0) ≤ C−1
κ w−(0), w−(`) ≤ w+(`),(37)

and, for any x ∈ [0, `], the matrix

diag
(
− d

dx
w−I6,

d
dx
w+I6

)
Λ + (w+ − w−)Θ(38)

is negative definite, where where Cκ, Λ and Θ are defined in (26), (27) and (28) re-
spectively. Indeed, on the one hand, (κ2Q+(0)−Q−(0)) = 1

2
(w+(0)κ2−w−(0)I6)M
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while (Q−(`)−Q+(`)) = 1
2
(w−(`)−w+(`))M, and both diagonal matrices are neg-

ative semi-definite if and only if (37) holds. On the other hand, the products QB
and BᵀQ now write as (see Remark 2.5)

QB =

[
−w−(B − Bᵀ) −w−(B + Bᵀ)
w+(B + Bᵀ) w+(B − Bᵀ)

]
, BᵀQ =

[
w−(B − Bᵀ) w+(B + Bᵀ)
−w−(B + Bᵀ) −w+(B − Bᵀ)

]
,

where B = 1
2
EDM. Hence, the sum yields

QB +BᵀQ = (w+ − w−)

[
O6 B + Bᵀ
B + Bᵀ O6

]
,

and (25) holds if and only if (38) is negative definite for any x ∈ [0, `].

Step 2: Assumption on the weights. Since Θ is indefinite, our strategy is to choose
w−, w+ such that the first term in of (38) is negative definite and sufficiently large
(in some sense), in comparison to the second term, for (38) to be negative definite.
To make this first term negative definite, we additionally assume that

dw−
dx

> 0,
dw+

dx
< 0, in [0, `].(39)

Now, not only are the weights are positive, but also w+ is decreasing while w− is
increasing. For such weights, (37) is equivalent to

w+(0)

w−(0)
∈
(
1 , C−1

κ

]
,(40)

w− ≤ w+, in [0, `].(41)

We now make use of Lemma 3.3 to obtain an explicit condition on the weights and
their derivatives that is sufficient for (38) to be negative definite for any x ∈ [0, `].
This lemma yields that if w− ≤ w+ in [0, `] and

min
{∣∣∣dw−

dx

∣∣∣ , ∣∣∣dw+

dx

∣∣∣} > (w+ − w−)qm, in [0, `],(42)

for some m ∈ {1, 2}, then the matrix (38) is negative definite for any x ∈ [0, `].

Step 3: Existence of the weights. To finish the proof, one has to find weights
fulfilling (35) and (39), as well as (40)-(41)-(42). One can easily find different
weights satisfying (35), (39) and (41), using straight lines, exponential functions
or cotangent functions, for instance. However, it is not straightforward to find
weights also satisfying (40) and (42) for realistic beam parameters respecting the
assumptions of the beam model, especially as some of these parameters are linked
to the others. For instance, `, I2, I3 and a are related, and so are E and G.
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We use Lemma 3.4 to obtain such weights without adding any constraint on the
beam parameters. Let m ∈ {1, 2} and define Cqm > 0 by

Cqm = max
x∈[0,`]

qm(x),(43)

where qm is defined by (29). By Lemma 3.4, there exists ϕ ∈ C1([0, `]) such that

ϕ > 0,
dϕ

dx
> 0,

dϕ

dx
> 2Cqm (ϕ(`)− ϕ), in [0, `].(44)

Then, the weights w+, w− ∈ C1([0, `];R) defined by

w− = ϕ, w+ = 2ϕ(`)− ϕ,(45)

satisfy (35), (39), (41) and (42). Indeed, both weights are positive since w− = ϕ >

0 and w+ > 2ϕ(`)−ϕ(0) > 0, with monoticity dw−
dx

= dϕ
dx
> 0 and dw+

dx
= −dϕ

dx
< 0.

Since ϕ satisfies d
dx
ϕ(x) > 2qm(x) (ϕ(`)−ϕ(x)) for all x ∈ [0, `], we deduce that (42)

holds, as min
{∣∣dw−

dx
(x)
∣∣, ∣∣dw+

dx
(x)
∣∣} = dϕ

dx
(x) and (w+ − w−)(x) = 2(ϕ(`)− ϕ(x)).

