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Abstract

We consider two nonlocal variational models arising in physical contexts. The first

is the Thomas-Fermi-Dirac-von Weizsäcker (TFDW) model, introduced in the study

of ionization of atoms and molecules, and the second is the liquid drop model with

external potential, proposed by Gamow in the context of nuclear structure. It has

been observed that the two models exhibit many of the same properties, especially

in regard to the existence and nonexistence of minimizers. We show that, under

a “sharp interface” scaling of the coefficients, the TFDW energy with constrained

mass Γ-converges to the liquid drop model, for a general class of external potentials.

Finally, we present some consequences for global minimization of each model.

I. Introduction

The Thomas-Fermi-Dirac-von Weizsäcker (TFDW) theory is a variational model for ion-

ization in atoms and molecules. Minimizers u ∈ H1(R3) of the energy

ETFDW (u) =

∫

R3

(

cTF |u|
10

3 − cD|u|
8

3 + cW |∇u|2 − V |u|2
)

dx+D(|u|2, |u|2) (1.1)

where

D(f, g) :=
1

2

∫

R3

∫

R3

f(x)g(y)

|x− y| dx dy,

subject to an L2 constraint, ‖u‖2L2(R3) =M , model electron density in an atom or molecule

whose nuclei act via the electrostatic potential V , and total electron chargeM (see [23].) The

liquid drop model (with potential) is also a variational problem with physical motivations:

for sets Ω ⊂ R
3 of finite perimeter and given volume |Ω| =M , one minimizes the energy

ELD(Ω) = PerR3(Ω)−
∫

Ω

V dx+D(1Ω,1Ω).

Here, the first term represents the perimeter of ∂Ω, which may be calculated as the total

variation of the measure |∇1Ω|, with 1Ω ∈ BV (R3; {0, 1}). When V ≡ 0, this is Gamow’s

problem, a simplified model for the stability of atomic nuclei (see [10]) . The constraint

value M represents the number of nucleons bound by the strong nuclear force.

As variational problems, the TFDW and liquid drop models have much in common. Each

features a competition between local attractive terms (gradient and potential terms) and a
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common non-local repulsive term. As such, each problem is characterized by subtle problems

of existence and nonexistence due to the translation invariance of the problem “at infinity”:

for large values of the “mass” constraint M , minimizing sequences may fail to converge due

to splitting of mass which escapes to infinity, the “dichotomy” case in the concentration-

compactness principle of Lions [25]. (See e.g., [7, 11, 13–15, 19, 20, 26–28, 31].) While this

similarity has been often remarked, and one often speaks of the liquid drop models as a

sort of “sharp interface” version of TFDW, no direct analytic connection between the two

has been made. In this paper we prove that, after an appropriate “sharp interface” scaling

and normalization, the TDFW energy converges to the liquid drop model with potential,

within the context of Γ-convergence. This result may seem a bit surprising, since in bounded

domains Ω ⊂ R
3 it is the Ohta-Kawasaki functional, arising in di-block copolymer models

and with an L1(Ω) mass constraint, which Γ-converges to the nonlocal isoperimetric problem

(which is a bounded domain form of the liquid drop model); see [10, 30, 32, 33].

In order to establish this connection we select the constants in the TFDW energy so as

to set up a sharp interface limit. We note that this choice of scaling is not physically natural

for the application to ionization phenomena, but is motivated purely mathematically. We

introduce a length-scale parameter ε > 0, and choose constants cW = ε
2
, cTF = 1

2ε
and

cD = 1
ε
. We note that for fixed ε, the qualitative behavior of the minimization problem for

TFDW is not affected by the specific choices of the constants cW , cTF , cD, and the values we

select here match the standard choice of constants in the liquid drop model. In addition, we

complete the square in the nonlinear potential by adding in a multiple of the constrained

L2 norm, which is a constant in the minimization problem and thus has no effect on the

existence of minimizers or the Euler-Lagrange equations. That is, the nonlinear potential is

rewritten as,
∫

R3

1

2ε

(

|u| 103 − 2|u| 83
)

dx =

∫

R3

1

2ε
|u|2

(

|u| 23 − 1
)2

dx− M

2ε
,

whereM = ‖u‖2L2(R3) according to the constraint. Thus we recognize the triple well potential,

W (u) := |u|2
(

|u| 23 − 1
)2

,

vanishing at |u| = 0, 1, and a version of the TFDW energy of the rescaled and normalized

form,

E
V
ε (u) :=

∫

R3

[

ε

2
|∇u|2 + 1

2ε
W (u)− V |u|2

]

dx+D(|u|2, |u|2), ‖u‖2L2(R3) =M. (1.2)

As ε → 0+ we expect that sequences {uε}ε>0 of uniformly bounded energy should converge

almost everywhere to one of the wells of the potentialW , that is, in the limit u(x) ∈ {0,±1}.
As E V

ε (|u|) = E V
ε (u), we expect minimizers of E V

ε to have fixed sign, but families {uε}ε>0

with bounded energy might well take both positive and negative values. Hence, we define

the limiting liquid drop functional for u ∈ BV (R3; {0,±1}) as

E
V
0 (u) :=

1

8

∫

R3

|∇u| −
∫

R3

V |u|2dx+D(|u|2, |u|2). (1.3)
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The first term is the total variation of the measure |∇u|, and for u = 1Ω it measures the

perimeter of ∂Ω. If u takes both values ±1, then

∫

R3

|∇u| =
∫

R3

|∇u+|+ |∇u−|,

which measures the perimeter of {x ∈ R
3 | u(x) = 1} and that of {x ∈ R

3 | u(x) = −1},
whereas the other terms yield the same value for u and |u| = u2.

We make the following general hypotheses regarding the potential V:

V ∈ L
5

2 (R3) + L∞(R3) and V (x) −−−−→
|x|→∞

0. (1.4)

We define domains for the functionals which incorporate the mass constraint,

H
M :=

{

u ∈ H1(R3) : ‖u‖2L2(R3) =M
}

,

X
M :=

{

u ∈ BV (R3, {0,±1}) : ‖u‖2L2(R3) =M
}

,

and define the infimum values

eVε (M) := inf
{

E
V
ε (u) : u ∈ H

M
}

, eV0 (M) := inf
{

E
V
0 (u) : u ∈ X

M
}

,

for the constrained TFDW and liquid drop problems. In recognition of the subtlety of the

existence problem for minimizers of both models (see [11], [31], [2], [1], and the excellent

review article [10]), the target space and Γ-limit must incorporate the concentration structure

of minimizing sequences for the liquid drop model: while minimizing sequences for either

TFDW or liquid drop may not converge, they do concentrate at one or more mass centers,

and if there is splitting of mass the separate pieces diverge away via translation. We define

the energy “at infinity”, E 0
0 (u), taking potential V ≡ 0, with infimum value e00(M). From

this we then define the appropriate Γ-limit as

F
V
0 ({ui}∞i=0) :=















E V
0 (u0) +

∞
∑

i=1

E
0
0 (u

i), {ui}∞i=0 ∈ H M
0 ,

∞, otherwise,

(1.5)

on the space of limiting configurations,

H
M
0 :=

{

{ui}∞i=0 ⊂ BV (R3, {0,±1});
∞
∑

i=0

∫

R3

|∇ui| <∞,

∞
∑

i=0

‖ui‖2L2(R3) =M

}

.

We now state our convergence result, which is in the spirit of Γ-convergence but with

respect to a notion of convergence which is suggested by Concentration-Compactness, given

by (1.6)-(1.7).

Theorem I.1. E V
ε Γ−converges to F V

0 , in the sense that:
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(i) (Compactness and Lower-bound) For any sequence εk −−−→
k→∞

0+, if {uεk}k∈N ⊂ H M

and supk E V
εk
(uεk) < ∞, then there exist a subsequence (still denoted εk), a collection

{ui}∞i=0 ∈ H M
0 , and translations {xik}k∈N ⊂ R

3, so that

uεk(·)−
(

u0 +

∞
∑

i=1

ui(· − xik)

)

−−−→
k→∞

0 in L2(R3), (1.6)

|xik| −−−→
k→∞

0, |xik − xjk| −−−→
k→∞

∞, i 6= j, (1.7)

F
V
0 ({ui}∞i=0) ≤ lim inf

k→∞
E

V
εk
(uεk). (1.8)

(ii) (Upper-bound) Given {ui}∞i=0 ∈ H M
0 and any sequence εk −−−→

k→∞
0+, there exist func-

tions {uεk}k∈N ⊂ H M
0 and translations {xik}k∈N ⊂ R

3, such that equations (1.6) and

(1.7) hold, and

F
V
0 ({ui}∞i=0) ≥ lim sup

k→∞
E

V
ε (uεk).

We note that u0 is the limit of uε in L2
loc(R

3), and could well be zero. However, it is

natural to distinguish this component as it is the only one which “feels” the effect of V , and

for minimizers when (V 6≡ 0) it will be nontrivial.

The compactness and lower semicontinuity (with respect to the notion of convergence

given by (1.6)-(1.7)), combine two different approaches in the calculus of variations. Local

convergence of the singular limits uses BV bounds in the flavor of the Cahn-Hilliard prob-

lems, as studied in [29, 34]. On the other hand, the lack of global compactness imposes

a concentration-compactness structure [2, 14, 25, 26], in order to recover all of the mass

escaping to infinity. The proof of part (i) is done in section 2.

For the recovery sequence and upper bound (ii), the presence of an infinite number of

{ui}∞i=0 presents some obstacles not normally seen in Cahn-Hilliard-type problems, where

the setting is usually a bounded domain or flat torus. Indeed, for (ii) of Theorem I.1 we must

consider {ui}∞i=0 with infinitely many nontrivial components, and then it is only possible at

any fixed ε > 0 to construct a trial function approximating ui when the scale of its support

is large compared to ε. This construction will be done in section 3.

