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Abstract. Systems involving nematic liquid crystals subjected to magnetic fields or electric
fields are modeled using the Oseen-Frank macroscopic continuum theory, and general criteria are
developed to assess the local stability of equilibrium solutions. The criteria take into account the
inhomogeneity of the electric field (assumed to arise from electrodes held at constant potential) and
the mutual influence of the electric field and the liquid-crystal director field on each other. The criteria
show that formulas for the instability thresholds of electric-field Fréedericksz transitions cannot in
all cases be obtained from those for the analogous magnetic-field transitions by simply replacing
the magnetic parameters by the corresponding electric parameters, contrary to claims in standard
references. This finding is consistent with observations made in [Arakelyan, Karayan, Chilingaryan,
Sov. Phys. Dokl., 29 (1984), pp. 202–204]. A simple analytical test is provided to determine when
an electric-field-induced instability can differ qualitatively from the analogous magnetic-field-induced
instability; the test depends only on the orientations of the ground-state fields and their admissible
variations. For the systems we study, it is found that taking into account the full coupling between
the electric field and the director field can either elevate or leave unchanged an instability threshold
(never lower it), compared to the threshold provided by the magnetic-field analogy (i.e., compared to
treating the electric field as a uniform external force field). The physical mechanism that underlies
the effect of elevating an instability threshold is the added free energy associated with a first-order
change in the ground-state electric field caused by a perturbation of the ground-state director field.
Examples are given that involve classical Fréedericksz transitions and also periodic instabilities,
with the periodic instability of Lonberg and Meyer [Phys. Rev. Lett., 55 (1985), pp. 718–721] being
further explored. The inclusion of flexoelectric terms in the theory is studied, and it is found that
these terms are not capable of altering the instability thresholds of any of the classical Fréedericksz
transitions, consistent with known results for the cases of the magnetic-field and the electric-field
splay transitions.

Key words. liquid crystals, Oseen-Frank model, electric fields, Fréedericksz transitions, periodic
instabilities, flexoelectricity
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1. Introduction. Our interest is in macroscopic continuum models for the ori-
entational properties of materials in a liquid crystal phase, a complex partially ordered
fluid phase exhibited by certain materials in certain parameter ranges. Such models
are used at the scales of typical devices and experiments involving these kinds of
materials (micrometer-scale thin films, and the like). Liquid crystals are very re-
sponsive to external stimuli, such as magnetic fields and electric fields, and this has
been one of the keys to their usefulness in technological applications. This response
frequently manifests itself in an instability such that an abrupt change in the orien-
tational properties of the material occurs at a critical threshold of the strength of the
applied magnetic or electric field, the textbook examples of this being “Fréedericksz
transitions”—see [9, §3.2.3] or [38, §3.4] or [39, §4.2]. Our main objective is to illumi-
nate differences between instabilities induced by magnetic fields versus those induced
by electric fields. We do this via the development of stability criteria that take into
account the inhomogeneity of the electric field and its coupling to the orientational
properties of the material. The characterizations of local stability that we develop
mimic familiar results found in equality-constrained optimization theory in Rn.

At the macroscopic level of modeling, the orientational state of a material in a
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uniaxial nematic liquid crystal phase is characterized by a unit-length vector field n
(the “director field”), which represents the average orientation of the distinguished
axis of the anisometric molecules in a fluid element at a point. Central to the modeling
of equilibrium configurations of the director field is an appropriate expression for the
free energy of the system, a thermodynamic potential that serves as a work function
for isothermal, reversible processes. In the models of interest to us, the material is
assumed to be incompressible. For simplicity, we restrict our attention to achiral uni-
axial nematic liquid crystals (the simplest liquid crystal phase). Such materials are
characterized by intermolecular forces that encourage parallel alignment of directors,
leading to uniform ground-state director fields. Other influences (boundary condi-
tions, external force fields) can effect nonuniform equilibrium configurations of n, at
a cost of distortional elastic energy. Details are presented in what follows. Standard
references include [9, 38, 39].

The force fields of external origin most commonly encountered in the context of
liquid crystals are magnetic fields and electric fields. Magnetic fields are influenced
by a liquid crystal medium, which is anisotropic with magnetic susceptibilities that
depend on the orientational state of the material at a point. For the parameter
values of typical liquid crystal materials, however, this influence is negligible [2], [17,
§2.1]. Thus, a magnetic field in a liquid crystal can be treated as a uniform external
field. An electric field is influenced by the state of the liquid crystal material in a
similar fashion; however, the coupling is much stronger and should not be ignored
[2], [17, §2.1]. Thus, the equilibrium state of a liquid crystal subjected to an electric
field should be determined in a self-consistent way, with the director field and the
electric field treated as coupled state variables. This coupling in general leads to
inhomogeneities of the electric field and complicates the determination of equilibrium
fields and the assessment of their local stability properties.

While the differences between magnetic fields and electric fields in liquid crystals
have been appreciated for some time, the widely held view is that they give rise to
only modest quantitative differences but not to qualitative differences in the context of
instabilities such as Fréedericksz transitions. For example, in [9, §3.3.1] (referencing
[21]) and [38, §3.5], it is asserted that electric-field Fréedericksz thresholds can be
obtained from the formulas for magnetic-field thresholds by simply substituting the
electric parameters for the corresponding magnetic parameters. In fact, this was borne
out in [10], where the electric-field Fréedericksz transition in a particular geometry
was analyzed taking into account the full coupling between the director field and the
electric field. There it was found that in contrast to the approximation by a uniform
electric field, slightly smaller values were obtained for the distortion of the liquid
crystal director field past the onset of the instability, though the critical threshold
of the electric field itself was the same in the coupled case as in the case of the
approximation by a uniform external electric field (consistent with the recipe of [9,
§3.3.1] and [38, §3.5]). The analysis of [10] is recounted in [38, §3.5].

A common use of the threshold formulas for the various Fréedericksz transitions
is in determining via experimental measurements certain material-dependent param-
eters of different liquid crystals [9, §3.2.3.1]. Such experiments can be done with
magnetic fields or with electric fields, whichever is more convenient, and experimen-
talists invariably take for granted the validity of the simple relationships between the
formulas for the magnetic-field threshold versus the electric-field threshold implied by
the recipes of [9, §3.3.1] and [38, §3.5]—see, for example, [4] or [12, Ch. 5] for more dis-
cussion and additional references. Here we will show that true qualitative differences
can occur between magnetic-field-induced instabilities and those induced by electric
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Fig. 2.1. Model problem domain (two-dimensional depiction of actual three-dimensional, hex-
ahedral domain). Boundary conditions: on Γ1 (strong anchoring, Dirichlet boundary condition
n = nb on n, ϕ = 0), on Γ2 (weak anchoring, natural boundary condition (3.5)2 on n, ϕ = V ), on
Γ3 (periodic boundary conditions on both n and ϕ on opposing sides of Γ3).

fields (such as instability thresholds that differ from the recipes of [9, §3.3.1] and [38,
§3.5]), and we provide simple criteria to identify them. We also provide illustrative
examples. Our results expand upon ideas in [2] and [34].

The paper is organized as follows. In section 2, we introduce models involving
magnetic fields and models involving electric fields (free energies, domains, boundary
conditions). Stability criteria for the magnetic-field models are developed in section 3.
These take the form of first-order and second-order necessary conditions, in the spirit
of equality-constrained optimization theory in Rn. Illustrations are given involving
classical Fréedericksz transitions as well as periodic instabilities. Section 4 extends
these results to the models involving electric fields, which introduces new aspects.
There, examples are given illustrating the types of qualitative differences that occur
in certain classical instabilities when induced by electric fields as opposed to magnetic
fields. In section 5, we summarize our main results. Appendix A contains details of
the analysis of one of the examples involving a periodic instability (that of Lonberg
and Meyer [29]), and Appendix B provides an illustration of how the approach can
be extended to include an additional feature (flexoelectric effects) in the model. It is
also shown in Appendix B that the additional flexoelectric terms in the free energy do
not influence the instability thresholds of any of the classical Fréedericksz transitions.

2. Model problems. We perform our analyses on two model problems, one for
a system with a magnetic field, the other for one with an electric field. Both problems
share the same domain and boundary conditions on the director field n. The domain
Ω is hexahedral (as shown in Figure 2.1), with lower boundary Γ1, upper boundary
Γ2, and lateral boundary Γ3. A “strong anchoring condition” (Dirichlet boundary
condition) is imposed on n on Γ1, a “weak anchoring condition” (a natural boundary
condition resulting from a surface anchoring energy) on Γ2, and periodic boundary
conditions on opposing sides of Γ3. These cover the three types of boundary conditions
typically encountered in modeling liquid crystal systems. The model domain may be
viewed as a subdomain in a liquid crystal thin film regarded as having infinite extent
in the lateral directions.

For a uniaxial nematic liquid crystal subject to a magnetic field (with boundary
conditions as described above), the standard model free energy is an integral functional
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of the director field that can be taken in the form

(2.1) F [n] =

∫
Ω

W (n,∇n) dV +

∫
Γ2

Ws(n) dS,

where W denotes the free-energy density (per unit volume) and Ws the surface-
anchoring energy (per unit area). The free-energy density consists of a part asso-
ciated with distortional elasticity We (for which we employ the classical Oseen-Frank
formula) and a part associated with the magnetic induction, WH:

W = We(n,∇n) +WH(n),

with

(2.2) 2We = K1(divn)2+K2(n·curln)2+K3|n×curln|2+K24

[
tr(∇n)2−(divn)2

]
.

Here K1, K2, K3, and K24 are material-dependent parameters (“elastic constants”),
which under appropriate conditions (0 < K1,K2,K3 and 0 < K24 < 2 min{K1,K2})
guarantee that We ≥ 0 and We = 0 if and only if ∇n = 0. The constants K1,
K2, and K3 are referred to as the “splay,” “twist,” and “bend” constants, because of
the simple types of distortions that they penalize (see [9, §3.1.1] or [38, §2.2] or [39,
§3.3]); this terminology will come up in some of our examples. The K24 term is a null
Lagrangian and does not play a role in many simple systems. The precise form of We

does not matter to our development (though terms from it appear in examples that
will follow). The simplest form for We corresponds to K1 = K2 = K3 = K24 = K,
which gives We = 1

2K|∇n|2 (the “equal elastic constants model”).
The contribution to the free energy associated with the magnetic field (for mate-

rials of the type we study here) can be taken in the form

WH = −1

2
χa(H · n)2,

with χa the diamagnetic anisotropy (a material-dependent parameter that can be
positive or negative) and H the magnetic field (which can be assumed to be constant,
as discussed in the Introduction). Globally stable configurations of the director field
minimize F (subject to boundary conditions and the pointwise constraint |n| = 1);
so χa > 0 encourages the director to be parallel to H, while χa < 0 encourages it to
be perpendicular to H. The surface anchoring energy Ws can take a variety of forms,
a simple example being

Ws = −1

2
W0(n · ns)

2,

with W0 the “anchoring strength.” With W0 > 0, this encourages n to be parallel
to the prescribed orientation ns (the “easy axis”) on the boundary. See [17, §2.2,
App. A.1] for more examples and references. The modeling aspects above are well
documented in [9, §§3.1, 3.2], [38, §§2.2, 2.3, 2.6], and [39, §§3.2, 3.5, 4.1]. A summary
of the relevant points is in [17, §2], from which we have adapted our model problems.

