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RATES OF CONVERGENCE FOR THE CONTINUUM LIMIT OF
NONDOMINATED SORTING

BRENDAN COOK AND JEFF CALDER

ABSTRACT. Nondominated sorting is a discrete process that sorts points in Euclidean
space according to the coordinatewise partial order, and is used to rank feasible solutions
to multiobjective optimization problems. It was previously shown that nondominated sort-
ing of random points has a Hamilton-Jacobi equation continuum limit. We prove quanti-
tative error estimates for the convergence of nondominated sorting to its continuum limit
Hamilton-Jacobi equation. Our proof uses the maximum principle and viscosity solution
machinery, along with new semiconvexity estimates for domains with corner singularities.

1. INTRODUCTION

The sorting of multivariate data is an important problem in many fields of applied science
[10]. Nondominated sorting is a discrete process that is widely applied in multiobjective
optimization and can be interpreted as arranging a finite set of points in Euclidean space
into layers according to the coordinatewise partial order. Let < denote the coordinatewise
partial order on R¢ given by

r<y < z; <y foralle=1,...,d.

Given a set of distinct points X = {X; ..., X,,} C R%, let F; denote the subset of points that
are coordinatewise minimal. The set Fi is called the first Pareto front, and the elements of
F1 are called Pareto-optimal or nondominated. In general, the k-th Pareto front is defined
by

Fi = Minimal elements of X \ U Fi,
i<k

and nondominated sorting is the process of sorting a given set of points by Pareto-optimality.
A multiobjective optimization problem involves identifying from a given set of feasible solu-
tions those that minimize a collection of objective functions. In the context of multiobjective
optimization, the d coordinates of a point to be sorted are the values of the d objective func-
tions on a given feasible solution, and nondominated sorting provides an effective ranking
of all feasible solutions. Nondominated sorting and multiobjective optimization are widely
used in science and engineering disciplines [15,17], particularly to control theory and path
planning [27,29], gene selection [18,21], clustering [20], anomaly detection [23,24], and image
processing [13,22, 30].

Set Ri = {x eR:z; >0fori=1,... ,d} and define the Pareto-depth function U, =
> j—1 Lp; where P; = {z €RY :z >y for some y € F;}. It was shown in [10] that if the
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X, are 1.1.d. random variables on Ri with density p, then n=/4U, — “u almost surely in
L>®(R?) as n — oo where u is the unique nondecreasing viscosity solution of the problem

(1.1)

: d
Ugy Ugy - Ugy = p 0 RY
u=20 onaRi.

and c¢g4 is a constant. This result shows that nondominated sorting of large datasets can be
approximated by solving a partial differential equation numerically. This idea was developed
further by Calder et al. in [11] which proposed a fast approximate algorithm for nondom-
inated sorting called PDE-based ranking based on estimating p from the data and solving
the PDE numerically. It was shown in [11] that PDE-based ranking is considerably faster
than nondominated sorting in low dimensions while maintaining high sorting accuracy.

In this paper, we establish rates of convergence for the continuum limit of nondominated
sorting. This is an important result in applications of PDE-based ranking [1,24] where it is
important to consider how the error scales with the size n of the dataset. The problem has
several features that complicate the proof. The Hamiltonian H (p) = p; ... pq is not coercive,
which is the standard property required to prove Lipschitz regularity of viscosity solutions [3].
If one takes a dth root of the PDE to replace the Hamiltonian with H(p) = (p1 . ..pq)"/4, we
obtain a concave H at the cost of losing local Lipschitz regularity. In particular, solutions
of (1.1) are neither semiconcave nor semiconvex in general. Furthermore, u is not Lipschitz
due to the lack of boundary smoothness and coercivity. Our proof approximates the solution
to (1.1) by the solution to the auxiliary problem

{umugc2 coUg, = p in Qp

(1.2) u=0 on Jrf,

where Qp = {z € [0,1]?: (z1...24)Y¢ > R} and 9pQ = {z € [0,1]? : (z; .. Lz = R},
effectively rounding off the corner singularity. We prove a one-sided convergence rate for the
auxiliary problem restricted to the box [0, 1]¢ by using an inf-convolution to approximate u
by semiconcave functions that solve (1.2) approximately. We apply the convergence rates
for the longest chain problem proved in [4] to obtain rates that hold with high probability
on a collection of simplices, which are essentially cell-problems from homogenization theory.
The remainder of the argument builds off of the proof in [8] but keeping track quantitatively
of all sources of error.

We also prove new semiconvexity results on the corner domain ]Ri, which bound the
blowup rate of the semiconvexity constant of v at the boundary. The semiconvex regularity
of u on the auxiliary domain enables us to avoid use of a sup-convolution approximation
for this direction, bolstering the convergence rate. The proof uses a closed-form asymptotic
expansion to obtain a smooth approximate solution to (1.2) near the boundary, and computes
semiconvexity estimates for the approximation analytically. We believe this argument is new,
as the typical arguments found in the literature for proving semiconvexity near the boundary
proceed by means of vanishing viscosity [3]. We also extend the semiconvexity estimates to
the full domain with a doubling variables argument which is new and simpler compared to
the standard tripling variables approach [3].

Our convergence rate proof is at a high level similar to the proofs of convergence rates for
stochastic homogenization of Hamilton-Jacobi equations in [2]|, which uses Azuma’s inequal-
ity to control fluctuations and a doubling variables argument to prove convergence rates.
Apart from the viscosity solution theory, the main machinery we use is the convergence rate
for the longest chain problem proved by Bollobas and Brightwell in [4], whose proof is also
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based on Azuma’s inequality. As our PDE is first-order, our approach uses the inf convo-
lution instead of a doubling variables argument which leads to an equivalent but somewhat
simplified argument.

As described in [8], this continuum limit result can be viewed in the context of stochastic
homogenization of Hamilton-Jacobi equations. One may interpret U, as the discontinuous
viscosity solution of

UnaUniay - Unay = »_6x, inRY
(1.3) =1

U,=0 on ORY.

The sense in which U, solves the PDE (1.3) is not obvious. By mollifying U,,, one obtains a
sequence US of approximate solutions to (1.3). It can be shown that U converges pointwise
to CU, as ¢ — 0 where the constant C depends on the choice of mollification kernel.

Our proof techniques may also be applicable to several other related problems in the lit-
erature. The convex peeling problem studied in [12] bears many similarities to our problem,
and similar ideas may give convergence rates for the convex peeling problem, provided the
solutions of the continuum PDE are sufficiently smooth. The papers [9,31] introduce nu-
merical methods for the PDE (1.1) and prove convergence rates. Our semiconvex regularity
results could be used to improve the convergence rates of the above papers to O(h) in one
direction. We also suspect the methods used in our paper could be adapted to the directed
last passage percolation problem studied in |7].

We also briefly note that nondominated sorting is equivalent to the problem of finding
the length of a longest chain (i.e. a totally ordered subset) in a partially ordered set, which
is a well-studied problem in the combinatorics and probability literature [5,16,19,32]. In
particular, U, (x) is equal to the length of a longest chain in X consisting of points less than
x in the partial order.

2. MAIN RESULTS

We begin by introducing definitions and notation that will be used throughout the paper.
In our results and proofs, we let C' denote a constant that does not depend on any other
quantity, and C} denotes a constant dependent on the variable k. Be advised that the precise
value of constants may change from line to line. To simplify the proofs, we model the data
using a Poisson point process. Given a nonnegative function p € L'(R?), we let X p denote a
Poisson point process with intensity function p. Hence, X, is a random, at most countable
subset of R? with the property that for every Borel measurable set A C R%, the cardinality
N(A) of AN X, is a Poisson random variable with mean [, p dz. Given two measurable
disjoint sets A, B C RY, the random variables N(A) and N(B) are independent. Further
properties of Poisson processes can be found in [25]. In this paper we consider a Poisson
point process X,,, where n € N and p € C(R?) satisfies

(2'1) 0 < pmin < P < Pmax-
We denote by C, a constant depending on pmin and pmax, and possibly also on [p]co,l(Rd)

and HDQ/)HLOO(W) in those results that assume p € C%1(RY) and p € C%(R?) respectively.
Given R > 0, we define

Qr = {:L‘G 0,1]%: (z1... 29" > R}
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and
OrQ) = {336 [0,1)¢: (:Ul...xd)l/d:R}.

Let u denote the viscosity solution of (1.2). Given a finite set A C R?, let £(A) denote the
length of the longest chain in the set A. Given a domain Q C R%, the Pareto-depth function
U, in € is defined by

Un(z) =£([0,2] N Xp,, N Q)
where [0, 2] := [0, 21] X ... x [0, z4]. The scaled Pareto-depth function is defined by
d

(2.2) un(z) = —n "YU, (2)
Cd
where ¢4 is the constant defined by
(2.3) cg = lim n=1%(]0,1)Y N X,,) as.

n—oo

For a subset S C R? | we write u,(S) to denote %n_l/df(S N Xpp). This particular scaling
is chosen to eliminate the constant on the right-hand side of (2.6).

Remark 2.1. There are several results regarding the constant cgq that have been established in
the literature. Hammersley showed that lim,, n*1/2€(Xnﬁ[0, 1]?) = ¢ a.s. and conjectured
that ¢ = 2 in [19]. In subsequent works, Logan and Shepp [28] and Vershik and Kerov [33]
showed that ¢ > 2 and ¢ < 2. The exact values of cq for d > 2 remain unknown, although

Bollobds and Winkler showed in [5] that
d2
——— <cg<e foralld>1.
dlal (%)

Now we state our main convergence rate results. Let u, denote the Pareto-depth function
in Qg and let u denote the viscosity solution of (1.2).

Theorem 2.1. Given k > 1 and p € CO%(RY) satisfying (2.1), the following statements
hold.

(a) Given R € (0,1], and n*/* > Cd,k,pR_(MQ_d_l) we have
—2d%4d+1 log?n 1z
P | sup (up, —u) > CqppR™ 2 n~1/4d <> < Cd,mkRiCd”ik'
Qr

(b) Assume p € Cz(R;i) Then there ezists Cq > 0 such that for all R € (0,Cyq) and
nt/d > Cyp R +44=410g(n)C we have

o2 1 2 2/3
P <sup (u — un) > Cd,p,kR 2d3 +dn—1/3d <logn> < Cd,p,kR_Cdn_k.
Qr oglogn

Theorem 2.1 depends on the parameters R and k. Although R is a constant in this result,
we have stated the explicit dependence on R as it is required to extend the rates from Qg to
Qp. Observe that the convergence rates become trivial as R — 07, as the proof makes use
of estimates for the Lipschitz constant and semiconvexity constant of u on i that blowup
as R tends to 0. Also observe that the convergence rate in (b) is sharper than in (a), thanks
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to our use of the semiconvexity estimates established in Theorem 2.3. Let v denote the
solution of

(2.4) {vxlvm c Vg, = p in ()

v=0 on 0yf)

In the next result we state our convergence rates on gy = [0, 1] which are proved by using
u as an approximation to v and setting R equal to the optimal value that balances the
approximation error term with the convergence rate. Let

(2.5) on() = Ccin—l/de(xnp A [0,2])

denote the scaled Pareto-depth function in [0, 1]%.

Theorem 2.2. Given k > 1 and p € C%(RY) satisfying (2.1), the following statements
hold.

(a) For all n > Cyy, , we have

P (Sup (v — v) > nl/(2d3+d2+5d+1)> < Cd,k,p?”f@
Qo

(b) Assume p € C3H(RY). Then for alln > Cqy., we have

P <sup (U o ’Un) > n—l/(2d3—d2+3d+1)> < Cd,k,pn_k-
Qo

Observe that the rate in (b) is sharper thanks to the sharper one-sided rate in Theorem
2.2. We do not know for certain whether the rates in Theorem 2.1 and 2.2 are optimal,
although it seems likely that they are not.

These results also extend to the situation when X,,, = {Y1,...,Y,} where Y7,...,Y,, are
i.i.d. random variables with continuous density p. The analogues of Theorems 2.1 and 2.2
in this context follow from Lemma 6.2.

Corollary 2.1. Let Yi,...,Y, be i.i.d. random wvariables with density p. Then Theorems
2.1 and 2.2 hold when X,, = {Y1,...,Yn}.

