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Abstract

We prove that the variance swap rate (fair strike) equals the price of a co-terminal European-style
contract when the underlying is an exponential Markov process, time-changed by an arbitrary continuous
stochastic clock, which has arbitrary correlation with the driving Markov process, provided that the payoff
function G of the European contract satisfies an ordinary integro-differential equation, which depends
only on the dynamics of the Markov process, not on the clock. We present examples of Markov processes
where the function G that prices the variance swap can be computed explicitly. In general, the solutions
G are not contained in the logarithmic family previously obtained in the special case where the Markov
process is a Lévy process.

Keywords: Variance swap, Time change, Markov process

1 Introduction

Consider a forward price F that evolves in continuous time. Let time zero be the valuation time for a
derivative security written on the path of F , with a fixed maturity date T > 0. Assume that F0 > 0 is a
known constant, and that the F process is strictly positive over a time interval [0, T ]. As a result, the log
price process X := logF is well-defined, and derivative securities expiring at T can also be written on the
path of X. In particular, we focus on a continuously-monitored variance swap, which pays the difference
between the terminal quadratic variation of the log price process [logF ]T and a constant determined at
inception. For brevity, we will refer to a continuously monitored variance swap as a VS in the sequel. As with
any swap, the constant that is determined at inception is chosen so that there is no initial cost of entering
into the VS. The objective of this paper is to give additional conditions on the dynamics of F under which
this constant can be determined from an initial observation of the T -maturity implied volatility smile.

Earlier papers by Neuberger (1990) and Dupire (1993) show that continuity of F suffices for pricing a VS
relative to the co-terminal smile. Carr et al. (2012) weakens the continuity hypothesis by showing that the
log price X can be specified as a Lévy process running on an unspecified continuous clock. When the Lévy
process is specified as Brownian motion with drift (−1/2), the earlier results of Neuberger (1990) and Dupire
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(1993) arise as a special case. The more general formulation of Carr et al. (2012) allows for the variance and
jump-intensity to depend on the level of X through a local time-change (see Remark 4.3). However, the
local variance and Lévy kernel must have the same functional dependence on X (up to a scaling constant).
Additionally, while the arrival rate of each jump size in X is allowed to depend on the level of X, the ratio of
the arrival rates at any two jump sizes is constant in that previous paper.

This paper weakens the stationary independent increments property of the Lévy process used by Carr
et al. (2012). We allow that X could be specified as a time-homogeneous Markov process running on an
unspecified continuous clock. As a result (i) the variance and jump-intensity may have distinct X-dependence
and (ii) the ratio of the arrival rates at any two jump sizes of X can depend on the current level of X.

In effect, we allow the background process to have nearly the full generality of general Markov processes
whose jump times are not predictable, as discussed in Remark 2.1. We allow that general background Markov
process to undergo a time-change by an unspecified continuous stochastic clock which may have arbitrary
correlation or dependence on the background process. In this setting, we prove that European-style payoff
functions G price the variance swap, in the sense that the variance swap rate (fair strike) equals the price of
a contract paying G(logFT )−G(logF0), provided that G satisfies an ordinary integro-differential equation
that depends only on the dynamics of the Markov driver, not on the clock.

Our results are related to the semiparametric approach taken by Lorig et al. (2016), who consider the
pricing of a VS when the underlying forward price F is modeled as Feller diffusion time-changed by an
unspecified Lévy subordinator. For fully parametric approaches to VS pricing in models with jumps and
stochastic volatility we refer the reader to Itkin and Carr (2010); Wendong and Kuen (2014); Filipović et al.
(2016); Cui et al. (2017). For model-independent bounds on (discrete and continuous) VS prices see Hobson
and Klimmek (2012), Nabil (2014), and Henry-Labordère and Touzi (2016, Example 5.7).

The rest of this paper proceeds as follows. Section 2 specifies dynamics for the forward price process and
verifies that these dynamics can arise from time-changing the solution of a stochastic differential equation.
Section 3 states and proves our main result (Theorem 3.5), which establishes that the VS has the same value
as a European-style claim whose payoff function solves an ordinary integro-differential equation (OIDE).
Section 4 provides examples of price dynamics for which we can solve the OIDE explicitly. Section 5 concludes.

2 Time-changed Markov dynamics

2.1 Assumptions

With respect to a (“calendar-time”) filtration {Ft}t≥0 on a probability space (Ω,F,P), assume that X is a
semimartingale with predictable characteristics (B,A, ν), relative to a truncation function h (to be definite,
let h(z) := z1{|z|≤1}), which satisfy

Bt =
∫ t

0
bh(Xs−)dτs, At =

∫ t

0
a2(Xs−)dτs, ν(dt,dz) = dτt × µ(Xt−,dz), (2.1)
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where τ is a real-valued continuous increasing adapted process that is null at zero, a is a Borel function, and
for each fixed x ∈ R the µ(x, ·) is a Lévy measure, and

sup
x∈R
|a(x)| <∞, sup

x∈R

∫
R

z2µ(x,dz) <∞, sup
x∈R

∫
R

(ez − 1− z)µ(x, dz) <∞, (2.2)

with

bh(x) := −1
2a

2(x)−
∫
R

(ez − 1− h(z))µ(x, dz). (2.3)

The intuition of the Lévy kernel or transition kernel µ is that it assigns, to each point x in the state space, a
“local” Lévy measure µ(x, ·). Jumps of size in any interval J arrive with intensity µ(x, J) when X is at x.