While Theorem I.1 expresses convergence of a family of variational problems in the spirit

of de Giorgi’s Γ-convergence, it does not fit the standard form defined in most texts on the

subject, (see for example [8]), since the topology of the convergence is not determined by the

choice of a common underlying space which contains the domains of the functionals E V
ε and

F V
0 . More general notions of Γ-convergence have been introduced to allow for contexts in

which there is no common ambient space; see [17] for instance. This form of the Γ-limit, as a

sum of disassociated variational problems splitting on different scales was already introduced

in droplet breakup for di-block copolymers; see [4, 11].

An important motivation behind de Giorgi’s introduction of Γ-convergence was to under-

stand the existence of, and relations between, minimizers of the functionals involved. In the
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following paragraph, we discuss the implications of our theorem to minimization problems

in various settings, and the proofs of those results will be given in section 4.

On Minimizers

Here we discuss the implications of the Γ-convergence result on minimizers of TFDW

(1.1) and of the liquid drop problem. For minimizers we note that E V
ε (|u|) = E V

ε (u),

E V
0 (|u|) = E V

0 (u), and so we restrict to the cone of nonnegative functions H M
+ , X M

+ , H M
0,+

as the domain for each. Hence the triple-well nature of the potential W (u) is not felt at all

for energy minimizers, although it is an interesting question whether one can impose some

constraint or min-max procedure which produces critical points which exploit the third well

in a nontrivial way.

In some sense, one tends to think of a Γ-limit as a framework in which minimizers of

the ε functionals should converge to minimizers of the limiting energy (see, e.g., [21]), but

given the complexity of the question of the existence of minimizers for each model, this is

a subtle point. The notion of generalized minimizers, introduced for the case V ≡ 0 in [20,

Definition 4.3], provides a useful means of discussing the structure of minimizing sequences

which may lose compactness:

Definition I.2. Let V satisfy (1.4) and M > 0. A generalized minimizer of E V
0 (M) is a

finite collection {u0, u1, . . . , uN}, ui ∈ BV (R3, {0, 1}), such that:

1. ‖ui‖2L2(R3) := mi, i = 0, 1, . . . , N , with
∑N

i=0m
i =M ;

2. u0 attains the minimum eV0 (m
0) and ui attains e00(m

i), i = 1, . . . , N ;

3. eV0 (M) = eV0 (m
0) +

∑N
i=1 e

0
0(m

i).

In [2] it is shown that to any minimizing sequence for the liquid drop model with (or

without) potential V , one may associate a generalized minimizer as above. In this way, up to

translation ferrying the components ui to infinity, the collection of all generalized minimizers

of E V
0 with constrained mass M completely characterizes the minimizing sequences of E V

0 .

We naturally associate to a generalized minimizer {u0, u1, . . . , uN} an element {ui}∞i=0 of

H M
0 by taking ui = 0 for all i ≥ N + 1, and then we have F V

0 ({ui}∞i=0) = eV0 (M). When

convenient we abuse notation and denote F V
0 ({ui}Ni=0) the value of the limiting energy for

a generalized minimizer. We may thus address the convergence of minimizers of E V
ε (should

they exist) in terms of generalized minimizers of E V
0 , using Theorem I.1:

Theorem I.3. Let M > 0 and assume that there exists εn −−−→
n→∞

0+ for which eVεn(M) is

attained at un ∈ H M
+ for each n ∈ N. Then, there exists a subsequence (not relabeled) and

a generalized minimizer {u0, . . . , uN} of E V
0 for which (1.6) and (1.7) hold for i = 0, . . . , N ,

and

F
V
0 ({ui}Ni=0) = eV0 (M) = lim

n→∞
eVεn(M).



6

A slightly more general version of Theorem I.3 will be proven in Lemma IV.5.

There is a special class of potentials V for which the existence problem inf E V
ε is com-

pletely understood for each ε; namely, V of long-range, which are potentials that satisfy

lim inf
t→∞

t

(

inf
|x|=t

V (x)

)

= ∞. (1.9)

For example, the homogeneous potentials V ν(x) = |x|−ν are of long-range for 0 < ν < 1.

For V ∈ L
3

2 (R3) + L∞(R3) satisfying (1.9) it is known that the global minimum is attained

for any M > 0, for both the TFDW and liquid drop functionals [3, Theorems 1 and 2]. For

this class of problem, we then obtain the global convergence of minimizers in L2 norm:

Corollary I.4. Assume V satisfies (1.4) and (1.9), and for M > 0 and ε > 0, let uε ∈ H M
+

be a minimizer of eVε (M). Then, for any sequence εn −−−→
n→∞

0+ there exists a subsequence

(not relabeled) and a minimizer u0 ∈ X M
+ of eV0 (M) with uεn −−−→

n→∞
u0 in L2(R3).

The most important examples for TFDW are those with atomic or molecular potentials

V , as they are related to the Ionization Conjecture [15, 22, 26, 28, 31]. We consider the

atomic case,

V (x) = VZ(x) =
Z

|x| ,

with Z ≥ 0 representing a constant nuclear charge. With slight abuse of notation, we denote

by E Z
ε , E Z

0 the energies (1.2) and (1.3), respectively, with the atomic choice V = VZ = Z/|x|,
and

eZε (M) := inf
{

E
Z
ε (u) : u ∈ H

M
+

}

, eZ0 (M) := inf
{

E0(u) : u ∈ X
M
+

}

.

For this choice of potential, and in the liquid drop setting, Lu and Otto [28] proved that

there exists µ0 > 0 for which the ball BM = BrM (0), rM = 3

√

3M
4π

, centered at the origin of

volume M is the unique (up to translations for Z = 0), strict minimizer of eZ0 (M) for all

0 < M < Z+µ0. The corresponding existence result for TFDW is much weaker: by a result

of LeBris [22], for each ε > 0 fixed, there exists µε > 0 for which eZε (M) is attained for all

0 < M < Z + µε. A natural conjecture is that the intervals of existence converge, that is

µε −−−→
ε→0+

µ0. Using Theorem I.1 we are able to prove the following:

Theorem I.5. Let V (x) = Z/|x|, Z > 0.

(a) For any M ∈ (0, Z + µε), e
Z
ε (M) is attained at uε ∈ H M

+ for each ε > 0, and

uε −−−→
ε→0+

1BM
in L2 norm.

(b) For every M ∈ (Z,Z + µ0) and sequence εn −−−→
n→∞

0+, there exists a subsequence (not

relabeled), and Mn ≤ M with Mn −−−→
n→∞

M , such that eZεn(Mn) attains a minimizer

un ∈ H
Mε
+ . Moreover, un −−−→

n→∞
1BM

in L2 norm.
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Theorem I.5 is connected to the classical Kohn-Sternberg [21] result on the existence of

local minimizers of the ε-problem in an L2-neighborhood of an isolated local minimizer of

the Γ-limit. We find minimizers for E Z
ε which converge to the ball of mass M as ε → 0+ in

L2(R3), which would have the given mass M except for the possibility of vanishingly small

pieces splitting off and diverging to infinity as ε→ 0+. If it were possible to give a uniform

(in ε > 0) lower bound on the quantity of diverging mass in the case of splitting, then we

would be able to eliminate this possibility completely and assert that Mε = M in (b), as

conjectured above.

II. Compactness and Lower Bound

In this section we prove part (i) of Theorem I.1. This involves combining lower bounds

on singularly perturbed problems of Cahn-Hilliard type with concentration-compactness

methods, to deal with possible loss of compactness via splitting.

In this section we fix a potential V satisfying (1.4). Throughout the paper, we shall

denote by C a generic constant whose value may change from one line to another. We begin

with some preliminary estimates.

Lemma II.1. Let {vε}ε>0 ⊂ H1(R3), with ‖vε‖2L2(R3) ≤M and E V
ε (vε) ≤ K0, where K0 > 0

is a constant independent of ε. Then there exists a constant C0 = C0(K0,M, V ) such that

∀0 < ε < 1
4
, we have

∫

R3

[

ε

2
|∇vε|2 +

1

2ε
W (vε)

]

dx+D(|vε|2, |vε|2) ≤ C0.

Proof. First by (1.4), we write V = V5/2 +V∞, where V5/2 ∈ L
5

2 (R3) and V∞ ∈ L∞(R3), and

fix K > 0 large enough so that

|t| 103 ≤ 5

3
W (t), |t| > K.

Then, by Young’s inequality, for any u ∈ H1(R3),
∫

R3

V |u|2dx ≤
∫

R3

V5/2|u|2dx+ ‖V∞‖L∞(R3)

∫

R3

|u|2dx

≤ 2

5

∫

R3

|V5/2|
5

2dx+
3

5

∫

R3

|u| 103 dx+ ‖V∞‖L∞(R3)

∫

R3

|u|2dx

≤ C

(

1 +

∫

{|u|<K}

|u|2dx
)

+

∫

{|u|>K}

W (u)dx+ ‖V∞‖L∞(R3)

∫

R3

|u|2dx

≤ C2 + C1

∫

R3

|u|2dx+ 1

2ε

∫

R3

W (u)dx.

Hence, there exist constants C1, C2 > 0 for which

2E V
ε (u) + C1

∫

R3

|u|2dx+ C2 ≥
∫

R3

[

ε

2
|∇u|2 + 1

2ε
W (u)

]

dx+D(|u|2, |u|2),

and the desired estimate follows.
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Remark II.2. Under the hypotheses of Lemma II.1, {vε}ε>0 is bounded in L
10

3 (R3) and

∫

R3

W (vε)dx −−−→
ε→0+

0.

Lemma II.3. Assume V satisfies (1.4), and {un}n∈N, {vn}n∈N are sequences which are

bounded in L2(R3) ∩ L 10

3 (R3) and such that (un − vn) −−−→
n→∞

0 in L2
loc(R

3). Then,

∫

R3

V
(

|un|2 − |vn|2
)

dx −−−→
n→∞

0.

