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ERROR ESTIMATES OF SOME SPLITTING SCHEMES FOR

CHARGED-PARTICLE DYNAMICS UNDER STRONG MAGNETIC FIELD

BIN WANG AND XIAOFEI ZHAO

Abstract. In this work, we consider the error estimates of some splitting schemes for the charged-
particle dynamics under a strong magnetic field. We first propose a novel energy-preserving split-
ting scheme with computational cost per step independent from the strength of the magnetic
field. Then under the maximal ordering scaling case, we establish for the scheme and in fact for
a class of Lie-Trotter type splitting schemes, a uniform (in the strength of the magnetic field)
and optimal error bound in the position and in the velocity parallel to the magnetic field. For
the general strong magnetic field case, the modulated Fourier expansions of the exact and the
numerical solutions are constructed to obtain a convergence result. Numerical experiments are
presented to illustrate the error and energy behaviour of the splitting schemes.

Keywords: Charged particle dynamics, Strong magnetic field, Splitting scheme, Energy-preserving,
Error estimate, Modulated Fourier expansion.
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1. Introduction

The dynamics of charged particles in external electromagnetic field are of fundamental impor-
tance in plasma physics. In this work, we are concerned with the numerical solution of the following
charged-particle dynamics (CPD) under a strong magnetic field [25, 27]

ẋ(t) = v(t),

v̇(t) = v(t)× B(x(t))

ε
+ E(x(t)), t > 0,

x(0) = x0, v(0) = v0,

(1.1)

where x(t) : [0,∞) → R
3 and v(t) : [0,∞) → R

3 are respectively the unknown position and velocity
of the particle, x0 and v0 ∈ R

3 are the given initial values, E(x) = −∇U(x) is a given electric
field generated by some scalar potential U(x), B(x) is a given magnetic field and ε ∈ (0, 1] is a
dimensionless parameter inversely proportional to the strength of the magnetic field. Along the
solution of (1.1), the energy or Hamiltonian H(t) of the system

H (x(t), v(t)) :=
1

2
|v(t)|2 + U(x(t)) ≡ H (x(0), v(0)) , t ≥ 0, (1.2)

is conserved.
The CPD has been studied for long times in the physical literature [1, 2, 6, 32, 37]. The strong

external magnetic field is introduced in important applications such as the magnetic fusion, where
such magnetic field is essential for controlling the dynamics of plasma in the tokamak device for
fusion. This has attracted many recent modeling and simulation works, and (1.1) frequently occurs
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as a core problem to solve after particle discretization of some kinetic models [9, 10, 11, 12, 13, 14,
16, 17, 18, 31, 42].

Along the numerical aspect for (1.1), various schemes have been considered in the past decades.
Earlier studies have been devoted to address the regime ε = 1 in (1.1). Among them, the Boris
method [3] proposed in 1970 is still widely used by physicists, followed by some recent numerical
analysis work [23, 40] to address its mathematical property. Later on, many other structural-
preserving schemes have been designed, including the volume-preserving algorithm [28], the time-
symmetric algorithm [24], the symplectic or K-symplectic algorithms [29, 39, 43, 45, 46], the Poisson
integrators [30] and the energy-preserving algorithms [4, 33, 34].

Recent numerical efforts have been focused on the strong magnetic field regime of CPD, i.e.
0 < ε ≪ 1 in (1.1). In [25], the long time near-conservation property of a variational integrator was
analyzed for (1.1) under 0 < ε ≪ 1. An exponential energy-preserving integrator was developed in
[44] for (1.1) under a constant strong magnetic field B. A filtered Boris algorithm was formulated
in [27] under the maximal ordering scaling [5, 38], i.e. B = B(εx) in (1.1) with |B(0)| > 0
independent of ε, which improves the asymptotic behaviour of the original Boris method as ε → 0.
At the kinetic level, in corporation with the Particle-in-Cell discretization, some more multiscale
schemes have been proposed for (1.1) including the asymptotic preserving schemes [13, 14] and the
uniformly accurate schemes [8, 11]. Although these powerful numerical methods have already been
proposed, error estimate results towards (1.1) in the strong magnetic field regime are still limited
in the literature to our best knowledge. In particular, even for some standard numerical methods,
the optimal dependence of the error of on the step size and ε is not yet established rigorously. The
very recent work [15] has done the analysis for the IMEX finite difference scheme.

In this work, we consider the class of splitting type scheme which is undoubtedly one of the
most popular classical methods [35] for (1.1), and we aim to analyze its optimal convergence result.
On one hand, we first propose a novel energy-preserving splitting scheme for solving the CPD
(1.1), where we combine the idea of the average vector field [36] and splitting. The scheme exactly
preserves the energy (1.2) at the discrete level for all times. More importantly, in the scheme the
stiffness is not involved in the nonlinear equation thanks to splitting, and so the nonlinear solver
can perform efficiently for all ε ∈ (0, 1]. In contrast, the other energy-preserving schemes such
as the direct average vector field method [36], energy-preserving collocation methods [20], energy-
conserving line integral methods [4] and those from [33, 34] quickly lose efficiency as ε decreases
because of the stiffness in the nonlinear equation. On the other hand, under the maximal ordering
scaling case of (1.1), we shall for the first time establish the rigorous optimal convergence result for a
class of Lie-Trotter type splitting schemes including the proposed energy-preserving splitting and a
volume-preserving splitting from the literature [11]. We prove by using the averaging technique [7],
that the schemes exhibit uniform first order error bound in x and v‖ (the component of v parallel to
B) for ε ∈ (0, 1], which seems not true at the first glance of (1.1) due to the O(1/ε) commutator. For
the general strong magnetic field case of (1.1), due to technical difficulty to obtain the stability of the
scheme under standard energy approach, we turn to another powerful tool namely the modulated
Fourier expansion [19, 21, 22, 26]. We shall construct the modulated Fourier expansions of the
exact solution and the numerical solution, and then establish a convergence result of the scheme in
ε. Numerical results are presented in the end to underline the performance of the schemes.

The rest of the paper is organized as follows. In section 2, we propose the energy-preserving
splitting scheme. In section 3, we give the optimal convergence result and the rigorous proof in the
maximal ordering scaling case. In section 4, we carry out the modulated Fourier expansion in the
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general case and establish the convergence result. The numerical results are given in section 5 and
the conclusion is drawn in section 6.

2. Numerical methods

In this section, we shall present the class of splitting schemes. We shall denote h = ∆t > 0 as
the time step and tn = nh for n ∈ N.

Firstly, we introduce the energy-preserving schemes. The schemes are based on the splitting of
(1.1) into two following subflows:

d

dt

(
x
v

)
=

(
0

1
εv ×B(x)

)
,

d

dt

(
x
v

)
=

(
v

E(x)

)
. (2.1)

For the first flow, since x(t) ≡ const, we have the exact integration for v and so we get the exact
propagator

ΦL
t :

(
x(t)
v(t)

)
=

(
x(0)

e
t
ε
B̂(x(0))v(0)

)
, t ≥ 0, (2.2)

where the skew symmetric matrix B̂ is given by

B̂(x) =




0 b3(x) −b2(x)
−b3(x) 0 b1(x)
b2(x) −b1(x) 0




with the magnetic field B = (b1, b2, b3)
⊺ ∈ R

3. By the Rodrigues type formula [11, 27, 31], the

matrix exponential function etB̂ can be efficiently implemented in practice.
The second flow in the splitting (2.1) is nonlinear, and so we look for approximations. Note it

is a canonical Hamiltonian system: q̇(t) = J−1∇H(q(t)) with J the symplectic matrix, so in order
to get the exact energy-preserving property, we adopt the average vector field (AVF) formula [36]
which by denoting qn ≈ q(tn) is defined as

qn+1 = qn + h

∫ 1

0

J−1∇H
(
(1− ρ)qn + ρqn+1

)
dρ, (2.3)

and we end up with the following energy-preserving splitting methods.