For a nematic liquid crystal subject to an electric field, the mutual influence of the
electric field on the director field and of the director field on the electric field should
be taken into account, as discussed in the Introduction. We do this by employing a
free energy that is a functional of two state variables: the director field n and the
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electric potential field ϕ (related to the electric field via E = −∇ϕ). The free energy
now takes the form

F [n, ϕ] =

∫
Ω

W (n,∇n,∇ϕ) dV +

∫
Γ2

Ws(n) dS,

with

W = We(n,∇n) +WE(n,∇ϕ).

Here Ω, Γ2, We, and Ws are exactly as before, and the relevant relations from elec-
trostatics are given by

(2.3) WE = −1

2
D ·E, D = ε(n)E, ε = ε0(ε⊥I + εan⊗ n), εa := ε‖ − ε⊥.

Here D is the electric displacement, ε the dielectric tensor, ε0 the vacuum dielectric
constant, and ε‖ and ε⊥ the material-dependent relative permittivities parallel to and
perpendicular to the local director. The dielectric anisotropy εa can be positive or
negative. The expression for WE is the correct electric contribution to the free energy
associated with an electric field generated by electrodes held at constant potential in a
transversely isotropic linear dielectric that contains no distribution of free charge. The
electric potential ϕ satisfies Dirichlet boundary conditions on Γ1 and Γ2 (of prescribed
difference V ) and periodic boundary conditions on opposing sides of Γ3. For more
discussion and additional references, see [9, §3.3], [38, §2.3.1], and [39, §4.1], or the
synopsis in [17, §2.1].

To summarize, our two model free energies are

FH[n] =

∫
Ω

[
We(n,∇n)− 1

2
χa(H · n)2

]
dV +

∫
Γ2

Ws(n) dS(2.4)

FE[n, ϕ] =

∫
Ω

[
We(n,∇n)− 1

2
ε(n)∇ϕ · ∇ϕ

]
dV +

∫
Γ2

Ws(n) dS,(2.5)

with Ω and Γ2 as depicted in Figure 2.1, We as in (2.2), Ws an appropriate surface
anchoring energy, and ε as in (2.3). Equilibrium fields are stationary points of these
functionals (subject to the essential boundary conditions and the pointwise constraint
|n| = 1), with globally stable phases corresponding to equilibrium fields of least free
energy. The characterization of local stability of equilibria is the main topic that
we take up in what follows. We note that since the dielectric tensor ε is symmetric
positive definite, the stationary points of FE are maximizing with respect to ϕ, though
they are locally minimizing with respect to n.

In what follows, we assume that all admissible fields and admissible variations are
regular enough to satisfy the various equilibrium characterizations in strong forms.
We do this for simplicity and note that it precludes the presence of any singularities
(“defects” or “disclinations”) in the systems we study. The models that we deal with
are vectorial in nature with pointwise constraints and associated Lagrange multiplier
fields of low regularity in the presence of defects. Weak variational formulations can
require cumbersome technical assumptions—see, for example, [24, 25]. Let C2(Ω)
denote real-valued scalar fields on Ω that are twice continuously differentiable with
finite limits on ∂Ω (of the fields and their derivatives up to second order), and let
C2(Ω) denote the analogous space for vector fields on Ω (with values in real three-
dimensional Euclidean space). Such fields are more than smooth enough for our
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purposes and are sufficient to ensure that the Lagrange multiplier fields we encounter
will be bounded and continuous. We define our classes of admissible fields for n and
ϕ as follows:

N =
{
n ∈ C2(Ω)

∣∣ |n| = 1 in Ω,n = nb on Γ1,n periodic on Γ3

}
Φ =

{
ϕ ∈ C2(Ω)

∣∣ϕ = 0 on Γ1, ϕ = V on Γ2, ϕ periodic on Γ3

}
.

Periodic here is taken to mean periodic on opposing sides of the lateral boundary of
the hexahedral domain.

With our notation now defined, we can succinctly characterize globally stable
solutions of our two models problems as follows:

FH[n∗] = min
n∈N

FH[n], FE[n∗, ϕ∗] = min
n∈N

max
ϕ∈Φ
FH[n, ϕ].

Lacking convexity, these systems can have more than one globally stable solution.
While the electric-field problems have an intrinsic minimax nature, their globally
stable solutions still admit a characterization by a “least free energy principle”: a
globally stable solution pair n∗, ϕ∗ is an equilibrium pair of least free energy (among
all equilibrium pairs). This point of view will be found to be useful in what follows.

3. Stability criteria for magnetic fields. If a liquid crystal system is suffi-
ciently simple, then the local stability of an equilibrium director configuration of FH

can be analyzed by representing the director field in terms of one or two orientation
angles (e.g., n = cos θ e1 + sin θ e2). Such representations free one from having to
deal with the pointwise constraint |n| = 1 (which presents a complicating factor for
numerical modeling, as well as for analysis). With the free energy expressed in terms
of orientation angles, local stability is simply assessed in terms of the positive definite-
ness of the second variation of the free-energy functional. If, on the other hand, one
chooses to (or needs to) model the director in terms of its components with respect
some frame, then one must enforce |n| = 1 pointwise, and the Lagrange multiplier
field associated with this enters both the equilibrium Euler-Lagrange equations as
well as the criteria for local stability, as observed in [34] and as we shall see below.

Analyses using director components have been used in the past to study the
stability of specific configurations, such as radial point defects (“hedgehogs”)—see,
for example, [6, 7, 23, 27]. A stability criterion of a general nature is presented in
[34], and it is closely related to our results for the case of a magnetic field (though
here it is somewhat differently expressed and derived). A main contribution here is
the extension of such ideas to systems involving coupled electric fields. Minimizing
FH subject to |n| = 1 can be viewed as the continuum analogue of a problem in
equality-constrained optimization in Rn, and we pursue this analogy, beginning with
a recapitulation of the relevant formulas from that area.

3.1. Results from equality-constrained optimization theory. A discrete
analogue of the constrained minimization problem for FH is provided by the following:

min
x∈Rn

f(x), subject to g1(x) = · · · = gm(x) = 0.

Here the objective function f and constraint functions g1, . . . , gm are assumed to be
real valued and smooth, and Rn denotes real n-dimensional Euclidean space with the
standard inner product. The first-order and second-order necessary conditions asso-
ciated with a local solution x0 are as follows. Under mild non-degeneracy conditions
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(such as linear independence of ∇g1(x0), . . . ,∇gm(x0)), there exist unique Lagrange
multipliers λ0

1, . . . , λ
0
m ∈ R such that

(3.1) ∇f(x0) = λ0
1∇g1(x0) + · · ·+ λ0

m∇gm(x0)

and

(3.2a)
[
∇2f(x0)− λ0

1∇2g1(x0)− · · · − λ0
m∇2gm(x0)

]
u · u ≥ 0,

for all u ∈ Rn satisfying

(3.2b) ∇g1(x0) · u = · · · = ∇gm(x0) · u = 0.

That is to say, the constrained stationary point will be a local minimum only if
the Hessian of the Lagrangian is positive semi definite on the tangent space to the
constraint manifold at the point. Strict positivity in (3.2a) for nontrivial u satisfying
(3.2b) is sufficient for local stability. We sketch below an approach to deriving these
results that generalizes to our free-energy-minimization problems. The results can be
found in standard references on optimization theory, such as [13, 19, 30, 31].

The conditions above can be deduced as follows. Give a trajectory x(t) on the
constraint manifold through x0 smoothly parametrized by t:

g1(x(t)) = · · · = gm(x(t)) = 0, −c < t < c, some c > 0, x(0) = x0.

With the definition F (t) := f(x(t)), the point x0 being a local minimum implies
F ′(0) = 0 and F ′′(0) ≥ 0. Now

F ′(0) = ∇f(x0) · ẋ0 and F ′′(0) = ∇f(x0) · ẍ0 +∇2f(x0)ẋ0 · ẋ0,

where

ẋ0 :=
d

dt
x(t)

∣∣
t=0

and ẍ0 :=
d2

dt2
x(t)

∣∣
t=0

.

For each of the constraints, we have

gi(x(t)) = 0 ⇒ d

dt
gi(x(t)) =

d2

dt2
gi(x(t)) = · · · = 0, − c < t < c,

from which we obtain,

∇gi(x0) · ẋ0 = 0, ∇gi(x0) · ẍ0 +∇2gi(x0)ẋ0 · ẋ0 = 0, for i = 1, . . . ,m.

Thus ẋ0 is in the tangent space to the constraint manifold at x0, and stationarity im-
plies F ′(0) = ∇f(x0)·ẋ0 = 0, for all such ẋ0 as well. Assuming the constraint normals
∇g1(x0), . . . ,∇gm(x0) to be linearly independent, for example, this guarantees that
∇f(x0) has a unique representation as a linear combination of ∇g1(x0), . . . ,∇gm(x0),
i.e., (3.1) holds with unique λ0

1, . . . , λ
0
m. This relation and the second part of the re-

lations above can be used to simplify the requirement

0 ≤ F ′′(0) = ∇f(x0) · ẍ0 +∇2f(x0)ẋ0 · ẋ0

via

∇f(x0) · ẍ0 = λ0
1∇g1(x0) · ẍ0 + · · ·+ λ0

m∇gm(x0) · ẍ0

= −λ0
1∇2g1(x0)ẋ0 · ẋ0 − · · · − λ0

m∇2gm(x0)ẋ0 · ẋ0.
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Substituting this into the inequality on F ′′(0) above leads to the second-order neces-
sary condition (3.2). One anticipates that it should be possible to frame the statements
and analysis of our continuum liquid crystal models in a similar way, and we endeavor
to do so below.

3.2. Stability criteria. We seek to establish similar conditions for a local min-
imum n0 of a functional of the form (2.1),

F [n] =

∫
Ω

W (n,∇n) dV +

∫
Γ2

Ws(n) dS,

with Ω and Γ2 as in Figure 2.1, W an appropriate free-energy density, and Ws an ap-
propriate anchoring energy, subject to the essential boundary conditions of our model
problems (Dirichlet on Γ1, periodic on Γ3), and subject to the pointwise constraint
|n| = 1. This includes the model free energy FH in (2.4). Let nε be a family of
unit-length vector fields on Ω smoothly parametrized by ε such that

|nε| = 1, − c < ε < c, some c > 0, nε|ε=0 = n0.

