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Abstract. We study the Schwarz overlapping domain decomposition method applied to the
Poisson problem on a special family of domains, which by construction consist of a union of a large
number of fixed-size subdomains. These domains are motivated by applications in computational
chemistry where the subdomains consist of van der Waals balls. As is usual in the theory of domain
decomposition methods, the rate of convergence of the Schwarz method is related to a stable subspace
decomposition. We derive such a stable decomposition for this family of domains and analyze how the
stability “constant” depends on relevant geometric properties of the domain. For this, we introduce
new descriptors that are used to formalize the geometry for the family of domains. We show how,
for an increasing number of subdomains, the rate of convergence of the Schwarz method depends
on specific local geometry descriptors and on one global geometry descriptor. The analysis also
naturally provides lower bounds in terms of the descriptors for the smallest eigenvalue of the Laplace
eigenvalue problem for this family of domains.

1. Introduction. In this article, we analyze scaling properties of the Schwarz
overlapping domain decomposition method for the Poisson problem: find u ∈ H1

0 (ΩM )
such that

−∆u = f, in H−1(ΩM ) :=
(
H1

0 (ΩM )
)′
.

Here ΩM ⊂ R3 is a bounded Lipschitz domain and H1
0 (ΩM ) denotes the usual Sobolev

space of functions with weak derivatives in L2(ΩM ) with vanishing Dirichlet-trace.
We investigate the behavior of the Schwarz iterative method when ΩM consists of a
increasing number M = 2, 3, . . . of fixed-size overlapping subdomains {Ωi}Mi=1. We are
particularly interested in the case that the subdomains Ωi are overlapping balls with
comparable radii.

The motivation for studying this problem comes from numerical simulations in
computational chemistry. Recently, a domain decomposition method has been pro-
posed [1, 16, 18, 19, 22] in the context of so-called implicit solvation models, more
precisely for the COnductor-like Screening MOdel (COSMO) [14] which is a partic-
ular type of continuum solvation model (CSM). In a nutshell, such models account
for the mutual polarization between a solvent, described by an infinite continuum,
and a charge distribution of a given solute molecule of interest. It therefore takes
the long-range polarization response of the environment (solvent) into account. We
refer to the review articles [17, 24] for a thorough introduction to continuum solvation
models.

While for most of the applications of domain decomposition methods, the compu-
tational domain remains fixed (such as in engineering-like applications) and finer and
finer meshes are considered, applications in the present context deal with different
molecules consisting of a (very) large number of atoms. Each atom is associated with
a corresponding van der Waals (vdW)-ball with a given and element-specific radius
so that the total computational domain consists of the union of those vdW-balls. For
a set of different molecules the computational domain is therefore changing and the
Schwarz domain decomposition exhibits different convergence properties. For exam-
ple, for an (artificial) linear chain of atoms of increasing length the Schwarz domain
decomposition is scalable and does not require a so-called coarse space correction [1].

A general convergence analysis of the Schwarz domain decomposition iterative
method for the family of domains ΩM , M = 2, 3, . . ., can not easily be deduced from
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classical analyses of domain decomposition methods available in the literature, e.g.
[8, 25, 26]. This is due to the fact that these classical analyses assume a fixed domain
that is decomposed in an increasing number of (overlapping) subdomains of decreasing
size, whereas in the setting outlined above the subdomains all have a given comparable
size and the global domain changes when the number of subdomains is increased. It
turns out that for a convergence analysis in the latter case it is not obvious how
results and tools available in classical analyses can be applied. Therefore, in recent
papers [2, 3, 4, 5, 6] this topic has been addressed and new results on the convergence
of the Schwarz domain decomposition iterative method on a family of domains ΩM ,
M = 2, 3, . . ., were obtained. More precisely, the first theoretical results were obtained
for a chain to rectangles in two dimensions [2, 3], which were later generalized to chain-
like structures of disks and balls in two respectively three dimensions [4, 5]. These
results, however, cover only (very) special cases as each of the subdomains has a
nonempty intersection with the boundary of the computational domain ΩM , i.e. no
balls are allowed that are contained inside ΩM . A first step towards a more general
analysis can be found in [6], which analyzes how the error propagates and contracts
in the maximum norm in a general geometry. It is shown that for a molecule with
N -layers, it takes N + 1 iterations until the first contraction in the maximum norm
is obtained. This is essential to understand the contraction mechanism, in particular
for the first iterations, but unfortunately does not provide much insight on the rate
of (asymptotic) convergence.

In this paper we present a general analysis which covers many cases that occur in
applications and that goes beyond the previously mentioned contributions. Although
the presentation is somewhat technical, due to the fact that we have to formalize
the geometry of the family of domains ΩM , M = 2, 3, . . ., the convergence analysis
is based on a few fundamental ingredients known from the field of subspace correc-
tion methods and Sobolev spaces, which are combined with new descriptors of the
geometries considered. We outline the main components of the analysis. We use
the well-established framework of subspace correction methods [26]. In [27], for the
successive (also called “multiplicative”) variant of the Schwarz domain decomposition
method a convergence analysis in a general Hilbert space setting is derived. The con-
traction number of the error propagation operator (in the natural energy norm) can
be expressed in only one stability parameter (s0 in Lemma 2.1 below). This parameter
quantifies the stability of the space decomposition. We bound this stability parameter
by introducing a new variant of the pointwise Hardy inequality. This variant allows
estimates that take certain important global geometry properties into account. Using
this we derive, for example, a uniform bound in M , if we have a chain like family
of domains, and a bound that grows (in a specified way) as a function of M , if we
have a family of “globular ” domains. It is well-known from the literature on domain
decomposition methods that in the latter case one should use an additional “global
coarse level space”. We propose such a space for our setting and analyze the rate of
convergence of the Schwarz method that includes this additional coarse space.

The paper is organized as follows. In Section 2 the Schwarz domain decomposi-
tion that we analyze in this paper is explained and an important result on the rate
of convergence of this method, known from the literature, is given. This result essen-
tially states that the contraction number (in the energy norm) of the Schwarz method
is characterized by only one quantity, which controls the stability of the space decom-
position. In Section 3 we introduce new descriptors of the specific class of domains
(union of overlapping balls) that is relevant for our applications. Furthermore, for this
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class of domains a natural partition of unity is defined and analyzed. This partition
of unity is used in Section 4 to derive bounds for the stability quantity. A further key
ingredient in our analysis of the Schwarz method is a variant of the pointwise Hardy
inequality, that is also presented in Section 4. A main result of the paper is given
Theorem 4.8. As is well-known from the theory of Schwarz domain decomposition
methods, in certain situations the efficiency of such a method can be significantly
improved by using a global (coarse level) space. For our particular application this
issue is studied in Section 5. Finally, in Section 6 we present results of numerical ex-
periments, which illustrate certain properties of the Schwarz domain decomposition
method and relate these to the results of the convergence analysis.

2. Problem formulation and Schwarz domain decomposition method.
We first describe the class of domains ΩM that we consider. Let mi ∈ R3, i =
1, . . . ,M , be the centers of balls and Ri the corresponding radii. We define

Ωi := B(mi;Ri) = {x ∈ R3 | ‖x−mi‖ < Ri },
ΩM := ∪Mi=1Ωi.

We consider the Poisson equation: determine u ∈ H1
0 (ΩM ) such that

a(u, v) :=

∫
ΩM
∇u · ∇v dx = f(v) for all v ∈ H1

0 (ΩM ), (2.1)

with a given source term f ∈ H−1(ΩM ). For a subdomain ω ⊂ ΩM we denote the
Sobolev seminorm of first derivatives by |v|21,ω :=

∫
ω
‖∇v(x)‖2 dx. For solving this

problem we use the Schwarz domain decomposition method, also called successive
subspace correction in the framework of Xu and Zikatanov [27]. This method is as
follows:

Let u0 ∈ H1
0 (ΩM ) be given.

for ` = 1, 2, . . .

u`−1
0 := u`−1

for i = 1 : M

Let ei ∈ H1
0 (Ωi) solve

a(ei, vi) = f(vi)− a(u`−1
i−1 , vi) for all vi ∈ H1

0 (Ωi). (2.2)

u`−1
i := u`−1

i−1 + ei

endfor

u` := u`−1
M

endfor

This is a linear iterative method and its error propagation operator is denoted by E.
We then obtain

u− u` = E(u− u`−1) = . . . = E`(u− u0).

An analysis of this method is presented in an abstract Hilbert space framework in [27].
Here we consider only the case, in which the subspace problems in (2.2) are solved
exactly.
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Remark 2.1. There also is an additive variant of this subspace correction method
(called “parallel supspace correction” in [27]). This method may be of interest because
it has much better parallelization properties. This additive variant can be analyzed
with tools very similar to the successive one given above. We further discuss this in
Remark 5.2.

As norm on H1
0 (ΩM ) it is convenient to use |v|21,ΩM := a(v, v). In this norm

the bilinear form a(·, ·) has ellipticity and continuity constants both equal to 1. The
corresponding operator norm on H1

0 (ΩM ) is also denoted by | · |1,ΩM . On H1(Ωi) we
use the seminorm |vi|21,Ωi := a(vi, vi), vi ∈ H1(Ωi). We need the following projection

operator Pi : H1
0 (ΩM )→ H1

0 (Ωi) defined by

a(Piv, wi) = a(v, wi) for all wi ∈ H1
0 (Ωi).

We recall an important result from [27] (Corollary 4.3 in [27]).

Lemma 2.1. Assume that
∑M
i=1H

1
0 (Ωi) is closed in H1

0 (ΩM ). Define

s0 := sup
v∈H1

0 (ΩM )
|v|1,ΩM=1

inf∑M
j=1 vj=v

M∑
i=1

∣∣∣Pi M∑
j=i+1

vj

∣∣∣2
1,Ωi

, (2.3)

where vj ∈ H1
0 (Ωj) for all j. Then

|E|21,ΩM =
s0

1 + s0
(2.4)

holds.

