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We suggest a novel approach for the efficient and reliable approximation of the
Pareto front of sufficiently smooth unconstrained bi-criteria optimization problems.
Optimality conditions formulated for weighted sum scalarizations of the problem
yield a description of (parts of) the Pareto front as a parametric curve, parameterized
by the scalarization parameter (i.e., the weight in the weighted sum scalarization).
Its sensitivity w.r.t. parameter variations can be described by an ordinary differ-
ential equation (ODE). Starting from an arbitrary initial Pareto optimal solution,
the Pareto front can then be traced by numerical integration. We provide an error
analysis based on Lipschitz properties and suggest an explicit Runge-Kutta method
for the numerical solution of the ODE. The method is validated on bi-criteria convex
quadratic programming problems for which the exact solution is explicitly known,
and numerically tested on complex bi-criteria shape optimization problems involving
finite element discretizations of the state equation.
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1 Introduction

Multi-criteria optimization models gain more and more importance in economical and in tech-
nical applications. Decision makers have to balance between economical and ecological criteria
and compromise between reliability and cost, to mention only two examples. In this situation,
a concise representation of the set of Pareto optimal solutions, i.e., the set of those solutions
that can not be improved in one criterion without deterioration in at least one other criterion,
provides important trade-off information and thus supports the decision maker in identifying
relevant solution alternatives. In this paper, we aim at the reliable and efficient approxima-
tion of the Pareto front of convex and sufficiently smooth unconstrained bi-criteria optimization
problems.
Scalarization methods are a prevalent tool to compute representations and approximations of
the Pareto front. We refer to [12, 21, 28] for a thorough introduction to the field and to

1

ar
X

iv
:2

00
4.

10
82

0v
1 

 [
m

at
h.

O
C

] 
 2

2 
A

pr
 2

02
0



[9, 19] for a discussion of the pros and cons of the weighted sum scalarization. Assuming
differentiability, optimality conditions like, for example, the classical KKT-conditions, can be
used to derive Pareto optimal solutions, see, for example, [12, 17]. The Pareto front can then be
recovered using subdivision techniques [10, 18, 31], sensitivities with respect to the scalarization
parameters [13], or continuation and predictor-corrector methods [13, 20, 23, 24, 26, 29, 30].
The latter usually rely on scalarizations, leading to single-objective counterpart problems that
depend on one or several scalarization parameters (e.g., the weights in the case of weighted sum
scalarizations) and that can hence be interpreted as parametric optimization problems. Under
appropriate differentiability assumptions, predictor-corrector-type methods can then be related
to the single-objective case (see, for example, [2, 15]).
This paper is organized as follows: In Section 2 the unconstrained bi-criteria optimization prob-
lem is introduced together with the (slightly atypical) notation that is used throughout this
paper (Section 2.1). Under appropriate differentiability assumptions, the problem of tracing
the Pareto front is reformulated as an explicit ordinary differential equation (ODE). We derive
existence and continuity results for its solution (Section 2.2), assuming local Lipschitz continu-
ity of the Hessians of both objective functions. In Section 2.3 the results are extended to the
case that initial Pareto critical solutions can only be approximated. We note that this case is
particularly relevant for complex real world applications as discussed in the case study presented
in Section 4.2. This representation of the Pareto front is the basis for the application of well-
established numerical integration methods for Pareto front tracing. We suggest the application
of Runge-Kutta methods and provide local and global error estimates in Section 3. The nu-
merical results presented in Section 4 for quadratic test problems (Section 4.1) and for complex
bi-criteria shape optimization problems (Section 4.2) validate the high solution quality and the
efficiency of the approach.

2 Pareto tracing using ODEs

2.1 Some notation for bi-criteria Pareto optimality

We first collect some basic notation and facts on bi-criteria unconstrained optimization. For a
detailed introduction into the field of multi-criteria optimization, see, for example, the books
[12, 21]. Let J : Rn → R2 be a bi-criteria objective function that is second order differentiable
with continuous derivative. For notational reasons that will become clear later, we denote the
individual objective functions by J0 and J1, i.e., J = (J0, J1). For x, x′ ∈ Rn, x′ dominates
x, if Ji(x

′) ≤ Ji(x) for i = 0, 1 and Ji(x
′) < Ji(x) for at least one i ∈ {0, 1}. A solution

x ∈ Rn is Pareto optimal, if it is not dominated by any solution x′ ∈ Rn and x is locally
Pareto optimal, if there exists some open neighborhood U of x such that no x′ ∈ U dominates
x. The corresponding outcome vector J(x) is called nondominated or locally nondominated,
respectively. A search direction d ∈ Rn is a bi-criteria descent direction at x, if ∇J>i (x)d < 0 for
i ∈ {0, 1}, where ∇Ji(x) is the gradient of Ji. If at x there is no bi-criteria descent direction, x is
called Pareto critical. Obviously, being Pareto critical is a necessary but not sufficient condition
for being locally Pareto optimal. For ε > 0, x is called ε-Pareto critical, if there is no search
direction d ∈ Rn such that ∇xJi(x)>d ≤ −ε‖d‖ and ∇xJj(x)>d < 0, where i, j ∈ {0, 1} with
i 6= j.
In the following, we work with the weighted sum scalarization given by Jλ = (1−λ)J0 +λJ1 for
λ ∈ [0, 1] the preference parameter. x then is (locally) optimal with respect to λ, if Jλ(x) ≤ Jλ(x′)
for x′ ∈ Rn (x′ ∈ U) and x is critical for Jλ if ∇xJλ(x) = (1 − λ)∇xJ0(x) + λ∇xJ1(x) = 0. If
this condition holds approximately such that ‖∇xJλ(x)‖ ≤ ε for some small ε > 0, we say that
x is ε-critical with respect to Jλ. For λ ∈ (0, 1) this clearly implies x being ε′-Pareto critical
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with ε′ = ε
min{λ,(1−λ)} .

Let ∇2
xJi(x) be the Hessian matrix of Ji at x, i ∈ {0, 1} and likewise ∇2

xJλ(x) the Hessian of
Jλ. We say that x fulfills the second order optimality conditions for Jλ strictly if x is Jλ-critical
and ∇2

xJλ is strictly positive definite. If x fulfills strict second order Jλ-optimality, it is locally
a (unique) Jλ-optimal point which also implies local Pareto optimality of x [17, 21].
Note that the parameter values λ = 0 and λ = 1 correspond to the single-criteria minimization
of the individual objective functions J0 and J1, respectively. If in this case the optimal solution
is (locally) unique, then it is (locally) Pareto optimal. This is, for example, the case when the
second order optimality condition is satisfied strictly. Otherwise, the set of optimal solutions
may contain (locally) weakly Pareto optimal solutions that are not locally Pareto optimal, where
a solution x′ ∈ Rn is called (locally) weakly Pareto optimal if there is no other solution x ∈ Rn
(x ∈ U for some open neighborhood U of x′) such that Ji(x) < Ji(x

′) for i = 0, 1.
Conversely, if the outcome set {J(x) : x ∈ Rn} is R2

+-convex, i.e., if the set {J(x) + r : x ∈
Rn, r ∈ R2 and ri ≥ 0, i = 0, 1} is convex, then all Pareto optimal solutions can be retrieved by
minimizing Jλ with an appropriate scalarization parameter λ ∈ [0, 1]. Moreover, if the outcome
set is R2

+-convex and -compact, then the nondominated set is connected in the outcome space.
We refer again to [12] and the references therein for a more detailed discussion of this and of
related topics.