Define the underlying forward price process F = {Ft}t∈[0,T ] by

Ft = exp(Xt).

Regarding P as risk-neutral measure, we have chosen bh in (2.3) to ensure F is a local martingale. If τT is
integrable, then Lemma 3.4 will imply that F is a true martingale.

2.2 Time-change of an SDE solution

This section verifies that the assumptions of Section 2.1 hold in the case that X comes from time-changing
the solution of a stochastic differential equation (SDE) driven by a Brownian motion and a Poisson random
measure. With respect to a filtration {Gu}u≥0 (the “business time” filtration), consider a Brownian motion
W , and a Poisson random measure N with intensity measure µN (dz)du for some Lévy measure µN . Assume
that Y is a semimartingale that satisfies

dYu = b(Yu) dt+ a(Yu) dWu +
∫
z∈R

c(Yu−, z) (N(du,dz)− µN (dz)du),

where a is a bounded Borel function, b is given by

b(x) = −1
2a

2(x)−
∫
R

(ez − 1− z)µ(x, dz),

and c is a Borel function such that µ, defined for each Borel set J by

µ(x, J) := µN ({z : c(x, z) ∈ J\{0}}),

satisfies

sup
x∈R

∫
R

z2µ(x,dz) + sup
x∈R

∫
R

(ez − 1− z)µ(x, dz) <∞.

Then by Jacod and Shiryaev (1987, Prop. III.2.29), the semimartingale characteristics of Y are (B̃, Ã, ν̃),
where

B̃u =
∫ u

0
bh(Yv−)dv, Ãu =

∫ u

0
a2(Yv−)dv, ν̃(du,dz) = du× µ(Yu−,dz), (2.4)
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with bh defined in (2.3).
Now let {τt}t≥0 be a continuous increasing family of finite G-stopping times (which are not assumed to be

independent of Y ). Let the “calendar-time” filtration be defined by Ft := Gτt , and let

Xt := Yτt .

By Kallsen and Shiryaev (2002b, Lemma 5), the F-characteristics of X are (B,A, ν) where At = Ãτt , Bt = B̃τt

and ν is determined by ∫
[0,t]×R

1J(z)ν(ds,dz) =
∫

[0,τt]×R
1J(z)ν̃(du,dz), (2.5)

for general Borel sets J and t ≥ 0. By the first two equalities in (2.4) we have

Ãτt =
∫ τt

0
a2(Yv−)dv =

∫ t

0
a2(Xs−)dτs, B̃τt =

∫ τt

0
bh(Yv−)dv =

∫ t

0
bh(Xs−)dτs,

and, by substituting the last equality in (2.4) into (2.5) and changing variables u to τs, we have∫
[0,t]×R

1J(z)ν(ds,dz) =
∫

[0,t]

∫
R

1J(z)µ(Xs−,dz)dτs.

Therefore (B,A, ν) satisfy (2.1). This verifies the hypotheses of Section 2.1, as claimed.

Remark 2.1. Time-changes of SDE solutions are nearly as general as time-changes of general Markov
processes whose jump times are not predictable.

To be precise, Çinlar and Jacod (1981) show that every strong Markov quasi-left-continuous semimartingale
(which includes every Feller semimartingale) is a continuous time change of an SDE solution driven by Brownian
motion and a Poisson random measure (on an enlarged probability space if needed). Thus, if X is a continuous
time-change τ ′ of a general Feller semimartingale Y ′, then by Çinlar-Jacod, Y ′ is a continuous time change
τ ′′ of an SDE solution Y , and therefore X is a continuous time change τ ′ ◦ τ ′′ of an SDE solution Y .

2.3 Notations

Let Cn(R) denote the class of n-times continuously differentiable functions, and define the integro-differential
operator A by

Ag(x) := bh(x)g′(x) + a2(x)
2 g′′(x) +

∫
R

(g(x+ z)− g(x)− g′(x)h(z)) µ(x, dz)

= a2(x)
2 (g′′(x)− g′(x)) +

∫
R

(g(x+ z)− g(x) + (1− ez)g′(x)) µ(x, dz), (2.6)

for all g ∈ C2(R) such that g(x+ z)− g(x) + (1− ez)g′(x) ∈ L1(µ(x, dz)) for all x.
In more concise notation,

A = 1
2a

2(x)
(
∂2 − ∂

)
+
∫
R

(
ez∂ − 1 + (1− ez)∂

)
µ(x, dz), (2.7)

where ez∂ is the shift operator defined by ez∂g(x) := g(x+ z). This use of ∂ to express translations in the
jump part of the generator A follows Itkin and Carr (2012).
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Let C1+(R) denote the union of C2(R) and the following set: all C1(R) functions g whose derivative is
everywhere absolutely continuous, and whose second derivative (which therefore exists a.e.) is equal (a.e.) to
a bounded function, which we will still denote by g′′ or ∂2g.

Thus the definition of A extends, by relaxing the g ∈ C2(R) condition to g ∈ C1+(R), which still defines
Ag uniquely, up to sets of measure zero, via (2.6).

