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Abstract. The paper studies the open-loop saddle point and the open-loop lower and upper

values, as well as their relationship for two-person zero-sum stochastic linear-quadratic (LQ, for

short) differential games with deterministic coefficients. It derives a necessary condition for the

finiteness of the open-loop lower and upper values and a sufficient condition for the existence of

an open-loop saddle point. It turns out that under the sufficient condition, a strongly regular

solution to the associated Riccati equation uniquely exists, in terms of which a closed-loop

representation is further established for the open-loop saddle point. Examples are presented to

show that the finiteness of the open-loop lower and upper values does not ensure the existence

of an open-loop saddle point in general. But for the classical deterministic LQ game, these two

issues are equivalent and both imply the solvability of the Riccati equation, for which an explicit

representation of the solution is obtained.
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1 Introduction

Let (Ω,F ,P) be a complete probability space on which a standard one-dimensional Brownian

motion W = {W (t); t > 0} is defined, and let F = {Ft}t>0 be the usual augmentation of the

natural filtration generated by W . Consider the following controlled linear stochastic differential

equation (SDE, for short) on a finite horizon [0, T ]:





dX(t) =
[
A(t)X(t) +B1(t)u1(t) +B2(t)u2(t)

]
dt

+
[
C(t)X(t) +D1(t)u1(t) +D2(t)u2(t)

]
dW (t),

X(0) = x,

(1.1)

where A,C : [0, T ] → R
n×n and Bi,Di : [0, T ] → R

n×mi (i = 1, 2), called the coefficients of

the state equation (1.1), are given bounded deterministic functions; the process ui (i = 1, 2),

belonging to the space

Ui[0, T ] =
{
ϕ : [0, T ]× Ω → R

mi
∣∣ ϕ is F-progressivley measurable, E

∫ T

0 |ϕ(t)|2dt < ∞
}
,
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is the control of Player i; and x ∈ R
n is a given initial state. The criterion for the performance

of u1 and u2 is given by the following quadratic functional:

J(x;u1, u2) = E

{
〈GX(T ),X(T )〉 +

∫ T

0

〈



Q S⊤
1 S⊤

2

S1 R11 R12

S2 R21 R22






X

u1

u2


,



X

u1

u2



〉
dt

}
, (1.2)

where G is an n × n symmetric real matrix; Q : [0, T ] → R
n×n, Si : [0, T ] → R

mi×n, and

Rij : [0, T ] → R
mi×mj (i, j = 1, 2) are bounded functions with

Q(t)⊤ = Q(t),

(
R11(t) R12(t)

R21(t) R22(t)

)⊤

=

(
R11(t) R12(t)

R21(t) R22(t)

)
, ∀t ∈ [0, T ].

In the Lebesgue integral on the right-hand side of (1.2), the variable t is suppressed for conve-

nience.

The functional (1.2) can be regarded as the loss of Player 1 and the gain of Player 2. So

in this two-person zero-sum stochastic linear-quadratic differential game (Problem (SLQG), for

short), Player 1 wants to find his/her control that minimizes the loss, while Player 2 wants to

find his/her control that maximizes the gain. The best choice for the two players is a control

pair such that no one can benefit by changing his/her control while the other keeps his/her

unchanged. Such a pair (u∗1, u
∗
2) is called an open-loop saddle point, mathematically defined by

the following inequalities:

J(x;u∗1, u2) 6 J(x;u∗1, u
∗
2) 6 J(x;u1, u

∗
2), ∀(u1, u2) ∈ U1[0, T ]× U2[0, T ].

Another two important notions in game theory are the open-loop lower and upper values defined

as

V −(x) = sup
u2∈U2[0,T ]

inf
u1∈U1[0,T ]

J(x;u1, u2) and V +(x) = inf
u1∈U1[0,T ]

sup
u2∈U2[0,T ]

J(x;u1, u2),

respectively. It is clear that V −(x) 6 V +(x). In the case of V −(x) = V +(x), we denote by V (x)

the common value and say that the game has an open-loop value at x.

Linear-quadratic (LQ, for short) differential games constitute an important class of differ-

ential games. They are widely encountered in many fields, such as engineering, economy, and

biology, and also play an essential role in the study of general differential games (see, for exam-

ple, [9, 4]). The study of deterministic LQ differential games (Problem (DLQG), for short), in

which the state evolves according to an ordinary differential equation (ODE, for short), can be

traced back to the work of Ho–Bryson–Baron [10], in the context of a linearized pursuit-evasion

game. Later, Schmitendorf [12] studied the open-loop and closed-loop strategies for Problem

(DLQG) in a rigorous framework and showed that the existence of a closed-loop saddle point

might not imply the existence of an open-loop saddle point. In 1979, Bernhard [3] considered

the zero-sum game with the additional restriction on the final state from a closed-loop point of

view; see also the follow-up work of Başar–Bernhard [1]. In 2005, Zhang [23] established the

equivalence among the existence of a finite open-loop value, the finiteness of open-loop lower

and upper values, and the existence of an open-loop saddle point for a class of deterministic

LQ differential games. The results of Zhang [23] were later sharpened by Delfour [5] in 2007

and generalized to closed-loop LQ differential games by Delfour–Sbarba [6] in 2009. Two-person

zero-sum stochastic LQ differential games (Problem (SLQG)) have also been considered by many
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authors. Mou–Yong [11] studied Problem (SLQG) from an open-loop point of view by means

of the Hilbert space method. Sun–Yong [15] established the characterizations of open-loop and

closed-loop saddle points for Problem (SLQG) and investigated their relationship (see also the

books [21, 18]). Based on the idea in [15], Sun–Yong–Zhang [19] further explored stochastic LQ

differential games over infinite horizons. Yu [22] studied the optimal feedback control-strategy

pair for Problem (SLQG) using a Riccati equation approach. There are many other works on LQ

differential games, among which we would like to mention the works [7, 8, 16] on nonzero-sum

LQ games and the works [2, 20] on mean-field LQ games.

In this paper, the analysis of the above two-person zero-sum stochastic LQ differential game

mainly focuses on the open-loop saddle point and the open-loop lower and upper values, as well

as their relationship. Our approach is partially based on the recently developed results on two-

person zero-sum stochastic LQ differential games and indefinite stochastic LQ optimal control

problems (see [15, 13]). The main contribution of this paper can be briefly summarized as follows

(A complete summary of the results is presented in the conclusion section; see Figure 1).

(i) It is found that in general the finiteness of the open-loop lower and upper values does

not ensure the existence of an open-loop saddle point (see Example 5.2), which is different from

Zhang’s equivalence result [23] for deterministic LQ differential games. In fact, the finiteness of

the open-loop lower and upper values does not even imply the existence of an open-loop value

(see Example 3.2) The reason is that in [23], the stochastic part is absent and an additional

assumption is imposed on the weighting matrices for the controls, i.e., R11 is required to be

uniformly positive definite and R22 is required to be uniformly negative definite.

(ii) A necessary condition and a sufficient condition are derived for the existence of finite

open-loop values. These two conditions are closely related to indefinite stochastic LQ optimal

problems. It is shown that under the sufficient condition, the associated Riccati equation is

strongly regularly solvable (see Theorem 4.3), and consequently, a unique open-loop saddle point

exists for every initial state and admits a closed-loop representation (see Theorem 4.4). The

solvability of the Riccati equation constitutes the most difficult part of the paper. We overcome

this difficulty by exploring the connection between the stochastic LQ differential game and two

stochastic LQ optimal control problems and examining the local existence of solutions for the

Riccati equation.

(iii) For the deterministic two-person zero-sum LQ differential game, which can be regarded

as a special case of the stochastic game, we establish the equivalence between the existence

of an open-loop saddle point and the finiteness of the open-loop lower and upper values by a

new approach (see Theorem 5.3). More importantly, we find that in the deterministic case, the

finiteness of the open-loop lower and upper values also implies the solvability of the Riccati

equation, for which we obtain an explicit representation of the solution (see Theorem 5.3 and

Corollary 5.5).