2.2 Implicit and explicit ODEs for local Pareto optimality

From now on we assume that ∇2
xJi is locally Lipschitz continuous with Lipschitz constant

LH(x, δ) on the ball Bδ(x) of radius δ centered at x, i.e. ‖∇2
xJi(x)−∇2

xJi(x
′)‖ ≤ LH(x, δ)‖x−x′‖,

i = 0, 1, where ‖ · ‖ is the spectral norm.
Let us first assume that we have found points x(λ), which fulfill criticality for Jλ on some
interval λ ∈ [λl, λu] ⊆ [0, 1]. Suppose furthermore that x(λ) is a differentiable function of λ.
Differentiating the first order optimality conditions ∇xJλ(x(λ)) = 0 with respect to λ, we obtain

∇2
xJλ(x(λ)) ẋ(λ) = ∇xJ0(x(λ))−∇xJ1(x(λ)). (1)

If x(λ) furthermore fulfills the second order optimality conditions with respect to Jλ strictly,
this implicit ordinary differential equation (ODE) can be rearranged to a standard ODE ẋ(λ) =
f(λ, x(λ)) with f defined by

ẋ(λ) =
(
∇2
xJλ(x(λ))

)−1
(∇xJ0(x(λ))−∇xJ1(x(λ))) = f(λ, x(λ)). (2)

Let us conversely assume that we have found x0 which fulfills the strict second order optimality
condition for Jλ0 . We easily see that the right hand side of (2) as a function of x is Lipschitz
on some open neighborhood U of x0 with a Lipschitz constant Lf that is uniform in λ on some
interval [λl, λu] ⊆ [0, 1]:

Lemma 1. Let λ ∈ [0, 1] and let Λ(λ, x) be the smallest eigenvalue of ∇2
xJλ(x). Then

(i) Λ(λ, x) is locally Lipschitz in x with Lipschitz constant LH(x, δ) on Bδ(x);

(ii) Λ(λ, x) is Lipschitz in λ on [0, 1] with Lipschitz constant Lλ(x) = ‖∇2
xJ0(x)‖+‖∇2

xJ1(x)‖;

(iii) Let 1 > % > 0, then for x′ ∈ Bδ(x) and λ′ ∈ [0, 1] such that

LH(x, δ)‖x− x′‖+ Lλ(x)|λ− λ′| ≤ (1− %)Λ(λ, x),

we have Λ(λ′, x′) ≥ %Λ(λ, x);
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(iv) Let [λl, λu] containing λ and Bδ(x) be given such that LH(x, δ)δ + Lλ(x) max{λu − λ, λ−
λl} ≤ (1 − %)Λ(λ, x). This is always possible as LH(x, δ) is monotonically decreasing in
δ. Then f(λ′, x′) is uniformly (in λ′) Lipschitz in x′ on [λl, λu] × Bδ(x) with Lipschitz
constant bounded by

Lf (x, δ, %) = 2

((
1

%Λ(λ, x)

)
C2(x, δ) +

(
1

%Λ(λ, x)

)2

LH(x, δ)C1(x, δ)

)
,

where C1 = maxi∈{0,1} supx′∈Bδ(x) ‖∇xJi(x′)‖ and C2 = maxi∈{0,1} supx′∈Bδ(x) ‖∇2
xJi(x

′)‖.

Proof. (i) Let x′ and x′′ be in Bδ(x). Without loss of generality we assume that Λ(λ, x′) ≥
Λ(λ, x′′). Then,

0 < Λ(λ, x′)− Λ(λ, x′′) = inf
u∈Rn:‖u‖=1

u>∇2
xJλ(x′)u− Λ(λ, x′′)

≤ inf
u∈Rn:‖u‖=1

u>∇2
xJλ(x′′)u+ sup

u∈Rn:‖u‖=1
u>
(
∇2
xJλ(x′)−∇2

xJλ(x′′)
)
u− Λ(λ, x′′)

= sup
u∈Rn:‖u‖=1

u>
(
∇2
xJλ(x′)−∇2

xJλ(x′′)
)
u = ‖∇2

xJλ(x′)−∇2
xJλ(x′′)‖

≤ LH(x, δ) ‖x′ − x′′‖.

(ii) We proceed similarly as in (i) and obtain for λ′, λ′′ ∈ [0, 1] with Λ(λ′, x) ≥ Λ(λ′′, x)

0 < Λ(λ′, x)− Λ(λ′′, x) ≤ sup
u∈Rn:‖u‖=1

u>
(
∇2
xJλ′(x)−∇2

xJλ′′(x)
)
u

= ‖∇2
xJλ′(x)−∇2

xJλ′′(x)‖ ≤
(
‖∇2

xJ0(x)‖+ ‖∇2
xJ1(x)‖

)
|λ′ − λ′′|.

(iii) For x′ ∈ Bδ(x), (iii) now follows from (i) and (ii) by

Λ(λ′, x′) = Λ(λ, x) +
(
Λ(λ′, x)− Λ(λ, x)

)
+
(
Λ(λ′, x′)− Λ(λ′, x)

)
≥ Λ(λ, x)− LH(x, δ)‖x− x′‖ − Lλ(x)|λ− λ′| ≥ %Λ(λ, x).

(iv) We first recall the following fact: Let A0, A1 be two strictly positive definite n×n matrices
with lowest eigenvalue not smaller than ε and let Aτ = τA1 + (1− τ)A0 for τ ∈ [0, 1]. Then Aτ
is again positive definite with lowest eigenvalue not smaller than ε and we obtain by using the
sub-multiplicativity of the spectral norm

‖A−1
1 −A

−1
0 ‖ =

∥∥∥∥∫ 1

0

d

dτ
A−1
τ dτ

∥∥∥∥ =

∥∥∥∥∫ 1

0
A−1
τ

d

dτ
AτA

−1
τ dτ

∥∥∥∥
=

∥∥∥∥∫ 1

0
A−1
τ (A1 −A0)A−1

τ dτ

∥∥∥∥ ≤ ∫ 1

0

∥∥A−1
τ (A1 −A0)A−1

τ

∥∥ dτ ≤ 1

ε2
‖A1 −A0‖.

Consequently, for x′, x′′ ∈ Bδ(x) and λ′ ∈ [λl, λu] we can use (iii) and the above estimate with
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ε = ρΛ(λ, x), see (iii), and obtain

‖f(λ′, x′)− f(λ′, x′′)‖ ≤
∥∥∥(∇2

xJλ′(x
′)
)−1 (∇xJ0(x′)−∇xJ0(x′′)−∇xJ1(x′) +∇xJ1(x′′)

)∥∥∥
+
∥∥∥((∇2

xJλ′(x
′)
)−1 −

(
∇2
xJλ′(x

′′)
)−1
) (
∇xJ0(x′′)−∇xJ1(x′′)

)∥∥∥
≤ 1

%Λ(λ, x)

(
sup

x′′′∈Bδ(x)
‖∇2

xJ0(x′′′)‖+ sup
x′′′∈Bδ(x)

‖∇2
xJ1(x′′′)‖

)
‖x′ − x′′‖

+

(
1

%Λ(λ, x)

)2 ∥∥∇2
xJλ′(x

′)−∇2
xJλ′(x

′′)
∥∥ sup
x′′′∈Bδ(x)

∥∥∇xJ0(x′′′)−∇xJ1(x′′′)
∥∥

≤ 2

(
1

%Λ(λ, x)
C2(x, δ) +

(
1

%Λ(λ, x)

)2

LH(x, δ)C1(x, δ)

)
‖x′ − x′′‖.

