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Abstract

We consider a linear kinetic transport equation under a diffusive scaling, that converges to a
diffusion equation as the Knudsen number ε→ 0. In [3, 21], to achieve the asymptotic preserving
(AP) property and unconditional stability in the diffusive regime with ε� 1, numerical schemes
are developed based on an additional reformulation of the even-odd or micro-macro decomposed
version of the equation. The key of the reformulation is to add a weighted diffusive term on both
sides of one equation in the decomposed system. The choice of the weight function, however,
is problem-dependent and ad-hoc, and it can affect the performance of numerical simulations.
To avoid issues related to the choice of the weight function and still obtain the AP property
and unconditional stability in the diffusive regime, we propose in this paper a new family of AP
schemes, termed as IMEX-DG-S schemes, directly solving the micro-macro decomposed system
without any further reformulation. The main ingredients of the IMEX-DG-S schemes include
globally stiffly accurate implicit-explicit (IMEX) Runge-Kutta (RK) temporal discretizations
with a new IMEX strategy, discontinuous Galerkin (DG) spatial discretizations, discrete ordinate
methods for the velocity space, and the application of the Schur complement to the algebraic
form of the schemes to control the overall computational cost. The AP property of the schemes
is shown formally. With an energy type stability analysis applied to the first order scheme,
and Fourier type stability analysis applied to the first to third order schemes, we confirm the
uniform stability of the methods with respect to ε and the unconditional stability in the diffusive
regime. A series of numerical examples are presented to demonstrate the performance of the
new schemes.

1 Introduction

Important physical phenomena like radiative transfer and neutron transport can be modeled by
kinetic transport equations. In this work, we consider a linear kinetic transport equation under
a diffusive scaling:

ε∂tf + v∂xf =
σs
ε

(〈f〉 − f)− εσaf. (1.1)

Here, f(x, v, t) is the probability distribution function of particles, x ∈ Ωx is the spatial position,
v ∈ Ωv is the velocity with Ωv being bounded, and t is time. σs(x) ≥ 0 and σa(x) ≥ 0 are the
scattering and the absorption coefficients, respectively. 〈f〉 =

∫
Ωv
fdν, where ν is a measure of

the velocity space satisfying
∫

Ωv
dν = 1. ε > 0 denotes the Knudsen number, which is the ratio

of mean free path of particles to the characteristic length.
The linear kinetic transport equation (1.1) has a multiscale nature. With the assumption

σs > 0, the kinetic transport equation will converge to its diffusion limit as ε→ 0:

∂tρ = 〈v2〉∂x(∂xρ/σs)− σaρ, (1.2)
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where ρ = 〈f〉 is the macroscopic density of particles. This multiscale nature poses com-
putational challenges: (1) a standard explicit numerical scheme has a time step restriction
∆t ≤ O(εh) (h is the mesh size) due to numerical stability, with prohibitive computational cost
for small ε; (2) an implicit scheme, though possibly being unconditionally stable and hence not
suffering from stability issue, may still fail to capture the correct physical limit as ε → 0 on
under-resolved meshes [4, 20].

Asymptotic preserving (AP) schemes [11, 8], which preserve the asymptotic behavior of the
physical model on the discrete level, are a well established candidate to address above challenges.
An AP scheme for (1.1) converges to a scheme solving the limiting diffusion equation (1.2) as
ε→ 0, while being consistent and stable for a broad range of ε, even on under-resolved meshes
for small ε. AP schemes having explicit limiting schemes are considered in [12, 14, 13, 16, 10].
With the diffusive nature of the physical limit and the explicitness of the limiting schemes, these
methods have a parabolic time step restriction ∆t = O(h2) in the diffusive regime ε � 1. To
enhance the stability, AP schemes with implicit limiting schemes are developed in [3, 21], and
they are demonstrated, either numerically or analytically, to be unconditionally stable in the
diffusive regime.

To achieve unconditional stability in the diffusive regime, in [3], a second reformulation is
introduced to the even-odd decomposition [17, 13] of (1.1). And a similar strategy is applied to
the micro-macro decomposition [19] of (1.1) in [21]. Taking the methods in [21] as an example, a
weighted diffusive term ω∂x(∂xρ/σs), determined by the diffusion limit, is added to both sides of
one equation in the micro-macro decomposed system. Then, a suitable implicit-explicit (IMEX)
Runge-Kutta (RK) time discretization is applied to the newly reformulated system. Under
the adopted IMEX strategy, the two added diffusive terms are treated differently. In space,
local discontinuous Galerkin (LDG) method [7] is applied. The resulting IMEX-LDG schemes
are AP and can be high order, with the limiting schemes being implicit to solve the diffusion
limit. Based on Fourier analysis, stability condition is obtained in [21] by numerically solving an
eigenvalue problem, and it confirms the unconditional stability in the diffusive regime. Following
an energy approach, the stability condition is rigorously established in [22] for the first order in
time scheme applied to the model with general material properties σs(x) and σa(x).

In a multiscale problem, σs(x) may vary spatially, and the diffusion dominant and transport
dominant subregions can coexist. Despite the success of enhancing the stability in the diffusive
regime, the strategy in [3, 21] with an additional reformulation also faces some issues. First, the
choice of the numerical weight is problem-dependent, and this ad-hoc choice has an influence on
the performance of numerical simulations. Second, when the scattering coefficient σs(x) varies
spatially, intuitively, a spatially dependent weight function ω seems to be preferred to better
capture the multiscale behavior. However, with such a spatially dependent weight, an extra
non-physical assumption would be needed to maintain local conservation property, see Section
2 for more discussions.

To overcome these issues and still accomplish unconditional stability in the diffusive regeime,
we here design a new family of IMEX discontinuous Galerkin (DG) AP schemes based on the
Schur complement [25], referred to as IMEX-DG-S methods. Our new schemes directly solve the
micro-macro decomposed system without any additional reformulation, and hence they do not
suffer from issues mentioned above. In time, we apply globally stiffly accurate IMEX-RK time
integrators [3] with a new IMEX strategy. In space, we use DG discretizations [6] with carefully
chosen numerical fluxes. In the velocity space, a discrete ordinates method [23] is utilized. On
the solver level, the key is to apply the Schur complement to the fully discrete system, and
this is important for the computational cost. Indeed our proposed methods have comparable
computational complexity as the IMEX-LDG schemes in [21]. As ε → 0, asymptotic analysis
shows that our new schemes formally converge to high order methods that involve implicit
RK methods in time and LDG methods in space solving the diffusion limit, implying the AP
property of the schemes. When an initial layer exists in the solution, our schemes no longer need
special treatment for the first step as in [21] in order to stay AP. With an energy type stability
analysis applied to the first order scheme, and Fourier type stability analysis applied to the first
to third order schemes, we obtain stability conditions that confirm the uniform stability of the
methods with respect to ε and the unconditional stability in the diffusive regime. A discrete
energy different from that in [9, 22] is used in the energy analysis. Numerical examples are
presented to demonstrate the performance of the IMEX-DG-S schemes and its advantage over
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the IMEX-LDG schemes in some test cases.
The rest of the paper is organized as follows. In Section 2, we present the micro-macro

decomposition, and briefly review the additional reformulation strategy in [21] to motivate our
work. In Section 3, we define our numerical schemes, and provide the details of the Schur
complement for the final matrix-vector system. In Section 4, formal asymptotic analysis is
presented to confirm the AP property. In Section 5, energy and Fourier analyses are performed
to obtain stability conditions. In Section 6, numerical results are reported to illustrate the
performance of the proposed schemes, and this will be followed by conclusions in Section 7.

2 Micro-macro decomposition and motivation

Following the micro-macro decomposition framework [19, 16], we reformulate (1.1). We first
define a scattering operator Lf = 〈f〉 − f , and let Π denote the L2 projection onto the null
space of L: Null(L) = Span{1}. We then decompose f orthogonally into f = ρ + εg, where
ρ := Πf = 〈f〉, and g := 1

ε (I − Π)f satisfying 〈g〉 = 0. Finally we apply Π and its orthogonal
complement I−Π to (1.1), and obtain the micro-macro decomposed system:

∂tρ+ ∂x〈vg〉 = −σaρ, (2.1a)

ε∂tg + (I−Π)∂x(vg) +
1

ε
v∂xρ = −σs

ε
g − εσag. (2.1b)

Assume σs(x) > 0. As the Knudsen number ε → 0, (2.1) formally converges to its diffusion
limit

σsg = −v∂xρ, ∂tρ = −∂x〈vg〉 − σaρ = 〈v2〉∂x(∂xρ/σs)− σaρ. (2.2)

To define AP schemes with unconditional stability in the diffusive regime with ε � 1, [21]
applies a second reformulation to (2.1) by adding the weighted diffusive term 〈v2〉∂x(ω∂xρ/σs)
to both sides of (2.1a):

∂tρ+ ∂x〈v (g + vω(∂xρ/σs) )〉 = 〈v2〉∂x(ω∂xρ/σs)− σaρ, (2.3a)

ε∂tg + (I−Π)∂x(vg) +
1

ε
v∂xρ = −σs

ε
g − εσag. (2.3b)

Here, ω is a non-negative numerical weight function, and it satisfies ω → 1 as ε→ 0.
In [21], globally stiffly accurate IMEX-RK time discretizations are applied, where the weighted

diffusive term 〈v2〉∂x(ω∂xρ/σs) on the left hand side of (2.3a) is treated explicitly and that on
the right hand side is treated implicitly. With LDG methods further applied in space, the
resulting schemes are AP, unconditionally stable in the diffusive regime, and they also show
good performance numerically. However, the choice of ω is problem-dependent, and it can affect
the performance of the methods (see. e.g. Examples 2, 4, 5 in Section 6). Moreover, when
σs(x) is not constant, a spatially dependent weight ω would be preferred intuitively in order
to better capture the multiscale behavior. If such weight function is used, one would need to
assume ω∂xρ/σs to be continuous to ensure the local conservation, and this is apparently not
physical due to the weight-dependence. As far as we know, only weight functions that do not
vary spatially have been considered in the literature.