The constant s0 quantifies the stability of the decomposition of the space H1
0 (ΩM )

into the sum of subspaces H1
0 (Ωi). Due to the result (2.4) we have that the contrac-

tion number of the Schwarz domain decomposition method (in the natural | · |1,ΩM
norm) depends only on s0. Hence, if s0 is independent of certain parameters (e.g., in
our setting M) then the contraction rate is also robust w.r.t. these parameters. In
the remainder of this paper we analyze this stability quantity s0 depending on the
geometrical setting and the closedness assumption needed in Lemma 2.1. The anal-
ysis is based on a particular decomposition v =

∑M
i=1 θiv =

∑M
i=1 vi with vi := θiv

and (θi)1≤i≤M forms a partition of unity that is introduced and analyzed in the next
section.

3. Geometric properties of the domain ΩM and partition of unity. The
number M of balls is arbitrary and in the analysis below it is important that in esti-
mates and in further results we explicitly address the dependence on the number M .
The estimates in the analysis below depend on certain geometry related quantities
that we introduce in this section.

In order to formalize the geometry dependence in our estimates, we introduce
a (infinite but countable) family of geometries {FM}M indexed by the increasing
number M ∈ N of balls, where each element FM = {B(mi, Ri) | i = 1, . . .M }
represents the set of balls defining the geometry ΩM characterized by the set of centers
and radii. We further introduce

Rmin(FM ) := min
1≤i≤M

Ri, Rmax(FM ) := max
1≤i≤M

Ri.
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We first start with stating basic assumptions on the geometric structure of the
considered domains.

Assumption 3.1 (Geometry assumptions).

(A1) For eachM , we assume that ΩM is connected. This assumption is made without
loss of generality. If ΩM has multiple components, the problem (2.1) decou-
ples into independent problems on each of these components and the analysis
presented below applies to the problem on each component.

(A2) For each M , we assume that there are no i, j, with i 6= j, such that Ωi ⊂ Ωj ,
i.e., balls are not completely contained in larger ones. Otherwise, the inner balls
can be removed from the geometric description without further consequences.

(A3) We assume the radii of the balls to be uniformly bounded in the family {FM}M :
there exists R∞max and R∞min > 0 such that

sup
M

Rmax(FM ) ≤ R∞max <∞, inf
M
Rmin(FM ) ≥ R∞min > 0.

(A4) (Exterior cone condition) We assume that for each y ∈ ∂ΩM there exists a
circular cone C(y) with aperture 2β ≥ 2βM > 0, apex y and axis n(y) that
belongs entirely to the outside of ΩM in a neighborhood of y, i.e., B(y; ε) ∩
C(y)∩ΩM = ∅ for ε > 0 sufficiently small. We furthermore assume that βM is
uniformly bounded from below: there exists β∞ > 0 such that

inf
M
βM ≥ β∞ > 0.

Related to this we have the following result.
Lemma 3.1. For y ∈ ∂ΩM denote by it, t = 1, . . . , r, all indices such that

y ∈ ∂Ωit , and define vt =
mit−y
‖mit−y‖

. Assumption (A4) is equivalent to the following
one:

There exists γ∞α > 0 such that for each M and for each y ∈ ∂ΩM , there exists a
unit vector n(y) such that −n(y) · vt ≥ γ∞α > 0 for all t = 1, . . . , r. This implies that
all vectors vt are situated on one side of the plane that is perpendicular to n(y) and
passing through y.

Proof. The limiting aperture of a cone with apex y in the direction of n(y) is given
by twice the minimal angle of n(y) with the tangential plane at y to each ball Ωit ,
t = 1, . . . , r. This angle is illustrated by βit(y) in Figure 3.1. Note that αit+βit = 1

2π,
where αit is the angle between n(y) and vit . Hence βit is bounded away from zero if
and only if αit is bounded away from 1

2π, i.e. cos(αit) bounded away form zero. Finally
note that cos(αit) = −n(y)·vit , which shows that the uniform boundedness away from
zero of the interior cone angles βit and of −n(y) · vit are equivalent conditions.

The condition of Lemma 3.1 provides a precise mathematical statement in terms
of geometrical notions. This condition for instance excludes the following scenarios,
using the notation D = dim(span(vi1 , . . . , vir )), and where Figure 3.1 (middle and
right) provides a schematic illustration of those two cases:
D = 1: Intersection of two balls Ωit is only one point, that is, y and the centers

mit are on one line. In turn, only the plane P passing through y which
is perpendicular to line passing through vi1 and vi2 does not intersect ΩM

locally around y and there exists no cone of positive aperture with apex y
that (locally) belongs to the outside of ΩM .

D = 2: Intersection of three balls Ωit is one point. Here, only the line y + tw, with
w ∈ R3 being the normal vector to the plane passing through vi1 , vi2 , vi3 and
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Fig. 3.1. Relation between α and β (left), illustrative example for the case D = 1 (middle) and
for the case D = 2 (right) related to the violation of condition (A4).

t ∈ (−ε, ε), belongs to the outside of ΩM . In turn, there exists no cone of
positive aperture with apex y that (locally) belongs to the outside of ΩM .

3.1. Local geometry indicators. We introduce certain geometry descriptors,
which we call indicators, that are related to the specific geometry of the domain ΩM

and that will be used in the estimates derived below. We will distinguish between
local and global indicators, the former only being dependent on local geometrical
features whereas the latter being dependent on the global topology of the geometric
configuration.

We introduce some further definitions. We take a fixed FM ∈ {FM}M , with
corresponding domain ΩM . We decompose the index set I := {1, . . . ,M} into two
disjoint sets by introducing Iint := { i ∈ I | ∂Ωi ∩ ∂ΩM = ∅ } (“interior balls”) and
Ib := I \ Iint (“boundary balls”). The corresponding (overlapping) subdomains are
denoted by Ωint := ∪i∈IintΩi, Ωb := ∪i∈IbΩi. It may be that Iint is an empty set. We
define, for i ∈ I, Ni := { j ∈ I | Ωi ∩ Ωj 6= ∅ }, N 0

i := Ni \ {i}. For i ∈ Ib we define
Γi := ∂Ωi ∩ ∂ΩM . Further, define

δi(x) := max{0, Ri − ‖x−mi‖ }, x ∈ Ω
M
, i ∈ I,

δ(x) :=
∑
i∈I

δi(x), x ∈ Ω
M
.

Hence, on Ωi the function δi is the distance function to ∂Ωi, which is extended by 0
outside Ωi. Note that δ(x) =

∑
j∈Ni δj(x) for x ∈ Ωi and that, for any x ∈ ΩM , there

holds that δ(x) = 0 if and only if x ∈ ∂ΩM .

In the following, we list the indicators that are used in the upcoming analysis.

Indicator 3.1 (Maximal number of neighbors). Define

Nmax := max
i∈I

card(Ni). (3.1)

i.e., Nmax − 1 is the maximal number of neighboring balls that overlap any given
ball Ωi. Note, that if to each Ωi we associate a number αi ≥ 0, then

∑M
i=1

∑
j∈Ni αj ≤

Nmax

∑M
i=1 αi holds.

Indicator 3.2 (Maximal overlap indicator). Let N0 be the smallest integer such
that:

max
x∈ΩM

card{ j | x ∈ Ωj } ≤ N0. (3.2)

6



Hence, N0 − 1 is the maximal number of neighboring balls that overlap any given
point x ∈ Ωi of any given ball Ωi.

Note that for i ∈ Iint we have ∂Ωi ⊂ ∪j∈N 0
i
Ωj , hence δ(x) > 0 for all x ∈ ∂Ωi,

and thus δ(x) > 0 for all x ∈ Ωi. In the same vein, we recall that for all x ∈ ΩM

such that dist(x, ∂ΩM ) > 0, there holds δ(x) > 0. This motivates us to define the
following indicator.

Indicator 3.3 (Stable overlap indicator). We define

γint := min
x∈Ωint,β

δ(x) > 0, (3.3)

where

Ωint,β :=
{
x ∈ ΩM |x ∈ Ωint or dist(x, ∂ΩM ) > R∞min sin(β∞)

}
. (3.4)

With this definition, there holds

δ(x) ≥ γint, (3.5)

for all x ∈ Ωint or such that dist(x, ∂ΩM ) > R∞min sin(β∞). Note that by construction,
this is a local indicator.

Remark 3.1. The indicator γint is a measure for the amount of overlap between
any interior ball and its neighboring balls. The indicator is small if there exists a
point x ∈ Ωi, with i ∈ Iint, that is simultaneously close to ∂Ωi and to the boundary
∂Ωj of all balls Ωj with x ∈ Ωj .

A proof of the following lemma, giving rise to a further indicator, is given in
Appendix 8.1.

Lemma 3.2 (Stable overlap for boundary balls). Under Assumption (A4), there
exists γb > 0, such that

δ(x) ≥ γb dist(x, ∂ΩM ) for all x ∈ Ωb. (3.6)

Indicator 3.4 (Stable overlap for boundary balls). The constant γb > 0 defined
in Lemma 3.2 is considered as a geometry indicator.

The indicator γb employed in (3.6) clearly is a local one. An explicit formula
γb = γb(Rmin, Rmax, β

∞) is given in Eqn. (8.4).
The four indicators introduced above are all natural ones, which are directly

related to the number of neighboring balls and the size of the overlap between neigh-
boring balls.

