
ar
X

iv
:2

00
6.

10
81

8v
6 

 [
m

at
h.

N
A

] 
 2

3 
Fe

b 
20

21

KACZMARZ-TYPE INNER-ITERATION PRECONDITIONED FLEXIBLE GMRES

METHODS FOR CONSISTENT LINEAR SYSTEMS

YI-SHU DU∗, KEN HAYAMI† , NING ZHENG‡ , KEIICHI MORIKUNI§ , AND JUN-FENG YIN¶

Abstract. We propose using greedy and randomized Kaczmarz inner-iterations as preconditioners for the right-precondition-
ed flexible GMRES method to solve consistent linear systems, with a parameter tuning strategy for adjusting the number of
inner iterations and the relaxation parameter. We also present theoretical justifications of the right-preconditioned flexible
GMRES for solving consistent linear systems. Numerical experiments on overdetermined and underdetermined linear systems
show that the proposed method is superior to the GMRES method preconditioned by NE-SOR inner iterations in terms of total
CPU time.

Key words. Kaczmarz method, randomized algorithm, linear system, overdetermined system, underdetermined system,
least squares problem, iterative method, inner-outer iteration, preconditioner, GMRES, flexible GMRES

AMS subject classifications. 65F08, 65F10, 65F50, 15A06

1. Introduction. Consider solving consistent linear systems

(1.1) Ax = b, b ∈ R(A),

where A ∈ R
m×n is not necessarily of full rank and R(A) is the range space of A. In particular, consider the

minimum Euclidean-norm solution

(1.2) min
x∈Rn

‖x‖2 s.t. Ax = b, b ∈ R(A).

The problem (1.2) is equivalent to the normal equations of the second kind

(1.3) AATu = b, x =ATu, b ∈ R(A),

where (·)T denotes the transpose.
Direct methods for solving problem (1.2) or (1.3) are generally expensive when the coefficient matrix

is large and sparse. A well-established iterative method for solving (1.2) is the (preconditioned) CGNE
method [15, 34], which is mathematically equivalent to the (preconditioned) Conjugate Gradient (CG)
method [22] applied to (1.3). Another method is the (preconditioned) MRNE method [28, 16], which applies
the (preconditioned) MINRES method [29] to (1.3). Note that iterative methods may be slow to converge
for ill-conditioned problems since the condition number of AAT is the square of that of A, and precondition-
ing becomes necessary. In [21], Hayami, Yin and Ito proposed a right-preconditioned generalized minimal
residual (GMRES) method called the AB-GMRES method by applying GMRES to minu∈Rm ‖b − ABu‖2,
where B ∈ R

n×m.
In order to accelerate the convergence of iterative methods and save the storage requirement, inner

iterations can be applied as a preconditioner inside the Krylov subspace methods instead of applying precon-
ditioning matrices explicitly. Such techniques are often called inner-outer iteration methods [33]. Morikuni
and Hayami [27, 28] proposed a class of inner-iteration Krylov subspace methods by applying stationary
inner iterations as implicit preconditioners, and showed their efficiency particularly for ill-conditioned and
rank-deficient problems. (See also [16].)

∗School of Mathematical Sciences, Tongji University, N.O. 1239, Siping Road, Shanghai, 200092, China, and LIP, École
Normale Supérieure de Lyon, INRIA, 46 Allée d’Italie, Lyon, 69364, France (duyishu@tongji.edu.cn).

†National Institute of Informatics, and The Graduate University for Advanced Studies (SOKENDAI), 2-1-2 Hitotsubashi,
Chiyoda-ku, Tokyo 100-0003, Japan (hayami@nii.ac.jp).

‡Research Center for Statistical Machine Learning, The Institute of Statistical Mathematics, 10-3 Midori-cho, Tachikawa
Tokyo 190-8562, Japan (nzheng@ism.ac.jp). Current address: The Institute of Statistical Mathematics, 10-3 Midori-cho,
Tachikawa, Tokyo 190-8562, Japan (nzheng@ism.ac.jp).

§Faculty of Engineering, Information and Systems, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
(morikuni@cs.tsukuba.ac.jp).

¶School of Mathematical Sciences, Tongji University, N.O. 1239, Siping Road, Shanghai, 200092, China (yinjf@tongji.edu.cn).
Funding: This work was funded by JSPS KAKENHI Grant (No. 15K04768 and No. 20K14356), the National Natural

Science Foundation of China (No. 11971354) and the China Scholarship Council (No. 201906260146).

1

http://arxiv.org/abs/2006.10818v6
mailto:duyishu@tongji.edu.cn
mailto:hayami@nii.ac.jp
mailto:nzheng@ism.ac.jp
mailto:nzheng@ism.ac.jp
mailto:morikuni@cs.tsukuba.ac.jp
mailto:yinjf@tongji.edu.cn


2 Y. S. DU, K. HAYAMI, N. ZHENG, K. MORIKUNI AND J. F. YIN

In AB-GMRES, common choices for stationary inner iterations are the normal error Gauss-Seidel (NE-
GS) and normal error successive overrelaxation (NE-SOR) methods [9, 34], which are also commonly re-
ferred to as the Kaczmarz [24] or row action methods [1, 3, 11, 12, 20, 36]. Since it was proposed in
the 1930s, the Kaczmarz method has gained great theoretical development and plentiful practical appli-
cations [10, 13, 18, 19, 30, 39]. Research on the Kaczmarz method was reignited in 2006 and 2009 when
Strohmer and Vershymin [37, 38] proposed the randomized Kaczmarz method with expected exponential
rate of convergence. In [5], Bai and Wu constructed a greedy randomized Kaczmarz method by proposing
a more effective probability criterion. In [31], Popa summarized convergence rates for Kaczmarz-type meth-
ods, including greedy Kaczmarz [1], randomized Kaczmarz methods [38] and so on. For more literature on
Kaczmarz-type methods, we refer the reader to [4, 6, 7, 8]. Numerical results show that these randomized
or greedy Kaczmarz-type methods accelerate the original Kaczmarz method and reduce the required num-
ber of iterations and CPU time effectively. Inspired by this randomized framework, we replace the NE-SOR
method by the greedy and randomized Kaczmarz methods in AB-GMRES preconditioned by stationary inner
iterations.

A motivation for developing such a greedy/randomized inner-iteration preconditioning arises in appli-
cations where the operation on a row of a matrix is relatively expensive, such as in basis pursuit prob-
lems [14, 16]. We intend to reduce the total number of operations on rows by using greedy/randomized inner
iterations instead of NE-SOR inner iterations. We mention related previous work [2, 25, 32] on randomized
preconditioners for least squares problems.

When the randomized or greedy Kaczmarz method is used as the inner iteration, the rows of A are selected
randomly or greedily in each iteration and thus the preconditioner is not fixed during the outer iteration.
Therefore, we use the flexible GMRES method [33] as the outer iteration and propose a new algorithm
called the flexible AB-GMRES method with Kaczmarz-type inner iterations. Theoretically, an optimality
property of minimizing residual norm can be given under the framework of flexible GMRES. We also propose
a parameter tuning procedure for adjusting the number of inner iterations and the relaxation parameter
for the new method. Numerical results show that flexible AB-GMRES preconditioned by Kaczmarz-type
methods outperform the AB-GMRES method preconditioned by NE-SOR iterations [28] in terms of total
CPU time.

The organization of this paper is as follows. In section 2, we review the AB-GMRES method. In section
3, we present the flexible AB-GMRES method for consistent linear systems, and give an optimality property
of the proposed method. In section 4, we propose a parameter tuning procedure for the new method and
present numerical experiment results. In section 5, we conclude the paper.

2. AB-GMRES method. In this section, the inner-iteration preconditioned AB-GMRES method is
briefly introduced. Consider solving equation (1.2) using AB-GMRES. AB-GMRES corresponds to GMRES
applied to minu∈Rm ‖b − ABu‖2 with x = Bu and works in an m-dimensional space [21]. In order to achieve
fast convergence of AB-GMRES and to avoid storing the preconditioner B, stationary inner iterations in
combination with AB-GMRES were proposed in [28]. This algorithm can be described as follows. Here, B(ℓ)

denotes the preconditioning matrix for ℓ inner iterations.



KACZMARZ INNER-ITERATION FLEXIBLE GMRES METHOD 3

Algorithm 2.1 AB-GMRES method preconditioned by inner iterations [28]

1: Let x0 be the initial approximate solution and r0 = b − Ax0.
2: β = ‖r0‖2, v1 = r0/β
3: for k = 1, 2, . . . until convergence do

4: Apply ℓ iterations of a stationary iterative method to AATy = vk, z = ATy to obtain zk = B(ℓ)vk.
5: wk = Azk

6: for i = 1, 2, . . . , k, do

7: hi,k = wk
Tvi, wk = wk − hi,kvi

8: end for

9: hk+1,k = ‖wk‖2, vk+1 = wk/hk+1,k

10: end for

11: yk = arg miny∈Rk

∥

∥βe1−H̄ky
∥

∥

2
, uk = [v1, v2, . . . , vk] yk, where H̄k = {hij}1≤i≤k+1;1≤j≤k

and e1 =

[1, 0, . . . , 0]T

12: Apply ℓ iterations of a stationary iterative method to AATy = uk, z = ATy to obtain zk = B(ℓ)uk.
13: xk = x0 + zk

In the AB-GMRES preconditioned by inner iterations, one common choice for stationary inner iterations
is the NE-SOR method, which is mathematically equivalent to the SOR method applied to the normal
equations of the second kind [9, 34]. More specifically, if we use αT

i to represent the ith row of the matrix A,
and vi to represent the ith entry of the vector v, then the NE-SOR method for AATy = v, z = ATy can be
described as follows.