The rest of the paper is organized as follows. In Section 2 we give the preliminaries and

collect some recently developed results on stochastic LQ optimal control problems. In Section 3

we study the open-loop lower and upper values, and in Section 4 we establish the solvability of

the associated Riccati equation as well as the closed-loop representation of the open-loop saddle

point. In Section 5, the relationship between the open-loop saddle and the open-loop lower and

upper values is discussed, and an equivalence result is presented for deterministic two-person

zero-sum LQ differential games. Section 6 concludes the paper.
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2 Preliminaries

Throughout this paper, Rn×m denotes the Euclidean space of n × m real matrices, equipped

with the Frobenius inner product

〈M,N〉 = tr (M⊤N), M,N ∈ R
n×m,

where M⊤ is the transpose of M and tr (M⊤N) is the trace of M⊤N . The norm induced

by the Frobenius inner product is denoted by | · |. The identity matrix of size n is denoted

by In, which is often simply written as I when no confusion occurs. Let S
n be the space of

symmetric n × n real matrices and S̄
n
+ the space of symmetric positive semidefinite n × n real

matrices. For S
n-valued functions M,N on [0, T ], we write M > N (respectively, M 6 N) if

M(t) − N(t) ∈ S̄
n
+ (respectively, N(t) − M(t) ∈ S̄

n
+) for almost every t ∈ [0, T ], and we write

M ≫ N (respectively, M ≪ N) if there exists a constant α > 0 such that M(t) − N(t) > αI

(respectively, N(t)−M(t) > αI) for almost every t ∈ [0, T ].

Recall that F = {Ft}t>0 is the usual augmentation of the natural filtration generated by the

Brownian motion W . For a process ϕ, we write ϕ ∈ F if it is F-progressively measurable. Let

H be a subset of some Euclidean space. In the following table we list some spaces that will be

frequently used in the sequel.

C([0, T ];H) =
{
ϕ : [0, T ] → H

∣∣ ϕ is continuous
}
,

L∞(0, T ;H) =
{
ϕ : [0, T ] → H

∣∣ ϕ is Lebesgue essentially bounded
}
,

L2(0, T ;H) =
{
ϕ : [0, T ] → H

∣∣ ∫ T

0 |ϕ(t)|2dt < ∞
}
,

L2
F(0, T ;H) =

{
ϕ : [0, T ]× Ω → H

∣∣ ϕ ∈ F and E
∫ T

0 |ϕ(t)|2dt < ∞
}
.

Note that L2
F
(0, T ;Rm) is a Hilbert space under the usual product

[[u, v]] = E

∫ T

0
〈u(t), v(t)〉dt, u, v ∈ L2

F(0, T ;R
m).

We denote the induced norm of a process u ∈ L2
F
(0, T ;Rm) by ‖u‖. In terms of the above

notation, we see that for Player i, the space of controls is

Ui[0, T ] = L2
F(0, T ;R

mi).

As mentioned in the introduction section, we assume that the coefficients of the state equation

(1.1) and the weighting matrices in the quadratic functional (1.2) satisfy the following conditions.

(A1) A,C : [0, T ] → R
n×n and Bi,Di : [0, T ] → R

n×mi (i = 1, 2) are bounded, Lebesgue

measurable functions, i.e.,

A,C ∈ L∞(0, T ;Rn×n), Bi,Di ∈ L∞(0, T ;Rn×mi).

(A2) G ∈ S
n, Q ∈ L∞(0, T ;Sn), and for i, j = 1, 2,

Si ∈ L∞(0, T ;Rmi×n), Rij ∈ L∞(0, T ;Rmi×mj ), R⊤
ij = Rji.
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Next we collect some results from stochastic LQ optimal control theory. Consider the state

equation
{
dX (t) =

[
A(t)X (t) + B(t)v(t)

]
dt+

[
C(t)X (t) +D(t)v(t)

]
dW (t), t ∈ [0, T ],

X (0) = x,
(2.1)

and the cost functional

J (x; v) = E

{
〈GX (T ),X (T )〉 +

∫ T

0

〈(Q(t) S(t)⊤
S(t) R(t)

)(
X (t)

v(t)

)
,

(
X (t)

v(t)

)〉
dt

}
, (2.2)

where in (2.1),

A, C ∈ L∞(0, T ;Rn×n), B,D ∈ L∞(0, T ;Rn×m),

and in (2.2),

G ∈ S
n, Q ∈ L∞(0, T ;Sn), S ∈ L∞(0, T ;Rm×n), R ∈ L∞(0, T ;Sm).

The stochastic LQ optimal control problem is as follows.

Problem (SLQ). For a given initial state x ∈ R
n, find a control v∗ ∈ L2

F
(0, T ;Rm) such that

J (x; v∗) = inf
v∈L2

F
(0,T ;Rm)

J (x; v) ≡ V(x). (2.3)

The control v∗ ∈ L2
F
(0, T ;Rm) in (2.3) is called an open-loop optimal control for the initial

state x, and V(x) is called the value of Problem (SLQ) at x.

The following lemmas summarize a few results for Problem (SLQ) that will be needed in the

subsequent sections. The reader is referred to Sun–Li–Yong [13] for proofs; see also the recent

book [17] by Sun–Yong.

Lemma 2.1. If V(x) > −∞ for some initial state x, then

J (0; v) > 0, ∀v ∈ L2
F(0, T ;R

m).

Lemma 2.2. If for some constant α > 0,

J (0; v) > α‖v‖2, ∀v ∈ L2
F(0, T ;R

m),

then the following hold:

(i) For every initial state x, a unique open-loop optimal control exists.

(ii) The Riccati differential equation




Ṗ + PA +A⊤P + C⊤PC +Q
− (PB + C⊤PD + S⊤)(R+D⊤PD)−1(B⊤P +D⊤PC + S) = 0,

P(T ) = G
(2.4)

admits a unique solution P ∈ C([0, T ];Sn) such that

R+D⊤PD ≫ 0.

In particular, if G > 0, Q > 0, and R ≫ 0, then (2.4) has a unique nonnegative solution

P ∈ C([0, T ]; S̄n+).

(iii) The unique open-loop optimal control v∗ for the initial state x admits the following closed-

loop representation:

v∗ = −(R+D⊤PD)−1(B⊤P +D⊤PC + S)X,

and the value at x is given by

V(x) = 〈P(0)x, x〉.
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3 Open-loop lower and upper values

In this section we study the open-loop lower and upper values of the two-person zero-sum

stochastic LQ differential game. We derive a necessary condition and a sufficient condition for

the finiteness of the open-loop lower and upper values. First, let us recall the following definition.

Definition 3.1. The open-loop lower value V −(x) and the open-loop upper value V +(x) at the

initial state x ∈ R
n are defined by

V −(x) = sup
u2∈U2[0,T ]

inf
u1∈U1[0,T ]

J(x;u1, u2) and V +(x) = inf
u1∈U1[0,T ]

sup
u2∈U2[0,T ]

J(x;u1, u2),

respectively. Note that for every x ∈ R
n,

V −(x) 6 V +(x).

If the above holds with equality, we call the common value, denoted by V (x), an open-loop value

at the initial state x.

It is shown in [23] that for a special class of deterministic two-person zero-sum LQ differential

games, if both the open-loop lower and upper values are finite, they must be equal. However,

this result does not hold in general. Here is an example.

Example 3.2. Consider the one-dimensional state equation

{
dX(t) =

√
t u1(t)dt+ t u2(t)dW (t), t ∈ [0, 1],

X(0) = x,

and the quadratic functional

J(x;u1, u2) = E

{
|X(1)|2 +

∫ 1

0

[
2tu1(t)u2(t)− t2|u2(t)|2

]
dt

}
.

We claim that

V +(x) = x2, V −(x) = 0, ∀x ∈ R.

To verify the claim, we observe first that

E|X(1)|2 = E

[
x+

∫ 1

0

√
t u1(t)dt

]2
+ E

∫ 1

0
t2|u2(t)|2dt

+ 2E

[ ∫ 1

0

√
t u1(t)dt

∫ 1

0
t u2(t)dW (t)

]
.

It follows that

J(x;u1, u2) = E

[
x+

∫ 1

0

√
t u1(t)dt

]2
+ 2E

∫ 1

0
tu1(t)u2(t)dt

+ 2E

[ ∫ 1

0

√
t u1(t)dt

∫ 1

0
t u2(t)dW (t)

]
. (3.1)

Clearly, we have

sup
u2∈U2[0,1]

J(x; 0, u2) = x2. (3.2)

6



For u1 6= 0 and u2 = λu1 (λ > 0),

2E

[ ∫ 1

0

√
t u1(t)dt

∫ 1

0
t u2(t)dW (t)

]
= 2λE

[ ∫ 1

0

√
t u1(t)dt

∫ 1

0
t u1(t)dW (t)

]

> −λE

[(∫ 1

0

√
t u1(t)dt

)2

+

(∫ 1

0
t u1(t)dW (t)

)2]

> −λE

∫ 1

0
t|u1(t)|2dt− λE

∫ 1

0
t2|u1(t)|2dt.

