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Abstract. Resistive magnetohydrodynamics (MHD) is a continuum base-level model for con-
ducting fluids (e.g. plasmas and liquid metals) subject to external magnetic fields. The efficient and
robust solution of the MHD system poses many challenges due to the strongly nonlinear, non self-
adjoint, and highly coupled nature of the physics. In this article, we develop a robust and accurate
a posteriori error estimate for the numerical solution of the resistive MHD equations based on the
exact penalty method. The error estimate also isolates particular contributions to the error in a
quantity of interest (QoI) to inform discretization choices to arrive at accurate solutions. The tools
required for these estimates involve duality arguments and computable residuals.
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1. Introduction. The resistive magnetohydrodynamics (MHD) equations pro-
vide a continuum model for conducting fluids subject to magnetic fields and are often
used to model important applications e.g. higher-density, highly collisional plasmas.
In this context, MHD calculations aid physicists in understanding both thermonuclear
fusion and astrophysical plasmas as well as understanding the behavior of liquid met-
als [41, 63]. From a phenomenological perspective, the governing equations of MHD
couple Navier-Stokes equations for fluid dynamics with a reduced set of Maxwell’s
equations for low frequency electromagnetic phenomenon. Structurally, the equations
of MHD form a highly coupled, nonlinear, non self-adjoint system of partial differential
equations (PDEs). Analytical solutions to the MHD system cannot be obtained for
practical configurations; instead numerical solutions are sought. The theoretical and
numerical analysis of MHD dates back to the pioneering work of Temam [61]. Finite
element formulations of incompressible resistive MHD include stabilization methods
based on variational multiscale (VMS) approaches [48, 49, 62], exact and weighted
penalty methods [42, 37, 57, 54], first order system least squares (FOSLS) [3, 4, 1, 44]
and structure preserving methods [56, 35, 45, 11, 55]. A survey of various numeri-
cal techniques for MHD is found in [38]. In this article we restrict ourselves to the
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stationary MHD equations based on the exact penalty finite element formulation,
originally developed in [42] from a finite element method discretization. We do not
employ specialized solver strategies e.g. block preconditioning as the problem size we
consider does not merit it.

The numerical solution of complex equations like the MHD equations often have
a significant discretization error for solution with significant fine scale spatial struc-
tures. This error must be quantified for the reliable use of MHD equations in numerous
science and engineering fields. Accurate error estimation is a key component of pre-
dictive computational science and uncertainty quantification [29, 30, 17]. Moreover,
the error depends on a complex interaction between many contributions. Thus, the
availability of an accurate error estimate and the different sources of error also offers
the potential of optimizing the choice of discretization parameters in order to achieve
desired accuracy in an efficient fashion. In this work we leverage adjoint based a
posteriori error estimates for a quantity of interest (QoI) related to to the solution
of the MHD equations. These estimates provide a concrete error analysis of different
contributions of error, as well as inform solver and discretization strategies.

In many scientific and engineering applications, the goal of running a simulation
is to compute a set of specific QoIs of the solution, for example the drag over a
plane wing in the context of the compressible Navier-Stokes equations. Adjoint based
analysis [39, 10, 28, 26, 5, 8] for quantifying the error in a numerically computed QoI
has found success for a wide variety of numerical methods and discretizations ranging
from finite element [16, 29, 33, 21], finite volume [9], time integration [28, 20, 19, 18],
operator splitting techniques [29, 33] and uncertainty quantification [31, 32, 17].

Adjoint based a posteriori error analysis uses variational analysis and duality to
relate errors to computable residuals. In particular, one solves an adjoint problem
whose solution provides the residual weighting to produce the error in the QoI. The
technique also naturally allows to identify and isolate different components of error
arising from different aspects of discretization and solution methods, by analyzing
different components of the weighted residual separately.

This article carries out the first adjoint based a posteriori error analysis for the
MHD equations to the best of our knowledge. The definition of the adjoint operator to
the strong form of the MHD system is not obvious since that system is rectangular,
and hence the weak form of the exact penalty method is needed for forming the
appropriate adjoint problem. We further provide theory supporting the well-posedness
of the adjoint weak form. Additionally, the resulting a posteriori error estimate is
decomposed to identify various sources of error, and the efficacy of the error estimate
is demonstrated on a set of benchmark MHD problems.

The remainder of the article is organized as follows. In §2, we review the equations
of incompressible resistive MHD, present the exact penalty weak form and the finite
element method to numerically solve the problem. In §3 we develop theoretical results
for adjoint based a posteriori error analysis for an abstract problem representative
of the exact penalty weak form. We apply these results to the MHD equations in
§4 to develop an a posteriori error estimate. In §5 we present numerical results to
demonstrate the accuracy and utility of the error estimates produced by our method.
In §6 we give details of the derivation of the nonlinear operators in the weak adjoint
form as well as a well-posedness argument for the adjoint problem.

2. Exact penalty formulation and discretization. In this section we de-
scribe the nondimensionalized equations of incompressible stationary MHD, a stabi-
lized weak form of the MHD system and a finite element method for its solution.
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2.1. The MHD equations. Throughout the rest of the paper, let Ω ⊂ Rd, d =2
or 3 be a bounded, convex polyhedral domain with boundary ∂Ω. The assumptions
on the domain are necessary for the solution strategy we choose, as elaborated in §2.3.
The nondimensional equations for stationary incompressible MHD in Ω are given by

− 1

Re
∆u+ (u · ∇)u+∇p− κ(∇× b)× b = f ,(2.1a)

∇ · u = 0,(2.1b)
κ

Rem
∇× (∇× b)− κ∇× (u× b) = 0,(2.1c)

∇ · b = 0,(2.1d)

where the unknowns are the velocity u, the magnetic field b, and the pressure p. The
nondimensional parameters are the fluid Reynolds number Re > 0, Magnetic Reynolds
number Rem > 0, and interaction parameter κ = H2

a/(ReRem), where Ha > 0 is the
Hartmann number. We require the source term f ∈ H−1(Ω). For x ∈ Ω we have
u(x) ∈ Rd, b(x) ∈ Rd, p(x) ∈ R and f(x) ∈ Rd. We supplement the system (2.1)
with boundary conditions,

u = g, on ∂Ω,(2.2a)

b× n = q × n, on ∂Ω.(2.2b)

Referring to (2.1), we observe there are 2d + 2 and only 2d + 1 unknowns [57].
Effectively enforcing the solenoidal constraint (2.1d) (an involution of the transient
MHD system) is an active area of research. Techniques include compatible discretiza-
tions [58, 11], vector potential [2, 59] and divergence cleaning [24, 46] as well as the
exact penalty method [42, 37, 57]. In this article, we consider the exact penalty
method which we further describe in §2.3.

2.2. Function spaces for the MHD system. We make use of the standard
spaces L2(Ω) and Hm(Ω) as well as their vector counterparts L2(Ω) and Hm(Ω). The
L2(Ω) (or L2(Ω)) inner product is denoted by (·, ·) and the norm is denoted by ‖ · ‖,
while the H1(Ω) (or H1(Ω)) norm is denoted by ‖ · ‖1. The norm in Rd is denoted
by ‖ · ‖Rd . The details of these function spaces are given in Appendix A. Further
useful relations used throughout the text are given in Appendix B and Appendix C.