Algorithm 2.1 (Energy-preserving splitting method). For the second flow in (2.1), we apply the
AVF method (2.3) to get the approximated propagator ΦNL

t , which reads

ΦNL
t :

(
x(t)
v(t)

)
=

(
x(0) + tv(0) + t2

2

∫ 1

0
E (ρx(0) + (1− ρ)x(t)) dρ

v(0) + t
∫ 1

0
E (ρx(0) + (1− ρ)x(t)) dρ

)
. (2.4)

Then the full scheme can be obtained through composition. For example, by denoting the numerical
solution xn ≈ x(tn), v

n ≈ v(tn) and choosing x0 = x0, v
0 = v0, the Lie-Trotter splitting scheme

Φh = ΦNL
h ◦ ΦL

h ,

for solving (1.1) in total reads for n ≥ 0,




xn+1 =xn + he
h
ε
B̂(xn)vn +

h2

2

∫ 1

0

E
(
ρxn + (1− ρ)xn+1

)
dρ,

vn+1 =e
h
ε
B̂(xn)vn + h

∫ 1

0

E
(
ρxn + (1− ρ)xn+1

)
dρ.

(2.5)

We shall refer to this algorithm by S1-AVF.
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It is noted that Algorithm 2.1 is implicit, while the nonlinear equation (2.4) is independent of
ε. Therefore, compared with other implicit energy-preserving schemes [4, 20, 33, 34, 36] for solving
CPD (1.1), the computational cost of S1-AVF per time step is uniform in ε ∈ (0, 1]. To obtain an
explicit scheme, we consider the following approximation.

Algorithm 2.2 (Explicit splitting method). For the second flow in (2.1), we linearize (2.4) and
now ΦNL

h is given by

ΦNL
t :

(
x(t)
v(t)

)
=

(
x(t) + tv(t) + t2

2 E(x(0))
v(t) + h

2 [E(x(0)) + E(x(t))]

)
.

With the same ΦL
h defined by (2.2), the Lie-Trotter splitting yields the scheme: for n ≥ 0,





xn+1 =xn + he
h
ε
B̂(xn)vn +

h2

2
E(xn),

vn+1 =e
h
ε
B̂(xn)vn +

h

2

[
E(xn) + E(xn+1)

]
,

(2.6)

for solving (1.1), and we shall refer to it as S1-SV.

For the above two presented algorithms, their energy conservation properties are stated as follows.

Proposition 2.3. The Algorithm 2.1 exactly preserves the energy (1.2) at the discrete level, i.e.
for n ∈ N, H(xn, vn) ≡ H(x0, v0).

Proof. Denote in S1-AVF (2.5)
(
xL

vL

)
= ΦL

h

(
x0

v0

)
,

(
x1

v1

)
= ΦNL

h

(
xL

vL

)
.

Firstly, since B̂(x) is skew symmetric, the propagator ΦL
h exactly preserves the energy 1

2 |v|
2
, i.e.

1
2

∣∣vL
∣∣2 = 1

2

∣∣v0
∣∣2, and xL = x0. On the other hand for ΦNL

h , it is clearly that d
dt

(
x
v

)
=

(
v

E(x)

)
is

a Hamiltonian system with energy H̃(x, v) = 1
2 |v|

2
+ U(x). Concerning the energy conservation of

AVF formula (2.3) for such flow, which was established in [41], we obtain in ΦNL
h

1

2

∣∣v1
∣∣2 + U

(
x1
)
=

1

2

∣∣vL
∣∣2 + U

(
xL
)
.

On the basis of these results, we have

H
(
x1, v1

)
=

1

2

∣∣vL
∣∣2 + U

(
xL
)
=

1

2

∣∣v0
∣∣2 + U(x0) = H

(
x0, v0

)
,

which shows the result for S1-AVF.
By the above fact, the energy conservation of Algorithm 2.1 is straightforward through arbitrary

composition. �

It is clear from above that one can switch to other energy-preserving techniques for approximating
the nonlinear flow to define ΦNL

h , and the algorithm 2.1 is still energy-preserving. A direct result
is that when electric field E(x) in (1.1) is constant in space, then we have the preserving property
in the explicit scheme.

Proposition 2.4. The Algorithm 2.2 preserves the energy (1.2) if the external electric field in the
CPD (1.1) is a constant field.
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Note the presented way of splitting (2.1) is different from the one in the literature [11]:

d

dt

(
x
v

)
=

(
v
0

)
,

d

dt

(
x
v

)
=

(
0

1
εv ×B(x) + E(x)

)
. (2.7)

where both subflows have exact integrators, and it in combine leads to the following volume-
preserving algorithm.

Algorithm 2.5 (Volume-preserving splitting method). By integrating (2.7) exactly, the Lie-Trotter
splitting method for solving (1.1) reads





xn+1 =xn + hvn+1,

vn+1 =e
h
ε
B̂(xn)vn + hϕ1

(
h

ε
B̂(xn)

)
E(xn),

(2.8)

with ϕ1(z) = (ez − 1)/z and we denote it by S1-VP.

The presented three splitting algorithms, i.e. (2.5), (2.6) and (2.8) look rather close. In particular,
they share the same ‘linear’ part which plays the key role in coming analysis. The main observation
of the paper is that all of them show uniform error bound O(h) in the position x(t) and in one
component of the velocity v(t) when h is small. This will be illustrated by numerical experiments
in section 5. Such convergence result seems surprising at the first glance of (1.1), since usually the
error of splitting scheme is determined by the commutator which is O(1/ε) here. For higher order
compositions such as Strang splitting, such uniform error bound is gone. Therefore, in this paper
we focus on the three Lie-Trotter type schemes and aim to understand their uniform error bound.
The next two sections are devoted to the rigorous error analysis.

3. Optimal convergence in maximal ordering case

In this section, we give the convergence result of the presented splitting schemes. To get rigorous
optimal error estimates, we restrict ourself to first consider the so-called maximal ordering scaling
[5, 27, 38] of the CPD (1.1) here, i.e.

ẋ = v, v̇ =
1

ε
v ×B(εx) + E(x), 0 < t ≤ T, (3.1)

where the magnetic field B(εx) satisfies the condition |B(0)| > 0 independent of ε. For simplicity
of notations, we shall denote A . B for A ≤ CB where C > 0 is a generic constant independent of
h or n or ε, and we shall denote tns as some intermediate time value which may vary line by line in
the proof.

3.1. Main result. In order to establish the optimal error bounds (with optimal dependence of the
ε) of the proposed scheme for solving (3.1) until a finite time T > 0 which is independent of ε, we
follow the strategy from [7] by introducing the time re-scaling t → tε which equivalently formulates
(1.1) into a long-time problem





ẋ = εv, v̇ = v ×B(εx) + εE(x), 0 < t ≤ T

ε
,

x(0) = x0, v(0) = v0.
(3.2)

Under the assumption that B(x), E(x) ∈ C1(R3), for (3.2) it is clear to have

‖x‖L∞(0,T/ε) + ‖v‖L∞(0,T/ε) . 1. (3.3)
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As another matter of fact, the propagator etB̂(0) generates a periodic flow thanks to the skew-

symmetry of B̂, and we shall denote T0 > 0 as the single period of it. The splitting scheme (2.5)
under the long-time scaling for solving (3.2) consequently reads





xn+1 =xn + εhehB̂(εxn)vn +
h2ε2

2

∫ 1

0

E
(
ρxn + (1− ρ)xn+1

)
dρ, 0 ≤ n <

T

ε
,

vn+1 =ehB̂(εxn)vn + hε

∫ 1

0

E
(
ρxn + (1− ρ)xn+1

)
dρ.

(3.4)

To state the theorem, we introduce the parallel component of the velocity to the magnetic field

v‖(t) :=
B(εx(t))

|B(εx(t))|

(
B(εx(t))

|B(εx(t))| · v(t)
)
, t ≥ 0,

and similarly for the numerical velocity as

vn‖ :=
B(εxn)

|B(εxn)|

(
B(εxn)

|B(εxn)| · v
n

)
, n ≥ 0.

The main convergence result of the splitting scheme is stated as follows.

Theorem 3.1. (Optimal global convergence) Under the condition that B(x), E(x) ∈ C1(R3), let
xn, vn be the numerical solution from the S1-AVF (3.4) for solving (3.2) up to T/ε for some fixed
T > 0, then there exists a constant N0 > 0 independent of ε, such that when the time step h = T0

N
with some integer N ≥ N0, we have the following error bound

|xn − x(tn)| . εh+N−m0 ,
∣∣∣vn‖ − v‖(tn)

∣∣∣ . εh+N−m0 , 0 ≤ n ≤ T

ε
, (3.5)

for some m0 > 0 arbitrarily large.

The convergence theorems of the other two splitting schemes S1-SV (2.6) and S1-VP (2.8) are
totally the same as S1-AVF in Theorem 3.1 with little modifications in the proof, and so they will
be omitted here for simplicity. Before we step into the proof, we give some important remarks.