Proof. Let δ > 0 be given. By (1.4) we may decompose V = V1 + V2 + V3, where:

V1(x) = V (x)[1 − 1BR
(x)], V2(x) = [V (x)− t]+1BR

(x), V3(x) = min{V (x), t}1BR
(x),

with R large enough that ‖V1‖L∞(R3) < δ; t large enough that ‖V2‖L 5
2 (R3)

< δ. Note that V3

is compactly supported and uniformly bounded. We then consider each part separately:

∫

R3

V1
∣

∣|un|2 − |vn|2
∣

∣dx ≤ δ(‖un‖2L2(R3) + ‖vn‖2L2(R3)) ≤ cδ;
∫

R3

V2
∣

∣|un|2 − |vn|2
∣

∣dx ≤ ‖V2‖L 5
2 (R3)

(‖un‖L 10
3 (R3)

+ ‖vn‖L 10
3 (R3)

) ≤ cδ;
∫

R3

V3
∣

∣|un|2 − |vn|2
∣

∣dx ≤ ‖V3‖L∞(R3)

∫

BR

∣

∣|un|2 − |vn|2
∣

∣dx −−−→
n→∞

0.

As δ > 0 is arbitrary, the result follows.

Remark II.4. The hypothesis (1.4) is slightly stronger than is typical for problems of TFDW

type, in which a weaker local integrability is assumed, V ∈ L
3

2 (R3) + L∞(R3). (See e.g.,

[6, 31].) Having V ∈ L
3

2

loc(R
3) is a natural condition for using the squared gradient to

control V |u|2 via the Sobolev embedding. However, given the singularly perturbed nature of

E V
ε , control on the Dirichlet energy is lost as ε → 0+, and we must rely on the L

10

3 norm

instead; hence the need for the more stringent L
5

2 (R3) + L∞(R3) demanded in (1.4).

Next, we prepare the way for the proof of the compactness part of Theorem I.1 by

establishing that sequences {uε}ε>0 with bounded energy must have centers of concentration,

even if they are divergent. The following Lemma will be used to rule out dissipation of

{uε}ε>0 as long as the BV norm is bounded and the L
4

3 norm of uε is not vanishing:

Lemma II.5. There exists a universal constant C > 0 such that for all ψ ∈ BV (R3),

‖ψ‖BV (R3)

[

sup
a∈R3

∫

B1(a)

|ψ|dx
]

1

3

≥ C

∫

R3

|ψ| 43dx. (2.1)

Proof. It suffices to prove (2.1) holds for ψ ∈ W 1,1(R3), as we can extend it to ψ ∈ BV (R3)

by using a density argument [5, Theorem 3.9.].
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Let ψ ∈ W 1,1(R3), and define χa := χ(x−a), where χ ∈ C∞
0 (R3)\{0} is any nonnegative

function that is compactly supported in B1(0).

Then, by Hölder’s inequality and Sobolev’s inequality,
∫

B1(a)

|χaψ|
4

3dx =

∫

B1(a)

|χaψ|
1

3 |χaψ|dx

≤
[
∫

B1(a)

|χaψ|dx
]

1

3
(
∫

R3

|χaψ|
3

2dx

)
2

3

≤ C

[

sup
a∈R3

∫

B1(a)

|ψ|dx
]

1

3
∫

R3

|∇(χaψ)|dx

≤ C

[

sup
a∈R3

∫

B1(a)

|ψ|dx
]

1

3
∫

R3

(χa|∇ψ|+ |∇χa||ψ|)dx.

We conclude the proof of this Lemma by integrating with respect to a ∈ R
3.

From this Lemma we may then conclude that noncompactness of sequences with bounded

BV (R3) norm is due to splitting and translation. The following is an adaptation of [14,

Proposition 2.1], which is proven for characteristic functions of finite perimeter sets.

Proposition II.6. Assume {ψn}n∈N is a bounded sequence in BV (R3), for which lim infn→∞ ‖ψn‖L 4
3 (R3)

>

0. Then, there exists translations {an}n∈N ⊂ R
3, and ψ0 ∈ BV (R3), ψ0 6≡ 0, such that for

some subsequence (not relabeled) we have:

(a) ψn(· − an) −−−→
n→∞

ψ0 in L1
loc(R

3),

(b) ‖ψ0‖BV (R3) ≤ lim infn→∞ ‖ψn‖BV (R3).

Proof. By Lemma II.5, we have

sup
a∈R3

∫

B1(a)

|ψn|dx ≥
[

C

∫

R3 |ψ|
4

3dx

‖ψn‖BV (R3)

]3

≥ 2c,

for some c > 0 independent of n. Hence, for each n ∈ N we may choose an ∈ R
3 for which

∫

B1(an)

|ψn|dx ≥ c > 0. (2.2)

As {ψn(· − an)}n∈N is bounded in BV (R3), there exists a subsequence and ψ0 ∈ BV (R3) for

which (a) and (b) hold. By (2.2) and L1
loc convergence, the limit ψ0 6≡ 0.

Once we have localized a piece of our BV (R3)-bounded sequence {ψn}n∈N as an L1
loc-

converging part, we will need to separate the compact piece from the rest, which converges

locally to zero but may carry nontrivial L1-mass to infinity. To do this, we first define a

smooth cut-off function ω : R → [0, 1], with

ω ≡ 1 for x < 0, ω ≡ 0 for x > 1, and ‖ω′‖L∞(R3) ≤ 2,
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and for any ρ > 0,

ωρ(x) = ω(|x| − ρ). (2.3)

The next Proposition is based on [14, Lemma 2.2.]:

Proposition II.7. Let {ψn}n∈N be bounded in BV (R3) with ψn −−−→
n→∞

ψ0 in L1
loc(R

3) and

pointwise almost everywhere in R
3, for some function ψ0 ∈ BV (R3). If 0 < ‖ψ0‖L1(R3) <

lim infn→∞ ‖ψn‖L1(R3), then there exist radii {ρn}n∈N ⊂ (0,∞) such that, up to a subsequence,

∫

R3

[|∇ψn| − |∇(ψnωρn)| − |∇(ψn − ψnωρn)|] −−−→
n→∞

0. (2.4)

Moreover,

ψnωρn −−−→
n→∞

ψ0 in L1(R3) and ψn(1− ωρn) −−−→
n→∞

0 in L1
loc(R

3), (2.5)

with each converging pointwise almost everywhere in R
3.

Proof. Note that

∫

R3

|∇ψn| ≤
∫

R3

|∇(ψnωρn)|+
∫

R3

|∇ [ψn(1− ωρn)] |

≤
∫

R3

|∇ψn|+ 2

∫

R3

|ψn∇ω (|x| − ρn)| dx

≤
∫

R3

|∇ψn|+ 4

∫

Bρn+1(0)\Bρn (0)

|ψn|dx.

Therefore, (2.4) will hold if we find {ρn}n∈N ⊂ (0,∞) such that

∫

Bρn+1(0)\Bρn (0)

|ψn|dx −−−→
n→∞

0. (2.6)

We distinguish between two cases. First, suppose that suppψ0 ⊂ BR(0), for some R > 0.

In this case, we claim that it suffices to choose ρn = R for all n ∈ N. Indeed, by L1
loc(R

3)

convergence and the compact support of ψ0,

||ψnωρn ||L1(R3) = ||ψnωρn ||L1(BR+1(0))
−−−→
n→∞

‖ψ0‖L1(R3).

Therefore each sequence converges pointwise a.e., and (2.5) holds by the Brezis-Lieb

Lemma [9]. Also, since ψ0
1BR+1(0)\BR(0) ≡ 0 and ψn −−−→

n→∞
ψ0 in L1(BR+1(0)), we con-

clude that (2.6) is also verified in case supp (ψ0) is compact.

In the second case, if suppψ0 is essentially unbounded, note that ‖ψ0‖L1(R3) < lim infn→∞ ‖ψn‖L1(R3)

implies that along some subsequence (not relabeled) we may choose Rn such that

∫

BRn (0)

|ψn|dx = ‖ψ0‖L1(R3). (2.7)
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We claim that, chosen this way, Rn −−−→
n→∞

∞. Indeed, if (along a further subsequence if

necessary) we had Rn ≤ R0 for some R0 > 0, it would follow from the L1
loc convergence that,

‖ψ0‖L1(R3) = lim inf
n→∞

‖ψn1BRn
‖L1(R3) ≤ lim inf

n→∞
‖ψn1BR0

‖L1(R3) = ‖ψ0
1BR0

‖L1(R3) < ‖ψ0‖L1(R3),

since we are assuming that suppψ0 is essentially unbounded. Thus, Rn −−−→
n→∞

∞.

Next, fix R > 1 such that

∫

BR(0)

|ψ0|dx ≥ 1

2
‖ψ0‖L1(R3).

By L1
loc(R

3) convergence, for all sufficiently large n we have

∫

BR(0)

|ψn|dx ≥ 1

4
‖ψ0‖L1(R3). (2.8)

We now claim that for n large enough such that Rn > R, there exists ρn ∈
[

R+Rn

2
, Rn

]

for which
∫

Bρn+1(0)\Bρn (0)

|ψn|dx ≤ 3

Rn −R
‖ψ0‖L1(R3). (2.9)

If so, then (2.6) is satisfied with this choice of ρn ≥ rn := R+Rn

2
−−−→
n→∞

∞. To verify the

claim, suppose the contrary, and so for every ρ ∈ [rn, Rn] we have the opposite inequality to

(2.9). For fixed n, choose K ∈ N with Rn − 1 ≤ rn +K < Rn, so there are K intervals of

unit length lying in [rn, Rn]. Then, by (2.7), (2.8),

3

4
‖ψ0‖L1(R3) ≥

∫

BRn(0)

|ψn|dx−
∫

BR(0)

|ψn|dx ≥
∫

Brn+K(0)\Brn (0)

|ψn|dx

> K
3

Rn − R
‖ψ0‖L1(R3) ≥ 3

Rn − rn − 1

Rn − R
‖ψ0‖L1(R3) =

3

2

Rn − R− 2

Rn −R
‖ψ0‖L1(R3),

for all sufficiently large n, a contradiction. This completes the proof of (2.4).

To complete the proof of Proposition II.7, first note that (up to a subsequence),

ψnωρn −−−→
n→∞

ψ0 almost everywhere in R
3, and recall that ρn ≤ Rn. Hence, from (2.6),

(2.7) we obtain:

‖ψ0‖L1(R3) ≤ lim inf
n→∞

∫

R3

|ψnωρn|dx

= lim inf
n→∞

[

∫

Bρn(0)

|ψn|dx+
∫

Bρn+1(0)\Bρn (0)

|ψn|dx
]

= lim inf
n→∞

∫

Bρn(0)

|ψn|dx ≤ lim inf
n→∞

∫

BRn (0)

|ψn|dx = ‖ψ0‖L1(R3).