Thus, we have

J(x;u1, λu1) > E

[
x+

∫ 1

0

√
t u1(t)dt

]2
+ λE

∫ 1

0
(t− t2)|u1(t)|2dt.

Since for u1 6= 0,

E

∫ 1

0
(t− t2)|u1(t)|2dt > 0,

it follows that

sup
u2∈U2[0,1]

J(x;u1, u2) > sup
λ>0

J(x;u1, λu1) = ∞, ∀u1 6= 0. (3.3)

Combining (3.2) and (3.3) we obtain

V +(x) = inf
u1∈U1[0,1]

sup
u2∈U2[0,1]

J(x;u1, u2) = x2.

To show V −(x) = 0, we note that for any u2 ∈ U2[0, 1],
√
t and E[tu2(t)] are elements of the

Hilbert space L2(0, 1;R). Since
√
t is not in the (one-dimensional) space generated by E[tu2(t)],

by the Hahn-Banach theorem there exists a ū1 ∈ L2(0, 1;R) ⊆ U1[0, 1] such that

∫ 1

0

√
t ū1(t)dt = −x and

∫ 1

0
ū1(t)E[tu2(t)]dt = 0.

Together with (3.1), it gives (noting that ū1 is deterministic)

inf
u1∈U1[0,1]

J(x;u1, u2) 6 J(x; ū1, u2) = 0, ∀u2 ∈ U2[0, 1].

On the other hand, it is trivial that

inf
u1∈U1[0,1]

J(x;u1, 0) > 0.

Thus,

V −(x) = sup
u2∈U2[0,1]

inf
u1∈U1[0,1]

J(x;u1, u2) = 0.

This proves our claim.

The following result gives necessary conditions for the finiteness of the open-loop lower and

upper values.

Theorem 3.3. Let (A1)–(A2) hold.

(i) If V −(x) is finite for some initial state x, then

J(0;u1, 0) > 0, ∀u1 ∈ U1[0, T ]. (3.4)
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(ii) If V +(x) is finite for some initial state x, then

J(0; 0, u2) 6 0, ∀u2 ∈ U2[0, T ]. (3.5)

Proof. To emphasize the dependence on the initial state and the controls of the two players, we

denote the solution of the state equation (1.1) by X
u1,u2

x . We now prove (i) by contradiction.

Suppose that J(0; ū1, 0) < 0 for some ū1 ∈ U1[0, T ]. Then for any u2 ∈ U2[0, T ],

inf
u1∈U1[0,T ]

J(x;u1, u2) 6 inf
λ∈R

J(x;λū1, u2).

Substituting the relation X
λū1,u2

x = λX
ū1,0
0 +X

0,u2

x into the expression of J(x;λū1, u2), we obtain

J(x;λū1, u2) = λ2J(0; ū1, 0) + J(x; 0, u2) + 2λρ(x; ū1, u2),

where

ρ(x; ū1, u2) = E

{
〈GX

ū1,0
0 ,X0,u2

x 〉+
∫ T

0

〈



Q S⊤
1 S⊤

2

S1 R11 R12

S2 R21 R22






X

ū1,0
0

ū1

0


,



X

0,u2

x

0

u2



〉
dt

}
.

Since J(0; ū1, 0) < 0, it follows that

inf
u1∈U1[0,T ]

J(x;u1, u2) 6 inf
λ∈R

J(x;λū1, u2) = −∞.

Because in the above u2 is arbitrary, we obtain the contradiction

V −(x) = sup
u2∈U2[0,T ]

inf
u1∈U1[0,T ]

J(x;u1, u2) = −∞.

In a similar manner we can prove (ii).

Theorem 3.3 tells us that in order for both the open-loop lower value and the open-loop

upper value to be finite, the conditions (3.4) and (3.5) must hold. We now present an example

showing that (3.4) and (3.5) do not necessarily imply the finiteness of the open-loop lower and

upper values.

Example 3.4. Consider the one-dimensional state equation

{
dX(t) = u1(t)dt+ u2(t)dW (t), t ∈ [0, 1],

X(0) = x,

and the quadratic functional

J(x;u1, u2) = E

{
− |X(1)|2 +

∫ 1

0

[
|u1(t)|2 − |u2(t)|2

]
dt

}
.

When x = 0 and u2 = 0,

E|X(1)|2 = E

[∫ 1

0
u1(t)dt

]2
6 E

∫ 1

0
|u1(t)|2dt.

Thus, for every u1,

J(0;u1, 0) = E

[
−|X(1)|2 +

∫ 1

0
|u1(s)|2ds

]
> 0.
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When x = 0 and u1 = 0, for every u2,

J(0; 0, u2) = −E

[
|X(1)|2 +

∫ 1

0
|u2(t)|2dt

]
6 0.

However, V −(x) = −∞ for every x 6= 0. To see this, let u2 be an arbitrary control of Player 2

and take u1 = λ ∈ R. Then

E|X(1)|2 = E

[
x+ λ+

∫ 1

0
u2(t)dW (t)

]2
= (x+ λ)2 + E

∫ 1

0
|u2(t)|2dt.

It follows that

J(x;λ, u2) = −(x2 + 2λx)− 2E

∫ 1

0
|u2(t)|2dt.

Since x 6= 0, we see that for every u2,

inf
u1

J(x;u1, u2) 6 inf
λ

J(x;λ, u2) = −∞,

and hence V −(x) = supu2
infu1

J(x;u1, u2) = −∞.

Now we introduce a condition slightly stronger than the necessary conditions (3.4)–(3.5) for

the finiteness of the open-loop lower and upper values.

(A3) There exists a constant α > 0 such that

J(0;u1, 0) > α‖u1‖2, ∀u1 ∈ U1[0, T ], (3.6)

J(0; 0, u2) 6 −α‖u2‖2, ∀u2 ∈ U2[0, T ]. (3.7)

It can be shown that (A3) is a sufficient condition for the finiteness of the open-loop lower and

upper values at every initial state. In fact, we shall see in the next section that under (A3), the

two-person zero-sum stochastic LQ differential game even admits an open-loop saddle point for

every initial state. Since the argument involves the Riccati equation, we defer the proof to the

next section. For the moment we want to point out that if the necessary conditions (3.4)–(3.5)

hold, then for each λ > 0, the quadratic functional defined by

Jλ(x;u1, u2) , J(x;u1, u2) + λE

∫ T

0
|u1(t)|2dt− λE

∫ T

0
|u2(t)|2dt

satisfies (A3). Let V −

λ (x) and V +
λ (x) be the open-loop lower and upper values corresponding to

the quadratic functional Jλ(x;u1, u2), respectively, i.e.,

V −

λ
(x) , sup

u2∈U2[0,T ]
inf

u1∈U1[0,T ]
Jλ(x;u1, u2),

V +
λ (x) , inf

u1∈U1[0,T ]
sup

u2∈U2[0,T ]
Jλ(x;u1, u2).

We have the following result.

Proposition 3.5. Let (A1)–(A2) hold. If V ±(x) are finite, then

V −(x) 6 lim inf
λ→0

V −

λ
(x) 6 lim sup

λ→0
V +
λ
(x) 6 V +(x).
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Proof. The second inequality trivially holds. So we only prove the first, the last can be treated

in a similar manner. Let ε > 0 be an arbitrary number and choose an uε2 ∈ U2[0, T ] such that

V −(x) = sup
u2∈U2[0,T ]

inf
u1∈U1[0,T ]

J(x;u1, u2) 6 inf
u1∈U1[0,T ]

J(x;u1, u
ε
2) + ε.