Remark 3.2. The time step h = T0/N with some integer N in Theorem 3.1 is a technique condition
for rigorous proof, which also appeared in [7]. In practice, one only needs h . 1 for solving the
scaled problem (3.2) to observe the proved optimal error bound as we shall see later in section 5.

Remark 3.3. The convergence result of the proposed splitting scheme S1-AVF (2.5) in the original
scaling (3.1) reads equivalently as |xn − x(tn)| . h+N−m0/ε, |vn‖ − v‖(tn)| . h+N−m0/ε, when

h . ε. Since N−m0 quickly reaches machine accuracy as N increases, so what shows up in practical
computing is the uniform part of the error O(h).

3.2. Proof of the theorem. To prove the theorem, we begin by firstly obtaining a coarse estimate
for the boundedness of the numerical solution.

Lemma 3.4. Under the condition that B(x), E(x) ∈ C1(R3), let xn, vn be the numerical solution
from the S1-AVF (3.4) for solving (3.2) up to T/ε for some fixed T > 0, then there exists a constant
h0 > 0 independent of ε, such that when the time step 0 < h ≤ h0, we have

|xn − x(tn)| . h, |vn − v(tn)| . h, 0 ≤ n ≤ T/ε,

and

|xn| ≤ ‖x‖L∞(0,T/ε) + 1, |vn| ≤ ‖v‖L∞(0,T/ε) + 1, 0 ≤ n ≤ T/ε. (3.6)
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Proof. Linearized problem. First of all, for some t = tn + s with n ≥ 0, we consider a truncated
system of (3.2) as: 




˙̃xn(s) = εṽn(s), 0 ≤ s ≤ h,

˙̃vn(s) = ṽn(s)×B(εx(tn)) + εE(x̃n(s)),

x̃n(0) = x(tn), ṽn(0) = v(tn).

(3.7)

It is also direct to have for all 0 ≤ n < T/ε, there exists a uniform upper bound C > 0 that depends
on ‖x‖L∞(0,T/ε), ‖v‖L∞(0,T/ε) and norms of B and E such that

‖x̃n‖L∞(0,h) + ‖ṽn‖L∞(0,h) ≤ C.

By denoting

ζnx (s) := x(tn + s)− x̃n(s), ζnv (s) := v(tn + s)− ṽn(s), 0 ≤ n < T/ε,

and taking the difference between (3.7) and (3.2), we get for 0 ≤ n < T/ε,




ζ̇nx (s) = εζnv (s), 0 ≤ s ≤ h,

ζ̇nv (s) = ζnv (s)×B(εx(tn)) + εE(x(tn + s))− εE(x̃n(s)) + ξn0 (s),

ζnx (0) = ζnv (0) = 0,

(3.8)

where

ξn0 (s) = v(tn + s)× [B(εx(tn + s))−B(εx(tn))] .

By Taylor expansion, for some tn ≤ tns ≤ tn + s, we have x(tn + s) = x(tn) + sεv(tns ) and then

ξn0 (s) = sε2
∫ 1

0

v(tn + s)×
(
∇B

(
εx(tn) + ρsε2v(tns )

)
v(tns )

)
dρ,

which clearly indicates that

‖ξn0 ‖L∞(0,h) . ε2h, 0 ≤ n < T/ε.

By the variation-of-constant formula of (3.8), we have

ζnx (h) =ε

∫ h

0

ζnv (s)ds, 0 ≤ n <
T

ε
, (3.9a)

ζnv (h) =

∫ h

0

e(h−s)B̂(εx(tn)) [εE(x(tn + s))− εE(x̃n(s)) + ξn0 (s)] ds

=

∫ h

0

e(h−s)B̂(εx(tn))

[
ε

∫ 1

0

∇E (x(tn + s) + (ρ− 1)ζnx (s)) ζ
n
x (s)dρ+ ξn0 (s)

]
ds. (3.9b)

The combination of the above two equations gives

ζnx (h) =ε2
∫ h

0

∫ s

0

e(s−σ)B̂(εx(tn))

∫ 1

0

∇E (x(tn + σ) + (ρ− 1)ζnx (σ)) ζ
n
x (σ)dρ dσ ds

+ ε

∫ h

0

∫ s

0

e(s−σ)B̂(εx(tn))ξn0 (σ)dσ ds,

which by noting that ∣∣∣∣∣ε
∫ h

0

∫ s

0

e(s−σ)B̂(εx(tn))ξn0 (σ)dσds

∣∣∣∣∣ . ε3h3,
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and the standard Bootstrap argument leads to |ζnx (s)| . ε3s3 for s ∈ [0, h] with some h . 1.
Plugging this estimate into (3.9b) gives for all 0 ≤ n < T/ε,

|ζnx (h)| . ε3h3, |ζnv (h)| . ε2h2. (3.10)

Then to estimate the error of the scheme

en+1
x := x(tn+1)− xn+1, en+1

v := v(tn+1)− vn+1, 0 ≤ n < T/ε,

we shall insert the truncated solution, i.e.

en+1
x = ẽnx + ζnx (h), en+1

v = ẽnv + ζnv (h), (3.11)

and then turn to estimate

ẽnx := x̃n(h)− xn+1, ẽnv := ṽn(h)− vn+1, 0 ≤ n < T/ε.

Local error. Based on the numerical scheme (3.4) (or (2.5)), we define the local truncation
error ξnx and ξnv for 0 ≤ n < T/ε as

x̃n(h) =x(tn) + hεehB̂(εx(tn))v(tn) +
h2ε2

2

∫ 1

0

E (ρx(tn) + (1− ρ)x̃n(h)) dρ+ ξnx , (3.12a)

ṽn(h) =ehB̂(εx(tn))v(tn) + hε

∫ 1

0

E (ρx(tn) + (1− ρ)x̃n(h)) dρ+ ξnv . (3.12b)

By the variation-of-constant formula of the truncated system (3.7), we have

x̃n(h) = x(tn) + ε

∫ h

0

ṽn(s)ds, 0 ≤ n ≤ T/ε, (3.13a)

ṽn(h) = ehB̂(εx(tn))v(tn) + ε

∫ h

0

e(h−s)B̂(εx(tn))E(x̃n(s))ds, (3.13b)

which further implies

x̃n(h) = x(tn) + ε

∫ h

0

esB̂(εx(tn))ds v(tn) + ε2
∫ h

0

∫ s

0

e(s−σ)B̂(εx(tn))E(x̃n(σ))dσ ds. (3.14)

We firstly analyze ξnv . By Taylor expansion we have in (3.13b)

ε

∫ h

0

e(h−s)B̂(εx(tn))E(x̃n(s))ds (3.15)

=ε

∫ h

0

[
I − (s− h)e(h−tns )B̂(εx(tn))B̂(εx(tn))

]
E(x̃n(s))ds

=hε

∫ 1

0

E (x̃n ((1− ρ)h)) dρ− ε

∫ h

0

(s− h)e(h−tns )B̂(εx(tn))B̂(εx(tn))E(x̃n(s))ds,

where tns ∈ [s, h]. Furthermore, by noting that

x̃n ((1− ρ)h) + ζnx ((1− ρ)h) =x (tn + (1 − ρ)h)

=x(tn+1)− hρεv(tnρ )

=x(tn+1)− ρ (x(tn+1)− x(tn)) + ρ (x(tn+1)− x(tn))− hρεv(tnρ )

=ρx(tn) + (1− ρ)x(tn+1) + hρε
(
v(t̃nρ )− v(tnρ )

)
,
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for some tnρ , t̃
n
ρ ∈ [tn, tn+1], we find

hε

∫ 1

0

E (x̃((1− ρ)h)) dρ =hε

∫ 1

0

E (ρx(tn) + (1− ρ)x(tn+1)) dρ (3.16)

+ hε

∫ 1

0

∫ 1

0

E′(sσ)dσ
[
hρε

(
v(t̃nρ )− v(tnρ )

)
− ζnx ((1 − ρ)h)

]
dρ,

where E′ denotes the derivative of E and

sσ = ρx(tn) + (1− ρ)x(tn+1) + σhρε
(
v(t̃nρ )− v(tnρ )

)
− σζnx ((1− ρ)h).