We need one further local indicator, which needs some introduction. In the anal-
ysis of the Schwarz method we use a (natural) partition of unity, cf. Section 3.3. The
gradient of some of these partition of unity functions is unbounded at ∂ΩM , where
their growth behaves like x → (dist(x, ∂ΩM ))−1. To be able to handle this singular
behavior, we need an integral Hardy estimate of the form(∫

Ωb

(
u(x)

dist(x, ∂ΩM )

)2

dx

) 1
2

≤ c |u|1,ΩM for all u ∈ H1
0 (ΩM ),

cf. Corollary 4.2. One established technique to derive such an estimate is as in
e.g. [11, 13], where pointwise Hardy estimates are used to derive integral Hardy
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estimates. The analysis in this approach is based on a certain “fatness assumption”
for the complement of the domain ΩM,c := R3 \ ΩM . Here we follow this approach
and below we will introduce a local indicator that quantifies this exterior fatness of
the domain, which is very similar to the fatness indicator used in [11, 13] (cf., for
example, Proposition 1 in [11]). Before we define the fatness indicator, note that
due to the definition of ΩM as a union of balls and assumption (A4), we have the
following property

∀ y ∈ ∂ΩM : ∃r0 > 0, c > 0 : |B(y; r) ∩ ΩM,c| ≥ c |B(y; r)| ∀ r ∈ (0, r0]. (3.7)

Indicator 3.5 (Local exterior fatness indicator). For i ∈ Ib and x ∈ Ωi we define
a closest point projection on Γi by p(x), i.e., p(x) ∈ Γi and ‖p(x)− x‖ = dist(x,Γi).
From (3.7) it follows that there exists ĉi > 0 (depending on the constants c = c(y) in
(3.7) and possibly also on Ri) such that

|B
(
p(x); ‖p(x)− x‖

)
∩ ΩM,c| ≥ ĉi|B

(
p(x), ‖p(x)− x‖

)
|, for all x ∈ Ωi, (3.8)

with ΩM,c := R3 \ ΩM . We define

γf := min
i∈Ib

ĉi > 0. (3.9)

Remark 3.2. We call this a local exterior fatness indicator because ĉi depends
only on a small neighbourhood of Ωi, consisting of points that have distance at most
Ri to Ωi. The quantity ĉi essentially (only) depends on two geometric parameters
related to exterior cones with apex at y ∈ (∂Ωi∩∂ΩM ), namely the maximum possible
aperture and the maximal cone height such that the cone is completely contained in
ΩM,c. For points lying only on one sphere ∂Ωi, the cone can be chosen to be as
wide as a flat plane. For points lying on an intersection arc ∂Ωi ∩ ∂Ωj , the largest
aperture of the cone is determined only by the center and radii of the two balls Ωi,Ωj .
Finally any point lying on an intersecting point of three or more boundary spheres can
be assigned a cone whose maximal aperture depends on the radii and centers of the
associated balls. Figure 3.2 (left) provides a schematic illustration. The maximal cone
height at y ∈ (∂Ωi ∩ ∂ΩM ) is related to the width of ΩM,c at y in the direction of the
axes of the cone, see also Figure 3.2 (right) for a schematic 2D-illustration. If these
apertures and heights are bounded away from zero (uniformly in y ∈ (∂Ωi ∩ ∂ΩM )),
the quantity ĉi is bounded away from zero. In our applications we consider domains
ΩM such that the apertures and heights satisfy this property.

The set of local geometry indicators is denoted by

GML := {Nmax, N0, γ
−1
int , γ

−1
b , γ−1

f }. (3.10)

We emphasize that GML depends only on local geometry properties of the domain (as
explained above) and does not depend on the global topology of ΩM (e.g., not relevant
whether ΩM is a linear chain of balls or has a globular form for example). We thus
assume the following assumption.

Assumption 3.2 (Asymptotic geometry assumption).

(A5) We assume that the local geometry indicators GML are uniformly bounded in
the family {FM}M .
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Fig. 3.2. Inserting cones of maximal aperture at the boundary points (left). Illustration of
some inserted cones in the definition of the global fatness property (right).

Fig. 3.3. Illustration of the signed distance function to the SAS and its level sets that define
the SAS (red) and the SES (blue). The original domain ΩM is illustrated in white. The distance
between the two isolines is the so-called “probe radius”.

3.2. Global geometry indicator. In the analysis below we need a Poincaré-
Friedrichs inequality ‖u‖L2(ΩM ) ≤ c |u|1,ΩM for u ∈ H1

0 (ΩM ), cf. Lemma 4.7. As is
well-known, the constant c in this inequality depends on global geometry properties of
the domain ΩM and is directly related to the smallest Laplace eigenvalue in H1

0 (ΩM ).
To control this constant we use an approach, presented in Section 4.1 below, based on
pointwise Hardy estimates. For this approach to work one needs a measure for “global
exterior fatness”. This measure resembles the one used in Indicator 3.5, but there are
two important differences. Firstly, we now consider x ∈ ΩM instead of only x ∈ Ωb.
Secondly, for x ∈ ΩM , instead of the corresponding closest point projection p(x) (used
in Indicator 3.5) we now take a possibly different exterior point b(x) ∈ ΩM,c = R3\ΩM
such that with d(x) := ‖x − b(x)‖ the exterior volume

∣∣B(b(x); d(x)
)
∩ ΩM,c

∣∣ is

comparable to the volume
∣∣B(b(x); d(x)

)∣∣. The latter property is a key ingredient
in the derivation of satisfactory pointwise Hardy estimates. It turns out that taking
b(x) = p(x) is not satisfactory. Below, we present a construction of “reasonable”
points b(x) that is adapted to the special class of domains that we consider, namely a
union of balls. In the field of applications that we consider, this domain corresponds
to a “solute molecule” that is surrounded by “solvent molecules”. In this setting the
so-called Solvent Accessible Surface (SAS) of the solute molecule (ΩM ) is defined by
the center of a ball (“an idealized spherical probe”) rolling over the solute molecule,
that is, the surface enclosing the region in which the center of the ball can not enter.
The Solvent Excluded Surface (SES), defined by the same spherical probe, is the
surface enclosing the region that can be accessed by this spherical probe [15, 21, 7].
Below in our construction we use these SAS-SES notions which are very natural for
our class of domains. Explanations and further properties can be found in [20]. Here
we give only a few definitions and properties that are relevant for our analysis.

9



For a given (probe) radius rp > 0 the precise definition of the SAS is as follows.
We introduce

Ωi,sas(rp) := B(mi;Ri + rp) = {x ∈ R3 | ‖x−mi‖ < Ri + rp }
ΩMsas(rp) := ∪Mi=1Ωi,sas(rp),

and define SAS := SAS(rp) := ∂ΩMsas(rp). Let fsas be the signed distance function to
SAS (positive in ΩMsas), hence, SAS = f−1

sas (0). We define

SES := SES(rp) := f−1
sas (rp) ⊂ ΩM,c.

We refer to Figure 3.3 for a graphical illustration of the definition of the SES and the
SAS. Further, we denote the maximal distance to the ∂ΩM by

dΩM := max
x∈ΩM

dist(x, ∂ΩM ).

A property of the SAS-SES construction is that the balls with center on SAS(rp)
and radius rp (these are tangent to SES(rp)) are completely contained in ΩM,c. We
will use these balls in the construction of balls B

(
b(x); d(x)

)
, x ∈ ΩM , b(x) ∈ ΩM,c,

d(x) := ‖x − b(x)‖ that have “sufficient exterior volume”. To determine a suitable
rp we use rp = λdΩM , with λ > 0 a parameter that will be specified below. We now
explain this construction. A closest point projection on SESλ := SES(λdΩM ) and the
corresponding distance are denoted by

bλ(x) ∈ arg min
y∈SESλ

‖x− y‖, dλ(x) := ‖bλ(x)− x‖, x ∈ ΩM .

The maximum distance to SESλ is denoted by dSES(λ) := maxx∈ΩM dλ(x). Note that
the following properties hold

lim
λ→0+

dλ(x) = dist(x, ∂ΩM ),

lim
λ→0+

dSES(λ) = dΩM ,

lim
λ→∞

dλ(x) = dist(x, ∂conv(ΩM )),

lim
λ→∞

dSES(λ) = max
x∈ΩM

dist(x, ∂conv(ΩM )).
(3.11)

Define for all x ∈ ΩM , B0(x) := B(b̂(x); r̂(x)), with r̂(x) := min(λdΩM ,
1
2dλ(x)) and

b̂(x) := bλ(x) + r̂(x) bλ(x)−x
‖bλ(x)−x‖ .

First, note that by the construction of the SESλ, there holds B(p̂(x);λdΩM ) ⊂
ΩM,c, with p̂(x) := bλ(x) + λdΩM

bλ(x)−x
‖bλ(x)−x‖ , i.e. this corresponds to the definition of

the SES of “rolling a ball with radius rp = λ dΩM and center on the SAS”. The point
p̂(x) ∈SAS denotes this center of the ball. See Figure 3.4 for an illustration and [20]
for further explanations. Since r̂(x) ≤ λdΩM , there holds that for all z ∈ B0(x)

‖z − p̂(x)‖ ≤ ‖z − b̂(x)‖+ ‖b̂(x)− p̂(x)‖ < r̂(x) + (λdΩM − r̂(x)) = λdΩM ,

and thus

B0(x) ⊂ B (p̂(x);λdΩM ) ⊂ ΩM,c.

Second, for any z ∈ B0(x), there holds

‖z − bλ(x)‖ ≤ ‖z − b̂(x)‖+ ‖b̂(x)− bλ(x)‖ < 2r̂(x) ≤ dλ(x),
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and thus

B0(x) ⊂ B(bλ(x); dλ(x)) =: B(x).

Hence, for x ∈ ΩM we have

|B(x)|
|B0(x)| =

dλ(x)3

r̂(x)3
= 8 max

{(
dλ(x)

2λdΩM

)3

, 1

}
≤ 8 max

{(
dSES(λ)

2λdΩM

)3

, 1

}
.