3 Numerical methods

In this section, we will design a new family of AP schemes directly based on the micro-macro
decomposition (2.1), aiming at achieving unconditional stability in the diffusive regime without
the need for a weight function. In the following subsections, we will present discretizations in
time, in space, and in velocity. For the fully discrete schemes, Schur complement will be applied
to their algebraic systems. We end this section by extending the IMEX strategy to some more
general kinetic transport models. Throughout this section, periodic boundary conditions are
assumed in space.
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3.1 Time discretization

In time, we apply globally stiffly accurate IMEX-RK methods of type ARS. The first order one
is defined as follows. Given ρn and gn at t = tn, we seek ρn+1 and gn+1 at tn+1 = tn + ∆t,
which satisfy

ρn+1 − ρn

∆t
+ ∂x〈vgn+1〉 = −σaρn+1, (3.1a)

gn+1 − gn

∆t
+

1

ε
(I−Π)(v∂xg

n) +
1

ε2
v∂xρ

n+1 = − 1

ε2
σsg

n+1 − σagn+1. (3.1b)

The same IMEX strategy in (3.1) will be also used to achieve high order temporal accuracy.
Recall that a general IMEX-RK scheme can be represented by a double Butcher tableau:

c̃ Ã
b̃T

c A
bT

. (3.2)

Here, Ã = (ãij), A = (aij) are s× s lower triangular matrices, and ãii = 0, i = 1, · · · s. b̃ = (b̃i),

b = (bi), c̃ = (c̃i), and c = (ci) are s-dimensional vectors, and c̃i =
∑i−1
j=1 ãij , ci =

∑i
j=1 aij . An

IMEX-RK scheme is globally stiffly accurate [3] if

cs = c̃s = 1, and bj = asj , b̃j = ãsj , ∀j = 1, . . . , s,

and it is of type ARS [1] if

A =

[
0 0

0 Â

]
, where Â is invertible. (3.3)

For the second and third order accuracy, we use ARS(2,2,2) and ARS(4,4,3), respectively [1, 3].

3.2 Space discretization

Let Ωx = [xL, xR] be the computational domain, and Ωh =
{
Ii = [xi− 1

2
, xi+ 1

2
], i = 1, . . . , N

}
be a partition of Ωx. Let xi = (xi− 1

2
+ xi+ 1

2
)/2, hi = xi+ 1

2
− xi− 1

2
, h = maxi hi. Given a

nonnegative integer k, define the discrete space Ukh = {u ∈ L2(Ωx) : u|Ii ∈ P k(Ii),∀1 ≤ i ≤ N},
where P k(Ii) denotes the space of polynomials with degree at most k on Ii. Define u±

i+ 1
2

=

lim∆x→0± u(xi+ 1
2

+ ∆x) and the jump [u]i+ 1
2

= u+
i+ 1

2

− u−
i− 1

2

, ∀i.
We apply the following DG spatial discretization to the semi-discrete method in (3.1). Given

numerical solutions ρnh and gnh ∈ Ukh , we look for ρn+1
h , gn+1

h ∈ Ukh satisfying, ∀φ, ψ ∈ Ukh

(
ρn+1
h − ρnh

∆t
, φ) + lh

(
〈vgn+1

h 〉, φ
)

= −
(
σaρ

n+1
h , φ

)
, (3.4a)

(
gn+1
h − gnh

∆t
, ψ) +

1

ε
b̃h,v(g

n
h , ψ)− 1

ε2
vdh(ρn+1

h , ψ) = − 1

ε2
(σsg

n+1
h , ψ)− (σag

n+1
h , ψ). (3.4b)

Here, (·, ·) is the standard L2 inner product of L2(Ωx). Bilinear forms dh(·, ·), lh(·, ·), b̃h,v(·, ·)
are defined as

dh(ρh, ψ) =
∑
i

∫
Ii

ρh∂xψdx+
∑
i

(ρ̆h)i− 1
2
[ψ]i− 1

2
, (3.5a)

lh(〈vgh〉, φ) = −
∑
i

∫
Ii

〈vgh〉∂xφdx−
∑
i

〈̂vgh〉i− 1
2
[φ]i− 1

2
, (3.5b)

b̃h,v(gh, ψ) = ((I−Π)Duph (gh; v), ψ) = (Duph (gh; v)− 〈Duph (gh; v)〉, ψ), (3.5c)

where Duph (gh; v) ∈ Ukh is an upwind approximation to v∂xg for any given velocity v:

(Duph (gh; v), ψ) = −
∑
i

(∫
Ii

vgh∂xψdx

)
−
∑
i

(̃vgh)i− 1
2
[ψ]i− 1

2
, ∀ψ ∈ Ukh . (3.6)
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(ṽgh)i− 1
2
, 〈̂vgh〉i− 1

2
and (ρ̆h)i− 1

2
are numerical fluxes and chosen as:

upwind: (ṽgh)i− 1
2

:=

{
(vgh)−

i− 1
2

, if v ≥ 0,

(vgh)+
i− 1

2

, if v < 0,
(3.7a)

alternating: (ρ̆h)i− 1
2

= (ρh)−
i− 1

2

, 〈̂vgh〉i− 1
2

= 〈vgh〉+i− 1
2
. (3.7b)

Based on the Riesz representation, we can further find two well-defined bounded linear operators
D−h ,D

+
h : Ukh → Ukh such that

(D−h φ, ψ) = −dh(φ, ψ), (D+
h φ, ψ) = lh(φ, ψ), ∀φ, ψ ∈ Ukh .

D±h can be seen as discrete derivative operators, and the scheme (3.4) can be rewritten as:

ρn+1
h − ρnh

∆t
+D+

h 〈vg
n+1
h 〉 = −πh(σaρ

n+1
h ), (3.8a)

gn+1
h − gnh

∆t
+

1

ε
(I−Π)Duph (gnh ; v) +

v

ε2
D−h ρ

n+1
h = − 1

ε2
πh(σsg

n+1
h )− πh(σag

n+1
h ), . (3.8b)

with πh being the L2 projection onto Ukh .
The DG spatial discretization can be coupled directly with high order IMEX-RK time in-

tegrators. At t = 0, ρ0
h and g0

h are initialized by L2 projection, namely, ρ0
h = πh(ρ(x, 0)) and

g0
h = πh(g(x, v, 0)). The following lemma summarizes a property of the bilinear forms lh and
dh, and it is important in stability analysis and can be easily verified.

Lemma 3.1. With periodic boundary conditions in space, there hold

lh(φ, ψ) = dh(ψ, φ), ∀φ, ψ ∈ Ukh , and D+
h = −(D−h )>, (3.9)

where the superscript > to an operator denotes its adjoint.

3.3 Velocity discretization

In velocity variable, we will apply the discrete ordinates method [23]. Let {vl}Nv

l=1 denote a set of

quadrature points as collocation points in the velocity space Ωv and {ωl}Nv

l=1 be the corresponding
quadrature weights. An integral in velocity will be approximated by

〈η(v)〉 =

∫
Ωv

η(v)dν ≈
Nv∑
l=1

ωlη(vl) ,: 〈η(v)〉h, (3.10)

Particularly, we choose {ωl}Nv

l=1 and {vl}Nv

l=1 satisfying

〈v2〉 = 〈v2〉h. (3.11)

This requirement is essential for our fully discrete schemes to capture the correct diffusion limit
as ε→ 0.

3.4 Fully discrete schemes

By combining the temporal, spatial, and velocity discretizations described above, we are now
ready to present the fully discrete schemes: Given ρnh ∈ Ukh , {gnh,l}

Nv

l=1 ∈ Ukh , we look for

ρn+1
h ∈ Ukh , {gn+1

h,l }
Nv

l=1 ∈ Ukh , satisfying for i = 1, . . . , s, l = 1, . . . , Nv

(ρ
n,(i)
h , φ) = (ρnh, φ)−∆t

i∑
j=1

aij

(
(D+

h 〈vg
n,(j)
h 〉h, φ) + (σaρ

n,(j)
h , φ)

)
,∀φ ∈ Ukh (3.12a)

ε2(g
n,(i)
h,l , ψ) = ε2(gnh,l, ψ)− ε∆t

i−1∑
j=1

ãij

(
(Duph (g

n,(j)
h ; vl), ψ)− (〈Duph (g

n,(j)
h ; v)〉h, ψ)

)

−∆t

i∑
j=1

aij

(
vl(D−h ρ

n,(j)
h , ψ) + (σsg

n,(j)
h,l , ψ) + ε2(σag

n,(j)
h,l , ψ)

)
,∀ψ ∈ Ukh (3.12b)

ρn+1
h = ρ

n,(s)
h , gn+1

h,l = g
n,(s)
h,l . (3.12c)
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We here have used gnh,l := gnh(·, vl), gn,(i)h,l := g
n,(i)
h (·, vl), and 〈G(g

n,(j)
h )〉h =

∑Nv

l=1 ωlG(g
n,(j)
h,l )

with G : L2(Ωv)→ L2(Ωv). And the intermediate functions ρ
n,(i)
h , g

n,(i)
h,l are also in Ukh .