Algorithm 2.2 NE-SOR method [34]

1: Let z(0) be the initial approximate solution and ω ∈ R be the relaxation parameter.
2: for p = 0, 1, 2, . . . , ℓ − 1 do

3: for i = 1, 2, . . . , m do

4: z(p) = z(p) + ω
vi−α

T

i z
(p)

‖αi‖2
2

αi

5: end for

6: z(p+1) = z(p)

7: end for

The Kaczmarz method [24] is equivalent to Algorithm 2.2 with ω = 1. In fact, the iteration scheme of
NE-GS (NE-SOR) is exactly the same as that of the Kaczmarz method (relaxed Kaczmarz method) [24].
The relaxed Kaczmarz (NE-SOR) method is one of the most efficient row action methods. For ω = 1, the
method cycles through the rows of the linear system and forms each iterate by orthogonally projecting the
current point onto the hyperplane αT

i z(p+1) = vi formed by the active row, and all the m equations in the
linear system are swept through consecutively in m iterations.

The convergence theorem of AB-GMRES preconditioned by NE-SOR is precisely restated below.

Theorem 2.1 [28, Theorem 5.6]. AB-GMRES preconditioned by NE-SOR inner iterations with 0 <
ω < 2, determines the minimum-norm solution of Ax = b without breakdown for all b ∈ R(A) and for all
x0 ∈ R(AT).

The condition x0 ∈ R
n in [28, Theorems 5.5 and 5.6] should be x0 ∈ R(AT). This follows from [28,

Theorem 5.2].

2.1. Flexible AB-GMRES method. We adopt the flexible preconditioning framework proposed in
FGMRES [33] to AB-GMRES, and consider using Kaczmarz-type inner iterations in it.

2.1.1. Outer-iteration algorithm. It is well known that the preconditioning matrix needs to be fixed
in the preconditioned GMRES method for all the outer iterations. In fact, in order to keep the preconditioner
B(ℓ) in Algorithm 2.1 fixed, the number of inner iterations in AB-GMRES should not be changed for each
outer iteration. However, if we were to adopt the randomized or greedy algorithm as the inner-iteration
preconditioner in AB-GMRES, the preconditioning matrix for each outer iteration may change even though
the number of inner iterations for each outer iteration is fixed. In [33], Saad presented a variant of the GMRES



4 Y. S. DU, K. HAYAMI, N. ZHENG, K. MORIKUNI AND J. F. YIN

algorithm called flexible GMRES (FGMRES) for solving square linear systems Ax = b, which allows the
preconditioning matrix to change for each outer iteration. A similar variant of AB-GMRES can be described
as follows, where B(ℓk) denotes the preconditioning matrix for ℓk inner iterations for the kth outer iteration.

Algorithm 2.3 Flexible AB-GMRES (F-AB-GMRES) method

1: Let x0 be the initial approximate solution and r0 = b − Ax0.
2: β = ‖r0‖2, v1 = r0/β
3: for k = 1, 2, . . . until convergence do

4: zk = B(ℓk)vk, wk = Azk

5: for i = 1, 2, . . . , k, do

6: hi,k = (wk, vi), wk = wk − hi,kvi

7: end for

8: hk+1,k = ‖wk‖2, vk+1 = wk/hk+1,k

9: Define Zk = [z1, z2, . . . , zk].
10: end for

11: yk = arg miny∈Rk

∥

∥βe1 − H̄ky
∥

∥

2
, where H̄k = {hij}1≤i≤k+1;1≤j≤k

12: xk = x0 + Zkyk

Here, Zk denotes the n × k matrix with column vectors z1, z2, . . ., zk. For later use, let Hk denote the
k × k matrix obtained from H̄k by deleting its last row, and Vk denote the m × k matrix with column vectors
v1, v2, . . ., vk.

In the following, we will propose using Kaczmarz-type algorithms as B(ℓk) in Algorithm 2.3.

2.1.2. Kaczmarz-type inner-iteration algorithms. The (relaxed) Kaczmarz method is given below.
We will call it the Kaczmarz method for short in the following.

Algorithm 2.4 Kaczmarz (K) method [24]

1: Let z(0) be the initial approximate solution.
2: for p = 0, 1, 2, . . . , ℓ − 1 do

3: ip = (p mod m) + 1

4: z(p+1) = z(p) + ω
vip −α

T

ip
z

(p)

‖αip‖2

2

αip

5: end for

Instead of using the rows of the coefficient matrix A consecutively, Ansorge [1] proposed selecting the ipth
row corresponding to the residual component with maximum absolute value for the pth iteration. We will call
this method the greedy Kaczmarz method, or GK method for short. See also [36] for earlier work. Another
approach is to choose the ipth row randomly for the pth iteration [38], which is called the randomized
Kaczmarz (RK) method. Finally, Bai and Wu [5] combined these two ideas to propose a more effective
probability criterion, which aims to diminish entries of the residual vector with relatively large absolute
value at each iteration. We will call the corresponding algorithm the greedy randomized Kaczmarz (GRK)
method. These algorithms are called Kaczmarz-type methods. It can be proved that GK, RK and GRK
methods converge to the minimum-norm solution whether the system is overdetermined or underdetermined
and the coefficient matrix has full rank or is rank deficient [31]. The algorithms of GK, RK and GRK are
given below.

Algorithm 2.5 Greedy Kaczmarz (GK) method [1]

1: Let z(0) be the initial approximate solution.
2: for p = 0, 1, 2, . . . , ℓ − 1 do

3: Select ip ∈ {1, 2, . . . m} according to ip = arg max
i

|vi − αT

i z(p)|.

4: z(p+1) = z(p) + ω
vip −α

T

ip
z

(p)

‖αip‖2

2

αip

5: end for



KACZMARZ INNER-ITERATION FLEXIBLE GMRES METHOD 5

Algorithm 2.6 Randomized Kaczmarz (RK) method [38]

1: Let z(0) be the initial approximate solution.
2: for p = 0, 1, 2, . . . , ℓ − 1 do

3: Select ip ∈ {1, 2, . . . m} with probability Pr(row = ip) =
‖αip‖2

2

‖A‖2
F

.

4: z(p+1) = z(p) + ω
vip −α

T

ip
z

(p)

‖αip‖2

2

αip

5: end for

Algorithm 2.7 Greedy Randomized Kaczmarz (GRK) method [5]

1: Let z(0) be the initial approximate solution.
2: for p = 0, 1, 2, . . . , ℓ − 1 do

3: εp = 1
2

(

1

‖v−Az(p)‖2

2

max
1≤ip≤m

{
∣

∣vip −α
T

ip
z

(p)
∣

∣

2

‖αip‖2

2

}

+ 1
‖A‖2

F

)

4: Determine the index set of positive integers

Up =
{

ip : |vip
− αT

ip
z(p)|

2
≥ εp‖v − Az(p)‖2

2‖αip
‖2

2

}

.

5: Compute the ith entry s̃
(p)
i of the vector s̃(p) according to

s̃
(p)
i =

{

vi − αT

i z(p), if i ∈ Up,

0, otherwise.

6: Select ip ∈ Up with probability Pr(row = ip) =

∣

∣s̃
(p)
ip

∣

∣

2

‖s̃(p)‖2

2

.

7: z(p+1) = z(p) + ω
vip −α

T

ip
z

(p)

‖αip‖2

2

αip

8: end for

In Algorithms 2.6 and 2.7, Pr(row = i) represents the probability of selecting the ith row of the matrix
A as the working row of this iteration.

We remark that s = v − Az needs to be calculated at each inner iteration for GK and GRK methods.
This additional computational work cannot be ignored. On the other hand, we may update the residual
vector s recursively as follows [5]:

s(p+1) = v − Az(p+1)

= v − A

(

z(p) + ω
vip

− αT

ip
z(p)

∥

∥αip

∥

∥

2

2

αip

)

= v − Az(p) − ω
s

(p)
ip

∥

∥αip

∥

∥

2

2

Aαip

= s(p) − ω
s

(p)
ip

∥

∥αip

∥

∥

2

2

C(ip).(2.1)

Here, C(ip) is the ipth column of C = AAT. Hence, if the matrix product AAT is computed and stored once
in the beginning, the computational work can be reduced, assuming that the total number of inner iterations
is more than the number of rows of A. (See Appendix.) This condition was satisfied in all our numerical
experiments.



6 Y. S. DU, K. HAYAMI, N. ZHENG, K. MORIKUNI AND J. F. YIN

3. Flexible AB-GMRES preconditioned by Kaczmarz-type methods as inner iterations. In
FGMRES, we can change the preconditioner for each outer iteration. Hence, consider using ℓk iterations of
a Kaczmarz-type method as the preconditioner for each outer iteration of the flexible AB-GMRES (F-AB-
GMRES). We denote the preconditioning matrix given by the ℓk inner iterations by B(ℓk). The algorithm is
given as follows.