By subtracting (3.12b) from (3.13b) and combing (3.15)-(3.16), we find that

ξnv =− ε

∫ h

0

(s− h)e(h−tns )B̂(εx(tn))B̂(εx(tn))E(x̃n(s))ds

+ hε

∫ 1

0

∫ 1

0

E′(sσ)dσ
[
hρε

(
v(t̃nρ )− v(tnρ )

)
− ζnx ((1 − ρ)h)

]
dρ,

which under our assumption clearly implies

|ξnv | . εh2, 0 ≤ n < T/ε. (3.17)

Next, we estimate ξnx . Subtracting (3.14) from (3.12a), we find

ξnx = ξnx,1 + ξnx,2, 0 ≤ n < T/ε,

with

ξnx,1 =ε

∫ h

0

esB̂(εx(tn))ds v(tn)− hεehB̂(εx(tn))v(tn), (3.18a)

ξnx,2 =ε2
∫ h

0

∫ s

0

e(s−σ)B̂(εx(tn))E(x̃n(σ))dσds − h2ε2

2

∫ 1

0

E (ρx(tn) + (1− ρ)x̃n(h)) dρ. (3.18b)

By the error of the right-rectangle rule, it is direct to see

|ξnx,1| . εh2, 0 ≤ n < T/ε.

For ξnx,2, firstly we have

ε2
∫ h

0

∫ s

0

e(s−σ)B̂(εx(tn))E(x̃n(σ))dσds

=ε2
∫ h

0

∫ s

0

[
I − (σ − s)B̂(εx(tn))e

snσB̂(εx(tn))
]
E(x̃n(σ))dσds,

for some snσ ∈ [0, s], and so

ε2
∫ h

0

∫ s

0

e(s−σ)B̂(εx(tn))E (x̃n(σ)) dσds+ ε2
∫ h

0

∫ s

0

(σ − s)B̂(εx(tn))e
snσB̂(εx(tn))E (x̃n(σ)) dσds

=ε2
∫ h

0

∫ s

0

E(x̃n(σ))dσds = ε2
∫ h

0

s

∫ 1

0

E (x̃n((1− ρ)s)) dρds

=
h2ε2

2

∫ 1

0

E (x̃n((1 − ρ)h)) dρ+ ε2
∫ h

0

s(s− h)

∫ 1

0

E′ (x̃n((1− ρ)s̃nσ)) εṽ
n((1− ρ)s̃nσ)(1− ρ)dρds,

(3.19)
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for some s̃nσ ∈ [0, h]. Then by plugging (3.19) into (3.18b) and further using (3.16), it is clear that

|ξnx,2| . ε2h3, 0 ≤ n < T/ε,

and thus

|ξnx | . εh2, 0 ≤ n < T/ε. (3.20)

Induction for boundedness. With the above preparation, we now carry out induction proof
for the boundedness of the numerical solution (3.6). For n = 0, (3.6) is obviously true since x0 = x0

and v0 = v0. Then we assume (3.6) is true up to some 0 ≤ m < T/ε, and we shall show that (3.6)
holds for m+ 1.

For n ≤ m, subtracting (3.12) from the scheme (3.4), and by further using (3.11), we get

en+1
x = enx + hεehB̂(εx(tn))env + ηnx + ξnx + ζnx (h), (3.21a)

en+1
v = ehB̂(εx(tn))env + ηnv + ξnv + ζnv (h), 0 ≤ n ≤ m, (3.21b)

where we denote

ηnx =hε
(
ehB̂(εx(tn)) − ehB̂(εxn)

)
vn

+
h2ε2

2

∫ 1

0

[
E (ρx(tn) + (1 − ρ)x̃n(h)) − E

(
ρxn + (1− ρ)xn+1

)]
dρ,

ηnv =
(
ehB̂(εx(tn)) − ehB̂(εxn)

)
vn

+ hε

∫ 1

0

[
E (ρx(tn) + (1− ρ)x̃n(h))− E

(
ρxn + (1− ρ)xn+1

)]
dρ.

Thanks to the induction assumption of the boundedness, it is direct to observe that

|ηnx | . h2ε2
(
|enx |+ |en+1

x |+ |ζnx (h)|
)
, |ηnv | . hε

(
|enx |+ |en+1

x |+ |ζnx (h)|
)
, 0 ≤ n < m. (3.22)

By taking the absolute value (euclideam norm) on both sides of (3.21a) and (3.21b) and then

using triangle inequality, noting the orthogonality of the matrix ehB̂, we get

|en+1
x | ≤ |enx |+ hε|env |+ |ηnx |+ |ξnx |+ |ζnx (h)|,

|en+1
v | ≤ |env |+ |ηnv |+ |ξnv |+ |ζnv (h)|, 0 ≤ n ≤ m.

By further adding them together and using (3.22), we get

|en+1
x |+ |en+1

v | − |enx | − |env | .hε
(
|env |+ |enx |+ |en+1

x |
)
+ |ξnx |+ |ξnv |+ |ζnx |+ |ζnv |, 0 ≤ n ≤ m.

Summing them up for 0 ≤ n ≤ m and noting e0x = e0v = 0, we obtain

|em+1
x |+ |em+1

v | . hε

m∑

n=0

(
|env |+ |enx |+ |en+1

x |
)
+

m∑

n=0

(|ξnx |+ |ξnv |+ |ζnx |+ |ζnv |) .

By estimates of the truncation errors in (3.10), (3.17) and (3.20), and noting mhε . 1, we get

|em+1
x |+ |em+1

v | . hε

m∑

n=0

(
|env |+ |enx |+ |en+1

x |
)
+ h,

which then by Gronwall’s inequality gives

|em+1
x |+ |em+1

v | . h, 0 ≤ m < T/ε.
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Since

|xm+1| ≤ |x(tm+1)|+ |em+1
x |, |vm+1| ≤ |v(tm+1)|+ |em+1

v |,
so there exists a generic constant h0 > 0 independent of ε and m, such that for 0 < h ≤ h0, (3.6)
holds for m+ 1, which finishes the induction and the proof of this convergence lemma. �

Now, we give the proof of the main convergence result Theorem 3.1, which refines the error
bounds to an optimal dependence in ε.

Proof of Theorem 3.1.

Proof. For any fixed T > 0, we can have

T

ε
= T0M + tr, 0 ≤ tr < T0,

where the integer

M =

⌊
T

εT0

⌋
= O(1/ε).

For the integration error on tr, it is just a cumulation of the truncation error (3.10), (3.17) and
(3.20) on a time interval less than one period. So without loss generality, we assume tr = 0 in the
following proof for simplicity.

Update of notations. First of all, we find the N0 > 0 by satisfying the condition h = T0/N ≤
h0 given in Lemma 3.4, and so when N ≥ N0, we have the boundedness (3.6). To describe the
time scale more clearly, let us renew our notations by denoting tmn for 0 ≤ n ≤ N as the time grids
within the m-th period, i.e.

tmn = mT0 + nh, 0 ≤ m < M,

then we denote the numerical solution from the scheme (3.4) at tmn as

xm
n ≈ x(tmn ), vmn ≈ v(tmn ), 0 ≤ m < M, 0 ≤ n ≤ N,

and the error as

en,mx = x(tmn )− xm
n , en,mv = v(tmn )− vmn .

Note by our notation, e0,m+1
x = eN,m

x and e0,m+1
v = eN,m

v . Accordingly, the error equation (3.21)
now reads

en+1,m
x = en,mx + hεehB̂(εx(tmn ))en,mv + ηn,mx + ξn,mx + ζn,mx (h), (3.23a)

en+1,m
v = ehB̂(εx(tmn ))en,mv + ηn,mv + ξn,mv + ζn,mv (h), 0 ≤ n ≤ N − 1, 0 ≤ m < M. (3.23b)

The notations for the other error terms are updated in the straightforward manner. For example,
we denote ξn,mx,1 as the local error introduced in (3.18a) at tmn level:

ξn,mx,1 = ε

∫ h

0

esB̂(εx(tmn ))ds v(tmn )− hεehB̂(εx(tmn ))v(tmn ). (3.24)

Similarly as the proof of Lemma 3.4, from the error equation (3.23), we find

1

ε
|ej,mx | − 1

ε
|ej−1,m

x | . h|ej,mv |+ εh
(
|ej,mx |+ |ej−1,m

x |
)
+ h2,

|ej,mv | − |ej−1,m
v | . εh

(
|ej,mx |+ |ej−1,m

x |
)
+ εh2, 1 ≤ j ≤ N, 0 ≤ m < M,
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where this time we divided (3.23a) by ε to gain a better control of error in v. By adding the
above two inequalities together and summing up for j = 1, . . . , n for any 1 ≤ n ≤ N , and then by
Gronwall’s inequality, we are able to get the estimate of the error within each period:

1

ε
|en,mx |+ |en,mv | . h+

1

ε
|e0,mx |+ |e0,mv |, 1 ≤ n ≤ N, 0 ≤ m < M,

and so by |e0,mv | . h, we get

|en,mx | . εh+ |e0,mx |, 1 ≤ n ≤ N, 0 ≤ m < M. (3.25)

Refined local error. We now refine the estimate for ξn,mx,1 . Directly, we see that

|B(εx(t)) −B(0)| . ε, 0 ≤ t ≤ T/ε, (3.26)

and then by comparison with the free flow etB̂(0), it shows
∣∣∣v(mT0 + t)− etB̂(0)v(mT0)

∣∣∣ ≤ Ctε, 0 ≤ t ≤ T0, (3.27)

for some constants C > 0 independent of ε and t. With these two facts, by denoting B0 = B̂(0) for
short, we split the ξn,mx,1 in (3.24) into two parts:

ξn,mx,1 = ξn,mx,1,1 + ξn,mx,1,2, 0 ≤ n < N,

where

ξn,mx,1,1 := ε

∫ h

0

esB0dset
m
n B0v(mT0)− εhehB0et

m
n B0v(mT0),

and

ξn,mx,1,2 :=ε

∫ h

0

(
esB̂(εx(tmn )) − esB0

)
ds v(tmn )− hε

(
ehB̂(εx(tmn )) − ehB0

)
v(tmn )

+ ε

∫ h

0

esB0ds
(
v(tmn )− et

m
n B0v(mT0)

)
− hεehB0

(
v(tmn )− et

m
n B0v(mT0)

)
.

We begin with ξn,mx,1,2. Clearly by (3.26),
∣∣∣esB̂(εx(tmn )) − esB0

∣∣∣ . sε, 0 ≤ s ≤ h.

As for the last two terms in ξn,mx,1,2, we first observe that

ε

∫ h

0

esB0ds
(
v(tmn )− et

m
n B0v(mT0)

)
− hεehB0

(
v(tmn )− et

m
n B0v(mT0)

)

=ε

∫ h

0

(s− h)etsB0B0ds
(
v(tmn )− et

m
n B0v(mT0)

)
,

for some ts ∈ [0, h]. Moreover, thanks to periodicity and (3.27), we find

v(tmn )− et
m
n B0v(mT0) = v(mT0 + nh)− enhB0v(mT0) = O(ε).

Therefore, all together we find ∣∣ξn,mx,1,2

∣∣ . h2ε2.
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For ξn,mx,1,1, we sum them up for n = 0, . . . , N − 1, to obtain

χm :=

N−1∑

n=0

ξn,mx,1,1 = ε

∫ T0

0

esB0dsv(mT0)− εh

N−1∑

n=0

e(n+1)hB0v(mT0), 0 ≤ m < M.

Note χm reads precisely as the quadrature error of trapezoidal rule for the integration of the smooth
periodic function esB0 on a period, and so

|χm| . εN−m0 , 0 ≤ m < M,

for some m0 > 0 arbitrarily large. Thus, in total we find
∣∣∣∣∣

N−1∑

n=0

ξn,mx,1

∣∣∣∣∣ ≤ |χm|+
∣∣∣∣∣

N−1∑

n=0

ξn,mx,1,2

∣∣∣∣∣ . ε2h+ εN−m0 .

Refined error equation. We now need a clearer description of how the error propagates
through each period. For some 0 ≤ m < M , by summing (3.23a) up for n = 0, . . . N − 1, we get

eN,m
x = e0,mx + hε

N−1∑

n=0

ehB̂(εx(tmn ))en,mv +
N−1∑

n=0

(ηn,mx + ζn,mx (h)) +
N−1∑

n=0

(
ξn,mx,1 + ξn,mx,2

)
,

then by using (3.26), we see

eN,m
x = e0,mx + hε

N−1∑

n=0

ehB0en,mv +

N−1∑

n=0

(ηn,mx + ζn,mx (h)) +

N−1∑

n=0

(
ξn,mx,1 + ξn,mx,2

)
+ δmx , (3.28)

where thanks to en,mv = O(h) from Lemma 3.4,

|δmx | . ε2h2, 0 ≤ m < M.

On the other hand, similarly by (3.26), (3.23b) can be written as

en,mv = ehB0en−1,m
v + ηn−1,m

v + ξn−1,m
v + ζn−1,m

v (h) + δn−1,m
v , 1 ≤ n ≤ N, 0 ≤ m < M, (3.29)

where

δn−1,m
v =

(
ehB̂(εx(tn−1)) − ehB0

)
en−1,m
v , and

∣∣δn−1,m
v

∣∣ . εh2. (3.30)

Recursively from (3.29), we find for any 1 ≤ n ≤ N, 0 ≤ m < M ,

en,mv = enhB0e0,mv +

n−1∑

j=0

e(n−1−j)hB0
[
ηj,mv + ξj,mv + ζj,mv (h) + δj,mv

]
,

and so

hε

N−1∑

n=0

ehB0en,mv = hε

N−1∑

n=0

e(n+1)hB0e0,mv + hε

N−1∑

n=0

n−1∑

j=0

e(n−j)hB0
[
ηj,mv + ξj,mv + ζj,mv (h) + δj,mv

]
.

Now with the above equation, (3.28) can be written as

eN,m
x = e0,mx + hε

N−1∑

n=0

e(n+1)hB0e0,mv + γm, 0 ≤ m < M. (3.31)
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where

γm :=

N−1∑

n=0

(ηn,mx + ζn,mx (h)) +

N−1∑

n=0

(ξn,mx,1 + ξn,mx,2 ) + δmx

+ hε
N−1∑

n=0

n−1∑

j=0

e(n−j)hB0
[
ηj,mv + ξj,mv + ζj,mv (h) + δj,mv

]
.

Noting from (3.30), (3.22), (3.17) and (3.10), for the last term in the above we have
∣∣∣∣∣∣
hε

N−1∑

n=0

n−1∑

j=0

e(n−j)hB0
[
ηj,mv + ξj,mv + ζj,mv (h) + δj,mv

]
∣∣∣∣∣∣
. ε2h+ ε2h

N−1∑

n=0

(
|en,mx |+ |en+1,m

x |
)
,

and therefore we find

|γm| . ε2h+ εN−m0 + ε2h

N−1∑

n=0

(
|en,mx |+ |en+1,m

x |
)
, 0 ≤ m < M.

By the quadrature error of trapezoidal rule again, we then deduce from (3.31)

∣∣eN,m
x

∣∣−
∣∣e0,mx

∣∣ . ε

∣∣∣∣∣

∫ T0

0

esB0dse0,mv

∣∣∣∣∣+ ε2h+ εN−m0 + ε2h

N−1∑

n=0

(
|en,mx |+ |en+1,m

x |
)
, 0 ≤ m < M.

(3.32)

By the Rodrigues’ formula, we have

esB0e0,mv = cos(s|B(0)|)e0,mv + sin(s|B(0)|)e0,mv × B̃0 + (1− cos(s|B(0)|))
(
B̃0 · e0,mv

)
B̃0,

where B̃0 is normalized magnetic field vector at origin, i.e. B̃0 = B(0)/|B(0)|. The integration of
the above term over one period only leaves

∫ T0

0

esB0dse0,mv = T0

(
B̃0 · e0,mv

)
B̃0.

Thus, (3.32) tells

∣∣eN,m
x

∣∣−
∣∣e0,mx

∣∣ .ε
∣∣∣
(
B̃0 · e0,mv

)
B̃0

∣∣∣+ ε2h+ εN−m0 + ε2h

N−1∑

n=0

(
|en,mx |+

∣∣en+1,m
x

∣∣)

.ε
∣∣∣e0,mv,‖

∣∣∣+ ε2h+ εN−m0 + ε2h

N−1∑

n=0

(
|en,mx |+

∣∣en+1,m
x

∣∣) , 0 ≤ m < M,

where e0,mv,‖ denotes the error e0,mv in the parallel direction of the magnetic field B(εx(mT0)), i.e.

en,mv,‖ := (B̃n,m · en,mv )B̃n,m, B̃n,m :=
B(εx(tmn ))

|B(εx(tmn ))| , 0 ≤ n ≤ N, 0 ≤ m < M.