3 Variance swap pricing

In what follows, each C will denote a constant (non-random and non-time-varying). Different instances of C,
even in the same expression, may have different values.

Lemma 3.1. Suppose that g ∈ C1+(R) and there exists p ∈ R such that

sup
x∈R
|g′(x)e−px| <∞ and sup

x∈R

∫
R

(epz − 1− pz) µ(x, dz) <∞.

Then g(X) is a special semimartingale.

Proof. By the form of Itô’s rule in, for instance Protter (2004, Theorem IV.70), g(X) is a semimartingale.
By Kallsen and Shiryaev (2002a, Lemma 2.8), it suffices to check that the predictable process∫ t

0

∫
{z:|g(Xs−+z)−g(Xs−)|>1}

|g(Xs− + z)− g(Xs−)|µ(Xs−,dz)dτs (3.1)

is finite (hence of finite variation, as it is increasing in t).
In the case p = 0, we have |g(x+ z)− g(x)| ≤ C|z|. In the case p 6= 0, we have

|g(x+ z)− g(x)| ≤
∫ x∨(x+z)

x∧(x+z)
Cepζdζ = Cepx|epz − 1|.

In this case, for each m > 0, let k(m) be such that |epz − 1|1|epz−1|>1/m < (epz − 1− pz) + k(m)z2 for all z,
and let M := sups∈[0,T ] epXs <∞ because X is càdlàg. Then∫

{z:|g(Xs−+z)−g(Xs−)|>1}
|g(Xs− + z)− g(Xs−)|µ(Xs−,dz)

is bounded in case p = 0 by supx∈R
∫
{z:|z|>1/C} C|z|µ(x, dz) <∞, and in case p 6= 0 by C times

sup
x∈R

∫
{z:|epz−1|>1/(CM)}

M |epz − 1|µ(x, dz)

≤M sup
x∈R

∫
R

(epz − 1− pz)µ(x,dz) +Mk(CM) sup
x∈R

∫
R

z2µ(x, dz) <∞.

These upper bounds do not depend on s ∈ [0, t], which verifies that (3.1) is finite.

Lemma 3.2. If EτT <∞ then E supt∈[0,T ] |Xt| <∞.
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Proof. Let B′t := Bt +
∫

[0,t]×R(z − h(z))ν(du, dz). We have E supt∈[0,T ] |B′t| <∞ due to (2.2) and EτT <∞.
Defining Mt by

Xt = X0 +Mt +B′t,

we have, by Jacod and Shiryaev (1987, Proposition II.2.29), that M is a local martingale satisfying

E[M,M ]T = E

∫ T

0
a2(Xs)dτs + E

∫ T

0

∫
R

z2µ(Xs−,dz)dτs <∞,

because EτT <∞. By Burkholder-Davis-Gundy, E supt∈[0,T ] |Mt| <∞, which implies the result.

Lemma 3.3. Suppose τT is bounded and p ∈ R satisfies

sup
x∈R

∫
R

(epz − 1− pz)µ(x, dz) <∞. (3.2)

Let

Zt := exp(pXt −Kt),

Kt :=
∫ t

0

1
2(p2 − p)a2(Xs)dτs +

∫ t

0

∫
R

[(epz − 1− pz)− p(ez − 1− z)]µ(Xs−,dz)dτs.

Then Z is a martingale, and

E sup
t∈[0,T ]

exp(pXt) <∞. (3.3)

Proof. Let N be the integer-valued random measure associated with the jumps of X. Let Ñ := N − ν.
By Kallsen and Shiryaev (2002a, Theorem 2.19), the process Z is the stochastic exponential of the local

martingale

pXc
t +

∫
[0,t]×R

(epz − 1)Ñ(ds,dz),

where Xc is the continuous martingale part of X. By the boundedness of τT and assumptions (2.2) and (3.2),
it follows that

p2
∫ T

0
a2(Xs)dτs +

∫ T

0

∫
R

(epz − 1)2 ∧ (epz − 1) µ(Xs−,dz)dτs

is bounded. So by Lepingle and Mémin (1978), the process Z is a martingale and E supt∈[0,T ] Zt <∞, which
implies (3.3) because supt∈[0,T ] Kt is bounded.

Let us define two conditions that may be satisfied by (τT , g) where g ∈ C1+(R). The first is

EτT <∞ and sup
x∈R
|g′(x)|+ ess sup

x∈R
|g′′(x)| <∞, (3.4)

and the second is

τT is bounded, and ∃p ∈ R with sup
x∈R

∫
R

(epz − 1− pz)µ(x, dz) + ess sup
x∈R

e−px(|g(x)|+ |g′(x)|+ |g′′(x)|) <∞.

(3.5)

6



Lemma 3.4. Assume that g is a sum of finitely many C1+(R) functions, each of which satisfies (3.4) or
(3.5). Let

Γt := g(Xt)− g(X0)−
∫ t

0
Ag(Xs−)dτs, t ∈ [0, T ].

Then Γ is a martingale.

Proof. We prove for the case that the g satisfies (3.4) or (3.5). The case that g is the sum of such functions
follows immediately by linearity.