Algorithm 3.1 Flexible AB-GMRES preconditioned by Kaczmarz-type methods

1: Let x0 be the initial approximate solution and r0 = b − Ax0.
2: β = ‖r0‖2, v1 = r0/β
3: for k = 1, 2, . . . until convergence do

4: Apply ℓk iterations of a Kaczmarz-type method to Az = vk to obtain zk = B(ℓk)vk, where ℓk=
min{ℓmax, ℓ}, and ℓmax is the maximum number of inner iterations allowed, and ℓ is the smallest ℓ such
that

∥

∥

∥
vk − AB(ℓ)vk

∥

∥

∥

2
≤ η‖vk‖2.

5: wk = Azk

6: for i = 1, 2, . . . , k, do

7: hi,k = wk
Tvi, wk = wk − hi,kvi

8: end for

9: hk+1,k = ‖wk‖2, vk+1 = wk/hk+1,k

10: end for

11: yk =arg miny∈Rk

∥

∥βe1 − H̄ky
∥

∥

2
, uk =[z1, z2, . . . , zk] yk, where H̄k ={hij}1≤i≤k+1;1≤j≤k

12: xk = x0 + uk

Here, H̄k = {hi,j} ∈ R
(k+1)×k. Since the number of inner iterations in each outer iteration does not

have to be fixed, we proposed a new inner iterations stopping criterion that varies with the outer iteration
to accelerate the convergence, which is given in line 4 of Algorithm 3.1. Here, η < 1 is a parameter.

Note that when the Kaczmarz method is used as inner iterations, the number of inner iterations ℓk for
each outer iteration k does not have to be fixed to ℓmax, and may differ for each outer iteration, which makes
it different from NE-SOR inner iterations applied to AB-GMRES. Note also that (2.1) may be used to speed
up the residual evaluation in step 4 of Algorithm 3.1 for the Kaczmarz-type methods.

The least squares problem in line 11 is solved as in the GMRES method [35, 34]. An optimality property
similar to GMRES is given as in [33, Proposition 2.1] for FGMRES.

Theorem 3.1 The approximate solution xk obtained at the kth iteration of F-AB-GMRES minimizes
the residual norm ‖b − Axk‖2 over x0 + span {z1, z2, . . . , zk}.

Theorem 3.2 If z(0), x0 ∈ R(AT), when F-AB-GMRES preconditioned by one of the above Kaczmarz-
type methods gives a solution of Ax = b, it is the minimum Euclidean-norm solution.

Proof In K, GK, RK and GRK, if the initial iterate z(0) ∈ R(AT), then z(p) ∈ R(AT). Hence, if
x0 ∈ R(AT), the F-AB-GMRES iterate xk ∈ R(AT), since uk ∈ span{z1, z2, . . . , zk}. Therefore, when xk

is a solution of Ax = b, it is the minimum Euclidean-norm solution since xk ∈ R(AT) = N (A)⊥.

Next, we consider the possibility of breakdown in F-AB-GMRES preconditioned by Kaczmarz-type
methods as inner iterations. A breakdown occurs when the vector vk+1 cannot be computed in line 9
of Algorithm 3.1 because hk+1,k = 0. For AB-GMRES with B satisfying the convergence conditions [28,
Theorem 5.2], [21, Corollary 3.8], this is not a problem because when this happens, the approximate solution
xk satisfies Axk = b. The situation for F-AB-GMRES is slightly different, as in [33, Proposition 2.2] for
FGMRES.

Theorem 3.3 Assume that β = ‖r0‖2 6= 0 and that k − 1 steps of F-AB-GMRES have been successfully
performed, i.e., that hi+1,i 6= 0 for i < k. In addition, assume that the matrix Hk is nonsingular. Then xk

is a solution of Ax = b if and only if hk+1,k = 0.

The only difference of this result from that of AB-GMRES is that the additional assumption that Hk is



KACZMARZ INNER-ITERATION FLEXIBLE GMRES METHOD 7

Table 1
Number of floating point operations required for one inner iteration.

Method No. of floating point operations
NE-SOR 2q

K m(1 + p) + q
GK m(1 + p) + q
RK m(1 + p) + q

GRK m(3 + p) + q

q = nz/m, where nz is the number of nonzero elements of the matrix A and m is the number of rows of
the matrix A, p is the density of nonzero elements of the matrix C = AAT.

nonsingular must be made since it is no longer implied by the algorithm. In fact, the following holds

Theorem 3.4 Assume rankA = n, rankZk = k, and hk+1,k = 0. Then, Hk is nonsingular.

Proof Let c1Az1+· · ·+ckAzk = A(c1z1+· · ·+ckzk) = 0. Then, rankA = n implies c1z1+· · ·+ckzk = 0,
and rankZk = k implies c1 = · · · = ck = 0. Hence, rank(AZk) = k. Since, hk+1,k = 0, AZk = VkHk. Thus,
k = rank(AZk) = rank(VkHk) ≤ min(rankVk, rankHk) = min(k, rankHk). Hence, rankHk = k, and Hk is
nonsingular.

See also [26, Theorem 3] for convergence conditions of FGMRES preconditioned by multistep matrix
splitting iterations, which ensure the nonsingularity of Hk.

The additional cost of the flexible variant over AB-GMRES is only the extra memory required to save
the set of vectors {zj}j=1,2,...,m. However, the added advantage of flexibility may be worth this extra cost.

The computational work of one iteration for NE-SOR, K, RK, GRK and GK are summarized in Table 1,
respectively. Note that we assume that ‖αi‖

2
2 is precomputed and stored. Here, q = nz/m where nz is the

number of nonzero elements of A (i.e. q is the average number of nonzero elements per row of A) and p is
the density of nonzero elements of C = AAT (See Appendix A for the estimation of p). Also, note that the
Kaczmarz-type methods require computing C = AAT once beforehand, which amounts to qm2 floating point
operations. Note also that we regard a pair of multiplication and addition as one floating-point operation.

The number of floating point operations for the kth outer iteration (other than the inner iterations) of
AB-GMRES and F-AB-GMRES is approximately m(q + 2k + 2).

4. Numerical experiments. We compare the proposed F-AB-GMRES preconditioned by Kaczmarz-
type methods as inner iterations with AB-GMRES preconditioned by NE-SOR inner iterations [28] in terms
of the central processing unit (CPU) time by numerical experiments on underdetermined and overdetermined
problems.

Table 2 gives the number of rows m, the number of columns n, the density of the nonzero elements,
the rank and the condition number κ(A) on the overdetermined test matrices. The matrices RANDLi,
i = 1, 2, . . . , 6 were randomly generated using the MATLAB function sprandn, as in [21, 27, 28]. The
illc1850, gen and photogrammetry2 are full-rank matrices from [17]. The Maragal_j, j = 3, 4, 5 are rank-
deficient matrices from [17]. These matrices were transposed to form underdetermined problems. Table 2
shows the effective size of the matrices after removing all zero rows. (If the matrix A has a zero row, then the
Kaczmarz-type methods can not work.) The condition number was computed using the MATLAB function
svd.

In our implementations, a solution vector x⋆ ∈ R
n is randomly generated by using the MATLAB function

randn, and the right-hand side b ∈ R
m is taken to be Ax⋆. All computations are started from the initial

vector x0 = 0, and the iterations are stopped when either the relative residual

‖rk‖2

‖b‖2

≤ 10−6,

where ‖rk‖2 = ‖b − Axk‖2 =
∥

∥βe1 − H̄kyk

∥

∥

2
in Algorithm 3.1, or the number of outer iterations reaches

2000. The latter is given a label ‘−−’ in the tables showing the numerical experiment results. No restarts
were used for GMRES. For the Kaczmarz-type inner iterations, the initial vector z(0) = 0 was used.

All experiments were carried out using MATLAB (version R2020b) on a personal computer with 1.80



8 Y. S. DU, K. HAYAMI, N. ZHENG, K. MORIKUNI AND J. F. YIN

GHz CPU (Intel(R) Core(TM) i5-8265U), 32 GB memory, and Microsoft Windows 10 Pro 64 bit Version
1909 with DirectX 12.

4.1. Automatic parameter tuning for Kaczmarz-type methods. The proposed method requires
two preconditioning parameters: the maximum number of inner iterations ℓmax in line 4 of Algorithm 3.1 and
the relaxation parameter ω used for the Kaczmarz-type inner iterations. Since the CPU time for the proposed
method varies with the values of these parameters, it is desirable to determine the values automatically for
any problem. Inspired by the idea in [28], we perform the following procedure given as Algorithm 4.1 using
Kaczmarz-type methods alone for Az = b before starting the outer iterations to determine the values of
these parameters ℓmax and ωopt. Note that ℓ NE-SOR inner iterations of Algorithm 2.2 is equivalent to ℓm
Kaczmarz inner iterations.