Particularly, the first order in time scheme is: ∀φ, ψ ∈ Ukh , l = 1, . . . , Nv,

(
ρn+1
h − ρnh

∆t
, φ) + lh

(
〈vgn+1

h 〉h, φ
)

= −
(
σaρ

n+1
h , φ

)
, (3.13a)

(
gn+1
h,l − gnh,l

∆t
, ψ) +

1

ε
bh,v(g

n
h,l, ψ)− 1

ε2
vdh(ρn+1

h , ψ) = − 1

ε2
(σsg

n+1
h,l , ψ)− (σag

n+1
h,l , ψ), (3.13b)

where

bh,v(g
n
h,l, ψ) = (Duph (gnh ; vl), ψ)− (〈Duph (gnh ; v)〉h, ψ). (3.14)

From here on, we will use IMEXp-DG-S to refer to the fully discrete scheme with p-th
order IMEX-RK time integrator, and use IMEXp-DGk-S with the discrete space Uk−1

h in the
spatial discretization. Here S stands for the Schur complement, which will be discussed in next
subsection. Finally one can obtain the following property of the numerical solution following a
similar proof of Lemma 3.1 in [9],

〈gnh〉h = 0, ∀n ≥ 0. (3.15)

3.5 Matrix-vector formulation and Schur complement

To implement the proposed schemes, we will further apply Schur complement at the algebraic
level. With this, our methods will have comparable computational complexity as the IMEX-
LDG schemes in [21, 22]. Next we use the first order in time IMEX1-DG-S scheme to illustrate.
Similar discussion can go to the high order in time schemes.

We start with the matrix-vector formulation of the IMEX1-DG-S scheme (3.13). Let {el(x)}ml=1

be a basis of the discrete space Ukh . Define e = (e1(x), . . . , em(x))T . Then the numerical solu-
tions can be expanded as

ρnh(x) =

m∑
i=1

ρni ei(x) = (ρn)Te, gnh,j(x) =

m∑
i=1

gnj,iei(x) = (gnj )Te,

where ρn = (ρn1 , . . . , ρ
n
m)T and gnj = (gnj,1, . . . , g

n
j,m)T .

Define the mass matrix (M)ij = (ej , ei) and stiff matrices (D+)ij = (D+
h ej , ei), (D−)ij =

(D−h ej , ei). Also define (Σs)ij = (σsej , ei) and (Σa)ij = (σaej , ei). The fully discrete IMEX1-
DG-S scheme (3.13) can be written into its matrix-vector form:

L
(
ρn+1,gn+1

1 ,gn+1
2 , . . .gn+1

Nv

)T
=
(
bn0 ,b

n
1 ,b

n
2 , . . . ,b

n
Nv

)T
, and, (3.16a)

L =


M + ∆tΣa ∆tω1v1D

+ ∆tω2v2D
+ . . . ∆tωNv

vNv
D+

v1∆tD− Θ 0 . . . 0
v2∆tD− 0 Θ . . . 0

...
...

...
. . .

...
vNv∆tD− 0 0 . . . Θ

 . (3.16b)

Here Θ = ε2(M+∆tΣa)+∆tΣs, and bnj , ∀j = 0, . . . , Nv, are vectors determined by the data on
time level n. Given that the mass matrix M is symmetric positive definite (SPD) and σs ≥ 0,
σa ≥ 0, Θ is SPD hence invertible. Following the standard procedure of the Schur complement
[25], we first express gn+1

j in terms of bnj and ρn+1, namely,

gn+1
j = Θ−1

(
bnj − vj∆tD−ρn+1

)
, ∀j = 1, . . . , Nv. (3.17)

With the local nature of the DG discrete space Ukh , its basis functions can be chosen such that
M , Σs and Σa are block diagonal. As a result, Θ can be inverted locally on each element, with
an O(N) total cost.
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Next substitute (3.17) into the first row of (3.16) and utilize 〈v2〉 = 〈v2〉h =
∑
j ωjv

2
j , one

obtains

Hρn+1 = b̃n0 , (3.18)

with

H = M + ∆tΣa − 〈v2〉∆t2D+Θ−1D−, (3.19)

and b̃n0 depends on the solution on time level n. For each time step, we need to invert H. Based
on Lemma 3.1, −D+

h is the adjoint operator of D−h . This leads to −D+ = (D−)T , therefore H
is SPD. Indeed H is a discrete version of 1 + ∆tσa − 〈v2〉∆t2∂x

(
(ε2(1 + ∆tσa) + ∆tσs)

−1∂x

)
, a

diffusive operator with the absorption effect. With the nice property such as being SPD, H is
much easier to invert numerically than the matrix L in (3.16).

For high order IMEX-RK schemes, the Schur complement can be applied similarly. On
each inner stage, a discrete diffusive operator with the absorption effect needs to be inverted.
Particularly, in the double Butcher tableaus of either ARS(2,2,2) or ARS(4,4,3), the diagonal
entries of the matrix from the implicit part are exactly the same. Hence, for each time step,
exactly the same matrix is inverted (numerically) for all inner stages.

Remark 3.1. With a similar derivation, one can show that the IMEX1-LDG scheme in [21, 22]

needs to invert H̃ = M + ∆tΣa − ω〈v2〉∆tD+Σ−1
s D− for each step, where ω → 1 as ε → 0.

With both Σs and Θ being block diagonal, the computational cost of the IMEX1-DG-S scheme
is comparable with that of IMEX1-LDG schemes in [21, 22]. The same comment also goes

to higher order methods in both families. Note that as ε → 0, H̃ and H approach the same
operator.

Remark 3.2. For the discretization of the velocity space, one can alternatively apply the PN
method [23], which expands f in terms of orthogonal polynomials in the velocity variable v. If
applying PN method as well as our spatial and temporal discretizations, based on the Schur
complement, one still just needs to invert one discrete diffusive operator for one inner RK stage.
The key to verify this is to use the commuting property (〈ψ(v, x)〉, φ(x)) = 〈(ψ(v, x), φ(x))〉.
The schemes with the PN method in velocity are not explored here.

3.6 More general linear kinetic transport equations

Though not considered in this paper, we want to point out that our temporal strategy works for
more general linear kinetic transport equations, for example, the case when the scattering effect
is anisotropic in the velocity space. Consider a more general linear kinetic transport equation:

ε∂tf + v∂xf =
1

ε
Qf, (3.20)

where Q is a collision operator. As in [16], we assume that there exists an equilibrium state
E independent of t and x satisfying E ≥ 0, 〈E〉 = 1 and 〈vE〉 = 0. The collision operator Q
satisfies the following:

1. Q is a linear operator in the velocity space, independent of f , and local in x;

2. Q is non-positive self-adjoint;

3. Null(Q) = Span{E} = {f = ρE = 〈f〉E}.
Following [16], we apply micro-macro decomposition. Define an orthogonal projection Π :

L2(Ωv;E
−1dv)→ Null(Q), that is Πf = ρE. Rewrite f as f = Πf + (I−Π)f = ρE + εg. The

micro-macro decomposed system of (3.20) is

∂tρ+ ∂x〈vg〉 = 0, (3.21a)

∂tg +
1

ε
(I−Π)(v∂xg) +

1

ε2
vE∂xρ =

1

ε2
Qg. (3.21b)
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Under the assumption on Q, as ε→ 0 we formally obtain the diffusion limit:

g = Q−1(vE)∂xρ, (3.22a)

∂tρ+ ∂x(〈vQ−1(vE)〉∂xρ) = 0. (3.22b)

Apply the same time discretization as (3.1), we have

ρn+1 − ρn

∆t
+ ∂x〈vgn+1〉 = 0, (3.23a)

gn+1 − gn

∆t
+

1

ε
(I−Π)(v∂xg

n) +
1

ε2
vE∂xρ

n+1 =
1

ε2
Qgn+1. (3.23b)

The spatial derivatives can be further replaced by discrete derivatives as in Section 3.2. On the
solver level, we apply Schur complement as below. At each time step, we first express

gn+1 = (ε2 −∆tQ)−1
(
−vE∆t∂xρ

n+1 + bn
)
, (3.24)

where bn is determined by the data on time level n. We then substitute (3.24) into (3.23a), and

obtain
(
1−∆t∂x(κ∆t(x)∂x)

)
ρn+1 = b̃n, where κ∆t(x) = ∆t〈v(ε2−∆tQ)−1(vE)〉 and b̃n depends

on the solution on time level n. To obtain ρn+1, a discrete diffusion operator is inverted. If ∆t
is fixed in time, κ∆t(x) can be pre-computed locally.