For b ∈ H1(Ω), we define ∇b :=
[
∇b1, . . . ,∇bd

]T
as a matrix whose rows are the

gradients of the components of b. The relevant subspaces of H1(Ω) needed to satisfy
the boundary conditions (in the sense of the trace operator) are,

H1
0(Ω) := {w ∈H1(Ω) : w|∂Ω ≡ 0},(2.3)

H1
τ (Ω) := {w ∈H1(Ω) : (w × n)|∂Ω ≡ 0}.(2.4)

Finally, we define the product space,

P := H1
0(Ω)×H1

τ (Ω)× L2(Ω).(2.5)

We also remark that for d = 2, we use the natural inclusion of R2 ↪→ R3,
[
v1, v2

]T 7→[
v1, v2, 0

]T
to define the operators ∇× and ×. Thus for v,w ∈H1(Ω), we have that

∇× v =

(
∂vy
∂x
− ∂vx

∂y

)
k̂, v ×w = (vxwy − vywx) k̂.
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2.3. Exact penalty formulation. In this section we present the weak form of
the stationary incompressible MHD system based on the exact penalty formulation
[42]. The exact penalty method requires that the domain Ω is bounded, convex and
polyhedral. This ensures that H(curl,Ω) ∩H(div,Ω) is continuously embedded in
H1(Ω) [56, 38]. We also assume homogeneous Dirichlet boundary conditions i.e. g =
q = 0. Non-homogeneous boundary conditions can be dealt with through standard
lifting arguments as discussed in §4.3. The exact penalty weak problem corresponding
to (2.1) and (2.2) is: find U = (u, b, p) ∈P such that

(2.6) NEP (U, V ) = (f ,v), ∀V ∈P,

where the nonlinear form NEP is defined for all V = (v, c, q) ∈P by

(2.7)

NEP (U, V ) : =
1

Re
(∇u,∇v) + (C(u),v)− (p,∇ · v) + (q,∇ · u)

− κ(Y(b),v)− κ(Z(u, b), c)

+
κ

Rem
(∇× b,∇× c) +

κ

Rem
(∇ · b,∇ · c),

and the nonlinear operators are defined by

C(u) := (u · ∇)u,(2.8a)

Y(b) := (∇× b)× b,(2.8b)

Z(u, b) := ∇× (u× b).(2.8c)

All except the last term in the weak form arise from multiplying (2.1a)-(2.1c) by
test functions and performing integration by parts. The last term, κ

Rem
(∇ · b,∇ · c),

effectively enforces the solenoidal involution (2.1d) since, assuming the aforementioned
restrictions on the domain, there exists a function (see [42, 40]) b0 ∈ H2(Ω) such that

(2.9) ∇ · ∇b0 = ∇ · b, and ∇b0 ∈H1
τ (Ω).

Thus, we choose V = (0,∇b0, 0) in (2.7) and use (B.1b) so that (2.6) reduces to

(2.10) (∇ · b,∇ · ∇b0) = (∇ · b,∇ · b) = 0,

and hence (2.1d) is satisfied almost everywhere in Ω.

Remark 1. The existence of the solution to the problem (2.6) is proven in [42,
Theorem 4.6] as well as in [38, Theorem 3.22], while uniqueness is proven in [42,
Theorem 4.7] and also in [38, Theorem 3.22]. Both uniqueness proofs rely on a
“small data” assumption, i.e. inequalities bounding the nondimensionalised constants,
Re,Rem and κ, in terms of the data f , g and q.

2.4. Finite element method. We introduce the standard continuous Lagrange
finite element spaces. Let Th be a simplicial decomposition of Ω, where h denotes the
maximum diameter of the elements of Th, such that the union of the elements of Th
is Ω, and the intersection of any two elements is either a common edge, node, or is
empty. The standard Lagrange space finite element space of order q is then

(2.11) Pqh :=
{
v ∈ C(Ω) : ∀K ∈ Th, v|K ∈ Pq(K)

}
,

where Pq(K) is the space of polynomials of degree at most q defined on the element
K. Additionally, our finite element space satisfies the Ladyzhenskaya-Babuška-Brezzi
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condition stability condition [12] for the velocity pressure pair, e.g. Ph = P2
h(Ω) ×

P1
h(Ω) × P1

h(Ω). Then the discrete problem to find an approximate solution Uh =
(uh, bh, ph) ∈Ph to (2.7) is,

(2.12) NEP (Uh, Vh) = (f ,vh) ∀Vh ∈Ph.

Note there is no restriction on the finite element space for bh, which is an advantage
of this method. The existence and uniqueness of the solution of the discrete problem
(2.12) is also demonstrated in Gunzburger et al. [42] with the same assumptions of
the data as discussed in Remark 1.

2.5. Quantity of interest (QoI). The goal of a numerical simulation is often
to compute some functional of the solution, that is, the QoI. In particular, QoIs
considered in this article have the generic form,

(2.13) QoI =

∫
Ω

Ψ · U dx = (Ψ, U)

where U is defined by (2.6) and Ψ ∈ L2(Ω)×L2(Ω)×L2(Ω) ≡ [L2(Ω)]2d+1. For exam-
ple in two dimensions, to compute the average of the y component of velocity uy over

a region Ωc ⊂ Ω, set Ψ = 1
|Ωc|

[
0,1Ωc

, 0, 0, 0)
]T

, where 1S denotes the characteristic

function over a set S. In the examples presented later, the QoIs physically represent
quantities representative of the average flow rate, or the average induced magnetic
field. We seek to compute error estimates in the QoI using duality arguments as
presented in the following subsection.

3. Abstract a posteriori error analysis. In this section we consider an ab-
stract variational setting for a posteriori analysis based on the ideas from [28, 25, 39,
5, 8]. Let W be a Hilbert space with inner-product 〈·, ·〉 and let V be a dense subspace
of W . Throughout this section u ∈ V refers to the solution of an abstract variational
problem (e.g. solution of (3.3) or (3.8)). An example of such a variational problem
is the exact penalty problem as described in §2.3. Moreover, we denote uh ∈ Vh as
a numerical approximation to u, where Vh is a finite dimensional subspace of V , and
denote the error as e = u−uh. Finally, w and v refer to arbitrary functions, and their
spaces are made clear when we use these functions. For the QoI, consider bounded
linear functionals of the form,

(3.1) Q(w) = 〈ψ,w〉, ∀w ∈ W ,

for some fixed ψ ∈ W . The QoI is then,

(3.2) Q(u) = 〈ψ, u〉.

For example, in (2.13), 〈ψ, u〉 = (Ψ, U), that is the inner-product is the L2 inner
product. The aim of the a posteriori analysis is to compute the error in the QoI,
Q(u) −Q(uh) = 〈ψ, u〉 − 〈ψ, uh〉 = 〈ψ, e〉. We briefly describe the analysis for linear
problems in §3.1 and then consider nonlinear problems in §3.2.

3.1. Linear variational problems. We consider the problem of evaluating
(3.2) where u is the solution to the linear variational problem: find u ∈ V such
that

(3.3) a(u, v) = 〈f, v〉, ∀v ∈ V ,
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where a : V × V → R is a bilinear form. We then define the adjoint bilinear form
a∗ : V × V → R as the unique bilinear form satisfying

(3.4) a∗(w, v) = a(v, w), ∀w, v ∈ V ,

see [39, 10]. If φ solves the dual problem: find φ ∈ V such that

(3.5) a∗(φ, v) = 〈ψ, v〉, ∀v ∈ V ,

then we have the following error representation.

Theorem 3.1. The error in the QoI (3.2) is represented as 〈ψ, e〉 = 〈f, φ〉 −
a(uh, φ), where u is the solution to (3.3), uh is a numerical approximation, e = u−uh
and φ is the solution to (3.5).

Proof. The proof is a straightforward computation,

(3.6) 〈ψ, e〉 = a∗(φ, e) = a(e, φ) = a(u, φ)− a(uh, φ) = 〈f, φ〉 − a(uh, φ).

Note from the proof above that a simple yet important property of the adjoint bilinear
form a∗(·, ·) is,

(3.7) a∗(v, e) = a(u, v)− a(uh, v),

for w ∈ V . We will use this property in motivation the analysis for nonlinear problems
in §3.2.