Either one of the conditions (3.4) or (3.5) implies that Ag is well-defined.
To show that Γ is a local martingale, note that Jacod and Shiryaev (1987, Theorem II.2.42c) extends as

follows. They assume g bounded, only to show that g(X) is a special semimartingale, but the conditions
in Lemma 3.1 suffice for that conclusion. Moreover they assume g ∈ C2, only to use Itô’s lemma, but C1+

suffices here, by Protter (2004, Theorem IV.70) and its first corollary.
To show that Γ is a true martingale, it suffices, by Protter (2004, Theorem I.51), to show that

E supt∈[0,T ] |Γt| <∞. In case (3.4), let p := 0. In both cases, by (2.2), we have

|g′(x)|
∫
R

(ez − 1− z)µ(x,dz) < Cepx, (3.6)

and by Taylor’s theorem and |g′′(x+ z)| ≤ Cepx+|p| for |z| < 1, we have∫
|z|<1

|g(x+ z)− g(x)− g′(x)z|µ(x, dz) ≤ Cepx+|p|
∫
|z|<1

z2µ(x,dz) ≤ Cepx, (3.7)

and by (2.2),∫
|z|>1

|g(x+ z)− g(x)− g′(x)z| µ(x, dz) ≤ Cepx
∫
|z|>1

(epz + 1 + |z|) µ(x, dz) ≤ Cepx, (3.8)

where each C does not depend on x. Combining (3.6), (3.7), (3.8), and the bounds on g′ and g′′, we have

sup
t∈[0,T ]

∣∣∣ ∫ t

0
Ag(Xs−)dτs

∣∣∣ ≤ ∫ T

0
|Ag(Xs−)|dτs ≤ CτT sup

t∈[0,T ]
epXt ,

which is integrable in case (3.4) because EτT <∞, and in case (3.5) by Lemma 3.3. The remaining component
of Γ has magnitude

|g(Xt)− g(X0)| ≤

C(1 + |Xt|) in case (3.4),

C(1 + epXt) in case (3.5),

which has integrable supremum by Lemmas 3.2 and 3.3.

In conclusion, we relate E [logF ]T to the value of a European-style contract:

Theorem 3.5. Assume that the forward price F , the log-price X, and the clock τ satisfy the assumptions
of Section 2.1. Assume that G is a sum of finitely many C1+(R) functions, each of which satisfies (3.4) or
(3.5), and that AG satisfies (for a.e. x)

AG(x) = a2(x) +
∫
R

z2µ(x,dz). (3.9)
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Then G prices the variance swap, meaning that

E [logF ]T = EG(logFT )−G(logF0). (3.10)

Thus, if P is a martingale measure for VS and G contracts, then the fair strike of the VS (equivalently: the
forward price of the floating leg of the VS) is (3.10).

Remark 3.6. The sum of finitely many functions is more general than a single function; for instance, G
may be the sum of two functions, one satisfying (3.5) for some p > 0, and the other for some p < 0.

Remark 3.7. Functions G that satisfy the conditions of Theorem 3.5, and therefore price the VS, are not
unique. Indeed, if G does, then so does G(·) + C0 + C1 exp(·), where C0, C1 are any constants. Adding the
latter two terms does not affect the valuation EG(logFT )−G(logF0), because EFT = F0.

Proof of Theorem 3.5. We have

E [X]T = E
(∫ T

0
a2(Xt)dτt +

∫ T

0

∫
R

z2N(dt, dz)
)

= E

∫ T

0

(
a2(Xt−) +

∫
R

z2µ(Xt−,dz)
)

dτt

= E

∫ T

0
AG(Xt−)dτt

= EG(XT )−G(X0)

by Jacod and Shiryaev (1987, Theorems I.4.52 and II.1.8), equation (3.9) and Lemma 3.4.

Theorem 3.5 allows us to value a VS relative to the T -maturity implied volatility smile as follows:

E [logF ]T︸ ︷︷ ︸
A

= EG(logFT )︸ ︷︷ ︸
B

−G(logF0)︸ ︷︷ ︸
C

. (3.11)

A = the amount agreed upon at time 0 to pay at time T when taking the long side of a variance swap.
B = the value of a European contract with payoff G(logFT ).
C = the value of G(logF0) zero-coupon bonds.
As shown in Carr and Madan (1998), if h is a difference of convex functions, then for any κ ∈ R+ we have

h(FT ) = h(κ) + h′(κ)
(

(FT − κ)+ − (κ− FT )+
)

+
∫ κ

0
h′′(K)(K − FT )+dK +

∫ ∞
κ

h′′(K)(FT −K)+dK.

Here, h′ is the left-derivative of h, and h′′ is the second derivative, which exists as a generalized function.
Taking expectations,

Eh(FT ) = h(κ) + h′(κ)
(
C(T, κ)− P (T, κ)

)
+
∫ κ

0
h′′(K)P (T,K)dK +

∫ ∞
κ

h′′(K)C(T,K)dK, (3.12)

where P (T,K) and C(T,K) are, respectively, the prices of put and call options on F with strike K and expiry
T . Knowledge of F0 and the T -expiry smile implies knowledge of the initial prices of T -expiry European
options at all strikes K > 0. Thus the quantity B in (3.11) is uniquely determined from the T -expiry volatility
smile by applying (3.12) to h = G ◦ log, assuming one can determine the function G. Therefore, to price a
VS relative to co-terminal calls and puts, what remains is to find a solution G of the OIDE (3.9).
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4 Examples

In this section we provide examples, in the setting of Section 2.2, of local variance and Lévy kernel pairs
(a2, µ), such that solutions G of OIDE (3.9) can be obtained explicitly. In one of the examples, moreover, we
investigate the ratio between the values of the VS and the log contract.