Thus each inequality above is an equality, ‖ψnωρn‖L1(R3) −−−→
n→∞

‖ψ0‖L1(R3), and hence (2.5)

follows from the Brezis-Lieb Lemma [9].
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Remark II.8. By lower semicontinuity of the total variation with respect to L1 convergence,

up to a subsequence,
∫

R3

|∇ψ0| ≤ lim
n→∞

∫

R3

(|∇ψn| − |∇(ψn − ψnωρn)|)

We are now ready to prove the compactness and Γ-liminf part of the theorem:

Proof of Theorem I.1 (i). Let {uε}ε>0 be a family in H M with E V
ε (uε) ≤ K0, ε > 0.

Step 1: Truncation.

First, we show that when proving (i) it suffices to restrict to uε satisfying the pointwise

bounds −1 ≤ uε ≤ 1 almost everywhere in R
3. Indeed, we define the truncations

u∗ε :=























−1, uε < −1,

uε, |uε| ≤ 1,

1, uε > 1.

We will show that ‖uε − u∗ε‖2L2(R3) −−−→
ε→0+

0, and

lim inf
ε→0+

E
V
ε (u∗ε) ≤ lim inf

ε→0+
E

V
ε (uε). (2.10)

To accomplish this, we first note that by Remark II.2, we have that

0 ≤
∫

R3

|uε − u∗ε|2dx =

∫

{|uε|>1}

(|uε| − 1)2 dx ≤ C

∫

R3

W (uε)dx −−−→
ε→0+

0,

where C is a constant independent of ε. Also by Remark II.2, {uε}ε>0 is bounded in

L2(R3)∩L 10

3 (R3), and hence the sequence of truncations {u∗ε}ε>0 is as well. By Lemma II.3,

we conclude that the local potential terms are close,
∫

R3

V
(

|uε|2 − |u∗ε|2
)

dx −−−→
ε→0+

0.

Finally, each of the other terms decreases under truncation,

|∇u∗ε| ≤ |∇uε|, W (u∗ε) ≤W (uε), D(|u∗ε|2, |u∗ε|2) ≤ D(|uε|2, |uε|2),

and so (2.10) is verified.

In the following we will therefore assume without loss of generality that −1 ≤ uε ≤ 1,

ε > 0, almost everywhere in R
3.

Step 2: Passing to the first limit.

Let φε := Φ(uε), where Φ : R → R is defined by

Φ(t) :=

∫ t

0

√

W (τ)dτ.
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Then,

φε =

∫ uε

0

|t|(1− |t| 23 )dt = sign(uε)

(

1

2
|uε|2 −

3

8
|uε|

8

3

)

,

and since ‖uε‖∞L (R3) ≤ 1,

1

8
|uε|2 ≤ |φε| ≤

1

2
|uε|2 and |φε| ≤ φε(1) =

1

8
. (2.11)

In particular, ‖φε‖L1(R3) ≤ 1
2
‖uε‖2L2(R3) ≤ M

2
. Furthermore, {φε}0<ε< 1

4

is bounded in BV (R3).

Indeed, following [29], by Young’s inequality and Lemma II.1 with vε = uε,

∫

R3

|∇φε|dx =

∫

R3

√

W (uε)|∇uε|dx ≤
∫

R3

[

ε

2
|∇uε|2 +

1

2ε
W (uε)

]

dx ≤ K1, (2.12)

with constant K1 = K1(K0,M, V ). Consequently, {‖φε‖BV (R3)}0<ε< 1

4

is bounded.

Now let εk −−−→
k→∞

0+ be any sequence. By the compact embedding of BV (R3) in L1
loc(R

3)

there exist a subsequence, which we continue to denote by εk −−−→
k→∞

0+, and a function

φ0 ∈ BV (R3) so that φεk −−−→
k→∞

φ0 in L1
loc(R

3) and almost everywhere in R
3. Moreover, by

lower semicontinuity of the total variation,

∫

R3

|∇φ0| ≤ lim inf
k→∞

∫

R3

|∇φεk|dx. (2.13)

Now we can use the invertibility of Φ and the local uniform continuity of Φ−1 to obtain

that uεk −−−→
k→∞

u0 := Φ−1(φ0) almost everywhere in R
3. Then, by Fatou’s Lemma and

Remark II.2, we have

0 ≤
∫

R3

W (u0)dx ≤ lim inf
k→∞

∫

R3

W (uεk)dx = 0

hence W (u0) ≡ 0, u0(x) ∈ {0,±1} almost everywhere, and

φ0 =
1

8
u0 almost everywhere in R

3. (2.14)

As a result, by Fatou’s Lemma and (2.11), for any compact K ⊂ R
3,

∫

K

|φ0|dx =
1

8

∫

K

|u0|2dx ≤ 1

8
lim inf
k→∞

∫

K

|uεk |2dx ≤ lim
k→∞

∫

K

|φεk|dx =

∫

K

|φ0|dx. (2.15)

Thus, (taking a further subsequence if necessary), uεk −−−→
k→∞

u0 pointwise almost everywhere

in R
3. By the Brezis-Lieb Lemma [9], we obtain convergence in L2

loc(R
3), with ‖u0‖2L2(R3) ≤

M . Furthermore, by Fatou’s Lemma,

D(|u0|2, |u0|2) ≤ lim inf
k→∞

D(|uεk|2, |uεk|2), (2.16)
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and by Lemma II.3 (with un = uεk and vn = u0), (2.13), (2.12), and (2.14) we have

E
V
0 (u0) ≤ lim inf

k→∞
E

V
εk
(uεk).

If φεk −−−→
k→∞

φ0 in the L1 norm, then by the same argument as (2.15) we may conclude

that uεk −−−→
k→∞

u0 converges in L2 norm, and so m0 := ‖u0‖2L2(R3) = M , and setting ui ≡ 0

for all i ≥ 1, the proof is complete.

Step 3: Splitting off the remainder sequence. If m0 = M , then uεk −−−→
k→∞

u0 in L2(R3)

by the Brezis-Lieb Lemma [9], and setting ui ≡ 0 for all i ≥ 1, the proof is complete. To

continue we assume that m0 := ‖u0‖2L2(R3) < M , so the first limit does not capture all of the

mass in the sequence uεk . In this case, both uεk and φεk converge only locally (and not in

norm), that is

‖φ0‖L1(R3) < lim inf
k→∞

‖φεk‖L1(R3),

and similarly for uεk , by the Brezis-Lieb Lemma [9].

Applying Proposition II.7 and Remark II.8 to φεk , and the fact that we do not have global

convergence, there exists a sequence of radii {ρk}k∈N ⊂ (0,∞) with ρk −−−→
k→∞

∞ so that, for

φ0
εk

:= ωρkφεk , φ1
εk

:= (1− ωρk)φεk ,

where ωρ is defined in (2.3), and for a subsequence (which we continue to write as εk −−−→
k→∞

0+),

φ0
εk

−−−→
k→∞

φ0 in L1(R3), φ1
εk

−−−→
k→∞

0 in L1
loc(R

3), (2.17)

φ0
εk

−−−→
k→∞

φ0 and φ1
εk

−−−→
k→∞

0 pointwise almost everywhere in R
3, and

∫

R3

|∇φ0|+
∫

R3

∣

∣∇φ1
εk

∣

∣ dx ≤
∫

R3

|∇φεk| dx+ o(1). (2.18)

Moreover, from (2.6) and (2.11) the mass contained in the cut-off region is negligible:

lim
k→∞

∫

Bρk+1(0)\Bρk
(0)

|φεk|dx = 0 = lim
k→∞

∫

Bρk+1(0)\Bρk
(0)

|uεk|2dx. (2.19)

We also decompose uεk into two pieces,

u0εk = uεk
√
ωρk , and u1εk = uεk

√

1− ωρk , (2.20)

so that (uεk)
2 = (u0εk)

2 + (u1εk)
2 and by the proof of Proposition II.7

u1εk −−−→
k→∞

0 almost everywhere in R
3. Note that φi

εk
= Φ(uiεk) holds in R

3 \ {ρk <

|x| < ρk + 1}, and by (2.19) the region where they are no longer explicitly related carries a

negligible amount of the mass of uεk .
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Equations (2.18), (2.14) and (2.12) give

1

8

∫

R3

|∇u0|+ lim
k→∞

∫

R3

|∇φ1
εk
|dx ≤ lim inf

k→∞

∫

R3

[

ε

2
|∇uε|2 +

1

2ε
W (uε)

]

dx ≤ K0, (2.21)

and in particular, {φ1
εk
}k∈N is bounded in BV (R3). The nonlocal term also splits in the same

way. Indeed, by (2.20), u0εk −−−→
k→∞

u0 pointwise almost everywhere in R
3, the positivity of

D(f, g) for f, g ≥ 0, and (2.16)

lim inf
k→∞

D(|uεk|2, |uεk|2) = lim inf
k→∞

D(|u0εk|
2 + |u1εk|

2, |u0εk|
2 + |u1εk |

2)

≥ lim inf
k→∞

D(|u0εk|
2, |u0εk|

2) +D(|u1εk|
2, |u1εk|

2)

≥ D(|u0|2, |u0|2) + lim inf
k→∞

D(|u1εk|
2, |u1εk|

2).