The most commonly used realization of such a field is

(3.3) nε =
n0 + εv

|n0 + εv| ,

where v is such that the combination n0 + εv satisfies the same essential boundary
conditions and regularity assumptions that n0 must satisfy but is otherwise arbitrary.
With the definition F (ε) := F [nε], the point n0 being a local minimum point implies
F ′(0) = 0 and F ′′(0) ≥ 0. Here

F ′(0) = δF [n0](ṅ0) and F ′′(0) = δF [n0](n̈0) + δ2F [n0](ṅ0),

with δF and δ2F the first and second variations,

δF [n](v) =
d

dε
F [n+ εv]

∣∣
ε=0

and δ2F [n](v) =
d2

dε2
F [n+ εv]

∣∣
ε=0

,

giving

δF [n](v) =

∫
Ω

(∂W
∂n
· v +

∂W

∂∇n · ∇v
)
dV +

∫
Γ2

(∂Ws

∂n
· v
)
dS

=

∫
Ω

(∂W
∂ni

vi +
∂W

∂ni,j
vi,j

)
dV +

∫
Γ2

(∂Ws

∂ni
vi

)
dS

and

δ2F [n](v) =

∫
Ω

( ∂2W

∂ni∂nk
vivk + 2

∂2W

∂ni∂nk,l
vivk,l +

∂2W

∂ni,j∂nk,l
vi,jvk,l

)
dV

+

∫
Γ2

( ∂2W

∂ni∂nk
vivk

)
dS,

where

ṅ0 :=
d

dε
nε
∣∣
ε=0

and n̈0 :=
d2

dε2
nε
∣∣
ε=0

.
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Here ni and vi are the components of n and v with respect to a fixed Cartesian frame,
ni,j = ∂ni/∂xj , etc., and summation over repeated indices is implied. We note that
with nε defined as in (3.3), we would have

ṅ0 = P(n0)v, P(n) := I− n⊗ n.

Given a unit-length vector field n, the tensor field P(n) defined above projects trans-
verse to n at each point [39, §2.5] and is a convenient operator in the analysis of
director models.

Differentiations with respect to ε of |nε|2 = nε ·nε = 1 give rise to the pointwise
relations

n0 · ṅ0 = 0, n0 · n̈0 + |ṅ0|2 = 0.

Any such ṅ0 necessarily vanishes on Γ1, is periodic on opposing sides of Γ3, and is
transverse to n0 (in the sense that n0 · ṅ0 = 0 on Ω). We denote the collection of all
such vector fields

U0 =
{
u ∈ C2(Ω)

∣∣u = 0 on Γ1,u periodic on Γ3,n0 · u = 0 on Ω
}
.

Such vector fields can be generated from the larger class

V0 =
{
v ∈ C2(Ω)

∣∣v = 0 on Γ1,v periodic on Γ3

}
by using the transverse projector P(n0) above:

u ∈ U0 ⇔ u = P(n0)v, some v ∈ V0.

The first-order necessary conditions follow from

F ′(0) = 0 ⇒ δF [n0](u) = 0, ∀u ∈ U0,

which (using u = P(n0)v and integration by parts) can be written in the following
equivalent forms:

(3.4) δF [n0](v) =

∫
Ω

λ0n0 · v dV +

∫
Γ2

µ0n0 · v dS, ∀v ∈ V0

or

(3.5) − div
( ∂W
∂∇n

)
+
∂W

∂n
= λ0n0 in Ω,

( ∂W
∂∇n

)
ν +

∂Ws

∂n
= µ0n0 on Γ2.

Equation (3.4) is the analogue of (3.1). The role of the constraint functions gi and
their gradients is here played by

g(n) =
1

2

(
|n|2 − 1

)
, for which

∂g

∂n
= n,

∂2g

∂n2
= I.

The Lagrange multiplier fields λ0 and µ0 are given by

λ0 =
[
−div

( ∂W
∂∇n

)
+
∂W

∂n

]
· n0, µ0 =

[( ∂W
∂∇n

)
ν +

∂Ws

∂n

]
· n0,
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with the bracketed expressions evaluated on the equilibrium field n0. The results
above are well known; the only point here is to highlight the analogy to the discrete
setting and to anticipate the next steps.

The second-order necessary conditions follow from

F ′′(0) ≥ 0 ⇒ δF [n0](n̈0) + δ2F [n0](ṅ0) ≥ 0.

The weak-form Euler-Lagrange equation (3.4) and the pointwise relation n0 · n̈0 +
|ṅ0|2 = 0 can be used to simplify this as follows,

δF [n0](n̈0) =

∫
Ω

λ0n0 · n̈0 dV +

∫
Γ2

µ0n0 · n̈0 dS

= −
∫

Ω

λ0|ṅ0|2 dV −
∫

Γ2

µ0|ṅ0|2 dS,

which leads to

(3.6) δ2F [n0](u)−
∫

Ω

λ0|u|2 dV −
∫

Γ2

µ0|u|2 dS ≥ 0, ∀u ∈ U0.

The above, then, is our necessary condition for local stability of n0, the analogue of
(3.2). Positive definiteness of the quadratic form in (3.6), in the sense

δ2F [n0](u)−
∫

Ω

λ0|u|2 dV −
∫

Γ2

µ0|u|2 dS ≥ c
∫

Ω

|u|2 dV, ∀u ∈ U0, some c > 0,

would be sufficient for local stability. Viewed in terms of expansions, we have

F [nε] = F [n0] +
1

2
ε2

[
δ2F [n0](ṅ0)−

∫
Ω

λ0|ṅ0|2 dV −
∫

Γ2

µ0|ṅ0|2 dS
]

+ o(ε2),

for n0 ∈ N0 satisfying (3.4). The approach taken here is classical. It is, in essence,
that of [8, §§IV.7.2, IV.8.1], used in the setting of liquid crystals in [39, §3.5]. Similar
results, derived instead in terms of expansions, are found in [34].

3.3. Examples. We illustrate the application of the stability criterion above
to some examples, some of which will be considered again later in the context of
electric fields. We first observe that when the ground state n0 is uniform (which is
the case in all the classical Fréedericksz transitions), then the second variation of the
magnetic-field model free energy (2.4) takes the simple form

δ2FH[n0](u) =

∫
Ω

[
K1(divu)2 +K2(n0 · curlu)2 +K3|n0× curlu|2−χa(H ·u)2

]
dV.

Here we have dropped the K24 term and the term associated with the anchoring
energy on Γ2, since neither will appear in our examples below. It is also the case
that if n0 is uniform and in addition n0 ⊥ H (which is the case in all the classical
Fréedericksz transitions with χa > 0), then it necessarily follows that the associated
equilibrium Lagrange multiplier field λ0 will be zero.

3.3.1. Classical Fréedericksz transitions. We consider three of the classi-
cal Fréedericksz geometries, as shown in Figure 3.1. Figure 3.1a depicts the “splay
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0

d

x

z

H

(a) splay geometry (χa > 0)

0

d

x

z

H

(b) bend geometry (χa > 0)

0

d

x

z

H

(c) in-plane geometry (χa < 0)

Fig. 3.1. Three geometries of example magnetic-field Fréedericksz transitions. The liquid
crystal film is confined to 0 < z < d. The ground state equilibrium solutions n0 are indicated, as
are the orientations of the magnetic fields and the signs of the diamagnetic anisotropy χa. Strong
anchoring (Dirichlet boundary conditions) on the director field n is assumed on z = 0 and z = d.

Fréedericksz geometry.” With the director field n assumed to be uniform in the lateral
directions and confined to the tilt plane spanned by ex and ez,

n = nx(z)ex + nz(z)ez,

the free energy (per unit cross-sectional area) is given by

F [n] =
1

2

∫ d

0

(
K1n

2
z,z +K3n

2
x,z − χaH

2n2
z

)
dz.

Here nz,z denotes d
dznz, etc. The Euler-Lagrange equations are

K3nx,zz + λnx = 0, K1nz,zz +
(
χaH

2 + λ
)
nz = 0, n2

x + n2
z = 1,

and the ground state solution is

n0 = ex, λ0 = 0.

Thus, in terms of components, the ground state is nx = 1, nz = 0 (which satisfy the
Euler-Lagrange equations in a trivial way), and we note that n0 = −ex would work
equally well. The second variation (with u = u(z)ex +w(z)ez restricted to the same
tilt plane as n) is given by

δ2F [n0](u) =

∫ d

0

(
K1w

2
z +K3u

2
z − χaH

2w2
)
dz.

For unsubscripted scalar fields, we denote wz = dw/dz (or wz = ∂w/∂z, as the
situation may require), etc. Admissible variations (u ∈ U0) must satisfy n0 · u = 0,
which implies that u = 0 and u = w(z)ez. The stability condition (3.6) thus becomes∫ d

0

(
K1w

2
z − χaH

2w2
)
dz ≥ 0 ⇔ χaH

2

K1
≤
∫ d

0
w2
z dz∫ d

0
w2 dz

,

for all smooth w such that w(0) = w(d) = 0. The minimum of the Rayleigh quotient
on the right-hand side above (over smooth w satisfying w(0) = w(d) = 0) is π2/d2,
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which finally leads to

H ≤ π

d

√
K1

χa
=: Hc,

the correct instability threshold for this problem [9, (3.64)], [38, (3.126)], [39, (4.43)].
In a very similar way, the magnetic-field bend-Fréedericksz transition (depicted

in Figure 3.1b) has a ground state

n0 = ez, λ0 = 0

and a second variation given by

δ2F [n0](u) =

∫ d

0

(
K1w

2
z +K3u

2
z − χaH

2u2
)
dz.

With n0 · u = 0 implying w = 0, (3.6) leads to∫ d

0

(
K3u

2
z − χaH

2u2
)
dz ≥ 0,

for all smooth u such that u(0) = u(d) = 0, giving

H ≤ π

d

√
K3

χa
=: Hc.

This again is the correct instability threshold [9, (3.64)], [38, (3.143)], [39, §4.2.4].
Here we have again assumed that n is restricted to span{ex, ez} and is uniform in
the lateral directions. These two examples will be expanded upon below, where we
relax some assumptions; they also will be revisited later with the systems subjected
to electric fields (instead of magnetic fields), in which case the splay transition will
behave as one would naively expect, but the bend transition will not.

A final classical Fréedericksz transition, depicted in Figure 3.1c, illustrates the role
of a non-vanishing Lagrange multiplier field λ0. We again assume that n is restricted
to span{ex, ez} and is uniform in lateral directions, but here we now assume that
χa < 0 (which encourages n to orient perpendicular to H). We note that another
simple distortion is possible here involving a twisting of the director parallel to the
x-y plane, but we do not consider this at the present time. With our assumptions,
the free energy and Euler-Lagrange equations are given by

F [n] =
1

2

∫ d

0

(
K1n

2
z,z +K3n

2
x,z − χaH

2n2
x

)
dz

K3nx,zz + (χaH
2 + λ)nx = 0, K1nz,zz + λnz = 0, n2

x + n2
z = 1,

with ground state

n0 = ex, λ0 = −χaH
2.

The Lagrange multiplier field λ0 is constant here, due to the simplicity of the config-
uration; it need not be so in general. The constraint n0 · u = 0 gives

u = w(z)ez ⇒ divu = wz, curlu = 0, H · u = 0,
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so that the stability condition (3.6) becomes

δ2F [n0](u)−
∫ d

0

λ0|u|2 dz = K1

∫ d

0

w2
z dz + χaH

2

∫ d

0

w2 dz ≥ 0,

giving

−χaH
2

K1
≤
∫ d

0
w2
z dz∫ d

0
w2 dz

⇒ H ≤ π

d

√
K1

−χa
=: Hc.

3.3.2. Periodic instabilities. It is possible for simple systems, such as those
depicted in Figure 3.1, to exhibit instabilities with more structure, such as periodic
modulations in the plane of the liquid crystal film. We consider two such examples:
the “stripe phase” of Allender, Hornreich, and Johnson [1] and the periodic insta-
bility of Lonberg and Meyer [29]. In both cases, we must relax the constraints we
imposed in the examples above (i.e., uniformity of the director in lateral directions
and confinement of it to a fixed tilt plane).