3.2. Nonlinear variational problems. Again, our goal is to evaluate (3.2)
where now u is the solution to the nonlinear variational problem: find u in V such
that

(3.8) N (u, v) = 〈f, v〉, ∀v ∈ V ,

and N : V ×V → R is linear in the second argument but may be nonlinear in the first
argument. There is no straightforward definition of an adjoint operator corresponding
to a nonlinear problem. However, a common choice useful for various kinds of analysis
is based on linearization [53, 52, 21, 18, 16, 33]. This choice enables the definition of

an adjoint bilinear form N ∗(·, ·) which satisfies the useful property,

(3.9) N ∗(v, e) = N (u, v)−N (uh, v),

for all v ∈ V . This property is inspired by (3.7).
We now present a specific case of this analysis such the problem (3.8) mimics the

setup of the exact penalty problem in (2.6). Let V =
∏n
i=1 Vi and W =

∏n
i=1 Wi be

product spaces of Hilbert spaces such that Vi is a dense subspace of Wi for each i.
The left hand side in problem (3.8) is now more specifically given by

(3.10) N (v, w) =

m∑
i=1

〈Ni(v), w`i〉+ a(v, w),

where a(·, ·) is a bilinear form, `i ∈ {1, . . . , n} and Ni : V → W`i are nonlinear
operators. For a solution/approximation pair (u/uh) to (3.8), define the matrix J ,
where each entry J ij : Vj → W`i is given by

J ijvj =

∫ 1

0

∂Ni
∂uj

(su+ (1− s)uh) ds vj ,(3.11)
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where vj ∈ Vj and ∂Ni

∂uj
(·) denotes the partial derivative of Ni with respect to the

argument uj . Define the linearized operator N̄i : V → W`i by

(3.12)

N̄iv =

∫ 1

0

∂Ni
∂u

(su+ (1− s)uh) ds · v

=

n∑
j=1

∫ 1

0

∂Ni
∂uj

(su+ (1− s)uh) ds vj =

n∑
j=1

J ijvj ,

for v ∈ V . Now since each N̄i is linear, we may define the bilinear forms, νi : V ×V →
R, by

νi(v, w) = 〈N̄iv, w`i〉 =

〈
n∑
j=1

J ijvj , w`i

〉
=

n∑
j=1

〈
J ijvj , w`i

〉
,(3.13)

for v, w ∈ V . Define ν∗i (v, w) = νi(w, v), and adjoint operators J ∗ij to J ij satisfying

(3.14) 〈J ijw, v〉 = 〈w,J ∗ijv〉

for w ∈ Vj and v ∈ V`i . Hence, we can also write using the definition (3.13),

ν∗i (v, w) =

n∑
j=1

〈wj ,J
∗
ijv`i〉.

for v, w ∈ V . Also since a(·, ·) in (3.10) is a bilinear form, we have from the definition
(3.4) that a∗(w, v) = a(v, w) for v, w ∈ V . With these definitions in mind, we further

define a composite adjoint bilinear form, N ∗ : V × V → R, as

(3.15) N ∗(v, w) =

m∑
i=1

ν∗i (v, w) + a∗(v, w) =

m∑
i=1

n∑
j=1

〈wj ,J
∗
ijv`i〉+ a∗(v, w),

for u, v ∈ V . Then if φ ∈ V solves the dual problem,

(3.16) N ∗(φ, v) = 〈ψ, v〉, ∀v ∈ V ,

we then have the following abstract error representation.

Theorem 3.2. The error in the QoI (3.2) is represented as 〈ψ, e〉 = 〈f, φ〉 −
N (uh, φ) where u is the solution to (3.8), uh is a numerical approximation of u,
e = u− uh, and φ is the solution to (3.16).
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Proof. We compute, starting by replacing v by e in (3.16),

〈ψ, e〉 = N ∗(φ, e) =

m∑
i=1

n∑
j=1

〈ej ,J
∗
ijφ`i〉+ a∗(φ, e)

=

m∑
i=1

n∑
j=1

〈J ijej , φ`i〉+ a(e, φ)

=

m∑
i=1

〈N ie, φ`i〉+ a(e, φ)

=

m∑
i=1

〈Ni(u)−Ni(uh), φ`i〉+ a(u, φ)− a(uh, φ)

=

m∑
i=1

〈Ni(u), φ`i〉+ a(u, φ)−
m∑
i=1

〈Ni(uh), φ`i〉 − a(uh, φ)

= N (u, φ)−N (uh, φ) = 〈f, φ〉 − N (uh, φ).

The main result of this theorem is that computing the adjoint to a nonlinear form is
reduced to computing the adjoint for the averaged entries, J ij .

4. A posteriori error estimate for the MHD equations. The analysis in
§3.2 applies directly to the MHD equations. The inner product 〈·, ·〉 of the last section
is represented by the [L2(Ω)]2d+1 inner product (·, ·). The linear and nonlinear terms
in the exact penalty weak form (2.6) are mapped to match (3.10). The mapping
between the abstract formulation and MHD equation is shown in Table 1.

Abstract MHD

〈, 〉 (, )
m 3
N NEP

u U
v V
Ni NEP,i

(a)

Abstract MHD

〈f, v〉 (f ,v)
u1 U1 ≡ u
u2 U2 ≡ b
u3 U3 ≡ p
v1 V1 ≡ v
v2 V2 ≡ c

(b)

Abstract MHD

v3 V3 ≡ q

J ∗11 Z∗u
J ∗12 Z∗b
J ∗21 Y∗

J ∗31 C∗

a aEP

(c)

Table 1: Mapping between the abstract framework in §3 and the MHD equation in
§4. NEP is given in (4.1), NEP,i in (4.2), aEP in (4.3) and Z∗u,Z

∗
b,Y

∗
,C∗ are given

in (4.4).

For the exact penalty weak form, we have that

(4.1) NEP (U, V ) =

3∑
i=1

(NEP,i(U), V`i) + aEP (U, V ),

where

(4.2)

(NEP,1(U), V2) = (Z(u, b), c),

(NEP,2(U), V1) = (Y(b),v),

(NEP,3(U), V1) = (C(u),v),



A POSTERIORI ANALYSIS OF MHD 9

Z,Y ,C are in turn defined in (2.8), and

(4.3)
aEP (U, V ) =

1

Re
(∇u,∇v)− (p,∇ · v) + (q,∇ · u)

+
κ

Rem
(∇× b,∇× c) +

κ

Rem
(∇ · b,∇ · c).

The entries J ∗11V2 = Z∗uc, J
∗
12V2 = Z∗bc, J

∗
21V1 = Y∗v and J ∗31V1 = C∗v are,

(4.4)

Z∗u c = 1
2 (u+ uh)× (∇× c),

Z∗b c = − 1
2 (b+ bh)× (∇× c),

Y∗v = 1
2

(
− (∇× (b+ bh)× v) +∇× ((b+ bh)× v)

)
,

C∗v = 1
2

(
(∇u+∇uh)Tv − (((u+ uh) · ∇)v)−

(
∇ · (u+ uh)

)
v,

while the remaining J ∗ij entries are zero. The details of the derivation are given in
§6.1.

4.1. Adjoint problem for incompressible MHD. We are now prepared to
pose a weak adjoint problem corresponding to exact penalty primal problem (2.6).
Based on (4.1), (4.4) and (3.16), the weak dual problem is therefore be stated as: find
Φ = (φ,β, π) ∈P such that

(4.5) N ∗EP (Φ, V ) = (Ψ, V ), ∀V = (v, c, q) ∈P,

with

(4.6)

N ∗EP (Φ, V ) =
1

Re
(∇φ,∇v) +

(
C∗φ,v

)
+ (∇ · v, π)− (∇ · φ, q)

+
κ

Rem
(∇× β,∇× c) +

κ

Rem
(∇ · β,∇ · c)

− κ
(
Y∗φ, c

)
− κ

(
Z∗uβ,v

)
− κ

(
Z∗bβ, c

)
.

Here recall that Ψ is defined by (2.13). The forms of the linear operators C∗,Y∗, Z∗u
and Z∗b are given in (4.4). We discuss the well-posedness of the adjoint problem (4.5)
in §6.2.

4.2. Error representation. In order to discuss an error representation we need
to make the following definition

Definition 4.1. Define the monolithic error by E =
[
eu, eb, ep

]T
with compo-

nent errors

eu = u− uh, eb = b− bh, ep = p− ph.(4.7)

where (u, b, p) ∈ P is the solution to (2.6) and (uh, bh, ph) ∈ Ph is the solution to
(2.12).

We then have the following error representation.

Theorem 4.2 (Error representation for exact penalty). The error in the numer-
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ical approximation of the QoI (2.13) satisfies

(Ψ, E) = (f ,φ)−
[

1

Re
(∇uh,∇φ) + (uh · ∇uh,φ)

− (ph,∇ · φ) + κ((∇× bh)× bh,φ) + (∇ · uh, π)

+
κ

Rem
(∇× bh,∇× β) + κ(∇× (uh × bh),β)

+
κ

Rem
(∇ · bh,∇ · β)

]
,

where Φ = (φ,β, π) is defined in (4.5).