Furthermore, (40) is also fulfilled if ϕ additionally satisfies

ϕ(`) ∈
[
ϕ(0) ,

1 + C−1
κ

2
ϕ(0)

]
.(46)

This follows from rewriting condition (40) using that w−(0) = ϕ(0) and w+(0) =
2ϕ(`)− ϕ(0). This concludes the proof. �

3.2. Additional comments. Let us make some comments.
Feedback parameters. In (40), we observe that κ determines how different from
one another the weights are allowed to be at x = 0: if κ is closer to the null
matrix, then the weights are less constrained. Hence, for fixed beam parameters
(a, ρ, E,G, I2, I3, {ki}3

i=1, `), the choice of the feedback parameters µ1, µ2 > 0 influ-
ences this constraint. Both µ1 and µ2 must be nonzero, as otherwise Cκ = 1 and
the interval (1 , C−1

κ ] is empty. Furthermore, one can show that the smallest Cκ is
obtained for

µ1 =

√(
min

1≤i≤3
bi

)(
max
1≤i≤3

bi

)
, µ2 =

√(
min

4≤i≤6
bi

)(
max
4≤i≤6

bi

)
,(47)

where {bi}6
i=1 are the diagonal entries of MD.

Form of the weights. Let α > 0 and c = Cqm for m ∈ {1, 2}. The function ϕ
fulfilling (44)-(46) can be chosen as ϕ(x) = β − e−2cx

(
1− x

`

)
(β − α) for some β

belonging to
(
α , 1

2
(1 + C−1

κ )α
]
. The corresponding weights (45) are (see Fig. 2)

w−(x) = β − e−2cx
(

1− x

`

)
(β − α), w+(x) = β + e−2cx

(
1− x

`

)
(β − α).(48)
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Figure 2. The weights (48) for varying c and β − α = 1 (left),
for varying β − α and c = 1 (right). Here, ` = α = 1, the upper
decreasing curve is w+ and the lower increasing curve is w−.

Initially straight beam. In the particular case of a straight and untwisted beam
with centerline p(x) = e1x before deformation (see Section 1.3), we can compute
the constants Cq1 and Cq2 defined by (43). They are

Cq1 = max
{

1, a
√
k3G(I2

√
E)−1, a

√
k2G(I3

√
E)−1

}
,

Cq2 = max{λ8, λ9}
(
min

{
λ7, λ8, λ9, a

−1k1(I2 + I3)λ10, a
−1I2λ7, a

−1I3λ7

})−1
.

4. Proof of Theorem 1.7

Finally, making use of the first main result Theorem 1.5, we want to prove the
existence of a unique solution to the GEB model (1) and some stability properties
of this solution. We will use the notion of quaternion (see [8] and the references
therein). A quaternion is a pair of real value q0 ∈ R and vectorial value q ∈ R3,
that we denote here as the vector q = (q0, q

ᵀ)ᵀ. A rotation matrix R ∈ SO(3) is
said to be parametrized by the quaternion q ∈ R4, if |q| = 1 and

R = (q2
0 − 〈q , q〉)I3 + 2qqᵀ + 2q0q̂.(49)

When computing a quaternion from the rotation matrix there is a sign ambiguity as
both q and its opposite−q represent the same rotation matrix. We will say that the
map R : [0, `]× [0, T ]→ SO(3) is parametrized by the quaternion-valued function
q : [0, `]× [0, T ]→ R4, if |q| ≡ 1 and (49) is fulfilled for all (x, t) ∈ [0, `]× [0, T ].

We start by giving two lemmas of use in the proof of Theorem 1.7. The first
lemma will allow us to rewrite a linear PDE whose unknown R has values in SO(3),
as another linear PDE whose unknown state is the quaternion-valued map q which
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parametrizes R. Let us introduce the function U defined by

U(v) =
1

2

[
0 −vᵀ
v v̂

]
, for all v ∈ R3.

Lemma 4.1. Let f ∈ C1([0, `]×[0,+∞);R3) and let z represent either the variable
x or the variable t. The function q ∈ C1([0, `] × [0,+∞);R4) fulfills both |q| ≡ 1
and

∂zq(x, t) = U(f(x, t))q(x, t), for all (x, t) ∈ [0, `]× [0,+∞),(50)

if and only if the map R ∈ C1([0, `]× [0,+∞); SO(3)) parametrized by q fulfills

∂zR(x, t) = R(x, t)f̂(x, t), for all (x, t) ∈ [0, `]× [0,+∞).

