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Abstract. In this paper, we develop and analyze numerical methods for high dimensional Fokker–Planck equations by
leveraging generative models from deep learning. Our starting point is a formulation of the Fokker–Planck equation as a system
of ordinary differential equations (ODEs) on finite-dimensional parameter space with the parameters inherited from generative
models such as normalizing flows. We call such ODEs neural parametric Fokker–Planck equations. The fact that the Fokker–
Planck equation can be viewed as the L2-Wasserstein gradient flow of Kullback-Leibler (KL) divergence allows us to derive the
ODEs as the constrained L2-Wasserstein gradient flow of KL divergence on the set of probability densities generated by neural
networks. For numerical computation, we design a variational semi-implicit scheme for the time discretization of the proposed
ODE. Such an algorithm is sampling-based, which can readily handle the Fokker–Planck equations in higher dimensional spaces.
Moreover, we also establish bounds for the asymptotic convergence analysis of the neural parametric Fokker–Planck equation
as well as the error analysis for both the continuous and discrete versions. Several numerical examples are provided to illustrate
the performance of the proposed algorithms and analysis.

Key words. Optimal transport; Transport information geometry; Deep learning; Neural parametric Fokker–Planck equa-
tion; Implicit Euler scheme; Numerical analysis.

1. Introduction. The Fokker–Planck equation is a parabolic partial differential equation (PDE) that
plays a crucial role in stochastic calculus, statistical physics, biology and many other disciplines [45, 56, 60].
Recently, it has seen many applications in machine learning as well [40, 53, 65]. The Fokker–Planck equation
describes the evolution of probability density of a stochastic differential equation (SDE). In this paper, we
mainly focus on the following linear Fokker–Planck equation

∂ρ(t, x)

∂t
=∇ · (ρ(t, x)∇V (x)) +D∆ρ(t, x), ρ(0, x) = p(x),(1.1)

where x ∈ Rd, V : Rd → R is a given potential function, D > 0 is a diffusion coefficient, and p(x) is the
initial (or reference) density function. In numerical algorithms, there exist several classical methods [55]
such as finite difference [14] or finite element [30] for solving the Fokker Planck equation. Most of the
existing methods are grid based, which may be able to approximate the solution accurately if the grid sizes
become small. However, they find limited usage in high dimensional problems, especially for d > 3, because
the number of unknowns grows exponentially fast as the dimension increases. This is known as the curse
of dimensionality. The main goal of this paper is providing an alternative strategy, with provable error
estimates, to solve high dimensional Fokker–Planck equations.

1.1. Neural parametric Fokker–Planck equation. To overcome the challenges imposed by high
dimensionality, we leverage the generative models in machine learning [59] and a new interpretation of the
Fokker–Planck equation in the theory of optimal transport [69]. We first introduce the KL divergence, also
known as relative entropy, defined by

DKL(ρ||ρ∗) =

∫
Rd
ρ(x) log

(
ρ(x)

ρ∗(x)

)
dx ρ∗(x) =

1

ZD
e−

V (x)
D , with ZD =

∫
Rd
e−

V (x)
D dx.

Here ρ∗(x) is the Gibbs distribution. A well-known fact is that the Fokker–Planck equation (1.1) can
be viewed as the gradient flow of the functional D DKL(ρ||ρ∗) on the probability space P equipped with
Wasserstein metric gW [23, 47]. Recently, this line of research has been extended to parameter space in the
field of information geometry [2, 3, 6], leading to an emergent area called transport information geometry
[34, 39, 37, 38].

Inspired by aforementioned work, we study the Fokker–Planck equation defined on parameter manifold
(space) Θ ⊂ Rm equipped with metric tensor G which is obtained by pulling back the Wasserstein metric gW

to Θ. Here the metric tensor G can be viewed as an m×m matrix that contains all the metric information on
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Θ. In this paper, we focus on the parameter space from generative models using neural networks. Our line
of thoughts can be summarized as following. We start with a given reference distribution p, and consider a
suitable family of parametric maps {Tθ}θ∈Θ. Such Tθ : Rd → Rd is also called parametric pushforward map
since it generates a family of parametric distributions {Tθ]p} by pushing forward p using Tθ (see Definition
3.2). Then we consider the map T(·)] : Θ → P, θ 7→ Tθ]p, which can be treated as an immersion from
parameter manifold Θ to probability manifold P. We derive the metric tensor G(θ) by pulling back the
Wasserstein metric via T(·)]. Once establishing (Θ, G), we can compute the G-gradient flow of function
H(θ) = D DKL(Tθ]p || ρ∗) defined on the parameter manifold. This leads to an ODE system that can be
viewed as a parametric version of Fokker–Planck equation:

(1.2) θ̇t = −G(θt)
−1∇θH(θt).

Here (and for the rest of the paper) dot symbol θ̇ stands for time derivative dθt
dt . Using the pushforward

ρθ = Tθ]p, in which θ is the solution of (1.2), we can approximate the solution ρt in (1.1).
There are many potential applications for the parameteric Fokker Planck equation. For example, the

solution of (1.2) can be immediately used for sampling, which is a crucial task in statistics and machine
learning. To be more precise, if the goal is drawing a large number of samples from ρt at N different time
instances {t1, t2, ..., tN} along the solution of (1.1), we can acquire N sets of parameters θt1 , ..., θtN from
the solution of (1.2), which provide N pushforward maps Tθt1 , ..., TθtN . Thus the desired samples at time
tk are {Tθtk (Z1), ..., Tθtk (ZM )}, in which {Z1, ...,ZM} are samples drawn from the reference distribution
p. If needed, the pushforward maps can be conveniently reused to generate more samples with negligible
additional cost.

1.2. Computational method. For the computation of (1.2), we want to point out that metric tensor
G(θ) doesn’t have an explicit form and thus the direct computation of G(θ)−1∇θH(θ) is not tractable.
To deal with this issue, we design a numerical algorithm based on the semi-implicit Euler scheme of (1.2)
with time step size h. To be more precise, at each time step, the algorithm seeks to solve the following
double-minimization problem:

min
θ

{(∫ (
2 ∇φ(x) · ((Tθ − Tθk) ◦ T−1

θk
(x))− |∇φ(x)|2

)
ρθk(x) dx

)
+ 2hH(θ)

}
with φ solves: min

φ

{∫
|∇φ(x)− ((Tθ − Tθk) ◦ T−1

θk
(x))|2ρθk(x) dx

}
.

(1.3)

Here ρθk is the density of the pushforwarded distribution Tθk]p (cf. Definition 3.2). And φ : Rd → R is the
Kantorovich dual potential variable for constrained probability models in optimal transport theory. Hence
(1.3) is derived following the semi-implicit Euler scheme in the dual variable. The advantage of using this
formulation is that it allows us to design an efficient implementation, purely based on sampling techniques
which are computational friendly in high dimensional problems, to compute the solution of the parameteric
Fokker–Planck equation (1.2). In our implementation, we endow the pushforward map Tθ with certain kinds
of deep neural network known as Normalizing Flow [59], because it is friendly to our scheme evaluations.
The dual variable φ in the inner maximization is parametrized by the deep Rectified Linear Unit (ReLU)
networks [54]. Once the network structures for Tθ and φ are chosen, the optimizations are carried out by
stochastic gradient descent method [63], in which all terms involved can be computed using samples from
the reference distribution p. We stress that this is critical in scaling up the computation in high dimensions.
It is worth mentioning that we use neural network as a computational tool without any actual data. Such
“data-poor” computation is in significant contrast to the mainstream of deep learning research.