(2.22)

Moreover, (2.14), Fatou’s Lemma, (2.11), and (2.17) give

∫

R3

|φ0|dx =
1

8

∫

R3

|u0|2dx ≤ 1

8
lim inf
k→∞

∫

R3

|u0εk|
2dx

≤ lim
k→∞

∫

R3

|φ0
εk
|dx =

∫

R3

|φ0|dx.

thus (taking a further subsequence if necessary), u0εk −−−→
k→∞

u0 in L2(R3). As a result,

M = m0 + lim
k→∞

M1
εk
, where M1

εk
:= ‖u1εk‖

2
L2(R3) = ‖uεk − u0‖2L2(R3) + o(1). (2.23)

Lastly, as uεk −−−→
k→∞

u0 in L2
loc(R

3), by Lemma II.3 we have

∫

R3

V |uεk|2dx =

∫

R3

V |u0|2dx+ o(1),

and hence by (2.14) and (2.21), we conclude

E
V
0 (u0) + lim inf

k→∞

[
∫

R3

|∇φ1
εk
|dx+D

(

|u1εk|
2, |u1εk|

2
)

]

≤ lim inf
ε→0+

E
V
ε (uε).

Step 4: Concentration in the remainder sequence.

For any bounded sequence {ψk}k∈N in L1(R3) we define

M ({ψk}) := sup{‖ψ‖L1(R3) : ∃xk ∈ R
3, ψk(·+ xk) −−−→

k→∞
ψ in L1

loc(R
3)},

So M ({ψk}) identifies the largest possible L1
loc limiting mass of the sequence, up to transla-

tion.

We claim that for our remainder sequence, M ({φ1
εk
}) > 0. Indeed, this will follow from

Proposition II.6 once we have established the hypotheses. We first note that by (2.21),
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{φ1
εk
}k∈N is bounded in BV (R3). Next, we must show that the L

4

3 norm of φ1
εk

is bounded

below. As u1εk = uεk almost everywhere in R
3 \Bρk+1(0), from Lemma II.1 we have

4C0εk ≥
∫

R3\Bρk+1(0)

W (uεk)dx =

∫

R3\Bρk+1(0)

W (u1εk)dx,

and thus, from (2.11), (2.6), (2.23), and t
8

3 = (t
10

3 + t2)/2−W (t)/2, we have:
∫

R3\Bρk+1(0)

|φ1
εk
| 43dx ≥ 1

16

∫

R3\Bρk+1(0)

|u1εk|
8

3dx

≥ 1

32

∫

R3\Bρk+1(0)

(

|uεk |
10

3 + |uεk|2
)

dx− 2C0εk

>
1

32

∫

R3\Bρk
(0)

|uεk|2dx− o(1)

≥ 1

32

∫

R3

|u1εk|
2dx+ o(1) =

M1
εk

32
+ o(1) =

1

32
(M −m0) + o(1) > 0.

(2.24)

Applying Proposition II.6 the claim follows.

By the claim and Proposition II.6, we may choose a subsequence, translations {x1k}k∈N,
and φ1 ∈ BV (R3) with

φ1
εk
(· − x1k) −−−→

k→∞
φ1 in L1

loc(R
3), and ‖φ1‖L1(R3) ≥

1

2
M ({φ1

εk
}).

Note that since φ1
εk

−−−→
k→∞

0 in L1
loc(R

3), the sequence |x1k| −−−→
k→∞

∞. By the same arguments as

in Step 1 we may conclude that u1εk(·−x1k) −−−→k→∞
u1 = 8φ1 in L2

loc(R
3) and almost everywhere

in R
3, with W (u1) ≡ 0 almost everywhere in R

3, and hence u1 ∈ BV (R3, {0,±1}) with

‖u1‖2L2(R3) =: m1 ≤ (M −m0).

Finally, the nonlocal term, which splits as in (2.22), passes to the limit using Fatou’s

Lemma,

D(|u0|2, (|u0|2) +D(|u1|2, |u1|2) ≤ D(|u0|2, |u0|2) + lim inf
k→∞

D
(

|u1εk|
2, |u1εk|

2
)

≤ lim inf
k→∞

D(|uεk|2, |uεk|2).

In conclusion, using the previous inequality and (2.21), we have

E
V
0 (u0) + E

0
0 (u

1) ≤ E
V
0 (u0) + lim inf

k→∞

[
∫

R3

|∇φ1
εk
|dx+D

(

|u1εk|
2, |u1εk|

2
)

]

≤ lim inf
ε→0+

E
V
ε (uε),

with m0 +m1 ≤M . If m1 = ‖u1‖2L2(R3) =M −m0, then u1εk(· − x1k) −−−→
k→∞

u1 in L2 norm by

the Brezis-Lieb Lemma [9], and the proof terminates, with ui ≡ 0 for all i ≥ 2.

Step 5: Iterating the argument.

If m0 +m1 < M , then as in Step 3, the convergence of φ1
εk
(· − x1k) −−−→

k→∞
φ1 is only local

and not in the norm of L1(R3) (and similarly for u1εk(· − x1k) −−−→
k→∞

u1 in L2
loc), and so there
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is again a remainder part to be separated via Proposition II.7. That is, we may choose radii

{ρ1k}k∈N going to infinity and further decompose φ1
εk
(· − x1k),

φ1
εk
(· − x1k)ωρ1

k
−−−→
k→∞

φ1 in L1 norm, φ2
εk

:= φ1
εk
(· − x1k)(1− ωρ1

k
) −−−→

k→∞
0 in L1

loc(R
3),

with the same consequences as in Step 4: we first identify a mass center x2k for φ2
εk

via

Proposition II.6. Since both φ1
εk
, φ2

εk
−−−→
k→∞

0 in L1
loc(R

3), we must have both |x2k|, |x2k −
x1k| −−−→

k→∞
∞. Translating and passing to a local L1 limit to find φ2 = 1

8
u2, we obtain a

refined lower bound in terms of u0, u1, u2. Iterating this procedure, after n steps, we have

u0, . . . un ∈ BV (R3, {0,±1}) with masses ‖ui‖2L2(R3) = mi, and translations {xik}k∈N for each

i = 1, . . . , n, such that:

uεk = u0 +
n
∑

i=1

ui(· − xik) + un+1
εk

(· − xnk), and u
n+1
εk

(· − xnk) −−−→
k→∞

0 in L2
loc(R

3);

mi = ‖ui‖2L2(R3), i = 0, . . . , n;

|xik| −−−→
k→∞

∞, |xik − xjk| −−−→
k→∞

∞, 1 ≤ i 6= j;

M =
n
∑

i=0

mi + lim
k→∞

‖un+1
εk

‖2L2(R3);

E
V
0 (u0) +

n
∑

i=1

E
0
0 (u

i) ≤ lim inf
ε→0+

E
V
0 (uε).











































































(2.25)

If for some n ∈ N, the remainder φi
εk

→ 0 in the L1 norm, then the iteration terminates

at that n, and the proof (i) of Theorem I.1 is completed by choosing ui = 0 for all i ≥ n+1.

If the iteration continues indefinitely, we must verify that the entire mass corresponding to

{uεk}k∈N is exhausted by the {ui}∞i=0. It is here that we use M ({φi
εk
}). When localizing

mass in the remainder term φi
εk
, the translations {xik} and limit φi = 1

8
ui are chosen via

Proposition II.6 in such a way that ‖φi‖L1(R3) ≥ 1
2
M
(

{φi
εk
}
)

, i = 1, . . . , n. In this way, the

boundedness of the partial sums
∑n

i=0m
i ≤ M implies that, should the process continue

indefinitely, the residual mass M
(

{φi
εk
}
)

≤ 2mi −−−→
i→∞

0. We claim that this implies that

M =
∞
∑

i=0

mi =
∞
∑

i=0

‖ui‖2L2(R3), (2.26)

and that the entire mass corresponding to {uεk}k∈N is exhausted by the {ui}∞i=0. Indeed, if
∑∞

i=0m
i = M ′ < M , then each remainder sequence has ‖φi

εk
‖L1(R3) ≥ M−M ′

8
. Returning to

Step 4, and calculating as in (2.24), we obtain a lower bound up to a subsequence
∫

R3

|φi
εk
| 43dx ≥ C(M −M ′),

for a constant C independent of k, i. Using Lemma II.5 we then have a uniform lower bound,

M ({φi
εk
}) ≥ sup

a∈R3

∫

B1(a)

|φi
εk
|dx ≥ C ′(M −M ′)3,
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for each i ∈ N, with C ′ depending on the upper energy bound K0, but independent of k, i.

This contradicts M ({φi
εk
}) < 2mi −−−→

i→∞
0. Hence (2.26) is established, and passing to the

limit n→ ∞ in (2.25) we conclude the proof of (i) of Theorem I.1.

III. Upper Bound

In this section we prove part (ii) of Theorem I.1, the construction of recovery sequences

in the Γ-convergence of E V
ε . As the space H M

0 consists of a collection of functions in

BV (R3, {0,±1}), we build the recovery sequence by superposition of each, using the follow-

ing lemma:

Lemma III.1. Given v0 ∈ BV (R3, {0,±1}) with ‖v0‖2L2(R3) =M , there exists ε0 = ε0(v
0) >

0 and functions {vε}0<ε<ε0 ⊂ H M of compact support, such that

‖vε − v0‖Lr(R3) −−−→
ε→0+

0, ∀1 ≤ r <∞, and E
V
ε (vε) −−−→

ε→0+
E

V
0 (v0).

Proof. The basic construction is familiar, based on that of Sternberg [34, Proof of inequalities

(1.12) and (1.13)], so we highlight the modifications necessary for our case. The first step is

to regularize v0. As compactly supported functions are dense in the BV (R3) norm, we may

assume that supp v0 is bounded. Next, define a smooth mollifier, using ϕ ∈ C∞
0 (B1(0)),

ϕ(x) ≥ 0,
∫

B1(0)
ϕdx = 1 to generate ϕn(x) = n3ϕ(nx) ∈ C∞

0 (B 1

n
(0)). Following the

proof of regularization of BV functions (see [5, Theorem 3.42.]), we create a sequence wn =

ϕn ∗ v0 which is smooth and supported in a 1
n
-neighborhood of the support of v0. As in

[5], the regularization is obtained as a level surface of wn. Here, we have two components,

corresponding to the regularizations of v0+ and v0−, in case v0 takes on both values ±1. By

Sard’s Theorem [12, 3.4.3.], there exist values t+ ∈ (0, 1) and t− ∈ (−1, 0) for which the

boundaries of the sets

F+
n := {x ∈ R

3 |wn(x) > t+ > 0}, F−
n := {x ∈ R

3 |wn(x) < t− < 0}
are smooth for each n ∈ N, v±n := 1F±

n
−−−→
n→∞

v0± in L1(R3), and

∫

R3

|∇v±n | −−−→
n→∞

∫

R3

|∇v0±|.