The locally Lipschitz property of f(λ, x) established in Lemma 1 (iv) provides us with the crucial
input to the Picard-Lindelöf theorem, that can now be applied as follows:

Theorem 2. Let x0 ∈ Rn and λ0 ∈ [0, 1] such that x0 fulfills the strict second order optimality
conditions with respect to Jλ0. Using the notation of Lemma 1, let ∆, δ > 0 and 1 > % > 0 such
that LH(x0, δ)δ+Lλ(x0)∆ ≤ (1−%)Λ(λ0, x0). Let C3(x0, δ,∆) = supλ∈[λ0−∆,λ0+∆]

x∈Bδ(x0)

‖f(λ, x)‖. Let

furthermore ∆′ = min{∆, δ/C3(x0, δ,∆)} and λl = λ0 −∆′, λu = λ0 −∆′. Then,

(i) The solution x(λ) of (2) with initial condition x(λ0) = x0 at λ0 exists and is unique locally
on the interval [λl, λu]. x(λ) is continuously differentiable on this interval;

(ii) x(λ) can be extended to a solution of (2) to a maximal time interval (λ′l, λ
′
u) ⊆ [0, 1]

containing λ0 such that Λ(λ, x(λ)) > 0 for λ ∈ (λ′l, λ
′
u) and either λu = 1 (λl = 0) or

Λ(λ, x(λ)) has accumulation point 0 as λ↗ λ′u (λ↘ λ′l);

(iii) On this interval, x(λ) fulfills the strict second order optimality conditions with respect to
Jλ and thus is locally Jλ optimal and locally Pareto optimal with respect to J .

Proof. (i) By Lemma 1 (iv), the conditions of the Picard Lindelöf theorem are fulfilled. The
assertion thus follows from the local existence and uniqueness of the solutions of ODEs, see e.g.
[1, Theorem 15.2].
Statement (ii) immediately follows from the fact that, since Λ(λu, x(λu)) ≥ ρΛ(λ0, x(λ0)), the

argument from (i) can be iterated with λ0 replaced by λu = λ
(1)
0 and x0 with x(λu). This

procedure can be iterated, until λ
(n)
0 is either reaching one or Λ(λ

(n)
0 , x(λ

(n)
0 )) is approaching 0.

Now define the maximal upper boundary λ′u = limn→∞ λ
(n)
0 . An analogous argument holds for

the minimal lower bound λ′l.
To see (iii), we recall that for any λ ∈ (λ′l, λ

′
u), (2) implies (1) and thus

∇xJλ(x(λ)) = ∇xJλ0(x0) +

∫ λ

λ0

d

dτ
∇xJτ (x(τ)) dτ = 0, (3)

hence x(λ) is critical for Jλ and thus Pareto critical. As furthermore λ ∈ (λ′l, λ
′
u), ∇2

xJλ(x(λ))
is strictly positive definite as by (ii) Λ(λ, x) > 0 holds, hence x(λ) fulfills strict second order
optimality for Jλ and is locally Pareto optimal.
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Remark 3. (i) For notational convenience we consider an unrestricted domain, i.e., all x ∈ Rn
are feasible solutions. However, all results of Section 2 easily generalize to the case, where Ji(x)
is only defined on an open subset of Rn. In this case, in the local constructions given e.g. in
Lemma 1 and Theorem 2 the constants δ > 0 have to be chosen smaller than the distance to the
boundary of the domain of definition and the results still hold with the obvious adaptations on
the maximal intervals of existence (λ′l, λ

′
u).

(ii) In the degenerate case that the two objective functions are equal, i.e., if J0 = J1, then
Jλ = J0 = J1 for all λ ∈ [0, 1]. In this case, any optimal solution of J0 (assuming that it exists)
is Pareto optimal, and the nondominated set consists of exactly one (ideal) outcome vector. Then
(2) becomes ẋ(λ) = 0, which is in accordance with the fact that the nondominated set consists
of a unique outcome vector.

Several estimates for the numerical approximation of x(λ) rely on the regularity of x(λ). We
therefore recall the following standard result on the regularity of solutions to ODEs.

Lemma 4. Assume that Ji, i ∈ {0, 1}, is p+ 2 times differentiable with locally bounded p+ 2-
nd derivative, p ∈ N0. Let [λl, λu] ⊂ (λ′l, λ

′
u) be a closed interval in the maximal interval from

Theorem 2(ii). Then, x(λ) is p+1 times differentiable with bounded p+1st derivative on [λl, λu].

Proof. To prove the p+1-order regularity, we note that, if a matrix A is invertible, the operation
of inverting is C∞ on a neighborhood of A. Denoting the right hand side of (2) with f(λ, x) =
f (0)(λ, x), we see that f (0) is p times differentiable in λ and x. For l = 1, . . . , p, we recursively
define f (l)(λ, x) = ∂

∂λf
(l−1)(λ, x)+∇xf (l−1)(λ, x)>f(λ, x) where f (l) is p−l times differentiable in

x and λ and locally bounded where p = l. Differentiating x(l)(λ) =
(
d
dλ

)l
x(λ) = f (l−1)(λ, x(λ))

with respect to λ, we see that x(l+1)(λ) = f (l)(λ, x(λ)) for l = 0, . . . , p exists and is bounded on
[λl, λu] if l = p.

2.3 Approximately Pareto critical initial conditions and numerical stability

In Theorem 2 we assumed that the initial value x0 fulfills the strict second order optimality
conditions for Jλ0 . Thus x0 is the (local) optimum to the single-criteria optimization problem
given by the objective function Jλ0 . In many applications, we do not know x0, but have to
use approximate solutions to the optimization problem posed by Jλ0 , instead. Suppose that
x0,k → x0 are the iterates of some optimization algorithm started sufficiently close to x0 such
that the optimization problem is convex and convergence is guaranteed. For example, x0,k can
be obtained by a gradient descent method or Newton-type method applied to Jλ0 .
Ultimately, we may assume that x0,k is sufficiently close to x0 such that also ∇2

xJλ0(x0,k) is
strictly positive definite. Assuming that the optimization algorithm that produces x0,k applies
a gradient based stopping criterion, e.g. ‖∇xJλ0(x0,k)‖ ≤ ε for some ε > 0, the terminal output
x0,k is ε-Jλ0 critical. In the following we see that starting the ODE (2) in x0,k provides ε- critical
solutions xk(λ) with respect to Jλ for λ in some interval containing λ0.
In many applications, the function f(λ, x(λ)) has to be approximated using numerical schemes
fl(λ, x) with limited accuracy. Here l is some parameter that controls the numerical error in
the sense that εl(C, λ) = supx∈C ‖f(λ, x)− fl(λ, x)‖ → 0 if l →∞ and C ⊆ Rn is compact. It is
therefore desirable to be able to control the effect of the numerical error in f −fl on the solution
of (2) along with the error caused by the error in the initial condition x0 − x0,k. The following
proposition uses the standard repertoire of ODE theory to provide comprehensive estimates:

Proposition 5. Let x0 fulfill the strict second order optimality condition with respect to Jλ0

and x0,k → x0 as k →∞. Then,
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(i) Let ε > 0. For k sufficiently large, solutions xk(λ) to (2) started with initial condition
xk(λ0) = x0,k at λ0 exist on some maximal intervals (λ′l,k, λ

′
u,k) ⊂ [0, 1] and xk(λ) is Jλ

ε-critical and hence ε′ = ε
min{λ,(1−λ)} -Pareto critical for λ ∈ (λ′l,k, λ

′
u,k);

(ii) Let I = [λl, λu] ⊂ (λ′l, λ
′
u) a compact sub-interval of the maximal interval from (i) where

x(λ) is shown to exist. Let Λ(I) = infλ∈I Λ(λ, x(λ)), LH(I, δ) = supλ∈I LH(x(λ), δ) and
Ci(δ, I) = supλ∈I Ci(x(λ), δ), i = {1, 2}. Let furthermore 0 < δ < Λ(I)/LH(I, δ), which is
always possible as LH(I, δ) is finite and monotonically increasing in δ. We also set

Lf (δ, I) = 2

((
1

Λ(I)− δLH(I, δ)

)
C2(δ, I) +

(
1

Λ(I)− δLH(I, δ)

)2

LH(I, δ)C1(δ, I)

)
.

Then, for k sufficiently large, xk(λ) exists for λ ∈ [λl, λu] and

‖x(·)− xk(·)‖C(I,Rn) ≤ ‖x0 − x0,k‖ eLf (δ,I) max{λ0−λl,λu−λ0}, (4)

where ‖ · ‖C(I,Rn) stands for the maximum norm on I. Hence, xk(λ) converges with the
same rate to the locally Jλ and locally Pareto optimal point x(λ) as x0,k converges to the
locally Jλ0 optimal and locally Pareto optimal point x0.

(iii) Let, in addition, fl be a locally Lipschitz function such that f − fl → 0 uniformly on
compact sets. Then, for δ as in (ii) and k, l sufficiently large, the solution xk;l(λ) of
ẋk;l(λ) = fl(λ, xk;l(λ)) with initial condition xk;l(λ0) = x0,k at λ0 exists on I and we have
the estimate

‖x(·)− xk;l(·)‖C(I,Rn) ≤ ‖x0 − x0,k‖ eLf (δ,I) max{λ0−λl,λu−λ0}

+
1

Lf (δ, I)

(
eLf (δ,I) max{λ0−λl,λu−λ0} − 1

)
‖fl − f‖C(U(I,δ),Rn)

,
(5)

where U(I, δ) =
⋃
λ∈I Bδ(x(λ)) and ‖ · ‖

C(U(I,δ),Rn)
is the maximum norm on U(I, δ).

Proof. (i) If k is sufficiently large such that δ = ‖x0,k − x0‖ fulfills δLH(x, δ) < Λ(λ0, x),
Λ(λ0, x0,k) > 0 and thus xk(λ) exists for some maximal interval (λ′l,k, λ

′
u,k) by repeating the

proof of Theorem 2 (ii). Furthermore, as Jλ0(x) is continuous in x, x0,k is ε-critical with respect
to Jλ0 if k is sufficiently large. By integration as in (3) one furthermore obtains that

∇xJλ(xk(λ)) = ∇xJλ0(x0,k).

Thus, xk(λ) then is ε-critical for Jλ for λ ∈ I if k is sufficiently large. The statement on ε′-Pareto
criticality then follows as in Subsection 2.1.
(ii) Let now [λl, λu] ⊆ (λ′l, λ

′
u) be some closed interval and let δ > 0 be sufficiently small such that

0 < δ < Λ(I)/LH(I, δ). Let k be sufficiently large such that ‖x0−x0,k‖ < δe−Lf (δ,I) max{λ0−λl,λu−λ0}.
Then, this in particular implies x0,k ∈ Bδ(x0) ⊆ U(I, δ) =

⋃
λ∈I Bδ(x(λ)). By application of

Lemma 1(iv) with % = 1− δLH(I, δ)/Λ(I), LH(I, δ) gives an upper bound for the uniform Lip-
schitz constant of f on U(I, δ). It follows that xk(λ) exists on some interval In = [λl,k, λu.k] ⊆ I
containing λ0. Application of the Gronwall lemma leads to the well known estimate on the
continuous dependence on the initial condition (see e.g. Theorem 12.1 in [1])

‖x(λ)− xk(λ)‖ ≤ ‖x0 − x0,k‖ eLf (I,δ)|λ−λ0| ≤ ‖x0 − x0,k‖ eLf (I,δ) max{λ0−λl,λu−λ0} < δ, (6)

for λ ∈ In. Therefore, xk(λ) ∈ U(I, δ) and xk(·) can be further extended beyond In. The above
estimate applied repeatedly shows that I = [λl, λu] is contained in the maximal interval of
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existence I ′n = (λ′l,n, λ
′
u,n) for xk(·) since for λ ∈ I, xk(λ) never leaves U(I, δ) and the inequality

(6) is valid for all λ ∈ I, which proves the proposition’s second assertion.
(iii) Statement (iii) is also covered by Theorem 12.1 in [1] by essentially the same arguments as
in (ii). We leave the details to the reader.

If the computational complexity is known for the computation of x0,k and fl with a given
precision ε, inequality (5) provides the basis for finding an efficient balance between the cost of
approximating the initial condition x0 and approximating the function f .

3 Pareto front tracing by numerical integration

For an approximation xk of the Pareto front we have to solve the ODE

ẋk(λ) = f(λ, xk(λ)) (7)

with right hand side f as defined in (2). To approximate (7) by numerical integration we need
an initial value x0,k = x(λ0) at λ0. An obvious choice is λ0 = 0. We could also start at λ0 = 1,
following the (ε-)Pareto critical points backwards, or at a compromise solution obtained, for
example, for λ0 = 0.5. Note that the problem might not be well-defined for λ0 = 0 or λ0 = 1, in
which case another starting point λ0 is chosen. This allows for following the Pareto critical points
in two directions at the same time, solving two independent initial value problems separately.
In the following, we denote the ith iterate of a numerical integration method by xi,k.
The most basic method for solving (7) numerically is the explicit Euler method. It approximates
the derivative of xk by

ẋk(λ) ≈ xk(λ+ h)− xk(λ)

h
,

yielding

xk(λ+ h) ≈ x1,k := xk(λ) + h
(
∇2
xJλ(xk(λ))

)−1 (∇xJ0(x(λ))−∇xJ1(xk(λ))
)
,

where h > 0 denotes the step-size of the method. The global error of the Euler method behaves
like Ch, with a constant C depending on the problem [8].
When higher order is demanded, Runge-Kutta methods [3, 27] can be used.

Definition 6 (Explicit Runge-Kutta method). Let s ∈ N, h > 0 and let a2,1, a3,1, a3,2, . . . , as,1,
as,2, . . . , as,s−1, b1, . . . , bs, c2, . . . , cs ∈ R. Then the method

k1 = f(λ0, x0,k)

k2 = f(λ0 + c2h, x0,k + ha2,1k1)

k3 = f(λ0 + c3h, x0,k + h(a3,1k1 + a3,2k2))

... (8)

ks = f(λ0 + csh, x0,k + h(as,1k1 + · · ·+ as,s−1ks−1))

x1,k = x0,k + h(b1k1 + · · ·+ bsks)

is called s-stage explicit Runge-Kutta method for (7).