1.3. Major innovations of the proposed method. There are two main innovative points regarding
our proposed method:

• (Dimension reduction) Reducing the high dimensional evolution PDE to a finite dimensional ODE
system on parameter space. Equivalently, we use the dynamics in a finite dimensional to approximate
the density evolution of particles that follow the Vlasov-type SDE

Ẋt = −∇V (Xt)−D∇ log ρt(Xt), ρt is the density function of distribution of Xt.

Here D is the diffusion coefficient as mentioned in (1.1). The density function ρt corresponds to the
Fokker–Planck equation (1.1).
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• (Sampling-friendly) We distill the information of ρt into parameters {θt} by solving the parametric
Fokker–Planck equation (1.2). By doing so, we are able to obtain an efficient sampling technique
to generate samples from ρt for any time step t. To be more precise, once we have applied our
algorithm to solve (1.2) for the time-dependent parameters {θt}, we can then generate samples from
ρt by pushing forward the samples drawn from a reference distribution p using the pushforward map
Tθt with very little computational cost. Such “implementing once for free future uses” mechanism
is one of the significant advantages of our proposed algorithm. It is worth mentioning that in the
view of both theoretical derivation and numerical implementation, our method is very different from
Langevin Monte Carlo (LMC, MALA) methods [19, 61], which aims at targeting the stationary
distribution of the SDE associated to (1.1); or moment methods [56] , which focuses on keeping
track of certain statistical information of the density ρt.

1.4. Sketch of numerical analysis. In addition to the method proposed for solving (1.1), we also
conducted a mathematical analysis on (1.2) and our algorithm. We established asymptotic convergence and
error estimates for the parametric Fokker–Planck equation (1.2), which are summarized in the following two
theorems:

Theorem 5.1 (Asymptotic convergence). Consider the Fokker–Planck equation (1.1) with potential V
and diffusion coefficient D. Suppose V can be decomposed as V = U +φ with U ∈ C2(Rd), ∇2U � KI1 with
K > 0 and φ ∈ L∞(Rd), and {θt} solves (1.2). Then the following inequality holds,

DKL(ρθt‖ρ∗) ≤
δ0

λ̃DD2
(1− e−Dλ̃Dt) +DKL(ρθ0‖ρ∗)e−Dλ̃Dt,

where ρ∗ is the Gibbs distribution, λ̃D > 0 is a constant related to the potential function V and D. δ0 is a
constant depending on the approximation power of pushforward map Tθ.

Theorem 5.11 (Approximation error). Consider the Fokker–Planck equation (1.1) with potential V ,
diffusion coefficient D and initial density ρ0. Assume that λ is a lower bound of Hessian of potential V ,
i.e. ∇2V � λI, δ0 is defined in Theorem 5.1, E0 = W2(ρθ0 , ρ0), and δ0, E0 � 1, then the following uniform
bounds for the L2-Wasserstein error W2(ρθt , ρt) hold:

• When λ > 0, W2(ρθt , ρt) ≤ max{
√
δ0/λ,E0} ∼ O(

√
δ0 + E0),

• When λ = 0, W2(ρθt , ρt) ≤
√
δ0
µD

log B√
δ0+E0

+ E0 ∼ O(
√
δ0 log 1√

δ0+E0
+ E0),

• When λ < 0, W2(ρθt , ρt) ≤ A
√
δ0 + C

(
E0 +

√
δ0/|λ|

)α ∼ O((E0 +
√
δ0)α).

Here δ0 is a constant depending on the approximation power of pushforward map Tθ. µD, A,B,C > 0 are
constants only depending on V,D, ρ0, θ0. And α = µD

|λ|+µD is a certain exponent between 0 and 1.

This result reveals that the difference between the solutions of the parametric Fokker–Planck equation (1.2)
and the original equation (1.1), measured by their Wasserstein distance W2(ρθt , ρt), has a uniformly small
upper bound if both the initial error E0 and δ0 are small enough. Most of the techniques used in our
analysis for establishing such a result rely on the theory of optimal transport and Wasserstein manifold,
which are still not commonly used for numerical analysis in relevant literature. Besides error analysis for
the continuous version of (1.2), we are able to provide the order of W2-error for the numerical scheme when
(1.2) is computed at discrete time by numerical schemes. To be more precise, if we apply forward-Euler
scheme to (1.2) and compute {θk} at different time nodes {tk}, we can show that error at tk: W2(ρθk , ρtk)
is of order O(

√
δ0) +O(Ch) +O(E0) for finite time t. This is summarized in the following theorem:

Theorem 5.14 (Error for discrete scheme). Assume that {ρt}t≥0 is the solution of (1.1) with potential
satisfying λI � ∇2V � ΛI, {θk}Nk=0 is the numerical solution of (1.2) at time nodes tk = kh for k =
0, 1, ..., N computed by forward Euler scheme with time step h. Recall δ0 as mentioned in Theorem 5.1 and
we denote E0 = W2(ρθ0 , ρ0), then we have:

W2(ρθk , ρtk) ≤ (
√
δ0h+ Ch2)

(1− e−λtk)

1− e−λh
+ e−λtkE0 ∼ O(

√
δ0) +O(Ch) +O(E0), 0 ≤ k ≤ N,

where C is a constant depending on N and h.

1The matrix ∇2U(x)−KId×d is non-negative definite for any x ∈ Rd.
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This indicates that theW2-error is dominated by three different terms: O(
√
δ0) is the intrinsic error originated

from the approximation mechanism of the parametric Fokker–Planck equation; O(Ch) term is induced by
the time discretization; and O(E0) term is the initial error. We further prove that the difference between the
forward Euler scheme and our semi-implicit Euler scheme is of order O(h2), which implies that the proposed
semi-implicit Euler scheme can achieve a similar error bounds as the one presented in Theorem 5.14.

It is worth mentioning that we establish Theorem 5.14 based on totally different techniques than those
used for Theorem 5.11. Since the ODE (1.2) contains the term G(θ)−1, which is hard to handle by the
traditional strategies, we interpret it as a particle system governed by a stochastic differential equations
(SDEs) of Vlasov type, and obtain the analysis results shown in Theorem 5.14.

1.5. Literature review. Numerous works exist for solving the Fokker–Planck equations. A finite
difference scheme is proposed in [14] so that it preserves the equilibrium of the original equation. A more
general class of equations possessing Wasserstein gradient flow structures is solved in [12]. in which the
method is based on a space discretization of a proximal-typed scheme (also known as JKO method [24]).
Besides direct solutions, particle simulation techniques also serve as an efficient way of solving the equation.
The so-called “Blob” method is proposed in [11] and solves the equations by evolving a certain interacting
particle systems. Related swarming system is also studied in [33, 13, 28, 21, 10]. In [42], the authors propose
another type of interacting systems in order to approximate ∇ log ρ, which plays the role of the diffusion term
in the Fokker–Planck equation, with higher accuracy and less fluctuation. In [51, 58], the authors mainly
focus on exploiting the gradient flow structure, i.e. a particle discretization of the Fokker–Planck equation,
to deal with Bayesian inference problems.