With this uε2 fixed, we have for any λ > 0,

inf
u1∈U1[0,T ]

Jλ(x;u1, u
ε
2) = inf

u1∈U1[0,T ]

[
J(x;u1, u

ε
2) + λE

∫ T

0
|u1(t)|2dt− λE

∫ T

0
|uε2(t)|2dt

]

> inf
u1∈U1[0,T ]

J(x;u1, u
ε
2)− λE

∫ T

0
|uε2(t)|2dt

> V −(x)− ε− λE

∫ T

0
|uε2(t)|2dt,

from which it follows that

V −

λ (x) = sup
u2∈U2[0,T ]

inf
u1∈U1[0,T ]

Jλ(x;u1, u2) > inf
u1∈U1[0,T ]

Jλ(x;u1, u
ε
2)

> V −(x)− ε− λE

∫ T

0
|uε2(t)|2dt, ∀λ > 0.

Letting λ → 0 yields

lim inf
λ→0

V −

λ
(x) > V −(x)− ε.

Since ε > 0 is arbitrary, the desired result follows.

We conclude this section with a discussion of the conditions (3.4)–(3.5) and (A3). Consider

the stochastic LQ optimal control problem with the state equation
{
dX(t) =

[
A(t)X(t) +B1(t)v(t)

]
dt+

[
C(t)X(t) +D1(t)v(t)

]
dW (t),

X(0) = x,

and the cost functional

J1(x; v) , E

{
〈GX(T ),X(T )〉 +

∫ T

0

〈(Q(t) S1(t)
⊤

S1(t) R11(t)

)(
X(t)

v(t)

)
,

(
X(t)

v(t)

)〉
dt

}
.

Let us denote the above optimal control problem by Problem (SLQ)1. Clearly,

J1(x;u1) = J(x;u1, 0), ∀u1 ∈ U1[0, T ].

So the condition (3.4) is equivalent to

J1(0; v) > 0, ∀v ∈ L2
F(0, T ;R

m1), (3.8)

which means that the mapping v 7→ J1(0; v) is convex, i.e.,

J1(0;βu+ (1− β)v) 6 βJ1(0;u) + (1− β)J1(0; v),

∀u, v ∈ L2
F(0, T ;R

m1),∀β ∈ [0, 1].

Similarly, the condition (3.6) in (A3) is equivalent to the uniform convexity of v 7→ J1(0; v).

Likewise, if we consider the stochastic LQ optimal control problem with the state equation
{
dX(t) =

[
A(t)X(t) +B2(t)v(t)

]
dt+

[
C(t)X(t) +D2(t)v(t)

]
dW (t),

X(0) = x,
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and the cost functional

J2(x; v) , −E

{
〈GX(T ),X(T )〉 +

∫ T

0

〈(Q(t) S2(t)
⊤

S2(t) R22(t)

)(
X(t)

v(t)

)
,

(
X(t)

v(t)

)〉
dt

}
,

which we denote by Problem (SLQ)2 for simplicity, then the condition (3.5) is equivalent to

J2(0; v) > 0, ∀v ∈ L2
F(0, T ;R

m2), (3.9)

and the condition (3.7) in (A3) is equivalent to the uniform convexity of v 7→ J2(0; v). There

are various sufficient conditions ensuring the (uniform) convexity of the cost functional of a

stochastic LQ optimal control problem. For results in this direction we refer the interested

reader to [13, 17, 14].

4 Open-loop saddle points and Riccati equations

The aim of this section is to show the existence of open-loop saddle points and to provide a

closed-loop representation for open-loop saddle points under the condition (A3). The associated

Riccati equation plays a crucial role in establishing these results, whose solvability constitutes

the most difficult part of this section.

We begin by recalling the notion of open-loop saddle points and introducing the Riccati

equation.

Definition 4.1. An open-loop saddle point for the initial state x is a pair (u∗1, u
∗
2) ∈ U1[0, T ] ×

U2[0, T ] such that the following inequalities hold:

J(x;u∗1, u2) 6 J(x;u∗1, u
∗
2) 6 J(x;u1, u

∗
2), ∀(u1, u2) ∈ U1[0, T ]× U2[0, T ].

The Riccati equation associated with the two-person zero-sum stochastic LQ differential

game is a nonlinear ordinary differential equation of the following form:





Ṗ + PA+A⊤P + C⊤PC +Q

− (PB +C⊤PD + S⊤)(R +D⊤PD)−1(B⊤P +D⊤PC + S) = 0,

P (T ) = G,

(4.1)

where we have adopted the notation

B = (B1, B2), D = (D1,D2), S =

(
S1

S2

)
, R =

(
R11 R12

R21 R22

)
,

and as before, the variable t has been suppressed for convenience. Note that

R+D⊤PD =

(
R11 +D⊤

1 PD1 R12 +D⊤
1 PD2

R21 +D⊤
2 PD1 R22 +D⊤

2 PD2

)
,

B⊤P +D⊤PC + S =

(
B⊤

1 P +D⊤
1 PC + S1

B⊤
2 P +D⊤

2 PC + S2

)
.

Definition 4.2. A strongly regular solution to the Riccati equation (4.1) over [0, T ] is an abso-

lutely continuous function P : [0, T ] → S
n that possesses the following properties:

(i) For i = 1, 2, (−1)i+1(Rii +D⊤
i PDi) ≫ 0.
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(ii) P satisfies (4.1) almost everywhere on [0, T ].

Now we state the main results of this section. The proofs will be given shortly after some

preparations.

Theorem 4.3. Let (A1)–(A3) hold. Then the Riccati equation (4.1) has a strongly regular

solution over [0, T ].

Theorem 4.4. Let (A1)–(A3) hold, and let P ∈ C([0, T ];Sn) be the strongly regular solution

to the Riccati equation (4.1) over [0, T ]. Then

(i) for every initial state x, a unique open-loop saddle point exists;

(ii) with the notation

Θ = −(R+D⊤PD)−1(B⊤P +D⊤PC + S),

the open-loop saddle point u∗ =

(
u∗1
u∗2

)
for the initial state x has the following closed-loop

representation:

u∗(t) = Θ(t)X∗(t), t ∈ [0, T ], (4.2)

where X∗ is the solution to the closed-loop system

{
dX∗(t) = [A(t) +B(t)Θ(t)]X∗(t)dt+ [C(t) +D(t)Θ(t)]X∗(t)dW (t),

X∗(0) = x.
(4.3)

Moreover, J(x;u∗1, u
∗
2) = 〈P (0)x, x〉.

It is worth pointing out that the converse of Theorem 4.3 does not hold in general. In other

words, the existence of a strongly regular solution to the Riccati equation (4.1) over [0, T ] does

not necessarily imply the condition (A3). In fact, the existence of a strongly regular solution

does not even imply the weaker conditions (3.4)–(3.5). Here is an example.

Example 4.5. Consider the one-dimensional state equation

{
dX(t) = [u1(t)dt+ u2(t)]dt, t ∈ [0, 1],

X(0) = x,

and the quadratic functional

J(x;u1, u2) = E

{
−2|X(1)|2 +

∫ 1

0

[
|u1(t)|2 −

2

3
|u2(t)|2

]
dt

}
.

The Riccati equation associated with this game reads





Ṗ − P (1, 1)

(
1 0

0 −2
3

)−1(
1

1

)
P = 0,

P (1) = −2,

which simplifies to 



Ṗ (t) = −1

2
P (t)2,

P (1) = −2.
(4.4)
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It is straightforward to verify that

P (t) =
2

t− 2
, t ∈ [0, 1]

is the strongly regular solution of (4.4) over [0, 1]. However, for u1(t) ≡ λ 6= 0, we have

J(0;u1, 0) = −2

(∫ 1

0
λdt

)2

+

∫ 1

0
λ2dt = −λ2 < 0.

The preparation for the proof of Theorem 4.3 starts with the following lemma, whose proof

is straightforward.

Lemma 4.6. For M ∈ S
m, L ∈ R

m×n, N ∈ S
n, if M and Φ , N − L⊤M−1L are invertible,

then

(
M L

L⊤ N

)
is also invertible and

(
M L

L⊤ N

)−1

=

(
M−1 + (M−1L)Φ−1(M−1L)⊤ −(M−1L)Φ−1

−Φ−1(M−1L)⊤ Φ−1

)
.

Moreover, for every ρ ∈ R
m×k and ξ ∈ R

n×k,

(ρ⊤, ξ⊤)

(
M L

L⊤ N

)−1(
ρ

ξ

)
= ρ⊤M−1ρ+

(
L⊤M−1ρ− ξ

)⊤
Φ−1

(
L⊤M−1ρ− ξ

)
.