4 AP property

We formally analyze the asymptotic behavior of the proposed schemes in (3.12) and show they
are AP. Assume the initial data ρ(x, 0) and g(x, v, 0) are uniformly bounded with respect to
ε. Then, the initialization through L2 projection leads to uniform boundedness of ρ0

h and
g0
h. Using mathematical induction and boundedness of the discrete operator D±h and Duph , we

formally obtain that as ε→ 0, ∀φ, ψ ∈ Ukh , ∀n ≥ 0,

(ρ
n,(i)
h , φ) = (ρnh, φ)−∆t

i∑
j=1

aij

(
(D+

h 〈vg
n,(j)
h 〉h, φ) + (σaρ

n,(j)
h , φ)

)
, i = 1, . . . , s, (4.1a)

(σsg
n,(i)
h,l , ψ) = −vl(D−h ρ

n,(i)
h , ψ), l = 1, . . . , Nv, i = 1, . . . , s, (4.1b)

ρn+1
h = ρ

n,(s)
h , gn+1

h,l = g
n,(s)
h,l , l = 1, . . . , Nv. (4.1c)

Multiply ωlvl on both sides of (4.1b) and sum up with respect to l, we get

(σs〈vgn,(i)h 〉h, φ) =

Nv∑
l=1

ωlvl(σsg
n,(i)
h,l , φ) = −

Nv∑
l=1

(ωlv
2
l D−h ρ

n,(i)
h , ψ)

= −〈v2〉h(D−h ρ
n,(i)
h , ψ) = −〈v2〉(D−h ρ

n,(i)
h , ψ). (4.2)

Substitute (4.2) into (4.1), then the limiting scheme can be rewritten as: ∀φ, ψ ∈ Ukh , ∀n ≥ 0

(ρ
n,(i)
h , φ) = (ρnh, φ)−∆t

i∑
j=1

aij

(
(D+

h 〈vg
n,(j)
h 〉h, φ) + (σaρ

n,(j)
h , φ)

)
, i = 1, . . . , s, (4.3a)

(σs〈vgn,(i)h 〉h, ψ) = −〈v2〉(D−h ρ
n,(i)
h , ψ), i = 1, . . . , s, (4.3b)

(σsg
n,(i)
h , ψ) = −vl(D−h ρ

n,(i)
h , ψ), l = 1, . . . , Nv, i = 1, . . . , s, (4.3c)

ρn+1
h = ρ

n,(s)
h , gn+1

h,l = g
n,(s)
h,l , l = 1, . . . , Nv. (4.3d)

In (4.3a) and(4.3b), 〈vgn,(i)h 〉h actually provides an approximation to 〈v2〉σ−1
s (x)∂xρ. Hence,

(4.3a), (4.3b) and (4.3d) define a high order implicit RK LDG scheme solving the diffusion limit
(2.2), whose time discretization is determined by the implicit part of the IMEX-RK scheme.
Moreover, in (4.3c), the local equilibrium σsg = −v∂xρ is preserved on the discrete level at each
RK inner stage. Therefore, we formally verify the AP property of the proposed schemes.
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Remark 4.1. Though our analysis above does not require the initial data f(x, v, 0) = ρ(x, 0) +
εg(x, v, 0) to be close to the local equilibrium σsg(x, v, 0) = −v∂xρ(x, 0), it does not cover the
worst scenario g(x, v, 0) = 1

ε (f(x, v, 0)− ρ(x, 0)) = O( 1
ε ). For this case, with formal analy-

sis similar to [21], one can show that the limiting scheme is an O(∆t) perturbation to (4.1),
regardless the temporal accuracy. Hence, the limiting scheme is a first order in time scheme
solving the diffusion limit. This implies that our schemes stay AP, and indeed they are strong
AP [11]. When the temporal accuracy is higher than one, with the O(∆t) perturbation, our AP
schemes suffer from order reduction for the case of g(x, v, 0) = O( 1

ε ). To recover the full p-th
order temporal accuracy as designed, one can adopt the strategy proposed in [21] and alter the
first time step size into ∆t1 = ∆tp, where ∆t is the time step size for later steps, predicted by
stability analysis.

5 Stability

In this section, numerical stability analysis will be carried out. An energy approach will be
applied to the first order IMEX1-DG1-S scheme in Section 5.1, and Fourier analysis will then
be applied to the first to the third order schemes, namely IMEXk-DGk-S scheme, k = 1, 2, 3 in
Section 5.2. The analysis shows that our schemes are uniformly stable with respect to ε and
unconditionally stable in the diffusive regime. Throughout this Section, we assume periodic
boundary conditions in x, and σs(x) ≥ σm > 0, ∀x ∈ Ωx.

5.1 Energy analysis for IMEX1-DG1-S scheme

In this section, we will present an energy approach for stability analysis of the IMEX1-DG1-S
scheme (3.13). The mesh is assumed to be regular, namely, there exists δ such that hi/h ≥ δ, ∀i,
during the mesh refinement. We use || · || to denote the standard L2 norm for L2(Ωx), and let
|||g||| =

√
〈(g, g)〉h and |||g|||s =

√
〈(σsg, g)〉h. For stability, we first define a µ-dependent

discrete energy Eµ,h with µ ∈ [0, 1] as a parameter. To guarantee Eµ,h non-increasing, we
obtain µ-dependent stability conditions. The results are further optimized with respect to
µ. The energy type stability analysis for higher order in time schemes is left to our future
investigation.

Definition 5.1. Given µ ∈ [0, 1], we define a discrete energy for our schemes,

Enµ,h = ||ρnh||2 + ε2|||gnh |||2 + (1− µ)∆t|||gnh |||2s. (5.1)

The scheme is µ-stable, if En+1
µ,h ≤ Enµ,h, ∀n ≥ 0. If there exists µ ∈ [0, 1] such that the scheme is

µ-stable, then the scheme is stable. If the scheme is stable (resp. µ-stable) for arbitrary ∆t > 0,
then it is unconditionally stable (resp. µ-stable).

Remark 5.2. The µ-dependent discrete energy Enµ,h in (5.1) is quite different from that in
[9, 22]. Particularly, the discrete energy in [9, 22] involves ρh and gh from different time levels.

Theorem 5.3 (µ-stability). Given µ ∈ [0, 1], the IMEX1-DG1-S scheme is unconditionally
µ-stable, if

ε

σmh
≤ λ0(µ) :=

(1− µ)δ

2||v||∞
. (5.2)

Otherwise, it is µ-stable under the time step condition

∆t ≤ τ0(µ) :=
2ε2h

2ε||v||∞/δ − (1− µ)σmh
. (5.3)

Here δ is the mesh regularity parameter.
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Proof. Take φ = ρn+1
h in (3.13a), and take ψ = ε2gn+1

h in (3.13b). Sum up (3.13b) for different
collocation points vl with the corresponding weight ωl, we have

1

∆t
(ρn+1
h − ρnh, ρn+1

h ) + lh(〈vgn+1
h 〉h, ρn+1

h )

=
1

2∆t
(||ρn+1

h ||2 − ||ρnh||2 + ||ρn+1
h − ρnh||2) + lh(〈vgn+1

h 〉h, ρn+1
h ) = −(σaρ

n+1
h , ρn+1

h ), (5.4a)

ε2

∆t
〈(gn+1

h − gnh , gn+1
h )〉h + ε〈bh,v(gnh , gn+1

h )〉h − 〈vdh(ρn+1
h , gn+1

h )〉h

=
ε2

2∆t
(|||gn+1

h |||2 − |||gnh |||2 + |||gn+1
h − gnh |||2) + ε〈bh,v(gnh , gn+1

h )〉h − dh(ρn+1
h , 〈vgn+1

h 〉h)

=− |||gn+1
h |||2s − ε2〈(σagn+1

h , gn+1
h )〉h. (5.4b)

Summing up (5.4a) and (5.4b), with Lemma 3.1, we obtain

1

2∆t
(||ρn+1

h ||2 + ε2|||gn+1
h |||2 − ||ρnh||2 − ε2|||gnh |||2) +

1

2∆t
(||ρn+1

h − ρnh||2 + ε2|||gn+1
h − gnh |||2)

+ (σaρ
n+1
h , ρn+1

h ) + ε2〈(σagn+1
h , gn+1

h )〉h + |||gn+1
h |||2s

+ ε〈bh,v(gnh − gn+1
h , gn+1

h )〉h + ε〈bh,v(gn+1
h , gn+1

h )〉h = 0. (5.5)

Similar to [22], we split |||gn+1
h |||2s into

|||gn+1
h |||2s = µ|||gn+1

h |||2s + (1− µ)
(1

2
|||gn+1

h |||2s −
1

2
|||gnh |||2s +

1

4
|||gn+1

h − gnh |||2s +
1

4
|||gn+1

h + gnh |||2s
)
.

(5.6)

With the piecewise constant in the discrete space, ∂xg
n+1
h = 0, and |u(xi± 1

2
)| = h

−1/2
i ||u||L2(Ii),

∀u ∈ P 0(Ii). Following similar steps as in [9] (such as its equation (3.22) and (3.24)), using the
property of the solution in (3.15) and Young’s inequality, we obtain

〈bh,v(gn+1
h , gn+1

h )〉h =

〈∑
i

|v|
2

[gn+1
h ]2i− 1

2

〉
h

, (5.7)

∣∣〈bh,v(gn+1
h − gnh , gn+1

h )〉h
∣∣ ≤ η|||gn+1

h − gnh |||2 +
1

ηδh

∑
i

〈
(
|v|
2

[gnh ]i− 1
2
)2

〉
h

. (5.8)

Here, η is a positive parameter, which will be determined later.
Substitute (5.6)-(5.8) into (5.5), and utilize σa ≥ 0, we get

1

2∆t
(En+1

µ,h − E
n
µ,h) +

1

2∆t
||ρn+1

h − ρnh||2 + (
ε2

2∆t
+

1− µ
4

σm − εη)|||gn+1
h − gnh |||2

+
1− µ

4
|||gn+1

h + gnh |||2s + µ|||gh|||2s + ε(1− ||v||∞
2ηδh

)〈
∑
i

〈 |v|
2

[gn+1
h ]2〉h ≤ 0. (5.9)

In order to guarantee En+1
µ,h ≤ Enµ,h, we require

ε2

2∆t
+

1− µ
4

σm − εη ≥ 0, (5.10a)

1− ||v||∞
2ηδh

≥ 0. (5.10b)

We choose η = ε
2∆t + 1−µ

4ε σm, so (5.10a) holds, and the inequality in (5.10b) becomes

ε

∆t
≥ 2ε||v||∞/δ − (1− µ)σmh

2εh
. (5.11)

When ε
σmh

≤ (1−µ)δ
2||v||∞ , (5.11) holds for arbitrary ∆t > 0, hence the method is unconditionally

stable. Otherwise, we need ∆t to satisfy (5.13) to have the conditional µ-stability.
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Next we will optimize the results in Theorem 5.3 in µ to maximize the unconditionally stable
region and also the allowable time step size when the scheme is conditionally stable.