In addition to the literature focusing on solving the Fokker–Planck equations, There are existing works
on applying neural networks to solve PDE of various types in high dimensional spaces [71, 57, 25, 26, 74, 46].
Among the listed works, algorithms for general types of high dimensional PDEs are provided in [57, 25]; a
sampling friendly method is proposed in [46] to deal with the general optimal control problem of diffusion
processes. This is equivalent to solving an associated Hamilton-Jacobi-Bellman equation and such technique
can also be applied to importance sampling and rare event simulation. Moreover, numerical methods for
high dimensional parabolic PDEs, to which the Fokker–Planck equation belongs, are studied in [71] and [26].
Our approach differs from these existing works in many aspects, including motivations, strategies, and the
associated numerical analysis.

For example, in [71], the authors propose to use the non-linear Feynmann-Kac formula to re-write certain
parabolic PDEs as the Backward Stochastic Differential Equation (BSDE), which is then reformulated as
a stochastic control problem (also known as reinforcement learning in machine learning community). By
applying deep neural network as the control function and optimizing over network parameters, the solution at
any given space-time location can be evaluated. Another example is [26], which mainly focuses on computing
the committor function that solves a steady-state (time-independent) Fokker–Planck equation with specific
boundary conditions. This committor function can be treated as the solution to a variational problem
associated with an energy functional. A neural network is used to replace the solution in the variational
problem. When optimizing over network parameters, the neural network can be used to approximate the
committor function.

In this paper, we focus on designing a sampling-friendly method for the time dependent Fokker–Planck
equation. There are two main reasons that motivate us for this investigation. One, as mentioned before, is
to design sample based algorithm to solve PDEs in high dimensions. The other is to provide an alternative
sampling strategy that can be potentially faster than LMC. Our approaches are different in terms of how
deep networks are leveraged to approximate the solution of the PDE. We use pushforward of a given reference
measure by neural networks to create a generative model. This is to approximate the stream of probability
distributions, which can be used to generate samples not only at the terminal time, but also any time
in between. More importantly, we prove results, obtained by using newly developed techniques based on
Wasserstein metric on probability manifold, on the asymptotic convergence and error control of our numerical
schemes. To the best of our knowledge, similar results are still lacking in existing studies.

1.6. Organization of this paper. We organize the paper as follows. In section 2, we briefly introduce
some background knowledge of the Fokker–Planck equation, including its relation with SDE and its Wasser-
stein gradient flow structure. In section 3, we introduce the Wasserstein statistical manifold (Θ, G) and
derive our parametric Fokker–Planck equation as the manifold gradient flow of relative entropy on Θ. We
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study the geometric property of this equation, including an insightful particle motion based interpretation
of the parametric Fokker–Planck equation. In section 4, we design a numerical scheme that is tractable
for computing our parametric Fokker–Planck equation using deep learning framework. Some important de-
tails of implementation will be discussed. We present asymptotic convergence and error estimates for the
parametric Fokker–Planck equation in section 5, and provide some numerical examples in section 6.

2. Background on the Fokker–Planck equation. In this section, we present two different perspec-
tives regarding the Fokker–Planck equations, More discussion can be found in [36].

2.1. As the density evolution of stochastic differential equation. The general form of the
Fokker–Planck equation is [52, 32]:

∂ρ(x, t)

∂t
= −∇ · (ρ(x, t)µ(x, t)) +

1

2
∇2 : (D(x, t)ρ(x, t))(2.1)

= −
d∑
i=1

∂

∂xi
(ρ(x, t)µi(x, t)) +

1

2

d∑
i,j=1

∂2

∂xi∂xj
(Dij(x, t)ρ(x, t)), ρ(x, 0) = ρ0(x).

Here µ = (µ1, ..., µd)
T is the drift function and D = {Dij} is the d × d diffusion tensor. Furthermore, D

can be written as D = σσT, where σ(x, t) is a d× d̃ matrix. One derivation of the Fokker–Planck equation
originates from the following stochastic differential equation (SDE) [52, 32],

dXt = µ(Xt, t) dt+ σ(Xt, t) dBt, X0 ∼ ρ0,

where {Bt}t≥0 is the standard Brownian motion in Rd̃, and ρ0 is the distribution of the initial state. It is
well known that the evolution of the density ρ(x, t) of the stochastic process {Xt}t≥0 is described by the
above the Fokker–Planck equation.

In this paper, we consider a more specific type of (2.1) by setting µ(x, t) = −∇V (x), σ(x, t) =
√

2D Id×d
(D > 0), where Id×d is the d by d identity matrix, and so D = 2D Id×d. Then (2.1) is,

(2.2) dXt = −∇V (Xt) dt+
√

2D dBt X0 ∼ ρ0.

This equation is also called over-damped Langevin dynamics which has broad applications in computational
physics, computational biology, Bayesian statistics [19, 64, 72]. The corresponding Fokker–Planck equation
is simplified to

(2.3)
∂ρ(x, t)

∂t
= ∇ · (ρ(x, t)∇V (x)) +D∆ρ(x, t), ρ(x, 0) = ρ0(x).

In addition, we would like to mention that there is a Vlasov-type SDE corresponding to the Fokker–Planck
equation (2.3):

(2.4)
dXt

dt
= −∇V (Xt)−D ∇ log ρ(Xt, t), X0 ∼ ρ0,

in which ρ(·, t) is the density of Xt. This Vlasov-type SDE (2.4) will be very useful in our proofs for the
error estimates of our proposed numerical algorithms.

2.2. As the Wasserstein gradient flow of relative entropy. Another useful viewpoint states that
(2.3) is the Wasserstein gradient flow of relative entropy. We briefly present some of the notations and basic
results in this regard. We only provide in sections 2.2.1 and 2.2.2 an informal discussion on Wasserstein
manifold and Wasserstein gradient flow. More rigorous treatments on the topics can be found in [4].

2.2.1. Wasserstein manifold. Denote the probability space supported on Rd with densities having
finite second order moments as

P =

{
ρ :

∫
ρ(x)dx = 1, ρ(x) ≥ 0,

∫
|x|2ρ(x) dx <∞

}
.
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Here the integral is computed over the sample space Rd. In the following discussion, if not specified, we
always write

∫
Rd as

∫
for simplicity.

The so-called Wasserstein distance (also known as L2-Wasserstein distance) on P is defined as [69]

(2.5) W2(ρ1, ρ2) =

(
inf

π∈Π(ρ1,ρ2)

∫∫
|x− y|2 dπ(x, y)

)1/2

,

where Π(ρ1, ρ2) is the set of joint distributions defined on Rd × Rd with fixed marginal distributions whose
densities are ρ1, ρ2. If we treat P as an infinite dimensional manifold, the Wasserstein distance W2 can induce
a metric gW on the tangent bundle T P, with which P becomes a Riemannian manifold. For simplicity, here
we directly give the definition of gW . One can identify the tangent space at ρ as:

TρP =

{
f :

∫
f(x)dx = 0

}
.

For a specific ρ ∈ P and fi ∈ TρP, i = 1, 2, we define the Wasserstein metric tensor gW as [31, 47]

(2.6) gW (ρ)(f1, f2) =

∫
∇ψ1(x) · ∇ψ2(x)ρ(x) dx,

where ψ1, ψ2 satisfies

(2.7) fi = −∇ · (ρ∇ψi) i = 1, 2,

with boundary conditions

lim
x→∞

ρ(x)∇ψi(x) = 0 i = 1, 2.

Use the above definition, we can also write

gW (ρ)(f1, f2) =

∫
ψ1(−∇ · (ρ∇ψ2)) dx =

∫
(−∇ · (ρ∇))−1(f1) · f2 dx.