The stripe phase occurs in the bend-Fréedericksz geometry (Figure 3.1b). The
ground state is as before:

n0 = ez, λ0 = 0.

The admissible variations (n0 · u = 0), however, are now taken in the form

u = u(y, z)ex + v(y, z)ey.

The domain Ω is taken as one periodic cell

Ω = {(y, z)| − L < y < L, 0 < z < d},

with u and v periodic in y (of period 2L), vanishing on z = 0 and z = d. The
actual periodicity of a periodic equilibrium solution is chosen spontaneously by the
system; thus L would not be known a-priori—see Appendix A for how this issue can
be addressed in the context of the next example.

Using the assumptions above, we obtain

δ2F [n0](u) =

∫
Ω

[
K1v

2
y +K2u

2
y +K3

(
u2
z + v2

z

)
− χaH

2u2
]
dA,

leading to the stability condition

(3.7)

∫ d

0

∫ L

−L

(
K2u

2
y +K3u

2
z − χaH

2u2
)
dy dz +

∫ d

0

∫ L

−L

(
K1v

2
y +K3v

2
z

)
dy dz ≥ 0,

for all u, v ∈ C2(Ω), periodic in y (of period 2L), vanishing on z = 0 and z = d. It is
clear by inspection that the derivatives in y and the v component in general can only
elevate the value of the quadratic form, leading to the conclusion that there can be
no instability of n0 to a periodic-in-y mode and that the first instability encountered
is the classical Fréedericksz transition

u = sin
πz

d
, v = 0, Hc =

π

d

√
K3

χa
.
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In fact, the stripe phase enters as a secondary bifurcation off the branch of these
classical solutions [1] (further explored in [20, 35, 36]). In more quantitative terms,
the quadratic form (3.7) is diagonalized by the modes

fmn = exp
(
i
mπy

L

)
sin

nπz

d
, m = 0,±1,±2, . . . , n = 1, 2, . . . ,

with

u = fmn, v = 0, λmn = K2
m2π2

L2
+K3

n2π2

d2
− χaH

2

and

u = 0, v = fmn, λmn = K1
m2π2

L2
+K3

n2π2

d2
,

with the leading instability mode corresponding to u = f01, v = 0. The reason things
are so simple here is that u and v are uncoupled.

The periodic instability of Lonberg and Meyer [29] is more complicated and
exhibits different behavior. The geometry is the splay-Fréedericksz geometry (Fig-
ure 3.1a). With ground state

n0 = ex, λ0 = 0,

admissible variations now taken in the form

u = v(y, z)ey + w(y, z)ez,

and domain Ω taken to be one periodic cell (as in the previous example), the stability
condition (3.6) becomes

(3.8)

∫ d

0

∫ L

−L

[
K1(vy + wz)

2 +K2(vz − wy)2 − χaH
2w2

]
dy dz ≥ 0,

for all v, w ∈ C2(Ω), periodic in y (with period 2L), vanishing on z = 0 and z = d.
The fields v and w are coupled now, and so the quadratic form is not diagonalized by
simple Fourier expansions. In addition to experiments and theory presented in [29],
one finds results in the brief note [32]; while in [39, §4.3], the system is studied as
an example of a “periodic Freedericks transition.” We present a somewhat different
analysis in Appendix A and summarize the main results now.

The experiments reported in [29] used polymer liquid crystal materials, which
are characterized by very elongated “rod like” molecular architecture and by having
“twist” elastic constants, K2 in (2.2), that are small compared to their “splay” elastic
constants, K1. For such materials, the authors reported that the classical Fréedericksz
transition was preceded (at a lower magnetic-field strength) by an instability to a
solution that was periodic in y, with a period chosen by the system. Analysis of the
model formulated above confirms this. There is a value K∗2

.
= 0.303 (which can be

determined analytically) such that for K2/K1 < K∗2 , the uniform ground state n0

will become unstable to a periodic-in-y solution of some period for some Hp < Hc.
As K2/K1 → K∗2 , Hp → Hc, and the period of the instability mode becomes infinite.
See Appendix A for details.

The examples in this section do not provide new information about these systems.
They merely demonstrate consistency with known results, using the framework that
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has been developed here. Also, the essential role in our framework of the Lagrange
multiplier field, when it is nonzero, has been made clear. The extension of these ideas
to systems involving electric fields is taken up next.

4. Stability criteria for electric fields. In extending the results of the pre-
vious section to the case of a liquid-crystal system subjected to an electric field, we
take into account the inhomogeneous nature of the electric field (in general) and its
coupling to the director field, and we work with a model free energy of the form (2.5):

F [n, ϕ] =

∫
Ω

[
We(n,∇n)− 1

2
ε(n)∇ϕ · ∇ϕ

]
dV +

∫
Γ2

Ws(n) dS.

This now is a function of two state variables: n (the director field) and ϕ (the electric
potential). The dielectric tensor ε is as given in (2.3), with ε⊥, ε‖ > 0. It follows that
for any unit-length vector field n, ε(n) is real symmetric positive definite and satisfies

ε0 min{ε⊥, ε‖}
∫

Ω

|∇ϕ|2 dV ≤
∫

Ω

ε(n)∇ϕ · ∇ϕdV ≤ ε0 max{ε⊥, ε‖}
∫

Ω

|∇ϕ|2 dV.

Thus the equilibrium problem has an intrinsic minimax nature to it (as previously
observed), with stationary points of F (subject to n ∈ N , ϕ ∈ Φ) maximizing
with respect to ϕ, locally minimizing with respect to n. A stability analysis can be
developed from this point of view. However, we have found it more direct to employ
deflation, and that is the approach we use in what follows.

4.1. Stability criteria. It is natural to think of the electric field as “slaved”
to the director field. In the setting of liquid crystal hydrodynamics, for example,
the time scale for director orientation changes is several orders of magnitude slower
than that for changes in the electric displacement [37], enabling one to model (at this
level) the electric field as adjusting instantaneously to changes in the director field.
Motivated by this, we define an operator T : N → Φ that gives the unique electric
potential ϕ associated with a given director field n via

n ∈ N ⇒ T (n) = ϕ ∈ Φ, such that δϕF [n, ϕ] = 0.

The weak and strong forms characterizing ϕ are

δϕF [n, ϕ](ψ) = 0, ∀ψ ∈ Ψ0

or ∫
Ω

ε(n)∇ϕ · ∇ψ dV = 0, ∀ψ ∈ Ψ0

and

div
[
ε(n)∇ϕ

]
= 0 in Ω, ϕ = 0 on Γ1, ϕ = V on Γ2, ϕ periodic on Γ3.

Here Ψ0 is the class of admissible variations of ϕ:

Ψ0 =
{
ψ ∈ C2(Ω)

∣∣ψ = 0 on Γ1 and Γ2, ψ periodic on Γ3

}
.

The strong form Euler-Lagrange equation above is simply the Gauss Law in a medium
with no free charge: divD = 0.
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We define our deflated free energy using the map T :

F̃ [n] := F [n, T (n)].

This device is similar to that used in [22, §4], for example. Our previously established

results apply without change to F̃ , giving first-order and second-order necessary con-
ditions for local stability of n0

δF̃ [n0](v) =

∫
Ω

λ0n0 · v dV +

∫
Γ2

µ0n0 · v dS, ∀v ∈ V0(4.1)

δ2F̃ [n0](u)−
∫

Ω

λ0|u|2 dV −
∫

Γ2

µ0|u|2 dS ≥ 0, ∀u ∈ U0.(4.2)

To express these in terms of the original F requires some chain-rule calculus, for which
we require the derivative DT of the map T . For a given director field n0 ∈ N with
associated electric potential field ϕ0 = T (n0), DT (n0) is the linear transformation on
V0 to Ψ0 that gives the first-order change in ϕ0 associated with a small perturbation
of n0. It is most readily obtained by substituting n = n0 + εv and ϕ = ϕ0 + εψ in
div
[
ε(n)∇ϕ

]
= 0, which gives the strong-form characterization of ψ = DT (n0)v:

(4.3a) div
[
ε(n0)∇ψ − d0

]
= 0 in Ω, ψ = 0 on Γ1 and Γ2, ψ periodic on Γ3,

where

(4.3b) d0 := ε0εa(n0 ⊗ v + v ⊗ n0)E0, E0 = −∇ϕ0.

The associated weak form is∫
Ω

[
ε(n0)∇ψ − d0

]
· ∇χdV = 0, ∀χ ∈ Ψ0.

We note that

ψ = 0 on Ω ⇔ divd0 = 0 on Ω

and

(4.4)

∫
Ω

d0 · ∇ψ dV =

∫
Ω

ε(n0)∇ψ · ∇ψ dV,

since ψ is in Ψ0 as well. It is also the case that a ψ field that is not identically zero
cannot be a nonzero constant field, by virtue of the homogeneous boundary conditions
that it must satisfy. Thus if ψ is not identically zero, then ∇ψ cannot be identically
zero either. The term d0 and the observations above play an important role in our
development.

The field d0 admits various interpretations. It has the dimensions of polarization
(charge per unit area) and can most immediately be seen as the first-order change
in the electric displacement associated with the perturbation n0 7→ n0 + εv (while
holding the electric field fixed):

ε(n0 + εv)E0 = D0 + εd0 + o(ε), with D0 = ε(n0)E0.
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One can view this instead in terms of the induced polarization. The linear dielectric
properties that underlie the basic relationship that we have used (D = ε(n)E) are

D = ε0E + P , P = ε0χ
e(n)E, χe = χe

⊥I + (χe
‖ − χe

⊥)(n⊗ n).

Here P is the polarization (dipole moment per unit volume) induced by the elec-
tric field, and χe is the relative electric susceptibility tensor. By definition, a linear
dielectric is one in which the polarization is a linear transform of the local electric
field, here represented by a tensor field (since the medium is anisotropic and inhomo-
geneous, in general). The relationship between the permittivities ε⊥ and ε‖ and the
susceptibilities χe

⊥ and χe
‖ is simply

ε⊥ = 1 + χe
⊥, ε‖ = 1 + χe

‖,

which implies that εa = ε‖ − ε⊥ = χe
‖ − χe

⊥. Thus

d0 = ε0εa(n0 ⊗ v + v ⊗ n0)E0 = ε0(χe
‖ − χe

⊥)(n0 ⊗ v + v ⊗ n0)E0,

which can be seen as the first-order change in the induced polarization due to the
perturbation of the director field n0 7→ n0 + εv (again holding the electric field
constant). The divergence of polarization acts as an effective charge distribution in
general,

divD = 0, D = ε0E + P ⇒ divE = − 1

ε0
divP ,

or in the case at hand,

div
[
ε(n0)∇ψ − d0

]
= 0 ⇒ div

[
ε(n0)∇ψ

]
= divd0.

So divd0 is the source term (load) in an anisotropic Poisson equation with homo-
geneous boundary conditions. Thus if divd0 = 0 on Ω, then ψ = 0 on Ω, and this
change in induced polarization does not cause a change in the electric potential at
first order ; whereas if divd0 6= 0, then ψ 6= 0, and the change in polarization does
cause a first-order change in the potential and in the electric field as well, since ∇ψ
can’t be identically zero. We note that ψ is slaved to v in much the same way that ϕ
is slaved to n.