Note by this construction that the sets F±
n are smooth and disjoint for each n. Hence,

the construction in [34] may be done separately for the components F±
n , for any 0 < ε < ηn,

with ηn > 0 being chosen so that the neighborhoods of radius
√
ε of the boundaries F±

n are

disjoint. Thus, applying the result of Sternberg [34]1 for each n ∈ N, and each 0 < ε < ηn,

there exists ṽ±n,ε(x) ∈ H1(R3) with ṽ+n,ε, ṽ
−
n,ε disjointly supported, 0 ≤ ṽ±n,ε ≤ 1, and

‖ṽ±n,ε − v±n ‖L1(R3) −−−→
ε→0+

0, and

∫

R3

[

ε

2
|∇ṽ±n,ε|2 +

1

2ε
W (ṽ±n,ε)

]

−−−→
ε→0+

1

8

∫

R3

|∇v±n |. (3.1)

1 We note that the potential in [34] has two wells at u = ±1, whereas our transitions connect v = 0 to

v = ±1, and so our ṽ±
n,ε

= 1

2
(ρε + 1) for ρε as constructed in [34].
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Writing ṽn,ε = ṽ+n,ε− ṽ−n,ε (again, a disjoint sum for all 0 < ε < ηn), the same properties (3.1)

hold for ṽn,ε and v
0
n = v+n − v−n .

Next, we adjust the ṽn,ε so that for each n, ε, each has L2 norm equal to M , and hence

defines a function in H M . For this we use dilation: let λε := (‖ṽn,ε‖2L2(R3)/M)
1

3 −−−→
ε→0+

1.

We define the rescaled functions v̂n,ε : R
3 → R by:

v̂n,ε(x) := ṽn,ε (λεx) , and v̂±n (x) := v±n (λεx).

First, by rescaling we have ‖v̂n,ε‖2L2(R3) =M , and so v̂n,ε ∈ H M for all n, ε. Next, we observe

that, since the supports F±
n of the components of v0n are smooth, for |λε − 1| sufficiently

small, we may estimate

‖v̂0n − v0n‖L1(R3) ≤ c|λ
1

3
ε − 1|

∫

R3

|∇v0n|.

Hence, we have convergence in the L1 norm,

0 ≤ ‖v̂n,ε − v0n‖L1(R3) ≤ ‖v̂n,ε − v̂0n‖L1(R3) + ‖v̂0n − v0n‖L1(R3)

≤ λ−1
ε ‖ṽn,ε − v0n‖L1(R3) + c|λ

1

3
ε − 1|

∫

R3

|∇v0n| −−−→
ε→0+

0.

As each of |v̂n,ε| ≤ 1 almost everywhere in R
3, and for fixed n each is of uniformly bounded

support, the convergence extends to any Lr(R3), r ≥ 1. Moreover,

∫

R3

[

ε

2
|∇v̂±n,ε|2 +

1

2ε
W (v̂±n,ε)

]

dx

=

[

λ
− 1

3
ε

∫

R3

ε

2
|∇ṽ±n,ε|2dx+ λ−1

ε

∫

R3

1

2ε
W (ṽ±n,ε)dx

]

−−−→
ε→0+

1

8

∫

R3

|∇v0n|,

which holds for each n ∈ N. As in [34], by a diagonal argument, there exists ε0 = ε0(v
0) > 0

so that for any sequence εk −−−→
k→∞

0+ with εk < ε0, we obtain a sequence {vεk}k∈N with

‖vεk − v0‖rL(R3) −−−→
k→∞

0, r ≥ 1, and

∫

R3

[

εk
2
|∇vεk |2 +

1

2εk
W (vεk)

]

dx −−−→
k→∞

1

8

∫

R3

|∇v0±|.

The local potential terms also converge by Lemma II.3. Furthermore, by the Hardy-

Littlewood-Sobolev inequality [24, Theorem 4.3] (with p = 6/5 = r),

0 ≤
∣

∣D(|vεk |2, |vεk|2)−D(|v0|2, |v0|2)
∣

∣

=
∣

∣D(|vεk|2 − |v0|2, |vεk|2 + |v0|2)
∣

∣

≤
∥

∥|vεk |2 − |v0|2
∥

∥

L
6
5 (R3)

∥

∥|vεk|2 + |v0|2
∥

∥

L
6
5 (R3)

−−−→
k→∞

0.

This completes the proof of Lemma III.1.
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Proof of (ii) of Theorem I.1. If {ui}∞i=0 is a finite collection with N nontrivial components,

this follows easily from Lemma III.1. Indeed, for any sequence εk −−−→
k→∞

0+ with 0 < uiεk <

min
i=0,...,N

{ε0(ui)}i=0,...,N , we apply the lemma to find uiεk with uiεk −−−→
k→∞

ui, and E V
εk
(uiεk) −−−→k→∞

E V
0 (ui), i = 0, . . . , N . We then define the superposition,

uεk(x) = u0εk(x) +

N
∑

i=1

uiεk(x− xik),

with translations {xik}k∈N which will be chosen such that dist
(

supp (uiεk), supp (u
j
εk
)
)

→ ∞,

∀i 6= j = 0, . . . , N . We note that this condition on the translations ensures that the energy

E V
εk
(uεk) asymptotically splits,

E
V
εk
(uεk) = E

V
εk
(u0εk) +

N
∑

i=1

E
V
εk
(uiεk) + o(1),

= E
V
εk
(u0εk) +

N
∑

i=1

E
0
εk
(uiεk) + o(1),

as D(|uiεk(· − xiεk)|2, |ujεk(· − xjεk)|2) −−−→
k→∞

0, ∀i 6= j (as a consequence of (3.3)), and

V (x) −−−−→
|x|→∞

0.

If {ui}∞i=0 has an infinite number of nontrivial elements, we must be more careful. In

particular, as we go down the list of the {ui}∞i=0, the characteristic length scale of each

ui gets smaller, and for any particular ε > 0 there can only be a finite number of i with

0 < ε < ε0(u
i), for which the trial functions uiε can be constructed via Lemma III.1.

Take any decreasing sequence εk −−−→
k→∞

0+. By Lemma III.1 and part (i) of Theorem I.1,

for each i = 0, 1, 2, . . . there exist εi = ε0(u
i) > 0 and a sequence {uiεk}k∈N, defiined for

0 < εk < εi, for which

‖uiεk‖
2
L2(R3) = mi, E

V
εk
(uiεk) −−−→k→∞

E
V
0 (ui), ‖uiεk − ui‖L2(R3) −−−→

k→∞
0.

By taking εi smaller if necessary, we may also assume:

∣

∣E
V
εk
(u0εk)− E

V
0 (u0)

∣

∣ <
E V
0 (u0)

10
and ‖u0εk − u0‖2L2(R3) <

m0

10
, 0 < εk < ε0,

∣

∣E
0
εk
(uiεk)− E

0
0 (u

i)
∣

∣ <
E 0
0 (u

i)

10
, and ‖uiεk − ui‖2L2(R3) <

mi

10
, 0 < εk < εi, i = 1, 2, 3, . . .















(3.2)

Again taking εi smaller if necessary, we may assume 0 < εi < εi−1. We now construct Uεk

as follows: for each k ∈ N, choose the largest integer nk ≥ 0 such that 0 < εk < εi for all

i ≤ nk. Note that nk −−−→
k→∞

∞. We recall that the uiεk are all compactly supported, and

define Ri
εk

by supp (uiεk) ⊂ BRi
εk
(0). Let

R̄εk = max
i=1,...,nk

Ri
εk
.
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Then, we choose the translations xik ∈ R
3, i = 1, . . . , nk, so that

|xik − xjk| > max
{

4R̄εk , 2
k
}

−−−→
k→∞

∞.

Then, we set

Uεk(x) := u0εk(x) +

nk
∑

i=1

uiεk(x− xik),

which is a disjoint sum. As V ≥ 0, we have

E
V
εk
(Uεk) ≤ E

V
εk
(u0εk) +

nk
∑

i=1

E
0
εk
(uiεk) +

nk
∑

i,j=1

i6=j

D(|uiεk(· − xiεk)|
2, |ujεk(· − xjεk)|

2).

We claim that the last term on the right side above is negligible. Indeed, for x ∈ BR̄εk
(xiεk)

and x ∈ BR̄εk
(xjεk), we have the pointwise estimate,

∣

∣

∣

∣

∣

1

|x− y| −
1

|xiεk − xjεk |

∣

∣

∣

∣

∣

≤ 2R̄εk
(

|xiεk − xjεk | − R̄εk

)2 ≤ 4R̄εk

|xiεk − xjεk |2
≤ 1

|xiεk − xjεk |
. (3.3)

Hence,

nk
∑

i,j=1

i6=j

D(|uiεk(· − xiεk)|
2, |ujεk(· − xjεk)|

2) ≤
nk
∑

i,j=1

i6=j

‖uiεk‖2L2(R3)‖ujεk‖2L2(R3)

|xiεk − xjεk |

≤ 2−k

nk
∑

i,j=1

i6=j

mimj ≤ 2−kM2 −−−→
k→∞

0.

As a result, for any given δ > 0, there exists K ∈ N for which

E
V
εk
(Uεk) ≤ E

V
εk
(u0εk) +

nk
∑

i=1

E
0
εk
(uiεk) +

δ

5
, ∀k ≥ K. (3.4)

Note also that the mass ‖Uεk‖2L2(R3) =
∑nk

i=0m
i =: Mk < M , but it will approach M as

nk → ∞ and components are successively added to the sum.