In particular, if M is positive definite and N is negative definite, then

(ρ⊤, ξ⊤)

(
M L

L⊤ N

)−1(
ρ

ξ

)
6 ρ⊤M−1ρ, ∀ρ ∈ R

m×k, ξ ∈ R
n×k.

We next make some observations. Suppose that (A3) holds. Then the cost functional J1(x; v)

of Problem (SLQ)1 introduced in the preceding section satisfies

J1(0; v) > α‖v‖2, ∀v ∈ L2
F(0, T ;R

m1).

Thus, by Lemma 2.2(ii), the Riccati equation





Ṗ1 + P1A+A⊤P1 + C⊤P1C +Q

− (P1B1 + C⊤P1D1 + S⊤
1 )(R11 +D⊤

1 P1D1)
−1(B⊤

1 P1 +D⊤
1 P1C + S1) = 0,

P1(T ) = G

(4.5)

admits a unique solution P1 ∈ C([0, T ];Sn) satisfying

R11 +D⊤
1 P1D1 ≫ 0. (4.6)

Likewise, the Riccati equation





Ṗ2 + P2A+A⊤P2 + C⊤P2C +Q

− (P2B2 + C⊤P2D2 + S⊤
2 )(R22 +D⊤

2 P2D2)
−1(B⊤

2 P2 +D⊤
2 P2C + S2) = 0,

P2(T ) = G

(4.7)

admits a unique solution P2 ∈ C([0, T ];Sn) satisfying

R22 +D⊤
2 P2D2 ≪ 0. (4.8)

We have the following comparison result.
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Proposition 4.7. Let (A1)–(A3) hold. Suppose that P is a strongly regular solution of (4.1)

over some interval [θ, τ ] ⊆ [0, T ] with terminal condition replaced by P (τ) = H ∈ S
n. If

P1(τ) 6 H 6 P2(τ), then

P1(t) 6 P (t) 6 P2(t), ∀t ∈ [θ, τ ].

Proof. First we introduce the following notation: For a matrix K ∈ S
n,

(
M(t,K) L(t,K)

L(t,K)⊤ N (t,K)

)
,

(
R11(t) +D1(t)

⊤KD1(t) R12(t) +D1(t)
⊤KD2(t)

R21(t) +D2(t)
⊤KD1(t) R22(t) +D2(t)

⊤KD2(t)

)
,

R(t,K) ,

(
M(t,K) L(t,K)

L(t,K)⊤ N (t,K)

)
,

Si(t,K) , Bi(t)
⊤K +Di(t)

⊤KC(t) + Si(t), i = 1, 2,

S(t,K) ,

(
S1(t,K)

S2(t,K)

)
= B(t)⊤K +D(t)⊤KC(t) + S(t).

By Lemma 4.6, we have for t ∈ [θ, τ ],

[(PB + C⊤PD + S⊤)(R +D⊤PD)−1(B⊤P +D⊤PC + S)](t)

6 S1(t, P (t))⊤M(t, P (t))−1S1(t, P (t)).

Now let

Π(t) = P (t)− P1(t), t ∈ [θ, τ ].

Then Π(τ) > 0 and

Π̇(t) 6 − [Π(t)A(t) +A(t)⊤Π(t) + C(t)⊤Π(t)C(t)]

+ S1(t, P (t))⊤M(t, P (t))−1S1(t, P (t)).

With the notation

Ŝ , B⊤
1 P1 +D⊤

1 P1C + S1, R̂ = R11 +D⊤
1 P1D1,

we can rewrite S1(t, P (t))⊤M(t, P (t))−1S1(t, P (t)) as

S1(t, P (t))⊤M(t, P (t))−1S1(t, P (t))

=
[
(PB1 + C⊤PD1 + S⊤

1 )(R11 +D⊤
1 PD1)

−1(B⊤
1 P +D⊤

1 PC + S1)
]
(t)

=
[
(ΠB1 + C⊤ΠD1 + Ŝ ⊤)(R̂ +D⊤

1 ΠD1)
−1(B⊤

1 Π+D⊤
1 ΠC + Ŝ )

]
(t).

It follows that for some Q̂ ∈ L∞(θ, τ ;Sn) with Q̂ > 0,

Π̇ + ΠA+A⊤Π+ C⊤ΠC + Q̂

− (ΠB1 + C⊤ΠD1 + Ŝ ⊤)(R̂ +D⊤
1 ΠD1)

−1(B⊤
1 Π+D⊤

1 ΠC + Ŝ ) = 0.

Since Π(τ) > 0, Q̂ > 0, and R̂ ≫ 0, we conclude from Lemma 2.2(ii) that Π(t) > 0 for all

t ∈ [θ, τ ]. This shows that P1 6 P on [θ, τ ]. In a similar manner we can prove that P 6 P2 on

[θ, τ ].

The following result establishes the local existence of a strongly regular solution to the Riccati

equation (4.1).
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Proposition 4.8. Let (A1)–(A3) hold, and let P1 and P2 be the solutions of (4.5) and (4.7),

respectively. For τ ∈ (0, T ] and H ∈ S
n, if

P1(τ) 6 H 6 P2(τ),

then the Riccati equation





Ṗ + PA+A⊤P + C⊤PC +Q

− (PB +C⊤PD + S⊤)(R +D⊤PD)−1(B⊤P +D⊤PC + S) = 0,

P (τ) = H

(4.9)

is locally solvable at τ , that is, for ε > 0 small enough, (4.9) has a strongly regular solution on

[τ − ε, τ ].

Proof. We have seen that for some constant α > 0,

R11(t) +D1(t)
⊤P1(t)D1(t) > αIm1

, R22(t) +D2(t)
⊤P2(t)D2(t) 6 −αIm2

, (4.10)

for almost every t ∈ [0, T ]. Since changing the values of Rii and Di (i = 1, 2) on a set of

Lebesgue measure zero does not affect the solvability of the Riccati equation (4.9), we may

assume without loss of generality that (4.10) holds for all t ∈ [0, T ]. Let us denote by ‖D‖∞ the

essential supremum of D = (D1,D2) ∈ L∞(0, T ;Rn×(m1+m2)), and let

r =
α

4(‖D‖2∞ + 1)
.

Since P1 and P2 are continuous, we can choose a small δ > 0 such that

|Pi(t)− Pi(τ)| 6 r, ∀t ∈ [τ − δ, τ ], i = 1, 2.

Denote by Br(H) the closed ball in S
n with center H and radius r. Then for any t ∈ [τ − δ, τ ]

and M ∈ Br(H),

R11(t) +D1(t)
⊤MD1(t) = R11(t) +D1(t)

⊤HD1(t) +D1(t)
⊤(M −H)D1(t)

> R11(t) +D1(t)
⊤P1(τ)D1(t)− ‖D‖2∞|M −H|Im1

> R11(t) +D1(t)
⊤P1(t)D1(t)− ‖D‖2∞|P1(τ)− P1(t)|Im1

− ‖D‖2∞|M −H|Im1

> αIm1
− 2r‖D‖2∞Im1

>
α

2
Im1

. (4.11)

Similarly, for any t ∈ [τ − δ, τ ] and M ∈ Br(H),

R22(t) +D2(t)
⊤MD2(t) 6 −α

2
Im2

. (4.12)

From (4.11) and (4.12) we conclude that the function

F : [0, T ]× S
n → S

n

defined by (recalling the notation introduced in the proof of Proposition 4.7)

F (t, P ) = PA(t) +A(t)⊤P + C(t)⊤PC(t) +Q(t)− S(t, P )⊤R(t, P )−1S(t, P )
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is Lipschitz continuous in P on [τ − δ, τ ] × Br(H), that is, there exists a constant ρ > 0 such

that

|F (t, P )− F (t,M)| 6 ρ|P −M |, ∀t ∈ [τ − δ, τ ], ∀P,M ∈ Br(H).

Indeed, we see from (4.11) and (4.12) that M(t, P ) and N (t, P ) are invertible for every (t, P ) ∈
[τ − δ, τ ] × Br(H) with

|M(t, P )−1| 6 2

α

√
m1, |N (t, P )−1| 6 2

α

√
m2.

Moreover, since Φ(t, P ) , N (t, P )− L(t, P )⊤M(t, P )−1L(t, P ) 6 N (t, P ), we have

∣∣Φ(t, P )−1
∣∣ 6 2

α

√
m2, ∀(t, P ) ∈ [τ − δ, τ ] × Br(H).