Then by (3.25) and noting eN,m
x = e0,m+1, we get

∣∣e0,m+1
x

∣∣ −
∣∣e0,mx

∣∣ . ε
∣∣∣e0,mv,‖

∣∣∣+ ε2
(∣∣e0,mx

∣∣+
∣∣e0,m+1

x

∣∣)+ ε2h+ εN−m0 , 0 ≤ m < M. (3.33)
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Next, we take inner product on both sides of (3.23b) with the unit vector B̃n+1,m to get
∣∣∣en+1,m

v,‖

∣∣∣ ≤
∣∣∣B̃n+1,m ·

(
ehB(εx(tmn ))en,mv

)∣∣∣+ |ηn,mv + ζn,mv (h)|+
∣∣∣ξn,mv · B̃n+1,m

∣∣∣ . (3.34)

By noting

B̃n+1,m = B̃n,m +O(ε2h),

as well as the Rodrigues’ formula, we get

B̃n+1,m ·
(
ehB(εx(tmn ))en,mv

)
= en,mv,‖ +O(ε2h2).

Then together with (3.22) and (3.10), we get from (3.34) that for 0 ≤ n ≤ N, 0 ≤ m < M ,
∣∣∣en+1,m

v,‖

∣∣∣ −
∣∣∣en,mv,‖

∣∣∣ . hε
(∣∣en+1,m

x

∣∣+ |en,mx |
)
+
∣∣∣ξn,mv · B̃n,m

∣∣∣+ ε2h2. (3.35)

Recall from (3.12b) that ξn,mv is defined as

ξn,mv = ε

∫ h

0

e(h−s)B̂(εx(tmn ))E(x̃n,m(s))ds− ε

∫ h

0

E(x̃n,m(s))ds,

then the Rodrigues’ formula implies simply

ξn,mv · B̃n,m = 0.

Therefore, (3.35) gives
∣∣∣en+1,m

v,‖

∣∣∣−
∣∣∣en,mv,‖

∣∣∣ . hε
(∣∣en+1,m

x

∣∣+ |en,mx |
)
+ ε2h2, 0 ≤ n < N, 0 ≤ m < M. (3.36)

Summing up (3.36) for n = 0, . . . , N − 1, gives

∣∣∣e0,m+1
v,‖

∣∣∣−
∣∣∣e0,mv,‖

∣∣∣ . hε

N−1∑

n=0

(∣∣en+1,m
x

∣∣+ |en,mx |
)
+ ε2h.

Plugging (3.25) into the above, we get
∣∣∣e0,m+1

v,‖

∣∣∣−
∣∣∣e0,mv,‖

∣∣∣ . ε
(∣∣e0,mx

∣∣+
∣∣e0,m+1

x

∣∣)+ ε2h, 0 ≤ m < M. (3.37)

Finally, combining (3.37) and (3.33), we get

∣∣e0,m+1
x

∣∣+
∣∣∣e0,m+1

v,‖

∣∣∣−
∣∣e0,mx

∣∣−
∣∣∣e0,mv,‖

∣∣∣

.ε
[∣∣∣e0,mv,‖

∣∣∣+
∣∣e0,mx

∣∣+
∣∣e0,m+1

x

∣∣
]
+ ε2h+ εN−m0, 0 ≤ m < M,

then by Gronwall’ inequality with noting e0,0x = e0,0v,‖ = 0, we find

∣∣e0,mx

∣∣+
∣∣∣e0,mv,‖

∣∣∣ . εh+N−m0 , 0 ≤ m ≤ M.

The estimates at the intermediates time grids, i.e. en,mx and en,mv,‖ for 0 < n < N , are direct results

of (3.36) and (3.25), and the whole proof is done.
�



16 B. WANG AND X. ZHAO

We finish this section by remarking that the uniform error bound O(h) appears to be also true
for the presented Lie-Trotter type splitting schemes under a general strong magnetic field B(x) in
(1.1), based on our numerical evidence. This will be shown in section 5, but the above analysis
under the general case is more challenging and is still undergoing. As one of the major difficulty, the
corresponding ηnv will lose a factor of ε in (3.22), which causes stability issue of the error propagation
through (3.21) up to the O(1/ε) final time under the approach. This motivates us to consider other
approaches for analysis in the next section.

4. Convergence in general case

In the case of general strong magnetic field in the CPD (1.1), we give the following convergence
result of the presented splitting schemes.

Theorem 4.1. (Convergence for general strong magnetic field) For the general strong magnetic
field 1

εB(x) with 0 < ε ≪ 1 and under conditions that

a) the initial value of (1.1) is assumed to have an ε-independent bound M ;
b) there is a bounded set K (independent of ε) such that for 0 ≤ t ≤ T the exact solution x(t)

of (1.1) stays in K;
c) the step size h satisfies h ≤ Cε and the following non-resonance condition is assumed:

∣∣∣∣sinc
(
k
h

2ε
|B(x(t))|

)∣∣∣∣ ≥ c > 0 for k = 1, 2; (4.1)

the global errors of Algorithms 2.1, 2.2 and 2.5 satisfy the bounds

|xn − x(tn)| . ε,
∣∣∣vn‖ − v‖(tn)

∣∣∣ . ε, |vn − v(tn)| . 1, 0 ≤ n ≤ T/h.

The constants before the errors depend on M,K,C, c and on the bounds of derivatives of B and E.

The proof will be given in the rest part of this section by using the technology of modulated
Fourier expansion [19, 21, 22, 26]. The following key points will be analysed in sequel.

• Section 4.1 presents the modulated Fourier expansion of the exact solution.
• Section 4.2 derives the modulated Fourier expansion of the numerical solution from S1-AVF.
• Section 4.3 proves the result for S1-AVF by comparing the modulated Fourier expansion of
the exact solution with that of S1-AVF.

• Section 4.4 discusses how to modify the proof for S1-AV and S1-VP.

Since the modulated Fourier expansion has been used for analysis of charged-particle dynamics in
[22, 25, 27] , we focus on the novel modifications and the main differences in the proof.

Remark 4.2. We remark that the result of Theorem 4.1 also holds for the maximal ordering
scaling case. However, from the proof below, it will be seen that the error bound O(h) of the
presented schemes cannot be derived by modulated Fourier expansion unless the restriction of h is
strengthened from h ≤ Cε to h = O(ε).

4.1. Modulated Fourier expansion of exact solution. Following [25, 27], denote the eigenval-
ues and the corresponding normalized eigenvectors of the linear map v 7→ v ×B(x) by

λ1 = i|B(x)|, λ0 = 0, λ−1 = −i|B(x)|,
and

v1(x), v0(x), v−1(x),
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respectively. Letting Pj(x) = vj(x)vj(x)
∗ yields the orthogonal projections onto the eigenspaces,

which satisfy P−1(x) + P0(x) + P1(x) = I and

P±1(x)B̂(x)α = (±i|B(x)|)P±1(x)α, P0(x)B̂(x)α = 0,

for any vector α ∈ R
3.

Lemma 4.3. (See [25]) Under the assumptions a) and b) given in Theorem 4.1, the exact solution
x(t) of (1.1) can be expressed in the following modulated Fourier expansion

x(t) =
∑

|k|≤N

zk(t) eikφ(t)/ε +RN (t), (4.2)

with an arbitrary truncation index N ≥ 1 and the phase function φ(t) which satisfies φ̇(t) =
|B(z0(t))| = O(1). Here z0(t) describes the motion of the gyrocenter (guiding center) and all
the coefficient functions zk(t) can be rewritten in the time-dependent basis vj

(
z0(t)

)
:

zk = zk1 + zk0 + zk−1, zkj (t) = Pj

(
z0(t)

)
zk(t), for j = −1, 0, 1.

This modulated Fourier expansion has the following properties.
(a) The function z0 satisfies the differential equations

z̈00 = P0(z
0)E(z0) + 2 Ṗ0(z

0)ż0 + P̈0(z
0)z0 +O(ε), (4.3a)

ż0±1 = Ṗ±1(z
0)z0 +O(ε), (4.3b)

and z±1 are bounded by

z±1
±1 = O(ε), zkj = O(ε2), for k = ±1, j 6= k. (4.4)

Moreover, it is true that

ż0 ×B(z0) = O(ε). (4.5)

(b) Under the condition that φ(0) = 0, the initial values for the differential equations (4.3a)-
(4.3b) are determined by

z0(0) = x(0) +
ẋ(0)× B(x(0))

ε

|B(x(0))
ε |2

+O(ε2) = x(0) +O(ε),

ż00(0) = P0(x(0))ẋ(0) + Ṗ0(x(0))x(0) +O(ε).