Theorem 5.4 (stability). The IMEX1-DG1-S scheme is unconditionally stable, if

ε

σmh
≤ δ

2||v||∞
. (5.12)

Otherwise, it is stable under the time step condition

∆t ≤ 2ε2h

2ε||v||∞/δ − σmh
. (5.13)

Proof. Based on the definition of µ-stability and stability in Definition 5.1, the results in The-
orem 5.3 further imply that the IMEX1-DG1-S scheme is unconditionally stable if

ε

σmh
≤ max
µ∈[0,1]

λ0(µ) = max
µ∈[0,1]

(
(1− µ)δ

2||v||∞

)
=

δ

2||v||∞
. (5.14)

When ε
σmh

> δ
2||v||∞ , the scheme is conditionally stable under the following time step restriction

∆t ≤ max
µ∈[0,1]

τ0(µ) = max
µ∈[0,1]

(
2ε2h

2ε||v||∞/δ − (1− µ)σmh

)
=

2ε2h

2ε||v||∞/δ − σmh
. (5.15)

Remark 5.5. For a multiscale problem, it is possible to have subregions with σs = 0 where the
problem is purely transport. In this case, σm = 0, and our proofs above still hold. Specifically,
the IMEX1-DG1-S scheme is always conditionally stable under the time step condition ∆t ≤

2ε2hδ
2ε||v||∞ = εhδ

||v||∞ , and the unconditional stability is not expected.

5.2 Fourier Analysis for IMEXk-DGk-S scheme, k = 1, 2, 3

In this section, Fourier analysis is performed for the IMEXk-DGk-S scheme, k = 1, 2, 3, when
the schemes are applied to the one-group transport equation in slab geometry with Ωv = [−1, 1].

Related, 〈f〉 = 1
2

∫ 1

−1
f(v)dv, with dv the standard Lebesgue measure. 16 Gaussian quadrature

points together with the respective quadrature weights are applied to discretize the velocity
space. As typical for Fourier analysis, it is assumed that the mesh is uniform and σs(x) =
σm > 0, ∀x ∈ Ωx. Motivated by that the stability result for the IMEX1-DG1-S scheme in
Section 5.1 does not depend on σa, we further assume σa = 0. Similar to [21], we first identify
an invariant scaling structure of the amplification matrix. Then, by numerically solving an
eigenvalue problem, we obtain the stability condition for IMEXk-DGk-S scheme, k = 1, 2, 3.

Setup of the Fourier analysis: We will use the IMEX1-DGk-S scheme as an example to
demonstrate the setup. On the element Im, the numerical solutions can be expanded as

ρnh(x) =

k−1∑
l=0

ρnmlφ
m
l (x), gnh,j(x) =

k−1∑
l=0

gnj,mlφ
m
l (x), ∀x ∈ Im (5.16)

where φml (x) = φl

(
x−xm

hm/2

)
, φl(x) is the l-th order Legendre polynomial on [−1, 1]. Let ρnm =

(ρnm0, . . . , ρ
n
m k−1)T and gnjm = (gnj,m0, . . . , g

n
j,m k−1)T .

Take the Fourier anstaz ρnm = exp(Iκxm)ρ̂n and gnjm = exp(Iκxm)ĝnj (with I2 = −1), and
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plug them into the IMEX1-DGk-S scheme, we obtain
hM̂ ∆tω1v1D̂

+ ∆tω2v2D̂
+ . . . ∆tωNv

vNv
D̂+

v1∆tD̂− h(ε2 + σm∆t)M̂ 0 . . . 0

v2∆tD̂− 0 h(ε2 + σm∆t)M̂ . . . 0
...

...
...

. . .
...

vNv
∆tD̂− 0 0 . . . h(ε2 + σm∆t)M̂


︸ ︷︷ ︸

GL


ρ̂n+1

ĝn+1
1

ĝn+1
2
...

ĝn+1
Nv



=


hM̂ 0 0 . . . 0

0 ε2hM̂ + ε∆tÛ1 0 . . . 0

0 0 ε2hM̂ + ε∆tÛ2 . . . 0
...

...
...

. . .
...

0 0 0 . . . ε2hM̂ + ε∆tÛNv


︸ ︷︷ ︸

GR


ρ̂n

ĝn1
ĝn2
...

ĝnNv

 . (5.17)

Here, M̂ , D̂+, D̂− and Û are k × k matrices, and they are defined as follows.

(M̂)ij =
1

2

∫ 1

−1

φi(x)φj(x)dx, (5.18a)

(D̂−(ξ) )ij = −
∫ 1

−1

φj(x)∂xφi(x)dx+ φj(1)φi(1)− exp(−Iξ)φj(1)φi(−1), (5.18b)

(D̂+(ξ) )ij = −
∫ 1

−1

φj(x)∂xφi(x)dx+ exp(Iξ)φj(−1)φi(1)− φj(−1)φi(−1), (5.18c)

(Ûl(ξ) )ij =

{
vl(D̂

−(ξ) )ij −
∑Nv

l′=1 ωl′vl′
(
1{vl′≥0}(vl′)(D̂

−(ξ) )ij + 1{vl′<0}(vl′)(D̂
+(ξ) )ij

)
, if vl ≥ 0,

vl(D̂
+(ξ) )ij −

∑Nv

l′=1 ωl′vl′
(
1{vl′≥0}(vl′)(D̂

−(ξ) )ij + 1{vl′<0}(vl′)(D̂
+(ξ) )ij

)
, if vl < 0,

(5.18d)

where ξ = κh is the discrete wave number, and 1S(y) is the indicator function of the set S.
Define block matrices

D− =
(
v1D̂

−, . . . , vNvD̂
−
)T
∈ RkNv×k, D+ =

(
ω1v1D̂

+, . . . , ωNvvNvD̂
+
)
∈ Rk×kNv ,

M = diag(M̂, . . . , M̂) ∈ RkNv×kNv , U = diag(Û1, . . . , ÛNv
) ∈ RkNv×kNv . (5.19)

Then, GL and GR can be rewritten as

GL =

(
hM̂ ∆tD+

∆tD− h(ε2 + σm∆t)M

)
and GR =

(
hM̂ 0

0 ε2hM + ε∆tU

)
, (5.20)

With the amplification matrix asG(1,k) = G(1,k)(ε, σm, h,∆t; ξ) = G−1
L GR and Vn =

(
ρ̂n, ĝn1 , ĝ

n
2 , . . . ĝ

n
Nv

)T
,

(5.17) becomes Vn+1 = G(1,k)Vn. Similarly, the amplification matrix G(p,k) of the IMEXp-
DGk-S scheme can be derived. To study the numerical stability, we will adopt the following
principle.

Principle for Numerical Stability [21]: For any given ε, h,∆t, let the eigenvalues of
G(p,k) be λi(ξ), i = 1, . . . , 2k. Our scheme is said to be stable, if for all ξ ∈ [−π, π], it
satisfies either

(∗) max
i=1,...,2k

{|λi(ξ)|} < 1, or (5.21)

(∗) max
i=1,...,2k

{|λi(ξ)|} = 1 and G(p,k) is diagonalizable. (5.22)

This principle is a necessary condition to guarantee the standard L2 energy non-increasing.
Before presenting the stability results, we first show an intrinsic scaling structure of the ampli-
fication matrices.
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Theorem 5.6. For any given k ≥ 1 and p = 1, 2, 3, the amplification matrix G(p,k)(ε, σm, h,∆t; ξ)

of the IMEXp-DGk-S method is similar to some matrix Ĝ(p,k)( ε
σmh

, ∆t
εh ; ξ). In other words, the

eigenvalues of G(p,k)(ε, σm, h,∆t; ξ) depend on ε, h,∆t, σm only in terms of ε
σmh

and ∆t
εh , or

equivalently, only in terms of ε
σmh

and ε2

σm∆t = ε/(σmh)
∆t/(εh) .

Proof. We start with p = 1. With Jm as the m×m identity matrix, one gets

G(1,k) = G−1
L GR

=

((
σm

ε Jk 0
0 1

ε2hJkNv

)(
hM̂ ∆tD+

∆tD− h(ε2 + σm∆t)M

))−1(σm

ε Jk 0
0 1

ε2hJkNv

)(
hM̂ 0

0 ε2hM + ε∆tU

)
=

(
σmh
ε M̂ σm∆t

ε D+

∆t
ε2hD

− (1 + σm∆t
ε2 )M

)−1(
σmh
ε M̂ 0
0 M + ∆t

εhU

)
. (5.23)

Using the relations of(
σmhJk 0

0 JkNv

)−1( σmh
ε M̂ σm∆t

ε D+

∆t
ε2hD

− (1 + σm∆t
ε2 )M

)(
σmhJk 0

0 JkNv

)
=

(
σmh
ε M̂ ∆t

εhD
+

σm∆t
ε2 D− (1 + σm∆t

ε2 )M

)
,(

σmhJk 0
0 JkNv

)−1(σmh
ε M̂ 0
0 M + ∆t

εhU

)(
σmhJk 0

0 JkNv

)
=

(
σmh
ε M̂ 0
0 M + ∆t

εhU

)
,

we obtain(
σmhJk 0

0 JkNv

)−1

G(1,k)

(
σmhJk 0

0 JkNv

)
=

(
σmh
ε M̂ ∆t

εhD
+

σm∆t
ε2 D− (1 + σm∆t

ε2 )M

)−1(
σmh
ε M̂ 0
0 M + ∆t

εhU

)
=

(
σmh
ε M̂ ∆t

εhD
+

σmh
ε ·

∆t
εhD

− (1 + σmh
ε ·

∆t
εh )M

)−1(
σmh
ε M̂ 0
0 M + ∆t

εhU

)
= Ĝ(1,k)(

ε

σmh
,

∆t

εh
; ξ). (5.24)

This implies that G(1,k) is similar to Ĝ(1,k)( ε
σmh

, ∆t
εh ; ξ).