Definition 7 (c.f. [16], Definition II.1.2, p. 134). A Runge-Kutta method (8) is of order p if
for sufficiently smooth problems (1) there exists a K independent from h such that

‖xk(λ0 + h)− x1,k‖ ≤ Khp+1.
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The following rigorous error estimate holds true:

Theorem 8 (c.f. [16], Theorem II.3.1, p. 157). If the Runge-Kutta method (8) is of order p and
if f(λ, xk(λ)) is p-times continuously differentiable, then we have

‖xk(λ0 + h)− x1,k‖ ≤ hp+1

(
1

(p+ 1)!
max
t∈[0,1]

‖x(p+1)
k (λ0 + th)‖+

1

p!

s∑
i=1

|bi| max
t∈[0,1]

‖k(p)
i (th)‖

)
.

So, for the present f in order for an order p Runge-Kutta method to be applicable it has to be
continuously differentiable p times. This is the case, if the objective functions J0 and J1 are
(p + 2) times continuously differentiable. Theorem 8 holds for each step of the Runge-Kutta
method, so for j = 1, . . . , N and using xj−1,k as initial value in step j we have estimates

‖ej‖ := ‖xk(λ0 + jh)− xj,k‖ ≤ Chp+1. (9)

Using similar ideas as those that were used to prove Proposition 5 and using the fact that due
to Lemma 1 f is Lipschitz in λ we can show the following:

Theorem 9 (c.f. [16], Theorem II.3.4, p. 160). Let U be a neighborhood of {(λ, xk(λ))|λ ∈ I}
where xk(λ) is the exact solution of (7) and I as defined in Section 2. Suppose that in U∥∥∥∥∂f∂x

∥∥∥∥ ≤ Lfx
and that the local estimates (9) hold in U . Then the global error

E = xk(λu)− xN,k

can be estimated as

‖E‖ ≤ hp C
Lfx

(
eLfx |I| − 1

)
,

given that h is small enough to remain in U .

In our numerical experiments we are using 2nd-order and 4th-order Runge-Kutta methods.
The simple 2nd-order method is given by

x1,k = x0,k + hf(0 +
h

2
, x0,k +

h

2
f(0, x0,k)).

The 4th-order accurate classical Runge-Kutta method (or RK4-method) is given by

k1 = f(λ0, x0,k)

k2 = f(λ0 +
h

2
, x0,k +

k1

2
)

k3 = f(λ0 +
h

2
, x0,k +

k2

2
)

k4 = f(λ0 + h, x0,k + k3)

x1,k = x0,k + h

(
1

6
k1 +

2

6
k2 +

2

6
k3 +

1

6
k4

)
,
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so it is obtained by choosing:

0
c2 = 1

2 a2,1 = 1
2

c3 = 1
2 a3,1 = 0 a3,2 = 1

2
c4 = 1 a4,1 = 0 a4,2 = 0 a4,3 = 1

b1 = 1
6 b2 = 1

3 b3 = 1
3 b4 = 1

6

This representation is known as Butcher tableau [16]. RK4 is of order p = 4.
To obtain the Pareto front numerically using an arbitrary explicit Runge-Kutta scheme for a
given starting point λ0, we use Algorithm 1.

Algorithm 1: Pareto front tracing

Input : start point (λ0, xk(λ0)), number of integration points N , number of steps s
and parameters ai,`, bi, ci, i = 1, . . . , s, ` = 1, . . . , i− 1 of the chosen explicit
Runge-Kutta method

Output: approximations to points on the Pareto front (λj , xk(λj)), j = 1, . . . , N
h = (λu − λ0)/N
for j = 1, . . . , N do

for i = 1, . . . , s do

ki = f(λ0 + jh+
i∑̀
=2

c`h, xj−1,k + h
i−1∑̀
=1

ai,`ki)

end

xj,k = xj−1,k + h
s∑̀
=1

b`k`

end

Remark 10. Analogously to traditional time integration, we have used only integration forward
in λ, here. The Pareto front can also be traced backwards by going from λ0 up to λl and reverting
the λ-direction using proper scaling.

4 Numerical results

The approach presented in the previous sections is tested on a simple bi-criteria convex quadratic
optimization problem (Section 4.1) as well as on a case study in bi-criteria shape optimization
(Section 4.2).

4.1 Pareto tracing for bi-criteria convex quadratic optimization

We first consider an unconstrained and strictly convex bi-criteria optimization problem with two
quadratic objective functions Ji : Rn → R, i = 0, 1 given by Ji(x) = 1

2(x− χi)TQi(x− χi) with
strictly positive definite matrices Qi ∈ Rn×n and arbitrary but fixed vectors χi ∈ Rn. Since this
problem allows for an analytic description of the Pareto optimal set (see, for example, [33]), it
is particularly well-suited to evaluate the quality of approximated Pareto fronts.
Indeed, due to the strict convexity of Ji, i = 0, 1, every Pareto optimal solution must be the
unique optimal solution x(λ) of a weighted sum scalarization Jλ = (1−λ)J0+λJ1 with λ ∈ [0, 1],
satisfying the first-order optimality condition ∇xJλ(x(λ)) = 0. Conversely, since the Hessian
∇2
xJλ(x(λ)) = (1− λ)Q0 + λQ1 is positive definite for all λ ∈ [0, 1] (irrespective of x(λ)), every

such solution x(λ) satisfies the second order optimality condition strictly and is thus Pareto
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optimal. The first order optimality condition yields an explicit formula for the solution x(λ) as
a function of λ ∈ [0, 1]:

∇xJλ(x(λ)) = (1− λ)Q0(x(λ)− χ0) + λQ1(x(λ)− χ1) = 0

⇔ x(λ) = [(1− λ)Q0 + λQ1]−1((1− λ)Q0χ0 + λQ1χ1). (10)

The two limiting points of the Pareto optimal set are obtained as x(0) = χ0 (the unique minimum
of J0) and x(1) = χ1 (the unique minimum of J1).
In order to trace the Pareto front using numerical integration as described in Sections 2 and 3
above, the first order optimality conditions are differentiated w.r.t. λ, yielding the implicit ODE
(1) as

d

dλ
∇xJλ(x(λ)) = 0 ⇔ ((1− λ)Q0 + λQ1)ẋ(λ)−Q0(x(λ)− χ0) +Q1(x(λ)− χ1) = 0

for λ ∈ [0, 1]. Since ∇2
xJλ(x(λ)) is positive definite, this can be rearranged to a standard ODE

(2) as follows:

ẋ(λ) = ((1− λ)Q0 + λQ1)−1(Q0(x(λ)− χ0)−Q1(x(λ)− χ1)) = f(λ, x(λ)), (11)

with possible initial values x0 = x(λ0) = χ0 (for λ0 = 0) or x0 = x(λ0) = χ1 (for λ0 = 1).

Remark 11. Since ∇2
xJλ(x) = (1 − λ)Q0 + λQ1 is independent of x, and since it is positive

definite for all λ ∈ [0, 1], its smallest eigenvalue Λ(λ, x) is bounded below by a constant ε > 0
on [0, 1], i.e., for I = [0, 1] we have Λ(I) = infλ∈I Λ(λ, x(λ)) ≥ ε > 0. This implies that we can
choose uniform constants L], ] = H, f, λ, in Lemma 1 and Proposition 5 where LH can be set
to zero. Moreover, the above analysis shows that f(λ, x(λ)) is of class C∞ and hence high order
iteration schemes are possible in this case, see Theorem 8 and Lemma 4 above.