Algorithm 4.1 Parameter tuning procedure of Kaczmarz-type methods

1: Set ω = 1 and z(0) = 0.
2: Apply a Kaczmarz-type method to Az = b until the ℓth iteration z(ℓ) satisfies

∥

∥

∥
b − Az(ℓ)

∥

∥

∥

2
≤ η‖b‖2.

3: ℓmax = ℓ
4: for ω = 0.1, 0.2, . . . , 1.9 do

5: Apply ℓmax iterations of a Kaczmarz-type method to Az = b.
6: end for

7: ωopt = arg minω=0.1,0.2,...,1.9

∥

∥b − Az(ℓmax)
∥

∥

2

Since the number of inner iterations in F-AB-GMRES does not have to be fixed for each outer iteration,
we set ℓmax determined by Algorithm 4.1 to be the maximum number of inner iterations for each outer
iteration. Since the parameter ℓmax of RK and GRK changed from one time to another, we repeated steps 2–
7 of Algorithm 4.1 ten times and took the median. For AB-GMRES, we set ℓmax determined by Algorithm 4.1
to be the fixed number of inner iterations for each outer iteration.

We tested the above procedure for the martrix Maragal_3T as shown in Table 3. Different values for
η in the procedure were used: η = 10−µ, µ = 2, 1, 0.5. Table 3 gives the numerical experiment results with
different η for matrix Maragal_3T. The first row in each cell in Table 3 gives the number of outer iterations
outside parentheses and gives the total number of inner iterations (the sum of the numbers of inner iterations
in each outer iteration) and relaxation parameter in parentheses. Here, the number of inner iterations is
ℓm for Algorithm 2.2, and ℓk for line 4 of Algorithm 3.1. The second row in each cell gives the total CPU
time in seconds including the parameter tuning time and the formation of C outside parentheses, and the
parameter tuning time in seconds in parentheses. Here, the number of iterations and the CPU time mean
the median of the required iterations and the elapsed CPU time for ten times of repeated runs for the same
b for the corresponding method, respectively. The ⋆ indicates the fastest method regarding the CPU time.
The third row in each cell gives the relative error norm ‖xk − x∗‖2/‖x∗‖2, where x∗ = A†b is the minimum
Euclidean-norm solution. In our implementations, A† is obtained by the MATLAB function pinv.

We remark that Morikuni and Hayami [28] evaluated the performance of AB-GMRES preconditioned by
NE-SOR inner iterations for different values of η and finally chose η = 10−1. In the following, also η = 10−1

was used in Algorithm 3.1 and 4.1 with the mentioned procedure to automatically tune the values of the
parameters ℓmax and ωopt.

4.2. Underdetermined problems. We first present numerical experiment results on underdetermined
problems (m < n). Tables 4, 5 and 6 give the numerical experiment results on artificial random matrices,
full-rank matrices and rank-deficient matrices, respectively. The letter T at the end of the name of a matrix
denotes the transposition of the matrix. In order to improve computing efficiency for the Kaczmarz-type
methods, we used the recursive formula (2.1) to update the residual vector s(p) for each inner iteration. To
do so, we need to compute C = AAT in advance. The CPU time in seconds for computing matrix C is given
below the name of the matrix. The total CPU time for F-AB-GMRES preconditioned by the Kaczmarz-type
inner iterations includes the time for computing C. We also remark that the column-oriented access to the



KACZMARZ INNER-ITERATION FLEXIBLE GMRES METHOD 9

Table 2
Information of the matrices.

Name m n Density[%] Rank κ(A)
RANDL1 5000 500 20 500 1.00×101

RANDL2 5000 500 20 500 1.00×102

RANDL3 5000 500 20 500 1.00×103

RANDL4 5000 500 20 500 1.00×104

RANDL5 5000 500 20 500 1.00×105

RANDL6 5000 500 20 500 1.00×106

illc1850 1850 712 0.66 712 1.40×103

gen 2561 769 3.20 769 27.72
photogrammetry2 4472 936 0.89 936 1.34×108

Maragal_3 1682 858 1.27 613 1.10×103

Maragal_4 1964 1027 1.32 801 9.33×106

Maragal_5 4654 3296 0.61 2147 1.19×105

Name: name of the matrix, m: number of rows of the matrix, n: number of columns of the matrix, Density:
density of the nonzero components of the matrix, Rank: maximum number of linearly independent
columns of the matrix, obtained by the MATLAB command rank(full(A)), which is based on the
singular value decomposition of A, κ(A): condition number of the matrix σmax/σmin, where σmax and
σmin are the largest and smallest nonzero singular values of the matrix, respectively.

Table 3
Results with different values for η for the matrix Maragal_3T.

Outer Inner
iteration iteration η = 10−2 η = 10−1 η = 10−0.5

AB-GMRES NE-SOR 18 (401544, 1.3) 57 (195624, 1.2) 86 (147576, 0.9)
8.55 (4.52) 2.62 (0.66) 1.86 (0.35)

1.96×10−5 3.02×10−5 4.65×10−5

F-AB-GMRES K 19 (420100, 1.2) 68 (176392, 1.0) 127 (113279, 0.8)
9.19 (4.72) 2.39 (0.53) 1.46 (0.19)

2.46×10−5 4.88×10−5 3.52×10−5

RK 79.5 (5388296, 1.3) 284.5 (1402900, 1.1) 558.5 (711934, 1.0)
355.36 (95.24) 73.81 (6.93) 36.93 (1.79)

4.60×10−5 7.38×10−6 8.07×10−6

GRK 17.5 (123470, 1.3) 67.5 (44395, 1.2) 166 (34860, 1.1)
18.72 (11.81) 3.61 (1.10) 2.48 (0.37)

1.31×10−5 1.61×10−5 1.98×10−5

GK 27 (176344, 1.3) 129 (83850, 1.0) 345 (71415, 1.0)
⋆3.79 (1.67) ⋆1.28 (0.18) ⋆1.20 (0.06)

4.56×10−5 3.53×10−5 6.10×10−5

First row: Number of outer iterations (total number of inner iterations, ω).
Second row: Total CPU time, which includes parameter tuning time in parentheses, in seconds.
Third row: Relative error norm.

matrix AT instead of the row-oriented access to A was used throughout the programs for efficient data access
with MATLAB. (The CPU time required to transpose A is negligible.)

Table 4 shows that F-AB-GMRES preconditioned by the GK inner iterations is the fastest among all the
methods for the artificial random matrices RANDLiT, i = 1, 2, . . . , 6. We remark that the total number of
inner iterations of F-AB-GMRES with GRK and GK is also smaller than that of AB-GMRES with NE-SOR.
This may imply that F-AB-GMRES with GRK and GK has a smaller workload than AB-GMRES with
NE-SOR.

In Figure 1, we plot the relative residual norm ‖rk‖2/‖b‖2 versus the total number of inner iterations
and CPU time in seconds for the matrix RANDL6T. Here, the CPU time includes the time for the parameter
tuning and the computation of C. The figure shows that F-AB-GMRES preconditioned by the GK inner
iterations is best among all the methods regarding the total number of inner iterations and CPU time for
the matrix RANDL6T. These results are in accordance with Table 4.

Table 5 shows that AB-GMRES preconditioned by the NE-SOR inner iterations is the fastest among all



10 Y. S. DU, K. HAYAMI, N. ZHENG, K. MORIKUNI AND J. F. YIN

Table 4
Results for full-rank artificial random matrices (underdetermined problems).

Outer Inner RANDL1T RANDL2T RANDL3T
iteration iteration 0.18 0.17 0.18
AB-GMRES NE-SOR 11 (16500, 1.1) 38 (114000, 1.0) 107 (267500, 1.0)

1.18 (0.76) 4.34 (1.50) 8.04 (1.26)
2.30×10−7 5.82×10−6 9.33×10−6

F-AB-GMRES K 13 (15080, 1.0) 39 (106431, 1.0) 120 (248280, 1.0)
1.16 (0.59) 4.27 (1.39) 7.65 (1.06)

3.61×10−7 7.51×10−6 1.19×10−5

RK 10 (29210, 1.0) 47 (226680, 1.0) 212.5 (1079100, 1.0)
7.21 (5.20) 22.31 (8.50) 75.08 (8.93)

9.68×10−7 9.67×10−6 1.55×10−5

GRK 9 (4746, 1.1) 36.5 (31458, 1.1) 102.5 (80378, 1.1)
1.64 (1.12) 4.15 (1.76) 7.53 (1.60)

5.95×10−7 7.29×10−6 2.16×10−5

GK 9 (4733, 1.1) 36 (32677, 1.3) 106 (79341, 1.1)
⋆0.61 (0.29) ⋆1.56 (0.49) ⋆2.91 (0.42)

9.11×10−7 5.23×10−6 2.81×10−5

Outer Inner RANDL4T RANDL5T RANDL6T
iteration iteration 0.17 0.17 0.17
AB-GMRES NE-SOR 72 (180000, 0.9) 199 (497500, 0.9) 107 (321000, 1.0)

5.80 (1.24) 13.82 (1.26) 9.63 (1.52)
1.34×10−4 1.10×10−3 5.39×10−2

F-AB-GMRES K 75 (163725, 1.0) 203 (440713, 1.0) 118 (304558, 1.0)
5.54 (1.12) 12.59 (1.11) 9.39 (1.39)

1.61×10−4 5.10×10−3 5.39×10−2

RK 144.5 (630640, 1.1) 346.5 (1527016, 1.0) 166.5 (899443, 1.1)
46.56 (7.83) 101.93 (7.91) 66.04 (10.15)

1.09×10−4 6.90×10−3 5.39×10−2

GRK 64.5 (44853, 1.2) 288.5 (214321, 1.1) 75.5 (70544, 1.4)
4.77 (1.42) 16.37 (1.53) 7.17 (1.92)

5.70×10−5 6.20×10−3 5.39×10−2

GK 69 (46389, 1.2) 264 (193503, 1.2) 80 (67099, 1.1)
⋆1.91 (0.38) ⋆5.94 (0.41) ⋆2.58 (0.46)

4.28×10−5 4.30×10−3 5.39×10−2

The CPU time in seconds for computing matrix C is given below each name of the matrix.
First row: Number of outer iterations (total number of inner iterations, ω).
Second row: Total CPU time, which includes parameter tuning time in parentheses, in seconds.
Third row: Relative error norm.