We define

γλ =
1

8
min

{(
2λdΩM

dSES(λ)

)3

, 1

}
, (3.12)

and thus the exterior fatness estimate |B0(x)| ≥ γλ|B(x)| for all x ∈ ΩM holds. In the
Hardy estimates used below (cf. (4.3)) we are interested in (posssibly small) bounds of
the quotient dSES(λ)/γλ. This motivates the introduction of the following indicator:

Indicator 3.6 (Global exterior fatness indicator). Assume that

λmin := arg min
λ>0

dSES(λ)

γλ
(3.13)

exists, cf. Remark 3.3. Define the corresponding global fatness indicator

dF :=
dSES(λmin)

γF
, with γF := γλmin . (3.14)

It follows that for any x ∈ ΩM , there exists a corresponding point b(x) ∈ ΩM,c

such that ∣∣B(b(x); ‖b(x)− x‖) ∩ ΩM,c
∣∣ ≥ γF ∣∣B(b(x); ‖b(x)− x‖)

∣∣. (3.15)

Remark 3.3. The function λ → q(λ) := dSES(λ)
γλ

in (3.13) is not necessarily
continuous. Discontinuities can appear, for example, for λ values at which holes
in ΩMsas(λ dΩM ) “disappear”. In the generic case, however, a (possibly non-unique)
minimizer λmin as in (3.13) exists. If this is not the case, we choose a λmin value such

that dF as in (3.14) is close to infλ>0
dSES(λ)
γλ

> 0.

In the literature, e.g. [13], a property as in (3.15) is called a uniform (exterior)
fatness property of the corresponding domain, and this notion is related to that of
variational 2-capacity, hence the name that we have chosen. We continue with a short
discussion of this global indicator.

1) It is clear from its definition that dF is a global indicator and that it has the
following upper and lower bounds

dF ≥ 8dΩM = 8 max
x∈ΩM

dist(x, ∂ΩM ),

dF ≤ lim
λ→∞

dSES(λ)

γλ
= 8 max

x∈ΩM
dist

(
x, ∂conv(ΩM )

)
.

The quantity dF can be seen as a measure for the globularity of the domain
ΩM that involves the maximal distance to a SES (dSES(λmin)) and the maximal
distance to the boundary ∂ΩM (dΩM ).
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Fig. 3.4. Illustration of the geometrical setup to define the global fatness property.

2) In the particular case where ΩM consists of a linear chain of overlapping uniform
balls, with radius R, of length M , we have dΩM = R, dSES(λ) = R, and thus
dF = 8R, i.e., dF is independent of M . On the other hand, when considering a
geometry of uniform balls whose centers lie on the unit grid [1, L]3 with radius
= R >

√
3 (in order that no inner holes appear), we obtain dΩM = dSES(λ) =

1
2 (L − 1) + R, hence, dF = 4(L − 1) + 8R. In this case dF is proportional to

L = M1/3 as L increases.

3) Another consequence of the construction above is that the entire cavity ΩM can
be covered by balls B(y;Ry) with centers y on the SESλmin = SES(λmindΩM ) ⊂
ΩM,c, radii Ry ≤ dSES(λmin) and each of these balls contains a smaller ball of
radius min{λmindΩM ,

1
2Ry} that lies entirely in ΩM,c.

3.3. Partition of unity. In this section we introduce a (natural) partition of
unity, based on the local distance functions δi, i ∈ I, and derive smoothness properties
for the elements in this partion of unity. In the bounds for derivatives that are proven
below only local geometry indicators from GML are involved.

Note that since δi is the distance function to the boundary in Ωi we have

‖∇δi(x)‖ = 1, x ∈ Ωi, ‖∇δi(x)‖ = 0, x /∈ Ω̄i, (3.16)

One easily checks that δ(x) =
∑M
i=1 δi = 0 if and only if x ∈ ∂ΩM . We further define

θi(x) :=
δi(x)

δ(x)
, x ∈ ΩM .

The system (θi)1≤i≤M forms a partition of unity (PU) of ΩM subordinate to the cover
(Ωi)1≤i≤M :

0 ≤ θi ≤ 1 (1 ≤ i ≤M) on ΩM ,

M∑
i=1

θi = 1 on ΩM ,

supp θi ⊂ Ω̄i (1 ≤ i ≤M).
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Remark 3.4. The functions θi are in general not smooth. In Figure 3.5 a two-
dimensional case is illustrated, in which ΩM consists of three intersecting disks (in this
case we have Iint = ∅). As a further, more precise, illustration we consider the three-
dimensional case of two overlapping balls Ω1 = B

(
(−1, 0, 0); 2

)
, Ω2 = B

(
(1, 0, 0); 2

)
,

with Ω2 := Ω1 ∪ Ω2. We thus have θi = δi
δ , i = 1, 2, δ = δ1 + δ2.

The intersection of ∂Ω2 with Ω1 ∩ Ω2 is the circle S =
{

(0, x2, x3)
∣∣ x2

2 + x2
3 = 3

}
.

The functions θi do not have a continuous extension to the intersection circle S. Take
an accumulation point x ∈ S and a sequence (xn)n∈N ⊂ Ω1 \ Ω̄2 with limn→∞ xn = x.
We then have limn→∞ θ1(xn) = 1. On the other hand, we can take a sequence
(xn)n∈N ⊂ (Ω1 ∩ Ω2) with limn→∞ xn = x and δ1(xn) ≤ δ2(xn), which implies
lim supn→∞ θ1(xn) ≤ 1

2 . Furthermore, elementary calculation yields that θi /∈ H1(Ωi).
The key steps for the derivation of this result are outlined in Appendix 8.2.

Related to this we note that the PU introduced above differs from the ones that
are typically used in the analysis of domain decomposition methods, cf. [25, Section
3.2]. The reason is that the overlapping covering (Ωi)1≤i≤M does not satisfy the key
assumption, cf. [25, Assumption 3.1], that for arbitrary i and x ∈ Ωi, there exists
δ̃i > 0 and a j such that dist(x, ∂Ωj \ ∂ΩM ) ≥ δ̃i holds.

Lemma 3.3. The PU has the following properties:

‖∇θi‖∞,Ωi ≤
N0

γint
, for all i ∈ Iint, (3.17)

‖∇θi(x)‖ ≤ N0

γb dist(x, ∂ΩM )
, for all i ∈ Ib, x ∈ Ωi. (3.18)

Proof. Note that

∇θi(x) =
∇δi(x)

δ(x)
− δi(x)

δ(x)
·
∑M
j=1∇δj(x)

δ(x)
,

=
∇δi(x)

δ(x)

(
1− δi(x)

δ(x)

)
− δi(x)

δ(x)
·
∑
j 6=i∇δj(x)

δ(x)
a.e. on ΩM .

Hence, cf. (3.16) and (3.2),

‖∇θi(x)‖ ≤ 1

δ(x)
+

∑
j 6=i ‖∇δj(x)‖

δ(x)
≤ N0

δ(x)
, a.e. on ΩM . (3.19)

For i ∈ Iint we use (3.5) and obtain the result (3.17). For i ∈ Ib we use (3.6), which
yields the result (3.18).

The results in (3.17), (3.18) show that away from the boundary (i.e., in the subdomain
Ωint) the partition of unity functions θi are in W 1,∞, and towards the boundary the
singularity of the gradient of these functions can be controlled by the distance function
to the boundary.

4. Analysis of the Schwarz domain decomposition method.

4.1. Pointwise Hardy inequality. In the analysis we need a specific pointwise
Hardy inequality, similar to the one derived in e.g. [11, 13]. We introduce some
notation. For f ∈ L1(R3), B ⊂ R3 we denote the average by fB := 1

|B|
∫
B
f(y) dy,

and the maximal function (cf. [23]) by

M(f)(x) := sup
r>0

1

|B(x; r)|

∫
B(x;r)

|f(y)| dy.

13



Fig. 3.5. Surface plot of θi for a configuration with 3 disks in two dimensions.

A key property is the following ([23], Theorem 1): for all f ∈ L2(R3):

‖Mf‖L2(R3) ≤ cM ‖f‖L2(R3), with cM := 10
√

10. (4.1)

In particular, if f is only supported in ΩM , then the right hand side in (4.1) reduces
to ‖f‖L2(ΩM ).

Lemma 4.1. Consider a point x ∈ ΩM and a corresponding (arbitrary) exterior
point denoted by b(x) ∈ ΩM,c. Define d(x) := ‖x− b(x)‖. Let γ(x) > 0 be such that

|B(b(x); d(x)) ∩ ΩM,c| ≥ γ(x) |B(b(x); d(x))|. (4.2)

There exists a constant cH > 0, independent of x and any parameter, such that the
following holds for all u ∈ C∞0 (ΩM ):

|u(x)| ≤ cH
d(x)

γ(x)
M(‖∇u‖)(x). (4.3)

Proof. Take u ∈ C∞0 (ΩM ), extended by zero outside ΩM . Given x ∈ ΩM and
a (fixed) b(x) ∈ ΩM,c, denote B := B(b(x); d(x)), and uB the average of u over B.
Further, for this choice of x, take arbitrary y ∈ B ∩ ΩM,c. Using Lemma 7.16 from
[10] we obtain

|u(x)| = |u(x)− u(y)| ≤ |u(x)− uB |+ |u(y)− uB |

≤ c1

(∫
B

‖∇u(z)‖
‖x− z‖2 dz +

∫
B

‖∇u(z)‖
‖y − z‖2 dz

)
,

(4.4)

with c1 = 2
π . We recall the elementary inequality (e.g., Lemma 3.11.3 in [29]):

1

|B(x0; r)|

∫
B(x0;r)

1

‖y − z‖2 dy ≤ c2
1

‖x0 − z‖2
for all r > 0, x0, z ∈ R3.

(Inspection of the proof of Lemma 3.11.3 in [29] yields c2 ≤ 14). Using this, the
definition of γ(x) and that B ∩ ΩM,c ⊂ B ⊂ B(x; 2d(x)) we obtain:

inf
y∈B∩ΩM,c

∫
B

‖∇u(z)‖
‖y − z‖2 dz ≤

1

|B ∩ ΩM,c|

∫
B∩ΩM,c

∫
B

‖∇u(z)‖
‖y − z‖2 dz dy

≤ 1

γ(x)

∫
B

1

|B|

∫
B∩ΩM,c

1

‖y − z‖2 dy ‖∇u(z)‖ dz

≤ 8

γ(x)

∫
B

1

|B(x; 2d(x))|

∫
B(x;2d(x))

1

‖y − z‖2 dy ‖∇u(z)‖ dz

≤ 8 c2

γ(x)

∫
B

‖∇u(z)‖
‖x− z‖2 dz.