Following [33], we generate random matrices Q0 and Q1, by Qj = M>j Mj , where Mj is a sample
from a n × n-random matrix with independent standard normal distributed entries, j = 0, 1.
Likewise, χj are n-dimensional random vectors with independent standard normal entries. We
provide numerical tests for dimension n = 100. In Figure 1 we compare the analytic solution
x(λ) with numerical solutions obtained from integrating (11) numerically with initial value
x0 = x(0.5) given by the exact solution obtained from (10). We also apply a simple, gradient
based descent algorithm using the Armijo rule (with parameter ρ = 0.5) starting at x0,0 = 0 in
order to obtain approximate starting points x0,k to integrate for approximate Pareto solutions,
as described in Proposition 5(ii).

4.2 Pareto tracing for bi-criteria shape optimization

In the following, the Pareto tracing approach is applied to the bi-criteria shape optimization of a
ceramic component under tensile load presented in [11]. As optimization criteria we consider the
volume of the component on one hand, and its reliability on the other hand. Here, the reliability
of the component is assessed via its probability of failure as introduced in [6] and implemented
for 2D shapes in [5]. We refer to [11] for a detailed derivation of the model and provide a brief
summary below.
Let Ω ⊂ R2 be a compact body that is filled with ceramic material and has a piecewise Lipschitz
boundary. We additionally assume that the boundary ∂Ω of Ω consists of three parts

∂Ω = cl(∂ΩD) ∪ cl(∂ΩNfixed
) ∪ cl(∂ΩNfree

),
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Figure 1: Comparison of the analytic solution (10) for the Pareto front (orange, thick solid) with
the objective values of the numerically integrated solution of the ODE (11) started
at the exact solution (solid blue, λ0 = 0.5) and integrated solutions (dashed light
blue, λ0 = 0.5) started at the 5th, 10th, 15th and 20th iteration of a gradient descent
algorithm starting at x0,0 = 0 (dotted light blue). The dimension of the problem is
n = 100. Numerical integration of the ODE uses 4th order Runge-Kutta method with
20 iterations, 10 in each direction (step length h = 0.05).

where on ∂ΩD the Dirichlet boundary condition holds, the surface forces may act on ∂ΩNfixed
,

and ∂ΩNfree
is the part that can be altered in an optimization approach. We further assume that

a bounded open set Ω̂ ⊂ R2 that satisfies the cone property, see, e.g., [6], contains all feasible
shapes, see Figure 2 for an example.
An admissible shape is then defined as an element of the set

Oad := {Ω ⊂ Ω̂ : ∂ΩD ⊂ ∂Ω, ∂ΩNfree
⊂ ∂Ω, Ω̂ and Ω satisfy the cone property}.

Since ceramics behave according to linear elasticity theory, see, e.g., [7, 22], one can express the
state equation which describes the behaviour of the ceramic component under external forces
like tensile load by an elliptic partial differential equation as follows:

−div(σ(u(z))) = f̄(z) for z ∈ Ω
u(z) = 0 for z ∈ ∂ΩD

σ(u(z))n(z) = ḡ(z) for z ∈ ∂ΩNfixed

σ(u(z))n(z) = 0 for z ∈ ∂ΩNfree

(12)

Here, f̄ ∈ L2(Ω,R2) represents the volume forces and ḡ ∈ L2(∂ΩNfixed
,R2) the forces acting on

the surface ∂ΩNfixed
. The resulting displacement of the component is given by u ∈ H1(Ω,R2),
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Figure 2: Illustration of a possible admissible shape Ω ∈ Oad, see also Figure 1 in [11].

and Du denotes the Jacobian of u. Then the linear strain tensor ε ∈ L2(Ω,R2×2) has the form
ε(u(z)) := 1

2(Du(z) + (Du(z))>). With the Lamé constants λ̂ = νE
(1+ν)(1−2ν) and µ̂ = E

2(1+ν)

obtained from Young’s modulus E and Poisson’s ratio ν the stress tensor σ ∈ L2(Ω,R2×2) is
given by σ(u(z)) = λ̂ tr(ε(u(z)))I + 2µ̂ε(u(z)). The outward pointing normal at z ∈ ∂Ω is
denoted by n(z) and is defined nearly everywhere on ∂Ω.
Now the considered bi-criteria shape optimization problem can be formulated as

min
Ω∈Oad

J(Ω) := (J0(Ω), J1(Ω))

s.t. u ∈ H1(Ω,R2) solves the state equation (12),
(13)

where J0(Ω) :=
∫

Ω dz denotes the volume of the shape Ω ∈ Oad and J1(Ω) is an intensity
measure modelling its probability of failure. Following [6, 11] we model the probability of failure
as an intensity measure of a Poisson point process which counts the “critical” cracks in a ceramic
component, where “critical” means that these cracks may initiate ruptures under tensile load.
This leads to the following Weibull-type functional which is used as the second objective in our
study:

J1(Ω) :=
1

2π

∫
Ω

∫
S1


(
n>σ(Du(z))n

)+

σ0


m

dn dz.

Here, (·)+ := max(·, 0), S1 is the unit sphere in R2, σ0 is a positive constant and the parameter
m is called Weibull module and typically assumes values between 5 and 25. We refer to [6] for
further details.
The implementation of [5] is used to evaluate the objectives and gradients. It is based on standard
Lagrangian finite elements to discretize a two-dimensional shape Ω ∈ Oad by an nx × ny finite
element mesh Z := (ZΩ

ij)nx×ny . Numerical quadrature is used to calculate all occurring integrals
and an adjoint approach is utilized to speed up the computation of the gradients. We adopt
the geometry definition of [11] that takes advantage of the geometry of the considered shapes to
reduce the number of variables. In a first step, all x-components of the grid points are fixed and
mean line and thickness values %ml ∈ Rnx and %th ∈ Rnx+ are used to represent the discretized
shape Z. Since we observed in [11] that, when starting from a reasonable initial solution,
nonnegativity constraints on the thickness values are automatically satisfied during all iterations
of the optimization process we omit these constraints in the following. The numerical tests
presented below confirm this observation. In a second step, these meanline and thickness values
are fitted with B-splines with a prespecified number of nB basis functions ϑj , j = 1, . . . , nB,
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yielding smoothed meanline and thickness values by computing