The proof can be generalized to p = 2, 3 through the mathematical induction. To see this,

let Vn,(0) = Vn, Vn,(l) =
(
ρ̂n,(l), ĝ

n,(l)
1 , ĝ

n,(l)
2 , . . . ĝ

n,(l)
Nv

)T
, l = 1, . . . , s, we have

Vn,(l) =

l−1∑
q=0

G
(p,k)
lq (ε, σm, h,∆t; ξ)V

n,(q), l = 1, . . . , s, and Vn+1 = Vn,(s).

With similar argument as for p = 1, one can find a Ĝ
(p,k)
lq ( ε

σmh
, ∆t
εh ; ξ) such that ∀ l = 1, . . . , s,(

σmhJk 0
0 JkNv

)−1

G
(p,k)
lq (ε, σm, h,∆t; ξ)

(
σmhJk 0

0 JkNv

)
= Ĝ

(p,k)
lq (

ε

σmh
,

∆t

εh
; ξ), q = 0, . . . , l−1.

For every G
(p,k)
lq (ε, σm, h,∆t; ξ), exactly the same similar transformation is performed, hence,

G(p,k) is similar to some Ĝ(p,k)( ε
σmh

, ∆t
εh ; ξ).

Fourier analysis results: Based on Theorem 5.6 and the principle for numerical stability,
the numerical stability results shall only depend on ε

σmh
and ∆t

εh . Set α = log10( ε
σmh

) and

β = log10(∆t
εh ). For the IMEXk-DGk-S scheme, k = 1, 2, 3, we numerically compute eigenvalues

of the amplification matrix by uniformly sampling the discrete wave number ξ ∈ [−π, π] with
spacing 2π

100 , α ∈ [−5, 5] and β ∈ [−5, 4] with 1
20 spacing. The stability results are presented in

Figure 5.1, with the white region being stable, and the black region being unstable. The main
observations are summarized as follows, with k = 1, 2, 3:

1.) For some αk, the IMEXk-DGk-S scheme is unconditionally stable when α < αk, i.e. when
ε

σmh
< Ck. This confirms the unconditional stability of the proposed schemes in the

diffusive regime.
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(a) IMEX1-DG1-S (b) IMEX2-DG2-S (c) IMEX3-DG3-S

Figure 5.1: Stability regions of the IMEXk-DGk-S methods, k = 1, 2, 3. White: stable; black:
unstable. α = log10( ε

σmh
) and β = log10(∆t

εh ).

2.) In the transport dominant regime with ε/(σmh) = O(1), the stability region for the
IMEXk-DGk-S is under a straight line β = βk. In other words, in the transport dom-
inant regime, the scheme is conditionally stable under a standard hyperbolic type CFL
condition

β = log10

∆t

εh
≤ βk ⇔ ∆t ≤ Ĉkεh.

3.) The IMEXk-DGk-S scheme is stable under the condition β ≤ Fk(α), with some function

Fk. Based on this, we can further derive the stability condition ∆t ≤ F̃k(ε, h, σm). The
time step condition for the IMEXk-DGk-S schemes with k = 2, 3 in Section 6 is actually
obtained through such procedure.

4.) The Fourier results for IMEX1-DG1-S scheme match well with the energy analysis results.

We want to mention that the stability properties of the IMEX-DG-S schemes are qualitatively
similar to that for the IMEX-LDG schemes in [21] with the numerical weight ω = exp(− ε

σmh
).

6 Numerical tests

In this section, we will demonstrate the performance of the IMEXk-DGk-S scheme, k = 1, 2, 3.
Two models will be considered. One is the telegraph equation with Ωv = {−1, 1} and 〈f〉 =
1
2 (f |v=1 + f |v=−1), the other is the one-group transport equation in slab geometry with Ωv =

[−1, 1] and 〈f〉 = 1
2

∫ 1

−1
fdv. For the latter, we discretize the velocity space with 16 Gaussian

quadrature points. The meshes in space are uniform unless otherwise specified.
Based on the energy and Fourier analysis in Section 5, for the one-group transport equation

in slab geometry, the time step size ∆t for the IMEXk-DGk-S scheme is chosen as ∆tCFLk,

IMEX1-DG1-S : ∆tCFL1 =

{
0.75h, ε ≤ 0.5h,

min(0.75h, ε2h
ε−0.5h ), ε > 0.5h,

(6.1a)

IMEX2-DG2-S : ∆tCFL2 =

{
0.75h, ε ≤ 0.025h,

min(0.75h, ε
2h/
√

10
ε−0.025h ), ε ≥ 0.025h,

(6.1b)

IMEX3-DG3-S : ∆tCFL3 =

{
0.75h, ε ≤ 0.05h,

min(0.75h, 0.1ε2h
ε−0.05h ), ε > 0.05h.

(6.1c)

When the schemes are unconditionally stable, ∆t = 0.75h is used to ensure good resolution. The
time step conditions in (6.1) also work well for the telegraph equation. We want to mention that,
when boundary conditions are Dirichlet (see next subsection), due to the numerical boundary
treatment, a smaller time step size is taken for the second order IMEX2-DG2-S scheme in the
diffusive regime. For the linear solver, we apply the Schur complement discussed in Section 3.5
and GMRES [24] solver, which is implemented under the framework of C++ library PETSC
[2].

14



6.1 Numerical boundary condition

For some numerical tests, the following inflow (also Dirichlet) boundary conditions are given:

f(xL, v, t) = fL(v, t), v ≥ 0 and f(xR, v, t) = fR(v, t), v ≤ 0.

These conditions are insufficient to define the boundary conditions for ρ = 〈f〉 and g, hence
numerical treatments are needed. We here adopt a close-loop strategy similar to [10, 21]. For
simplicity, we present the strategy using the one-group transport equation in slab geometry with
the velocity space being continuous. In implementation, we substitute integrals in Ωv with their
discrete counterparts.

Main idea: Our numerical boundary treatment is based on the following idea. At the left
boundary, we set

ρL(t) + εgL(v, t) = fL(v, t), v ≥ 0 (inflow), (6.2a)

ρL(t) + εgL(v, t) = ρh(x+
1
2

, t) + εgh(x+
1
2

, v, t), v < 0 (outflow), (6.2b)

〈gL(v, t)〉 = 0. (6.2c)

Integrate (6.2a) in v from 0 to 1 and (6.2b) from −1 to 0, and sum them up, we get

ρL = ρL(t) =
1

2

(
ρh(x+

1
2

, t) +

∫ 1

0

fL(v, t)dv + ε

∫ 0

−1

gh(x+
1
2

, v, t)dv
)
, (6.3a)

gL = gL(v, t) =

{
1
ε (fL(v, t)− ρL(t)), v ≥ 0,
1
ε (ρh(x+

1
2

, t) + εgh(x+
1
2

, v, t)− ρL(v, t)), v < 0.
(6.3b)

With a similar idea, we obtain at the right boundary

ρR = ρR(t) =
1

2

(
ρh(x−

N+ 1
2

, t) +

∫ 0

−1

fR(v, t)dv + ε

∫ 1

0

gh(x−
N+ 1

2

, v, t)dv
)
, (6.4a)

gR = gR(v, t) =

{
1
ε (ρh(x−

N+ 1
2

, t) + εgh(x−
N+ 1

2

, v, t)− ρR(v, t)), v ≥ 0,

1
ε (fR(v, t)− ρR(t)), v < 0.

(6.4b)

Numerical flux: The boundary strategies are imposed through numerical fluxes. On bound-
aries, we modify numerical fluxes in (3.7) to be

(ρ̆h) 1
2

:= ρL, 〈̂vgh〉 1
2

:= 〈vgh〉+1
2
, (6.5a)

(ρ̆h)N+ 1
2

:= ρR, 〈̂vgh〉N+ 1
2

:= 〈vgh〉−N+ 1
2

+ cR(ρR − ρ−N+ 1
2

), (6.5b)

(ṽgh) 1
2

:=

{
vgL, if v ≥ 0
(vgh)+

1
2

, if v < 0 , (ṽgh)N+ 1
2

:=

{
(vgh)−

N+ 1
2

, if v ≥ 0

vgR, if v < 0
. (6.5c)

The penalty term cR(ρR−ρ−N+ 1
2

) is added to maintain the accuracy of the schemes, and one can

refer to [5, 18] for details on the role of this penalty term. In our simulation, we take cR = 1.
We want to mention that, due to this numerical boundary treatment, the IMEX2-DG2-S

scheme is no longer unconditionally stable in the diffusive regime. We modify the time step
condition in (6.1) with ∆tCFL2 = 0.1h when ε ≤ 0.025h. Note that this time step condition can
still be larger than a parabolic time step condition ∆t = O(h2).

6.2 Numerical examples

Example 1: smooth example [21]. We consider the one-group transport equation in slab
geometry with a smooth example on Ωx = [0, 2π]. The initial conditions are

ρ(x, 0) = sin(x), g(x, v, 0) = −v cos(x),
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with periodic boundary conditions, and σs = 1, σa = 0. Ωx is partitioned with a uniform mesh

and we define N = (xR−xL)
h . Numerical errors in L∞-norm and convergence orders are obtained

by Richardson extrapolation:

EρN = ||ρh(x, T )− ρh
2
(x, T )||L∞(Ωx), and, OρN = log2(EρN/E

ρ
2N ), (6.6a)

EgN = max
j=1,...Nv

||gh(x, vj , T )− gh
2
(x, vj , T )||L∞(Ωx), and, OgN = log2(EgN/E

g
2N ). (6.6b)

Numerical results at T = 1 with ε = 0.5, ε = 10−2 and ε = 10−6 are shown in Tables 6.1-6.3.
We observe that the IMEXk-DGk-S scheme, k = 1, 2, 3, has the optimal k-th order accuracy
that seems to be uniform in ε.