Remark 4.2. In itself, (50) implies that ∂z(|q|2) ≡ 0, since it yields ∂z(|q|2) =
2〈q ,U(f)q〉 and straightforward computations yield that the right-hand side is null.

By definition of the quaternion product ◦ , the equation ∂zq = U(f)q is just
is an equivalent way of writing ∂zq = 1

2
q ◦ f , where f = (0, fᵀ)ᵀ. The proof of

Lemma 4.1, omitted here, rests on extensive but elementary computations involv-
ing the relationship (49), the definition of the quaternion product and properties
of the cross product. The second lemma, given below, yields the existence of a
unique solution to an overdetermined system of two first order PDE.

Lemma 4.3. Let A,B ∈ C1([0, `]× [0,+∞);Rn×n) be such that the compatibility
condition AB −BA+ (∂xA)− (∂tB) = 0 holds in [0, `]× [0,+∞). Then,

∂ty(x, t) = A(x, t)y(x, t) in [0, `]× [0,+∞)

∂xy(x, t) = B(x, t)y(x, t) in [0, `]× [0,+∞)

y(`, 0) = yin.

admits a unique solution y ∈ C1([0, `]× [0,+∞);Rn), for any given yin ∈ Rn.

The proof consists in considering the solution y to ∂ty = Ay in [0, `] × [0,+∞)
with y(x, 0) = w(x), where w is the solution to d

dx
w = B(·, 0)w in [0, `] with

w(`) = yin, and showing that y solves in fact also ∂xy = By in [0, `]× [0,+∞) by
using the compatibility condition. We may now prove the second main result.

Proof of Theorem 1.7. Let y ∈ C0([0,+∞);H2(0, `)) be the unique solution to (7)
with initial datum y0 fulfilling the assumptions of Theorem 1.7. We will also use
the notation y = (yᵀ1,y

ᵀ
2,y

ᵀ
3,y

ᵀ
4)ᵀ, where yi : [0, `]× [0,+∞)→ R3 for 1 ≤ i ≤ 4.

As explained in Remark 1.6 1) this solution y belongs to C1([0, `]× [0,+∞);Rd)
and there exists α, η̄ > 0 depending only on ε such that ‖y‖C1([0,`]×[0,+∞);Rd) ≤
η̄e−αt‖y0‖H2(0,`). The proof is divided in four steps.
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Step 1: Compatibility conditions. In this step, we point out compatibility condi-
tions useful latter on, which come from the governing equations fulfilled by y and
from the relationship between the initial data of (1) and (7). The last six governing
equations of (7), write equivalently as

∂ty3 − ∂xy1 − (ŷ4 + Υ̂c)y1 + ŷ2(y3 + e1) = 0.(51)
∂xy2 − ∂ty4 = ŷ2(Υc + y4)(52)

Using that (̂ûv) = ûv̂ − v̂û for all u, v ∈ R3, one can show that (52) is equivalent
to

U(y2)U(y4 + Υc)− U(y4 + Υc)U(y2) + ∂x(U(y2))− ∂t(U(y4 + Υc)) = 0.(53)

From (6), we know that, for all (x, t) ∈ [0, `]× [0,+∞),

d
dx
R0(x) = R0(x)(ŷ4(x, 0) + Υ̂c(x)), d

dt
hR = hRŷ2(`, t),(54)

d
dx
p0(x) = R0(x)(y3(x, 0) + e1), y1(`, ·) = 0,(55)

where the second equation in (54) comes from y2(`, ·) ≡ 0 and that hR is constant.
Recall that hp = p0(`) and hR = R0(`), and that N (p,R) = y also writes as

∂tR = Rŷ2, ∂xR = R(ŷ4 + Υ̂c), ∂tp = Ry1, ∂xp = R(y3 + e1).(56)

Our aim in the next two steps is to show that the transformation N is bijective
from the space E1 = {(p,R) ∈ C2([0, `]× [0,+∞);R3 × SO(3)) : (57), (58)} onto
the space E2 =

{
y ∈ C1([0, `]× [0,+∞);Rd) : (51), (52), (54), (55)

}
, where

R(x, 0) = R0(x), R(`, t) = hR, for all (x, t) ∈ [0, `]× [0, T ],(57)

p(x, 0) = p0(x), p(`, t) = hp, for all (x, t) ∈ [0, `]× [0, T ].(58)

Step 2: Rotation matrix. In this step, we show that there exists a unique R ∈
C1([0, `] × [0,+∞); SO(3)) fulfilling (57) and the first two equations in (56). Let
us denote Rin = R0(`) = hR, and let qin ∈ R4 be a quaternion which parametrizes
Rin. Since (54) holds, imposing the condition R(`, 0) = Rin is equivalent to im-
posing (57). Hence, we will look for the solution R to

∂tR = Rŷ2 in [0, `]× [0,+∞)

∂xR = R(ŷ4 + Υ̂c) in [0, `]× [0,+∞)

R(`, 0) = Rin.