%̂ml(z) :=

nB∑
j=1

xml
j ϑj(z) and %̂th(z) :=

nB∑
j=1

xth
j ϑj(z), z ∈ R,

see, e.g., [25]. The B-spline coefficients x = (xml, xth) ∈ RnB×RnB+ are then used as optimization
variables in (13), replacing Ji(Ω) by Ji(Z) ≈ Ji(x), i = 0, 1.
In order to trace the Pareto front of the bi-criteria shape optimization problem (13) with the
methodology described in the previous sections, we first have to compute the right hand side
f(λ, x(λ)) of (2) for problem (13). Towards this end, the nB × nB Hessian matrix ∇2

xJi(x),
i = 0, 1, is approximated by the finite difference method with a precision of εH = 10−6. Note that
this can be done in parallel. For the stability of our approach under an approximate evaluation
of f(λ, x(λ)), we refer to Proposition 5 (iii). For the numerical solution of the ODE (2) we apply
an order 2 Runge-Kutta method, thus requiring that the discretized objective functions Ji,
i = 0, 1, are at least 4-times continuously differentiable (c.f. Theorem 8). This is clearly satisfied
for the discretized volume J0(x) which is, as a polynomial, infinitely differentiable. For the
discretized intensity measure J1(x), we can build on the analysis for J1(Z) performed in [5, 14].
Here, the discretized state equation (12) is of the form B(Z)U(Z) = F (Z), where U(Z) is the
discretized displacement, B(Z) the positive definite stiffness matrix and F (Z) the discretized
forces. From the assembly of B(Z) and F (Z) in [5, 14] it can be seen that B(Z), F (Z) ∈ C∞.
Using the identity U(Z) = B(Z)−1F (Z), where the right hand side is infinitely differentiable,
it can be shown iteratively that also U(Z) ∈ C∞. Moreover, in [4, Lemma 6.5.5] it is shown
that ζ(σ) = ((n>σ n)+)m is m times continuously differentiable w.r.t. σ. We can conclude that
this is also the case for J1(Z). The order 2 Runge-Kutta method is hence applicable for Weibull
modules 5 ≤ m ≤ 25.
Initial values for Pareto front tracing can be obtained by any of the methods suggested in [11].
In the following case study, one weighted sum scalarization of the bi-criteria shape optimization
problem (13) is solved using a gradient descent algorithm with Armijo step lengths.

Test Cases

We consider the same 2D test cases that were investigated in [11] to obtain comparable results.
The two 2D shapes are made from ceramic beryllium oxide (BeO) and are under tensile load.
The material parameters of BeO are set according to [22, 32], i.e., Poisson’s ratio is set to
ν = 0.25, Young’s modulus to E = 320 GPa and the ultimate tensile strength to 140 MPa. We
choose m = 5 for the Weibull module. Moreover, both shapes have a fixed height of 0.2 m on
the left and right boundaries and a fixed length of 1.0 m. The left boundary corresponds to
the Dirichlet boundary ∂ΩD, i.e., the boundary is fixed and no forces act on it, while the right
boundary is also fixed but corresponds to the Neumann boundary ∂ΩNfixed

, i.e., the surface forces
ḡ act on that boundary. The remaining upper and lower boundaries correspond to the part that
is force free, i.e., ∂ΩNfree

, which can be modified during the optimization process. Following [11],
we neglect the gravity forces (i.e., f̄ = 0) and set the tensile load to ḡ = 107 Pa.
Note that individual optima for J0 and J1 do not exist under these assumptions. Indeed, the
infimum of the volume J0 is zero, and hence optimal shapes do not exist when minimizing J0

without any additional constraints. Conversely, when considering solely the probability of failure
J1, then the reliability can always be improved when increasing the volume (as long as we neglect
gravity forces). As a consequence, the weighted sum scalarization Jλ can only have solutions for
weights λ ∈ (0, 1), where we can expect problems the closer λ gets to either boundary of this
interval. This is confirmed by the numerical tests presented below.
The shapes are discretized using a triangular 41 × 7 mesh, i.e., nx = 41 and ny = 7. Meanline
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and thickness values are fitted with B-splines with nB = 5 basis functions, yielding ten B-spline
coefficients in total. Since the coefficients that correspond to the fixed boundaries are fixed,
this results in six optimization variables, c.f. [11]. All numerical experiments are realized in R
(version 3.5) using the implementation of [5] to compute the objective values and the (adjoint)
gradients on the mesh. We use the implementation of the Runge-Kutta method provided by the
R package “deSolve” to solve the resulting ODE.

Test Case 1: A Straight Joint

For the first test case we fix the left and right boundaries at the same height and apply the
surface forces ḡ on the right boundary. Under these circumstances, straight rods with varying
thickness that connect the boundaries can be expected as solutions of the bi-criteria shape
optimization problem (13). The numerical studies in [11] support this intuition, see Figure 3 for
some exemplary results.
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Figure 3: Exemplary solutions of the weighted sum method of [11] and the initial shape x0.

This is the motivation for using a discretized straight rod with constant thickness of 0.2 m as the
initial shape x0 for Pareto front tracing, see Figure 3c, even though this particular shape was not
the outcome of any weighted sum scalarization considered in [11]. To determine a corresponding
weight λ0 such that x0 is Jλ0-critical the equation ‖∇Jλ(x0)‖ = 0 is solved for λ0 ∈ (0, 1). The
resulting weight has the value λ0 ≈ 0.813 and we therefore have x0 ≈ x(0.813). Numerical
integration in [λl, λu] = [λ0 − 0.66, λ0 + 0.1] with a step size of h = 0.01 resulted in solutions
of varying thickness that are also straight rods and hence coincide with the results of [11], see
Figure 4 for some exemplary shapes corresponding to those from Figure 3.
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Figure 4: Exemplary results of the numerical integration of the ODE (2) in positive and negative
direction, starting from x0.

In Figure 5 the outcome vectors obtained from numerical integration are compared in the ob-
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jective space with the outcome vectors obtained in [11] from the repeated solution of weighted
sum scalarizations using a gradient descent algorithm. The results nicely document that the
Pareto tracing approach not only covers the weighted sum solutions, but also approximates a
larger part of the (local) Pareto front.
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Figure 5: Comparison of the outcome vectors of Pareto tracing (blue) starting in x0 and the
outcome vectors obtained from the repeated application of gradient descent in [11]
(green).

Figure 6 shows the results from evaluating the first and the second order optimality conditions
during the course of Pareto tracing, validating the statement of Proposition 5(ii). Indeed, the
results nicely show that the computed shapes consistently achieve good w.r.t. first and second
order optimality tests.

Test Case 2: An S-Shaped Joint

In the second test case the right boundary is placed about 0.27 m lower than the left boundary,
and hence an S-shaped joint is sought rather than a straight joint. In this case, the optimal
shapes are not obvious. The numerical studies of [11] suggest that the (locally) Pareto optimal
shapes resemble the profiles of whales with varying volume. Figure 7 shows exemplary solutions
from [11] obtained from solving weighted sum scalarizations with weights λ = 0.25, 0.4, 0.6, 0.8.
For λ < 0.25 and λ > 0.8 the gradient descent method did not converge and hence we omit
these solutions for the comparison.
Since this test case is more complex than Test Case 1 above, we choose two initial values and
compare the respective solutions obtained with Pareto tracing. Towards this end, we consider the
weighted sum solutions x0,k′,0.25 := x0,k′ = xk′(0.25) and x0,k′′,0.8 := x0,k′′ = xk′′(0.8) as initial
values, i.e., the two solutions with the smallest and largest weight for which the gradient descent
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Figure 6: Straight Joint: Evaluating first and second order optimality during Pareto tracing