Proof. By Theorem 3.2,

(Ψ, E) = N ∗EP (Φ, E) = NEP (U,Φ)−NEP (Uh,Φ) = (f ,φ)−NEP (Uh,Φ).

4.3. Non-homogeneous boundary conditions for the MHD system. The
analysis above easily extends to the case of non-homogeneous boundary conditions,
i.e. when g or q are not identically zero. First assume that the numerical solution
Uh the satisfies the non-homogeneous conditions exactly. That is, u = uh = g and
b × n = bh × n = q × n on ∂Ω. Then, although neither the true solution U nor
the numerical solution Uh belong to P, the error E defined in Definition 4.1 satisfies
homogeneous boundary conditions and hence belongs to P. Thus, the error analysis
in the previous section applies directly in this case.

On the other hand, if Uh belongs to Ph \P, then in general Uh does not satisfy
the non-homogeneous boundary conditions exactly. Hence we consider the splitting
of the numerical solutions as,

(4.8) Uh = U0
h + Ud,

where U0
h ∈Ph solves,

(4.9) NEP (Uh, Vh) = NEP (U0
h + Ud, Vh) = (F, Vh), ∀Vh ∈Ph,

and Ud is a known function that satisfies the non-homogeneous boundary conditions
accurately. That is, the unknown is now U0

h and the numerical solution Uh is formed
through the sum in (4.8). In this article the function Ud is approximated through
a finite element space of much higher dimension than Ph to capture the boundary
conditions accurately and hence minimize discretization error. An alternate approach
is to represent Ud in the same space as U0

h and then quantify the error due to this
approximation, for example see [16].

4.4. Error estimate and contributions. The error representation in Theo-
rem 4.2 requires the exact solution Φ = (φ,β, π) ∈P of (4.5). Moreover, the adjoint
form (4.6) is linearized around the true solution U and the approximate solution Uh.
In practice, the adjoint solution itself must be approximated in a finite element space
Wh ⊂ P and is linearized only around the numerical solution. Let this approxima-
tion to the adjoint be denoted by Φh = (φh,βh, πh) ∈ Wh. This approximation leads
to an error estimate from the error representation in Theorem 4.2. Let this error
estimate be denoted by η. That is, η ≈ (Ψ, E) such that,

(4.10) η = Emom + Econ + EM ,
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where,

(4.11)

Emom = (f ,φh)−
(

1

Re
(∇uh,∇φh) + ((uh · ∇)uh,φh)− (ph,∇ · φh)

+ κ((∇× bh)× bh,φh)

)
,

Econ = −(∇ · uh, πh),

EM = − κ

Rem
(∇× bh,∇× βh) + κ(∇× (uh × bh),βh)

− κ

Rem
(∇ · bh,∇ · βh).

Here Emom, Econ and EM represent the momentum error contribution, the continuity
error contribution and the magnetic error contribution respectively.

To obtain an accurate error estimate we choose Wh to be of much higher dimen-
sion than Ph as is standard in adjoint based a posteriori error estimation [34, 28, 25,
20, 19, 34, 22, 15, 9]. Moreover, the inaccuracy caused by substituting the numerical
solution in place of true solution in the adjoint form is of higher order and shown to
decrease in the limit of refined discretization [34, 23].

5. Numerical results. In this section we present numerical results to verify the
accuracy of the error estimate (4.10) and the and utility of the error contributions in
(4.11). The effectivity ratio, denoted Eff., characterizes how well the error estimate
approximates the true error,

(5.1) Eff. =
Error estimate

True error
=

η

(Ψ, E)
.

The closer the effectivity is to 1, the better the error estimate provided by our method.
We present two numerical examples here, the Hartmann problem in §5.1 which

admits an analytic solution, and the magnetic lid driven cavity §5.2. Since there is
no closed form solution for the magnetic lid driven cavity, we use as reference a high
order/fine mesh solution to provide a high accuracy estimate for the true error. All
the following computations were carried out using the finite element package Dolfin

in the FEniCS suite [7, 50, 51].
For all experiments, we chose different polynomial orders of Lagrange spaces for

the product space Ph and choose the adjoint space Wh such that it is one higher
polynomial degree in each variable. The computational domain for all problems is
chosen to be a unit length square, Ω := [− 1

2 ,
1
2 ]2 ⊂ R2. The mesh is a simplicial

uniform mesh with the total number of elements denoted by #Elements.

5.1. Hartmann flow in two dimensions. Our first results concern the so-
called Hartmann problem [63]. This problem models the one-dimensional flow of a
conducting fluid in a channel and forms both a momentum boundary layer (viscous
boundary layer), and a layer formed by the diffusion of the magnetic field that in-
fluences the flow due to the Lorentz force (a Hartmann layer). In this case we take
consider a square channel as the computational domain, however the analytic solution
is only a one-dimensional profile, as described in the beginning of the section. This



12 J. H. CHAUDHRY, A. E. RAPPAPORT, AND J. N. SHADID

problem admits an analytic solution [57], u =
[
ux, 0

]T
, b =

[
bx, 1

]T
, p where

ux(y) =
GRe(cosh(Ha/2)− cosh(Hay))

2Ha sinh(Ha/2)
,(5.2a)

Bx(y) =
G(sinh(Hay)− 2 sinh(Ha/2)y)

2κ sinh(Ha/2)
,(5.2b)

p(x) = −Gx− κB2
x/2,(5.2c)

and G = − dp
dx is an arbitrary pressure drop that we choose to normalize the maximum

velocity |ux(y)| to 1.

5.1.1. Problem parameters and QoI. The values of the nondimensionalized
constants are chosen as follows: Re = 16,Rem = 16, κ = 1 which produce a Hartmann
number of Ha = 16. The QoI is chosen as the average velocity across the flow over a
slice. To this end, define

(5.3) Ωc :=
[
− 1

4 ,
1
2

]
×
[
− 1

4 ,
1
4

]
and consequently 1Ωc

the characteristic function on Ωc. We choose Ψ to be Ψ =[
1Ωc

, 0, 0, 0, 0
]T

so that the QoI (2.13) thus reduces to

(5.4) (Ψ, U) = (1Ωc
, ux).

This has a physical interpretation of the capturing the flow rate across this slice of
the channel, Ωc.

5.1.2. Numerical results and discussion. The error contributions of (4.10)
as well as effectivity ratios using different order polynomial spaces are presented in
Table 2, Table 3, Table 4, and Table 5. The effectivity ratio in tables Table 2 and Table
3 is quite close to 1 indicating the accuracy of the error estimate. The error estimate
in Table 4 is not as accurate due to linearization error incurred by replacing the true
solution by the approximate solution in the definition of the adjoint as discussed in
§4.4. This may be verified by linearizing the adjoint weak form around both the true
(which we know for this example) and the approximate solutions. These results are
shown in Table 5 and now the error estimate is again accurate.

In Table 2 we use the lowest order tuple of Lagrange spaces, (P2,P1,P1) for the
variables (u, b, p). In this case, the error is largely dominated by the contributions
Econ and EM . We greatly reduce the error in EM by using a higher degree Lagrange
space, P2, for b as demonstrated in table Table 3. However, this does not reduce
the magnitude of the total error much (about 5%) which is still dominated by the
contribution Econ. The contribution Econ is not significantly affected by the finite
dimensional space for b. Now finally, in Table 4 we use a higher order tuple (P3,P2,P2)
for (u, b, p) and the total error drops by two orders of magnitude.