14



Using this in (4.4) and γ(x) ≤ 1, we get

|u(x)| ≤ c1

(
1 +

8 c2

γ(x)

)∫
B

‖∇u(z)‖
‖x− z‖2 dz ≤

c1(1 + 8c2)

γ(x)

∫
B(x;2d(x))

‖∇u(z)‖
‖x− z‖2 dz.

Finally we use the following estimate ([12], Lemma 1):∫
B(x;r)

|f(z)|
‖x− z‖2 dz ≤ c3 rM(f)(x) for all r > 0.

(Inspection of the proof in [12] yields c3 ≤ 4
ln 2 ). Combining these results we obtain

the estimate (4.3) with cH := 2 c1 (1 + 8 c2) c3.

The result of this lemma is essentially the same as in Proposition 1 in [11] and in
Theorem 3.9 in [13]. The only difference is that in the latter results a specific choice
for the point b(x) is used, namely a closest point projection of x onto the boundary.
Hence, in that case one has d(x) = ‖x − b(x)‖ = dist(x, ∂ΩM ). We will use this
specific choice also in the proof of Corollary 4.2 below. In section 4.3, however, we
will use a different choice for b(x).

Corollary 4.2. The following holds (recall that Ωb = ∪i∈Ib
Ωi):(∫

Ωb

(
u(x)

dist(x, ∂ΩM )

)2

dx

) 1
2

≤ cMcH
γf

|u|1,ΩM for all u ∈ H1
0 (ΩM ),

with cM as in (4.1), cH as in (4.3) and γf from (3.9).
Proof. Due to density it suffices to consider u ∈ C∞0 (ΩM ). Take x ∈ Ωb and

i ∈ Ib such that x ∈ Ωi. We take for b(x) ∈ ΩM,c the closest point projection on Γi as
in Indicator 3.5, hence d(x) = ‖x − b(x)‖ = dist(x,Γi) ≤ dist(x, ∂ΩM ). For b(x) the
fatness estimate (3.8) holds. Combining this with the pointwise Hardy estimate (4.3)
and (4.1) yields(∫

Ωb

(
u(x)

dist(x, ∂ΩM )

)2

dx

) 1
2

≤
(∫

Ωb

c2H
γ2

f

M(‖∇u‖)(x)2 dx

) 1
2

≤ cH
γf
‖M(‖∇u‖)‖L2(R3) ≤ cM

cH
γf
‖∇u‖L2(R3) =

cMcH
γf
|u|1,ΩM ,

which completes the proof.

4.2. Stability of the subspace decomposition. In the definition of the sta-
bility constant s0 in (2.3) one is free to choose for v ∈ H1

0 (ΩM ) any decomposition

v =
∑M
i=1 vi with vi ∈ H1

0 (Ωi). Below we use the natural choice vi = θiv and analyze
this particular decomposition. The result in the following theorem is crucial for the
analysis of the Schwarz method.

Theorem 4.3. The following estimates hold for all v ∈ H1
0 (ΩM ):

M∑
i=1

|θiv|21,Ωi ≤ C1|v|21,ΩM + C2

∑
i∈Iint

‖v‖2L2(Ωi)
≤ C1|v|21,ΩM + C2N0‖v‖2L2(ΩM ), (4.5)

where the constants C1,C2 depend only on the local geometry indicators in GML ; in
particular C2 = 2N2

0 /γ
2
int.
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Proof. The second inequality in (4.5) is an easy consequence of the definition of
the overlap indicator N0. We derive the first inequality. Take v ∈ H1

0 (ΩM ). Using
0 ≤ θi ≤ 1 and the definition of N0 we get

M∑
i=1

|θiv|21,Ωi =

M∑
i=1

∫
Ωi

‖∇(θiv)‖2 dx ≤ 2

M∑
i=1

∫
Ωi

θ2
i ‖∇v‖2 dx+ 2

M∑
i=1

∫
Ωi

‖∇θi‖2v2 dx

≤ 2N0|v|21,ΩM + 2

M∑
i=1

∫
Ωi

‖∇θi‖2v2 dx. (4.6)

For estimating the second term in (4.6) we use the partitioning {1, . . . ,M} = Iint∪Ib.
Using the result (3.17) we obtain

∑
i∈Iint

∫
Ωi

‖∇θi‖2v2 dx ≤
(
N0

γint

)2 ∑
i∈Iint

‖v‖2L2(Ωi)
. (4.7)

We finally analyze the
∑
i∈Ib

part of the sum in (4.6). Take i ∈ Ib, x ∈ Ωi. Using
(3.18) and Corollary 4.2 we obtain

∑
i∈Ib

∫
Ωi

‖∇θi‖2v2 dx ≤
(
N0

γb

)2 ∑
i∈Ib

∫
Ωi

(
v

dist(x, ∂ΩM )

)2

dx

≤ N3
0

γ2
b

∫
Ωb

(
v

dist(x, ∂ΩM )

)2

dx ≤ N3
0 c

2
Mc

2
H

γ2
bγ

2
f

|u|21,ΩM .

Combining this with (4.6), (4.7) completes the proof, yielding

C1 = 2N0

(
1 +

N2
0 c

2
Mc

2
H

γ2
bγ

2
f

)
.

The result (4.5) implies that, although θi, i ∈ Ib, is not necessarily in H1(Ωi) (Re-
mark 3.4), for v ∈ H1

0 (ΩM ) the product θiv is an element of H1(Ωi). In this prod-
uct the singularity of ∇θi at the boundary can be controlled due to the property
v|∂ΩM = 0.

Corollary 4.4. Assume Iint = ∅. The estimate

M∑
i=1

|θiv|21,Ωi ≤ C1|v|21,ΩM , for all v ∈ H1
0 (ΩM ), (4.8)

holds, where the constant C1 depends only on the local geometry indicators in GML .
Corollary 4.5. For all v ∈ H1

0 (ΩM ) we have

θiv ∈ H1
0 (Ωi), i = 1, . . . ,M. (4.9)

Furthermore,

M∑
i=1

H1
0 (Ωi) = H1

0 (ΩM ) (4.10)

holds.
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Proof. Take v ∈ H1
0 (ΩM ) and i ∈ I. From Theorem 4.3 it follows that θiv ∈

H1(Ωi). Define Γi := ∂Ωi ∩ ∂ΩM , i.e., ∂Ωi = Γi ∪ (∂Ωi \ Γi). If meas2(Γi) > 0, then
on Γi we have (due to the trace theorem) (θiv)|Γi = (θi)|Γiv|Γi = 0, due to v|∂ΩM = 0
and boundedness of θi. For x ∈ ∂Ωi \ Γi we have θi(x) = 0, hence, (θiv)|(∂Ωi\Γi) = 0.
This completes the proof of (4.9).

Take v ∈ H1
0 (ΩM ) and note that v =

(∑M
i=1 θi

)
v =

∑M
i=1(θiv), with θiv ∈

H1
0 (Ωi). This proves the result (4.10).

The result (4.10) implies that the assumption used in Lemma 2.1 is satisfied:

Corollary 4.6.
∑M
i=1H

1
0 (Ωi) is closed in H1

0 (ΩM ).

The remaining task is to bound the term
∑
i∈Iint ‖v‖2L2(Ωi)

in (4.5). In section 4.3
we derive a Poincaré estimate in which this term is bounded in terms of the desired
norm |v|1,ΩM . This immediately implies a bound for the stability constant s0.

4.3. Poincaré estimate and main result. In this section we derive a main
result, namely an estimate for the stability quantity s0 in Theorem 4.8 below. We
summarize the different parameters that have been introduced above and play a role
in this main result. These are:

local geometry indicators, cf. Section 3 : GML := {Nmax, N0, γ
−1
int , γ

−1
b , γ−1

f },
global exterior fatness indicator, cf. (3.14) : dF ,

generic Hardy constants, cf. (4.1), (4.3) : cM, cH.

We use the pointwise Hardy inequality in Lemma 4.1 in combination with the global
exterior fatness property as in indicator 3.6 to derive a bound for the term ‖v‖L2(ΩM )

in terms of |v|1,ΩM . Note that the optimal constant that occurs in such an estimate is
the inverse of the smallest eigenvalue of the Laplace eigenvalue problem in H1

0 (ΩM ).
In the following, we will find a geometry-dependent upper bound of this constant,
or equivalently, a lower bound of the smallest eigenvalue, that depends on geometric
features of the domain ΩM . For this we use the global fatness indicator in (3.14) which
characterizes certain global geometry properties of ΩM (which then, for example,
distinguishes a linear chain from a globular topology).

Lemma 4.7. The following estimate holds for all u ∈ H1
0 (ΩM ):

‖u‖L2(ΩM ) ≤ cHcMdF |u|1,ΩM ,

with the global fatness indicator dF as in (3.14).
Proof. Due to density it suffices to consider u ∈ C∞0 (ΩM ). For x ∈ ΩM we take

the exterior point b(x) and γF as in Indicator 3.6. Using Lemma 4.1 and (4.1) we
obtain with d(x) := ‖b(x)− x‖:

‖u‖L2(ΩM ) =

(∫
ΩM

u(x)2 dx

) 1
2

≤ cH
γF

max
x∈ΩM

d(x)

(∫
ΩM
M(‖∇u‖)(x)2 dx

) 1
2

≤ cHdF ‖M(‖∇u‖)‖L2(R3) ≤ cHcMdF ‖∇u‖L2(R3) = cHcMdF |u|1,ΩM ,

which proves the result.
Remark 4.1. It follows therefore that

c−1
H c−1
Md−1

F
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is a lower bound of the lowest eigenvalue of the Laplace eigenvalue problem inH1
0 (ΩM ),

where dF accounts for the geometry of the domain.
We derive a bound for the stability quantity s0, cf. (2.1):

Theorem 4.8. For the stability quantity s0 the following bounds hold, with C3,C4,
constants that depend only on the local geometry indicators in GML and on cH, cM. If
Iint = ∅ holds we have

s0 ≤ C3. (4.11)

If Iint 6= ∅ we have

s0 ≤ C3 + C4d
2
F . (4.12)

Proof. For v ∈ H1
0 (ΩM ) we define v̂j := θjv ∈ H1

0 (Ωj), i.e., v =
∑M
j=1 v̂j . Note

that:

inf∑M
j=1 vj=v

M∑
i=1

∣∣∣Pi M∑
j=i+1

vj

∣∣∣2
1,Ωi
≤

M∑
i=1

∣∣∣Pi M∑
j=i+1

v̂j

∣∣∣2
1,Ωi

=

M∑
i=1

∣∣∣Pi ∑
j∈Ni

v̂j

∣∣∣2
1,Ωi

≤
M∑
i=1

∣∣∣ ∑
j∈Ni

v̂j

∣∣∣2
1,ΩM

≤ Nmax

M∑
i=1

∑
j∈Ni

|v̂j |21,Ωj

≤ N2
max

M∑
i=1

|v̂i|21,Ωi .