0 1 2 3 4 5 6 7 8 9

Total number of inner iterations 105

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

R
el

at
iv

e 
re

si
du

al
 n

or
m

RANDL6T

NE-SOR
K
RK
GRK
GK

0 10 20 30 40 50 60 70

CPU time [seconds]

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

R
el

at
iv

e 
re

si
du

al
 n

or
m

RANDL6T

NE-SOR
K
RK
GRK
GK

Fig. 1. Relative residual norm ‖rk‖
2
/‖b‖

2
vs. total number of inner iterations (left) and relative residual norm ‖rk‖

2
/‖b‖

2

vs. CPU time (right) for RANDL6T.

the methods for the matrix illc1850T. F-AB-GMRES preconditioned by the GK inner iterations is the fastest
among all the methods for the matrices genT and photogrammetry2T.

In Figure 2, we plot the relative residual norm ‖rk‖2/‖b‖2 versus the total number of inner iterations and
CPU time in seconds for the matrix photogrammetry2T. Figure 2 shows that F-AB-GMRES preconditioned
by the GRK inner iterations is best among all the methods when comparing the total number of inner



KACZMARZ INNER-ITERATION FLEXIBLE GMRES METHOD 11

Table 5
Results for full-rank matrices (underdetermined problems).

Outer Inner illc1850T genT photogrammetry2T
iteration iteration 0.01 0.02 0.01
AB-GMRES NE-SOR 262 (746176, 1.1) 35 (430640, 0.8) 27 (151632, 0.9)

⋆5.87 (0.43) 8.28 (3.04) 3.34 (1.47)
2.72×10−4 2.98×10−6 7.22×10−2

F-AB-GMRES K 281 (731709, 1.1) 48 (408226, 0.9) 26 (145494, 0.9)
6.17 (0.41) 7.39 (2.18) 3.28 (1.47)

3.45×10−4 2.87×10−6 7.22×10−2

RK 396 (2122830, 1.1) 11 (113731, 1.2) 32 (322140, 1.0)
95.29 (6.60) 20.84 (15.13) 31.62 (15.09)

3.09×10−4 8.94×10−7 7.22×10−2

GRK 372 (426620, 1.1) 9 (17815, 1.5) 31 (40500, 1.1)
23.55 (1.74) 4.61 (3.53) 4.84 (2.31)

2.61×10−4 5.45×10−7 7.22×10−2

GK 593 (666988, 1.2) 8 (15119, 1.6) 32 (49526, 1.1)
6.99 (0.22) ⋆0.85 (0.60) ⋆1.22 (0.45)

2.70×10−4 6.97×10−7 7.22×10−2

The CPU time in seconds for computing matrix C is given below each name of the matrix.
First row: Number of outer iterations (total number of inner iterations, ω).
Second row: Total CPU time, which includes parameter tuning time in parentheses, in seconds.
Third row: Relative error norm.

0 0.5 1 1.5 2 2.5 3 3.5

Total number of inner iterations 105

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

R
el

at
iv

e 
re

si
du

al
 n

or
m

photogrammetry2T

NE-SOR
K
RK
GRK
GK

0 5 10 15 20 25 30 35

CPU time [seconds]

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

R
el

at
iv

e 
re

si
du

al
 n

or
m

photogrammetry2T

NE-SOR
K
RK
GRK
GK

Fig. 2. Relative residual norm ‖rk‖
2
/‖b‖

2
vs. total number of inner iterations (left) and relative residual norm ‖rk‖

2
/‖b‖

2

vs. CPU time (right) for photogrammetry2T.

iterations, and the GK inner iterations is best among all the methods regarding the CPU time for the matrix
photogrammetry2T. These results are in accordance with Table 5.

Table 6 shows that F-AB-GMRES preconditioned by the GK inner iterations is also the fastest among
all the methods for the rank-deficient matrices Maragal_3T, Maragal_4T and Maragal_5T.

In Figure 3, we plot the relative residual norm ‖rk‖2/‖b‖2 versus the total number of inner iterations and
CPU time in seconds for the matrix Maragal_5T. Figure 3 shows that F-AB-GMRES preconditioned by the
GRK inner iterations is best among all the methods regarding the total number of inner iterations, and the
GK inner iterations is the fastest among all the methods regarding CPU time for the matrix Maragal_5T.
These results are in accordance with Table 6.

4.3. Overdetermined problems. Next, we present numerical experiment results on overdetermined
problems (m > n). Tables 7, 8 and 9 give the numerical experiment results for artificial random matrices,
full-rank matrices and rank-deficient matrices, respectively similarly to Tables 4, 5 and 6.

Table 7 shows that F-AB-GMRES preconditioned by the GK inner iterations is the fastest among all
the methods for the artificial random matrices RANDLi, i = 1, 2, . . . , 6. We should remark that the time for
actual execution for NE-SOR method is small, but the time for parameter tuning is large.

Table 8 shows that F-AB-GMRES preconditioned by the GK method is the fastest regarding the CPU
time among all the methods for matrices illc1850, gen and photogrammetry2.

In Figure 4, we plot the relative residual norm ‖rk‖2/‖b‖2 versus the total number of inner iterations and
CPU time in seconds for the matrix photogrammetry2. Figure 4 shows that F-AB-GMRES preconditioned



12 Y. S. DU, K. HAYAMI, N. ZHENG, K. MORIKUNI AND J. F. YIN

Table 6
Results for rank-deficient matrices (underdetermined problems).

Outer Inner Maragal_3T Maragal_4T Maragal_5T
iteration iteration 0.01 0.02 0.19
AB-GMRES NE-SOR 57 (195624, 1.2) 51 (209508, 1.1) 144 (1898496, 1.2)

2.62 (0.66) 3.39 (0.97) 43.12 (5.29)
3.02×10−5 2.97×10−2 1.71×10−4

F-AB-GMRES K 68 (176392, 1.0) 60 (186660, 1.1) 176 (1747326, 1.1)
2.39 (0.53) 3.06 (0.76) 41.66 (4.29)

4.88×10−5 2.97×10−2 1.71×10−4

RK 284.5 (1402900, 1.1) 168 (1124400, 1.1) 498.5 (8551269, 1.1)
73.81 (6.93) 66.73 (9.93) 1057.50 (54.89)

7.38×10−6 2.97×10−2 2.60×10−3

GRK 67.5 (44395, 1.2) 54 (56203, 1.2) 139 (340070, 1.1)
3.61 (1.10) 5.33 (1.90) 62.12 (10.74)

1.61×10−5 2.97×10−2 2.96×10−4

GK 129 (83850, 1.0) 86 (81420, 1.1) 219 (550274, 1.1)
⋆1.28 (0.18) ⋆1.53 (0.30) ⋆16.98 (1.49)

3.53×10−5 2.97×10−2 7.55×10−4

The CPU time in seconds for computing matrix C is given below each name of the matrix.
First row: Number of outer iterations (total number of inner iterations, ω).
Second row: Total CPU time, which includes parameter tuning time in parentheses, in seconds.
Third row: Relative error norm.

0 1 2 3 4 5 6 7 8 9

Total number of inner iterations 106

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

R
el

at
iv

e 
re

si
du

al
 n

or
m

Maragal_5T

NE-SOR
K
RK
GRK
GK

0 200 400 600 800 1000 1200

CPU time [seconds]

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

R
el

at
iv

e 
re

si
du

al
 n

or
m

Maragal_5T

NE-SOR
K
RK
GRK
GK

Fig. 3. Relative residual norm ‖rk‖
2
/‖b‖

2
vs. total number of inner iterations (left) and relative residual norm ‖rk‖

2
/‖b‖

2

vs. CPU time (right) for Maragal_5T.

0 1 2 3 4 5 6

Total number of inner iterations 105

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

R
el

at
iv

e 
re

si
du

al
 n

or
m

photogrammetry2

NE-SOR
K
RK
GRK
GK

0 10 20 30 40 50

CPU time [seconds]

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

R
el

at
iv

e 
re

si
du

al
 n

or
m

photogrammetry2

NE-SOR
K
RK
GRK
GK

Fig. 4. Relative residual norm ‖rk‖
2
/‖b‖

2
vs. total number of inner iterations (left) and relative residual norm ‖rk‖

2
/‖b‖

2

vs. CPU time (right) for photogrammetry2.

by the GK inner iterations is best among all the methods regarding the total number of inner iterations and
CPU time for the matrix photogrammetry2. These results are in accordance with Table 8.