Table 6.1: Errors and convergence orders for the example 1, IMEX1-DG1-S

ε N EρN order EgN order

0.5

10 1.921E-02 - 1.909E-02 -
20 8.709E-02 1.14 8.390E-03 1.19
40 3.540E-02 1.30 3.699E-03 1.18
80 1.619E-03 1.13 1.744E-03 1.08
160 7.737E-04 1.07 8.469E-04 1.04

10−2

10 1.029E-02 - 1.467E-02 -
20 4.371E-03 1.23 6.742E-03 1.12
40 2.014E-03 1.12 3.204E-03 1.07
80 9.648E-04 1.06 1.553E-03 1.04
160 5.265E-04 0.87 7.986E-04 0.96

10−6

10 1.011E-02 - 1.459E-02 -
20 4.306E-03 1.23 6.709E-03 1.12
40 1.988E-03 1.12 3.189E-03 1.07
80 9.520E-04 1.06 1.546E-03 1.04
160 4.657E-04 1.03 7.618E-04 1.02

Table 6.2: Errors and convergence orders for the example 1, IMEX2-DG2-S

ε N EρN order EgN order

0.5

10 3.505E-02 - 3.911E-02 -
20 8.916E-03 1.97 9.991E-03 1.97
40 2.205E-03 2.02 2.590E-03 1.95
80 5.479E-04 2.01 6.563E-04 1.98
160 1.365E-04 2.01 1.650E-04 1.99

10−2

10 3.519E-02 - 4.215E-02 -
20 8.763E-03 2.01 8.869E-03 2.25
40 2.206E-03 2.00 2.283E-03 1.96
80 5.523E-04 2.00 5.906E-04 1.95
160 1.381E-04 2.00 1.536E-04 1.94

10−6

10 3.518E-02 - 3.482E-02 - -
20 8.726E-03 2.01 8.629E-03 2.01
40 2.195E-03 1.99 2.172E-03 1.99
80 5.494E-04 2.00 5.435E-04 2.00
160 1.374E-04 2.00 1.360E-04 2.00

Example 2: two-material problem [15, 16]. We consider a two-material problem on
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Table 6.3: Errors and convergence orders for the example 1, IMEX3-DG3-S

ε N EρN order EgN order

0.5

10 2.588E-03 - 2.676E-03 -
20 3.215E-04 3.01 4.103E-04 2.71
40 4.028E-05 3.00 6.495E-05 2.66
80 5.036E-06 3.00 9.198E-06 2.82
160 6.303E-07 3.00 1.22E-06 2.91

10−2

10 2.510E-03 - 2.543E-03 -
20 3.214E-04 2.97 3.724E-04 2.77
40 4.039E-05 2.99 1.109E-04 1.75
80 5.061E-06 3.00 5.292E-06 4.39
160 6.328E-07 3.00 6.659E-07 2.99
320 7.910E-08 3.00 8.355E-08 2.99

10−6

10 2.505E-03 - 2.554E-03 -
20 3.211E-04 2.96 3.174E-04 3.01
40 4.041E-05 2.99 3.998E-05 3.00
80 5.060E-06 3.00 5.007E-06 3.00
160 6.327E-07 3.00 6.269E-07 3.00

Ωx = [0, 11] and Ωv = [−1, 1] with isotropic inflow boundary conditions. The setup is as follows.

σs = 0, σa = 1, if x ∈ [0, 1],

σs = 100, σa = 0, if x ∈ [1, 11],

fL(v, t) = 5, fR(v, t) = 0, f(x, v, 0) = 0, (6.7)

and ε = 1. We examine the numerical solutions at a shorter time T = 1.5 and also the steady
state solution obtained at T = 20000. This problem has a pure absorbing region with the length
of one mean-free path on the left and a pure scattering region with the length of 1000 mean-free
path on the right. Subregiones with different scales coexist. From the left boundary, an isotropic
inflow enters the computational region, and it instantly becomes anisotropic. An interior layer
is formed near the interface between the absorbing region and the scattering region.

We use a non-uniform mesh with h = h(1) = 1
20 on [0, 1] and h = h(2) = 1

2 on [1, 11], and

the time step ∆t is determined by (6.1) using h = h(1). With this example, we also want to
compare the performance of the IMEXk-DGk-S schemes proposed here and the IMEXk-LDGk
schemes in [21] with the weight function ω = exp(− ε

100h )|h=h(1) . Numerical results are shown
in Figure 6.2 and Figure 6.3. The reference solution is obtained by the first order forward Euler
upwind finite difference scheme applied to the original kinetic equation (1.1) with h = 11

20000 and
∆t = 10−5 for T = 1.5, and with h = 11

2000 and ∆t = 10−4 for T = 20000.
At T = 1.5, our proposed schemes capture the solutions very well. The third order IMEX3-

LDG3-S scheme has the best result. We observe that the IMEXk-DGk-S schemes outperform
the IMEXk-LDGk schemes with the chosen weight. Unlike for IMEXk-LDGk schemes, one does
not need to choose a weight function for our proposed methods for this example when both
transport dominant and diffusion dominant regions coexist.

At T = 20000 when the solution reaches its steady state, the numerical solutions by the
IMEXk-DGk-S scheme, k = 1, 2, 3 match the reference solutions well, and they are comparable
with those in [21] by IMEXk-LDGk scheme. Higher order schemes lead to better resolution as
expected.

Example 3: problem with varying scattering frequency and constant source term
[16]. We consider the one-group transport equation in slab geometry with a source term G:

ε∂tf + v∂xf = −σs
ε

(〈f〉 − f) + εσaf + εG. (6.8)
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(a) ρ, IMEX1-DG1-S (b) ρ, IMEX2-DG2-S (c) ρ, IMEX3-DG3-S

(d) ρ, IMEX1-LDG1 (e) ρ, IMEX2-LDG2 (f) ρ, IMEX3-LDG3

Figure 6.2: Example 2: two-material problem T = 1.5, zoomed in with x ∈ [0, 2].

(a) ρ, IMEX1-DG1-S (b) ρ, IMEX2-DG2-S (c) ρ, IMEX3-DG3-S

Figure 6.3: Example 2: two-material problem, T = 20000, x ∈ [0, 11].
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(a) ρ, IMEX1-DG1-S (b) ρ, IMEX2-DG2-S (c) ρ, IMEX3-DG3-S

Figure 6.4: Example 3: changing scattering problem for one-group transport equation, T = 0.4.

The computational domain is Ωx = [0, 1], and

σs(x) = 1 + 100x2, σa = 0, G = 1,

fL(v, t) = 0, fR(v, t) = 0, f(x, v, 0) = 0, ε = 10−2. (6.9)

The effective scaling is determined by ε
σs(x) , hence, it is varying in the computational domain.

We use a uniform mesh with h = 1
40 and the source term G is treated explicitly. Numerical

results for T = 0.4 are presented in Figure 6.4. The reference solution is obtained by the
first order forward Euler upwind finite difference scheme applied to (1.1) with h = 1

20000 and
∆t = 0.1εh. As the value of σs(x) is larger on the right, the scattering effect is stronger on that
side. As a result, sharp feature exists near the right boundary. All schemes match the reference
solution well on this relatively coarse mesh, and high order schemes perform better, especially
near the right boundary.

Example 4: diffusive and kinetic regime with isotropic inflow Dirichlet boundary
conditions [3, 16]. In this example, we consider the one-group transport equation in slab
geometry on Ωx = [0, 1], and

σs = 1, σa = 0, fL(v, t) = 1, fR(v, t) = 0, f(x, v, 0) = 0, (6.10)

with ε = 1, 10−8.
In Figure 6.5, we report numerical results on a uniform mesh with h = 1

40 . The reference
solution for ε = 1 is obtained by the first order forward Euler upwind finite difference scheme
applied to (1.1) with h = 1

2000 and ∆t = 0.5εh, while the reference solution for ε = 10−8

is obtained by a central difference scheme solving the diffusion limit (2.2) with h = 1
2000 and

∆t = 0.25h2. For comparison, we also include in Figure 6.5 the numerical results by the IMEXk-
LDGk schemes in [21] with the weight function ω = exp(− ε

h ) and ω = 1, and when ε = 1 .
When the problem is relatively kinetic with ε = 1, it is observed that the numerical solutions

by the proposed methods match the reference solutions well. The results are comparable with
that by the IMEXk-LDGk methods with the weight function ω = exp(− ε

h ), and both are better
than that by the IMEXk-LDGk methods with the constant weight function ω = 1. Note that
in this example, the initial and boundary conditions at x = 0 are not compatible, and this
introduces a Dirac delta structure in ∂xρ at t = 0 and subsequently sharper features in the
solution form near the left boundary. All these pose challenge to approximate the weighted
diffusion term ω∂xxρ, unless ω is chosen to be small to balance the term ∂xxρ. This explains
the IMEXk-LDGk schemes with the weight function ω = exp(− ε

h ) outperform that with ω = 1.
Our IMEX-DG-S schemes on the other hand do not have a weight function to tune for this
example.

When the problem is relatively diffusive with ε = 10−8, we take ∆t = 0.25h in the diffusive
regime, instead of the original ∆t = 0.75h in (6.1) (still stable), for both the IMEX1-DG1-S and
IMEX3-DG3-S schemes. The numerical solutions by the IMEXk-DGk-S scheme, k = 1, 2, 3,
match the reference solutions well. The higher order schemes lead to better resolution.