For estimating the term
∑M
i=1 |v̂i|21,Ωi we apply Theorem 4.3. If Iint = ∅ we use

Corollary 4.4 and then, using the definition of s0, obtain the result in (4.11), with C3 :=
N2

maxC1 and C1 as in Theorem 4.3. If Iint 6= ∅ we apply Theorem 4.3 and Lemma 4.7
and obtain the result (4.12), with C4 = N2

maxC2N0c
2
Hc

2
M (C2 as in Theorem 4.3).

Note that the constants C3, C4 depend only on the local geometry indicators in
GML (and the generic constants cH, cM). The information on the global geometry
of ΩM enters (only) through the global fatness indicator dF . This proves that in
cases where one has a very large number of balls (M → ∞) but moderate values of
the geometry indicators in GML and of dF , the convergence of the Schwarz domain
decomposition method is expected to be fast. Furthermore, if the number M of balls
is increased, but the values of these local geometry indicators and of dF are uniformly
bounded with respect to M , the convergence of the Schwarz domain decomposition
method does not deteriorate. A worst case scenario (globular domain) is dF ∼ M

1
3

(M →∞). In that case, due to |E|1,ΩM = (1− 1
1+s0

)
1
2 , the number of iterations ` of

the Schwarz domain decomposition method that is needed to obtain a given accuracy,
scales like

` ∼ s0 ∼ d2
F ∼M

2
3 .

A symmetrized version of the Schwarz domain decomposition method can be combined
with a conjugate gradient acceleration, cf. [26]. This results in an improved scaling

of the number of iterations, namely ` ∼M 1
3 .
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5. An additional coarse global space. In case of a globular domain ΩM both
numerical experiments and the theory presented above show that the convergence of
the Schwarz domain decomposition method can be slow for very large M . As is well-
known from the field of domain decomposition methods (and subspace correction
methods) this deterioration can be avoided by introducing a suitable “coarse level
space”. In this section we propose such a space:

V0 := span{ θi | i ∈ Iint } ⊂ H1
0 (ΩM )

(we assume Iint 6= ∅, otherwise we use Theorem 4.8, Eqn. (4.11)). The corresponding
projection P0 : H1

0 (Ω) → V0 is such that a(P0v, w0) = a(v, w0) for all w0 ∈ V0. In
the definition of V0 it is important to restrict to i ∈ Iint (instead of i ∈ I) because for
i ∈ Ib the partition of unity functions θi are not necessarily contained in H1

0 (ΩM ). In
the Schwarz method one then has to solve for an additional correction in V0: e0 ∈ V0

such that

a(e0, v0) = f(v0)− a(u`−1
i−1 , v0) for all v0 ∈ V0.

Using the basis (θi)i∈Iint
in V0 this results in a sparse linear system of (maximal) di-

mension ∼M×M . In practice this coarse global system will be solved approximately
by a multilevel technique, cf. Remark 5.1 below.

The analysis of the method with the additional correction in the space V0 is
again based on Lemma 2.1, which is also valid if we use the decomposition H1

0 (Ω) =

V0 +
∑M
i=1H

1
0 (Ωi) (and include i = 0 in the sum in Lemma 2.1). For the analysis

(only) we need a “suitable” linear mapping Q0 : H1
0 (ΩM ) → V0. A natural choice is

the following:

Q0v =
∑
i∈Iint

v̄iθi, v̄i :=
1

|Ωi|

∫
Ωi

v dx.

For deriving properties of this mapping we introduce additional notation:

N ∗i := { j ∈ Iint | Ωj ∩ Ωi 6= ∅ } ⊂ Ni, i ∈ I,
I∗int := { i ∈ Iint | [ Ωj ∩ Ωi 6= ∅ ] ⇒ j ∈ Iint }, I∗b = I \ I∗int,

Ω∗i := ∪j∈N∗i ∪{i}Ωj , i ∈ I.
The index set I∗int contains those i ∈ Iint for which the ball Ωi has only neighboring
balls that are interior balls. For i ∈ I∗int we have N ∗i = Ni. We also need two further
local geometry indicators:

N∗0 is the smallest integer such that: max
x∈ΩM

card{ j | x ∈ Ω∗j } ≤ N∗0 . (5.1)

qi := max
j∈N∗i

|Ωi|
|Ωj |

, qmax := max
i∈I

qi. (5.2)

The indicator in (5.1) is a variant of the maximal overlap indicator N0 in (3.2) (with
Ωj replaced by Ω∗j ) and qmax essentially measures the maximal variation in radii of

neighboring balls. Below we use the standard Sobolev norm on H1(Ωi), denoted by
‖ · ‖1,Ωi .

Lemma 5.1. There are constants B1,B2, depending only on the local geometry
indicators N0, N

∗
0 , γint, qmax, Rmax, Nmax such that:

‖v −Q0v‖1,Ωi ≤ |v|1,Ωi + B1‖v‖L2(Ω∗i ) for all i ∈ I, v ∈ H1(Ω∗i ), (5.3)

‖v −Q0v‖1,Ωi ≤ B2|v|1,Ω∗i for all i ∈ I∗int, v ∈ H1(Ω∗i ). (5.4)

19



Proof. Take i ∈ I, v ∈ H1(Ω∗i ). Note (Q0v)|Ωi =
(∑

j∈N∗i
v̄jθj

)
|Ωi

. Since

N ∗i ⊂ Iint we have ‖∇θj‖∞,Ωi ≤ N0

γint
for j ∈ N ∗i , hence, ‖θj‖21,Ωi ≤ |Ωi|

(
1 +

(
N0

γint

)2)
.

Furthermore, |v̄j | ≤ |Ωj |−
1
2 ‖v‖L2(Ωj). Using this we obtain

‖v −Q0v‖1,Ωi ≤ ‖v‖1,Ωi +
∥∥∥ ∑
j∈N∗i

v̄jθj

∥∥∥
1,Ωi
≤ |v|1,Ωi + ‖v‖L2(Ωi) +

∑
j∈N∗i

|v̄j |‖θj‖1,Ωi

≤ |v|1,Ωi + ‖v‖L2(Ωi) +

(
1 +

N0

γint

)
max
j∈N∗i

( |Ωi|
|Ωj |

) 1
2 ∑
j∈N∗i

‖v‖L2(Ωj)

≤ |v|1,Ωi + B1‖v‖L2(Ω∗i ),

with B1 = 1 +
(

1 + N0

γint

)
q

1
2
maxN∗0 , which proves the result (5.3).

Now take i ∈ I∗int, hence (
∑
j∈N∗i

θj)|Ωi = 1. This implies that for an arbitrary

constant ĉ we have

(Q0ĉ)|Ωi =
( ∑
j∈N∗i

ĉ θj

)
|Ωi

= ĉ.

Using the estimate from above yields, for arbitrary v ∈ H1(Ω∗i )

‖v −Q0v‖1,Ωi = ‖v − ĉ−Q0(v − ĉ)‖1,Ωi ≤ |v|1,Ωi + B1‖v − ĉ‖L2(Ω∗i )

for an arbitrary constant ĉ. Take ĉ := 1
|Ω∗i |

∫
Ω∗i
v dx, hence

∫
Ω∗i
v − ĉ dx = 0. We now

apply a Friedrichs inequality to the term ‖v − ĉ‖L2(Ω∗i ). The domain Ω∗i has a simple
structure, namely the union of a few (at most Nmax) balls. Hence the constant in
the Friedrichs inequality can be quantified. Theorem 3.2 in [28] yields an estimate
in which the constant cF depends only on the number Nmax and the diameters Rj ,
j ∈ N ∗i . This yields

‖v − ĉ‖L2(Ω∗i ) ≤ cF (Nmax, Rmax)|v|1,Ω∗i .

Hence, (5.4) holds, with B2 = 1 + B1cF (Nmax, Rmax).

In the derivation of the main result in Theorem 5.3 below we have to control ‖v‖L2(Ω∗b ),
on a “boundary strip” Ω∗b := ∪i∈I∗b Ω∗i , in terms of |v|1,ΩM . For this we use arguments,
based on the Hardy inequality, very similar to the ones used in the previous sections.
Denote the union of all balls that have a nonzero overlap with Ωi by Ωei := ∪j∈NiΩj .
Note that for i ∈ I∗b the ball Ωi has an overlapping neighboring ball Ωj ⊂ Ωb, and thus
∂Ωe

i ∩ ∂ΩM =: Γe
i 6= ∅. We need a variant of the local exterior fatness Indicator 3.5.

For i ∈ I∗b and x ∈ Ω∗i let p(x) be the closest point projection on Γe
i . Let ĉ∗i > 0 be

such that

|B
(
p(x); ‖p(x)− x‖

)
∩ ΩM,c| ≥ ĉ∗i |B

(
p(x), ‖p(x)− x‖

)
|, for all x ∈ Ω∗i , (5.5)

cf. (3.8), and define

γ∗f := min
i∈I∗b

ĉ∗i > 0. (5.6)

The quantity γ∗f is a local indicator because ĉ∗i depends only on a small neighbourhood
of Ωei .
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Lemma 5.2. There exists a constant B3, depending only on the local geometry
parameters γ∗f and Rmax, such that

‖v‖L2(Ω∗b ) ≤ B3|v|1,ΩM for all v ∈ H1
0 (ΩM ). (5.7)

Proof. For x ∈ Ω∗b we have d(x) = ‖x − p(x)‖ ≤ 4Rmax. Using (5.5) and the
Hardy inequaltiy in Lemma 4.1 we obtain, for v ∈ C∞0 (ΩM ):

|v(x)| ≤ ĉM(‖∇v‖)(x), ĉ := cH
4Rmax

γ∗f
.