Thus, we can identify gW (ρ) as (−∇·(ρ∇))−1. When supp(ρ) = Rd, gW (ρ) is a positive definite bilinear form
defined on tangent bundle T P = {(ρ, f) : ρ ∈ P, f ∈ TρP}. Hence we can treat P as a Riemannian manifold,
which we call Wasserstein manifold, denoted as (P, gW ) [47]. In order to keep our notations concise, in the
sequel, we denote gW (ρ) as gW if no confusion is caused.

2.2.2. Wasserstein gradient. We denote the Wasserstein gradient gradW as the manifold gradient
on (P, gW ). In Riemannian geometry, the manifold gradient must be compatible with the metric, implying
that for any smooth functional F defined on P and any ρ ∈ P, considering an arbitrary differentiable curve
{ρt}t∈(−δ,δ) with ρ0 = ρ, we have

d

dt
F(ρt)

∣∣∣
t=0

= gW (ρ)(gradWF(ρ), ρ̇0).

Since we can write
d

dt
F(ρt)

∣∣∣
t=0

=

∫
δF(ρ)

δρ(x)
(x) · ρ̇0(x) dx =

〈
δF(ρ)

δρ
, ρ̇0

〉
L2

,

here δF(ρ)
δρ(x) (x) is the L2 variation of F at point x ∈ Rd, we then have〈

δF(ρ)

δρ
, ρ̇0

〉
L2

= gW (ρ)(gradWF(ρ), ρ̇0) ∀ ρ̇0 ∈ TρP.

This leads to the following useful formula for computing Wasserstein gradient of functional F

gradWF(ρ) = gW (ρ)
−1
(
δF
δρ

)
(x) = −∇ ·

(
ρ(x)∇ δF(ρ)

δρ(x)
(x)

)
.(2.8)



NEURAL PARAMETRIC FOKKER-PLANCK EQUATION 7

In particular, if F is taken as the relative entropy functional given by

(2.9) H(ρ) = D DKL

(
ρ
∣∣∣∣∣∣ ρ∗) =

(∫
V (x)ρ(x) +Dρ(x) log ρ(x) dx

)
+D logZD,

we have ∇ δH(ρ)
δρ = ∇V +D∇ log ρ. Using (2.8), and noticing ∇ log ρ = ∇ρ

ρ , then ∇ · (ρ∇ log ρ) = ∇ · (∇ρ) =
∆ρ, the Wasserstein gradient flow of H can be written as

∂ρ

∂t
= −gradWH(ρ) = ∇ · (ρ∇V ) +D∇ · (ρ∇ log ρ)),

which is exactly the Fokker–Planck equation (2.3).

3. Parametric Fokker–Planck equation. In this section, we provide detailed derivation for our
parametric Fokker–Planck equation.

3.1. Wasserstein statistical manifold. Consider a parameter space Θ as an open, convex set in Rm,
and assume the sample space is Rd. Let Tθ be a map from Rd to Rd parametrized by θ. In our discussion,
we always assume the invertibility of Tθ(x), and it is second order differentiable with respect to x and θ, i.e.
Tθ(x) ∈ C2(Θ× Rd).

Remark 3.1. There are many different choices for Tθ:
• We can set Tθ(x) = Ux+ b, with θ = (U, b), U is a d× d invertible matrix, b ∈ Rd;
• We may also choose Tθ as the linear combination of basis functions Tθ(x) =

∑m
k=1 θk

~Φk(x), where

{~Φk}mk=1 are the basis functions and the parameter θ will be the coefficients: θ = (θ1, ..., θm);
• We can also treat Tθ as neural network. Its general structure can be written as the composition

of l affine and non-linear activation functions: Tθ(x) = σl(Wl(σl−1(...σ1(W1x + b1)...)) + bl). In
this case, the parameter θ will be the weight matrices and bias vectors of the neural network, i.e.
θ = (W1, b1, ...,Wl, bl).

Definition 3.2. Suppose X,Y are two measurable spaces, λ is a probability measure defined on X; let
f : X → Y be a measurable map. We define f]λ as: f]λ(E) = λ(f−1(E)) for all measurable E ⊂ Y . We
call f]λ the pushforward of measure λ by map f .

Let p ∈ P be a reference probability measure with positive density defined on Rd, such as the standard
Gaussian. We denote ρθ as the density of Tθ]p. Such kind of mechanism of producing parametric probability
distributions is also known as generative model, which has broad applications in deep learning research
[18, 5, 8]. We further assume our Tθ satisfy the following two conditions:

(3.1) Condition 1:

∫
|z|2ρθ(z) dz =

∫
|Tθ(x)|2 dp(x) <∞ ∀ θ ∈ Θ.

This ensures that ρθ ∈ P for each θ ∈ Θ. In order to introduce Wasserstein metric to the parameter space
Θ, we also assume that the Frobenius norm of the operator ∂θTθ(x) : Rd → Rd×m is locally bounded in the
following sense: for any fixed θ∗ ∈ Θ, there exists r(θ∗) > 0 and two functions L1(·| θ∗), L2(·| θ∗) satisfying

Condition 2: ‖∂θTθ(x)‖F ≤ L1(x| θ∗), ‖∂θTθ(x)‖2F ≤ L2(x| θ∗), ∀ θ, |θ − θ∗| < r(θ∗) and x ∈ Rd, and∫
L1(x| θ∗) dp(x) <∞

∫
L2(x| θ∗) dp(x) <∞.(3.2)

We define the parametric submanifold PΘ ⊂ P as:

PΘ = {ρθ is density function of Tθ]p | θ ∈ Θ}.

Clearly, the connection between P and Θ is through the pushforward operation Tθ] : Θ → PΘ, θ 7→ ρθ.
Hence it is natural to define the Wasserstein metric G(θ) on parameter space Θ as the pullback of gW by
Tθ]. To be specific, we define G(θ) = (Tθ])

∗gW . Using this definition, Tθ] becomes an isometric immersion
from Θ to P. For each θ, G(θ) is a bilinear form defined on TθΘ ' Rm, which can be identified as an m×m
matrix.

Before computing G(θ), we introduce a lemma which can help us to better understand G(θ).



8 SHU LIU, WUCHEN LI, HONGYUAN ZHA, HAOMIN ZHOU

Lemma 3.3. Suppose ~u,~v are two vector fields defined on Rd, suppose ϕ,ψ solves −∇·(ρ∇ϕ) = −∇·(ρ~u)
and −∇ · (ρ∇ψ) = −∇ · (ρ~v), or equivalently, Projρ[~u] = ∇ϕ and Projρ[~v] = ∇ψ (cf. Definition 4.2). Then:∫

~u(x) · ∇ψ(x)ρ(x) dx =

∫
∇ϕ(x) · ∇ψ(x)ρ(x) dx;(3.3) ∫

|∇ψ(x)|2ρ(x) dx ≤
∫
|~v(x)|2ρ(x) dx.(3.4)

We prove Lemma 3.3 in Appendix A. The metric tensor G(θ) is computed in the following theorem.