Example 5: Riemann problem for telegraph equation [3, 10]. We consider a Riemann
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(a) ρ for ε = 1, IMEX1-DG1-S (b) ρ for ε = 1, IMEX2-DG2-S (c) ρ for ε = 1, IMEX3-DG3-S

(d) ρ for ε = 1, IMEX1-LDG1 with
ω = exp(− ε

h
)

(e) ρ for ε = 1, IMEX2-LDG2 with
ω = exp(− ε

h
)

(f) ρ for ε = 1, IMEX3-LDG3 with
ω = exp(− ε

h
)

(g) ρ for ε = 1, IMEX1-LDG1 with
ω = 1

(h) ρ for ε = 1, IMEX2-LDG2 with
ω = 1

(i) ρ for ε = 1, IMEX3-LDG3 with
ω = 1

(j) ρ for ε = 10−8, IMEX1-DG1-S (k) ρ for ε = 10−8, IMEX2-DG2-S (l) ρ for ε = 10−8, IMEX3-DG3-S

Figure 6.5: Example 4: diffusive and kinetic regime with isotropic inflow Dirichlet boundary condi-
tions for one-group transport equation. Top three rows: ρ for ε = 1 and T = 0.1, 0.4, 1.0, 1.6, 4.0;
Bottom row: ρ for ε = 10−8 and T = 0.15, 0.25, 2.0.
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(a) ρ, IMEX1-DG1-S (b) ρ, IMEX2-DG2-S (c) ρ, IMEX3-DG3-S

(d) j, IMEX1-DG1-S (e) j, IMEX2-DG2-S (f) j, IMEX3-DG3-S

Figure 6.6: Example 5: Riemann problem for the telegraph equation. ε = 0.7 and T = 0.15.

problem with Ωv = {−1, 1}, σs = 1, σa = 0 and the initial data{
ρ(x, 0) = 2, g(x, v, 0) = 0, x ≤ 0,

ρ(x, 0) = 1, g(x, v, 0) = 0, x > 0.
(6.11)

Two different cases are considered: the more kinetic case with ε = 0.7 and Ωx = [−1, 1], and the
more diffusive case with ε = 10−6 and Ωx = [−2, 2]. For both, a uniform partition of Ωx with
h = 1

40 is used, and the final time is set as T = 0.15. Numerical results for ρ and j(x, t) = 〈vg〉
are presented in Figure 6.6 and Figure 6.7. The reference solution for ε = 0.7 is obtained by
the first order forward Euler upwind finite difference scheme solving (1.1) with a uniform mesh
h = 1

1000 and ∆t = 0.05εh. The reference solution for ε = 10−6 is calculated by a central
difference scheme solving the diffusion limit (2.2) with h = 1

1000 and ∆t = 0.25h2.
For the kinetic case with ε = 0.7, results from all schemes match the reference solution

well. Compared with the first order scheme, the second and the third order schemes give less
dissipative results and capture the sharp features better. Small oscillation near discontinuity
can be further reduced by applying nonlinear limiters. With the discontinuity present in the
solution, when IMEX-LDG schemes are applied to this example (see Section 6.1.2 in [21]), the
quality of the computed solutions really depends on the choice of the weight function. For the
diffusive case with ε = 10−6, all schemes capture the solution well, and high order schemes show
better resolutions.

7 Conclusions

To design AP schemes with unconditional stability in the diffusive regime, numerical schemes
are developed in [3, 21] based on an additional reformulation to the decomposed system. The
key of the additional reformulation is to introduce a weighted diffusive term. In this paper, to
avoid issues related to the ad-hoc choice of the weight function, we design IMEX-DG-S schemes
by applying a new implicit-explicit temporal strategy. Asymptotic analysis confirms the AP
property of the proposed schemes. Energy type stability analysis for the IMEX1-DG1-S scheme
and Fourier type stability analysis for the IMEXk-DGk-S scheme, k = 1, 2, 3, are presented.
These analyses verify uniform stability of the schemes with respect to ε and unconditional
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(a) ρ, IMEX1-DG1-S (b) ρ, IMEX2-DG2-S (c) ρ, IMEX3-DG3-S

(d) j, IMEX1-DG1-S (e) j, IMEX2-DG2-S (f) j, IMEX3-DG3-S

Figure 6.7: Example 5: Riemann problem for telegraph equation. ε = 10−6 and T = 0.15.

stability in the diffusive regime. To achieve these AP and stability properties with computational
cost similar to the IMEX-LDG schemes in [21], the Schur complement is applied on the linear
solver level. Numerical examples are presented to demonstrate the performance of the IMEX-
DG-S schemes and their advantages over the weight-dependent IMEX-LDG schemes in [21].
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a priori error estimates for the hp-version of the local discontinuous galerkin method for
convection–diffusion problems. Mathematics of Computation, 71(238):455–478, 2002.

[6] Bernardo Cockburn, George E Karniadakis, and Chi-Wang Shu. Discontinuous Galerkin
methods: theory, computation and applications, volume 11. Springer Science & Business
Media, 2012.

[7] Bernardo Cockburn and Chi-Wang Shu. The local discontinuous Galerkin method for time-
dependent convection-diffusion systems. SIAM Journal on Numerical Analysis, 35(6):2440–
2463, 1998.

[8] Pierre Degond. Asymptotic-preserving schemes for fluid models of plasmas. arXiv preprint
arXiv:1104.1869, 2011.

22



[9] Juhi Jang, Fengyan Li, Jing-Mei Qiu, and Tao Xiong. Analysis of asymptotic preserving
DG-IMEX schemes for linear kinetic transport equations in a diffusive scaling. SIAM
Journal on Numerical Analysis, 52(4):2048–2072, 2014.

[10] Juhi Jang, Fengyan Li, Jing-Mei Qiu, and Tao Xiong. High order asymptotic preserving
DG-IMEX schemes for discrete-velocity kinetic equations in a diffusive scaling. Journal of
Computational Physics, 281:199–224, 2015.

[11] Shi Jin. Asymptotic preserving (AP) schemes for multiscale kinetic and hyperbolic equa-
tions: a review. Lecture Notes for Summer School on Methods and Models of Kinetic Theory
(M&MKT), Porto Ercole (Grosseto, Italy), pages 177–216, 2010.

[12] Shi Jin, Lorenzo Pareschi, and Giuseppe Toscani. Diffusive relaxation schemes for multiscale
discrete-velocity kinetic equations. SIAM Journal on Numerical Analysis, 35(6):2405–2439,
1998.

[13] Shi Jin, Lorenzo Pareschi, and Giuseppe Toscani. Uniformly accurate diffusive relax-
ation schemes for multiscale transport equations. SIAM Journal on Numerical Analysis,
38(3):913–936, 2000.

[14] Axel Klar. An asymptotic-induced scheme for nonstationary transport equations in the
diffusive limit. SIAM journal on numerical analysis, 35(3):1073–1094, 1998.

[15] Edward W. Larsen and Jim E. Morel. Asymptotic solutions of numerical transport problems
in optically thick, diffusive regimes II. Journal of Computational Physics;(USA), 83(1),
1989.

[16] Mohammed Lemou and Luc Mieussens. A new asymptotic preserving scheme based on
micro-macro formulation for linear kinetic equations in the diffusion limit. SIAM Journal
on Scientific Computing, 31(1):334–368, 2008.

[17] Elmer Eugene Lewis and Warren F Miller. Computational methods of neutron transport.
John Wiley & Sons, New York, 1984.

[18] Jichun Li, Cengke Shi, and Chi-Wang Shu. Optimal non-dissipative discontinuous Galerkin
methods for Maxwells equations in Drude metamaterials. Computers & Mathematics with
Applications, 73(8):1760–1780, 2017.

[19] Tai-Ping Liu and Shih-Hsien Yu. Boltzmann equation: micro-macro decompositions and
positivity of shock profiles. Communications in Mathematical Physics, 246(1):133–179,
2004.

[20] Giovanni Naldi and Lorenzo Pareschi. Numerical schemes for kinetic equations in diffusive
regimes. Applied mathematics letters, 11(2):29–35, 1998.

[21] Zhichao Peng, Yingda Cheng, Jing-Mei Qiu, and Fengyan Li. Stability-enhanced AP IMEX-
LDG schemes for linear kinetic transport equations under a diffusive scaling. Journal of
Computational Physics, page 109485, 2020.

[22] Zhichao Peng, Yingda Cheng, Jing-Mei Qiu, and Fengyan Li. Stability-enhanced AP
IMEX1-LDG method: energy-based stability and rigorous AP property. arxiv:2005.05454,
2020.

[23] Gerald C. Pomraning. The equations of radiation hydrodynamics. International Series of
Monographs in Natural Philosophy, Oxford: Pergamon Press, 1973.

[24] Youcef Saad and Martin H Schultz. GMRES: A generalized minimal residual algorithm for
solving nonsymmetric linear systems. SIAM Journal on scientific and statistical computing,
7(3):856–869, 1986.

[25] Fuzhen Zhang. The Schur complement and its applications, volume 4. Springer Science &
Business Media, 2006.

23


	1 Introduction
	2 Micro-macro decomposition and motivation 
	3 Numerical methods
	3.1 Time discretization
	3.2 Space discretization
	3.3 Velocity discretization
	3.4 Fully discrete schemes
	3.5 Matrix-vector formulation and Schur complement
	3.6 More general linear kinetic transport equations

	4 AP property
	5 Stability
	5.1 Energy analysis for IMEX1-DG1-S scheme
	5.2 Fourier Analysis for IMEXk-DGk-S scheme, k=1, 2, 3

	6 Numerical tests
	6.1 Numerical boundary condition
	6.2 Numerical examples

	7 Conclusions