Since the coefficients of the state equation and the weighting matrices in the cost functional are

bounded, we can choose a constant ρ > 0 such that

|L(t, P )|+ |S(t, P )| 6 ρ, ∀(t, P ) ∈ [τ − δ, τ ]× Br(H).

For convenience, in the sequel we shall use the same letter ρ to denote constants independent of

(t, P ) ∈ [τ − δ, τ ] × Br(H). Then we have by Lemma 4.6,

∣∣R(t, P )−1
∣∣2 =

∣∣∣∣∣∣

(
M(t, P ) L(t, P )

L(t, P )⊤ N (t, P )

)−1
∣∣∣∣∣∣

2

= |M(t, P )−1 +M(t, P )−1L(t, P )Φ(t, P )−1L(t, P )⊤M(t, P )−1|2

+ 2|M(t, P )−1L(t, P )Φ(t, P )−1|2 + |Φ(t, P )−1|2

6 ρ, ∀(t, P ) ∈ [τ − δ, τ ]× Br(H).

Noting that for any P,M ∈ S
n,

S(t, P )⊤R(t, P )−1S(t, P )− S(t,M)⊤R(t,M)−1S(t,M)

= [S(t, P )− S(t,M)]⊤R(t, P )−1S(t, P )

+ S(t,M)⊤R(t, P )−1[S(t, P )− S(t,M)]

+ S(t,M)⊤R(t, P )−1D(t)⊤(M − P )D(t)R(t,M)−1S(t,M),

and that

|S(t, P )− S(t,M)| 6 ρ|P −M |, ∀t ∈ [τ − δ, τ ], ∀P,M ∈ Br(H),

we obtain the Lipschitz continuity of F in P by computing |F (t, P )−F (t,M)| directly. Thanks
to the Lipschitz continuity of F , the existence of a strongly regular solution on a small interval

[τ − ε, τ ] follows by the usual Picard’s iteration method (or equivalently, by the contraction

mapping theorem).

We are now ready to give the proof of Theorem 4.3.

Proof of Theorem 4.3. (i) Suppose that (A3) holds for some constant α > 0. Then by

Proposition 4.8, the Riccati equation (4.1) is locally solvable at T . We show that the local

solution of (4.1) can be extended to [0, T ]. To this end, let (τ, T ] be the maximal interval on

which a strongly regular solution P of (4.1) exists. By Proposition 4.7,

P1(t) 6 P (t) 6 P2(t), ∀t ∈ (τ, T ]. (4.13)
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It follows that the function

F (t, P (t)) , P (t)A(t) +A(t)⊤P (t) + C(t)⊤P (t)C(t) +Q(t)

− S(t, P (t))⊤R(t, P (t))−1S(t, P (t))

is bounded on (τ, T ] and hence

P (t) = G+

∫ T

t

F (s, P (s))ds, t ∈ (τ, T ]

is uniformly continuous. Thus, the limit limt→τ P (t) exists and is finite, and thereby we can

extend P to the closed interval [τ, T ] by setting

P (τ) = lim
t→τ

P (t).

Note that (4.13) implies

P1(τ) 6 P (τ) 6 P2(τ).

If τ > 0, then by Proposition 4.8, the solution P can be further extended to an interval larger

than [τ, T ]. This contradicts the maximality of [τ, T ]. So we must have τ = 0.

In order to prove Theorem 4.4, we need the following lemma, whose proof can be found in

[15].

Lemma 4.9. Let (A1)–(A2) hold. A pair (u∗1, u
∗
2) ∈ U1[0, T ] × U2[0, T ] is an open-loop saddle

point for the initial state x if and only if (3.4)–(3.5) hold and with u∗ ,

(
u∗1
u∗2

)
,

B⊤Y ∗ +D⊤Z∗ + SX∗ +Ru∗ = 0, a.e. on [0, T ], a.s., (4.14)

where (X∗, Y ∗, Z∗) is the adapted solution to the following decoupled forward-backward stochas-

tic differential equation (FBSDE, for short):





dX∗(t) = [A(t)X∗(t) +B(t)u∗(t)]dt + [C(t)X∗(t) +D(t)u∗(t)]dW,

dY ∗(t) = −[A(t)⊤Y ∗(t) + C(t)⊤Z∗(t) +Q(t)X∗(t) + S(t)⊤u∗(t)]dt+ Z∗(t)dW,

X∗(0) = x, Y ∗(T ) = GX∗(T ).

(4.15)

Proof of Theorem 4.4. We first prove the uniqueness of an open-loop saddle point. Suppose

that for some x, the game has two open-loop saddle points u∗ and v∗. Then by Lemma 4.9,

ū =

(
ū1

ū2

)
, u∗ − v∗ is an open-loop saddle point for the initial state 0. From (A3), we see that

(0, 0) is also an open-loop saddle point for the initial state 0, since

J(0; 0, u2) 6 J(0; 0, 0) = 0 6 J(0;u1, 0), ∀(u1, u2) ∈ U1[0, T ]× U2[0, T ].

Thus, by the definition of an open-loop saddle point and (A3),

α‖ū1‖2 6 J(0; ū1, 0) 6 J(0; ū1, ū2) 6 J(0; 0, ū2) 6 J(0; 0, 0) = 0,

from which we obtain ū1 = 0. Similarly, we can show ū2 = 0. The uniqueness follows.
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In order to prove the existence of an open-loop saddle point and part (ii), according to

Lemma 4.9 it suffices to show that with u∗ defined by (4.2), the adapted solution of (4.15)

satisfies (4.14). This can be accomplished by verifying that (Y ∗, Z∗) defined by

Y ∗ = PX∗, Z∗ = P (CX∗ +Du∗) (4.16)

is the adapted solution to the BSDE in (4.15). Indeed, integration by parts yields

dY ∗ = ṖX∗dt+ P (A+BΘ)X∗dt+ P (C +DΘ)X∗dW

= −[A⊤P + C⊤PC +Q−Θ⊤R(P )Θ − PBΘ]X∗dt+ P (C +DΘ)X∗dW

= −[A⊤P + C⊤PC +Q+ S(P )⊤Θ− PBΘ]X∗dt+ P (CX∗ +Du∗)dW

= −[A⊤P + C⊤PC +Q+ (C⊤PD + S⊤)Θ]X∗dt+ Z∗dW

= −[A⊤Y ∗ + C⊤P (CX∗ +Du∗) +QX∗ + S⊤u∗]dt+ Z∗dW

= −[A⊤Y ∗ + C⊤Z∗ +QX∗ + S⊤u∗]dt+ Z∗dW.

On the other hand, Y ∗(T ) = P (T )X∗(T ) = GX∗(T ). So with u∗ defined by (4.2), the solution

X∗ to (4.3) and (Y ∗, Z∗) defined by (4.16) satisfy the FBSDE (4.15). Furthermore,

B⊤Y ∗ +D⊤Z∗ + SX∗ +Ru∗ = B⊤PX∗ +D⊤P (C +DΘ)X∗ + SX∗ +RΘX∗

= [B⊤P +D⊤PC + S + (R+D⊤PD)Θ]X∗

= 0.

Finally, by integration by parts, we have

E〈GX∗(T ),X∗(T )〉 = E〈Y ∗(T ),X∗(T )〉

= E〈Y ∗(0),X∗(0)〉+ E

∫ T

0

[
〈B⊤Y ∗ +D⊤Z∗ − SX∗, u∗〉 − 〈QX∗,X∗〉

]
dt. (4.17)

Substituting (4.17) into

J(x;u∗) = E

{
〈GX∗(T ),X∗(T )〉+

∫ T

0

[
〈QX∗,X∗〉+ 2〈SX∗, u∗〉+ 〈Ru∗, u∗〉

]
dt

}
,

and noting that

Y ∗ = PX∗, B⊤Y ∗ +D⊤Z∗ + SX∗ +Ru∗ = 0,

we obtain

J(x;u∗) = E〈Y ∗(0),X∗(0)〉+ E

∫ T

0
〈B⊤Y ∗ +D⊤Z∗ + SX∗ +Ru∗, u∗〉dt = 〈P (0)x, x〉.

This completes the proof.