(59)
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If R ∈ C1([0, `]× [0,+∞); SO(3)) is parametrized by q ∈ C1([0, `]× [0,+∞);R4),
then R is solution to (59) if and only if either q or −q is solution to

∂tq = U(y2)q in [0, `]× [0,+∞)

∂xq = U(y4 + Υc)q in [0, `]× [0,+∞)

q(`, 0) = qin.

(60)

Indeed, R(`, 0) = Rin is equivalent to either q(`, 0) = qin or q(`, 0) = −qin and,
by Lemma 4.1, the governing equations of (59) are equivalent to those of (60).

Lemma 4.3 and (53) yield the existence of a unique solution q ∈ C1([0, `] ×
[0,+∞);R4) to (60). Moreover, |q| ≡ 1, since ∂t(|q|2) ≡ 0 and ∂x(|q|2) ≡ 0
by Remark 4.2, and |qin| = 1. Hence, the map R ∈ C1([0, `] × [0,+∞); SO(3))
parametrized by this solution q is the unique solution to (59). Indeed, assume
that there are two solutions R1,R2 to (59), and q1,q2 are respective correspond-
ing quaternions. Then, up to a minus sign q1,q2 are solutions to (60) and are
consequently identically equal up to a minus sign, implying that R1 ≡ R2.

Step 3: Position of centerline. Let R be the unique solution to (59) given by
the previous step. Our aim in this step is to show the existence of a unique
p ∈ C1([0, `]× [0,+∞);R3) fulfilling (58) and the last two equations in (56), i.e.

∂tp = Ry1 in [0, `]× [0,+∞)

∂xp = R(y3 + e1) in [0, `]× [0,+∞)

p(x, 0) = p0(x) for x ∈ [0, `]

p(`, t) = hp for t ∈ [0,+∞).

(61)

We write the governing equations in integral form. Then, p1 fulfills ∂tp1 = Ry1

and p1(·, 0) = p0 if and only if p1(x, t) = p0(x) +
∫ t

0
(Ry1)(x, s)ds, which also

writes as

p1(x, t) = p0(`)−
∫ `

x

dp0

dx
(ξ)dξ +

∫ t

0

(Ry1)(`, τ)dτ −
∫ t

0

∫ `

x

∂x(Ry1)(ξ, τ)dξdτ.

Similarly, for the second system, p2 fulfills ∂xp2 = R(y3 + e1) and p2(`, ·) = hp if
and only if p2(x, t) = hp −

∫ `
x
(R(y3 + e1))(ξ, t)dξ, which also writes as

p2(x, t) = hp −
∫ `

x

(R(y3 + e1))(ξ, 0)dξ −
∫ `

x

∫ t

0

∂t(R(y3 + e1))(ξ, τ)dτdξ.

Since R solves (60) and has values in SO(3), the compatibility condition (51) is
equivalent to ∂x(Ry1) = ∂t(R(y3 + e1)). This observation, in addition to (55),
imply that p1 ≡ p2 is the unique solution to (61).

The functions p,R provided by the two previous steps are in fact of regu-
larity C2 in [0, `] × [0,+∞). Indeed, ∂tR, ∂xR ∈ C1([0, `] × [0,+∞);R3×3) and
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∂tp, ∂xp ∈ C1([0, `] × [0,+∞);R3), since p,R,Υc, {yi}4
i=1 are C1 with respect to

their arguments.

Step 4: Solution to (1). We have found (p,R) ∈ E1 such that N (p,R) = y. In
this step we show that it is solution to (1), and we that the solution in C2([0, `]×
[0,+∞);R3 × SO(3)) to (1) is unique. We now use that y fulfills the initial and
boundary conditions, and first six governing equations of (7). Indeed, in these six
governing equations, we replace yi for 1 ≤ i ≤ 4 by their expressions in terms of
p,R and V,W,Γ,Υ (defined in (2)). After some computations, using properties
of the vector product, we obtain the governing equations of (1). The boundary
conditions at x = ` are recovered by using those of (7) together with (2) and
N (p,R) = y. The remaining initial conditions are retrieved from (6) together
with (2) and N (p,R) = y. The uniqueness of the solution to (1) results from the
uniqueness of the solution to the IGEB model (7) and from the fact that N is
bijective from E1 onto E2.