5.2. Magnetic Lid Driven Cavity.

5.2.1. Regularization and solution method. The magnetic lid driven cavity
is another common benchmark problem for verifying MHD codes [57, 60]. However,
the standard lid velocity is discontinuous and therefore obtains at most H1/2−ε reg-
ularity in two dimensions with ε > 0. By the converse of the trace theorem and
the Sobolev inequality [27, 13], the solution ux cannot obtain H1 regularity on the
interior. Indeed, in this situation, we do not even have well-posedness of the primal
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# Elements True Error Eff. Emom Econ EM
1600 2.76e-04 1.00 4.53e-06 -2.28e-04 5.00e-04
6400 6.98e-05 1.00 1.29e-06 -6.23e-05 1.31e-04
14400 3.11e-05 1.00 6.05e-07 -2.86e-05 5.91e-05
25600 1.75e-05 1.00 3.49e-07 -1.63e-05 3.35e-05

Table 2: Error in (ux,1Ωc) for the Hartmann problem §5.1, with 1Ωc = [− 1
4 ,

1
2 ] ×

[− 1
4 ,

1
4 ]. The finite dimensional space here is (P2,P1,P1) for (u, b, p).

# Elements True Error Eff. Emom Econ EM
1600 -2.25e-04 1.02 1.08e-06 -2.27e-04 -4.79e-06
6400 -6.13e-05 1.04 1.04e-06 -6.23e-05 -2.18e-06
14400 -2.81e-05 1.04 5.98e-07 -2.86e-05 -1.13e-06
25600 -1.60e-05 1.04 3.76e-07 -1.64e-05 -6.81e-07

Table 3: Error in (ux,1Ωc) for the Hartmann problem §5.1. The finite dimensional
space here is (P2,P2,P1) for (u, b, p).

# Elements True Error Eff. Emom Econ EM
1600 1.23e-06 1.21 3.97e-07 -4.15e-06 5.24e-06
6400 1.46e-07 1.47 9.23e-08 -5.07e-07 6.29e-07
14400 4.97e-08 1.63 3.84e-08 -1.40e-07 1.83e-07
25600 2.47e-08 1.73 2.07e-08 -5.44e-08 7.64e-08

Table 4: Error in (ux,1Ωc
) for the Hartmann problem §5.1. The finite dimensional

space here is (P3,P2,P2) for (u, b, p). Here, we approximate the true solution with the
computed solution which results in linearization error. For this accurate a solution,
this deteriorates the quality of the estimate which in turn results in a efficiency further
from 1. This is confirmed in Table 5 where we use the true solution and the effectivity
is again close to 1.

2d Elem. True Error Eff. Emom Econ EM
1600 1.23e-06 1.00 2.75e-07 -4.39e-06 5.34e-06
6400 1.46e-07 1.00 5.97e-08 -5.60e-07 6.46e-07
14400 4.97e-08 1.00 2.35e-08 -1.63e-07 1.89e-07
25600 2.47e-08 1.00 1.22e-08 -6.65e-08 7.90e-08

Table 5: Error in (ux,1Ωc
) for the Hartmann problem, §5.1. The finite dimensional

space here is (P3,P2,P2) for (u, b, p). No linearization error is present here because
we use the true solution in the definition of the adjoint.

problem, so there is not real hope for error analysis. This issue has been address
in a purely fluid context [43, 47]. In both cases, a regularization of the lid velocity
is proposed to mitigate theoretical issues (in the former) and the ability to achieve
higher Reynold’s numbers (in the latter). In this work, we use a similar regularization
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to the one proposed in [47], a polynomial regularization of the lid velocity,

utop(x) = C
(
x− 1

2

)2 (
x+ 1

2

)2
,

with C chosen such that ∫ 1/2

−1/2

utop(x) dx = 1.

The boundary conditions are imposed as g(x, 0.5) =
[
utop, 0

]T
on the top face and

zero on the rest of the boundary. The boundary conditions for the magnetic field are

q =
[
−1, 0

]T
so that b × n =

[
−1, 0

]T × n on ∂Ω. To get a qualitative measure
of the validity of the regularized problem, we show plot of the velocity profile for a
fixed Reynold’s number Re = 5000 and varying magnetic Reynold’s numbers Rem
in Figure 1. These plots are qualitatively similar to Figure 1 in [57] (for which an
un-regularized lid velocity is used), which gives a good indication that the regularized
version produces qualitatively similar features.

Rem = 0.1 Rem = 0.5 Rem = 5.0

Fig. 1: Plots of the ‖u‖Rd for the lid driven cavity §5.2 with added streamlines. We
use a normalization on the lid velocity over a variety of magnetic Reynold’s numbers,
Rem. The other nondimensionalized parameters Re = 5000, κ = 1 for all of these
plots.

Furthermore, since Newton’s method requires a good initial guess for this problem,
we use a homotopic sequence of initial guesses to achieve convergence to high Re.
Specifically we run the problem for a moderate value of Re = 200 for example, and
then use the solution produced by the solver as the initial guess for a larger value e.g.
Re = 1000 until we have achieved the desired value. Figure 2 shows the intermediate
values in this sequence to solve a problem with Re = 1000.

5.2.2. Problem parameters and results. We consider our QoI (2.13) with

Ψ =
[
0, 0, 0,1Ωc

, 0
]T

where now

(5.5) Ωc :=
[
− 1

4 ,
1
4

]
×
[
0, 1

2

]
,

so that the QoI (Ψ, U) = (1Ωc , by) gives a measure of the induced magnetic field in
the upper middle half of the box. See Figure 2 for plots of the induced field by as a
function of Reynold’s number Re.

Since there is no analytic solution for this problem, we compute solution on a
400 × 400 mesh in the space (P3,P2,P2) for (u, b, p). We consider the QoI obtained
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Re = 200 Re = 500 Re = 1000

Fig. 2: Demonstrating the homotopy parameter strategy to achieve high fluid
Reynold’s numbers as described in §5.2. The other nondimensionalized parameters
Rem = 5.0, κ = 1 for all of these plots. The top row is colored according the by and
with the arrows representing the vector b. The bottom row is colored according to
‖u‖Rd , with added streamlines.

from this very high resolution reference solution as a the true solution to compute the
error in the denominator of the effectivity ratio (5.1). The effectivity ratio and error
contributions for Re = 1000 and Re = 2000 are shown in Tables 6, 7, 8 and 9. The
error estimate η is deemed accurate since all effectivity ratios are close to 1.

We first study the lowest order case, namely using the space (P2,P1,P1) for
(u, b, p) in Table 6 where Re = 1000 and Table 8 where Re = 2000. For both
Re = 2000 and Re = 1000, the error contributions are not drastically different in
magnitude, and become even more similar as the mesh is refined. We also note that
all contributions, and in particular the true error, are larger in magnitude for the case
Re = 2000.

For the next experiment, we consider a higher order space for the velocity pair
(u, p) namely (P3,P1,P2) for (u, b, p) in Table 7 for Re = 1000 and Table 9 for
Re = 2000. In both cases, the error is now dominated by the contribution EM . The
case of Re = 2000 is particularly interesting, as the error increases as the mesh is
refined from 1600 elements to 3600 elements. This seemingly anomalous behavior is
explain by examining the error contributions. For #Elements = 1600 we have that
Emom +Econ has magnitude comparable to that of EM but opposite sign, and hence
there is cancellation of error. For #Elements = 3600, the magnitude of Emom+Econ
is much less than that of EM and hence the total error increases as there is less
cancellation of error. Hence, adjoint based analysis not only quantifies the error, it
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also helps in diagnosing such anomalous behavior.

# Elements True Error Eff. Emom Econ EM
1600 -3.93e-05 0.99 -1.05e-05 -2.47e-05 -3.78e-06
3600 -9.50e-06 0.97 -2.23e-06 -5.23e-06 -1.74e-06
6400 -3.41e-06 0.98 -8.12e-07 -1.52e-06 -9.87e-07
10000 -1.61e-06 0.98 -3.64e-07 -5.81e-07 -6.33e-07

Table 6: Error estimates for (by,1Ωc
) for the lid driven cavity §5.2. The finite dimen-

sional space here is (P2,P1,P1) for (u, b, p). We use a very high resolution reference
solution on a 400x400=160000 element mesh and (P3,P2,P2) elements. The parame-
ters are Re = 1000,Rem = 0.4, κ = 1.