A key step in our proof of the sharper one-sided rate is a quantitative estimate on the
semiconvexity constant of w. As the Hamiltonian H(p) = (p1.. .pd)l/ ¢ is concave, the
results on semiconvex viscosity solutions in [3] would lead us to suspect that u is semiconvex.
However, from an examination of the function w(z) = d(xy ... x4)"/? that solves (1.1) with
p =1, it is evident that solutions of (1.1) on Ri need not be semiconvex nor semiconcave due
to the gradient singularity on the coordinate axes. This motivates us to determine the rate at
which the semiconvexity constant of u on g blows up as R — 0%. For proving these results
it is convenient to raise the PDE to the 1/d power and pose the Dirichlet problem on the
more general domains Qg = {z € [0, M]%: (z;...24)"/? > R} with boundary conditions
on OpMmQ = {a: € [0, M]?: (a:l...acd)l/d = R}. Let R > 0, M > 1, and let u denote the
solution of

(2 6) {(uzluxQ .. uxd)l/d — pl/d in QR7M

u=0 on Opr, €.
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F1cURE 1. Illustration of the sets A,, B, and A, B used in the proof outline,
and the viscosity touching property that A, C A and B C B,.

Our result on semiconvexity bounds the rate at which the semiconvexity constant of u on
Qg v blows up as R tends to 0. This result enables us to establish the sharpened one-sided
convergence rates in case (b) of Theorem 2.1 and Theorem 2.2.

Theorem 2.3. Let u denote the solution to (2.6). Then there exists a constant C, > 0 such
that for all R < C,, x € Qry, and h € R? such that x + h € Qr v we have

u(z + h) — 2u(z) +u(z — h) > —Cy a1, B2 B
where

—(d-1)/d _ B
Canrp = Ca(l+ Mpl2) ( | Dpll oo 9y ) M2+ pH M 2) .

Prin max

2.1. Definition of Viscosity Solution. Here we briefly state for reference the definition
of viscosity solution for the first-order equation

(2.7) H(Du,u,z) =01in O,
where H is continuous and @ C R<.

Definition 2.1 (Viscosity solution). We say that u € USC(O) is a viscosity subsolution of
(2.7) if for every x € O and every p € C®(RY) such that u — o has a local maxvimum at x
with respect to O we have

H(Dg(x), p(x), ) < 0.

We will often say that u € USC(O) is a viscosity solution of H < 0 in O when u is a viscosity
subsolution of (2.7). Similarly, we say that u € LSC(Q) is a viscosity supersolution of (2.7)
if for every x € O and every ¢ € C°(R?) such that u — ¢ has a local minimum at x with
respect to O we have

H(Dy(z),¢(x),z) > 0.

We also say that v € LSC(O) is a viscosity solution of H > 0 in O when u is a viscosity
supersolution of (2.7). Finally, we say that u is a viscosity solution of (2.7) if u is both a
viscosity subsolution and a viscosity supersolution.



RATES OF CONVERGENCE FOR THE CONTINUUM LIMIT OF NONDOMINATED SORTING 7

2.2. Outline of Proof of Theorem 2.1. Here, we present a high-level outline of the proof
of Theorem 2.1. The proof follows a stochastic homogenization argument, similar to [2], but
with different ingredients. We first study the asymptotics of the longest chain in orthogonal
simplices of the form

(2.8) Syp = {1: €(—oco,ylt:1+(xz—y) pL> 0}
and
(2.9) S, = {x € (00,01 : 1 4+a-pt> 0}

where p € (0,00)? and p~! = (pfl, e ,pgl). The set S, is an orthogonal simplex with side
length p; in the i*" coordinate direction. The measure of Sy, is given by

L Py
(2.10) 1S, = pdidp.

The sets A and B in Figure 1 show examples of orthogonal simplices. The longest chain in
an orthogonal simplex, u,(Sp), can be thought of as a cell problem from homogenization,
in the sense that it is a simpler local problem, whose solution allows us to prove our main
results. The value of p will turn out to be proportional to the gradient Du of the continuum
limit u, as in homogenization, and the cell problem exactly describes the local behaviour of
u,, for large n.

For simplicity, we will take the intensity p to be constant on R? throughout the rest of
this section, and we denote the constant value by p > 0. The extension to nonconstant
intensities follows by approximating p from above and below by constant intensities on the
simplices S}, which are vanishingly small as n — oco. It was shown in [8| that

(2.11) nh_%loun(sp) = dl)l/d‘spll/d7

with probability one. This is proved by reducing to the unit cell problem w,(S1) using
dilation invariance of w, and the sets Sp. In particular, if ® : R™ — R" is any dilation (i.e.,
¢z = (a1, ..., aqzq) for a; > 0), then we have @S, = Sg-1,, and so

U XnpNSp) =Xy, NDPS)) ~ E(Xn|q>|71p NeSy,).
We then choose ® so that ®S, = 51, that is a; = p;, to obtain

Un(Sp) ~ (1 pa) ™ i1 (S1)

This shows that the scaling limit (2.11) for a general simplex S, follows directly follow from
one for the unit simplex 7.

The first ingredient in our proof is a convergence rate, with high probability, for the cell
problem (2.11). In particular, in Theorem 4.4 we improve (2.11) by showing that

(2.12) Un(Sp) = dp*/ S,V + O (n—l/Qd’Sp‘l/Qd)

with high probability, up to logarithmic factors. The proof is based on the concentration
of measure results in [4] for the length of a longest chain in boxes, which uses Azuma’s
inequality. We adapt these results to the simplices S,,.

To illustrate how the cell problem (2.12) is used to prove our main results, let 9 € Qg
and define

Ap ={z €[0,20] N QR : up(zo) — up(x) <e}.
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Basically by definition we have u,(A;) =~ ¢ (see Lemma 5.2 for a precise statement of this).
Now, if u, is well approximated by a smooth function u, then we can Taylor expand u to
show that A, ~ ¢+ S, where p~! = e~ Du(z). In this case we use (2.10) to obtain

Py ed

a - dug, (zo) -+ - ug, (z0)’

b1
‘Sp’ =

and hence
ept/d

(uay (20) -+ - Uy (20))
Rearranging we obtain the Hamilton-Jacobi equation (1.1).

The proof of our main result involves keeping track of the error estimate from the cell
problem convergence rate (2.12) in the argument above, as well as using the viscosity solution
framework to push the Taylor expansion arguments above onto smooth test functions. For
this, we use the fact that the set A, satisfies a viscosity property. That is, if u, — ¢ attains
its maximum at xg, then

(2.13) £~ un(Ay) = un(S,) = dpt/4S, |/ =

1/d

un () — @(x) < un(zo) — p(0),
and so
e(r0) — ¢(2) < un(zo) — un().
It follows that A, C A, where A is the corresponding set defined for the test function ¢,
given by
A={z€[0,20] N Qg : p(xo) —p(z) <e}.

The inclusion A4,, C A is depicted in Figure 1 (A). Then (2.13) is modified by inserting the
inequality u,(Ay,) < u,(A), and then approximating A by a simplex, which is possible when
the test function ¢ is sufficiently smooth. This gives a rate in only one direction, since we
get a subsolution condition, and so we also need to consider touching from below; that is,
examining the minimum value of u—¢. In this case the inequalities are reversed and we have
A C A,. This inclusion is depicted in Figure 1 (B), where we write B and B,, in place of A
and A,, (different names are used in the proofs of our main results for technical reasons).

The convergence rates in our main results are then proved using a maximum principle
argument, which examines the maximum of u,, — v (and subsequently u — u,,) and uses the
viscosity properties and cell problem convergence rates described above. In the case where
u is a non-smooth viscosity solution, one typically replaces v by smoother approximate sub-
and super-solutions obtained by inf- and sup-convolutions, to allow for Taylor expansions
(equivalently we may use a doubling variables argument). Another main contribution of
our paper is a new semiconvexity estimate for the solution u of (1.2) on the rounded off
domain Qg (see Theorem 2.3). We sharply characterize the blow-up of the gradient and
semiconvexity constant of v as R — 0. This allows us to avoid the sup-convolution and
use ¢ = u directly in the maximum principle argument when bounding u — wu,,. This leads
to the better O(n~1/3¢) convergence rate in Theorem 2.1 (b). In the other direction, when
bounding u,, — u, we would need semiconcavity of u, which is not true in general, so we use
the inf-convolution to produce a semiconcave approximation, leading to the worse O(nil/ ad)
rate in Theorem 2.1 (a). As R — 0 and we approach the corner singularity problem (1.1), we
lose control of the semiconvexity estimates, and the solution of (1.1) is neither semiconvex
nor semiconcave in general. We thus obtain the rates in Theorem 2.2 by approximation to
the rounded off case (1.2), leading to substantially worse rates of convergence in the presence
of the corner singularity in (1.1).
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While our proof techniques are at a high level similar to [2], the details are substantially
different and cannot be compared directly. We can, however, compare the final convergence
rates we obtain. In [2] the authors consider stochastic homogenization of Hamilton-Jacobi
equations of the form

x
uf + H (Due, -
€

,w) =0 inRYx (0, 00),
and obtain quantitative homogenization rates of
(2.14) -0 (51/87‘5> <u*—u<O <€1/575) ,

for any 6 > 0, in the setting where H is level-set convex and coercive in the gradient.
Our Hamiltonian H(p) = p;i---pq is level-set concave (and in fact we can write it as
H(p) = (p1---pa)"? to obtain a concave Hamiltonian), but it is not coercive. Recalling
that nondominated sorting can be viewed as a stochastic Hamilton-Jacobi equation (1.3)
with rapidly oscillating terms on the order of ¢ = n=1/4
2.1 yield

we see that our rates in Theorem

—0151/3 <u,—u< 0251/4,
up to logarthmic factors, which are substantially sharper than (2.14).

2.3. Outline of Paper. Here we outline the remainder of the paper. In Section 3 we
establish a maximum principle and Lipschitz estimates for (1.2) that are used throughout
the paper. In Section 4 we extend the work of Bollob4s and Winkler in [4] and establish
rates of convergence for the longest chain problem in simplices. In Section 5 we establish our
principle lemma for proving Theorem 2.1, which shows for a strict supersolution ¢ of (1.2)
that the maximum of w, — ¢ occurs near the boundary with high probability. In Section
6 we present the proofs of Theorems 2.1 and 2.2, and in Section 7 we present the proof of
Theorem 2.3.

3. MAXIMUM PRINCIPLE AND LIPSCHITZ ESTIMATES

In this section we establish fundamental results regarding the PDE (1.1) that are used
throughout the paper. First we show that if u satisfies u,, ...u;, = p on a domain €,

then a closely related PDE is also automatically satisfied at certain boundary points. Given
M >0, let Q C [0, M]? and define

(3.1) 0"Q= {y € Q:y; = M for some i and e > 0 such that B(y,e) N[0, M)¢ C Q}

Lemma 3.1. Given Q C [0, M), let *Q be given by (3.1) and let p € C () satisfy (2.1).
Then the following statements hold.

a) Suppose that u satisfies Uz, Ugpy ... Uz, < p in Q. Then u satisfies
1 2 d

d

l_I(UQCZ)Jr <pinQUIQ.
i=1
(b) Suppose that u satisfies Uy, Uy, ... Uz, > p in Q and u is nondecreasing in each
coordinate. Then u satisfies
d

H(uxl)jL > pin QU I

i=1
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Proof. To prove (b), let ¢» € C*(R%) such that u — ¢ has a local minimum at xo € €, and
show that 1, (x0) > 0. For y in a neighborhood of xy we have

u(wo) — u(y) < (o) —P(y).
Since u is nondecreasing in each coordinate, when h > 0 is sufficiently small we have
u(wo) — ulzo — hei) _ (wo) — Y(zo — hei)
h - h
Hence, ¢, (29) > 0. Now let 79 € QU 9*Q and let ¢ € C*(RY) such that u — ¢ has a local

minimum at xg. Without loss of generality, we may assume that u — ¢ attains a strict global
minimum at xg. If zg € Q, then ¢, (z¢) > 0, and we have

0<

d

d
[T (@0))+ = [ #u:(20) > p(x0)-

i=1 i=1

If xg € 0*Q, let pe(z) = p(z) —¢ 2?21 M%wi’ and we claim that v — ¢, attains its minimum
over  in QN[0, M )d. To prove this, let y € [0, M )d be a minimizing sequence. Replacing
with a convergent subsequence, we may assume that y, — y € [0, M]?. It is clear from the
definition of . that we must have y € [0, M)?. There exist sequences e — 0 and x — x¢
such that e > 0 and u — ¢, has a local minimum at xj, € [0, M)?. Since zo € 9*Q, there
exists N > 0 such that x; € € for kK > N. Hence, for all £ > N we have

H <‘ij (zk) — (M_gljw> > p(xk).