5 Relation between the open-loop saddle point and the open-

loop lower and upper values

In this section we investigate the connection between the open-loop saddle point and the open-

loop lower and upper values. We shall first show that the existence of an open-loop saddle point

implies the existence of a finite open-loop value and hence the finiteness of the open-loop lower

and upper values, but not vice versa in general. Then, for the deterministic two-person zero-sum
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LQ differential game, we give an alternative proof for Zhang’s result [23] on the equivalence of

the existence of an open-loop saddle point and the finiteness of the open-loop lower and upper

values. In particular, we show that in the deterministic case, the finiteness of the open-loop

lower and upper values implies the solvability of the Riccati equation, for which a fairly explicit

representation of the solution can be obtained.

Proposition 5.1. Let (A1)–(A2) hold. If an open-loop saddle point (u∗1, u
∗
2) exists for the initial

state x, then Problem (SLQG) admits a finite open-loop value at x and

V (x) = J(x;u∗1, u
∗
2).

Proof. Suppose that (u∗1, u
∗
2) is an open-loop saddle point for x. Then

J(x;u∗1, u
∗
2) 6 inf

u1∈U1[0,T ]
J(x;u1, u

∗
2) 6 sup

u2∈U2[0,T ]
inf

u1∈U1[0,T ]
J(x;u1, u2) = V −(x),

J(x;u∗1, u
∗
2) > sup

u2∈U2[0,T ]
J(x;u∗1, u2) > inf

u1∈U1[0,T ]
sup

u2∈U2[0,T ]
J(x;u1, u2) = V +(x).

It follows that

V +(x) 6 J(x;u∗1, u
∗
2) 6 V −(x).

On the other hand, V −(x) 6 V +(x). Therefore, equalities hold in the above.

Proposition 5.1 shows that the existence of an open-loop saddle point implies the finiteness

of the open-loop lower and upper values. However, the converse is not necessarily true in general.

Here is an example.

Example 5.2. Consider the one-dimensional state equation
{
dX(t) = u1(t)dt+ u2(t)dW (t), t ∈ [0, 1],

X(0) = x,

and the quadratic functional

J(x;u1, u2) = E

{
|X(1)|2 +

∫ 1

0

[
t2|u1(t)|2 − |u2(t)|2

]
dt

}
.

For the lower value, we have

V −(x) > inf
u1∈U1[0,T ]

J(x;u1, 0) = inf
u1∈U1[0,T ]

E

{
|X(1)|2 +

∫ 1

0
t2|u1(t)|2dt

}
> 0.

For the upper value, we have

V +(x) 6 sup
u2∈U2[0,T ]

J(x; 0, u2) = sup
u2∈U2[0,T ]

E

{
|X(1)|2 −

∫ 1

0
|u2(t)|2dt

}

= sup
u2∈U2[0,T ]

E

{∣∣∣x+

∫ 1

0
u2(t)dW (t)

∣∣∣
2
−
∫ 1

0
|u2(t)|2dt

}

= x2.

Thus, both the open-loop lower and upper values are finite. Next we show by contradiction that

an open-loop saddle point does not exist for any x 6= 0. If (u∗1, u
∗
2) is an open-loop saddle point

for some x 6= 0, then by Lemma 4.9, the adapted solution (X∗, Y ∗, Z∗) to the FBSDE




dX∗(t) = u∗1(t)dt+ u∗2(t)dW (t), t ∈ [0, 1],

dY ∗(t) = Z∗(t)dW (t), t ∈ [0, 1],

X∗(0) = x, Y ∗(1) = X∗(1)
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should satisfy the following conditions:

Y ∗(t) + t2u1(t) = 0, a.e. t ∈ [0, 1], a.s.,

Z∗(t)− u2(t) = 0, a.e. t ∈ [0, 1], a.s.

By taking expectations, we have





dE[X∗(t)] = E[u∗1(t)]dt, t ∈ [0, 1],

dE[Y ∗(t)] = 0, t ∈ [0, 1],

E[X∗(0)] = x, E[Y ∗(1)] = E[X∗(1)],

(5.1)

and

E[Y ∗(t)] + t2E[u1(t)] = 0, a.e. t ∈ [0, 1]. (5.2)

From (5.1) we see that

E[Y ∗(t)] = E[X∗(1)] = x+

∫ 1

0
E[u∗1(s)]ds, ∀t ∈ [0, 1].

So (5.2) is equivalent to

E[X∗(1)] + t2E[u1(t)] = 0, a.e. t ∈ [0, 1]. (5.3)

Since t 7→ E[u1(t)] is square-integrable on [0, 1], (5.3) implies that E[X∗(1)] must be zero and

hence E[u1(t)] = 0 for almost every t ∈ [0, 1]. This yields a contradiction:

0 = E[X∗(1)] = x+

∫ 1

0
E[u∗1(s)]ds = x.

Therefore, this problem has no open-loop saddle point for nonzero initial states.

In the previous discussion we have taken the starting time of the game to be zero for simplic-

ity. Sometimes it is convenient if we consider Problem (SLQG) over every subinterval [t, T ] of

[0, T ]. In this case, the quadratic functional and the open-loop lower and upper values depend

on the initial time t as well:

J(t, x;u1, u2) = E

{
〈GX(T ),X(T )〉 +

∫ T

t

〈



Q S⊤
1 S⊤

2

S1 R11 R12

S2 R21 R22






X

u1

u2


,



X

u1

u2



〉
ds

}
,

V −(t, x) = sup
u2∈U2[t,T ]

inf
u1∈U1[t,T ]

J(t, x;u1, u2),

V +(t, x) = inf
u1∈U1[t,T ]

sup
u2∈U2[t,T ]

J(t, x;u1, u2),

where for i = 1, 2,

Ui[t, T ] =
{
ϕ : [t, T ]× Ω → R

mi
∣∣ ϕ ∈ F, E

∫ T

t
|ϕ(s)|2ds < ∞

}
.

Obviously, with the initial time zero replaced by t, the previous results remain true. Keeping

this in mind, we now look at a special case of Problem (SLQG), the deterministic two-person

zero-sum LQ differential game, in which the diffusion part of the state equation is absent, i.e.,

C(s) = 0, D1(s) = 0, D2(s) = 0, ∀s ∈ [0, T ], (5.4)
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Theorem 5.3. Let (A1)–(A2) and (5.4) hold. Suppose that

R11 ≫ 0, R22 ≪ 0. (5.5)

Then the following statements are equivalent:

(i) The open-loop lower and upper values V ±(t, x) are finite for every initial pair (t, x).

(ii) A unique open-loop saddle point exists for every initial pair (t, x).

Moreover, if the above statements hold true, then the Riccati equation
{
Ṗ + PA+A⊤P +Q− (PB + S⊤)R−1(B⊤P + S) = 0,

P (T ) = G
(5.6)

admits a unique solution P ∈ C([0, T ];Sn), and the unique open-loop saddle point u∗ =

(
u∗1
u∗2

)

for the initial pair (t, x) is given by the following closed-loop representation:

u∗(s) = Θ(s)X∗(s), s ∈ [t, T ], (5.7)

where Θ = −R−1(B⊤P + S) and X∗ is the solution to the closed-loop system

{
dX∗(s) = [A(s) +B(s)Θ(s)]X∗(s)ds,

X∗(t) = x.

In order to prove the above result, we need the following lemma.

Lemma 5.4. Let Ψ ∈ R
(2n)×(2n) be an invertible matrix and Σ ∈ R

n×n. Suppose that for every

x ∈ R
n, there exists a y ∈ R

n such that

(Σ,−In)Ψ

(
x

y

)
= 0. (5.8)

Then the n× n matrix (Σ,−In)Ψ

(
0

In

)
is invertible.

Proof. Suppose to the contrary that there is a nonzero vector η ∈ R
n such that

η⊤(Σ,−In)Ψ

(
0

In

)
= 0. (5.9)

Let x ∈ R
n be an arbitrary vector, and let y = y(x) be such that (5.8) holds. Then

(Σ,−In)Ψ

(
In

0

)
x = −(Σ,−In)Ψ

(
0

In

)
y,

and hence

η⊤(Σ,−In)Ψ

(
In

0

)
x = −η⊤(Σ,−In)Ψ

(
0

In

)
y = 0.

Since x ∈ R
n is arbitrary, it follows from the above that

η⊤(Σ,−In)Ψ

(
In

0

)
= 0. (5.10)
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Combining (5.9) and (5.10) we obtain

η⊤(Σ,−In)Ψ

(
0 In

In 0

)
= (0, 0).