Table 9 shows that F-AB-GMRES preconditioned by the GK method is the fastest regarding the CPU
time among all the methods for matrices Maragal_3, Maragal_4 and Maragal_5.

In Figure 5, we plot the relative residual norm ‖rk‖2/‖b‖2 versus the total number of inner iterations



KACZMARZ INNER-ITERATION FLEXIBLE GMRES METHOD 13

Table 7
Results for full-rank artificial random matrices (overdetermined problems).

Outer Inner RANDL1 RANDL2 RANDL3
iteration iteration 2.22 2.27 2.17
AB-GMRES NE-SOR 2 (10000, 1.0) 2 (10000, 1.1) 2 (10000, 0.7)

3.87 (3.52) 3.87 (3.51) 3.89 (3.53)
1.94×10−8 9.54×10−7 1.68×10−5

F-AB-GMRES K −− (−−, 1.0) −− (−−, 1.0) −− (−−, 0.9)
−− (1.25) −− (1.17) −− (1.25)

−− −− −−
RK 9 (34049, 1.0) 165 (935140, 1.0) 256 (1362812, 1.0)

25.57 (17.88) 165.87 (21.55) 231.57 (20.70)
8.49×10−7 6.53×10−6 3.61×10−6

GRK 6 (1696.5, 1.0) 6 (1768, 1.0) 6 (1763, 1.0)
4.61 (2.06) 4.73 (2.11) 4.57 (2.04)

8.85×10−7 8.15×10−7 8.88×10−7

GK 7 (2472, 1.0) 16 (5904, 1.0) 28 (8568, 1.0)
⋆2.66 (0.33) ⋆2.85 (0.32) ⋆2.83 (0.29)

2.99×10−7 2.75×10−6 9.91×10−6

Outer Inner RANDL4 RANDL5 RANDL6
iteration iteration 2.26 2.32 2.24
AB-GMRES NE-SOR 2 (10000, 1.0) 2 (10000, 1.0) 3 (15000, 0.7)

3.94 (3.58) 3.97 (3.61) 4.07 (3.53)
3.47×10−8 2.54×10−9 4.39×10−7

F-AB-GMRES K −− (−−, 1.0) −− (−−, 1.0) −− (−−, 0.9)
−− (1.07) −− (1.33) −− (1.12)

−− −− −−
RK 232 (1223500, 1.0) 293.5 (1538400, 1.0) 258.5 (1307200, 1.0)

209.96 (20.25) 259.75 (22.10) 223.15 (20.85)
2.81×10−5 1.13×10−2 2.05×10−2

GRK 6 (1710.5, 1.0) 6 (1761, 1.0) 6 (1662.5, 1.0)
4.57 (1.97) 4.88 (2.20) 4.58 (2.00)

9.44×10−7 8.67×10−7 8.74×10−7

GK 22 (7282, 1.0) 36 (13104, 1.0) 25 (8350, 1.0)
⋆2.88 (0.31) ⋆3.20 (0.34) ⋆2.91 (0.31)

1.51×10−4 9.32×10−4 2.05×10−2

The CPU time in seconds for computing matrix C is given below each name of the matrix.
First row: Number of outer iterations (total number of inner iterations, ω).
Second row: Total CPU time, which includes parameter tuning time in parentheses, in seconds.
Third row: Relative error norm.

0 1 2 3 4 5 6 7 8 9

Total number of inner iterations 106

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

R
el

at
iv

e 
re

si
du

al
 n

or
m

Maragal_5

NE-SOR
K
RK
GRK
GK

0 200 400 600 800 1000 1200

CPU time [seconds]

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

R
el

at
iv

e 
re

si
du

al
 n

or
m

Maragal_5

NE-SOR
K
RK
GRK
GK

Fig. 5. Relative residual norm ‖rk‖
2
/‖b‖

2
vs. total number of inner iterations (left) and relative residual norm ‖rk‖

2
/‖b‖

2

vs. CPU time (right) for Maragal_5.

and CPU time in seconds for the matrix Maragal_5. Figure 5 shows that F-AB-GMRES preconditioned by
the GRK inner iterations is best among all the methods when comparing the total number of inner iterations,
and the GK inner iterations is the fastest among all the methods regarding the CPU time for the matrix
Maragal_5. These results are in accordance with Table 9.

We have tried to further speed up the methods based on the Kaczmarz-type inner iterations by computing



14 Y. S. DU, K. HAYAMI, N. ZHENG, K. MORIKUNI AND J. F. YIN

Table 8
Results for full-rank matrices (overdetermined problems).

Outer Inner illc1850 gen photogrammetry2
iteration iteration 0.03 0.09 0.02
AB-GMRES NE-SOR 260 (1443000, 0.9) 46 (589030, 0.4) 20 (536640, 0.8)

12.92 (0.93) 11.45 (3.49) 11.98 (6.03)
1.35×10−4 1.92×10−6 5.86×10−2

F-AB-GMRES K 266 (1312908, 0.9) 51 (586961, 0.4) 23 (525370, 0.7)
13.06 (0.91) 12.04 (3.38) 12.59 (5.85)

1.40×10−4 2.51×10−6 5.86×10−2

RK 419 (2161000, 1.1) 13 (130256, 1.1) 29.5 (239953, 1.2)
125.69 (8.09) 30.47 (21.00) 49.78 (22.56)

3.37×10−4 2.17×10−6 5.86×10−2

GRK 409.5 (364010, 1.1) 6 (4558, 1.3) 20 (25409, 1.4)
26.98 (1.84) 2.81 (2.28) 9.77 (5.55)

1.17×10−4 1.26×10−6 5.86×10−2

GK 413 (381596, 1.1) 10 (14899, 1.1) 21 (23718, 1.3)
⋆5.21 (0.25) ⋆0.95 (0.57) ⋆0.91 (0.43)

2.52×10−4 2.19×10−6 5.86×10−2

The CPU time in seconds for computing matrix C is given below each name of the matrix.
First row: Number of outer iterations (total number of inner iterations, ω).
Second row: Total CPU time, which includes parameter tuning time in parentheses, in seconds.
Third row: Relative error norm.

Table 9
Results for rank-deficient matrices (overdetermined problems).

Outer Inner Maragal_3 Maragal_4 Maragal_5
iteration iteration 0.02 0.02 0.06
AB-GMRES NE-SOR 149 (751854, 1.1) 97 (571524, 1.1) 330 (4607460, 1.1)

8.35 (1.03) 6.80 (1.18) 81.49 (4.69)
1.51×10−5 1.59×10−2 9.14×10−4

F-AB-GMRES K 172 (630654, 1.1) 127 (495173, 1.0) 397 (4115302, 1.0)
7.54 (0.78) 6.19 (0.83) 81.34 (3.85)

4.94×10−5 1.59×10−2 9.14×10−4

RK 243.5 (1152207, 1.1) 143.5 (870448, 1.1) 466.5 (8306272, 1.1)
70.53 (7.50) 59.16 (9.95) 1119.70 (62.89)

7.12×10−5 1.59×10−2 1.55×10−2

GRK 231 (125664, 1.1) 144.5 (114100, 1.1) 475.5 (986660, 1.0)
9.71 (1.10) 9.92 (1.66) 184.85 (10.45)

6.10×10−5 1.59×10−2 7.10×10−3

GK 250 (159496, 1.0) 136 (116784, 1.1) 464 (1085222, 1.1)
⋆2.58 (0.19) ⋆2.06 (0.26) ⋆33.25 (1.29)

6.21×10−5 1.59×10−2 3.70×10−3

The CPU time in seconds for computing matrix C is given below each name of the matrix.
First row: Number of outer iterations (total number of inner iterations, ω).
Second row: Total CPU time, which includes parameter tuning time in parentheses, in seconds.
Third row: Relative error norm.

approximations of AAT using the method in [23] for over- and underdetermined systems, but so far we have
not been successful, and this is left for future research.

4.4. Inconsistent problems. In order to test our method for inconsistent problems, we let b = Ax⋆

and add noise to b to obtain the right-hand side b̃ = [b̃1, . . . , b̃m]T by letting

b̃i = bi · (1 + ǫ · µi), i = 1, . . . , m.

Different values ǫ = 10−3, 10−2 and 10−1 were used for ǫ. The scalars µi (i = 1, . . . , m) were generated
randomly in the interval (-1,1) using the MATLAB function rand.

In Figures 6,7 and 8, we plot the relative residual norm ‖ATrk‖2/‖ATb̃‖2 for the normal equations where
rk = b̃ − Axk and relative error norm ‖xk − x∗‖2/‖x∗‖2 where x∗ = A†b̃ versus the total number of inner
iterations for the matrix Maragal_5T for ǫ = 10−3, 10−2 and 10−1, repectively. Figures 6,7 and 8 show that
all the methods do not converge for this inconsistent problem and as the value of ǫ increases, the smallest
residual norm increases for each method.