Since u — ¢, has a local minimum at xg and u is nondecreasing in each coordinate, we have
(er)e; = Pu; (Th) — W >0 for j=1,...,d. Hence for k > N we have

U

d
H CD) :H @a; (1)) = plan).

Letting k — oo, we have H;-lzl (e, (xo))+ > p(xp). To prove (a), let xg € QU I*QY, and let

¢ € C*®(RY) such that u — ¢ has a local maximum at zg. If ¢, (z¢) < 0 for some 1 < i < d,
then we have

d
H ¢u;(20)), < plao)-
Assume that ¢y, (zg) > 0 for each i. If xg € 2, then we have

d d
H%j (z0) = H P ( Hfo < p(zo).
j=1 j=1

If xg € 0*Q). Without loss of generality, we may assume that v — ¢ attains a strict global
maximum at zg. Let ¢.(x) = o(x) + 521 e .- Asin (a), u — ¢ attains its maximum

over Q in QN [0, M)%. Hence, there exist sequences ¢, — 0 and xj, — xg, 2 € [0, M]? such
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that u — ¢., has a local maximum at z € [0, M)d. Then when k is large we have x; € €,
hence

d
Hesteo- <H<“”’”f %+ ) <o

Since ¢ is smooth, we have ¢, (x)) > 0 for k sufficiently large. Letting k — oo, we have

d
H P, (70)4) < p(0).
Jj=1

0

Next we establish that subsolutions and supersolutions of (1.1) may be perturbed to
strict subsolutions and supersolutions. Let L and H be given by L(p) = (p;...pq)"*
H(p) =p1...pa.

Proposition 3.1. Given V C R?, let p € C(V) satisfy (2.1). Then the following statements
hold.

(al) Let u satisfy L(Du) > p on V. Then for all A > 0 we have
L(D((1+ XNu)) > p+ pminA on V.

(b1) Let u satisfy L(Du) < p on V. Then for all X € (0, 1] we have
L(D((1 = X)) < p— pmin on V.

(a2) Let u satisfy H(Du) > p on V. Then for all A > 0 we have
H(D((1+Nu)) > p+ dpmin) on V.

(b2) Let u satisfy H(Du) < p on V. Then for all X € (0,1] we have
H(D((1 = Nu)) < p— pminA on V.

)

Proof. To prove (al), let € V. Then there exists ¢ € C°°(R?) such that u — ¢ has a local
minimum at z. Consequently, (1 + A)u — (1 + A)p has a local minimum at z, so

L1+ A)Dy(z)) = (1 + ) f(z) = f(z) + Alinf £)

and the statement follows. The proofs of the other statements are very similar and omitted
here, making use of the inequalities (1 + A\)% > (1 + d\) in (a2) and (1 — \)¢ < (1 — )) in
(b2). O

Now we establish a comparison principle for the PDE (1.1).

Theorem 3.1. Given Q C [0, M]?, let T C Q be a closed set such that QCru QU o Q,
where 0*Q is given by (3.1). Suppose that p € C(Q2) satisfies (2.1), and v € C(Q2) and
v e C(Q) satisfy

Ugs Ugo + - Uy, < in )
(3.2) { 1 Uzo Tqg > P
u=g¢gy onl,
and
Vg Vo« v« Uy, > in )
(3.3) { z1 Vo zg Z P
v=go onl,
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respectively. Assume that v is nondecreasing in each coordinate and g1 < go on I'. Then
u<von Q.

Proof. Given X € (0,1), set vy = (1+\)v, and suppose for contradiction that supg(u—wvy) >
0. Let
o 2
®(z,y) = ul@) —urly) = 5l =yl

Then ® € C(2 x ) and € is bounded. Hence ® attains its maximum at some (zq, %) €
Q x Q. Then we have

®(x4,Ya) > sup(u —vy) > 0.
Q

As u and —wv) are bounded above on £ we have
C
(3.4) |Za — ya‘Q < —.
e
AS (Ta,Ya) € Q x Q, there exists a sequence o, — oo such that {z,,} and {y,,} are

convergent sequences. Letting =, = x,, and y, = Ya,, we have (z,,yn) — (z0,%0). By
(3.4) we have z¢g = yo. By continuity of ® we have

nh—>120 ‘E(l’n, yn) = u($0) - v)x(x())'

We cannot have xg € T, since u(zg) — vx(zp) > 0 and u < vy on I'. Hence, z9 € QU 9*Q.
Asu—wvy < 0onT and (u — vy)(zg) > 0, by continuity of u — vy there exists N > 0
such that (z,,yn) € (QUI*Q) x (QU I*Q) for n > N. Let o(z) = G |2 — y,|* and
Y(x) = =G|z, — yl>. Then u — ¢ has a local maximum at x, and vy — 1 has a local
minimum at y,,. Setting H(p) = p1 ...pq, Proposition 3.1 gives that H(Dwvy) > p+ § on €,
where § = Apnin > 0. By Lemma 3.1 we have I}(Dm) > p+6 and E[(Du) < pon QUI*N.
Thus, we have

FI(D‘P(wn)) = ﬁ(an(xn —Yn)) < p(zn)
and
ﬁ(Dw(?/n)) = ﬁ(an(ﬂfn —Yn)) = p(yn) + 6.
Hence, p(zn) — p(yn) > d > 0, and this gives a contradiction as n — co. We conclude that
u<wvy=(1+A)von Q. Letting A\ — 07 completes the proof. O

Now we establish estimates on [U]COJ(QR ) with respect to R and M. To this end, we

state the following theorem, proven in [10, Theorem 2|. Let g : R? — [0, 00) be bounded
and Borel measurable, and let

(3.5) U(z) = sup J(v),
yeA
¥(1)<z

where

1
J(y) = / gV [ () - A()] Ve,
and

A= {’ye CH([0,1];RY) : 4/,(£) > 0 for j = 1,...d}.
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Then the value function U satisfies

1
leUIQ de = Eg

U=0 on 8]1%1.

in RY
(3.6) *
When g = plqy,, and u is given by (2.6), Theorem 3.1 implies that éU =uin Qg M.

Theorem 3.2. Given p € C%1(R?) satisfying (2.1), let u denote the solution to (2.6). Then
we have

[U]CO,l(ﬁR,M) < C MR- le/d‘

COLQpar)

Proof. Let U be given by (3.5) where g = plq, ,,. In light of the preceding discussion, it is
enough to show that

Vg0 @p ary < CaM = R H pl/d’

CO Qpn)
Let x € Qg and set f = pY/?. Tt suffices to show that

(3.7) Uz + hei) = U(x) < CahM* R || £][ o

Qpr.m)

when 1 < ¢ < d and h > 0 is sufficiently small. Given ¢ > 0, let v € A such that
v(1) < = + he; and U(x + he;) < J(v) + . Without loss of generality, we may assume
that v(0) € OrmQ, ¥(1) = = + he;, and ~j(t) > 0 for ¢t € [0,1] and 1 < ¢ < d. Let

O(z) = (zl, T R ..zd> and set ¥ = ®(v). By construction, 7 satisfies 7(1) = =z,
Yi(t) = 257i(t), and 7;(t) = ~;(¢) for j #i. As J(7) < u(z), we have

Uz + he;) — U(z) < J(y) — J(7) + <.

A simple calculation shows that |z — ®(2)| < ‘hﬁ% < Ch for z € [0, 2z]%. Hence, we have

hl‘i
- h—l—{El

hryi(t)
h+ X;

(3.8) () — 7(1)] < }

The above gives us

1

h’yi t
®) < hxi[f]covl(ﬁR,M); < hlflcor@p -

(3‘9) |f('7(t)) - f(ﬁ(t)” < [f]COvl(ﬁR,M)

We have

1) =70) = /0 (8 PO -] = F ) [T - Tale)] ) at
/

— — 1/d
(f(v(t)) ~ FEW) [W} ) e (0) . Ae)] Y

Y1 (t) -yt
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Furthermore,
. 1/d . 1/d
(f(v())—(xi ) f(v(t))>=(f(7(t))—f(7(t)))+(1—<xi ) )f@(t))
< (160 - 1) + (1- -2 ) 5310

h
< il fllcos @ uny + 1 llcos @ un o
= h(1+ 27 ) 1 fllcon @

We conclude that

1
T6) = I < W1+ W leos g [ RO -7t
d
<1+ 27 [ Fllgns g oy LT (1) = 700
j=1

1/d
max (1‘1 xd) .

Q
R’NI) mGQ&M T

< 20 |l o

(ml...xd)l/d

Observe that the maximum value of over §R7 M is attained when z; = M for j # 4

and z; = RYM (41 we have

1/d
max (@1...2q) 7 — p~d=1)ppd-1
xGQRﬂM Xy

We conclude that for every ¢ > 0 and 1 < i < d we have
Uz + he;) = U(x) <e+ChM* RV || fllcor gy o) -
and consequently that

[U]Co’l(ﬁR,M) < CMIRTEY HfHCO’l(ﬁR,M) : D

4. RATES OF CONVERGENCE FOR THE LONGEST CHAIN PROBLEM

As discussed in Section 1, nondominated sorting is equivalent to the problem of finding
the length of a longest chain in a Poisson point process with respect to the coordinatewise
partial order. Given n € N and p € C(R) satisfying (2.1), let X,,, denote a Poisson point
process on R? with intensity np. Given a finite set A C R, let £(A) denote the length
of the longest chain in the set A. Then the Pareto-depth function U, in R? is given by
Un(x) = £([0, 2] N X,,) where [0, 2] = [0,21] X ... x[0,24]. The scaled Pareto-depth function
is defined by u,(z) = %n_l/dUn(ac) where cg is given by (2.3). When S C R? is bounded and
Borel measurable, we write uy,, (.S) to denote %n‘l/df(Sﬂan) and | S| to denote its Lebesgue
measure. When p is constant and S is a simplex of the form {1‘ € (00,004 :1+2-q> O}
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with ¢ € Ri, one can show that

lim u,(S) = dp'/? \S]l/d a.s.

n—oo
In this section, we establish explicit rates of convergence for the length of the longest chain
in rectangles and simplices. We begin by stating a simple property of Poisson processes,
whose proof is found in [25].

Lemma 4.1. Let X, be a Poisson process on R? with intensity function p, where p €
L} (RY) is nonnegative. Then given g1,g2 € LI (R?) with 0 < g1 < p < g, there exist

loc loc

Poisson point processes X4, and X4, such that X, C X, C Xg,.
The following result is proved in [4] by Bollobas and Brightwell.

Theorem 4.1. Let X,, be a Poisson point process on [0, l]d with intensity n. Then there
exists a constant Cy such that for all n > Cy we have

P(
nl/2d

for all t satisfying 2 < t < foglogn " Furthermore,

logn
(10,119 — EU, ([0, 1]% tnl/2d TS ) < y42 2
Un([0,1]%) = EUL([0,1]%)| > Cygtn oglogn ) = exp(—t©)

1 3/2
cqn'/® > EU,([0, 1]d) > cqnt/d — C’dnl/wi()g n
loglogn

where cq 1s given by

cg = lim n~ (X, N1[0,1]%) as.

n—o0

Next, we extend Theorem 4.1 to a Poisson process with intensity np where p > 0 is a
constant.

Theorem 4.2. Let X, be a Poisson point process on [0, l]d where p > 0 is a constant.

-1 ot (pn)!/2
Then for all n > Cgp~ and all t satisfying 2 < t < ;=7—— we have

og log pn
]P (

Furthermore,

_ log pn
un([0,1]%) = Eun([0,1]%)| > Can 1/2dp1/2dtloglgogpn> < 4t exp(—t?).