Since Ψ is invertible, we have η⊤(Σ,−In) = (0, 0) and hence η⊤ = 0. This is a contradiction to

the choice of η.

Proof of Theorem 5.3. Clearly, (ii) implies (i). For the converse implication, we consider for

λ > 0, the quadratic functional Jλ(t, x;u1, u2) defined by

Jλ(t, x;u1, u2) , J(t, x;u1, u2) + λE

∫ T

t

|u1(s)|2ds − λE

∫ T

t

|u2(s)|2ds.

Since V ±(0, x) are finite for all x, we see from Theorem 3.3 that

Jλ(0, 0;u1, 0) > λ‖u1‖2, ∀u1 ∈ U1[0, T ],

Jλ(0, 0; 0, u2) 6 −λ‖u2‖2, ∀u2 ∈ U2[0, T ].

Then it follows from Theorem 4.3 that the following Riccati equation admits a solution Pλ ∈
C([0, T ];Sn):

{
Ṗλ + PλA+A⊤Pλ +Q− (PλB + S⊤)R−1

λ (B⊤Pλ + S) = 0,

Pλ(T ) = G,

where

Rλ =

(
R11 + λIm1

R12

R21 R22 − λIm2

)
.

Further, by Theorem 4.4 and Proposition 5.1,

Vλ(t, x) = 〈Pλ(t)x, x〉, ∀x ∈ R
n.

Since V ±(t, x) are finite for all (t, x), we conclude by Proposition 3.5 that for each t ∈ [0, T ],

{Pλ(t)} has a convergent subsequence {Pλk
(t)}∞k=1 (limk→∞ λk = 0) with limit P (t). We claim

that the function P is a solution to the Riccati equation (5.6). To this end, let us fix t ∈ [0, T )

and assume without loss of generality that {Pλ(t)} itself converges to P (t) as λ → 0. Consider,

for each x ∈ R
n, the following matrix forward ODE:





Ẋλ(s) = (A−BR−1
λ S)Xλ −BR−1

λ B⊤Yλ,

Ẏλ(s) = −(A−BR−1
λ S)⊤Yλ − (Q− S⊤R−1

λ S)Xλ,

Xλ(t) = x, Yλ(t) = Pλ(t)x.

It has a unique solution (Xλ, Yλ) ∈ C([t, T ];Rn)×C([t, T ];Rn), and one can verify directly that

Xλ is given by the ODE

{
Ẋλ(s) = (A−BR−1

λ
S −BR−1

λ
B⊤Pλ)Xλ,

Xλ(t) = x,

and that Yλ is given by

Yλ(s) = Pλ(s)Xλ(s), s ∈ [t, T ]. (5.11)
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Let Ψλ(s) be the fundamental matrix for the homogeneous system

ẋ(s) =

(
A−BR−1

λ S −BR−1
λ B⊤

−(Q− S⊤R−1
λ

S) −(A−BR−1
λ

S)⊤

)
x(s), s ∈ [0, T ].

Then we have (
Xλ(s)

Yλ(s)

)
= Ψλ(s)Ψλ(t)

−1

(
x

Pλ(t)x

)
.

Note that as λ → 0, Pλ(t) converges to P (t), and for all s ∈ [0, T ], Ψλ(s) converges to Ψ(s), the

fundamental matrix for the homogeneous system

ẋ(s) =

(
A−BR−1S −BR−1B⊤

−(Q− S⊤R−1S) −(A−BR−1S)⊤

)
x(s), s ∈ [0, T ]. (5.12)

Thus, (X(s), Y (s)) , limλ→0(Xλ(s), Yλ(s)) exists for every s ∈ [t, T ] and
(
X(s)

Y (s)

)
= Ψ(s)Ψ(t)−1

(
x

P (t)x

)
.

Noting that by (5.11),

Y (T ) = lim
λ→0

Yλ(T ) = lim
λ→0

GXλ(T ) = GX(T ),

we obtain

0 = (G,−In)

(
X(T )

Y (T )

)
= (G,−In)

[
Ψ(T )Ψ(t)−1

]
(

x

P (t)x

)
.

Since x is arbitrary, it follows from Lemma 5.4 that

Λ(t) , (G,−In)
[
Ψ(T )Ψ(t)−1

]
(

0

In

)
(5.13)

is invertible. Consequently, by noting that

(G,−In)
[
Ψ(T )Ψ(t)−1

]
(

0

In

)
P (t)x+ (G,−In)

[
Ψ(T )Ψ(t)−1

]
(
In

0

)
x

= (G,−In)
[
Ψ(T )Ψ(t)−1

]
(

x

P (t)x

)

= 0, ∀x ∈ R
n,

we obtain

P (t) = −Λ(t)−1(G,−In)
[
Ψ(T )Ψ(t)−1

]
(
In

0

)
. (5.14)

From (5.14) we see that the function P is differentiable. By differentiating both sides of

Λ(t)P (t) = −(G,−In)
[
Ψ(T )Ψ(t)−1

]
(
In

0

)

and then pre-multiplying by Λ(t)−1, it can be shown that P satisfies the Riccati equation (5.6).

The uniqueness of a solution to (5.6) can be proved by a standard argument using Gronwall’s

inequality. Having the existence of a solution to (5.6), we can use the same argument as in the

proof of Theorem 4.4 to show that the pair (u∗1, u
∗
2) defined by (5.7) is the unique open-loop

saddle point for the initial pair (t, x).
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From the above proof, we have the following corollary to Theorem 5.3.

Corollary 5.5. Under the assumptions of Theorem 5.3, the solution to the Riccati equation

(5.6) admits the representation (5.14), where Ψ is the fundamental matrix for the homogeneous

system (5.12) and Λ is given by (5.13).

6 Conclusion

In this paper, we studied the open-loop saddle point, as well as the open-loop lower and upper

values, for two-person zero-sum stochastic LQ differential games with deterministic coefficients.

We derived a necessary condition (3.4) (respectively, (3.5)) for the finiteness of the open-loop

lower (respectively, upper) value (Theorem 3.3) and showed that under (A3), a condition slightly

stronger than (3.4)–(3.5), an open-loop saddle point uniquely exists and admits a closed-loop

representation (Theorem 4.4). We found that the existence of an open-loop saddle point implies

the finiteness of open-loop lower and upper values (Proposition 5.1), but the latter does not

even imply the existence of an open-loop value (Example 3.2). The Riccati equation plays

a crucial role throughout this paper. By investigating the connection between the stochastic

LQ differential game and two stochastic LQ optimal control problems and examining the local

existence of a solution to the Riccati equation, we established the globally strongly regular

solvability of the Riccati equation under the condition (A3) (Theorem 4.3). We also presented an

example showing that the strongly regular solvability of the Riccati equation does not necessarily

imply the condition (A3) (Example 4.5). Figure 1 briefly summarizes these results. For the

deterministic two-person zero-sum LQ differential game, which can be regarded as a special case

of the stochastic game, we provided an alternative proof for Zhang’s result [23] on the equivalence

of the existence of an open-loop saddle point and the finiteness of the open-loop lower and upper

values. As a by-product of our approach, it was shown that the Riccati equation has an explicit

solution when the open-loop lower and upper values are finite (Theorem 5.3 and Corollary 5.5).

V −(x) > −∞ and V +(x) < +∞

~ww

V (x) exists and is finite

~ww

Open-loop saddle point exists

~ww

Both P1 and P2 exist

ww�

Riccati equation (4.1) of

the game has a solution P

V −(x) > −∞

ww�

J(0;u1, 0) > 0

~ww

∃α > 0 s.t. J(0;u1, 0) > α‖u1‖2

~w�

Riccati equation (4.5) of Problem

(SLQ)1 has a solution P1

V +(x) < +∞

ww�

J(0; 0, u2) 6 0

~ww

∃α > 0 s.t. J(0; 0, u2) 6 −α‖u2‖2

~w�

Riccati equation (4.7) of Problem

(SLQ)2 has a solution P2

Figure 1: Summary of the results

Acknowledgement. The author would like to thank Prof. Jiongmin Yong for his helpful

advice on various technical issues examined in this paper, which has led to this improved version

of the paper.

24



References

[1] T. Başar and P. Bernhard, H∞-Optimal Control and Related Minimax Design Problems:

A Dynamic Game Approach, 2nd ed., Birkhäuser Boston, Boston, 1995.
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