# Elements True Error Eff. Emom Econ EM
1600 -5.37e-06 0.98 -4.65e-07 -9.75e-07 -3.81e-06
3600 -1.95e-06 0.99 -5.49e-08 -1.27e-07 -1.75e-06
6400 -1.03e-06 1.00 -1.06e-08 -2.76e-08 -9.87e-07
10000 -6.45e-07 1.00 -2.89e-09 -8.04e-09 -6.33e-07

Table 7: Error estimates for (by,1Ωc
) for the lid driven cavity §5.2. The finite dimen-

sional space here is (P2,P2,P1) for (u, b, p). We use a very high resolution reference
solution on a 400x400=160000 element mesh and (P3,P2,P2) elements. The parame-
ters are Re = 1000,Rem = 0.4, κ = 1.

# Elements True Error Eff. Emom Econ EM
1600 -8.01e-05 1.10 -3.65e-05 -5.70e-05 5.63e-06
3600 -2.04e-05 0.98 -5.69e-06 -1.66e-05 2.25e-06
6400 -5.92e-06 0.96 -1.84e-06 -5.06e-06 1.19e-06
10000 -2.07e-06 0.96 -8.17e-07 -1.91e-06 7.41e-07

Table 8: Error estimates for (by,1Ωc) for the lid driven cavity §5.2. The finite dimen-
sional space here is (P2,P1,P1) for (u, b, p). We use a very high resolution reference
solution on a 400x400=160000 element mesh and (P3,P2,P2) elements. The parame-
ters are Re = 2000,Rem = 0.4, κ = 1.

5.3. Illustrative compute time comparison of the primal and adjoint
problems. In this section we study CPU times for the Hartmann problem of §5.1
using (P2,P1,P1) for (u, b, p). In particular this corresponds to the experiment in
Table 2. We compare the CPU time of numerically solving the adjoint problem with
with solving the discrete forward problem (2.12). The adjoint problem is solved in a
higher order space (P3,P2,P2), but since it is linear, it is not obvious how it compares
in terms of computational cost to the primal problem. The CPU times are shown in
Table 10 1. The CPU time required for the adjoint problem is less in all cases than

1These experiments were carried out using a dual-socket workstation with two Intel Xeon E5-
2687W v2 for a total of 16 physical cores and 32 threads.
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# Elements True Error Eff. Emom Econ EM
1600 1.31e-06 0.78 -1.58e-06 -3.47e-06 6.08e-06
3600 1.51e-06 0.96 -1.91e-07 -5.29e-07 2.17e-06
6400 1.02e-06 0.98 -3.87e-08 -1.28e-07 1.17e-06
10000 6.94e-07 0.99 -1.07e-08 -4.04e-08 7.38e-07

Table 9: Error estimates for (by,1Ωc
) for the lid driven cavity §5.2. The finite dimen-

sional space here is (P3,P2,P1) for (u, b, p). We use an very high resolution reference
solution on a 400x400=160000 element mesh and (P3,P2,P2) elements. The parame-
ters are Re = 2000,Rem = 0.4, κ = 1.

# Elements Primal solve time (s) Adjoint solve time (s)
1600 0.73 0.45
6400 3.40 1.62
14400 6.28 4.09
25600 11.70 8.01

Table 10: CPU times for the primal problem (using (P2,P1,P1)) and adjoint problem
(using (P3,P2,P2)) corresponding to the results in Table 2.

the CPU time required for solving the primal problem. We note that these results
depend on the choice of linear and nonlinear solvers and preconditioners; here we are
simply using Newton’s method and direct linear solvers for the primal problems and
direct linear solvers for the adjoint problems.

6. Derivation of the weak adjoint and well-posedness. In this section we
provide the details of computing the adjoint to exact penalty weak form following
the theory in §3. Then we use a standard saddle point argument to demonstrate the
well-posedness of this new adjoint problem (4.5). We take inspiration for these proofs
from [42]. To simplify notation in this section, we define

(6.1) s := u+ uh, t := b+ bh.

Finally, we use the notation
(·)
= and

(·)
≤ to denote that the equality or inequality is

justified by equation (·).

6.1. Derivation of the weak form of the adjoint. In this section we provide
derivation for the primal linearized operators J ∗21 = Y∗, J ∗11 = Z∗u, J ∗12 = Z∗b and

J ∗31 = C∗ in (4.4). We first compute the primal linearized operators, Y = J 21,
Zu = J 11, Zb = J 12 and C = J 31, using (3.11) and then apply (3.14) to compute

the J ∗ijs. We have from (3.11) for d ∈H1
τ (Ω) and w ∈H1

0(Ω),

Y d :=

∫ 1

0

∂Y
∂b

(sb+ (1− s)bh)d ds,

Zb d :=

∫ 1

0

∂Z
∂b

(su+ (1− s)uh)dds,

Zuw :=

∫ 1

0

∂Z
∂u

(sb+ (1− s)bh)w ds.
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To this end, we compute

(6.2)

Y d =

∫ 1

0

∂Y
∂b

(sb+ (1− s)bh)d ds

=

∫ 1

0

[∇× (sb+ (1− s)bh)]× d+ (∇× d)× (sb+ (1− s)bh) ds

=
1

2
[(∇× (bh + b))× d+ (∇× d)× (bh + b)] .

Similarly, for the two Z terms,

(6.3)

Zb d =

∫ 1

0

∂Z
∂b

(su+ (1− s)uh)d ds

=

∫ 1

0

∇× ((su+ (1− s)uh)× d) ds =
1

2
[∇× ((uh + u)× d)] .

An identical procedure produces,

(6.4) Zuw =
1

2
[∇× (w × (b+ bh))] .

Now, to find the adjoints of these operators, we use (3.14), which in our case involves
multiplying by a test function and then isolating the trial function using integration
by parts. We also make use of the vector identities in Appendix B.

We are now prepared to compute the adjoint for Y . Integrating (6.2) against
v ∈H1

0(Ω),

(Y d,v) =
1

2

∫
Ω

[(∇× t)× d+ (∇× d)× t] · v dx

(B.1a)
=

1

2

∫
Ω

d · [v × (∇× t)] + (∇× d) · [t× v] dx

(B.1b)
=

1

2

∫
Ω

−d · [(∇× t)× v] + d · [∇× (t× v)] dx− 1

2

∫
∂Ω

d · [(t× v)× n] ds

(B.1a)
=

1

2

∫
Ω

−d · [(∇× t)× v] + d · [∇× (t× v)] dx+
1

2

∫
∂Ω

(t× v) · [d× n] ds

(2.4)
=

1

2

∫
Ω

−d · [(∇× t)× v] + d · [∇× (t× v)] dx
(4.4)
= (d,Y∗v).

We proceed with computing the adjoint for Zu, with c ∈H1
τ (Ω),

(Zuw, c) =
1

2
(∇× (w × t), c)

(B.1b)
=

1

2

∫
Ω

(w × t) · (∇× c) dx− 1

2

∫
∂Ω

(w × t) · (c× n) ds

(B.1a)
=

1

2

∫
Ω

w · [t× (∇× c)] dx− 1

2

∫
∂Ω

(w × t) · (c× n) ds

(2.4)
=

1

2

∫
Ω

w · [t× (∇× c)] dx
(4.4)
= (w,Z∗u c).



A POSTERIORI ANALYSIS OF MHD 19

Finally we compute the adjoint to the linearized operator Zb, again with c ∈H1
τ (Ω),

(Zb d, c) =
1

2
(∇× (s× d), c)

(B.1b)
=

1

2

∫
Ω

(s× d) · (∇× c) dx− 1

2

∫
∂Ω

(s× d) · (c× n) ds

(B.1a)
=

1

2

∫
Ω

d · [(∇× c)× s] dx− 1

2

∫
∂Ω

d · [s× (c× n)]− (s× d) · (c× n) ds

(2.4)
=

1

2

∫
Ω

d · [(∇× c)× s] dx
(4.4)
= (d,Z∗b c).

The operator C∗ is identical to the one presented in [33].

6.2. Well posedness of the adjoint problem. In this section we prove the
well-posedness of the adjoint problem §4.1 equation (4.5) using a saddle point type
argument. To keep consistent with the standard setting of saddle point problems
[27, 13], we use the notation X := H1

0(Ω) ×H1
τ (Ω) and M := L2(Ω) so that P =

X ×M . We equip the space X with the graph norm

(6.5) ‖(v, c)‖X := (‖v‖21 + ‖c‖21)1/2.