To express our equilibrium conditions in terms of F (instead of F̃), we proceed
as follows:

F̃ [n] = F [n, T (n)] ⇒ δF̃ [n](v) = δnF [n, T (n)](v) + δϕF [n, T (n)](DT (n)v).

By the definition of T , however, δϕF [n, T (n)] = 0; so

δF̃ [n](v) = δnF [n, T (n)](v).

Thus the equilibrium equations, in weak and strong form, are given by

δnF [n, ϕ](v) =

∫
Ω

λn · v dV +

∫
Γ2

µn · v dS, ∀v ∈ V0

δϕF [n, ϕ](ψ) = 0, ∀ψ ∈ Ψ0
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and

− div
( ∂W
∂∇n

)
+
∂W

∂n
= λn, div

( ∂W
∂∇ϕ

)
= 0, in Ω,

with boundary conditions

n = nb on Γ1,
( ∂W
∂∇n

)
ν +

∂Ws

∂n
= µn on Γ2, n periodic on Γ3

ϕ = 0 on Γ1, ϕ = V on Γ2, ϕ periodic on Γ3.

The coupling between n and ϕ is more explicit when the partial differential equations
above are written

− div
( ∂We

∂∇n
)

+
∂We

∂n
= λn+ ε0εa

(
∇ϕ · n

)
∇ϕ, div

[
ε(n)∇ϕ

]
= 0,

where We is the distortional elasticity as in (2.2) (which depends only on n and ∇n).
The corresponding second-order conditions can be obtained as follows.

δF̃ [n](v) = δnF [n, T (n)](v) ⇒
δ2F̃ [n](v) = δ2

nnF [n, T (n)](v) + δ2
nϕF [n, T (n)](v, DT (n)v).

The last term above admits a simple form: with ϕ0 = T (n0) and ψ = DT (n0)v,

δ2
nϕF [n0, ϕ0)](v, ψ) =

∫
Ω

d0 · ∇ψ dV =

∫
Ω

ε(n0)∇ψ · ∇ψ dV,

where d0 is as defined in (4.3b) and we have also used the relation (4.4). Thus

δ2F̃ [n0](v) = δ2
nnF [n0, ϕ0](v) +

∫
Ω

ε(n0)∇ψ · ∇ψ dV, ϕ0 = T (n0), ψ = DT (n0)v.

We thus have the following final form of the second-order necessary condition for
local stability of the equilibrium director field n0 and associated electric potential
field ϕ0 = T (n0):

(4.5) δ2
nnF [n0, ϕ0](u) +

∫
Ω

ε(n0)∇ψ · ∇ψ dV

−
∫

Ω

λ0|u|2 dV −
∫

Γ2

µ0|u|2 dS ≥ 0, ∀u ∈ U0,

where ψ = DT (n0)u is as defined in (4.3). Positive definiteness of the quadratic form
above would be sufficient for local stability of n0, ϕ0.

Equation (4.5) differs from the magnetic-field version (3.6) only by the term in-
volving ∇ψ, which captures the increase in the second variation of the free energy
associated with the change in the electric potential caused by a change in the director
field. The non-negative nature of the contribution is a direct consequence of the fact
that the equilibrium electric potential ϕ0 = T (n0) is maximizing:

F [n0, ϕ0] = max
ϕ∈Φ
F [n0, ϕ].
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The characterization of ψ from that point of view is

max
ψ∈Ψ0

∫
Ω

[
d0 · ∇ψ −

1

2
ε(n0)∇ψ · ∇ψ

]
dV =

1

2

∫
Ω

ε(n0)∇ψ · ∇ψ dV,∫
Ω

[
ε(n0)∇ψ − d0

]
· ∇χdV = 0, ∀χ ∈ Ψ0.

The expression involving ∇ψ in (4.5) can be viewed in terms of the electric field,
instead of the electric potential: ϕ = ϕ0 + εψ ⇒

∇ϕ = ∇ϕ0 + ε∇ψ ⇒ E = E0 + δE, E = −∇ϕ, E0 = −∇ϕ0, δE = −ε∇ψ.

Thus

1

2
ε2

∫
Ω

ε(n0)∇ψ · ∇ψ dV =
1

2

∫
Ω

ε(n0)δE · δE dV.

When an equilibrium director field n0 is perturbed (n0 7→ n0 + δn), the associated
equilibrium electric field will be perturbed as well (E0 7→ E0+δE), and the expression
above gives the change in the electric contribution to the free energy associated with
this (at the level of the second variation). The induced change can only lead to an
increase in the free energy. An example discussed in the next subsection gives an
illustration.

Some conclusions can immediately be drawn from the local stability criterion
(4.5). Observe that if ψ = 0 (which happens if and only if d0 is divergence free on Ω),
then (4.5) is the same as (3.6) but with electric-field parameters (ε0, εa, E0 = −∇ϕ0)
instead of magnetic-field parameters (χa, H). It follows that in such cases, stability
thresholds for electric-field Fréedericksz transitions, for example, would be given by
the recipes of [9, §3.3.1] and [38, §3.5], e.g.,

(4.6) Hc =
π

d

√
K1

χa
↔ Ec =

π

d

√
K1

ε0εa

for the electric-field splay-Fréedericksz transition, as analyzed in [10] and [38, §3.5].
In the common alternate notation χa = µ0∆χ (with µ0 the free-space magnetic per-
meability) and εa = ∆ε, the formulas above would essentially be “carbon copies” of
each other. In the examples below, we shall see that indeed divd0 = 0 in this case of
the electric-field splay transition. If, on the other hand, ψ 6= 0, then the contribution
of the ∇ψ term to the left hand side of (4.5) will be strictly positive and will neces-
sarily elevate the electric-field Fréedericksz threshold compared to the formulas given
in [9, §3.3.1] and [38, §3.5]. This will be seen to be the case in both the electric-field
bend-Fréedericksz transition (with εa > 0) and the electric-field splay-Fréedericksz
transition (with εa < 0). The “litmus test,” then, is whether or not divd0 = 0, i.e.,
whether or not

div
[
(n0 ⊗ u+ u⊗ n0)E0

]
= 0 on Ω,

for all admissible variations u ∈ U0.

4.2. Examples. The simple test of whether divd0 is zero or not can be used,
for example, to identify which of the classical Fréedericksz transitions can be expected
to differ qualitatively in the electric-field case from the magnetic-field case. Consider
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first the electric-field splay-Fréedericksz transition, as depicted in Figure 3.1a but with
an electric field instead of a magnetic field (and εa > 0 instead of χa > 0)—the electric
field is generated by electrodes at the top and bottom of the liquid crystal cell held
at a constant potential difference by an external variable voltage source (as pictured
in Figure 2.1). In this case, the ground state is given by

n0 = ex, E0 = E0ez,

and the admissible variations (confined to the tilt plane spanned by ex and ez) are

n0 · u = 0 ⇒ u = w(z)ez,

from which we obtain

d0 = ε0εa(n0 ⊗ u+ u⊗ n0)E0 = ε0εaE0w(z)ex ⇒ divd0 = 0.

Thus the electric-field coupling will not effect the Fréedericksz threshold, and the
recipe of [9, §3.3.1] and [38, §3.5] will give the correct result (4.6). This is consistent
with [10] and [38, §3.5].

Consider, on the other hand, the electric-field bend-Fréedericksz transition, as
depicted in Figure 3.1b, again with an electric field instead of a magnetic field. We
note that in this geometry, the electrodes must be placed on the left and right ends
of the cell (at a sufficient separation relative to the cell gap so as to render boundary
effects negligible). This makes these experiments more difficult to conduct (because
of the larger voltages required) and also complicates the modeling and analysis. The
test with divd0 is still easy to apply. With ground state and variations given by

n0 = ez, E0 = E0ex, u = u(z)ex,

we obtain

d0 = ε0εaE0u(z)ez ⇒ divd0 = ε0εaE0uz.

Since divd0 is not necessarily zero, we anticipate an elevated instability threshold for
the electric field compared to the formula obtained using the magnetic-field analogy.
It is shown in [2] (also derived below) that this is indeed the case, with

(4.7) Ec =

√
ε‖
ε⊥
× π

d

√
K3

ε0εa
.

The elevating factor
√
ε‖/ε⊥ above is not necessarily small. For example, using values

from [38, Table D.3] for the material 5CB near 26◦C, we have

ε‖ = 18.5, ε⊥ = 7 ⇒
√
ε‖
ε⊥

.
= 1.63,

which implies a 63% higher switching voltage. Such a factor (ε‖/ε⊥) has appeared in
investigations of electric-field-induced instabilities in other systems as well—see for
example [3].

Another case that manifests such behavior is the electric-field splay-Fréedericksz
transition with εa < 0, that is, 0 < ε‖ < ε⊥. This is as depicted in Figure 3.1c, but
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with E instead of H. With n still restricted to span{ex, ez}, we have

n0 = ex, E0 = E0ex, u = w(z)ez ⇒ d0 = ε0εaE0w(z)ez ⇒ divd0 = ε0εaE0wz.

In this case, it is shown in [2] that

(4.8) Ec =

√
ε⊥
ε‖
× π

d

√
−K1

ε0εa
.

Of the six classical electric-field Fréedericksz transitions (three with εa > 0, three
with εa < 0), the two identified above are the only ones that exhibit this anomalous
behavior. While one might guess at first that all geometries with in-plane electric fields
might give divd0 6= 0, that proves not to be the case. Both of the twist-Fréedericksz
transitions have divd0 = 0: Figure 3.1c with εa < 0 and n ∈ span{ex, ey} and the
transition (which is not depicted) with n0 = ey, E0 = E0ex, εa > 0, n ∈ span{ex, ey}.
In the latter case, for example, we have

n0 = ey, E0 = E0ex, u = u(z)ex ⇒ d0 = ε0εaE0u(z)ey ⇒ divd0 = 0.

A natural question is what is it, from a physical point of view, that distinguishes
these two cases. Consider, for example, the electric-field bend-Fréedericksz transition
with εa > 0 (the second example discussed above, which has the elevated threshold
(4.7)) versus the electric-field splay transition with εa > 0 (the first example discussed
above, which has the non-elevated threshold (4.6)). In both of these examples, there
are changes in the induced polarization: d0 6= 0. In the former case, however, divd0 6=
0 (which implies ψ 6= 0 and ∇ψ 6= 0); whereas in the latter case, divd0 = 0 (and
ψ = 0). Thus while both systems experience changes in the equilibrium electric field
accompanying a perturbation in the equilibrium director field, in the former case, this
change in E comes at first order (E = E0 +δE, δE = −ε∇ψ 6= 0), while in the latter
case, the change comes at a higher order (δE = −ε∇ψ = 0). The difference between
the two cases comes down to peculiarities of the coupling between δn and δE.

In the two cases for which we have a non-vanishing divd0, in order to derive the
formulas for the elevated switching thresholds given above in (4.7) and (4.8) using
our stability criterion (4.5), it is necessary to evaluate the term involving ∇ψ. We
now show how this can be done for the case of the electric-field bend-Fréedericksz
transition (with εa > 0), modulo some simplifying assumptions.