_ logg’/2 n
dpt/? > Eu, ([0,1]%) > dpt'? — Cypt/%n 1/2dm‘

Proof. Replace n by pn in Theorem 4.1. Also note that
lim nfl/dﬁ(X,m N[0, 1]%) = cgp'/? as. O

n—oo

Next we establish rates of convergence for the longest chain problem in a rectangular box.

Theorem 4.3. Let X, denote a Poisson point process on R? with intensity np where
p € C(R?) satisfies (2.1). Given xz,y € R? with x; < y; fori=1,...,d, let R = [z,y] :=
{wERd:mi <w; <y forizl,...,d}.

(a) For alln > Cy(supg p)~ ' |R|™" and t satisfying

1/2d( )1/2d | py1/2d 1

Cyg<t<Cyn
loglogn(supr ) |7

sup p
R



16 RATES OF CONVERGENCE FOR THE CONTINUUM LIMIT OF NONDOMINATED SORTING

we have

3/2
P <un(R)  dloup )4 R >yt (sup py 120 |2 198 (B (subp ) )
R R

loglog(n |R[ (supp p))
< 4t% exp(—t?).
(b) For all n > Cy(infr p) ' |R|™" and t satisfying
1
loglog n(infg p) | R|

log'/*(n(inf p) |RI) < t < (inf p)'/*n!/2¢ | B[/
we have

- 12, log(n |R| (infr p))
P ( u, —dGnf NV RIVE « _ Y24 (g p)1/2d | g|1/2d
<u (B) = d(inf p) T2 IR < =Catn™ 0t o) R e tn TR infr )

< 4t% exp(—t?).

Proof. We shall prove only (a), as the proof of (b) is similar. Without loss of generality we
may take R to be the rectangle [0,y] with y € RY. By Lemma 4.1 there exists a Poisson
process X, D Xp, on R? with intensity function np where p = (supp p) 1r + plga\ . Given
A C R? let T, (A) = n VU (ANX,) and set ®(z) = (%, . %). Then Y, := ®(X,,) is a
Poisson process with intensity n |R|7 and @, (R) = n~/4(]0,1]NY},). Let E be the event
that

B - - log n(supg p) | R
Un(R) — Eun(R)| < Cy(sup p)t/24t |R|Y?d p=1/2d .
[ () = Etin(R)| < Ca(sup p)'/*t | log log n(supp, p) |

and

f _1/2al0g®?(n(supg p) | R|)
0 > Eu,(R) — d(su VRV > —0y(sup p)V/2% |R|V p=1/2d R .
= Binl) = dlogp p) R = =Calsyp o A log 08(n(Supz o) [R)

1/2d 1/2d,1/2d _ . .
where 2 < t < |R|loglc()sgu(§111?p2p)|RT|Ln ,n > (supgp) 'R}, and the constant Cy is as in

Theorem 4.2. By Theorem 4.2 we have P(E) > 1 — 4t? exp(—t?). Assume that E holds for
fixed choices of t and n. As u,(R) < u,(R), we have

un(R) — d(sup p) /¢ |R|"* <1, (R) — Cy(sup p)/¢ R[4
R R

< [ (R) — Etu(R)| + (BT (R) - Calsup p) e IRIM Y

< Cyt(sup p)1/2dn71/2d |R‘1/2d 10g3/2 n(supg p) || ' 0

p log log n(supy, p) |
Now we extend the preceding result to establish rates of convergence for the longest chain
in an orthogonal simplex of the form Sy, as in (2.8). The lower one-sided rate is easily
attained taking the rectangle R C S with largest volume and applying Theorem 4.3. To
prove the upper one-sided rate, we embed S into a finite union of rectangles and apply the
union bound. The following result verifies the existence of a suitable collection of rectangles.

Lemma 4.2. Given y € R? and ¢ € R%, let Sy.q be as in (2.8). Given € > 0, there ezists a
finite collection R of rectangles covering Sy 4 satisfying

(4.1) Cae |Sy.ql < IRIM® <S4+ Cae|Syq] for all ReR,
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and

(4.2) dist(z, Sy,q) < Cye |Sy,q| for all R € R and z € R,

and

(4.3) IR| < Cge= 1),

Proof. Without loss of generality, we may take y = 0 and prove the statements for the
simplex S; := Sp4. Letting 1 denote the ones vector, we first prove the statements
for the simplex S := {33 €[0,00):2-1< 1}, and then obtain the general result via

reflection and scaling. Let P = {z €[0,00)?:2-1=1}. Fix zyp € P, and let R =
{[0,z+el]: 2 € PN (mg+eZ9)}. It is clear from the definition of R that (4.2) and (4.3)
hold. By the Arithmetic-Geometric Mean Inequality, for all x € P we have

5<Hml+e

and it follows that (4.1) holds. To show that S C (Jper R, let y € P. Then there exists
y* € (w0 + Z%) such that |y; — yf| < e for 1 <4 < d. Hence, y € [0,%*], and it follows that
S C Uger R. This concludes the proof for S, and we now leverage this result to prove the
statement for the simplex S; = {z € (—00,0]: 1+ z-¢ > 0}. Let ®(z) = (S, ... 2,
so ®(S) = S,. Applying the proven result for S, there exists a collection of rectangles Rq

covering S and satisfying |Rq| < Cge=@1, |R|V? < 1+ eforall R € Ry, and dist(z, S1) <
Cye for z € Rand R € R. Let R = {®(R): R € R1}, and we verify that R satisfies the
required properties. We have |R| = |R1], so (4.3) holds. To see that (4.1) holds, observe
that

Q.\H

|B(R)[V = d|R[V|S, [V
and
de [ Sy < d R[N S|V < |Sg M+ de| S

To show (4.2), let z € R € Ry. Then there exists y € S such that |z — y| < Cye. Hence, we
have |®(z) — ®(y)| < Cyq|S,|"%e, and (4.2) follows. O

Now we prove our main result of this section.

Theorem 4.4. Let p € COY(R?) satisfy (2.1), and giveny € R? and q € Ri let Sy q be given

by (2.8). Assume that d\Sy7q|1/d < 1. Then for allk > 1 and n > Cq , 1S,.q] " log(n)??
have

_ log?n _
P (un(Sy,q) — d(sup P)l/d |Sy,q|1/d > Cd,k,pn 1/2d |Sy,q|1/2d loggl;ogn> < Cgin k

Y,q
and

log?n
: 1/d 1/d —1/2d 1/2d 108 —k
P <un(Sy7q) - d(}gr;f; o)/ |Sy.ql /< —Ca i pn / |Sy.ql / Toglog logn> < Cqpn".

Proof. We present the proof of the first statement only, as the proof of the second is similar
and simpler. Without loss of generality, we may take y = 0 and prove the result for the sim-
plex S, = Sp 4. We first prove the result for the simplex S := {:L‘ €(—00,0¢:1+2-1> 0},
and then obtain the general result via a scaling argument. Given € > 0, we may apply
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Lemma 4.2 to conclude there exists a collection R of rectangular boxes covering S such that
IR| < Cye=@1 | Cue < |R|M? < 1+ Cye for each R € R, and dist(y,S) <ecfory € R € R.
Set B = Uper B As p € CO1(R?), we have supgpp < supgp + [plcoagaye for y € R.
Let K = (supsp + [p}co,1(Rd)5). By Lemma 4.1 there exists a Poisson process X, D X,
on R¢ with intjnsity fugction np where p :7K]1§ + plgay- Given A C RY, let w,(A) =
%n_l/dE(A NXy). As X, D X,, and S C R, we have u,(S) < Up(S) < maxper Un(R).
Let Er be the event that

(4.4) Un(R) — dKY? |R|Y4 < CquK /24

—1/2dlog®/?(nK) 1 -1 (nK)!/2d
/ W Forany€<0d,n>0d|R| K 7&nd2<t<w,

we have P(Eg) > 1 — 4t?exp(—t%) by Theorem 4.3. Letting E be the event that (4.4)
holds for all R € R, we have P(E) > 1 — Cyge~ %12 exp(—t?) by the union bound. Given
k > 1, set t = \/Cklog(n) for a constant C' chosen large enough so n'2n=Ck < n=k and
let e = tn~Y24, Observe that the hypotheses of Theorem 4.3 are satisfied when nK >
Ca log(n)??, so we have P(E) > 1 — C’d,knl/Qn_Ck >1-— C’d,kn_k. If E holds, then using
SCR,|RM< 1+ Cye, and (4.4), we have

where v = tn

(4.5) un(S) < Un(S) < %?%ﬂn(R)
(4.6) < KM 4 Cau(KY?4 4 K14,

Now we obtain the stated result for the simplex Sq = {z € (—00,0]?: 1+ ¢-2 >0}. Let
®(x) = (qiz1,...q4xq), and observe that ®(S;) = S. Then Y, := ®(X,,) is a Pois-
son point process of intensity np where p = |det <I>\71 np = dnp|S,|. As ® preserves
the length of chains, we have £(X,, N S;) = (Y, N S). Let e = n~/24,/Cklogn, K =
(sups,ﬁ—l— [ﬁ]oo,l(Rd)E), K = (supsqp+ [p]CO,l(Rd)€), and v = %. Let E be the
event that

(4.7) un(Sy) < KM+ Cup(KY2 4+ K14y,
If E holds, then using K = d?|S,| K and d ]Sq|1/d < 1, we have
Un(Sq) < K4 4 Cqu(KM? 4 K14
_ d|Sq|1/dK1/d+C’dV|Sq]1/2d(1 +K1/2d)
< d|[S,"* (Sgpp)l/d + Ca v |Gy
< d|S,|" (Sgp PV Cgopn /28|82 lsg‘i;l.

Using our result for S and £(X,, N S;) = £(Y, N S), we have P(E) > 1 — Cyyn~* for
n > Cqr K 1log(n)??.
O

5. LEMMAS FOR PROVING CONVERGENCE RATES

In this section we establish our primary lemma for proving Theorems 2.1 and 2.2. In
particular, we prove a maximum principle type result that shows that if ¢ is a semiconcave
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(see Definition 7.1), strictly increasing supersolution of (1.2), then the maximum of u, — ¢
occurs in a neighborhood of g2 with high probability. An analogous result holds for ¢ — u,,
when ¢ is a semiconvex, strictly increasing subsolution of (1.2). In proving Lemma 5.1 we
shall employ Lemmas 5.2 and 5.3, whose proofs are presented after Lemma 5.1.

Lemma 5.1. Let p € C%Y(R?) satisfy (2.1). Given R € (0,1), let ¢ € C(QR) be a non-
negative function such that 0 < v < @y, <7 holds in the viscosity sense on g for some
constants ¥ > 1 and v < 1. Given o > 1, k > 1, 6 € (0,1), and € € (0,1), let R, =

71/2n*1/2d€*1/2 lézglzéz)l). Then there exist constants Cq < 1 and Cyy, > 1 such that when
e < Cymin {a_1127_110g(n)_2,Rd_15} and 1 > X > Cqp,(Ry +1_2a5) the following

statements hold.