4.1 Constant relative jump intensity

Theorem 4.1. Assume the local variance a2(x) and Lévy kernel µ(x, dz) are of the form

a2(x) = γ2(x)σ2, µ(x, dz) = γ2(x) ν(dz),

where σ ≥ 0 is a constant, ν is a Lévy measure, and γ is a positive bounded Borel function. Assume EτT <∞.
Then

G(x) := −Qx, (4.1)

prices the variance swap, where

Q := σ2 + µ2

σ2/2 + ϕ0
, ϕ0 :=

∫
R

(ez − 1− z)ν(dz), µ2 :=
∫
R

z2ν(dz),

Proof. One can verify directly that G in (4.1) satisfies (3.4) and (3.9).

Remark 4.2. In particular, the constant Q in two extreme cases is as follows

No Jumps (ν ≡ 0) : Q = 2, (4.2)

Pure Jumps (σ = 0) : Q = µ2/ϕ0. (4.3)

Remark 4.3. Dynamics of this form arise by time-changing a Lévy process Yu using the clock

τt := inf
{
u ≥ 0 :

∫ u

0

1
γ2(Yv)

dv ≥ t
}
.

See, for instance, Küchler and Sørensen (1997, Proposition 11.6.1). Thus the payoff function (4.1) in this
case should, and indeed does, match the payoff function obtained by Carr et al. (2012) for time-changed Lévy
processes.

4.2 Fractional linear relative jump intensity

Let α, β, z0 ∈ R satisfy

z0 < 0, and 0 < β < 1− 2(ez0 − z0 − 1)
z2

0
.

Let

γ3 := − α

2β −
1
β
, γ0 := − α

2β + z2
0

2(ez0 − z0 − 1)(1− 1
β

) < γ3.
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Let γ1 and γ2 satisfy γ0 < γ1 < γ2 < γ3.
Define the C1 function

G(x) :=


αγ1 + βγ2

1 + (x− γ1)(α+ 2βγ1) x < γ1,

αx+ βx2 γ1 ≤ x ≤ γ2,

αγ2 + βγ2
2 + (x− γ2)(α+ 2βγ2) x > γ2.

(4.4)

We can and do take ∂2G(x) = 2β1x∈[γ1,γ2] in the sense of Theorem 3.5.
Let a be a positive, bounded, Borel function, and let

c(x) := a2(x)
2 × ∂2G(x)− ∂G(x)− 2

G(x)−G(x+ z0) + (ez0 − 1)∂G(x) + z2
0
. (4.5)

Lemma 4.4. The function c is positive and bounded.

Proof. To show that the denominator G(x)−G(x+ z0) + (ez0 − 1)∂G(x) + z2
0 from (4.5) has a positive lower

bound, first note that

(ez0 − 1− z0)G′(γ2) + z2
0 > (ez0 − 1− z0)G′(γ1) + z2

0 = (ez0 − 1− z0)(α+ 2βγ1) + z2
0 > βz2

0 , (4.6)

where the first two expressions are the denominator for x > γ2 − z0 and x < γ1 respectively.
For x ∈ (γ2, γ2−z0), the denominator is bounded below by − 1

2 supx∈R |∂2G(x)|z2
0 +(ez0−1−z0)G′(γ2)+z2

0 ,
so just subtract βz2

0 from (4.6). For x ∈ (γ1, γ2) the denominator is bounded below by

(1− β)z2
0 + (α+ 2βx)(ez0 − 1− z0) > (1− β)z2

0 + (α+ 2βγ1)(ez0 − 1− z0) > 0.

Next, to show that the numerator ∂2G− ∂G− 2 from (4.5) is positive and bounded, we verify in three
intervals. For x ∈ (γ1, γ2), the numerator is 2β −α− 2− 2βx > 2β −α− 2− 2βγ3 = 2β > 0, and is moreover
bounded above. In the other two intervals, the result follows from

−α− 2βγ1 − 2 > −α− 2βγ2 − 2 > −α− 2βγ3 − 2 = 0,

where the first two expressions are the numerator for x ≤ γ1 and x ≥ γ2 respectively.

Theorem 4.5. Assume the local Lévy kernel µ is a point mass at z0 with weight c(x):

µ(x, ·) = c(x)δz0 ,

where c, G, and the local variance a2 are related by (4.4) and (4.5). Assume EτT <∞. Then G prices the
variance swap.

Proof. We have that G satisfies (3.4) and, by (4.5), the OIDE (3.9).