For the electric-field bend-Fréedericksz transition, as depicted in Figure 3.1b (but
with H replaced by E and εa > 0), we consider the behavior in the interior of the
cell, sufficiently removed from boundary influences at the left and right boundaries
that we can accept the simplifying assumptions

(4.9) n = nx(z)ex + nz(z)ez, E = Ex(z)ex + Ez(z)ez.

We are, in essence, looking at an “outer solution” (in the sense of singular perturba-
tions and boundary layer theory). We express the free energy in terms of E (instead
of ϕ) and employ a more convenient representation for the electric-field contribution:

F [n,E] =

∫ d

0

W (n,∇n,E) dz,
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with

2W = K1(divn)2 +K2(n · curln)2 +K3|n× curln|2 − ε0
[
ε⊥|n×E|2 + ε‖(n ·E)2

]
= K1n

2
z,z +K3n

2
x,z − ε0

[
ε⊥(nzEx − nxEz)2 + ε‖(nxEx + nzEz)

2
]
.

The Euler-Lagrange equations for n are given by

K3nx,zz + ε0[ε⊥(nxEz − nzEx)Ez + ε‖(nxEx + nzEz)Ex
]

+ λnx = 0

K1nz,zz + ε0[ε⊥(nzEx − nxEz)Ex + ε‖(nxEx + nzEz)Ez
]

+ λnz = 0,

subject to n2
x+n2

z = 1 and boundary conditions nx(0) = nx(d) = 0, nz(0) = nz(d) = 1,
with ground state solution given by

n0 = ez, E0 = E0ex, λ0 = −ε0ε⊥E2
0 .

The stability criterion (4.5) requires δ2
nnF [n0, ϕ0](u), which can be expressed in the

following form when n0 = const:

δ2
nnF [n0,E0](u) =

∫
Ω

{
K1(divu)2 +K2(n0 · curlu)2 +K3|n0 × curlu|2

− ε0
[
ε⊥|u×E0|2 + ε‖(u ·E0)2

]}
dV.

In the present case (with u = u(z)ex), this becomes

δ2
nnF [n0,E0](u) =

∫ d

0

(
K3u

2
z − ε0ε‖E2

0u
2
)
dz.

Observe that if d0 were divergence free (and ψ identically zero), then the stability
condition (4.5) would become

δ2
nnF [n0,E0](u)−

∫ d

0

λ0|u|2 dz =

∫ d

0

(
K3u

2
z − εaεaE2

0u
2
)
dz ≥ 0,

for all smooth u satisfying u(0) = u(d) = 0. Here we have used λ0 = −ε0ε⊥E2
0 and

|u|2 = u2. This would give

E2
0 ≤

K3

ε0εa

∫ d
0
u2
z dz∫ d

0
u2 dz

⇒ Ec =
π

d

√
K3

ε0εa
,

which is the value that the magnetic-field analogy of [9, §3.3.1] and [38, §3.5] would
predict.

To determine the contribution to (4.5) from ∇ψ, it is convenient to interpret the
expression in terms of the electric field rather than the electric potential. First note
that with the electrodes at the left and right ends of the cell, the upper and lower
boundaries of the liquid-crystal film would just be glass substrates (typically with
other dielectric layers, such as polymer alignment layers, polarizers, and the like).
Thus the electric field would extend above and below the liquid crystal layer (into
z > d and z < 0). Next, with our simplified modeling assumptions (4.9), the basic
relations from the electrostatic Maxwell equations give

curlE = 0, divD = 0 ⇒ Ex = const, Dz = const.
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The constants can be determined as follows. Assuming that all dielectric interfaces
(liquid-crystal/polymer, polymer/glass, glass/air, etc.) are planar and parallel to the
x-y plane, then the quantities Ex and Dz would be continuous across these interfaces
and would continue to hold with the same constant values above and below the cell
(since tangential components of the electric field and normal components of the electric
displacement are continuous across material interfaces in general). Assuming also that
the electrodes are sufficiently tall that we can model them as having infinite extent in
the ±z directions, then we would have that

E → E0ex, Dz → 0, as z → ±∞.

We conclude that the Ex and Dz constants are E0 and 0, so that

E = E0ex + Ez(z)ez, Dz = 0.

Next, recall that ψ is the first-order change in the electric potential (ϕ = ϕ0 +
εψ + o(ε)) associated with a small perturbation of the director field (n = n0 + εu)
in the electrostatic equation divD = div[ε(n)E] = 0, E = −∇ϕ. Thus −ε∇ψ is
the associated first-order change in the electric field: E = E0 + δE, E0 = −∇ϕ0,
δE = −ε∇ψ. In our setting, however, divD = 0 collapses to Dz = 0, which is given
by

ε⊥Ez + εa(nxE0 + nzEz)nz = 0.

Thus to determine δE in our model, we can simply substitute n = n0 + εu (nx = εu,
nz = 1) above and solve for Ez to conclude

∇ψ =
εa
ε‖
E0uez,

and we obtain

ε(n0)∇ψ · ∇ψ = ε0
ε2a
ε‖
E2

0u
2.

Substituting this expression into our stability condition (4.5), we obtain

δ2
nnF [n0,E0](u) +

∫ d

0

ε(n0)∇ψ · ∇ψ dz −
∫ d

0

λ0|u|2 dz =∫ d

0

(
K3u

2
z −

ε⊥
ε‖
ε0εaE

2
0u

2
)
dz ≥ 0,

for all smooth u satisfying u(0) = u(d) = 0, giving

E2
0 ≤

ε‖
ε⊥

K3

ε0εa

∫ d
0
u2
z dz∫ d

0
u2 dz

⇒ E2
c =

ε‖
ε⊥

K3

ε0εa

π2

d2
,

as in (4.7). We note that this expression for Ec agrees with [2] and with [33, §5.2]
(where it is confirmed via numerics and a perturbation expansion of the bifurcation
point). Another anomaly exhibited by this particular system is that the Fréedericksz
transition can be first order, instead of second order, and this is established in [2, 14,
15, 16] and [33, §5.2].
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5. Conclusions. We have considered macroscopic models of Oseen-Frank type
for the orientational properties of a material in the simplest liquid crystal phase,
an achiral uniaxial nematic liquid crystal, subjected to either a magnetic field or
an electric field, and we have developed general criteria for the local stability of
equilibrium fields. In the case of a system with an electric field, the stability criterion
takes into account the coupling between the director field and the electric field (which
is in general inhomogeneous) and the mutual influence that these fields have on each
other. We have restricted our attention to the situation in which the electric field is
produced by electrodes held at constant potential by an external voltage source, which
is by far the most common case in experiments and devices involving such materials.

The assessment of local stability is complicated by several factors, including the
coupling between the electric field and the director field, the inhomogeneity of the
electric field, the minimax nature of the equilibrium problem, and the pointwise unit-
length constraint on the director field. Our general results provide a full explanation
of formulas found in [2], here given in (4.7) and (4.8), and they put ideas of [34] in a
different context and extend them from the case of instabilities caused by magnetic
fields to electric-field-induced instabilities, with the full coupling between the director
field and the electric field taken into account.

Our development proceeded in two stages: first for systems with magnetic fields,
followed by the analysis of systems with electric fields. The stability criteria in the
former case mimic results from equality-constrained optimization theory in Rn; while
the latter case was reduced to the former by the use of deflation, treating the electric
field as slaved to the director field (leading to a model that is in essence a PDE-
constrained optimization problem).

A main result is the stability criterion (4.5), which extends similar results for
magnetic fields to the fully coupled electric-field case. There, the one-sided, stabilizing
nature of the coupling is revealed: the presence of the electric field can only elevate
(never lower) an instability threshold, compared to the threshold one would calculate
if one ignored the mutual influence between the director field and the electric field and
instead treated the electric field as a uniform external field (analogous to the situation
with a magnetic field). Another important result is the simple test of whether or not
divd0 = 0 (with d0 as in (4.3b)), which tells us whether or not the electric-field
coupling will play a role in determining instability thresholds in particular systems.

From a physical point of view, the mechanism that drives the effect of the electric-
field coupling on stability thresholds is the change in the induced polarization asso-
ciated with a small perturbation of an equilibrium director field. The coupling has
an effect on an instability threshold when such a perturbation of the director field
causes a first-order change in the electric field. If a perturbation of an equilibrium
director field causes a change in the electric field of higher order, then the coupling
will not affect the threshold. This latter scenario is the more common one, and for
this reason, scientists have believed for a long time that the instability thresholds
with electric fields should be given by the same formulas as for magnetic fields (with
electric parameters simply replacing their magnetic counterparts), as explicitly stated
in standard references.

We have presented several examples illustrating the application of the stability
criteria in settings involving Fréedericksz transitions (the classic, textbook liquid crys-
tal instability) and also with systems that develop periodic instabilities. The results
are consistent in all cases with results in the literature, and they correct mistakes
found in some standard texts. The periodic instability of Lonberg and Meyer [29] is
interesting in its own right, and we have presented a partial analysis of it in Appen-
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dix A. While working with director fields n, the pointwise constraint |n| = 1, and the
associated Lagrange multipliers λ and µ is in some sense more complicated than using
representations in terms of orientation angles, once the analysis has been sorted out
(as we have done here, in a fashion), the application of the criteria to specific systems
can be cleaner and simpler than that employing orientation angles, as our examples
have illustrated.

While we have focused on models of somewhat simple systems (achiral uniaxial
nematic liquid crystals with magnetic fields or electric fields), the approach is broader
and more general and can be extended to other phases (chiral nematics or cholester-
ics, smectics, etc.) and to include other effects, such as flexoelectricity, ferroelectric-
ity, and the like. For example, in Appendix B, we show how one can incorporate
flexoelectric effects into the theory. In that same appendix, we also show that the
flexoelectric terms incorporated into the free energy have no effect on any of the
classical Fréedericksz thresholds, though it is known that they do affect equilibrium
configurations beyond the instability thresholds.

In a completely analogous manner, stability criteria could be developed for meso-
scopic continuum models of such materials (such as tensor-order-parameter models of
Landau-de Gennes type). The coupled-electric-field models would retain the minimax
nature of the equilibrium characterization and the one-sided nature of the instability
threshold assessment (capable only of elevation). The state variables and constraints
for such models would of course differ from those for the macroscopic models we have
considered here.

From the point of view of numerical modeling, the stability criteria developed here
have natural, implementable discrete analogues. For example, in [18], the stability
condition analogous to (4.5) takes the form of an inequality on the minimum eigenvalue
of a matrix built from the blocks of a discretization matrix for a liquid-crystal director
model:

λmin

[
ZT
(
A+DC−1DT

)
Z
]
≥ 0.

Here the matrix A+DC−1DT represents a certain Schur complement associated with
a deflated Hessian matrix (analogous to the second variation of the deflated free
energy we have used in subsection 4.1), and the rectangular matrix Z represents the
projection transverse to discrete directors (the discrete analogue of the tensor field
P(n) used in u = P(n)v in our continuum setting).