(c) The coefficient function z0(t) together with its derivatives (up to order N) is bounded as
z0 = O(1) and for other zk(t) together with their derivatives (up to order N), they are bounded as
zk = O(ε|k|) with |k| > 1. Moreover, these functions are unique up to O(εN+1).

(d) The bounds of the remainder term RN (t) and its derivative are

RN (t) = O
(
t2εN

)
, ṘN (t) = O

(
tεN

)
, 0 ≤ t ≤ T.

The above constants symbolised by the O-notation depend on N, T,M and on the bounds of
derivatives of B and E, but they are independent of ε and t with 0 ≤ t ≤ T .

Proof. These results are immediately obtained by considering the section 4 of [25].
�
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4.2. Modulated Fourier expansion of S1-AVF. In this subsection, we consider the modulated
Fourier expansion of S1-AVF.

Lemma 4.4. Suppose that the numerical solution {xn} of the S1-AVF stays in a compact set K
for 0 ≤ nh ≤ T . For a fixed, but arbitrary truncation index N ≥ 1, the non-resonance condition is
required

∣∣∣∣sinc
(
1

2
kη|B(xn)|

)∣∣∣∣ ≥ c > 0 for k = 1, . . . , N + 1, (4.6)

where η = h/ε with the bound C. Then, xn admits the following modulated Fourier expansion at
t = nh

xn =
∑

|k|≤N

z̃k(t) eikφ̃(t)/ε + R̃N (t), (4.7)

where the phase function φ̃ is given by

˙̃
φ(t) = |B(z̃0(t))|. (4.8)

(a) The functions z̃00 , z̃
0
±1 satisfy the following differential equations

¨̃z00 = P0(z̃
0)E(z̃0) + 2 Ṗ0(z̃

0) ˙̃z0 + P̈0(z̃
0)z̃0 +O(ε), (4.9a)

˙̃z0±1 = Ṗ±1(z̃
0)z̃0 +O(ε), (4.9b)

and z̃±1 are bounded by

z̃±1
±1 = O(ε), z̃kj = O(ε2), for k = ±1, j 6= k. (4.10)

(b) For the differential equations (4.9a)-(4.9b), their initial values are determined by

z̃00(0) = P0(x(0))x(0) +O(ε),

z̃0±1(0) = P±1(x(0))x(0) +O(ε),

˙̃z00(0) = P0(x(0))ẋ(0) + Ṗ0(x(0))x(0) +O(ε).

(4.11)

(c)& (d) The results given in (c) and (d) of Lemma 4.3 are still true for the coefficient functions

z̃k(t) and for the remainder term R̃N , respectively.
The constants symbolised by the O-notation are independent of ε and n with 0 ≤ nh ≤ T , but

they depend on N,C,M, T and on bounds of derivatives of B and E.

Proof. (a) Let x̃(t) =
∑

|k|≤N z̃k(t) eikφ̃(t)/ε and define the operators

L(hD) =
(
ehD − I

)
− eηB̂(x̃(t))

(
I − e−hD

)
, L1(hD, τ) = (1− τ)ehD + τI,

where D is the differential operator (see [22]). The operator L(hD) satisfies

L(hD)

h2

(
z̃k(t) eikφ̃(t)/ε

)
= eikφ̃(t)/ε

∑

l≥0

εl−2

[
ckl (t)

η
+

dkl (t)

2
+ eηB̂(x̃(t))

(
dkl (t)

2
− ckl (t)

η

)]
dl

dtl
z̃k(t),

(4.12)
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where some leading coefficients are given by

c02j(t) = 0, c02j+1(t) = η2j/(2j + 1)!,

ck0(t) =
i

η
sin
(
kηφ̇(t)

)
− ε

kη

2
sin
(
kηφ̇(t)

)
φ̈(t) +O(ε2),

ck1(t) = cos
(
kηφ̇(t)

)
+O(ε),

d00(t) = 0, d02j(t) = 2η2j−2/(2j)!, d02j+1(t) = 0,

dk0(t) = − 4

η2
sin2

(
kηφ̇(t)

2

)
+ i ε k cos

(
kηφ̇(t)

)
φ̈(t) +O(ε2),

dk1(t) =
2 i

η
sin
(
kηφ̇(t)

)
+O(ε).

(4.13)

We insert x̃(t) into the scheme of S1-AVF and then obtain

L(hD)

h2
x̃(t) =

1

2

∫ 1

0

E (L1(hD, τ)x̃(t)) dτ +
1

2
eηB̂(x̃(t))

∫ 1

0

E (L1(−hD, τ)x̃(t)) dτ. (4.14)

Rewriting L(hD)x̃(t) and L1(hD, τ)x̃(t) in the series of eikφ̃(t)/ε, expanding the nonlinearities

around z̃0, and comparing the coefficients of eikφ̃(t)/ε yields the construction of the coefficients
functions z̃k. For deriving the first-order convergence, we only need to explicitly present the results
of z̃0 and z̃±1.

For k = 0 we obtain

L(hD)

h2
z̃0 =

1

2

∫ 1

0

E
(
L1(hD, τ)z̃0

)
dτ +

1

2
eηB̂(z̃0)

∫ 1

0

E
(
L1(−hD, τ)z̃0

)
dτ +O(ε).

Then by the property (4.12) of L(hD), it is arrived that

P0(z̃
0)
L(hD)

h2
z̃0 = P0(z̃

0)¨̃z0 +O(h2) = P0(z̃
0)E(z̃0) +O(ε),

P±1(z̃
0)
L(hD)

h2
z̃0 =

1

ε

2

η
sin2

(η
2

∣∣B
(
z̃0
)∣∣
) [

1− i cot
(η
2

∣∣B
(
z̃0
)∣∣
)]

P±1(z̃
0) ˙̃z0 +O(1)

= P±1(z̃
0)
1

2

(
1 + e±iη|B(z̃0)|)E(z̃0) +O(ε),

which gives (4.9a) and (4.9b), respectively.
For k = ±1 and after multiplication (4.14) with P0(z̃

0), we look for the dominant term of
ehD−2I+e−hD

h2 P0(z̃
0)z̃±1e±iφ̃(t)/ε, which is

−4 sin2
(η
2

∣∣B
(
z̃0
)∣∣
)
P0(z̃

0)z̃±1e±iφ̃(t)/ε.

Multiplying (4.14) with P±1(z̃
0) and using (4.8), we note that the ε−2 term is annihilated in

(ehD−I)−e
±iη|B(z̃0)|(I−e−hD)

h2 P±1(z̃
0)z̃±1e±iφ̃(t)/ε. The dominant term of this expression becomes the

following ε−1 one:
1

εη

(
e±iη|B(z̃0)| − 1

)
P±1(z̃

0) ˙̃z±1e±iφ̃(t)/ε.

We extract these two dominant terms from (4.14) and then respectively get the equations of z̃±1
0

and ˙̃z±1
±1 . These results as well as the initial value of z̃±1

±1 given by (4.16) yield (4.10).
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(b) As a consequence of (4.7), it is obtained that

x(0) = z̃0(0) +
(
z̃1(0) + z̃−1(0)

)
+O(ε2) = z̃0(0) +O(ε).

From

vn =
1

h
L2(hD)xn +

h

2

∫ 1

0

E
(
ρxn−1 + (1− ρ)xn

)
dρ =

∑

|k|≤N

1

h
L2(hD)

(
z̃k(t) eikφ̃(t)/ε

)
+O(ε)

=
∑

|k|≤N

eikφ̃(t)/ε
∑

l≥0

εl−1

(
ckl (t)−

1

2
ηdkl (t)

)) dl

dtl
z̃k(t) +O(ε), (4.15)

with L2(hD) = 1− e−hD, it follows that

P0

(
x(0)

)
ẋ(0) = P0 (x(0))

1

h
L2(hD)z̃0(0) +O(ε)

= ˙̃z00(0)− Ṗ0(x(0))z̃
0(0) +O(ε).

The initial values (4.11) are determined by these two formulae. The multiplication (4.15) at t = 0
with P±1

(
x(0)

)
gives the initial value

z̃±1
±1(0) = O(ε). (4.16)

(c) For |k| > 1, from (4.14), the algebraic relations for z̃k can be obtained and based on which,
the results of part (c) can be derived.