Theorem 3.4. Assume Θ satisfies (3.1),(3.2). Tθ is invertible and Tθ(x) ∈ C2(Θ×Rd). Then Θ can be
equipped with the metric tensor G = (Tθ])

∗gW , which is an m ×m non-negative definite symmetric matrix
of the form:

(3.5) G(θ) =

∫
∇Ψ(Tθ(x))∇Ψ(Tθ(x))T dp(x)

at every θ ∈ Θ. More precisely, in entry-wise form,

Gij(θ) =

∫
∇ψi(Tθ(x)) · ∇ψj(Tθ(x)) dp(x), 1 ≤ i, j ≤ m,

in which Ψ = (ψ1, · · · , ψm)T and ∇Ψ is an m×d Jacobian matrix of Ψ. For each j = 1, 2, · · · ,m, ψj solves
the following equation:

(3.6) ∇ · (ρθ∇ψj(x)) = ∇ · (ρθ
∂Tθ
∂θj

(T−1
θ (x))).

with boundary conditions
lim
x→∞

ρθ(x)∇ψj(x) = 0.

Proof. Suppose ξ ∈ T Θ is a vector field on Θ, for a fixed θ ∈ Θ, we first compute the pushforward
(Tθ])∗ξ(θ) of ξ at point θ: We choose any smooth curve {θt}t≥0 on Θ with θ0 = θ and θ̇0 = ξ(θ). If we

denote ρθt = Tθt ]p, we have (Tθ])∗ξ(θ) =
∂ρθt
∂t

∣∣∣
t=0

.

To compute
∂ρθt
∂t

∣∣∣
t=0

, we consider an arbitrary φ ∈ C∞0 (M).

On one hand,
ρθ∆t (y)−ρθ0 (y)

∆t = ∂
∂tρ(θt̃1 , y), where t̃1 is some point between 0,∆t, since φ ∈ C∞0 and

ρ(θt, x) is at least C1 with respect to t, y, we can show that the function ϕ(x) = sups∈[0,∆t] |φ(x) ∂∂tρ(θs, y)|
is continuous on a compact set and thus integrable on Rd. Using dominated convergence theorem, we have:

(3.7)
∂

∂t

(∫
φ(y)ρθt(y) dy

) ∣∣∣
t=0

=

∫
φ(y)

∂ρθt(y)

∂t

∣∣∣
t=0

dy.

On the other hand, we have:

(3.8)
φ(Tθ∆t(y))− φ(Tθ0(y))

∆t
= θ̇T

t̃2
∂θTθt̃2 (x)T ∇φ(Tθt̃2 (y)),

in which t̃2 is also between 0,∆t. For any ∆t small enough and t̃ ∈ [0,∆t], we can easily find upper bounds for
‖θ̇t̃‖ ≤ A and ‖∇φ(·)‖∞ ≤ B. Recall the condition (3.2), when ∆t is small enough, we have |θ∆t−θ0| < r(θ0),
thus we obtain the following upper bound for (3.8)

|θ̇T
t̃ ∂θTθt̃(x)T ∇φ(Tθt̃(y))| ≤ AB‖∂θTθt̃(x)‖F ≤ ABL1(x|θ0).

By (3.2), we know L1(·|θ0) ∈ L1(p), we can apply dominated convergence theorem to obtain:

(3.9)
∂

∂t

(∫
φ(Tθt(x))dp

) ∣∣∣
t=0

=

∫
θ̇t

T
∂θTθt(x)T∇φ(Tθt(x))|t=0dp.
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Since ∂
∂t

∫
φ(y)ρθt(y) dy = ∂

∂t

∫
φ(Tθt(x)) dp(x), we use (3.7) and (3.9) to get:∫

φ(y)
∂ρθt
∂t

(y)
∣∣∣
t=0

dy =

∫
θ̇t

T
∂θTθt(x)T∇φ(Tθt(x))|t=0 dp(x)

=

∫
θ̇T
t

(
∂Tθt
∂θ

(T−1
θt

(x))

)T

∇φ(x) ρθt(x)|t=0 dx

=

∫
φ(x)

(
−∇ ·

(
ρθt(x)

∂Tθt
∂θ

(T−1
θt

(x)) θ̇t

))
|t=0 dx.

Because φ(x) is arbitrary, this weak formulation reveals that

(3.10) (Tθ])∗ξ(θ) =
∂ρθt
∂t

∣∣∣
t=0

= −∇ ·
(
ρθ(x)

∂Tθ
∂θ

(T−1
θ (x))ξ(θ)

)
.

Now let us compute the metric tensor G. Since Tθ] is isometric immersion from Θ to P, the pullback of gW

by Tθ] gives G, i.e. (Tθ])
∗gW = G(θ). By definition of pullback map, for any θ ∈ Θ and ξ(θ) ∈ TθΘ, we

have:

(3.11) G(θ)(ξ(θ), ξ(θ)) = gW (ρθ)((Tθ])∗ξ(θ), (Tθ])∗ξ(θ)).

To compute the right hand side of (3.11), recall (2.6), we need to solve for ϕ from:

(3.12)
∂ρθt
∂t

∣∣∣
t=0

= −∇ · (ρθ(x)∇ϕ(x)).

By (3.10), (3.12) is:

(3.13) ∇ · (ρθ(x)∇ϕ(x)) = ∇ ·
(
ρθ(x)

∂θTθ
∂θ

(T−1
θ (·))ξ(θ)

)
.

We can straightforwardly check that ϕ(x) = ΨT(x)ξ(θ) is the solution of (3.13). Now by definition of gW as
mentioned in 2.2.1, we write the right hand side of (3.11) as

gW (ρθ)((Tθ])∗ξ(θ), (Tθ])∗ξ(θ)) =

∫
|∇ϕ(y)|2ρθ(y) dy = ξ(θ)T

(∫
∇Ψ(y)∇Ψ(y)Tρθ(y) dy

)
ξ(θ).(3.14)

=

m∑
i,j=1

(∫
∇ψi(y) · ∇ψj(y)ρθ(y) dy

)
ξi(θ)ξj(θ).

Here we assume components of ξ(θ) as (ξ1(θ), ..., ξm(θ))T. Before we compute G(θ), we first verify that the
inner product in (3.14) is finite for any ξ ∈ T Θ. To show this, by Cauchy–Schwarz inequality we obtain∫

∇ψi(y) · ∇ψj(y)ρθ(y) dy ≤
(∫
|∇ψi(y)|2ρθ(y) dy

) 1
2
(∫
|∇ψj(y)|2ρθ(y) dy

) 1
2

.

recall ψj defined in (3.6), then applying (3.4) of Lemma (3.3) yields∫
|∇ψj(y)|2ρθ(y) dy ≤

∫ ∣∣∣∣∂Tθ∂θj
(T−1
θ (y))

∣∣∣∣2 ρθ(y) dy =

∫ ∣∣∣∣∂Tθ∂θj
(x)

∣∣∣∣2 dp(x) ≤
∫
L2(y|θ)p(y) dy <∞.

The last two inequalities are due to condition (3.2). As a result, we proved the finiteness of (3.14).
Finally, let us compute:

G(θ)(ξ(θ), ξ(θ)) = gW (ρθ)((Tθ])∗ξ(θ), (Tθ])∗ξ(θ)) = ξ(θ)T

(∫
∇Ψ(Tθ(x))∇Ψ(Tθ(x))Tdp(x)

)
ξ(θ).

Thus we can verify that

G(θ) =

∫
∇Ψ(Tθ(x))∇Ψ(Tθ(x))T dp(x),

which completes the proof.
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Generally speaking, the metric tensor G does not have an explicit form when d ≥ 2. It is worth mention
that G has an explicit form and can be computed directly when d = 1 [36].