We next show that

lim sup
k→∞

E
V
εk
(Uεk) ≤ F

V
0 ({ui}∞i=0). (3.5)

In case F V
0 ({ui}∞i=0) = ∞, (which is possible because the nonlocal terms are not necessarily

summable for all {ui}∞i=0 ∈ H M
0 ), there is nothing to prove. When F V

0 ({ui}∞i=0) < ∞,

choose N ∈ N (which is independent of k), for which

∞
∑

i=N+1

mi < δ and

∞
∑

i=N+1

E
0
0 (u

i) <
δ

5
. (3.6)
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From Lemma III.1, taking K ∈ N larger if necessary, we have for all k ≥ K,

N
∑

i=0

‖uiεk − ui‖2L2(R3) +
∣

∣E
V
εk
(u0εk)− E

V
0 (u0)

∣

∣+

N
∑

i=1

∣

∣E
0
εk
(uiεk)− E

0
0 (u

i)
∣

∣ <
δ

5
. (3.7)

Using (3.4), (3.7), (3.6), and (3.2), we estimate

E
V
εk
(Uεk)− F

V
0 ({ui}∞i=0) ≤ E

V
εk
(Uεk)− E

V
0 (u0)−

N
∑

i=0

E
0
0 (u

i)

≤ E
V
εk
(u0εk)− E

V
0 (u0) +

N
∑

i=1

[E 0
εk
(uiεk)− E

0
0 (u

i)]

+

nk
∑

i=N+1

|E 0
εk
(uiεk)− E

0
0 (u

i)|+
nk
∑

i=N+1

E
0
0 (u

i) +
δ

5

<
2δ

5
+

11

10

nk
∑

i=N+1

E
0
0 (u

i) < δ,

for all k ≥ K. Hence (3.5) is verified.

We next prove that

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Uεk −
(

u0 +
∞
∑

i=0

ui(x− xik)

)
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

L2(R3)

−−−→
k→∞

0.

For given δ > 0, let N,K ∈ N be as in (3.6) and (3.7). Then, for all k ≥ K, using (3.6),

(3.2), and (3.7), we estimate

∥

∥

∥

∥

∥

Uεk −
(

u0 +

∞
∑

i=0

ui(x− xik)

)
∥

∥

∥

∥

∥

L2(R3)

≤
N
∑

i=0

‖uiεk − ui‖L2(R3) +

nk
∑

i=N+1

‖uiεk − ui‖L2(R3)

+
∞
∑

i=nk+1

‖ui‖L2(R3)

≤ δ

5
+

nk
∑

i=N+1

mi

10
+
δ

5
< δ,

It remains to correct the mass of Uεk , so that each ‖Uεk‖2L2(R3) = M . This is done as in

Lemma III.1, dilating each component uiεk by the scaling factor λk = (Mk/M)
1

3 −−−→
k→∞

1,

that is, by setting

uεk(x) = u0εk(λkx) +

nk
∑

i=1

uiεk(λk(x− xk)).

Then ‖uεk‖2L2(R3) = M , k ∈ N, ‖uεk − Uεk‖L2(R3) −−−→
k→∞

0, and |E V
εk
(uεk)− E V

εk
(Uεk)| −−−→

k→∞
0,

since λk −−−→
k→∞

1. This concludes the proof of Theorem I.1.
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IV. Minimizers

In this section we examine the connection between minimizers of the liquid drop and

TDFW functionals. The compactness of minimizing sequences being a delicate issue which

is shared by the two models.

First, whether the minimum in eVε (M) is attained or not, the infimum values converge as

ε→ 0+:

Lemma IV.1. Assume V satisfies (1.4). Then, for all M > 0, eVε (M)−−−→
ε→0+

eV0 (M).

Proof. The proof is standard. Take any sequence εn −−−→
n→∞

0+. Then, ∀n, ∃uεn ∈ H M with

‖uεn‖2L2(R3) = M and E V
εn(uεn) ≤ eVεn(M) + εn. Using u0 = 1BM

in Lemma III.1, we may

conclude that {eVεn(M)}n∈N is bounded, and so by Theorem I.1 (i), ∃{ui}∞i=0 ∈ H M
0 and a

subsequence (not relabelled) εn −−−→
n→∞

0+ with

eV0 (M) ≤ F
V
0 ({ui}∞i=0) ≤ lim inf

n→∞
E

V
εn(uεn) = lim inf

n→∞
eVεn(M).

For the complementary inequality, for any δ > 0, ∃{vi}∞i=0 ∈ H M
0 with F V

0 ({vi}∞i=0) <

eV0 (M) + δ. Then, by (ii) in Theorem I.1, for any n ∈ N, ∃vn ∈ H M with

eV0 (M) + δ > F
V
0 ({vi}∞i=0) ≥ lim sup

n→∞
E

V
εn(vn) ≥ lim sup

n→∞
eVεn(M).

Putting the above inequalities together, and letting δ → 0+, every sequence εn → 0 contains

a subsequences for which eVεn(M) −−−→
n→∞

eV0 (M). As the limit is unique, the lemma follows.

Proof of Corollary I.4. In [3, Theorems 1 and 2] it is proven that for V satisfying (1.9), the

minimum for both E V
0 and E V

ε are attained, correspondingly. Indeed, the proof of these

results in [3] actually yields the stronger conclusion that all minimizing sequences for either

the TDFW or liquid drop functionals are convergent. Thus, ∀ε > 0, ∃uε ∈ H M which

attains the minimum, eVε (M) = E V
ε (uε). By Lemma IV.1, E V

ε (uε) −−−→
ε→0+

eV0 (M), so for any

sequence εn −−−→
n→∞

0+, by Theorem I.1 (i), ∃{ui}∞i=0 ∈ H M
0 with

F
V
0 ({ui}∞i=0) ≤ lim inf

n→∞
E

V
εn(uεn) = eV0 (M).

Defining mi =: ‖ui‖2L2(R3), we have

eV0 (M) = eV0 (m
0) +

∞
∑

i=1

e00(m
i), (4.1)

We now claim that ui = 0, ∀i ≥ 1, in which case uεn −−−→
n→∞

u0 in L2(R3), as desired.

Indeed, assume the contrary, m1 > 0. We then obtain a contradiction by using Step 6 in the

proof of Theorem 1 of [3]. Indeed, by choosing compactly supported v0, v1 ∈ H M whose
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energies are close to the infima eV0 (m
0), e00(m

1) as in Step 6, we obtain the strict subadditivity

condition,

eV0 (M) < eV0 (m
0) + e00(m

1) + e00(M −m0 −m1) ≤ eV0 (m
0) +

∞
∑

i=1

e00(m
i),

which contradicts (4.1).

Analyzing the possible loss of compactness in minimizing sequences for eZε (M), ε ≥ 0

and Z ≥ 0, requires the use of concentration-compactness methods [25]. The following are

standard results for problems where loss of compactness entails splitting of mass to infinity:

Lemma IV.2. Assume V satisfies (1.4). Then, for any ε ≥ 0 and M > 0,

(i) If ∀m0 ∈ (0,M),

eVε (M) < eVε (m
0) + e0ε(M −m0), (4.2)

then all minimizing sequences for eVε (M) are precompact in L2(R3).

(ii) If there exist divergent minimizing sequences for eVε (M), then ∃m0 ∈ (0,M) such that

eVε (m
0) attains a minimizer and eVε (M) = eVε (m

0) + e0ε(M −m0).

Statement (ii) is a slight strengthening of the contrapositive of (i). The proof for the

TFDW functional was done in [26, Corollary II.2 part (ii)], and for liquid drop models it

may be derived from [2, Lemma 6]; although it is stated there for V of a special form, in

fact it is true for a much larger class including those satisfying (1.4).

Next, we specialize to the atomic case,

V (x) =
Z

|x| ,

and present the following refinement of the existence result of [28] for the liquid drop model

with atomic potential:

Proposition IV.3. There exists a constant µ0 > 0 such that for all Z ≥ 0 and for all

M ∈ (0, Z + µ0):

(i) All minimizing sequences for eZ0 (M) are precompact.

(ii) The unique minimizer (up to translations if Z = 0) of eZ0 (M) is the ball BM (0) of

radius rM =
(

3M
4π

)1/3
.

Proof. Statement (ii) is proven in Theorem 2 of [28], using Theorem 2.1 in [18]. (The

special case Z = 0 was proven earlier in [19].) We sketch the proof of (i), since we will need

certain definitions and estimates for (ii). As in Julin [18], we define an asymmetry function

corresponding to a fixed set Ω of finite perimeter,

γ(Ω) := min
y∈R3

∫

R3

1B(x)− 1Ω(x+ y)

|x| dx,
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where B = BM(0) is the ball of massM centered at the origin. The quantitative isoperimetric

inequality (see (2.3) of [18] or [16]) then asserts the existence of a universal constant µ0 > 0,

such that
∫

R3

|∇1Ω| −
∫

R3

|∇1B| ≥ µ0γ(Ω),

with equality if and only if Ω is a translate of B. Then, as in the proof of Theorem 1.1 of

[18] in the three-dimensional case, we may estimate the difference in the nonlocal terms by

the asymmetry,

D(1B,1B)−D(1Ω,1Ω) ≤ |B|γ(Ω).
The optimality of the ball B = BM follows easily from this: assume Ω is of finite perimeter,

with |Ω| =M . Then, provided Ω is not a translate of the ball B = BM ,

E
Z
0 (1Ω)− E

Z
0 (1B) > (µ0 −M)γ(Ω) + Z

(
∫

R3

1B(x)− 1Ω(x)

|x| dx

)

≥ (Z + µ0 −M) γ(Ω) > 0, (4.3)

for all M < Z + µ0.

To obtain (i), the precompactness of all minimizing sequences, we use the above to

establish strict subadditivity of eZ0 (M), as in Lions [25]. LetM = m0+m1 with m0, m1 > 0;

we will show that (4.2) holds, and then by Lemma IV.2 all minimizing sequences for eZ0 (M)

are precompact.

Since 0 < m0 < M < Z + µ0, both eZ0 (M), eZ0 (m
0) are attained by balls B = BM (0),

B0 = Br
m0
(0). For any δ > 0 (to be chosen later), we may choose a bounded open set ω

with 0 ∈ ω, |ω| = m1, and E0(1ω) < e00(m
1) + δ. Note that if m0 ≥ Z, then 0 < m1 < µ0

and we may choose ω = B1 = Br
m1

which attains e00(m
1).