KACZMARZ INNER-ITERATION FLEXIBLE GMRES METHOD 15

0 0.5 1 1.5 2 2.5 3 3.5

Total number of inner iterations 107

10-5

10-4

10-3

10-2

10-1

100

R
el

at
iv

e 
re

si
du

al
 n

or
m

Maragal_5T

NE-SOR
K
RK
GRK
GK

0 0.5 1 1.5 2 2.5 3 3.5

Total number of inner iterations 107

10-3

10-2

10-1

100

R
el

at
iv

e 
er

ro
r 

no
rm

Maragal_5T

NE-SOR
K
RK
GRK
GK

Fig. 6. Relative residual norm ‖ATrk‖
2
/‖ATb̃‖

2
vs. total number of inner iterations (left) and relative error norm

‖xk − x∗‖
2
/‖x∗‖

2
vs. total number of inner iterations (right) for Maragal_5T for ǫ = 10−3.

0 0.5 1 1.5 2 2.5 3 3.5

Total number of inner iterations 107

10-4

10-3

10-2

10-1

100

R
el

at
iv

e 
re

si
du

al
 n

or
m

Maragal_5T

NE-SOR
K
RK
GRK
GK

0 0.5 1 1.5 2 2.5 3 3.5

Total number of inner iterations 107

10-3

10-2

10-1

100

R
el

at
iv

e 
er

ro
r 

no
rm

Maragal_5T

NE-SOR
K
RK
GRK
GK

Fig. 7. Relative residual norm ‖ATrk‖
2
/‖ATb̃‖

2
vs. total number of inner iterations (left) and relative error norm

‖xk − x∗‖
2
/‖x∗‖

2
vs. total number of inner iterations (right) for Maragal_5T for ǫ = 10−2.

0 0.5 1 1.5 2 2.5 3 3.5 4

Total number of inner iterations 107

10-3

10-2

10-1

100

R
el

at
iv

e 
re

si
du

al
 n

or
m

Maragal_5T

NE-SOR
K
RK
GRK
GK

0 0.5 1 1.5 2 2.5 3 3.5 4

Total number of inner iterations 107

10-2

10-1

100

R
el

at
iv

e 
er

ro
r 

no
rm

Maragal_5T

NE-SOR
K
RK
GRK
GK

Fig. 8. Relative residual norm ‖ATrk‖
2
/‖ATb̃‖

2
vs. total number of inner iterations (left) and relative error norm

‖xk − x∗‖
2
/‖x∗‖

2
vs. total number of inner iterations (right) for Maragal_5T for ǫ = 10−1.

5. Conclusion. In this paper, we proposed replacing the NE-SOR method by Kaczmarz-type methods
in the previous AB-GMRES method preconditioned by stationary inner iterations for solving consistent
systems of linear equations. To do so, we developed a new algorithm called flexible AB-GMRES method
preconditioned by Kaczmarz-type methods as inner iterations. An optimality property of minimizing residuals
was given for the proposed method. We also proposed a tuning procedure for adjusting the maximum
number of inner iterations and value of the relaxation parameter in the method. Numerical experiment
results showed that flexible AB-GMRES preconditioned by Kaczmarz-type methods converge faster than the
previous method in terms of total CPU time.

Appendix A. Comparison of computational work of GK and modified GK inner-iteration

preconditioning.

We compare the total computational work (the number of floating-point operations, where we count a



16 Y. S. DU, K. HAYAMI, N. ZHENG, K. MORIKUNI AND J. F. YIN

pair of addition and multiplication as one floating point operation) for the greedy Kaczmarz inner-iteration
preconditioning using Algorithm 2.5 (GK), with GK modified by precomputing and storing C = AAT once
beforehand and updating the residual vector s using equation (2.1) (MGK).

Let A be an m × n matrix. Assume that the number of outer iterations of the F-AB-GMRES is k, and
that the number of inner Kaczmarz iterations is fixed at ℓ for each outer iteration.

First, consider the case when A is dense. Then, the total work for GK is given by

wd
GK = kℓ(mn + n + m).

The first term corresponds to step 3, the second to step 4 of Algorithm 2.5, and the third to the residual
norm computation in step 4 of Algorithm 3.1, respectively. The total work for MGK is

wd
MGK = m2n + kℓ(2m + n).

The first term is for computing C = AAT once beforehand, the second for the update in step 3 of Algorithm 2.5
using equation (2.1) and step 4 of Algorithm 3.1, and the third for step 4 of Algorithm 2.5, respectively. Hence,

wd
GK − wd

MGK = m [kℓ(n − 1) − mn] .

Therefore,

(5.1) wd
MGK < wd

GK ⇐⇒ kℓ > m

(

1 +
1

n − 1

)

.

Next, consider the case when A is sparse and the position of the nonzero elements are random. Let nz be
the number of nonzero elements of A. Define q = nz/m as the average number of nonzero elements per row
of A. Thus, the density of A is d = q/n. Assume that the computational work to compute C = (cij) = AAT

is m2q. Let the density of C be p.
Then, the total work for GK is

ws
GK = kℓ(nz + q + m) = kℓ(qm + q + m).

The first term is for step 3, the second for step 4 of Algorithm 2.5, and the third for step 4 of Algorithm 3.1,
respectively. The total work for MGK is

ws
MGK = m2q + kℓ (q + mp + m) .

The first term is for computing AAT, the second for step 4 of Algorithm 2.5, the third for the update in
equation (2.1), and the fourth for step 4 of Algorithm 3.1, respectively. Hence,

ws
GK − ws

MGK = m [kℓ (q − p) − mq] .

Therefore,

(5.2) ws
MGK < ws

GK ⇐⇒ kℓ > m

(

1 +
p

q − p

)

.

The density p of C = AAT can be estimated as follows. The probability that cij 6= 0 for i 6= j is
pnd = 1 −

(

1 − d2
)n

, and the probability that cii 6= 0 is pd = 1 − (1 − d)n. Here, the estimation of the
probability pnd is based only on the probability (density) d = q/n of an element of A being nonzero, and not
on its numerical value, so we have not taken into account the case when the rows of A are orthogonal, which
can be considered to be generically negligible.

Therefore the probability that cij 6= 0 (or the density of C) is

p =

(

m2 − m
)

pnd + mpd

m2

= 1 −

(

1 −
1

m

)

(

1 − d2
)n

−
1

m
(1 − d)

n
.(5.3)



KACZMARZ INNER-ITERATION FLEXIBLE GMRES METHOD 17

Table 10
Estimated and actual densities of the matrix C = AAT.

matrix m n d p(estimated) p(actual)
RANDL1 5000 500 0.2 1.00 0.745
RANDL2 5000 500 0.2 1.00 0.730
RANDL3 5000 500 0.2 1.00 0.731
RANDL4 5000 500 0.2 1.00 0.714
RANDL5 5000 500 0.2 1.00 0.719
RANDL6 5000 500 0.2 1.00 0.719

illc1850 1850 712 6.60×10−3 0.0307 0.153
gen 2561 769 3.20×10−2 0.546 0.556

photogrammetry2 4472 936 8.90×10−3 0.0709 0.0321
Maragal_3 1682 858 1.27×10−2 0.131 0.160
Maragal_4 1964 1027 1.32×10−2 0.165 0.126
Maragal_5 4654 3296 6.10×10−3 0.115 0.0728
RANDL1T 500 5000 0.2 1.00 0.940
RANDL2T 500 5000 0.2 1.00 0.950
RANDL3T 500 5000 0.2 1.00 0.926
RANDL4T 500 5000 0.2 1.00 0.927
RANDL5T 500 5000 0.2 1.00 0.932
RANDL6T 500 5000 0.2 1.00 0.932

Maragal_3T 858 1682 1.27×10−2 0.240 0.562
Maragal_4T 1027 1964 1.32×10−2 0.292 0.669
Maragal_5T 3296 4654 6.10×10−3 0.158 0.461

illc1850T 712 1850 6.60×10−3 0.0777 0.0179
genT 769 2561 3.20×10−2 0.928 0.646

photogrammetry2T 936 4472 8.90×10−3 0.296 0.0944

m: number of rows of A, n: number of columns of A, d: density of nonzero elements of A, p: density of
nonzero elements of C = AAT.

If d = 1 (A is dense), (5.3) implies p = 1. Then, also q = n, so that (5.2) agrees with (5.1). If d ≪ 1, p can
be approximated as

p ∼ 1 −

(

1 −
1

m

)

e−nd2

−
1

m
e−q.

Table 10 gives estimated (using (5.3)) and actual values of the density of C = AAT for the matrices used
in our experiments. The estimation captures the trend of the actual density qualitatively.

As for the CPU time, the computation of AAT should perform relatively more efficiently than the flops
count suggests, especially for the dense case, due to fast memory access.

Appendix B. Equivalence between (1.2) and (1.3).