(d) For the part (d), we do not present the details of the proof since they can be derived by
similar arguments as in [21, 22, 25, 27].

�

4.3. Proof for S1-AVF. From the above two lemmas, it is shown that the coefficient functions of
the modulated Fourier expansions of the exact solution and of S1-AVF satisfy

∣∣z0(t)− z̃0(t)
∣∣ . ε,

∣∣ż0(t)− ˙̃z0(t)
∣∣ . ε,

∣∣zk(t)− z̃k(t)
∣∣ . ε|k|, with k 6= 0.

The phase functions φ and φ̃ differ by
∣∣∣φ(t)− φ̃(t)

∣∣∣ . ε.

These results lead to

|x(tn)− xn| . ε,

which shows the O(ε) error bound for the positions as presented in Theorem 4.1.
For the error bound for the velocities, we need to study the modulated Fourier expansions of the

velocity of the exact solution and of S1-AVF. By Lemma 4.3, the velocity of the exact solution is
given by

v(t) = ẋ(t) = ż0(t) +
iφ̇(t)

ε

(
z11(t) e

iφ(t)/ε − z−1
−1(t) e

−iφ(t)/ε
)
+O(ε), (4.17)

which implies P0(z
0)v(t) = P0(z

0)ż0(t) + O(ε). The modulated Fourier expansion of vn obtained
by S1-AVF satisfies (4.15). According to

P0(z̃
0(tn))v

n = P0(z̃
0(tn)) ˙̃z

0(tn) +O(ε),

P±1(z̃
0(tn))v

n = P±1(z̃
0(tn)) ˙̃z

0(tn) +

[
i

η
sin
(
±η ˙̃φ(tn)

)
+

2

η
sin2

(
1

2
η ˙̃φ(tn)

)]
z̃±1
±1(tn)

ε
+O(ε),
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and the fact that v0(x) is collinear to B(x), we obtain

|vn − v(tn)| . 1, but
∣∣∣vn‖ − v‖(tn)

∣∣∣ . ε.

4.4. Proof for S1-SV and S1-VP. For the methods S1-SV and S1-VP, the equation (4.14)
becomes

L(hD)

h2
x̃(t) =

1

2

(
e

h
ε
B̂(x̃(t)) + I

)
E(x̃(t)),

and
L(hD)

h2
x̃(t) = ϕ1

(
h

ε
B̂(x̃(t))

)
E(x̃(t)),

respectively. By using this result as well as the relationship between xn and vn determined by
each scheme, and by some adaptations of the proofs of the above two subsections, the first-order
convergence in x and v‖ of S1-SV and S1-VP remains true. Here we omit the details for brevity.

5. Numerical result

In this section, we present numerical results of the presented Lie-Trotter type schemes. We first
conduct numerical experiments to show the accuracy of the schemes under different ε ∈ (0, 1) and
then we address their efficiency and conservation property.

To test the convergence result of the splitting schemes, we solve the CPD till T = tn = 1
numerically and compute the relative error:

error :=
|xn − x(tn)|

|x(tn)|
+

∣∣∣vn‖ − v‖(tn)
∣∣∣

∣∣v‖(tn)
∣∣ . (5.1)

The reference solution is obtained by using “ode45” of MATLAB. For the implicit scheme S1-AVF,
we apply the two-point Gauss-Legendre’s rule to the integral in (2.5) and use standard fixed point
iteration as nonlinear solver in the practical computations. We set 10−16 as the error tolerance and
1000 as the maximum number of each iteration.

Problem 1. (Maximal ordering scaling) The first illustrative numerical experiment is devoted
to the charged-particle motion in a magnetic field with the maximal ordering scaling

1

ε
B(εx) =

1

ε




cos(εx2)
1 + sin(εx3)
cos(εx1)


+



−x1

0
x3


 ,

and the electric field E(x) = −∇xU(x) with the potential U(x) = 1√
x2
1+x2

2

. We choose the initial

values as x(0) = (13 ,
1
4 ,

1
2 )

⊺ and v(0) = (25 ,
2
3 , 1)

⊺. The errors (5.1) of the three Lie-Trotter type
splitting schemes, i.e. S1-AVF (2.5), S1-SV (2.6) and S1-VP (2.8) at T = 1 are shown in Figure 1.

Clearly from the numerical results in Figure 1, we can see that
1) The three splitting schemes all show the uniform first order accuracy for the varying ε ∈ (0, 1)

in the position x and v‖. This verifies the theoretical result in Theorem 3.1 and indicates that the
error estimate is optimal. In addition, the choice of the step size in this problem which is not the
integer partition of the period illustrates Remark 3.2.

2) The proposed S1-AVF or S1-SV are more accurate than S1-VP, and the errors of S1-AVF and
S1-SV are very close.
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Figure 1. The error (5.1) of the three splitting schemes in Problem 1 with step
size h = 1/2k for k = 6, . . . , 12 under different ε (the dash-dot line is slope one).
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Figure 2. The error (5.1) of the three splitting schemes in Problem 2 with step
size h = 1/2k for k = 6, . . . , 12 under different ε (the dash-dot line is slope one).

Problem 2. (General strong magnetic field) In the second numerical experiment, we consider
the charged-particle motion in the general magnetic field [25]

1

ε
B(x) = ∇× 1

4ε

(
x2
3 − x2

2, x
2
3 − x2

1, x
2
2 − x2

1

)⊺
=

1

2ε
(x2 − x3, x1 + x3, x2 − x1)

⊺,

and the electric field E(x) = −∇xU(x) with the potential U(x) = x3
1−x3

2+x4
1/5+x4

2+x4
3. The initial

values are given by x(0) = (0.6, 1,−1)⊺ and v(0) = (−1, 0.5, 0.6)⊺. Figures 2 and 3 respectively
present the errors (5.1) in the solution at T = 1 and the errors in the energy

eH :=

∣∣H(xn, vn)−H(x0, v0)
∣∣

|H(x0, v0)| , (5.2)

on a long time interval.
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Figure 3. Evolution of the energy error (5.2) as function of time t under h = 0.01
in Problem 2.
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Figure 4. Cputime of the energy-preserving schemes under the same number of
iterations with ε = 1/2k for k = 0, . . . , 12.

To illustrate the efficiency of the proposed S1-AVF, we choose two popular energy-preserving
methods from the literature: the direct AVF method (2.3) for CPD (1.1) and the fourth order
energy-preserving collocation method (denoted by EPC) [20] for comparison. We use the same
standard fixed point iteration for all the schemes and set 10−16 as the error tolerance. The system
(1.1) is integrated till T = 1 by each of the method under the same step size h = 1/210, and
the computational time (cputime) is displayed in Figure 4. This test is conducted in a sequential
program in MATLAB on a laptop ThinkPad X1 Carbon (CPU: Intel (R) Core (TM) i5-5200U CPU
@ 2.20 GHz, Memory: 8 GB, Os: Microsoft Windows 7 with 64bit).

Based on the numerical results in Figures 3&4, we can draw the following observations.
1) Under the general strong magnetic field, the three presented splitting schemes (2.5), (2.6) and

(2.8) still show the uniform first order error bound O(h) in x and v‖. Their performances are very
similarly as in the maximal order case. This would require a more delicate analysis which is going
to be our future work.
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2) S1-AVF preserves the energy (1.2) to machine accuracy over long times. Between the other two
methods, S1-SV has smaller energy error and better long-time behaviour than S1-VP. In comparison
with other classical energy preserving methods, the computational cost of S1-AVF is uniform for
ε ∈ (0, 1]. Hence, it is more efficient for CPD (1.1) in the strong magnetic field regime.

6. Conclusion

In this paper, we considered the numerical solution of the charged-particle dynamics that involve
a small parameter ε ∈ (0, 1] inversely proportional to the strength of the external magnetic field.
Firstly, a novel splitting scheme that preserves the exact energy of the system was proposed, and
its computational cost per step is uniform in ε ∈ (0, 1]. Then under the maximal ordering scaling,
by using averaging technique, we established a uniform and optimal first order error bound for
the proposed method in the position variable and the parallel part of the velocity variable to
the magnetic field. For the general strong magnetic field case, we applied the modulated Fourier
expansion for the error analysis of the proposed scheme, and a convergence result in ε was obtained.
Our results in fact are true for a class of Lie-Trotter type splitting schemes. Numerical experiments
were conducted to illustrate the accuracy and efficiency of the scheme.
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