Define ωξ := ω + ξ, and Ω = Ωξ = B0 ∪ ωξ, with |ξ| sufficiently large that the union is

disjoint. We first claim that ∃R > 1 such that γ(Ωξ) ≥ C > 0 is bounded away from zero

for all ξ with |ξ| > R, with constant C = C(m0, m1). Indeed, for y ∈ R
3 define

v = v0 + v1, v0(y) =

∫

B0

dx

|x− y| , v1(y) =

∫

ωξ

dx

|x− y| ,

so that

γ(Ωξ) =

∫

B

dx

|x| −max
y∈R3

v(y).

Hence, to bound γ(Ωξ) from below we must bound v(y) uniformly from above. As −∆v =

4π(1B0(y) + 1ωξ
(y)) in R

3, it attains its maximum at y ∈ Ωξ = B0 ∪ ωξ. Thus, there are

two possibilities: if the maximum occurs at y ∈ B0, then v(y) = v0(y) +O(|ξ|−1). Since v0

is maximized at y = 0, there exists C0 = C0(M,m0) and R > 1 with

γ(Ωξ) ≥
∫

B\B0

dx

|x| −O(|ξ|−1) ≥ C0 > 0,

for all |ξ| > R.
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In case the maximum of v occurs at y ∈ ωξ, then v(y) = v1(y)+O(|ξ|−1). For any domain

D with |D| = m1 we have
∫

D

dx

|x| ≤
∫

B1

dx

|x| ,

where B1 = Br
m1
(0) is the ball with mass m1. It follows that

v1(y) =

∫

ωξ

dx

|x− y| ≤
∫

B1

dx

|x| .

Therefore, as in the previous case, there exist C1 = C1(M,m1) and R > 1 with γ(Ωξ) ≥
C1 > 0, for all |ξ| > R, and the claim is established, with C = min{C0, C1}.

To conclude, we choose 0 < δ < 1
2
(Z + µ0 −M)C ≤ 1

2
(Z + µ0 −M) γ(Ωξ), for any

|ξ| > R, and using (4.3),

eZ0 (M) = E
Z
0 (1B) < E

Z
0 (1Ωξ

)− (Z + µ0 −M) γ(Ωξ)

≤ E
Z
0 (1B0) + E

Z
0 (1ωξ

)− (Z + µ0 −M) γ(Ωξ) + 2

∫

B0

∫

ωξ

dx dy

|x− y|

≤ E
Z
0 (1B0) + E

0
0 (1ω)− (Z + µ0 −M) γ(Ωξ) +O(|ξ|−1)

≤ eZ0 (m
0) + e00(m

1) + δ − (Z + µ0 −M) γ(Ωξ) +O(|ξ|−1).

Taking |ξ| sufficiently large, (4.2) holds for all M ∈ (0, Z + µ0).

Remark IV.4. Thanks to Proposition IV.3, we may conclude that for the liquid drop model

with V (x) = Z/|x| with 0 < M < Z + µ0, the unique generalized minimizer (see Defini-

tion I.2) is the singleton {u0 = 1BM
}. Indeed, this will be true for any functional which

satisfies the strict subadditivity condition (4.2).

Next, we prove Theorem I.3. In fact, we prove the following slightly more general version,

which will also be a step towards the proof of Theorem I.5.

Lemma IV.5. Let M > 0 and δn, εn −−−→
n→∞

0. Assume un ∈ H M for which E V
εn(un) ≤

eVεn(M) + δn for each n ∈ N. Then, there exists a subsequence and a generalized minimizer

{u0, . . . , uN} of E V
0 for which (1.6) and (1.7) hold for i = 0, . . . , N , and

F
V
0 ({ui}Ni=0) = eV0 (M) = lim

n→∞
eVεn(M).

Proof. By (i) of Theorem I.1, there exists a subsequence along which un decomposes as

in (1.6), with {ui}∞i=0 ∈ H M
0 satisfying (1.8). By (ii) of Theorem I.1 the upper bound

construction provides sequences vεn ∈ H M yielding the opposite inequality,

F
V
0 ({ui}∞i=0) ≥ lim sup

n→∞
E

V
εn(vn) ≥ lim

n→∞
eVεn(M).

Hence, by Lemma IV.1 we have

F
V
0 ({ui}∞i=0) = lim

n→∞
E

V
εn(un) = lim

n→∞
eVεn(M) = eV0 (M).
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Let mi = ‖ui‖2L2(R3). It suffices to show that u0 minimizes eV0 (m
0) and ui minimizes e00(m

i),

for each i ≥ 1, and that all but a finite number of the ui ≡ 0. First, by (1.5) we have

eV0 (m
0) +

∞
∑

i=1

e00(m
i)

≤ E
V
0 (u0) +

∞
∑

i=1

E
0
0 (u

i) = F
V
0 ({ui}∞i=0) = eV0 (M) ≤ eV0 (m

0) +

∞
∑

i=1

e00(m
i),

the last step by the Binding Inequality (subadditivity) of e0 see e.g. [2].) As each term is

non-negative, equality holds in each relation. Furthermore, as eV0 (m
0) ≤ E V

0 (u0) and each

e00(m
i) ≤ E 0

0 (u
i), we must have equality in these as well. This proves that each ui, i ≥ 0, is

minimizing.

Finally, suppose infinitely many ui 6≡ 0. Then, by the convergence of the series, 0 <

mi < µ0 for all but finitely many i; assume 0 < mj , mj+1 < µ0. Then, as in the proof of

Proposition IV.3, we obtain the strict subadditivity condition, e00(m
j)+ e00(m

j+1) > e00(m
j +

mj+1). But then

eV0 (M) = eV0 (m
0) +

∞
∑

i=1

e00(m
i) > eV0 (m

0) +
∑

i 6=j,j+1

e00(m
i) + e00(m

j +mj+1) ≥ eV0 (M),

a contradiction.

We finish with the proof of Theorem I.5.

Proof. Recall that we assume V (x) = Z/|x|, Z > 0. For (a), 0 < M ≤ Z, the (relative)

compactness of all minimizing sequences for eZε (M) was proven by Lions [26, Corollary II.2.].

Take any sequence εn → 0 and let un ∈ H M with E Z
εn(un) = eZεn(M). By Lemma IV.5,

there exists a generalized minimizer of eZ0 (M), {ui}Ni=0, such that (1.6) and (1.7) hold for

i = 0, . . . , N , and a subsequence, for which

F
Z
0 ({ui}Ni=0) = eZ0 (M) = lim

n→∞
eZεn(M).

By Remark IV.4, N = 0 and un −−−→
n→∞

u0 in L2(R3), which attains the minimum in eZ0 (M).

As u0 = 1BM
is unique, the limit exists for any sequence ε→ 0.

For (b), first note that if there is a sequence εn −−−→
n→∞

0+ for which eZεn(M) attains its

minimum at un ∈ H M , then by the same argument as for (a) we obtain the conclusion of

the Theorem with Mεn = M . It therefore suffices to consider sequences εn −−−→
n→∞

0+ for

which the minimum in eZεn(M) is not attained. By part (ii) of Lemma IV.2, for each n there

exists m0
n ∈ (0,M) such that

eZεn(M) = eZεn(m
0
n) + e0εn(M −m0

n),

and there exists un ∈ H1(R3) with ‖un‖2L2(R3) = m0
n and E Z

εn(un) = eZεn(m
0
n). For each n, we

may choose vn ∈ H1(R3) with compact support and ‖vn‖2L2(R3) = M − m0
n and for which
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E 0
εn(vn) < e0εn(M−m0

n)+εn. Next, choose radii ρn in the smooth cut-off ωρn defined in (2.3),

such that ũn = unωρn satisfies both ‖ũn− un‖2L2(R3) −−−→n→∞
0 and |E Z

εn(ũn)−E Z
εn(un)| −−−→n→∞

0.

We also choose ξn ∈ R
3 such that ũn and vn(· + ξn) have disjoint supports for each n, and

|ξn| −−−→
n→∞

∞. Set Un(x) = ũn(x) + vn(·+ ξn), so that

‖Un‖2L2(R3) = ‖ũn‖2L2(R3) + ‖vn‖2L2(R3) −−−→
n→∞

M, and |E Z
εn(Un)− eZεn(M)| −−−→

n→∞
0.

By Lemma IV.1, E Z
εn(Un) −−−→

n→∞
eZ0 (M), so applying (i) of Theorem I.1 there exists {ui}∞i=0 ∈

H M
0 for which (1.6) and (1.7) hold, and

eZ0 (M) ≤ F
Z
0 ({ui}∞i=0) ≤ lim inf

n→∞
E

Z
εn(Un) = eZ0 (M).

Thus, FZ
0 ({ui}∞i=0) = eZ0 (M). By Remark IV.4, ui ≡ 0 for all i ≥ 1 and u0 = 1BM

minimizes

eV0 (M). From (1.6) we conclude that Un = ũn+vn(·+ξn) −−−→
n→∞

u0 in L2(R3). Since for every

fixed compact set K ⊂ R
3 we have Un = un almost everywhere in K and for all sufficiently

large n, it follows that un −−−→
n→∞

u0 in L2
loc(R

3) and pointwise almost everywhere up to a

subsequence. Fix the compact set K with BM ⋐ K. Then,

M =

∫

K

|u0|2 ≤ lim inf
n→∞

∫

K

|un|2 dx ≤ lim inf
n→∞

m0
n ≤M.

Each of the above quantities is therefore equal, and limn→∞m0
n = limn→∞ ‖un‖2L2(R3) = M .

Consequently, we have both un −−−→
n→∞

u0 and vn −−−→
n→∞

0 globally in L2(R3). In conclusion,

taking Mεn = m0
n, e

Z
εn(Mεn = m0

n) is attained at uεn = un, Mεn −−−→
n→∞

M , and un −−−→
n→∞

u0 =

1BM
in L2(R3).
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[19] H. Knüpfer and C. B. Muratov, “On an isoperimetric problem with a competing nonlocal

term II: The general case,” Comm. Pure Appl. Math. 67(12), 1974-1994 (2014).
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