Remark 3.5 (Well-posedness of (3.6)). It is worth commenting on the existence and the regularity
question to equations like (3.6). Determining what properties or conditions that Tθ should have to guarantee
the well-posedness of (3.6) is an interesting and important problem on its own. In references such as [49]
and [70], there are sufficient conditions that guarantee the well-posedness of elliptic PDEs defined on Rd.
Most of the existing results require uniform lower bound on ρθ, i.e. ρθ(x) > ε > 0 for all x ∈ Rd. Such
coercive condition is not applicable in our case since

∫
ρθ(x)dx = 1 is finite. On the other hand, section 8.1.2

of [68] provides another sufficient condition on the well-posedness of (3.6): If there exists λ > 0 such that
the following Poincaré inequality (3.15) holds for any ϕ ∈ C∞(Rd) with compact support,

(3.15)

∫
|∇ϕ(x)|2ρθ(x) dx ≥ λ

∫ (
ϕ(x)−

∫
ϕρθ dx

)2

ρθ(x) dx,

and −∇· (ρθ ∂Tθ∂θj
(T−1
θ (·))) ∈ L2(ρθ), Then (3.6) admits a unique solution ψj with ∇ψj ∈ L2(ρθ). To the best

of our knowledge, it is still unclear that what kind of properties of Tθ may lead to (3.15).
It is worth pointing out that under certain situations discussed in Section 3.4, equation (3.6) does have

classical solutions. For example, if we select Tθ as an affine transform and consider the Fokker–Planck
equation (2.3) with quadratic potential V and Gaussian initial ρ0, we can prove that (3.6) is well-posed
along the trajectory of the ODE (3.19), i.e. the following elliptic equation

−∇ · (ρθt∇ψ) = −∇ · (ρθt
∂θTθt
∂θ

(T−1
θt

(x))θ̇t), where {θt} solves (3.19),

always admits a classical solution ψ(x) = V (x) +D log ρθ(x) + Const.
In general, The conditions imposed on Tθ to guarantee well-posedness of (3.6) is a fundamental and

interesting topic subject to further investigation. A good reference related to the topic can be found in [4].

Following theorem provides several criteria for examining whether G is a Riemannian metric, i.e. whether
G(θ) is positive definite.

Theorem 3.6. For θ ∈ Θ, {ψk}mk=1 satisfies (3.6), the following four statements are equivalent
1. G(θ) is positive definite;
2. For any ξ ∈ TθΘ (ξ 6= 0), there exists z ∈M such that ∇ · (ρθ(z)∂Tθ∂θ (T−1

θ (z))ξ) 6= 0;
3. {∇ψk}mk=1, as m functions in the space L2(Rd;Rd, ρθk), are linearly independent;
4. d

dt (Tθ+tξ]p)|t=0 6= 0 for any ξ ∈ Rm.

Proof. We first verify that 1 and 2 are equivalent. We need the following identity used in Theorem 3.4:
For any θ, ξ, x, we have

(3.16) ∇ · (ρθ(x)∇(ξTΨ(x))) = ∇ · (ρθ(x)
∂Tθ
∂θ

(T−1
θ (x))ξ).

(⇐): suppose for any θ ∈ Θ and ξ ∈ TθΘ, at certain z ∈ Rd, ∇ · (ρθ(z)∂Tθ∂θ (T−1
θ (z)ξ) 6= 0, then ∇ ·

(ρθ(z)∇(ξTΨ(z))) 6= 0, thus ρθ∇(ξTΨ) is not identically 0. Using continuity of ρθ∇(ξTΨ), we know that:
|∇(ξTΨ(x))|2ρθ(x) > 0 in some small neighbourhood of z. Thus we have:

(3.17) ξTG(θ)ξ =

∫
|∇Ψ(x)Tξ|2ρθ(x) dx > 0,

holds for any θ and ξ, this leads to the positive definiteness of G.
(⇒): Now suppose (3.17) holds for all θ, ξ, then we have∫

−∇ · (ρθ(x)∇(ξTΨ(x))) · ξTΨ(x) dx > 0.

This leads to the existence of a z ∈ Rd such that −∇ · (ρθ(z)∇(ξTΨ(z))) 6= 0. Combining (3.16), we have
verified the equivalence between 1 and 2.
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We recall (3.10), then d
dt (Tθ+tξ]p)|t=0 = (Tθ])∗ξ = −∇·(ρθ(x)∂Tθ∂θ (T−1

θ (x))ξ), this verifies the equivalence
between 2 and 3.

Finally, as stated before, we can verify ξTG(θ)ξ = ‖
∑
k=1 ξk∇ψk‖2L2(ρθ), this formula will directly leads

to the equivalence between 1 and 4 and we have proved the equivalence among statements 1,2,3 and 4.

To keep our discussion concise in the following sections, we will always assume G(θ) is positive definite
for every θ ∈ Θ.

3.2. Parametric Fokker–Planck equation. We consider the pushforward T(·)] induced relative en-
tropy functional H = H ◦ T(·)] : Θ→ R,

H(θ) = H(ρθ) =

(∫
V (x)ρθ(x) +Dρθ(x) log ρθ(x) dx

)
+D logZD

=

(∫
V (Tθ(x)) +D log ρθ(Tθ(x)) dp(x)

)
+D logZD.(3.18)

Following the theory in [2], the gradient flow of H on Wasserstein parameter manifold (Θ, G) satisfies

(3.19) θ̇ = −G(θ)−1∇θH(θ).

We call (3.19) parametric Fokker–Planck equation. The ODE (3.19) as the Wasserstein gradient flow on
parameter space (Θ, G) is closely related to the Fokker–Planck equation on probability submanifold PΘ. We
have the following theorem, which is a natural result derived from submanifold geometry.

Theorem 3.7. Suppose {θt}t≥0 solves (3.19). Then {ρθt} is the gradient flow of H on probability
submanifold PΘ. Furthermore, at any time t, ρ̇θt = d

dtρθt ∈ TρθtPΘ is the orthogonal projection of

−gradWH(ρθt) ∈ TρθtP onto the subspace TρθtPΘ with respect to the Wasserstein metric gW .

We prove this theorem in the Appendix B.
The following theorem is an important new statement closely related to Theorem. 3.7.

Theorem 3.8 (Wasserstein gradient as solution to a least squares problem). For a fixed θ ∈ Θ, Ψ ⊂ Rm
as defined in Theorem 3.4, then

(3.20) G(θ)−1∇θH(θ) = arg min
η∈TθΘ∼=Rm

{∫
|(∇Ψ(Tθ(x)))Tη −∇ (V +D log ρθ) ◦ Tθ(x)|2dp(x)

}
.

Proof. Direct computation shows that minimizing the function in (3.20) is equivalent to minimizing:

ηT

(∫
∇Ψ(Tθ(x))∇Ψ(Tθ(x))T dp(x)

)
η − 2 ηT

(∫
∇Ψ(x)∇(V (x) +D log ρθ(x))ρθ(y) dx

)
.