(a) Suppose ¢ is semiconcave on Qg with semiconcavity constant o > 1 and satisfies
H(Dy) > p on Qpris. Assume further that

sup (up, — (14 A)p) > 2e.
Qgr
Then there exists a constant Cq,r > 1 such that for all n > 1 with pl/d S
Capre 1 7log(n)? we have

Qr QRrys

P <sup (n — (14 X)) = sup (uy - (1+A)s0)> < Cype0n*,

(b) Suppose ¢ is semiconvex on Qr with semiconvexity constant o > 1 and satisfies
H(Dy) < p on Qpys. Then there exists a constant Cq . > 1 such that for alln > 1

1/d 2

with n*/* > Cd%koﬁlfs_ we have

P | sup (1 —N)p —uy) = sup (1 = A)p —up) | < Cape n=F.
Qg QR+ts

Proof. First we introduce the notation used throughout the proof. Let Q%, = QpNd /2374
and we define a collection of simplices S = {va5 12 € Q%58 € Fe} where S, 5 is given by
(2.8) and

I, = {s etz (47)_15 <5 < 41_16} .
Lemma 5.3 implies that S C Qp for all S € S when ¢ < C30R%!. Let Eg be the event that

C S 1/2d1 2
(5.1) un(S) — d(sup p/%) |5V < dkp | S| og*n
S nl/2d1oglogn

and let E be the event that Eg holds for all S € §. For any n > Cqyy , 15| log(n)?¢, we have
P(Eg) > 1— Cyxn~* by Theorem 4.4. By choice of T, we have (45) e < d 15|14 < 4y~ e
for S € S. As we assume that n'/¢ > Cy , e~ 'Flog(n)?, we have n > Cyy,., |S| ™" log(n)??
for all S € S. As || < Cue 3¢ and |Q5] < Cge=3¢, we have |S| < Cyze~%¢. By the union
bound, we have P (E) > 1 — Cy e %n=*. For the remainder of the proof we assume that
E holds. Then for each S € S we have

Caep || log? (n)

nt/2d1oglog(n)

un(S) < d|[S)M* (sup p!/4) + <d|s|' (sup PN (1 + CappRn)
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where R, = 7/2¢=1/2p~1/2d log? (1) Let w = (14 \)p, and we show that
n =" log log(n) - L)

sup (u, —w) # sup (u, —w).
Qr QRrys

Assume for contradiction that

sup (un, —w) = sup (u, —w).
Qr Qr+s

Since ¢ is semiconcave with semiconcavity constant «, at almost every x € (Qp we have
that ¢ is twice differentiable at = with D?p(x) < al. Hence, there is z,, € Q.5 such that
D%*p(zy,) < al and up(z,) — w(z,) + 2 > supg, (un — w). Therefore, we have
(5.2) Un(Y) — Un () < w(y) —w(zy,) + €3 for all y € Qg.
As we assume ¢ > 0 and supq , (u, — w) > 2¢, we have u,(r,) > . We define the sets
Ap ={x € [0,2,] N Qg : up(zy) —up(x) < e}
A={z€[0,2,] N QR : w(zy) —w(x) <e+e°}.
By Lemma 5.2 we have u,(A,) > . By (5.4) we have A, C A. As wy;, = (1 + Nz, > ¢q,,
we have A C B(xy, 21*15). By Taylor expansion, we have
w(z) < w(zy) + Dw(xy) - (& — zn) + (1 + Na |z — z, 2
< w(xn) + Dw(ay) - (x — 2) + 20|z — 2,2
Hence, when = € A we have
—e—&® <wa) —w(x,) < Dw(e,) - (2 — xn) + 20| — )
< Dw(zy) - (x — xp) + Cay ™22

Cocly "¢ e have A C We show there exi Q¢, and h
BT M we have A C S, 5. e show there exist y € Q% and ¢ € I'. suc

that Sy, p C Syq. Let y € Q5 such that z, <y and |y — 2,,| < &%, Letting 1 denote the all
ones vector, we have S, , € S, 1 .37. We may choose g so p+ 2631 > ¢ > p+ 31 provided
that 7_15 <p;i < 41_15 — 23 for each 1, which holds when ¢ < Coz_112 and o > 1. Then

S

Y

Letting p; =

p+e31 C Syq. Using that (g1 ... qa)'/4 =d |Sy7q|1/d, we have
e < up(Ay)
< un(Sy,q)
< (1+ CappRn)(sup p) (g1 ... qa)"/?

Sy,q

/ d Ca€2,y—2 + € 1/d
< (1+ Cdﬁ,pRn)(SSup p) (E { Wy, (Tn) i }>

Y.q

d Cae?y~2 + ¢ + 27¢3 Ha
< (1+ CappRn)(sup p)'/ (H { = }) :
s

v,q i=1 wxi ('rn)

1

As our assumptions on ¢ imply ¢ < CH~!, we have Fe3 < Ca521*2. Hence we have

(i (20) - ()1 < (L4 Coep R sup p) (1 + €y %)

Y,q
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As we assume p € C%1(R?) and p > pmin > 0, we have p'/¢ € CO1(QR), hence Supg, . pl/d <

plxn)V/ + C’d,pz-:l_l. By our assumption n!/4 > C’d,k,pe_lﬁlog(n)2, we have R, < Cqp,p.
Ase < Coz_1127_1, we have l_gozs < C. Hence we have
(way () « - Wy (@) < p(an) V4 Coe (R + 7 %00).

Applying Proposition 3.1 with A > Cgyz (R, + 1_2045), we obtain a contradiction. We
conclude that we must have

sup (u, —w) # sup (u, —w).
Qg QRrys

We now prove (b). Let Q%, I'., and S be as in (a), and let Eg be the event that

Cap|S]"/* log? n
nl/2d]oglogn

(5.3) wn(S) — d(inf p!/?) S| = —

and let E be the event that Eg holds for all S € S. For any n > Cy. ,|S| ™" log(n)??, we have
P(Eg) > 1— Cd,kn*k by Theorem 4.4. By choice of I's, we have 5 le < d|S|1/d < 41*15
for S € S. As we assume that n'/¢ > Capre 2aty? and e < *y 'log(n) ™2, forall S€ S
we have

n!? > Cqppe 2092 > e Flog(n)? > Cup, S|/ log(n)2.

By the union bound, we have P(E) > 1 — Cd7ks_6dn_k. For the remainder of the proof we
assume that F holds. Then for each S € § we have

Cakp|S]"* 10g’ (n)
nt/2d1oglog(n)

un(S) > d|S[" (inf o) — > d| S| (inf p/)(1 ~ Caphn)

where R,, = 71/25_1/271_1/2%12%2%. Let w = (1 — A)p, and we show that

sup (w — uyp) # sup (w — uy) .
Qr QR+t
Assume for contradiction that

sup (w — uyp) = sup (w — uy,).
Qr Qrys

Since ¢ is semiconvex with semiconvexity constant «, at almost every x € {Q0p we have that
¢ is twice differentiable at z with D?p(z) > —al. Hence, there is z,, € Qs such that
D%p(z) > —al and w(xy,) — un(z,) + %nfl/d > supgq,, (w — uy,). Therefore, we have

(5.4) Un (Tn) — un(x) < w(xy,) —w(x) + infl/d for all y € Qp.
Cd

We define the sets

B, = {m € 0,2, N Qg : up(zp) —up(z) <e — cdn_l/d}
d
2d _1/q
B = xe[O,xn]ﬂQR:w($n)—w(m)Ss—c—n .
d
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By (5.4) we have B C B,,. By Lemma 5.2 we have u,(B,) < ¢. Letting p; = Efgiil)d, we
have S, , C B(zn,7 '€). For x € S;, , we have 1 4 (z — xy,) - p~! > 0, hence
(5.5) Dw(zy) - (2, —x) <e— Koz€21_2.
Using (5.5), |z — an| < 7', and n~d < ay~2e?, we have
w(zy) —w(z) < Dw(zy,) - (T, — ) + oz — z,*

<e-— Koq_Qz-:2 + oq_Qs2

<e— (K —1)n 4,
Choosing K so (K —1) = i—j, we have x € B. Hence, S;,, C B. We now show there

exist y € Q% and ¢ € I'c such that S, , € S;,p. Let y € Q% such that x, > y and
|y — x| < 3. Letting 1 denote the ones vector, we have Sy p—e31 © Sz, p- We may choose
qsop—e3l >q>p—2e31 provided that 7 1e + 2¢3 < p; < 41_15 for each ¢, which holds
when € < %ofllQi_l. Then S, , C Sy, p- Using that (q1...qq)"¢ =d \S%q\l/d, we have

> (1- Cd,k,pRn)<g,nf )Y qr .. qa)?
Y,q

d _ 1/d
] 1/d e — Cyae?y2 3
> (1-— Cd7k7pRn)(énf p) | I —= — 2
Y,q

d 2,2 =3 1/d
— Cygae*y=* — 279¢
> (1 — CyR,,)(inf p)t/d c = .
> (1= Cay)(i0f ) (H{ o )

=1

1

As our assumptions on ¢ imply € <71, we have Fe3 < a521_2. Hence we have

(wgy (x0) - ... wwd(xn))l/d >(1- Cd,k,pRn)(}gnf p)t/d (1 - Cyy 2ae).

1/d

As we assume p € CO(RY) and p > puin > 0, we have (infs, Pl > pla,)V — Capey .

Hence we have
(wgy (x0) + ... wxd(:cn))l/d > p(a:n)l/d(l — CarpRn)(1 - Cd,palfl) (1 — C’dlfzoca)
> p(l’n)l/d — Cd,k,p(Rn + 1_2015).

Applying Proposition 3.1 with A = Cyy ,(R, + 7 ?ag) we obtain a contradiction. We
conclude that we must have

sup (w — uyp) # sup (w — uy) . O
Qr Qr+s

Lemma 5.2. Given xg € Qg and € > 0, let
Ay, =A{x €[0,20) N QR : up(xo) — up(x) < e}.

Then un(Ay) < e+ %n_l/d. If up(xy) > €, then additionally we have u,(A,) > €.
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Proof. First we show that u,(Ay,) < e+ %n_l/d. Let C1 be a longest chain in 4, N X,,,,
and let « be the coordinatewise minimal element of C;. Let Co be a longest chain in [0, z] N
Qr N X,,. Concatenating these chains, we have

un(fEO) > Un(cl) + Un(c2) - un(cl N CQ)
= up(Ap) + un(z) — in_l/d.
Cd
Hence,

Un(Ap) < up(xo) — up(z) + in_l/d <e+ Ccin_l/d.

To prove that u,(A,) > €, we must first establish a useful property of longest chains. Given
S c R% and a longest chain {yi}le in S, we claim that

(5.6) 0(]0,;] 0 S N Xnp) = 5.

It is clear that £([0, y;]N SN X,,) > 4, as {y;}]_; is a chain of length j in [0,y;]NSNX,,. If
¢([0,y;]NSNX,,) > j+1, then there exists a chain {z; zill in [0, y;)NSNX,,,. Concatenating
this chain with {yi}f:j_|r1
Now we prove the main result. Let {:L‘i}le be a longest chain in [0, 20| N Qr N X,,,, and let
j=min{i e {1,...,k}: 2; € A,}. Letting C; = {;}}_, and Cy = {azi}f:j, we have

yields a chain of length k 4+ 1, contradicting maximality of {yz}f:1

(5.7) un(:cg) = un(Cl) + un(Cg) — un(Cl N Cg)
(5.8) < up(z;) +un(Ap) — in_l/d.

By (5.6) we have u,(z;) = %n_l/di for 1 <i < k. If j > 1, then using up,(xo) —un(xj—1) > €
and uy,(xg) > & we have
d _
(5.9) un (o) — up(xj) > € — C—dn 1/d,
If j =1, then (5.9) is an immediate consequence of u,(z¢) > €. Combining (5.9) with (5.7),

we see that

d
Un(Ap) > up(x0) — un(z) + %nfl/d > e

O
Lemma 5.3. Let 0 < 6 < R. Then given y € Qr+s, there is a constant Cg > 0 such that
dist(y, OpQY) > Cyd R
Proof. Let x € Or€) such that |x — y| = dist(y, Or$2). Then
{QA-t)z+ty:t€(0,1)} CQr\ Qpr+s.
Letting f(z) = (1 ...24)"%, we have
1/d

(l’l Z‘d)

fxi (JT) = dz;
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Using that z; > R? for 2 € Qg and that f(z) < R+ 0 for z € Qg \ Qr.s, we have
L, g 2 a1
IDfll oo (@p\pss) < g (R +0) < SR
Hence, we have

5< (o)~ f(2) < SRy~

0

Next, we establish estimates on u,, v,, u, and v that hold with high probability in a thin
tube around Ogr{2 and 0p2. To do so, we cover the neighborhood with rectangular boxes
and apply Theorem 4.3. In the following Lemma we establish the existence of a suitable
collection of rectangles.

Lemma 5.4. The following statements hold.

(a) Given € > 0, there exists a collection R of rectangles covering Qo \ Qe such that
|E|1/d = Ct for each E € R and |R| < Cge~%.