Necessity: Let f (x) = 1
2 ‖x‖2

2 + λ
T (b − Ax) be the Lagrange function, where λ ∈ R

m is the Lagrange
multiplier. Since

∂f (x)

∂xi

= xi − aT

i λ, i = 1, 2, . . . , n,

∂f (x)

∂λi

= bi − αT

i x, i = 1, 2, . . . , m,

where ai is the ith column of A and αT

i is the ith row of A, we have

∂f (x)

∂x
= 0 ⇐⇒ x = ATλ,

∂f (x)

∂λ
= 0 ⇐⇒ Ax = b.



18 Y. S. DU, K. HAYAMI, N. ZHENG, K. MORIKUNI AND J. F. YIN

Hence, the solution of (1.2) satisfies (1.3).
Sufficiency: Let x = x1 + x2, where x1 ∈ N (A)⊥ = R(AT) and x2 ∈ N (A). Let x1 = ATu. Then, we

have Ax1 = Ax = b. If y ∈ R
n satisfies Ay = b, then we have A(y − x1) = 0. Let y − x1 = t ∈ N (A).

Then, we have y = x1 + t, where x1 ∈ N (A)⊥ and t ∈ N (A). Since

‖y‖2
= ‖x1‖2

+ ‖t‖2 ≥ ‖x1‖2
,

there exists x1 = ATu, where x1 ∈ arg{min ‖x‖2
, Ax = b}.

If x1 = ATu1, Ax1 = b, and x2 = ATu2, Ax2 = b, we have x2 − x1 ∈ R(AT) = N (A)⊥ and
A(x2 − x1) = 0, we have x2 − x1 ∈ N (A). Hence, x2 − x1 ∈ N (A)⊥ ∩ N (A) = {0}. Thus, x1 = x2.

Acknowledgement. We would like to thank Professor Zhong-Zhi Bai for stimulating discussions and
valuable remarks. We would also like to thank the referees for their valuable comments.

REFERENCES

[1] R. Ansorge, Connections between the Cimmino-method and the Kaczmarz-method for the solution of singular and regular
systems of equations, Computing, 33 (1984), pp. 367–375.

[2] H. Avron, P. Maymounkov, and S. Toledo, Blendenpik: Supercharging LAPACK’s least-squares solver, SIAM J. Sci.
Comput., 32 (2010), pp. 1217–1236.

[3] Z.-Z. Bai and X.-G. Liu, On the Meany inequality with applications to convergence analysis of several row-action iteration
methods, Numer. Math., 124 (2013), pp. 215–236.

[4] Z.-Z. Bai and W.-T. Wu, On convergence rate of the randomized Kaczmarz method, Linear Algebra Appl., 553 (2018),
pp. 252–269.

[5] Z.-Z. Bai and W.-T. Wu, On greedy randomized Kaczmarz method for solving large sparse linear systems, SIAM J. Sci.
Comput., 40 (2018), pp. A592–A606.

[6] Z.-Z. Bai and W.-T. Wu, On relaxed greedy randomized Kaczmarz methods for solving large sparse linear systems, Appl.
Math. Lett., 83 (2018), pp. 21–26.

[7] Z.-Z. Bai and W.-T. Wu, On greedy randomized coordinate descent methods for solving large linear least-squares problems,
Numer. Linear Algebra Appl., 26 (2019), pp. 1–15.

[8] Z.-Z. Bai and W.-T. Wu, On partially randomized extended Kaczmarz method for solving large sparse overdetermined
inconsistent linear systems, Linear Algebra Appl., 578 (2019), pp. 225–250.

[9] Å. Björck and T. Elfving, Accelerated projection methods for computing pseudoinverse solutions of systems of linear
equations, BIT, 19 (1979), pp. 145–163.

[10] C. Byrne, A unified treatment of some iterative algorithms in signal processing and image reconstruction, Inverse Prob-
lems, 20 (2003), pp. 103–120.

[11] C. L. Byrne, Applied Iterative Methods, A K Peters, Wellesley, MA, 2008.
[12] Y. Censor, Row-action methods for huge and sparse systems and their applications, SIAM Rev., 23 (1981), pp. 444–466.
[13] Y. Censor, Parallel application of block-iterative methods in medical imaging and radiation therapy, Math. Program., 42

(1988), pp. 307–325.
[14] S. S. Chen, D. L. Donoho, and M. A. Saunders, Atomic decomposition by basis pursuit, SIAM Rev., 43 (2001), pp. 129–

159.
[15] E. J. Craig, The N-step iteration procedures, J. Math. Phys., 34 (1955), pp. 64–73.
[16] Y. Cui, K. Morikuni, T. Tsuchiya, and K. Hayami, Implementation of interior-point methods for LP based on Krylov

subspace iterative solvers with inner-iteration preconditioning, Comput. Optim. Appl., 74 (2019), pp. 143–176.
[17] T. A. Davis and Y. Hu, The University of Florida sparse matrix collection, ACM Trans. Math. Softw., 38 (2011), pp. 1–25.
[18] P. P. B. Eggermont, G. T. Herman, and A. Lent, Iterative algorithms for large partitioned linear systems, with

applications to image reconstruction, Linear Algebra Appl., 40 (1981), pp. 37–67.
[19] J. M. Elble, N. V. Sahinidis, and P. Vouzis, GPU computing with Kaczmarz’s and other iterative algorithms for linear

systems, Parallel Comput., 36 (2010), pp. 215–231.
[20] A. Galántai, Projectors and Projection Methods, Kluwer Academic Publishers, Norwell, MA, 2004.
[21] K. Hayami, J.-F. Yin, and T. Ito, GMRES methods for least squares problems, SIAM J. Matrix Anal. Appl., 31 (2010),

pp. 2400–2430.
[22] M. R. Hestenes and E. Stiefel, Methods of conjugate gradients for solving linear systems, J. Research Nat. Bur.

Standards, 49 (1952), pp. 409–436.
[23] J. T. Holodnak and I. C. F. Ipsen, Randomized approximation of the Gram matrix: Exact computation and probabilistic

bounds, SIAM J. Matrix Anal. Appl., 36 (2015), pp. 110–137.
[24] S. Kaczmarz, Angenäherte Auflösung von Systemen Linearer Gleichungen, Bull. Int. Acad. Polon. Sci. Lett. A., (1937),

pp. 355–357.
[25] X. Meng, M. A. Saunders, and M. W. Mahoney, LSRN: A parallel iterative solver for strongly over- or underdetermined

systems, SIAM J. Sci. Comput., 36 (2014), pp. C95–C118.
[26] K. Morikuni, Multistep matrix splitting iteration preconditioning for singular linear systems, Numer. Algorithms, 75

(2017), pp. 457–475.
[27] K. Morikuni and K. Hayami, Inner-iteration Krylov subspace methods for least squares problems, SIAM J. Matrix Anal.

Appl., 34 (2013), pp. 1–22.



KACZMARZ INNER-ITERATION FLEXIBLE GMRES METHOD 19

[28] K. Morikuni and K. Hayami, Convergence of inner-iteration GMRES methods for rank-deficient least squares problems,
SIAM J. Matrix Anal. Appl., 36 (2015), pp. 225–250.

[29] C. C. Paige and M. A. Saunders, Solution of sparse indefinite systems of linear equations, SIAM J. Numer. Anal., 12
(1975), pp. 617–629.

[30] F. Pasqualetti, R. Carli, and F. Bullo, Distributed estimation via iterative projections with application to power
network monitoring, Automatica, 48 (2012), pp. 747–758.

[31] C. Popa, Convergence rates for Kaczmarz-type algorithms, Numer. Algorithms, 79 (2018), pp. 1–17.
[32] V. Rokhlin and M. Tygert, A fast randomized algorithm for overdetermined linear least-squares regression, Proc. Natl.

Acad. Sci. USA, 105 (2008), pp. 13212–13217.
[33] Y. Saad, A flexible inner-outer preconditioned GMRES algorithm, SIAM J. Sci. Comput., 14 (1993), pp. 461–469.
[34] Y. Saad, Iterative Methods for Sparse Linear Systems, Second Ed., SIAM, Philadelphia, 2003.
[35] Y. Saad and M. H. Schultz, GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems,

SIAM J. Sci. Stat. Comput., 7 (1986), pp. 856–869.
[36] R. Southwell, Relaxation Methods in Engineering Science, Oxford University Press, Oxford, 1940.
[37] T. Strohmer and R. Vershynin, A randomized solver for linear systems with exponential convergence, in Proceedings

of Approximation, Randomization and Combinatorial Optimization, Algorithms and techniques, (2006), pp. 499–507.
[38] T. Strohmer and R. Vershynin, A randomized Kaczmarz algorithm with exponential convergence, J. Fourier Anal. Appl.,

15 (2009), pp. 262–278.
[39] K. Tanabe, Projection method for solving a singular system of linear equations and its applications, Numer. Math., 17

(1971), pp. 203–214.


	1 Introduction
	2 AB-GMRES method
	2.1 Flexible AB-GMRES method
	2.1.1 Outer-iteration algorithm
	2.1.2 Kaczmarz-type inner-iteration algorithms


	3 Flexible AB-GMRES preconditioned by Kaczmarz-type methods as inner iterations
	4 Numerical experiments
	4.1 Automatic parameter tuning for Kaczmarz-type methods
	4.2 Underdetermined problems
	4.3 Overdetermined problems
	4.4 Inconsistent problems

	5 Conclusion
	References