For each entry in the second term, we have:∫
∇ψk(x) · ∇(V (x) +D log ρθ(x))ρθ(x) dx =

∫
−∇ · (ρθ(x)∇ψk(x)) · (V (x) +D log ρθ(x)) dx

=

∫
−∇ · (ρθ(x)∂θkTθ(T

−1
θ (x))) · (V (x) +D log ρθ(x)) dx =

∫
(∇V (Tθ(x)) +D∇ log ρθ(Tθ(x))) · ∂θkTθ(x) dp(x)

=

∫
∇V (Tθ(x)) · ∂θkTθ(x) + ∂θk [D log ρθ(Tθ(x))] dp(x)−

∫
D ∂θk log ρθ(Tθ(x)) dp(x)︸ ︷︷ ︸

=D
∫
∇θρθ(x)dx=0

= ∂θk

(∫
(V (Tθ(x)) +D log ρθ(Tθ(x))) dp(x)

)
= ∂θkH(θ).

Recall the definition (3.5) of G(θ), the target function to be minimized is ηTG(θ)η − 2ηT∇θH(θ). And the
minimizer is clearly G(θ)−1∇θH(θ).
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In addition to the direct proof, the result in Theorem 3.8 can also be understood in a different way. Let

us denote ξ = G(θ)−1∇θH(θ), {θt} solves (3.19) with initial value θ0 = θ. By Theorem 3.7, d
dtρθt

∣∣∣
t=0

=

(Tθ])∗ξ ∈ TρθPΘ is the orthogonal projection of gradWH(ρθ) onto TρθPΘ with respect to the metric gW .
This is equivalent to say that η solves the following least square problem:

(3.21) min
η
gW (gradWH(ρθ)− (Tθ])∗η, gradWH(ρθ)− (Tθ])∗η).

Recall the definition of gW in section 2.2.1 and by (2.8), we have gradWH(ρθ) = −∇ · (ρθ∇(V +D log ρθ)).
Because of (3.10), (Tθ])∗η = −∇ · (ρθ∂θTθ(T−1

θ (·))η), solving −∇ · (ρθ∇ϕ) = gradWH(ρθ)− (Tθ])∗η gives

ϕ = (V +D log ρθ)−ΨTη,

and thus least squares problem (3.21) can be written as

min
η

{∫
|∇Ψ(x)Tη −∇(V (x) +D log ρθ(x))|2ρθ(x) dx

}
,

which is exactly (3.20).

3.3. A particle viewpoint of the parametric Fokker Planck Equation . The motion of parameter
θt solving (3.19) naturally induce a stochastic dynamics on Rd whose density evolution is exactly {ρθt}. To
see this, notice that {θt} directly leads to a time dependent map {Tθt}. Let us denote a random variable
Z ∼ p, i.e. Z is distributed according to the reference distribution p. We set Y 0 = Tθ0(Z) ∼ ρθ0 . At
any time t, the map Tθt sends Y 0 to Y t = Tθt(T

−1
θ0

(Y 0)) ∼ ρθt . Thus, we construct a sequence of random
variables {Y t} whose density evolution is exactly {ρθt}. We can characterize the dynamical system satisfied
by {Y t} by taking time derivative: Ẏ t = ∂θTθt(Z)θ̇t = ∂θTθt(T

−1
θt

(Y t))θ̇t. It is actually more insightful to
consider the following dynamic:

(3.22) Ẋt = ∇Ψt(Xt)
T θ̇t, X0 = Tθ0(Z) ∼ ρθ0 .

Here Ψt is obtained from (3.6) with parameter θt. It is not hard to show that for any time t, Xt and Y t has
the same distribution. Thus Xt ∼ ρθt for all t ≥ 0. Recall θ̇t = −G(θt)

−1∇θH(θt), we are able to rewrite
(3.22) as:
(3.23)

Ẋt = ∇Ψt(Xt)
T

(∫
∇Ψt(x)∇Ψt(x)T ρθt(x) dx

)
︸ ︷︷ ︸

G(θt)

−1(∫
∇Ψt(η)(−∇V (η)−D∇ log ρθt(η)) ρθt(η) dη

)
︸ ︷︷ ︸

−∇θH(θt)

.

If we define the kernel function Kθ : Rd × Rd → Rd×d as

Kθ(x, η) = ∇ΨT(x)

(∫
∇Ψ(x)∇Ψ(x)T ρθ(x) dx

)−1

∇Ψ(η).

This Kθ induces a linear operator Kθ : L2(Rd;Rd, ρθ)→ L2(Rd;Rd, ρθ) by:

Kθ[~v] = (Kθ ∗ ~v)(·) =

∫
Kθ(·, η) ~v(η) ρθ(η) dη.

It can be verified that Kθ is an orthogonal projection defined on the Hilbert space L2(Rd;Rd, ρθ). The
range of such projection is the subspace span {∇ψ1, ...,∇ψm} ⊂ L2(Rd;Rd, ρθ). Here ψ1, ..., ψm are the m
components of Ψ solved from (3.6). Using the linear operator, we can rewrite (3.23) as:

(3.24) Ẋt = −Kθt [∇V +D∇ log ρθt ](Xt), where ρθt is the probability density of Xt X0 ∼ ρθ0 .

We can compare (3.24) with the following dynamic without projection:

(3.25) ˙̃Xt = −(∇V +D∇ log ρt)(X̃t), where ρt is the probability density of X̃t X̃0 ∼ ρ0.
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Ẋt = −Kθt
(
∇ δH(ρθt )

δρθt

)
(Xt) on Rd Ẋt = −∇ δH(ρt)

δρt
(Xt) on Rd

θ̇ = −G(θ)−1∇θH(θ) on Θ ∂tρ = −gradWH(ρ) on P(Rd)

Projection of
vector field

How dynamics
on Θ triggers

dynamics on Rd

Density evolution
of Xt solves Fokker

Planck equationProjection from
(P, gW ) onto (Θ, G)

[Particle point of view]

[Probability manifold point of view]

Fig. 1: Illustrative diagram

As discussed in section 2.1, (3.25) is the Vlasov-type SDE that involves the density of random particle. If
assuming (3.25) admits a regular solution, we have ρ(x, t) = ρt(x), which solves the original Fokker Planck
equation (2.3). From orthogonal projection viewpoint, we can treat that the approximate solution ρθt of
(2.3) is actually originated from the projection of vector field that drives the SDE (3.25).

We would like to mention that the expectation of `2 discrepancy between ∇V + D∇ log ρ and its Kθ
projection is:
(3.26)

EX∼ρθ |Kθ[∇V +D∇ log ρθ](X)−(∇V +D∇ log ρθ)(X)|2 =

∫
|∇Ψ(x)Tξ−(−∇V −D∇ log ρθ)(x)|2ρθ(x) dx,

in which ξ = −G(θ)−1∇θH(θ). This is an essential term appeared in our error analysis part.

Remark 3.9. We should mention the relationship between our kernel Kθt and the Neural Tangent Ker-
nel (NTK) introduced in [22]. Using our notation, Neural Tangent Kernel can be written as KNTK

θ =

∂θTθ(x)∂θTθ(ξ)
T. If we consider the flat gradient flow θ̇ = −∇θH(θ) of relative entropy on Θ, its corre-

sponding particle dynamic is

Ẋt =

∫
KNTK
θt (T−1

θt
(Xt), T

−1
θt

(η))(−∇V (η)−D∇ log ρθt(η))ρθt(η) dη

Different from our Kθ, which introduces an orthogonal projection, Neural Tangent Kernel introduces an
non-negative definite transform to the vector field −∇V −D∇ log ρθt .