(b) Given R € (0, %] and 0 < e < %R, there exists a collection R of rectangles such that
for each xz,y € Qr \ Qrye with x < y and [x,y] C Qg \ Qr4e, there exists E € R

such that [z,y] € E. Furthermore, we have C4R e < |E|Y? < C4R™'e for each
Ee€R and |R| < CyR2Md=1)g=2d,

Proof. We give the proof of (b) only, as the proof of (a) is similar but simpler. Given
h € (0,1), let
B = {ac €0,2?: R—e < (w1...29)"% < R+25}

and set By, = B N hZ% We define
R = {[z1,2z2] : (x1,22) € Bp X B, and x1 < x9 and [z1,22] C B}
and we show that R has the desired properties when h is appropriately chosen. Let z,y €
Qr \ Qpie with z < y and [2,9] € Qr \ Qpie. Let w(z) = (z1...24)"Y% Then w,, =
Mandifﬂ:EBandegéRwehave
(z1...2q)"7
€T

(5.10) C4R < < CyR™(4),

Hence we have |z — y| < CyR™'e. Letting 1 denote the all ones vector, by (5.10) we have
w(y+hl) < (R+¢e)+CqR @ Vhand w(z —hl) > R—e — CyR~(4Dh. Then there exists
a constant Cy such that [z — 2h1,y + 2h1] C B when h = C4R% 'e. Letting h = CyR ¢,
there exist y ™ € By, and y~ € By, such that y+2h1 > yf > y+hl and z2—2h1 <y, < z—hl.

Letting A = |[y~, y+”1/d, we have A > C4R% !¢ and

d
A<=y —y) < Callz -yl +h) < CyR™e.
=1

ISHR

Furthermore, we have
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Lemma 5.5. Let p € C(R?) satisfy (2.1), and let u,, and v, be given by (2.2). and (2.5).

Given k > 1, ¢ € (0,1), and n > 0, let R, = n~1/%d *1/2132%02()). Then the following

statements hold.
(a) For all n > Cd,kp;}mR_dzs_dlog(n)‘Ld we have

_2
P| sup vy, > Cgprpe | < Care &k,
Q0\ Qe

(b) Given R € (0,1], € € (0, R], and n > CyppyL,R 2% 41log(n)*® we have

P ( sup  Up > Cd,k,p5> < Cd,kaf?’dQn*k.
QR\QR+-

Proof. We will prove (b) only, as the proof of (a) is similar. Applying Lemma 5.4 (b) with

o = €R, there exists a collection R of rectangles such that supg\q, . un < maxper un(R),

CyRie < |E|Y% < Cye for E € R, and |R| < CyR™24[@-1q=2d < €134 Given R € R,

let E'r be the event that

_ log n
< 1/d j1/2,—1/2d.1/2
un(R) Cd(SUP p) e+ Cq Tog log 1
If Er holds, then our assumption n > Cd,kP;laxR_ e—d log(n)*® implies that u,(R) <
Ca,pe. Furthermore, we have n > Cy(supy p) " |E|™! for each E € R and /klog(n) <

/ .
%. Applying Theorem 4.3 with ¢ = y/2k log(n), we have P(Eg) > 1—Cgkn =" for n >

Cy. Letting E be the event that Er holds for all R € R, we have P(E) > 1 — Cd7k€*3d2n*k
by the union bound. As supg\q,, . Un < Maxger un(R), the result follows. O

Lemma 5.6. Given R > 0 and p € C(RY) satisfying (2.1), let u and v denote the solutions
of (1.2) and (2.4) respectively. Then the following statements hold.
(a) For all & > 0 we have

sup  u < dpi/da.
Qr\QRtq

(b) We have
sup(v — Lo u) < dpd R.

maxr
Qo

Proof. (a) Let w(z) = dpeli(z1 ... 29)Y/4 — dpl&R. Then w = 0 on 95N and

(wy, ...wmd)l/d = pld > (u,, . ..uxd)l/d on Qpg.

Observe that Qr = OrQ U Qg U 0*Qg, so Q = Qr and I' = 0rQ satisfy the hypotheses of
Theorem 3.1. As wu satisfies (1.2), u = 0 on Jr§). By Theorem 3.1, we have u < w on Qp.
Furthermore, when = € Qg \ Qrtq, we have u(z) < w(z) < dprln/gxa

(b) Let w(z) = dpllr{gx(xl .. xq)"/% Then w =0 on GpQ and (wy, ... wy,)? = plﬁfﬁx By
Theorem 3.1 we have v < w in €y, hence v < dprln/gXR in Qg \ Qr. Since u = 0 on 1Y,
we have v < u+ deﬁ{;lXR on Or§Y. Furthermore, we have (ug, . .. Uz, )% = (vgy ... v5,)% in
Qpr. Hence, we may apply Theorem 3.1 to conclude that v < u + de{aXR within Qp, and
the result follows. 0



26 RATES OF CONVERGENCE FOR THE CONTINUUM LIMIT OF NONDOMINATED SORTING

6. PROOFS OF CONVERGENCE RATES

6.1. Proof of Theorem 2.1. In this section we supply the proof of Theorem 2.1. Roughly
speaking, the proof approximates u with a semiconcave function ¢, uses Theorem 5.1 to
show that the maximum of u, — ¢ and @ — u, is likely to be attained in a neighborhood
of the boundary, and then applies the boundary estimates established in Lemma 5.5. To
produce a suitable approximation ¢, we use inf and sup convolutions, whose properties are
summarized in the following lemma. While the proofs of similar results can be found in
standard references on viscosity solutions such as [3,14,26], the estimates are not stated in
the sharp form required here. The proofs of the following statements can instead be found
in [6].

Lemma 6.1. Given an open and bound set Q C R?, u € C%Y(Q), and o > 0, consider the
inf-convolution defined by

: 1 2}
U () = inf < u(y) + — |z — .
@)= int uty)+ 5 1o =l
Then the following properties hold:

(a) uy is semiconcave with semiconcavity constant o™ !.
(b) There exists a constant C > 0 such that

2 —
0,1 (Q) .

= el oy < Calul
(¢) There exists a constant C' > 0 such that
[alcor @) < Cluleos @)-
(d) Assume f € C%L(Q) and H € Cﬁ;cl(Rd). If
H(Du) > f in Q
then
H(Duo) 2 f = Cafu]cor gyl flcor @y in Ma(u)

where
1
My (u) = {x € Q: argmin, g {u(y) + %0 |z — y]Q} N # @} .

(¢) Let yo € argmin, g {u(y) + o |7 — y[Q}. Then there exists a constant C' > 0 such
that

|z = yal < Ca[u}co,l(ﬁ)'

We are now in a position to tackle the proof of Theorem 2.1. We prove the sharper rate
in (b) by leveraging the semiconvexity estimates established in Section 7.

Proof of Theorem 2.1. (a) Given a > 0, let uq(2) = infyeq, {u(y) + 5= [z — y[*}. By Theo-
rem 3.2 we have

(6.1) [U]CUJ(QR) = Cdva_dH'
By Lemma 6.1, u, is semiconcave on 2 with semiconcavity constant o' and we have

(6.2) e = el ooy < @ltlfon g,y < CaR™27Y
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and

d

(6.3) H(ua)xz Zp— Cd,pa[“](jﬂ’l(ﬁﬁ,) Zp— CdmR_d—Ha in M (u).
i=1

Let z € Qg such that dist(z, Or$2) > Calu]go.n g,y where C' is the constant given in Lemma

6.1 (e), and we show that v € Ma(u). Given y, € argmin, - {u(y) + o |2 — y[2}, we
have

1
ula) + 5, |v = gal? < ule),

hence yo < 2. By Lemma 6.1 (e) we have |z — ya| < Calu]poi (g, < dist(z, 0r$2), hence
x € My(u). By Lemma 5.3, there exist constants Cyg > 0 and Cq, > 0 such that Qg5 C
M, (u) when § = Cy ,aR™2#2. By Lemma 6.1 and Theorem 3.2 we have

[Ua]covl(ﬁR) < [u]co»l(ﬁR) < Cd,pRidH-
By (6.3), we have
Cd,pR(dil)2 < (ua):m < Cd,pRi(dil)
in the viscosity sense. Given A > 0, let A; denote the event that

(6.4) sup (up — (1 + Nug) # sup (up — (14 Nug) -

QR QRr+ts

Let v = Cd,pR(d*1)2, ¥ = Cd,pR*(dfl), 0= Cd7paR*2d+2, and € € (0,1). Set v = légglzg"n,
R, = n_1/2d71/26_1/21/, and A = Cyp p(Ry + 1_201_15 + R_d+1a). Assume for now that
supg, (un — (1 + A)uq) > 2e. Then for all n > 1 with n'/d > Cy, R e log(n)? and e
satisfying

(6.5) e < Cy min(OQQW_l log(n)~2, R*16)

we have P(A41) > 1—Cy e %n~" by Lemma 5.1. Let Ay be the event that SUPQ N\ Qs Un <

Cak,p0. By Lemma 5.5 we have P(As) > 1 — Cd,ké_?’dzn_k for some constant Cy. As e <6,
we have P(A1 N Ag) > 1—Cyre~%n~F. If A1 N Ay holds, then using (6.4) and (6.2) we have

sup (up —u) < sup  (un — (14 Aua) + [ull pooy A + v = vall oo @
Qr Qr\Qr+s
< sup up + CgpA+ CyaR™24+2

Qr\QRys
< Cd,k,pfs + deg)\ + Cd7pR_2d+204

. _ —2d? 4 dd—
Using 772 = Cy ,R~2¢ +19=2 we have

(6.6) sup (up — u) < Cakp (Rn + R72424 4 R_2d2+4d_2a_18) .
Qr
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In the case where supq (un — (1 + A)ua) < 2¢, we cannot apply Lemma 5.1, but obtain
(6.6) by observing that

sup (up — u) < sup (up — (1 +Aua) + ||UHL00(§R) At lu— uaHLoo(ﬁR)

Qg Qr

< 26 + Cgph + Cgp(R724Da)
< Cukp (Rn L R0, o R—2d2+4d—2a—18> .

Let E denote the right-hand side of (6.6), and we select the parameters o and & to minimize

2d2 —3d+1

E subject to the constraints from Lemmas 5.5 and 5.1. Let ¢ = vn and

(—2d2 +6d—4) —2d%2+49d—-7
20T —1/4d),1/2

a=R— 2 =R 1 . Then we have
(—2d2+d+1)
E < CqprpR 4 p1/2p—1/4d,

This is subject to the constraints

(6.7) a < R (from Lemma 5.5)

(6.8) Caprlog(n)?R2571 < n'/? (from Lemma 5.1)

(6.9) Cyprlog(n)?R™4e™1 < n*/? (from Lemma 5.1)

(6.10) e < CdR2d2_3d+1alog(n)_2 (from Lemma 5.1)
(6.11) e < CqR5 (from Lemma 5.1) .

2_
As enl/d = pl/2dR* 23d+11/, (6.9) is satisfied when n'/¢ > C’d7p7kR*(2d2*d*1) log(n)¢. We
6d2—3d—3

2_
also have (6.8), since e < 8. As R2=3d+1q — R™ 7 p~1/4d,1/2 ypd ¢ = R* 23d+1n_1/2dy,
(6.10) is satisfied when n'/4 > Cyy ,R™2F 9941 160(n)C. Tt also follows that (6.11) holds,

9d? Lod
as R1-1§ = R—d+lq > R2°—3d+1y Sinceq =R 1 71/1/2n_1/4d, (6.7) is satisfied when
nt/d > Cdk’pR_(QdQ_gdHl) log(n)®. It is straightforward to check that the most restrictive

of these conditions is n'/¢ > C'd’k,pR_(QdZ_d_l) log(n)%, hence all constraints are satisfied
when this holds. We conclude that

(242 +d+1) log? 1/2
P (Sup (un — u) > Cd,p,kR_ : JZ — n—1/4d (logn) < Cd,p,kRCdn_k-
Qr oglogn

(b) By Theorem 2.3, there exist constants C, and Cg, such that u is semiconvex on Qg
with semiconvexity constant C’(L,)]%_QdJrl when R < C,. Given € > 0 and A > 0, let E be
the event that

sup ((1 — ANu —uy) # sup (1 — Nu—uy).