Remark 4.6. We describe these dynamics as “fractional linear relative jump intensity” because, for x ∈
(γ1 − z0, γ2), the relative jump intensity

c(x)
a2(x) = β − α/2− 1− βx

α(ez0 − 1− z0) + (1− β)z2
0 + 2βx(ez0 − 1− z0)

is a ratio of polynomials linear in the underlying log-price.
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4.3 Lévy mixture with state-dependent weights

Assume the local variance a2(x) and Lévy kernel µ(x, dz) are of the form

a2(x) = ασ2
0(x) + δβσ2

1(x), µ(x, dz) = σ2
0(x)
2 ν0(dz) + δ

σ2
1(x)
2 ν1(dz), σ2

1(x)
σ2

0(x) = ecx =: ec(x),(4.7)

where α, β, δ ≥ 0 and ν0, ν1 are Lévy measures with∫
R

∣∣∣eλz − 1 + (1− ez)λ
∣∣∣ νi(dz) <∞, ∀λ ∈ C, i ∈ {0, 1}. (4.8)

Let us first derive a candidate solution G to (3.9) from an ansatz and then verify the validity of the solution.
Inserting the expressions for a2 and µ from (4.7) into (3.9) and dividing by 1

2σ
2
0(x), we have

(A0 + δecA1)G = I0 + δecI1, (4.9)

where I0 and I1 are constants defined by

I0 = 2α+
∫
R

z2 ν0(dz), I1 = 2β +
∫
R

z2 ν1(dz),

and, using the notation of (2.7), the operators A0 and A1 are given by

A0 = α
(
∂2 − ∂

)
+
∫
R

(
ez∂ − 1 + (1− ez)∂

)
ν0(dz),

A1 = β
(
∂2 − ∂

)
+
∫
R

(
ez∂ − 1 + (1− ez)∂

)
ν1(dz).

Assume a solution G of (4.9) has a power series expansion in δ:

G =
∞∑
n=0

δnGn, (4.10)

where the functions {Gn}n≥0 are, at this point, unknown. Inserting the expansion (4.10) into OIDE (4.9)
and collecting terms of like order in δ results in the following sequence of nested OIDEs:

O(1) : A0G0 = I0,

O(δ) : A0G1 + ecA1G0 = ecI1, (4.11)

O(δn) : A0Gn + ecA1Gn−1 = 0, n ≥ 2.

Noting that

A0eλ = φλeλ, φλ = α
(
λ2 − λ

)
+
∫
R

(
eλz − 1 + (1− ez)λ

)
ν0(dz), ∀λ ∈ C,

A1eλ = χλeλ, χλ = β
(
λ2 − λ

)
+
∫
R

(
eλz − 1 + (1− ez)λ

)
ν1(dz), ∀λ ∈ C,

one can easily verify, by direct substitution into (4.11), a solution G0 given by

G0(x) := −Q0x, Q0 :=
2α+

∫
R
z2ν0(dz)

α+
∫
R

(ez − 1− z)ν0(dz)
, (4.12)
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and solutions {Gn}n≥1 given, for c 6= 0, by

Gn(x) := Q1
enc(x)
φnc

n−1∏
k=1

−χkc
φkc

, Q1 := 2β +
∫
R

z2ν1(dz)−Q0

(
β +

∫
R

(ez − 1− z)ν1(dz)
)
. (4.13)

Thus we have a formal series expansion, defined by (4.10), (4.12) and (4.13), for a function G that solves
OIDE (3.9). The following conditions suffice for validity of this expansion.

Theorem 4.7. Assume that the local variance a2(x) and Lévy kernel µ(x,dz) are given by (4.7). Assume
further that ν0 and ν1 satisfy (4.8) and c 6= 0 and

lim
n→∞

βn2c2 +
∫
R
ν1(dz) (encz − 1 + (1− ez)nc)

αn2c2 +
∫
R
ν0(dz)

(
e(n+1)cz − 1 + (1− ez)(n+ 1)c

) = 0. (4.14)

Then the function G is well-defined on R by (4.10) with (4.12) and (4.13), and solves OIDE (3.9).

Proof. The summation in (4.10) can be written as

−Q0x+Q1

∞∑
n=1

anu
n(x), where an = 1

φnc

n−1∏
k=1

−χkc
φkc

, and u(x) = δec(x). (4.15)

The infinite sum is a power series in u, with coefficients {an}n≥1 satisfying, by (4.14),

lim
n→∞

an+1

an
= lim
n→∞

−χnc
φ(n+1)c

= 0,

which implies that the sum in (4.15) has infinite radius of convergence, and G is well-defined on R by (4.10),
with (4.12) and (4.13). As every power series can be differentiated and integrated term-by-term within its
radius of convergence, G solves OIDE (3.9).

Remark 4.8. If α = 0, β > 0, ν1 ≡ 0, and c > 0 (respectively, c < 0), then any Lévy measure ν0 with
support on the positive (resp. negative) axis will satisfy (4.14).

Remark 4.9. If α > 0, β = 0, ν0 ≡ 0, and c > 0 (respectively, c < 0), then a Lévy measure ν1 will satisfy
(4.14) only if the support of ν1 lies strictly within the negative (resp. positive) axis.

Remark 4.10. In the particular case where the forward price F is a time-change of an exponential Lévy
process with variance α and Lévy measure ν0, the function G0 prices the VS. In the more general class of
models in (4.7), which can be seen as a regular δ-perturbation around the time-changed exponential Lévy case,
the candidate function G for pricing the VS by Theorem 3.5 becomes, by (4.15), a δ-perturbation around G0.