The last assertion of the theorem follows from the exponential decay of y and
the fact that R has values in the set of rotation (hence, unitary) matrices. �

5. Conclusion and perspectives

We have studied a freely vibrating beam described by the GEB and IGEB mod-
els. Showing first exponential stability for the latter, we deduced existence, unique-
ness and some stability properties for the former model with the same boundary
feedback control. Let us make some remarks on the Lyapunov functional used in
the proof and on the exponential decay, before commenting on possible extensions.
The Lyapunov functional. To express the energy of the beam and Lyapunov func-
tionals, we may adopt the point of view of either the physical system (7) or the
diagonal system (18). In (20) and (21), we have seen that the energy for the phys-
ical and diagonal systems is characterized by the constant matrices QP and QD,
respectively. The Lyapunov functional L for the diagonal system, which is given
in (10), may also be written in terms of the physical variable, as

L̄(t) =
k∑
j=0

∫ `

0

〈
∂jt y(x, t) , Q̄(x)∂jt y(x, t)

〉
dx

where y is the unknown state of (7). It is interesting to note that the matrix

Q(x) = diag
(
ϕ(x)I6, (2ϕ(`)− ϕ(x))I6

)
QD,
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for ϕ as in Lemma 3.4, which was found in the proof of the main result Theorem 1.5,
takes the form Q̄(x) = LᵀQ(x)L, given below, for the physical system

Q̄(x) = ϕ(`)QP + (ϕ(x)− ϕ(`))

[
O6 MD
MD O6

]
.

We see that the "energy matrix" QP is multiplied by a positive constant, and
extradiagonal components dependent on x are added. At the boundary x = `,
where the beam is clamped, Q (resp. Q̄) is equal to the "energy matrix" QD (resp.
QP), while it differs at the end x = 0 at which the feedback control is applied.
Exponential decay. Following the proof of [5, Th. 10.2] for the special case of
System (18) while making the constants explicit, one can observe that in the case
of H1 stabilization (the H2 case being similar), the exponential decay has the form

α = 1
2
CQ
(
− CS − 4CQCgδ

)
.

Above, δ > 0 constrains the size of the initial datum in the C0([0, `];Rd) norm (or
C1 norm in the H2 case). The constants Cg, CQ > 0 depend on g (hence, on the
beam parameters) and Q, and CS < 0 is the maximum over [0, `] of the largest
eigenvalue of S = −dϕ

dx
Λ + 2(ϕ(`)− ϕ)Θ, the matrices Λ,Θ being defined in (27)-

(28). It would be valuable to see how the choice of µ1, µ2 > 0 and the function ϕ
(from Lemma 3.4) affect the decay. We have seen that the feedback parameters
influence the choice of ϕ and that the least restricting choice of µ1, µ2 is (47). One
may also be interested in the impact of the beam parameters, starting with ` > 0,
on the decay.
Networks. Beams may also be studied as part of networks to describe flexible struc-
tures: see the modelling done in [22] and the simulations of networks of Cosserat
elastic rods carried out in [34]. Different control problems for networks of linear
and nonlinear Timoshenko beams have been treated for instance in [20, 21, 23].
Our next interest related to this work is the exponential stabilization for a network
of IGEB by applying feedback controls at the nodes.
More general beams. One could consider a more general IGEB model. If the size or
material of the cross sections varies along the centerline then the parameters of the
beam, and consequently the model’s coefficients, depend on x. One may also be
interested in the IGEB model accounting for any thin beam made of linear-elastic
material, as in [3, 16, 27]. An advantage of the method presented here, is that it is
possible to generalize the result to the above cases as long as the system remains
hyperbolic, though, in the latter case of a general IGEB model, one may have to
change Q and be mindful of the regularity of the eigenvalues and eigenvectors of
A. As mentioned in Remark 1.6 4), another perspective is to assume that external
forces, such as gravity [3, eq. (4)] or aerodynamic forces [28, eq. (12)], which can
be functions of x or (p,R), are applied on the beam.
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