Combining this with (4.1) yields

‖v‖L2(Ω∗b ) ≤ ĉ cM|v|1,ΩM .

Application of a density argument completes the proof.
Using the two lemmas above we derive the following main result for the stability

quantity s0.
Theorem 5.3. For the stability constant s0 the bound

s0 ≤ C0

holds, with a constant C0 that depends only on the local geometry indicators in GML
and on N∗0 , qmax, γ

∗
f .

Proof. For v ∈ H1
0 (ΩM ) we define v̂0 = Q0v, v̂i := θi(v − Q0v) ∈ H1

0 (Ωi), i.e.,

v =
∑M
i=0 v̂i, and

∑M
i=1 v̂i = v − v̂0. Using Theorem 4.3 we obtain, along the same

lines as in the proof of Theorem 4.8, with Ω0 := ΩM ,

s0 = inf∑M
j=0 vj=v

M∑
i=0

∣∣∣Pi M∑
j=i+1

vj

∣∣∣2
1,Ωi
≤

M∑
i=0

∣∣∣Pi M∑
j=i+1

v̂j

∣∣∣2
1,Ωi

≤ |P0(v − v̂0)|21,ΩM +

M∑
i=1

∣∣∣Pi ∑
j∈Ni

v̂j

∣∣∣2
1,Ωi
≤ |v − v̂0|21,ΩM +

M∑
i=1

∣∣∣ ∑
j∈Ni

v̂j

∣∣∣2
1,ΩM

≤ |v − v̂0|21,ΩM +N2
max

M∑
i=1

|v̂i|21,Ωi

≤ (1 +N2
maxC1)|v −Q0v|21,ΩM +N2

maxC2

∑
i∈Iint

‖v −Q0v‖2L2(Ωi)
.

Using

|v −Q0v|21,ΩM ≤
∑
i∈I∗int

|v −Q0v|21,Ωi +
∑
i∈I∗b

|v −Q0v|21,Ωi ,

and ∑
i∈Iint

‖v −Q0v‖2L2(Ωi)
≤

∑
i∈Iint∗

‖v −Q0v‖2L2(Ωi)
+
∑
i∈I∗b

‖v −Q0v‖2L2(Ωi)
,

we obtain, with c̃ := max{1 +N2
maxC1, N

2
maxC2}:

s0 ≤ c̃
( ∑
i∈I∗int

‖v −Q0v‖21,Ωi +
∑
i∈I∗b

‖v −Q0v‖21,Ωi
)
. (5.8)
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For the term
∑
i∈I∗int

we use the result (5.4):∑
i∈I∗int

‖v −Q0v‖21,Ωi ≤ B2
2

∑
i∈I∗int

|v|21,Ω∗i ≤ B2
2N
∗
0 |v|21,ΩM .

For the term
∑
i∈I∗b

we use the result (5.3):∑
i∈I∗b

‖v −Q0v‖21,Ωi ≤ 2
∑
i∈I∗b

|v|21,Ωi + 2B2
1

∑
i∈I∗b

‖v‖2L2(Ω∗i )

≤ 2N0|v|21,ΩM + 2B2
1N
∗
0 ‖v‖2L2(Ω∗b ).

Finally, the term ‖v‖L2(Ω∗b ) can be estimated as in Lemma 5.2. Combining these
results completes the proof.

Remark 5.1. The Schwarz domain decomposition method analyzed in this pa-
per is not feasible in practice, because it iterates “on the continuous level”. In every
iteration of the method one has to solve exactly a Poisson equation (with homoge-
neous Dirichlet data) on each of the balls Ωi, i = 1, . . . ,M . If the coarse global space
V0 is used, this requires the exact solution of a sparse linear system with a matrix of
dimension approximately M ×M . Note that the local problems are PDEs, whereas
the global one is a sparse linear system. In practice, the exact solves on the balls are
replaced by inexact ones, which can be realized very efficiently using harmonic polyno-
mials in terms of spherical coordinates using spherical harmonics. These inexact local
solves define a discretization of the original global PDE. If the coarse global space is
used, the resulting linear system can be solved using a multilevel technique, which
then requires computational work for the coarse space correction that is linear in M .
Numerical experiments (so far only for the case without coarse global space) indicate
that the method with inexact local solves has convergence properties very similar to
the one with exact solves that is analyzed in this paper as the local discretization can
be systematically improved. An analysis of the method with inexact local and global
solves is a topic for future research. We expect that such an analysis can be done
using tools and results from the literature on subspace correction methods, because in
that framework the effect of inexact solves on the rate of convergence of the resulting
solver has been thoroughly studied, cf. e.g. [26].

Remark 5.2. In a setting with very large scale problems solved on parallel
architectures, the additive Schwarz domain decomposition method, also called “par-
allel subspace correction method” [26], is (much) more efficient than the Schwarz
domain decomposition method considered in this paper (“successive subspace correc-
tion method”). We indicate how the results obtained in this paper can be applied
to the setting of an additive Schwarz method. We first consider the case without
a coarse global space. In the addititve method one obtains a preconditioned system
with a symmetric positive definite operator T :=

∑M
j=1 Pj , cf. [27, 25]. The qual-

ity of the additive Schwarz preconditioner is measured using the condition number

cond(T ) = λmax(T )
λmin(T ) . A (sharp) bound for this condition number is derived in [25,

Theorem 2.7]. This bound depends on three parameters, denoted by ω, ρ(E), C0, cf.
[25] for definitions. In the case of “exact subspace solvers” that we consider, we have
ω = 1. We use a (stable) decomposition as in Theorem 4.3. Due to a(θiv, θjv) = 0
for all j /∈ Ni it follows that ρ(E) ≤ Nmax. The parameter C0 quantifies the stability
of the decomposition. For this essentially the same bounds as for s0 in Theorems 4.8
and 5.3 hold.
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6. Numerical experiments. We only present a few numerical examples in or-
der to complement results already available in the literature. In [1] results of numerical
experiments are presented which show that the method scales linearly in the number
of balls in linear chains of same-sized balls in three dimensions. In [4] results that
show linear scaling are given for more general essentially one-dimensional structures,
but limited to two spatial dimensions. Numerical results of the domain decomposition
method applied to real molecules are presented in [19], more precisely treating alanine
chains and compounds of one to several hemoglobin units. Further [6] sheds light on
the difference in terms of the number of iterations between chain-like versus globular
biologically relevant molecules and the sensitivity with respect to the radii Ri.

Here we restrict to a few theoretical scenarios, i.e. we consider the center of
the balls to lie on a regular unit lattice Ln, for n = (nx, ny, nz), defined by Ln =
[1, nx]× [1, ny]× [1, nz]∩N3. We take all radii the same and equal to 0.9 in order that
no inner holes appear in the structures and that there is significant overlap between
neighbouring balls. We consider three different cases:

• Case 1: nx, ny are fix and nz = n ∈ N is growing. This represents a lattice
that is growing in one direction.

• Case 2: nx is fix and ny = nz = n ∈ N is growing. This represents a lattice
that is growing in two directions.

• Case 3: nx = ny = nz = n ∈ N is growing. This represents a lattice that is
growing in all three directions.

Case 3 differs from the first two cases in the sense that for the global fatness indicator
dF we have, in the limit n→∞, dF ∼ n in former case, whereas for Case 1 and 2, dF
is uniformly bounded (with respect to n), but depends on nx, ny and nx, respectively.

Since the contraction behaviour only depends on the operator, we consider the
simple setting of f = 0, i.e. −∆u = 0 with trivial solution, and observe the contraction
of a given non-trival starting function u0 to u ≡ 0. Indeed, u0 is chosen equal to one in
the inner balls of the domain and smoothly decreases to zero boundary values within
the boundary layer of balls. The local problems are solved using spherical harmonics
times a radial monomial. Indeed, since we know a priori that the solution is harmonic
we use a spectral method with harmonic basis functions of the form rk Ykm(θ, ϕ),
where (r, θ, ϕ) denote the spherical coordinates with respect to the balls center and
Ykm the real-valued spherical harmonics. We choose the degree of spherical harmonics
high enough such that the approximation error is not affecting the iterative process.

Figure 6.1 illustrates the number of iterations of the algorithm presented in (2.2)
with and without coarse correction to reach a relative error criterion |u`|1,ΩM <
10−6 |u0|1,ΩM . As predicted by the theory presented in this paper, we have a bounded
number of iterations in Case 1 and 2 (with dependency on nx (and ny in Case 2),
while Case 3 shows a growing number of iterations that is approximately linear in n
if no coarse global space correction is employed. On the other hand, all cases show a
bounded number of iterations, as predicted by the theory, if the coarse global space
correction is employed.