Appendix A. Periodic instability of Lonberg and Meyer. As discussed in
subsection 3.3.2, the periodic instability studied in [29] concerns a system in the splay-
Fréedericksz geometry, that is, a thin-film liquid-crystal cell with strong parallel planar
anchoring on the substrates and a magnetic field perpendicular to the substrates, as
depicted in Figure 3.1a. As in that figure, we adopt a fixed Cartesian coordinate
system with the x and y coordinates in the plane of the film (which is assumed to be
infinite) and the z coordinate across the film gap (0 < z < d). Thus H = Hez, and
we impose the boundary condition n = ex on z = 0 and z = d. For sufficiently weak
magnetic fields, the stable ground state is the uniform configuration n = n0 = ex. The
classical Fréedericksz transition occurs at a critical magnetic-field strength at which
the uniform ground state becomes unstable to a configuration with the liquid-crystal
director orienting towards the direction of the magnetic field in the interior of the cell:
n = n(z). For the materials used in the experiments in [29], the authors reported that
this transition was preceded (at a lower magnetic-field strength) by an instability to a
solution that was periodic in y, with a period chosen by the system: n = n(y, z), 2L



26 E. C. GARTLAND, JR.

periodic in y (L not known a-priori). The materials used in [29] were polymer liquid
crystals, which are distinguished by having very elongated molecular architectures and
by having twist elastic constants (K2 in (2.2)) that are small compared to their splay
elastic constants (K1). Both the classical and the periodic solutions are assumed to
be uniform in the x direction. This system is discussed as an example of a “periodic
Freedericks transition” in [39, §4.3]. We model it as follows.

Let F denote the free energy (per unit length in x) of a single periodic cell:

F [n] =

∫
Ω

W (n,∇n) dA, Ω = {(y, z)| − L < y < L, 0 < z < d},

where the free-energy density is given by

2W = K1(divn)2 +K2(n · curln)2 +K3|n× curln|2 − χa(H · n)2.

Here the diamagnetic anisotropy χa is assumed to be positive (as are the elastic
constants K1, K2, K3), and H = Hez, with H = const. For given parameters K1,
K2, K3, χa, and H, the optimal period of a periodic solution is the one that minimizes
with respect to L the free energy averaged over one period:

min
n,L
FL[n], FL :=

1

L
F .

The minimization with respect to n is subject to the boundary conditions, the pe-
riodicity conditions, and the pointwise unit-length constraint |n| = 1. We note that
periodic solutions have an arbitrary phase, which leads to one-parameter families
of minimizers. One should add a “phase condition” to determine a locally isolated
representative.

The uniform ground state n = n0 satisfies the Euler-Lagrange equations with the
Lagrange multiplier field associated with the constraint |n| = 1 equal to zero (λ0 = 0);
so the stability of n0 is indicated by δ2F [n0](u), with u = v(y, z)ey+w(y, z)ez, which
is given by (3.8):

(A.1) δ2F [n0](u) =

∫
Ω

[
K1(vy + wz)

2 +K2(vz − wy)2 − χaH
2w2

]
dA.

We note that this agrees with the expression given in [29, p. 719, col. 2] and [39, (4.76)].
The stationary points of (A.1) subject to

∫
Ω

(v2 + w2) dA = const satisfy

(A.2)
K1(vy + wz)y +K2(vz − wy)z + λv = 0,

K2(wy − vz)y +K1(vy + wz)z + χaH
2w + λw = 0,

for which any nontrivial solution v, w, λ (subject to homogeneous boundary conditions
and periodicity conditions on v and w) satisfies

λ =

∫
Ω

[
K1(vy + wz)

2 +K2(vz − wy)2 − χaH
2w2

]
dA∫

Ω

(v2 + w2) dA

.

Thus the sign of the eigenvalue λ indicates the stability or instability of the mode
(λ > 0 corresponding to δ2F [n0](u) > 0 and implying local stability of n0 to such a
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perturbation, λ < 0 indicating instability). We note that in the special case K1 = K2,
the equations (A.2) decouple. The case of interest, however, is 0 < K2 < K1 (when
twist distortion is cheap compared to splay distortion).

We employ the following representations for v and w:

(A.3)

v(y, z) = a0(z) +

∞∑
k=1

[
ak(z) cos

kπy

L
+ bk(z) sin

kπy

L

]
w(y, z) = c0(z) +

∞∑
k=1

[
ck(z) cos

kπy

L
+ dk(z) sin

kπy

L

]
.

The uniform-in-y modes in (A.2) are given by either of the following:

v = a0 = sin
lπz

d
, w = 0, λl = K2

l2π2

d2
, or

v = 0, w = c0 = sin
lπz

d
, λl = K1

l2π2

d2
− χaH

2,

with l = 1, 2, . . . . The latter solution pair (with l = 1) gives the classical stability
threshold:

(A.4) Hc :=
π

d

√
K1

χa
.

Before embarking on a systematic consideration of the stability eigenvalue problem
for periodic-in-y modes, we illustrate what information can be obtained from a simple
approximation.

We wish to know how small K2 must be compared to K1 in order for a periodic
mode to become unstable for H < Hc, i.e., for a periodic instability to precede the
classical magnetic-field splay-Fréedericksz transition. An approximate v, w pair that
has the appropriate symmetry (but does not satisfy (A.2)) is

(A.5) v = A cos
πy

L
sin

2πz

d
, w = B sin

πy

L
sin

πz

d
, A,B const.

Substituting these into (A.1) leads to a quadratic form in A, B:

αA2 + 2βAB + γB2,

with

α = q2 + 4π2K2, β = −8

3
(1−K2)q, γ = π2 +K2q

2 − π2H2,

where

(A.6) q :=
π

L
, L :=

L

d
, K2 :=

K2

K1
, H :=

H

Hc
.

A study of the two eigenvalues of this form leads to a characterization of the value

K∗∗2 :=
4

3π + 4

.
= 0.298,
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such that for 0 < K2 < K∗∗2 , the approximation (A.5) gives δ2F [n0](u) < 0 for some
A and B, some q > 0, and some H < 1. The distinguished value emerges in the limit
q → 0+, H → 1−.

Thus the simple approximation (A.5) guarantees that for 0 < K2/K1 < K∗∗2 , a
periodic instability precedes the classical Fréedericksz transition. We note that K∗∗2
compares favorably to the optimal value

(A.7)
K∗2 := −a+

√
a(a+ 1), a :=

π2

8
− 1

.
= 0.303,

which was found numerically in [29] and by asymptotics in [32] and [39, §4.3]—below
we give an alternate derivation of K∗2 . We remark that for low-molecular-weight
liquid crystals (which are typically used in display applications), one generally finds
K2 ≈ 1

2K1; whereas for the types of polymer liquid crystals used in [29], the authors
report much smaller ratios of K2 to K1, in the range

10K2 < K1 < 30K2,

which give K2 well below the value K∗∗2 .
Periodic-in-y modes that result from the substitution of (A.3) into (A.2) are

coupled (for the case of interest 0 < K2 < K1) and satisfy either

(A.8)

K2a
′′
k +

(
λk −K1q

2
k

)
ak + (K1 −K2)qkd

′
k = 0

K1d
′′
k +

(
χaH

2 + λk −K2q
2
k

)
dk − (K1 −K2)qka

′
k = 0

ak(0) = dk(0) = ak(d) = dk(d) = 0, qk := kπ/L,

with bk = ck = 0, or a similar eigenvalue problem for bk and ck, with ak = dk = 0.
Again, the differential equations uncouple if K1 = K2. For an eigenpair ak, dk, the
associated eigenvalue satisfies

λk =

∫ d

0

{
K1

[
(d′k)2 + q2

ka
2
k

]
+K2

[
(a′k)2 + q2

kd
2
k

]
+ 2(K1 −K2)qka

′
kdk − χaH

2d2
k

}
dz∫ d

0

(
a2
k + d2

k

)
dz

,

and the local stability is again indicated by the sign of λk. Solutions of (A.8) depend
only on L/k (not on L and k independently); so it is sufficient to consider only the
case k = 1. We do this and also drop the subscript “1”.

General solutions of the coupled ordinary differential equations in (A.8) take
different forms depending on λ. Three cases can be distinguished (assuming 0 <
K2 < K1):

(I) λ < K2q
2 − χaH

2, (II) K2q
2 − χaH

2 < λ < K1q
2, (III) K1q

2 < λ.

It can be shown that in Case I, there are no nontrivial solutions that satisfy the
boundary conditions. Case III yields an infinite sequence of positive eigenvalues; so it
is incapable of producing an instability. The relevant case, then, is Case II. Imposing
the boundary conditions on the general solution for this case leads to a transcendental
equation that can be solved numerically for λ, and this is the approach taken in [29].
The case is analyzed graphically in [39, §4.3]. Here we have chosen instead to solve
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the eigenvalue problem (A.8) numerically using a library routine, and for this we have
used the MATLAB® code bvp5c [26].

In dimensionless terms, the stability eigenvalue problem takes the form

(A.9)

K2a
′′ + (λ− q2)a+ (1−K2)qd′ = 0

d′′ + (π2H2 + λ−K2q
2)d− (1−K2)qa′ = 0

a(0) = d(0) = a(1) = d(1) = 0,

where

z :=
z

d
, a(z) = a1(z), d(z) = d1(z), λ :=

λ1

K1/d2
,

with K2, q, and H as previously defined in (A.6). For a nontrivial eigenpair a, d, the
associated eigenvalue satisfies

(A.10) λ =

∫ 1

0

{[
(d′)2 + q2a2

]
+K2

[
(a′)2 + q2d2

]
+ 2(1−K2)qa′d− π2H2d2

}
dz∫ 1

0

(
a2 + d2

)
dz

.

Thus for a given K2, q (or L), and H, one can determine (numerically) the mode with
the minimal λ and adjust H so that λ = 0, giving the critical magnetic-field strength
Hp at which the uniform director field n = n0 becomes unstable with respect to a
mode with that prescribed period: Hp = Hp(K2, q).

A relevant question is what period gives the earliest instability onset:

H∗p(K2) = min
q
Hp(K2, q).

This can be determined as follows. The dependence of λ in (A.10) on q is quadratic
and can be exhibited

λ =
I0 + I1q + I2q

2∫ 1

0

(
a2 + d2

)
dz

,

where

I0 =

∫ 1

0

[
(d′)2 +K2(a′)2 − π2H2d2

]
dz

I1 = 2(1−K2)

∫ 1

0

a′d dz

I2 =

∫ 1

0

[
a2 +K2d

2
]
dz.

For given, fixed functions a and d, the value of λ above will be minimal at

I1 + 2I2q = 0, if I2 > 0.
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Table A.1
Minimal reduced magnetic-field strength H∗p of periodic instability and associated optimal half

period L∗ (in units of the cell gap) as a function of the ratio of the twist elastic constant K2 to the
splay elastic constant K1 for some representative values: K2 = K2/K1, H = H/Hc (with Hc as
defined in (A.4)), L = L/d.

K2 H∗p L∗

0.10 0.753 0.822
0.15 0.871 0.955
0.20 0.945 1.175
0.25 0.986 1.652

After a simplification, this gives

(A.11) q∗ =
π

L∗
=

(1−K2)

∫ 1

0

ad′ dz∫ 1

0

(
a2 +K2d

2
)
dz

.