In Figures 1 and 2, using a variety of different model parameters, we plot

h(FT ) := G(logFT )−G(logF0) +A(FT − F0), A = −1
F0

G′(logF0). (4.16)

as a function of FT , where G is defined by (4.10), (4.12) and (4.13). Note that, if G prices the VS, then h
prices the VS for any constant A. The particular value of A in (4.16) ensures that h′(F0) = 0.
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4.3.1 Ratio of the VS value to the log contract value

Although the purpose of this paper is to compute the value of a VS relative to the G contract (and to solve
for G), it is interesting to compute the ratio of the value of the VS to the value of a European log contract.
To this end, for a function G that prices a VS, let

Q(T, F0) := EG(logFT )−G(logF0)
−E log(FT /F0) = E [logF ]T

−E log(FT /F0) .

In Carr et al. (2012) the authors find that if Ft = exp(Ŷτt) where Ŷ is a Lévy process, then the ratio Q(T, F0)
is a constant Q which is independent of the initial value F0 of the underlying and the time to maturity T
(see Theorem 4.1 and Remark 4.3 of Section 4.1). This is in contrast to empirical results from the same
paper, which show in a study of S&P500 data that the ratio Q(T, F0) is not constant. In the more general
time-changed Markov setting considered in the present paper, the ratio Q(T, F0) can (in general) depend on
the current value F0 of the underlying and the time to maturity T . Below, we derive a formal approximation
for the ratio Q(T, F0) for one specific example of (a2, µ) which is of the form (4.7).

Assumption 4.11. Throughout this section, we assume Ft = exp(Yτt) where τ is a continuous time change
independent of Y and the Laplace transform L(t, λ) := E eτtλ is known. Let the Markov process Y have local
variance a2(x) and Lévy kernel µ(x,dz) of the form (4.7) with

α = 1, β = 0, σ2
0(x) = 2ω2, σ2

1(x) = 2ω2ec(x), ν0 ≡ 0, ν1 ≡ ν,

where ω, c > 0. Assume moreover that the Lévy measure ν satisfies the conditions of Theorem 4.7. Thus, the
function G, defined by (4.10), (4.12) and (4.13), solves (3.9) . In accordance with Remark 4.9, jumps must
be downward, i.e., ν(R+) = 0.

We compute an approximation for Q(T, F0) in three Steps, described below.

Step 1. Derive an approximation for u(t, x;ϕ) := Ex ϕ(Yt).
Formally, the function u satisfies the Kolmogorov backward equation

(−∂t + A)u = 0, u(0, ·;ϕ) = ϕ, (4.17)

where A, the generator of Y , is given by

A = ω2A0 + δecω2A1. (4.18)

Now, suppose that the function u has a power series expansion in δ

u =
∞∑
n=0

δnun, (4.19)

where the functions {un}n≥0 are unknown. Inserting expressions (4.18) and (4.19) into (4.17) and collecting
terms of like powers of δ, we obtain a sequence of nested partial integro-differential equations (PIDEs) for the
unknown functions {un}n≥0

O(1) : (−∂t + ω2A0)u0 = 0, u0(0, ·;ϕ) = ϕ,
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O(δn) : (−∂t + ω2A0)un = −ecω2A1un−1, un(0, ·;ϕ) = 0, n ≥ 1.

The solution to this nested sequence of PIDEs is given in Jacquier and Lorig (2013, Equation (5.2)). We have

un(t, x;ϕ) =
∫
R

(
n∑
k=0

etω2φiλ+kceiλ+nc(x)∏n
j 6=k(ω2φiλ+kc − ω2φiλ+jc)

)(
n−1∏
k=0

ω2χiλ+kc

)
ϕ̂(λ)dλ, (4.20)

where an empty product is defined to equal one
∏−1
k=0(· · · ) := 1 and ϕ̂ denotes the distributional generalization

of the Fourier transform defined for integrable functions ϕ by

ϕ̂(λ) := 1
2π

∫
R

ϕ(x)e−iλxdx.

Inserting expression (4.20) into the sum (4.19) and truncating at order N yields ūN , our N th order approxi-
mation of u. Explicitly,

ūN (t, x;ϕ) :=
N∑
n=0

δnun(t, x;ϕ)

=
∫
R

N∑
n=0

δn

(
n∑
k=0

etω2φiλ+kceiλ+nc(x)∏n
j 6=k(ω2φiλ+kc − ω2φiλ+jc)

)(
n−1∏
k=0

ω2χiλ+kc

)
ϕ̂(λ)dλ. (4.21)

Step 2. Derive an approximation for v(t, x;ϕ) := Ex ϕ(Yτt).
Using the independence of τ and Y , we have

v(t, x;ϕ) := Exϕ(Yτt) = ExEx[ϕ(Yτt)|τt] = Eu(τt, x;ϕ). (4.22)

Replacing the function u in (4.22) with ūN yields v̄N , our N th order approximation of v. Explicitly,

v̄N (t, x;ϕ) := E ūN (τt, x;ϕ)

=
∫
R

N∑
n=0

δn

(
n∑
k=0

L(t, ω2φiλ+kc)eiλ+nc(x)∏n
j 6=k(ω2φiλ+kc − ω2φiλ+jc)

)(
n−1∏
k=0

ω2χiλ+kc

)
ϕ̂(λ)dλ, (4.23)

using equation (4.21) and Eeλτt = L(t, λ).