Qr Qrts

Lety = Cq,R4V* 5 = Cy, R4V a = Cy )R> and ¢ € (0,1). Set v = Igiﬁz s Ry =
n~/2d51/2¢-1/2) and \ = Cdk’p(Rn—i—’y*QR*Qst). Then for all nt/? > Cd,p7kR2d2*2d+25*2
and ¢ satisfying (6.5), we have P(E) > 1 — Cy e~ %n~* by Lemma 5.1. We assume for the
remainder of the proof that E holds. By Lemma 5.6 we have

sup (1 = Nu—u,) = sup ((1 = ANu—uy,) < Cqpid.

QR Qr\QR+s
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. . o od?42d—
Letting § = A and using v 2R™2%H! = C; ,R=2¢" 2471 "we have

sup (u — up) = sup ((1 = Nu — up, + Au)

Qg Qg

< sup (1= XNu—up) +CgpA
Qr\QR+s

< Cd,p,k(Rn + R72d2+2d71€)'

3 —2d%2+2d—1 e 4d? _5d+3 L2/3
Letting £ = (R, + R g), we select € to minimize E. Let ¢ = R™ 3 Y7, so
n

R, = R~24*+2d=1. Then

_od? 194 —2d’4d
E:R 2d“+2d 15:R 3 n 1/3dV2/3.

From Lemma 5.1 we have the following constraints

2 8d2—10d+6
(612) Cd,p,kR2d —2d+1 S 52n1/d — n1/3deV4/3

(6.13) e < CyuaR¥ —3d+1 log(n) ™2 = R*—5d+1 log(n) 2
(6.14) e < Cy4RI716.

As § = A > R 2P+2d-1. it i clear that (6.14) is satisfied. Observe that (6.12) is sat-

isfied when nl/d > R—24*+4d—4166(p)C  Furthermore, (6.13) is satisfied when n'/? >

o2
Ca kol B T log(n)® for some constant C. As the most restrictive of these conditions

is pt/d > Rp—2d*+4d—4 log(n)®, when this is satisfied we can conclude that

o2 1 2 2/3
P (sup (u—up) > CqprR 25 /3 <logn> < C’d%kRCdn_k. O
Qr oglogn

6.2. Proof of Theorem 2.2. We now establish our convergence rate result on g = (0, 1]¢
by using the auxiliary problem (1.2) as an approximation to (2.4). The proof is conceptually
straightforward, using u, as an approximation to v, and u as an approximation of v. As
with Theorem 2.1 we obtain a sharper result in (b) thanks to Theorem 2.3.

Proof of Theorem 2.2. (a) Given R > 0, let E; be the event that

(6.15) ( ) < Coor R (2d2zd+1) ~1/4d log®n 12

. s{;gi) up —u) < Capk n Toglog .
By Theorem 2.1 (a) we have P(E;) > 1—Cy . ,REn=F for all n!/¢ > C’d7k7pR_(2d2_d_1) log(n)“.
Given any = € € and longest chain C in [0,2] N X,,, let C; = {y€C:y € Qr} and
Co={yeC:y¢Qgr}. Then
(6.16) Un () — up(z) < vp(C) — up(Cr) = v, (Co) < sup vy,

Qo\Qr

Let Ep denote the event that supg\q, vn < Ca,pRR holds. By Lemma 5.5 we have P(E3) >
1 — Cyp R C%n7F for all n with n'/? > Cy; , R~ log(n)*. Then P(E; N Ey) > 1 —
C’d,kvaCdn_k, and for the remainder of the proof, we assume that E; N Ey holds. Let
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v= (ggi;ﬂ)lﬂ. Using (6.16) ,(6.15), and u < v on Qg, we have for all z € Qp that
Un(2) = v(z) < (n(2) — un(2)) + (un(z) — u(z)) + (u(z) — v(2))
< Cypp(R+ R 1/,
Hence we have

(2d2+d+1)
sup(vy —v) < Capp(R+ R~ 1 n /i)
Qo

. : _(d%+d+1)
Letting R = Kn~?, we select the maximum value of 3 such that R > R T M/Ady,
and nt/d > C’d,kva_(de_d_l) log(n)¢ hold when n > Cak,p- These are satisfied when
dB(2d*+d+5) < 1 and dB(2d?> —d—1) < 1, respectively. Letting 8 =

sup(vp —v) < Cq oK R.
Qo

1
SPTE TR We have

Choosing K so Cy,,K = 1, we conclude that for all n > Cg , 1 we have

P <sup (v — v) > nl/(2d3+d2+5d+1)> < C’dpkn””Cd.
Q ”
As this holds for all £ > 1, the result follows.

(b) Given R > 0, let E be the event that

2/3
(6.17) sup (u —up) < Cy kR72d32+d n~1/3d M .
Qn - e loglogn

By Theorem 2.1 (a) we have P(E) > 1 — Cyy, ,R%n~* for all n with
(6.18) n'/4 > Cyp ,R2EH 0g(n)

For the remainder of the proof, we assume that F holds. By Lemma 5.6, we have SUPQ\Qp (v—

2/3
lo,u) < CypR. Let v = <1é§%zgn) . Using (6.17) and u,, < v,, we have for z € Qg that

v(2) = va(z) < (v(@) = u(@)) + (u(@) = un(2)) + (un(z) — va(2))

—2d24+d

< Cajp(R+R™5 0 /¥).

If € Qo \ Qp, then we have v(z) — vu(2) < supg \o, v < Cy,R. Hence, we have

o2
sup(v —vp) < Carp(R+ R = +aln—l/Bd,/)'
Qo

—2d24+d—1

Letting R = Kn~?, we select 8 tosatisfy R > R~ 3 n~ /3%y and (6.18) when n > Cd,pk-
These are satisfied when df3(2d?> —d+3) < 1 and dB(2d? —4d +4) < 1, respectively. Letting
we have

_ 1
p= 2d3—d?+3d+1’

sup(v, —v) < Cd7k7pKn_B.
Qr
Choosing K so Cg ,K = 1, we conclude that

sup (vp — v) < n—l/(2d3—d2+3d+1) 0

0
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Remark 6.1. Observe that 2d> + d? +5d +1 > 2d® — d?> + 3d + 1 for d > 2. This shows
that making use of the semiconvezity estimates in Theorem 2.3 has genuinely improved the
convergence rates.

The following lemma allows us to extend our results to data modeled by a sequence of
1.7.d. random variables instead of a Poisson point process.
Lemma 6.2. Let {Y;};2, be i.i.d. random variables on R? with continuous density p and
setY, = {Y1,..., Yo}, Let X, be a Poisson point process with intensity np. Let F' : F — R
where F = {S CR?: S is finite } and suppose that P (F(Xy,) > ¢) < K. Then

P(F(Yy)>c) < Keyn.

Proof. Let N ~ Poisson(n). Then Y is a Poisson process with intensity np, as proven
in [25]. Hence we have

o0 k,—k
P(F(Yn)>c¢)=Y B(F(Y}) > c) u <K
k=0 )

By Stirling’s Formula, nnzﬁ < ey/n. We conclude that P (F(Y,) > ¢) < Key/n. O

7. PROOF OF THEOREM 2.3
First we define the notion of semiconvexity.

Definition 7.1. A function u is said to be semiconvex with semiconvezity constant C on a
domain Q if for all x € Q and h € R? such that x + h € Q we have

w(x + h) — 2u(z) + u(z —h) > —C|h*.
A function u is said to be semiconcave with semiconcavity constant C' if —u is semiconver

with semiconvezity constant C.

We begin by showing that estimates on the semiconvexity constant of u near the boundary
automatically extend to the whole domain provided p!/¢ is semiconvex. The key ingredient
in the proof is the concavity of the Hamiltonian L(p) = (p1 . .. pq)"/<.

Theorem 7.1. Let Q C [0, M]% be an open set, and assume that OQ = T'U 0*Q where
I C 00 is closed and 9*Q is as in (3.1). Givene > 0, let Q. = {z € R?: dist(z,Q) < ¢}
and suppose that u € C(Q.) satisfies (Uy, ... uz,) /¢ = p"¢ in the viscosity sense on Q,
where p € C() satisfies (2.1) and p'/¢ is semiconver on Q with semiconvexity constant
K,. Suppose there exists h € R? such that |h| < ¢ and

(7.1) w(x + h) — 2u(z) + u(z — h) > —K, |h|* forz eT.
Then we have
e+ h) = 2u(x) +u(z — h) > —(1+ |[ull o (o)) max(Ku, o4, K,) B for z € Q.

» Prmin

Proof. Set L(p) = (p1...pa)" ¢ and w(z) = w, and we show that w satisfies
L(Dw) > p4 — K, A2 on Q. Given zg € Q, let ¢ € C°(R%) such that w — ¢ has a local
minimum at zg. Without loss of generality we may assume that w(zg) = ¢(z¢) and w — ¢
has a strict global minimum at xg. Let

1 1 (x—l—y

Oz, y) = Jule) + July) —¢ { —

(8% 2
— |z —y — 2h|°.
5 )+2M y |
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Since ® is continuous, it attains its minimum at some (Zq,Yo) € Q x Q. Furthermore, we
have

(7.2) D(zasYa) < @(20 + h, 20 — h) = w(zo) — (20) = 0.
As u and ¢ are bounded on , we have

(7.3) 2 e — Yo — 20> < Cy.

5 |
By compactness of 2 x Q, there exists a sequence a,, — oo such that {z,, } and {y,, } are
convergent sequences. Set T, = T, , Yn = Ya,,, and let (Z,y) = lim,—oo(Tn, yn). By (7.3)
we have T —y = 2h, and now we verify that (Z,y) = (zo+h, zo—h). By lower semicontinuity
of ¢, we have

liminf ®(x,,, y,) > ©(Z,7) = w(y + h) — (g + h) > 0.

n—oo
By (7.2) we have
Jim @(z5,y0) = 0= w(y+h) — oy + h).

Since w — ¢ has a strict global minimum at xg, we conclude that zo = § + h. Since
T =y + 2h, we have (Z,y) = (o + h,x0 — h). As 9 £ h € Q, there exists N > 0 such
that(zy,, yn) € Q: x O, when n > N. Let 91 and 2 be given by

T+ Yn

a(e) = —utn) + 20 (50 — o -y - 20

Tn +Y

Pa(y) = —u(zn) +2<p( )—an\xn—y—%\?.

By construction, v — 7)1 has a local minimum at x, and u — 12 has a local minimum at
Yn, DU1(2n) = pn — 2qpn, and DYo(yn) = pn + 2¢, where p, = Do (%) and ¢, =
an(xy — yn — 2h). Since u satisfies L(Du) = Y on Q., we have L(pn + 2qp) > p(yn)l/d
and L(p, — 2¢,) > p(x,)'/¢ for n > N. Using concavity of L, we have

+2 -2
L(pn)=L<pn . dn +pn . Qn>

> (L (pn +200) + L (pn — 201)

> S (o) 1+ ) 1),

Using (Z,%) = (zo + h, g — h), lower semicontinuity of L, and semiconvexity of p'/?, we
have

L(Di(a0)) > limsup L <D90 (“J"f)) > Lplwo + W)Y + plag — )

n—o0 2

K
> p(zo) 4 — 7p |h|?.

It follows that L(Dw) > p'/4 — % |h|*> on Q. Given 6 > 0, set § = 3 |h|? max(K,, p;illdep)
and let wp = (1 + @)w + 6. By Proposition 3.1 we have

1/d

K
L(Dwg) > p!/4 — 7’) Ih + dpint > p/% on Q.



RATES OF CONVERGENCE FOR THE CONTINUUM LIMIT OF NONDOMINATED SORTING 33

Furthermore, by (7.1) we have w > u — £« |2 on T'. By choice of 6, we have wy > u on
I. As 9Q =T U 0*Q by assumption, we may apply Theorem 3.1 to conclude wg > u on €.
Hence for all x € ) we have

u(x + h) +u(x —h)

w(r) = 5 > u(@) = O(1 + |[w] poo ()
1 —1/d
> () = 5 |[ull ooy 111 max(Kos o K ).
and the result follows. O]
Next we establish the existence of an approximate solution to (2.6) for R = 1 in a

neighborhood of the boundary when p(z)'/¢ = a + p - (x — 2¢). The approximate solution
is constructed as w 4+ v where w is the solution to (2.6) when p = 1 and v solves a related
PDE. Given zg € 011, p € R? and a > 0, let

(7.4) v(@) = 20~ 7 (0 ) (@1 .. 2) /" — (@1 2a) ) = 2p - w0) (@1 ... 20)/ ~ 1))

2
and
(7.5) w(z) = ad(zy ... xg)" — o'/
and
(7.6) uU=w+ .