method from [11] converged. Numerical integration is applied on [λl, λu] = [0.25, 0.8], moving
in positive (forward) direction when starting from x0,k′,0.25, and moving in negative (backward)
direction when starting from x0,k′′,0.8. In both cases, we use a step length of h = 0.01.
A comparison of the outcome vectors obtained from forward and backward Pareto tracing and
the results from [11] are illustrated in the outcome space in Figure 8a. The green points corre-
spond to the outcome vectors obtained from the repeated solution of weighted sum scalarizations
using gradient descent, where the left most point on the curve corresponds to x0,k′,0.25 and the
right most point corresponds to x0,k′′,0.8, respectively. Nearly all results for xk′(λ) with initial
value λ0 = 0.25 (purple trajectory) are dominated by weighted sum solutions, while all of the
weighted sum solutions (with obviously the exception of x0,k′′,0.8) are dominated by the results
for xk′′(λ) with initial value λ0 = 0.8 (blue trajectory). The shapes obtained for xk′′(λ) also
resemble the profiles of whales, see Figure 9, and are therefore coherent with the weighted sum
solutions of [11].
We further investigated how the solutions differ when the Pareto tracing method is applied
starting from a sub-optimal initial value that is obtained if the gradient descent algorithm from
[11] is stopped prematurely. In Figure 8b the trajectories of three further ODE solves starting
in suboptimal initial solutions x0,k1,0.8, x0,k2,0.8 and x0,k3,0.8, with corresponding initial values
λ0,k1 ≈ 0.808, λ0,k2 ≈ 0.810 and λ0,k3 ≈ 0.814, respectively, are shown. Backward numerical
integration with a step length of h = 0.01 is applied on [λl,ki , λu,ki ] = [λ0,ki − 0.55, λ0,ki ], i =
1, 2, 3, respectively. Here, the grey dots show iterates of the gradient descent method applied
to the weighted sum objective J0.8. Despite the relatively bad choices of the initial values,
we observe that the solutions w.r.t. k1, k2 and k3 still yield good approximations of the (local)
Pareto front, see Figures 8b and 10. This can be partially explained by the fact that the gradient
descent algorithm applied to the weighted sum objective J0.8 first approaches (an extension of)
the Pareto front by making large steps w.r.t. J1 (apparently this leads to larger improvements
of J0.8 in early stages of the optimization process), and moves along the Pareto front during
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Figure 7: Exemplary solutions of the weighted sum method of [11], including x0,k′,0.25 and
x0,k′′,0.8.

later stages of the optimization when the relation between the potential improvements w.r.t. J0

and J1 changes in favor of J0. The sub-optimal initial solutions x0,k1,0.8, x0,k2,0.8 and x0,k3,0.8

approximate an extension of the Pareto front w.r.t. improved J1-values and thus provide very
good starting points for Pareto tracing. Note, however, that this is a problem specific observation
that largely depends on the value of λ0 and, even more so, on the relative variability (slopes) of
the considered objective functions. A similar behavior can not be expected in general, as can
be seen, for example, in the quadratic case illustrated in Figure 1.
One can also observe that in the above examples Pareto tracing yields a more dense approx-
imation of the (local) Pareto front than the iterative solution of weighted sum problems in
[11]. Note that this density depends on the choice of the step length h in the Pareto tracing
method. Indeed, small step lengths induce dense approximations, however, at comparably high
computational costs, while large step lengths may be used to quickly obtain a rough estimate of
the Pareto front with rather few and distant solutions. So, the question arises how robust the
Pareto tracing approach is w.r.t. the step length h, and in particular for larger values of h. In
Figure 11 the results of some further ODE solves starting in x0,k′′,0.8 with different step lengths
h = 0.001, 0.04, 0.08 are compared. We observe that the results obtained for a larger step length
are approximately equal to a subset of the outcome vectors obtained for smaller step lengths
(assuming divisibility among the considered step lengths). Hence, in this case it is possible to
obtain a relatively coarse representation of the (local) Pareto front by using a relatively large
step length. This was also observed for the simpler Test Case 1. Note that while the step length
h remains constant during the course of the Pareto tracing method, the distance between two
consecutive outcome vectors on the approximated (local) Pareto front may differ significantly.
This is due to the fact that each iterate x(λ) approximates the solution of a weighted sum
scalarization Jλ. It is a well-known fact that equally spaced weights λ ∈ [0, 1] do in general not
yield equally spaced outcome vectors on the Pareto front, see, e.g., [9] for a detailed analysis of
this issue.
From a practical point of view, rough approximations of the Pareto front are of particular
interest for computationally expensive problems like the bi-criteria shape optimization problem
considered here. Indeed, computing one weighted sum solution with the method suggested in [11]
came with the cost of kW+1 gradient computations and kW ·kA+1 objective function evaluations,
where kW denotes the number of iterations of the gradient descent algorithm and kA denotes the
number of Armijo iterations. For Test Case 2 the gradient descent algorithm needed on average
106.7 iterations, and per iteration on average 5.3 Armijo iterations to compute a solution for a
given weight, i.e., 107.7 gradient computations and 566.5 objective function evaluations in total.

18



●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●●●●●● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

0.14 0.16 0.18 0.20

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

J0

J 1

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●●●●●●●●●●●●●● ● ● ● ● ● ● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

PT starting in x0,k',0.25

PT starting in x0,k'',0.8

Results of the w.s. descent

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

0.146 0.150 0.154 0.158

0.
44

0.
48

0.
52

J0

J 1

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

(a) Pareto tracing started in x0,k′,0.25 (purple) and
x0,k′′,0.8 (blue), compared to the weighted sum re-
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(b) Pareto tracing started in premature solutions
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(red), compared to the results for x0,k′′,0.8 (blue;
c.f. left figure)

Figure 8: Comparison of the outcome vectors obtained with Pareto tracing using forward and
backward integration (left) and starting from sub-optimal initial solutions (right)

Given a sufficiently good initial solution, the Pareto tracing approach needs only 14 gradient
computations and one objective function evaluation to compute one further solution. This is a
significant speed up that, in combination with the robustness w.r.t. the step length, allows for
an approximation of a wide range of solutions at reasonable computational cost.

5 Conclusion and Outlook

We have presented a novel approach for approximating the Pareto front by tracing it using
numerical time integration. The optimality conditions of a scalarization Jλ were differentiated
w.r.t. the scalarization parameter λ to obtain an implicit ODE describing the front. If second
order optimality conditions are fulfilled, a non-implicit ODE is obtained with a Lipschitz right
hand side and the existence and uniqueness of the solution that is a representation of the
Pareto front was shown. The smoothness of the Pareto front depends on the smoothness of the
objective function. Further, we have shown how this extends to ε-critical starting points. The
use of standard explicit Runge-Kutta methods was established and the well-known convergence
estimates can be applied. The technique was demonstrated for a simple bi-criteria convex
quadratic optimization problem, as well as for problems originating from shape optimization.
We have not yet covered the effects of using adapted and/or adaptive step sizes in λ, e.g., in
order to obtain equispaced points on the Pareto front. Different approaches are possible in this
respect, see, for example, [13, 29]. Further, we will extend the approach to constrained problems
via KKT conditions, and also consider other scalarizations. While we have only considered the
bi-criteria case here, the approach can also be used to handle more than two criteria. In the
case of d+ 1 criteria, the front can be described by a d-dimensional functional (using again, e.g.,
weighted sum scalarizations with d independent scalarization parameters) that can be obtained
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Figure 9: Exemplary shapes obtained with backward Pareto tracing in x0,k′′,0.8.
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Figure 10: S-Shaped Joint: Evaluating first and second order optimality during Pareto tracing
in dependence of the quality of the initial value

numerically using a d-dimensional mesh and numerical integration starting from some mesh
point. This will also be considered in the future.
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