Step 3. Derive an approximation for Q(T, F0).
With G as given in Theorem 4.7, we have

Q(T, F0) = EG(logFT )−G(logF0)
−E log(FT /F0)

= Q0 +

∑∞
n=1 bn

(
Eenc(logFT )− enc(logF0)

)
−E logFT + logF0

= Q0 +

∑∞
n=1 bn

(
Eenc(YτT )− enc(logF0)

)
−EYτT + logF0

= Q0 +

∑∞
n=1 bn

(
v(T, logF0; enc)− enc(logF0)

)
−v(T, logF0; Id) + logF0

, (4.24)
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bn := Q1δ
nan = Q1

δn

φnc

n−1∏
k=1

−χkc
φkc

,

where Id is the identity function Id(x) = x. Replacing the function v wherever it appears in (4.24) by v̄N
and truncating the infinite sum at N terms produces Q̄N (T, F0), our N th order approximation of Q(T, F0).
Explicitly,

Q̄N (T, F0) := Q0 +

∑N
n=1 bn

(
v̄N (T, logF0; enc)− enc(logF0)

)
−v̄N (T, logF0; Id) + logF0

. (4.25)

The Fourier transforms of the complex exponential eγ (γ ∈ C) and the identity function Id, as needed to
compute v̄N (T, logF0; enc) and v̄N (T, logF0; Id) in (4.25), are given by

êγ(λ) = δ(λ+ iγ), γ ∈ C, Îd(λ) = iδ′(λ), (4.26)

where δ and δ′ denote the Dirac delta function and its derivative, understood in the sense of distributions.
Inserting (4.26) into (4.23) and integrating produces closed-form expressions for both v̄N (T, logF0; enc) and
v̄N (T, logF0; Id).

Figure 3 plots Q̄N (T, F0) as a function of F0.

5 Conclusion

In Carr et al. (2012), the authors model the forward price as the exponential of a Lévy process time-changed
by a continuous increasing stochastic clock. In this setting, they show that a variance swap has the same
value as a fixed number of European log contracts. The exact number of log contracts that price the variance
swap depends only on the dynamics of the driving Lévy process, irrespective of the time-change.

This paper generalizes the underlying forward price dynamics to time-changed exponential Markov
processes, where the background process may have a state-dependent (i.e., local) volatility and Lévy kernel,
and where the stochastic time-change may have arbitrary dependence or correlation with the Markov process.
In the time-changed Markov setting, we prove that the variance swap is priced by a European-style contract
whose payoff depends only on the dynamics of the Markov process, not on the time-change. We explicitly
compute the payoff function that prices the variance swap for various driving Markov processes. When the
Markov process is a Lévy process we recover the results of Carr et al. (2012).

For certain Markov processes, we also compute directly from model parameters an approximation for
valuation of European-style contracts, showing the variation in the ratio of the VS value to the log contract
value as a function of the current level of the underlying. This is in contrast to Carr et al. (2012), who show
in the more restrictive time-changed Lévy process setting that this ratio is constant.

Thanks

The authors are grateful to Feng Zhang and Stephan Sturm for their helpful comments.
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Figure 1: In this figure, we set F0 = 1, α = 1, β = 0, δ = 0.35, ν0 ≡ 0, ν1 = δz0 where z0 = 2.5, and we plot
h(FT ) as a function of FT with c = 0 (solid), c = −1 (dashed) and c = −2 (dotted). Note that, when c = 0,
we are in the setting of Section 4.1 and thus h is a log contract plus an affine function.
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Figure 2: In this figure, we set F0 = 1, α = 1, β = 0, δ = 1, ν0 ≡ 0, ν1 = δz0 where z0 = −2.5, and we plot
h(FT ) as a function of FT with c = 0 (solid), c = 2 (dashed) and c = 4 (dotted). Note that, when c = 0, we
are in the setting of Section 4.1 and thus h is a log contract plus an affine function.
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Figure 3: A plot of Q̄N (T, F0), our N th order approximation of Q(T, F0) := E [logF ]T
−E log(FT /F0) as a function of F0

(solid line). In this plot, the forward price is given by Ft = exp(Yt) (i.e., no time-change) and the Markov
process Y has local variance a2(x) = 2ω2 and Lévy kernel µ(x, dz) = δω2ecxν(dz) where ν = δz0 . We use the
following parameters: c = 0.395, δ = 1.0, ω = 0.3, z0 = −1.0 and T = 1.0. We fix N = 35. Note that as
F0 → 0, the jump intensity goes to zero: δω2F c0 → 0. Accordingly, as F0 → 0 the ratio E [logF ]T

−E log(FT /F0) → 2,
which is what one would expect for a forward price process that experiences no jumps (see equation (4.2)).
As F0 →∞ and the jump-intensity increases, we expect the ratio E [logF ]T

−E log(FT /F0) → µ2/ϕ0 = e, which is the
corresponding ratio for a pure-jump Lévy-type process (see equation (4.3)). Note that if the Markov process
Y were a Lévy process (i.e., with constant variance coefficient and Lévy measure), as in Carr et al. (2012),
the ratio E [logF ]T

−E log(FT /F0) would be a constant independent of F0.
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