We next define the bilinear form a : X ×X → R by

(6.6)

a((φ,β), (v, c)) =
1

Re
(∇φ,∇v) +

(
C∗φ,v

)
+

κ

Rem
(∇× β,∇× c) +

κ

Rem
(∇ · β,∇ · c)

−κ
(
Y∗φ, c

)
− κ

(
Z∗uβ,v

)
− κ

(
Z∗bβ, c

)
,

and the mixed form b : X ×M → R by

(6.7) b((φ, c), π) = (π,∇ · φ).

The weak dual problem (4.5) is then equivalent to the following mixed problem: find
((φ,β), π) ∈ X ×M such that

(6.8)

{
a((φ,β), (v, c)) + b((v, c), π) = f(v, c), ∀(v, c) ∈ X,
b((φ,β), q) = −g(q), ∀q ∈M,

where f(v, c) = (ψu,v) + (ψb, c), g(q) = (ψp, q) and Ψ =
[
ψu,ψb, ψp

]T
so that

(Ψ, V ) = f(v, c) + g(q). According to the theory of saddle point systems, in order to
show the existence and uniqueness of solutions to (6.8), it suffices to show:

(i) The bilinear forms a(·, ·) and b(·, ·) are bounded on their respective domains.
(ii) The form a(·, ·) is coercive on X0 := {v ∈ X : b(v, q) = 0, ∀q ∈M}.
(iii) The form b(·, ·) satisfies the inf-sup condition: ∃β > 0 such that

(6.9) inf
q∈M

sup
(v,c)∈X

b((v, c), q)

‖(v, c)‖X‖q‖M
≥ β.

We organize these parts in the following lemmas. We make frequent use of the in-
equalities in Appendix C in the proofs.
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Lemma 6.1. The form a(·, ·) is bounded on X.

Proof. Consider the splitting

(6.10) a((φ,β), (v, c)) = a0((φ,β), (v, c)) + a1((φ,β), (v, c))

where

a0((φ,β), (v, c)) =
1

Re
(∇φ,∇v) +

κ

Rem
(∇× β,∇× c) +

κ

Rem
(∇ · β,∇ · c) ,

a1((φ,β), (v, c)) =
(
C∗φ,v

)
− κ

(
Y∗φ, c

)
− κ

(
Z∗uβ,v

)
− κ

(
Z∗bβ, c

)
.

Then it suffices to show that both a0(·, ·) and a1(·, ·) are bounded separately. The
proof for the boundedness of a0 is given in [42]. For a1 observe that

(6.11)

|a1((φ,β), (v, c))| ≤
∫

Ω

∣∣∣C∗φ · v∣∣∣ dx+ κ

∫
Ω

∣∣∣Y∗φ · c∣∣∣ dx

+κ

∫
Ω

∣∣∣Z∗uβ · v∣∣∣ dx+ κ

∫
Ω

∣∣∣Z∗bβ · c∣∣∣ dx.

Now, for the first term on the right hand side of (6.11),∫
Ω

∣∣∣C∗φ · v∣∣∣ dx =
1

2

∫
Ω

∣∣ [(∇s)Tφ− ((s · ∇)φ)− (∇ · s)φ
]
· v
∣∣dx

=
1

2

∫
Ω

∣∣φT (∇s)v − vT (∇φ)s− (∇ · s)(φ · v)
∣∣ dx

(C.5)

≤ 1

2
[‖φ‖L4‖s‖1‖v‖L4 + ‖φ‖1‖s‖L4‖v‖L4 + ‖∇ · s‖‖φ · v‖]

(B.2d)

≤ 1

2

[
‖φ‖L4‖s‖1‖v‖L4 + ‖φ‖1‖s‖L4‖v‖L4 +

√
3‖s‖1‖φ‖L4‖v‖L4

]
(C.1)

≤ γ

2

(
‖φ‖1‖s‖1‖v‖1 + ‖s‖1‖φ‖1‖v‖1 +

√
3‖s‖1‖φ‖1‖v‖1

)
≤ 3
√

3γ

2
‖s‖1‖φ‖1‖v‖1,

where γ is the square of the embedding constant of H1(Ω) into L4(Ω), see (C.1). For
the second term on the right hand side of (6.11),

κ
(
Y∗φ · c

)
≤ κ

2

∫
Ω

∣∣c · [(∇× t)× φ]
∣∣+
∣∣c · [∇× (t× φ)]

∣∣dx
(B.1b)

=
κ

2

∫
Ω

∣∣c · ((∇× t)× φ)
∣∣+
∣∣(∇× c) · (t× φ)

∣∣dx
(B.1a)

=
κ

2

∫
Ω

∣∣(∇× t) · (c× φ)
∣∣+
∣∣(∇× c) · (t× φ)

∣∣dx
(B.2b)

≤ κ

2
(‖∇ × t‖L2‖c‖L4‖φ‖L4 + ‖∇ × c‖L2‖t‖L4‖φ‖L4)

(B.2c)

≤ κ
√

2

2
(‖c‖L4‖t‖1‖φ‖L4 + ‖c‖1‖t‖L4‖φ‖L4)

(C.1)

≤ κγ
√

2‖c‖1‖t‖1‖φ‖1.
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For the third term on the right hand side of (6.11),

κ
(
Z∗uβ,v

)
≤ κ

2

∫
Ω

∣∣v · [t× (∇× β)]
∣∣ dx (B.1b)

=
κ

2

∫
Ω

∣∣(v × t) · (∇× β)
∣∣dx

(B.2c)

≤ κ
√

2

2
‖v‖L4‖t‖L4‖β‖1

(C.1)

≤ κγ
√

2

2
‖v‖1‖t‖1‖β‖1.

The fourth term follows the same argument as the third term to yield the bound,

κ
(
Z∗bβ, c

)
≤ κγ

√
2

2
‖c‖1‖s‖1‖β‖1.(6.12)

Putting these bounds together, we conclude

(6.13)

a1((φ,β), (v, c)) ≤ γ
(

3
√

3

2
‖s‖1‖φ‖1‖v‖1 + κ

√
2‖c‖1‖t‖1‖φ‖1

+
κ
√

2

2
‖v‖1‖t‖1‖β‖1 +

κ
√

2

2
‖c‖1‖s‖1‖β‖1

)
(C.2)

≤ γ

(
3
√

3

2
‖s‖1‖φ‖1‖v‖1 +

κ
√

2

2
‖c‖1‖s‖1‖β‖1

+‖t‖1κ
√

2‖(v, c)‖X‖(φ,β)‖X

)
(C.2)

≤ γ

(
‖s‖1 max

{
3
√

3

2
,
κ
√

2

2

}
‖(v, c)‖X‖(φ,β)‖X

+‖t‖1‖(v, c)‖X‖(φ,β)‖X

)
≤ αb‖(v, c)‖X‖(φ,β)‖X ,

where

αb = max

{
‖s‖1 max

{
3
√

3

2
,
κ
√

2

2

}
, ‖t‖1

}
.

Now we consider the coercivity of the bilinear form a(·, ·) on X.