Theorem 7.2. Given xg € 01 mS2, p € R, and a > 0, let v and w be as in (7.4) and (7.5).
(a) We have

d

. Z waj Uy, =D (T —x0) 0 QM
(7.7) i\
v=20 on 01, mSL.

(b) Letw = w +wv. Then for all ¢ < Cy(aM(1 + |p|))~" we have

u=0 on B(xg,e) N Oy md

where |E| < Cqa™" |p|* M?e2. Furthermore, U is nondecreasing in each coordinate
within B(xo,e) N Qq ar-

Proof. We first prove (a). Using (7.4), it is clear that v = 0 on 0y »2. Furthermore, we
have

_ A — 9 )
QQ%xivxi = <xipi + p($dxo)> (z1... xd)l/d + (—xipi + 1%) (r1... xd)*l/d

and

d
a-1
2a 4 invmi =2 (& — z0) (w1 ...2q)""
i=1
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and it follows that (7.7) is satisfied. To see that (7.8) holds, observe that

d d

i=1 i=1 J#i

E =

S I I v

d
=2 Kc{1,...d}ieK  j¢K
|K|=¢

To bound | E| within B(xo, €), we establish some estimates on v;,. Using that max,eq, ,, m% =
M4=1] it is straightforward to verify that Dv(z) = 0 and
d—1
Caa™ "7 M p
(79) 010, (a0)| < S22
Zo,i
for 1 < j < d. Hence, we have

C’da_d%Md Ip| e

Zo,i

‘Uxi| <

Since wy, = a'/%(xy...xq9)Y ;! for x € B(xg,e) and ¢ < M@= we have
al/d Cal/dé“ Cal/d

7 S :
Z0,i Lo, Z0,i

Then for any K C {1,...,d} with |K| = ¢ we have

3 C 1/d
IT ool TT s, | < Cata™“ M pl o) T ot T
icK j¢K icK JEK 0y
¢

[wg,| <

< Caa'™* (M ple)
It follows that |E| < Cya~" |p|> M24? for e < m.
in each coordinate within B(zg,e) Ny a7, observe that in B(xg,e) we have

C 1/dprd

To verify that u is nondecreasing

L0,
Using (7.9), we have
d—1
_ Caqa” @ M |p|
s < —.
[Teiz; (@0)| < To,i
Using Ty, (zo) = al/dx&%, when ¢ < CgaM ~4(1 + |p|) and = € B(x,¢) we have

Uy, () > al/”lacaz1 - C’dea*% | :ca,zl > 0.
O

We can now apply the comparison principle to show that @ approximates u near the
boundary.
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Proposition 7.1. Let u denote the solution to (2.6), where p € C*(Qq pr) satisfies (2.1).
Given xg € 01 MS2, let © = v+ w where v and w are as in (7.4) and (7.5) with a = p(zo)
and p = Dp(xg). Then there exists a constant Cqpar > 0 such that when ¢ < Cgp,ar we
have

= 32 r3d—17.1/d -2 2 -1 2
sup lu —u| < Cqe”M [p / ]C’O»l(Rd) (Pmm HDPHLOO(E)LMQ) + Pmin HD ﬁ’HLoo(a1 MQ)) :
B(mo,e)ﬂQLM ’

Proof. Letting H(p) = p1 ...pg, by Theorem 7.2 we have

H(Du) = p(zo) + Dp(x0) - (x — x0) + E(z) in Q1 p

where |E| < CapL || Dp(x0)||* M?%? in B(zo,¢). As p € C*(Qy), for € B(zo,€) N Q1
we have
(7.10) p(x) = p(wo) + Dp(zo) - (z — o) — [[D?p(x0)|| - €

Given X > 0, by Proposition 3.1 and (7.10) we have in B(zg,e) N 2y as that

H((1+\)Du) > (1+\)p
> P =+ dpmin)\
> p(x) + Dp(xo) - (x — x0) — HDQ,O(:E())HLOO £2 + dpmin\.

min

Letting A = Cyp2 HDpH%oo(aLMQ) M2 4 pt HDQ'OHLOO(aLMQ) €2, we have
H((1+ A\)Du) > H(Du) in B(zo,e) N Q1 .

Observe that (1 4+ X)u =@ = 0 on 0y € and u is nondecreasing in each coordinate. We

may apply Theorem 3.1 with Q = B(zg,e) N Q1 and I' = B(zg,¢) N 01,m$2 to conclude
that (1 4+ M)u > uw on B(zo,e) N Q. By Lemma 3.2 we have [ull oo (p(zg,0)n0, 1) <

CyM1 le/dHCOJ( €. Hence, we have

RY)

l/d‘

— 'm d_
u>u— ||UHL°°(B(1’076)QQLM) Az a— Gy HP CO-1(R)

From Theorem 7.2, @ is nondecreasing in each coordinate within B(zg,). An analogous
application of Theorem 3.1 shows that (1 — A)u < @ on B(xg,¢) N Q1 a, and we conclude
that SUP (s, )0y 1 = T < CaM || o sy A s

Now we establish semiconvexity estimates on @ in a neighborhood of 0y /.

Lemma 7.1. Given zg € 01 4, a > 0, and p € R?, let @ be as in (7.6). Then the following
statements hold.

(a) For all n € R% we have
d—1 _ _
" (D*u(wo))n > —Cqn|* (a= @ M1 [p| + o'/ IM2472).
(b) There exist values of a >0, p € RY, zg € 01 Q and n € R? such that

0" (D¥u(x0))n < —Cq|nl? (a= T M2 |p| + a4 0124-2),
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1 _a (dxjpj + dxipi +p- (v — 220) + da da+p- (x — 2x0) 1/d
—a~ d — 04 e
Uiz, 2a < d?>x;z; K dﬂ?? (@1 a)
1 a1 (drpj 4 deip; —p-x p-x —1/d
—a~ d — 045 . .
+ 2a ( dQl‘il‘j " d$12 (1:1 :Ed)
In the following calculation we shall employ the shorthand notation 1 -z~ := Zle m:):i_l

and }x_1’2 = Z;'i:1 z; % Let n € R? with || = 1. Then we have

d
d-1 2dxq.ip; + 2dxg ip; — 2p - X9 + da a
2a"7 1" (D*u(x0))n = i1 : — — 0jj—5—
”ZZ:I d*x0,i70,5 3
2 & pi | D p-x a = i) L2
i j Lo i'lj i
== nmj< + —>+ —= —a
d i;l 1‘07]' SU(]’Z‘ d:ljoyiﬁ[)d d i;l ZL‘il‘j im1 .73(2)71-
2 1

= 20" (2009) = o025 )+ G = -

> —Ca (Ipl 25" + Ipl ol [2"[* +a |5 " ")

SH

Using that min z; = M9 we have

IGQLM

d—1

2a°7 5T (D¥u(wo))n > —Ca (M* |pl + ahd®-2)

(b) Let @ = 1, n = ey, and define g € 01 Q2 by o1 = ﬁ) wo; =M for j=2,... dand
p= —ﬁ where v = 2e7 — d;:g,l' Then (Mzd*1 Ip| + aMQd*Q) < 2M24-1 We have
. 2 w \_1-(1/d)
T 2 0
n' (D*u(xo))n drox” < e; da:071> 2
2
e
2

_ _Zagd-1 _ J-1\2 _ —17s2d
=—-M J@—d 24 (d-1)dtM

< —CdM2d_1. O

Remark 7.1. Result (a) establishes an upper bound on the semiconvexity constant of T,
while result (b) shows that this is the best bound (up to a constant Cy) that can hold without
additional restrictions on p. In (a) if we assume also that p-xo < 0 the result can be improved
to

_d=1 _ _
0" (D*u(z0))n = —Cala™ @ |p| M 4 al/ M2,

Proof of Theorem 2.3. We will prove the result in two steps, first considering the R = 1 case,
and then proving the general case using a scaling argument. Given M > 1, let u denote the
solution of

(7.11) {(“m“zz . -Uacd)l/d =p"? in Q1 2m

u=20 on 01 22
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Letting w(z) = dprlr{éix(acl ag)td— d,orln/gx, we have w = 0 on 9y 257 and (wy, . .. wy, )4 =
p}r{;lx > u on Q4 2p7. By Theorem 3.1 we have © < w on € 27, hence HuHQ1 oy S Cdei{;lX.

Given ¢ > 0, let h € R? with |h| = ¢ and set Tz = {x € Qq y : dist(x, 01 Q) < €} and
Us. = T3\ T'e. Given z € U, there exists zg € 01y such that z € B(xg,3¢). Let w be
as in Proposition 7.1, with a = p(z¢) and p = Dp(x¢). By Proposition 7.1, there exists a
constant Cy , pr > 0 such that when € < Cy , pr we have

sup lu — 1| < Cd,p,Ms?’.
B(x073£)ﬂQ1,]w

By Lemma 7.1 (a) we have
n' D*u(xo)n > —CyKy
where
Ky = nggil)/d 1Dpll oo (0 2re2) M 4 pld NP2,

As u is smooth, there exists a constant Cy , ps > 0 such that

inf "D > —OyKy — C €.
yEB(xo,3¢) " (y)n - du d.p.M

and it follows that
U(x + ) — 2a(x) +a(x — h) > — |h|* (CaKa + Cap 1)
Hence, we have

u(x + h) — 2u(x) + u(z — h)
Rl

W+ h) — 2u(x) + u(z — h

Mo th) ) CMe )y
|h| B(x0,3¢)NQ1 m

> —(CqKy + Cy p me€)

>

This holds for all € U,, hence also for all x € U.. Letting Q = IR, \T: and T =
{z € Oy : dist(z,91,mQ) =€}, we have 9Q = T U §*Q and {y € R? : dist(y,Q) <e} C
1/d

Qyop fore < M. As p!/? is semiconvex on .y with semiconvexity constant HD2 (p )HLOO(Q1 )

we may apply Theorem 7.1 to conclude that for all x € Qy 5 \ T'z we have
u(z + h) — 2u(z) +u(x — h)
|h?

> =Ca(1+ [lull poo (2, ,0)) (Ku + Capn€)

> —Ca(1 + Mpl2)(Ky + Capnie)
where

K, = max (Ku, p;ﬁlr{d

‘DQ(pl/d)HLoo(QLM)> ’

As this holds for all € < Cy, » and h € R? with |h| = ¢, we conclude that for all z € Qy
and h € R% with z + h € Q1,1 we have

u(z + h) — 2u(z) + u(x — h)
|Al”

> —Cy(1+ Mpl/A)K,,.

max



38 RATES OF CONVERGENCE FOR THE CONTINUUM LIMIT OF NONDOMINATED SORTING

Now we prove Theorem 2.3 in full generality. Let u denote the solution of (2.6) and let
q(z) = u(Rx). Then ¢ satisfies

Qo1 Gay -Gy =9 10 Qy p1py
q = 0 on 317371MQ

where g = R%(Rz). By our R = 1 result, ¢ satisfies

q(x +h) —2q(x) + q(x — h) iy
2 > —Cy(1 4+ MpH/2)max K,Rmeir{ HDQ(pl/d)H
i L= (Qr,m)
where K = R~243(E 4+ FEs) with E; = p;lgﬁ—n/d HDPHLoo(aR ) M28=1 and By = prlr{gxMZd—;

Then there exists a constant C,, > 0 such that when R < C, we have
q(z +h) —2q(z) + q(z — h)
|l
Hence for all y € Q p-1), and 1/ € R? with A/ # 0, we have
u(Ry + Rh') — 2u(Ry + RK') + u(Ry — Rh')
|[Rh|”
Replacing Rh' with h and Ry with z, we conclude that for all z € Qg and h # 0 we
have

> —Ca(l+ Mpl{S )R> (B, + By).

max

> —Cy(1+ Mp A )YR™2H (B + Ey)

max

S QFIL%(|:;) TR S 1+ M) R (B + B). =
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