Thus, to obtain the instability mode with the optimal period (and smallest re-
quired magnetic-field strength), one must solve the stability eigenvalue problem (A.9)
with q (or L) subject to the integral constraint (A.11). We have done this by a simple
decoupling iteration (as a matter of expediency): solving (A.9) with a given q, com-
puting the “optimal” q associated with that solution using (A.11), re-solving (A.9)
with this new q, etc., iterating until convergence. The results for some representative
values are given in Table A.1. We note that in the experiments reported in [29], a
period of 65µm was observed for a fully developed periodic solution for a material
with K2 < 0.10 in a cell of thickness 37µm, which corresponds to L

.
= 0.878—the

periodicities reported in Table A.1 are at the onset of the instability.
The period of the instability at onset diverges as K2 approaches the limiting value

K∗2 :

K2 → K∗2 ⇒ q∗ → 0, L∗ →∞.

For K2 = 0.3 (which is within 1% of K∗2 ), our numerics give H∗p
.
= 0.99995, L∗

.
= 6.75.

The vanishing of q in this limit is what enabled Oldano in [32] to determine the ana-
lytical formula (A.7) for K∗2 . The approach taken in [32] (also used in [39, §4.3]) was
to set H = 1 and λ = 0 in the transcendental equation that results from imposing the
homogeneous boundary conditions on the general solution of the differential equations
in (A.9), expand in powers of q (out to O(q2)), simplify, and solve for K2 in the limit
q → 0. Here we show, in a similar vein, how K∗2 can be obtained from a perturbation
expansion in the stability eigenvalue problem.

We work from the problem in dimensionless form (A.9), subject to the convenient
normalization

d′(0) = π

and the optimal-q integral constraint (A.11), which we write

(1−K2)

∫ 1

0

a′d dz + q

∫ 1

0

(
a2 +K2d

2
)
dz = 0.
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We use q as the expansion parameter (since the solution of interest emerges with
q = 0). Dropping bars, we substitute the formal expansions

a = a0 + a1q + a2q
2 + · · · , d = d0 + d1q + d2q

2 + · · · ,
λ = λ0 + λ1q + λ2q

2 + · · · , H = H0 +H1q +H2q
2 + · · ·

into the differential equations, boundary conditions, normalization condition, and
integral constraint. At order O(1), we obtain

K2a
′′
0 + λ0a0 = 0, a0(0) = a0(1) = 0,

d′′0 + (π2H2
0 + λ0)d0 = 0, d0(0) = d0(1) = 0, d′0(0) = π.

At the point of interest, we have λ0 = 0 (the threshold of the periodic instability),
which implies a0 = 0 and leads to a family of solutions for d0 with H0 = ±1,±2, . . . ,
the one of interest being H0 = 1:

a0 = 0, d0 = sinπz.

At order O(q), we have

K2a
′′
1 + (1−K2)d′0 = 0, a1(0) = a1(1) = 0,

d′′1 + π2d1 + (2π2H1 + λ1)d0 = 0, d1(0) = d1(1) = d′1(0) = 0,

(1−K2)

∫ 1

0

a′1d0 dz +K2

∫ 1

0

d2
0 dz = 0.

The a1 solution is given by

a1 =
1−K2

K2π
(cosπz + 2z − 1),

while the solvability condition for the differential equation for d1 requires

2π2H1 + λ1 = 0,

leaving

d1 = 0.

The integral constraint gives

(1−K2)

∫ 1

0

a′1d0 dz +K2

∫ 1

0

d2
0 dz =

(1−K2)2

K2π

( 4

π
− π

2

)
+
K2

2
= 0,

which simplifies to

K2
2 + 2aK2 − a = 0, a :=

π2

8
− 1,

for which the positive root is

K2 = −a+
√
a(a+ 1).
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This is precisely the quadratic polynomial and root formula for K∗2 given in [32] and
[39, Th. 4.9] (modulo a typographical sign error in [39, (4.85)]). We remark that
the reason this technique works here is that q0 = 0, and the differential equations
uncouple at leading order. The approach does not lead to simple analytical solutions
when K2 < K∗2 , where q0 6= 0 at the bifurcation point and the equations for a0 and
d0 remain coupled (and require numerical methods at some stage).

Appendix B. Inclusion of flexoelectric effects. The models considered thus
far have been deliberately kept as simple as possible so as to focus on the coupling
between the director field and the electric field and its consequences with respect to
local stability of equilibrium solutions. The approach and ideas, however, are general,
and here we provide an illustration of how an additional feature can be incorporated
into the theory: “flexoelectricity.” Flexoelectricity concerns polarization caused by
director distortion, and flexoelectric effects sometimes play an important role in liquid
crystal systems—see [9, §3.3.2] or [28, §4.1]. Since these effects involve an interplay
between director distortions and electric fields, it is natural to wonder about how they
would fit into our development.

We use the same building blocks that we have used previously and consider a
free-energy functional of the form

F [n, ϕ] =

∫
Ω

W (n,∇n,∇ϕ) dV +

∫
Γ2

Ws(n) dS,

with Ω and Γ2 as depicted in Figure 2.1 and with Ws an appropriate surface anchoring
energy, as in section 2. However, the free-energy density now is given by

W = We(n,∇n)− 1

2
ε(n)∇ϕ · ∇ϕ+ Pf(n,∇n) · ∇ϕ,

Pf = es(divn)n+ ebn× curln.

The first two terms of W here are as before: We, the distortional elasticity (as in
(2.2)), and the dielectric tensor ε as in (2.3). The third term is the new addition,
with Pf denoting the flexoelectric polarization and es and eb the “splay” and “bend”
flexoelectric coefficients (which can be positive or negative). This term accounts for
the phenomenon of splay deformations and bend deformations inducing polarization.
We note that the flexoelectric term is linear in ∇ϕ (whereas the second term of W
above is quadratic) and that it also introduces a coupling between E and ∇n (in
addition to the coupling between E and n already present in the second term).

The main results of section 4 remain valid. Here we highlight the changes caused
by the addition of the flexoelectric term. The problem that determines the electric
potential ϕ from a given director field n (ϕ = T (n), δϕF [n, ϕ] = 0) now reads

(B.1a)

∫
Ω

ε(n)∇ϕ · ∇ψ dV =

∫
Ω

Pf(n,∇n) · ∇ψ dV, ∀ψ ∈ Ψ0

or

(B.1b)
div
[
ε(n)∇ϕ

]
= div

[
Pf(n,∇n)

]
in Ω

ϕ = 0 on Γ1, ϕ = V on Γ2, ϕ periodic on Γ3.
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The equilibrium equations for the director field have the same form as before:

−div
( ∂W
∂∇n

)
+
∂W

∂n
= λn in Ω,

n = nb on Γ1,
( ∂W
∂∇n

)
ν +

∂Ws

∂n
= µn on Γ2, n periodic on Γ3.

There are, however, new contributions to both ∂W/∂∇n and ∂W/∂n from the term
Pf(n,∇n) · ∇ϕ, which we do not expand upon here—see [17, §5.3].

A perturbation of an equilibrium director field (n0 7→ n0 +εv) will cause changes
in both the electric-field-induced polarization (at first order, d0, as before in (4.3b))

d0 = ε0εa(n0 ⊗ v + v ⊗ n0)E0, E0 = −∇ϕ0

and also now in the director-distortion-induced polarization, which at first order is
given by

P0 = es

[
(divn0)v + (div v)n0

]
+ eb(n0 × curlv + v × curln0).

If the ground-state director field is uniform (n0 = const), then this simplifies to

P0 = es(div v)n0 + ebn0 × curlv.

Thus the problem of determining the first-order change in the electric potential (ψ =
DT (n0)v) now takes the form

(B.2a)

∫
Ω

ε(n0)∇ψ · ∇χdV =

∫
Ω

(d0 + P0) · ∇χdV, ∀χ ∈ Ψ0

or

(B.2b)
div
[
ε(n0)∇ψ

]
= div(d0 + P0) in Ω

ψ = 0 on Γ1 and Γ2, ψ periodic on Γ3.

Thus ψ = 0 on Ω if and only if d0 + P0 is divergence free on Ω, and we now have∫
Ω

(d0 + P0) · ∇ψ dV =

∫
Ω

ε(n0)∇ψ · ∇ψ dV.

The second-order necessary condition for the local stability of the equilibrium
pair n0, ϕ0 reads exactly as before in (4.5):

δ2
nnF [n0, ϕ0](u) +

∫
Ω

ε(n0)∇ψ · ∇ψ dV

−
∫

Ω

λ0|u|2 dV −
∫

Γ2

µ0|u|2 dS ≥ 0, ∀u ∈ U0.

Here, however, ϕ0 and ψ satisfy the slightly modified problems (B.1) and (B.2). Our
previous conclusions and interpretations remain valid. As before, everything hinges
on whether or not perturbations of the equilibrium director field (n0 7→ n0 + εu,
u ∈ U0) cause a first-order change in the electric field (E = E0 + δE). If div(d0 +
P0) = 0 on Ω, then ψ = 0, and δE = 0, and the n-E coupling has no effect on
the instability threshold. Otherwise the coupling will elevate the threshold. It is the
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case now that it is the combined effect of the first-order changes in the electric-field-
induced polarization (d0) and the director-induced-polarization (P0) that determines
the outcome.

A natural question at this point is whether or not the flexoelectric terms (through
P0 and divP0) could have any effect on instability thresholds such as Fréedericksz
transitions. We show now that this is not the case, at least for Fréedericksz transitions:
none of the classical Fréedericksz transitions are altered by the inclusion of Pf in the
free-energy density. First, note that flexoelectric effects can play a role in liquid
crystal systems with magnetic fields, as well as those with electric fields. The role of
flexoelectricity in the magnetic-field splay-Fréedericksz transition is analyzed in [11];
while the electric-field splay-Fréedericksz transition (with flexoelectric terms included)
is studied via experiment and theory in [5]. In both cases, flexoelectric effects were
explored above the instability threshold, while the threshold itself was found not to
be affected by the inclusion of the flexoelectric terms. Next, recall that for all of the
classical Fréedericksz transitions, the ground-state director field n0 is uniform. Thus
∇n0 = 0, and in this case, P0 is given by

P0 = es(divu)n0 + ebn0 × curlu.

It is also the case that P0 is independent of the electric field (by virtue of the fact
that the coupling Pf ·E is linear in E). Thus P0 depends only on n0 and ∇u, which
leaves us with just three geometries and symmetry assumptions to consider.

In the splay geometry (depicted in Figure 3.1a),

n0 = ex, u = w(z)ez ⇒ divu = wz, curlu = 0,

which gives

P0 = eswzex ⇒ divP0 = 0.

Thus the coupling between Pf and E in this case can have no effect on the instability
threshold, no matter if the instability is induced by a magnetic field or an electric field
or if the magnetic or electric anisotropy is positive or negative. The twist geometry,
as usually written in the textbooks (which we have not depicted), corresponds to

n0 = ey, u = u(z)ex ⇒ divu = 0, curlu = uzey,

using the same coordinate system as in Figure 3.1. This gives

n0 × curlu = 0 ⇒ P0 = 0 ⇒ divP0 = 0,

and the coupling does not affect the threshold again in this case. Finally, the bend
geometry (depicted in Figure 3.1b) corresponds to

n0 = ez, u = u(z)ex ⇒ divu = 0, curlu = uzey,

which gives

P0 = −ebuzex ⇒ divP0 = 0,

and the coupling is again ineffectual. These results are consistent with [5, 11] in the
case of splay transitions. To our knowledge, these observations are new for the twist
and bend geometries (though consistent with what most assume to be true).
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