7. Conclusion and outlook. In this paper we presented an analysis of the rate
of convergence of the overlapping Schwarz domain decomposition method applied to
the Poisson problem on a special family of domains, motivated by applications in im-
plicit solvation models in computational chemistry. The analysis uses the framework
of subspace correction methods, in which the contraction number of the error propa-
gation operator (in the natural energy norm) can be expressed in only one stability
parameter, namely s0 appearing in Lemma 2.1. We investigate how this stability pa-
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Fig. 6.1. Number of iterations of the Algorithm (2.2) to reach a fixed error tolerance for
different lattice-structures labelled by the description (nx, ny , nz) without (left) and with (right)
coarse correction.

rameter depends on relevant geometric properties of the domains, such as the amount
of overlap between neighbouring balls and the exterior fatness of the domain. The
latter plays a key role in the analysis of a Poincaré inequality. To formalize the
dependence of the constants in the estimates on relevant geometric properties we in-
troduced local geometry indicators, cf. (3.10), and a global geometry indicator dF
(3.14). In view of our applications it is reasonable to assume that the local indica-
tors are uniformly (in the number of subdomains) bounded. We derive bounds for
the stability parameter s0 as presented in the main Theorem 4.8. The results of
this theorem show that the rate of convergence of the overlapping Schwarz domain
decomposition method can deteriorate in situations with very large dF values and
remains constant for (possibly complex and non-trivial) geometrical structures where
dF remains constant, which is the case in the majority of cases when dealing with
biochemical molecules. This result provides therefore a theoretical justification of the
performance of the solvers observed in implicit solvation models. In cases where dF
is large, the efficiency of the method can be significantly improved by using an addi-
tional coarse global space, as explained in section 5. Including such a space results in
a uniform bound for s0 that in particular does not depend on dF , cf. Theorem 5.3.

In this paper we restricted the analysis to the case with exact subspace solvers,
both for the local Poisson problems in H1

0 (Ωi) and the Poisson problem in the coarse
global space V0. In future work we want to study the effect of inexact solvers by means
of a local discretization error. In recent years the method without the coarse global
space has been used for the efficient simulation of many complex applications in the
field of implicit solvation models. So far we did not perform a systematic numerical
study of the method with the coarse global space. We plan to do this in the near
future.

8. Appendix. In this appendix we give a proof of Lemma 3.2 and a derivation
of the result stated in Remark 3.4.

8.1. Proof of Lemma 3.2. Proof. Define α = π
2−β∞, where β∞ is the minimal

angle (half of the aperture) constant of Assumption (A4), and

ε := R∞min(1− sin(α)).
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We introduce the splitting of Ωb into

Ωε = {x ∈ Ωb | δ(x) < ε}, Ωc
ε = {x ∈ Ωb | δ(x) ≥ ε}.

First, for x ∈ Ωc
ε we have δ(x)

dist(x,∂ΩM )
≥ ε

2R∞max
. Hence,

δ(x) ≥ R∞min(1−sin(α))
2R∞max

dist(x, ∂ΩM ) for all x ∈ Ωc
ε. (8.1)

Second, we consider x ∈ Ωε. We start with some preliminary consideration. We

denote by ^(v, w) := arccos
(

v·w
‖v‖‖w‖

)
the angle between two vectors v, w ∈ R3. The

circular cone with apex y ∈ R3, axis w ∈ R3 and aperture 2α is denoted by

Ky(w,α) =
{
z = y + v ∈ R3 | v ∈ R3,^(w, v) ≤ α

}
.

Let y = p(x) ∈ ∂ΩM denote one of the closest points of x on ∂ΩM . Following the
notation introduced in [9], let i = I(y) = {i1, . . . , ir} be the maximal set of indices
such that y ∈ ⋂i∈I(y) ∂Ωi.

If i = I(y) = {i1}, i.e., if y is contained on a spherical patch and only belonging
to one sphere, then there trivially holds

δ(x) ≥ δi1(x) = ‖x− p(x)‖ = dist(x, ∂ΩM ). (8.2)

Otherwise, define mi = {mi1 , . . . ,mir}, i.e., the set of the centers of all spheres
that contain y, and introduce the generalized cone

coney(mi) :=

{
w = y +

r∑
t=1

λtvt

∣∣∣∣∣ 0 ≤ λt
}
, vt :=

mit − y
‖mit − y‖

.

Then, following [9][Theorem 1], there holds that x ∈ coney(mi). We now show that
we can cover coney(mi) with r circular cones with equal aperture. Indeed, considering
the vector −n(y) from Assumption (A4) we have

−n(y) · vt > γ∞α = cos(π2 − β∞) = cos(α), ∀t = 1, . . . , r.

Elementary geometrical considerations then yield that we can cover coney(mi) with
circular cones Ky(vt, α), t = 1, . . . , r, of angle α, i.e.,

coney(mi) ⊂
r⋃
t=1

Ky(vt, α),

see Figure 8.1 (right) for an elementary illustration. Thus there exists a j = is, such
that x ∈ Ky(vs, α) holds. Then, choose the maximal radius Rj,α = Rj sin(α) > 0 such
that B(mj ;Rj,α) is entirely contained in the circular cone Ky(vs, α); see Figure 8.1
for a graphical illustration of the geometric situation. Due to x ∈ Ωε we have
δj(x) ≤ δ(x) < ε. First, this implies that

Rj − ‖x−mj‖ < ε = R∞min(1− sin(α)) ≤ Rj(1− sin(α)),

and ‖x−mj‖ > Rj sin(α) = Rj,α. From this we conclude

x ∈ Ky(vj , α) ∩
(
B(mj ;Rj) \B(mj ;Rj,α)

)
.
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Fig. 8.1. Illustration on choosing the maximal radius Ri,α (left) and how to cover coney(mi)
with circular cones Ky(vt, α) (right).

Second, if ‖x − y‖ ≤ R∞min sin(β∞) = R∞min cos(α), then x ∈ B(y;Rj cos(α)) and
Lemma 8.1 (below) then states that

δj(x) ≥ cos(α)
2 dist(x, ∂ΩM ). (8.3)

In consequence, equation (8.3) yields that

cos(α)
2 dist(x, ∂ΩM ) = cos(α)

2 dist(x, y) ≤ δj(x) ≤ δ(x).

In the contrary case, i.e. if ‖x− y‖ > R∞min sin(β∞), then

dist(x, ∂ΩM ) ≤ 2Rj ≤ 2R∞max ≤ 2R∞max

γint
δ(x),

by (3.5). Finally, define (cf. also (8.1), (8.2))

γb = min
{

1,
R∞min(1−sin(α))

2R∞max
, cos(α)

2 , γint

2R∞max

}
, (8.4)

and we obtain δ(x) ≥ γb dist(x, ∂ΩM ).

Lemma 8.1. For y ∈ ∂Ωi define vi := mi−y
‖mi−y‖ . For given 0 < α < π

2 , consider the

circular cone Ky(vi, α) and let Ri,α > 0 be the minimal radius such that B(mi;Ri,α)
intersects the boundary ∂Ky(vi, α), i.e. the maximal radius such that B(mi;Ri,α)
is contained in the circular cone Ky(vi, α). Then, the maximal value is given by
Ri,α = Ri sin(α) and the following holds:

δi(x) ≥ cαdist(x, y), ∀x ∈ Ky(vi, α)∩
(
B(mi;Ri)\B(mi;Ri,α)

)
∩B(y;Ri cos(α)),

(8.5)

where cα = cos(α)
2 > 0.

Proof. We consider any point x ∈ P = Ky(vi, α) ∩
(
B(mi;Ri) \ B(mi;Ri,α)

)
∩

B(y;Ri cos(α)). Consider now all points in P lying on a subset Γ(x) of the sphere
with radius Ri − δi(x):

Γ(x) = {z ∈ P | δi(z) = δi(x)},
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and introduce di(x) = maxz∈Γ(x) dist(z, y) such that δi(x) ≤ dist(x, y) ≤ di(x), and

thus dist(x,y)
δi(x) ≤ di(x)

δi(x) . Applying the cosine rule yields (Ri − δi(x))2 = di(x)2 + R2
i −

2di(x)Ri cos(α), which is equivalent to

di(x)

δi(x)
=

2Ri − δi(x)

2Ri cos(α)− di(x)
.

Since di(x) ≤ di = Ri cos(α), we have

δi(x)

dist(x, y)
≥ δi(x)

di(x)
=

2Ri cos(α)− di(x)

2Ri − δi(x)
≥ Ri cos(α)

2Ri − δi(x)
≥ cos(α)

2
,

which completes the proof.

8.2. Derivation of result in Remark 3.4. We consider the case of two over-
lapping balls , Ω2 = Ω1 ∩ Ω2, with Ω1 = B

(
(−1, 0, 0); 2

)
, Ω2 = B

(
(1, 0, 0); 2

)
as in Remark 3.4. The intersection of ∂Ω2 with Ω1 ∩ Ω2 is given by the circle
S =

{
(0, x2, x3)

∣∣ x2
2 + x2

3 = 3
}

. We analyze the smoothness of θ1 (close to S). Ele-
mentary computation yields

∇θ1 =
δ2∇δ1 − δ1∇δ2

δ2
, ∇θ1 · ∇θ1 =

δ2
1 + δ2

2 − 2δ1δ2∇δ1 · ∇δ2
δ4

.

On the subdomain V :=
{
x ∈ Ω1 ∩ Ω2

∣∣ |x1| ≤ 1
2 , 1 ≤ x2

2 + x2
3 ≤ 3

}
we have |∇δ1 ·

∇δ2| ≤ 3
4 . Hence,

(∇θ1 · ∇θ1)|V ≥
δ2
1 + δ2

2 − 1 1
2δ1δ2

δ4
≥ 1

4

δ2
1 + δ2

2

δ4
≥ 1

8

1

δ2
.

Take p on the intersection circle S and define the triangle Tp with the vertices p,
(−1, 0, 0), (0, 0, 0). For all x ∈ Tp we have δ2(x) ≤ δ1(x), hence δ(x) ≤ 2δ1(x).
Furthermore, there exists a constant c such that δ1(x) ≤ c‖x− p‖ for all x ∈ Tp ∩ V .
The spherical sector obtained by rotating Tp along p ∈ S can be parametrized by
coordinates (s, ρ, θ), with s ∈ [0, 2

√
3π] the arclength parameter on S and (ρ, θ) polar

coordinates in the triangle Tp at p = s, with origin at p. Integration over a part
TS := { (s, ρ, θ) | ρ ≤ ρ0 } of this spherical sector, with ρ0 > 0 sufficiently small, yields∫

TS

|∇θ1|2 dx ≥
1

16

∫
TS

δ−2
1 dx ≥ c̃

∫ 2
√

3π

0

∫ 1
6π

0

∫ ρ0

0

1

ρ2
ρ dρ dθ ds =∞.
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