Lemma 6.2. There exists a constant αc > 0 such that whenever

(6.14)
k1

Re
− γ

[
3
√

3

2
‖s‖1 +

3κ
√

2

4
‖t‖1

]
> 0,

and

(6.15)
k2κ

Re2
m

− γ

[
κ
√

2

2
‖s‖1 +

3κ
√

2

4
‖t‖1

]
> 0

then

(6.16) a((φ,β), (φ,β)) ≥ αc‖(φ,β)‖2X , ∀(φ,β) ∈ X.
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Proof. Using the splitting established in the previous lemma,

(6.17)

a((φ,β), (φ,β)) ≥ a0((φ,β), (φ,β)) − |a1((φ,β), (φ,β))|

=
1

Re
(∇φ,∇φ) +

κ

Rem
(∇× β,∇× β) +

κ

Rem
(∇ · β,∇ · β)

− |a1((φ,β), (φ,β))|

≥ k1

Re
‖φ‖21 +

k2κ

Re2
m

‖β‖21 − |a1((φ,β), (φ,β))|

where k1 comes from the Poincaré type inequality (C.3), and k2 is defined though

(6.18) ‖∇ × v‖20 + ‖∇ · v‖20 ≥ k2‖v‖21, ∀v ∈H1
τ (Ω),

which is valid under the restrictions we have imposed on the domain Ω and the
continuous embedding of H1

τ (Ω) ↪→ H1(Ω) [40, 42]. Picking up from (6.17) and
using (C.4) we conclude that,

a((φ,β), (φ,β)) ≥ k1

Re
‖φ‖21 +

k2κ

Re2
m

‖β‖21 − |a1((φ,β), (φ,β))|

(6.13)

≥

(
k1

Re
− γ3

√
3

2
‖s‖1

)
‖φ‖21 +

(
k2κ

Re2
m

− γκ
√

2

2
‖s‖1

)
‖β‖21

− γ3κ
√

2

2
‖φ‖1‖t‖1‖β‖1

(C.4)

≥

(
k1

Re
− γ3

√
3

2
‖s‖1

)
‖φ‖21 +

(
k2κ

Re2
m

− γκ
√

2

2
‖s‖1

)
‖β‖21

− γ3κ
√

2

4
‖t‖1

(
‖β‖21 + ‖φ‖21

)
=

(
k1

Re
− γ

[
3
√

3

2
‖s‖1 +

3κ
√

2

4
‖t‖1

])
‖φ‖21

+

(
k2κ

Re2
m

− γ

[
κ
√

2

2
‖s‖1 +

3κ
√

2

4
‖t‖1

])
‖β‖21.

Thus, taking

(6.19)

αc = min

{
k1

Re
− γ

[
3
√

3

2
‖s‖1 +

3κ
√

2

4
‖t‖1

]
,

k2κ

Re2
m

− γ

[
κ
√

2

2
‖s‖1 +

3κ
√

2

4
‖t‖1

]}
,

concludes the lemma.

Remark 2. We note that the quantities assumed to be positive in (6.14) and
(6.15), depend on the computed and true solutions through ‖s‖ and ‖t‖, which should
should both be bounded for “small data” as described precisely in Theorem 4.7 of
[42]. The two quantities in (6.14) and (6.15) also depend on the fluid and magnetic
Reynolds numbers (Re and Rem respectively). In particular, for small to moderate
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Re and Rem these inequalities might very well be satisfied, which is the case for dis-
sipative MHD. However, the larger are Re and Rem (and in particular for the limit
as Re,Rem →∞, that is in the case of ideal MHD), the smaller the positive terms of
(6.14) and (6.15), and thus coercivity cannot be proven by this method. We conclude
this method might therefore need to be adapted for high Re or Rem flows to guarantee
coercivity.

Now we are prepared to prove the main result.

Theorem 6.3. Under the conditions of Lemma 6.2 there exists a unique solution
to the dual problem (4.5).

Proof. The boundedness and inf-sup condition for b(·, ·) are standard see e.g. [13].
The boundedness of a(·, ·) follows from Lemma 6.1, and Lemma 6.2 proves a(·, ·) is
coercive on X so in particular on X0.

7. Conclusions. We have presented an adjoint-based a posteriori analysis of ad-
joint for an exact penalty formulation of incompressible resistive MHD. This included
the derivation of the adjoint error estimate, and a development that characterized the
separate contributions of error from the momentum, continuity and magnetic field
equations. The numerical examples illustrated both the accuracy as well as the use-
fulness of the error estimate for the the assessment of the respective sources of the
error from the different physics components. The example QoIs included two differing
physically meaningful quantities, the averaged velocity-related to the flow rate, and
the induced magnetic field strength.

The novel aspects of this work include defining an adjoint problem for an overde-
termined system, namely the stationary MHD equations. In particular, the standard
definition of an adjoint operator does not suffice and we must define the adjoint di-
rectly for the weak problem. Moreover, we prove the well-posedness of the adjoint
problem. The error estimates derived in this article are also amenable for using in
adaptive refinement algorithms e.g. see [5, 14, 6, 20, 36, 16].

Appendix A. Standard function spaces. We denote by L2(Ω) the set of all
square Lebesgue integrable functions on Ω ⊂ Rd with associated inner product (·, ·)
and norm ‖ · ‖. This extends naturally to vector valued functions, denoted by L2(Ω),
where the inner product is given by,

(u,v) =

d∑
i=1

(ui, vi).

The Sobolev norm for p = 2 is,

‖v‖m :=

 m∑
|α|=0

∥∥Dαv
∥∥2

1/2

.

where α = (α1, . . . , αm) is a multi-index of length m and

Dαv := ∂α1
x1
. . . ∂αm

xm
v,

where the partial derivatives are taken in the weak sense. Thus, the Hilbert spaces
Hm for m = 0, 1, 2, . . . is simply be defined as functions with bounded m-norm,

Hm(Ω) := {v : ‖v‖m <∞}.



24 J. H. CHAUDHRY, A. E. RAPPAPORT, AND J. N. SHADID

The space H0(Ω) is identified with L2(Ω). For vector valued functions, the Hilbert
space Hm is defined as,

Hm(Ω) := {v : vi ∈ Hm(Ω), i = 1, . . . , d},

with associated norm

‖v‖m =

(
d∑
i=1

‖vi‖2m

)1/2

.

Appendix B. Vector identities and inequalities. We use the following
vector identities,

A · (B ×C) = B · (C ×A) = C · (A×B),(B.1a) ∫
Ω

A · (∇×B) dx =

∫
Ω

B · (∇×A) dx−
∫
∂Ω

B · (A× n) ds.(B.1b)

We also make use of the following inequalities for u,v ∈H1(Ω),

|u · v| ≤ ‖u‖Rd‖v‖Rd ,(B.2a)

‖u× v‖Rd ≤ ‖u‖Rd‖v‖Rd ,(B.2b)

‖∇ × u‖Rd ≤
√

2‖∇u‖Rd×d ,(B.2c)

|∇ · u| ≤
√

3‖∇u‖Rd×d(B.2d)

‖Av‖Rd ≤ ‖A‖Rd×d‖v‖Rd ,(B.2e)

and finally the equality

(B.3) ‖∇vT ‖Rd×d = ‖∇v‖Rd×d ,

Appendix C. Useful inequalities from analysis.
1. The space H1(Ω) embeds continuously in L4(Ω) with constant

√
γ. That is,

H1(Ω) ↪→ L4(Ω) such that,

(C.1) ‖v‖L4 ≤ √γ‖v‖H1 .

2. The Cauchy-Schwarz inequality for
[
a, b
]
,
[
c, d
]
∈ R2,

(C.2) ac+ bd =
[
a, b
] [
c, d
]T ≤√a2 + c2

√
b2 + d2,

3. The following inequality follows from the Poincaré inequality,

(C.3) ‖∇v‖20 ≥ k1‖v‖21, ∀v ∈H1
0(Ω).

4. For x, y ∈ R,

(C.4) − xy ≥ − 1
2 (x2 + y2),

We also need the following propositions,

Proposition 1. Let u,v,w ∈H1(Ω). Then there holds

(C.5)

∫
Ω

uT (∇v)w dx ≤ ‖u‖L4‖w‖L4‖v‖1.
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Proof. We will work with the integrand first. To this end, we have that

uT (∇v)w =

d∑
i=1

uiw
T∇vi ≤

d∑
i=1

|ui|‖w‖Rd‖∇vi‖Rd = ‖w‖Rd

d∑
i=1

|ui|‖∇vi‖Rd

≤ ‖w‖Rd

(
d∑
i=1

|ui|2
)1/2( d∑

i=1

‖∇vi‖2Rd

)1/2

= ‖w‖Rd‖u‖Rd‖∇v‖Rd×d .

Now we integrate,∫
Ω

|w‖Rd‖u‖Rd‖∇v‖Rd×d dx

≤
(∫

Ω

‖u‖2Rd‖w‖2Rd dx

)1/2(∫
Ω

‖∇v‖2Rd×d

)1/2

≤
(∫

Ω

‖u‖4Rd dx

)1/4(∫
Ω

‖w‖4Rd dx

)1/4(∫
Ω

‖∇v‖2Rd×d dx

)1/2

= ‖u‖L4‖w‖L4 |v|1 ≤ ‖u‖L4‖w‖L4‖v‖1.
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