Remark 3.10. Figure 1 illustrates the relation between (2.3), (3.19), (3.25) and (3.24). It is worth
mentioning that the probability manifold point of view discussed in Theorem 3.7 is useful for our analysis of
the continuous dynamics (3.19), while particle point of view helps us on establishing the numerical analysis
for the time discrete scheme (i.e. forward-Euler) of (3.19).

3.4. An example of the parametric Fokker–Planck equation with quadratic potential. The
solution of the parametric Fokker–Planck equation (3.19) can serve as an approximation to the solution of
the original equation (2.3). In some special cases, ρθt exactly solves (2.3). In this section, we provide such
examples.

Let us consider the Fokker–Planck equations with quadratic potentials whose initial conditions are
Gaussian:

(3.27) V (x) =
1

2
(x− µ)TΣ−1(x− µ) and ρ0 ∼ N (µ0,Σ0).

Here N (µ,Σ) denotes Gaussian distribution with mean µ and covariance Σ. We consider parameter space
Θ = (Γ, b) ⊂ Rm (m = 1

2d(d+ 1) + d), where Γ is a d× d symmetric positive definite matrix and b ∈ Rd. We
define the parametric map as Tθ(x) = Γx+ b, and choose the reference measure p = N (0, I).



14 SHU LIU, WUCHEN LI, HONGYUAN ZHA, HAOMIN ZHOU

Lemma 3.11. Let H be the relative entropy defined in (2.9) and H defined in (3.18). For θ ∈ Θ, if

the vector function ∇
(
δH
δρ

)
◦ Tθ can be written as the linear combination of {∂Tθ∂θ1

, ..., ∂Tθ∂θm
}, i.e. there exists

ζ ∈ Rm, such that ∇
(
δH
δρ

)
◦ Tθ(x) = ∂θTθ(x)ζ. Then:

1) ζ = G(θ)−1∇θH(θ), which is the Wasserstein gradient of H at θ.
2) PΘ as gradWH(ρθ)|PΘ , then gradWH(ρθ)|PΘ = gradWH(ρθ), where gradWH(ρθ)|PΘ is the gradient of H
on the submanifold PΘ.

Proof. Suppose that ζ ∈ Rm satisfies ∇
(
δH
δρ

)
◦ Tθ(x) = ∂θTθ(x)ζ, then we have∫

|∂θTθ(x)ζ −∇(
δH
δρ

) ◦ Tθ(x)|2 dp(x) = 0.

By definition of Ψ in Theorem 3.4, one can verify

−∇ ·
(
ρθ

(
(∇Ψ)Tζ −∇

(
δH
δρ

)))
= −∇ ·

(
ρθ

(
∂θTθ ◦ T−1

θ ζ −∇
(
δH
δρ

)))
Now we apply (3.3) of Lemma 3.3 to obtain:∫

|(∇Ψ(Tθ(x)))Tζ −∇
(
δH
δρ

)
◦ Tθ(x)|2 dp(x) ≤ 0.

This implies,

inf
η

∫
|(∇Ψ(Tθ(x)))Tη −∇

(
δH
δρ

)
◦ Tθ(x)|2 dp(x) =

∫
|(∇Ψ(Tθ(x)))Tζ −∇

(
δH
δρ

)
◦ Tθ(x)|2 dp(x) = 0.

By Theorem 3.8, we get ζ = G(θ)−1∇θH(θ) and ‖(Tθ])∗ζ − gradWH(ρθ)‖gW (ρθ) = 0. The latter leads
to (Tθ])∗ζ = gradWH(ρθ). According to Theorem 3.7, (Tθ])∗ζ = gradWH(ρθ)|PΘ

. As a result, we have
gradWH(ρθ)|PΘ

= gradWH(ρθ).

Back to our example with quadratic potential (3.27) and Tθ(x) = Γx+ b, we can compute

ρθ(x) = Tθ]p(x) =
f(T−1

θ (x))

|det(Γ)|
=
f(Γ−1(x− b))
|det(Γ)|

, f(x) =
exp(− 1

2 |x|
2)

(2π)
d
2

.

Then we have,

∇
(
δH(ρθ)

δρ

)
◦ Tθ(x) = ∇(V +D log ρθ) ◦ Tθ(x) = Σ−1(Γx+ b− µ)−DΓ−Tx,

which is affine with respect to x.
Notice that ∂ΓijTθ(x) = (. . . , 0, . . . , xj

i−th

, . . . , 0, . . . )T and ∂biTθ = (. . . , 0, . . . , 1
i−th

, . . . , 0, . . . )T, we can

verify that ζ = (Σ−1Γ −DΓ−T ,Σ−1(b − µ)) solves ∇
(
δH(ρθ)
δρ

)
◦ Tθ(x) = ∂θTθ(x)ζ. By 1) of Lemma 3.11,

ζ = G(θ)−1∇θH(θ). Thus ODE (3.19) for our example is:

Γ̇ = −Σ−1Γ +DΓ−T Γ0 =
√

Σ0,(3.28)

ḃ = Σ−1(µ− b) b0 = µ0.(3.29)

By 2) of Lemma 3.11, we know gradWH(ρθ)|PΘ
= gradWH(ρθ) for all θ ∈ Θ, which indicates that there is

no error between our parametric Fokker–Planck and the original equations.
Following the equations (3.28) and (3.29), we have the following corollary,

Corollary 3.12. The solution of the Fokker–Planck equation (2.3) with condition(3.27) is a Gaussian
distribution for all t > 0.
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Proof. If we denote {Γt, bt} as the solutions to (3.28),(3.29), set θt = (Γt, bt), then ρt = Tθt ]p solves the
Fokker Planck Equation (2.3) with conditions (3.27). Since the pushforward of Gaussian distribution p by
an affine transform Tθ is still a Gaussian, we conclude that for any t > 0, the solution ρt = Tθt ]p is always
Gaussian distribution.

Remark 3.13. This is already a well known property for Ornstein–Uhlenbeck process [16]. We provide
an alternative proof using our framework.

4. Numerical methods. In this section, we introduce our sampling efficient numerical method to
compute the proposed parametric Fokker–Planck equations.

Before we start, we want to mention that as stated in [36], when dimension d = 1, G(θ) has explicit
solution. Thus the push-forward approximation of 1D Fokker–Planck equation can be directly computed
by solving the ODE system (3.19) with numerical methods, such as forward-Euler scheme. In this section,
our focus is on numerical methods for (3.19) with dimension d ≥ 2. It turns out to be very challenging to
compute (3.19) by the forward-Euler scheme directly. There are two reasons. One is that there is no known
explicit formula for G(θ), and direct computation based on (3.5) can be expensive because it requires to
solve multiple differential equations. The other is incurred by the high dimensionality, which is the main
goal of this paper. To overcome the challenge of dimensionality, we choose to use deep neural networks to
construct our T (θ). However, directly evaluating G(θ)−1∇θH(θ) is difficult, alternative strategies must be
sought.

There are a few papers investigating numerical methods for gradient flows on Riemannian manifolds, such
as Fisher natural gradient [43] and Wasserstein gradient [12]. The well known JKO scheme [24] calculates
the time discrete approximation of the Wasserstein gradient flow using an optimization formulation,

(4.1) ∂tρt = −gradWF(ρt), ρk+1 = argmin
ρ∈P

{
W 2

2 (ρ, ρk)

2h
+ F(ρ)

}
,

where h is the time step size, F could be a suitable functional defined on P. Along the line of JKO scheme,
there are further developments in machine learning recently [35].

In our approach, we design schemes that computes the exact Wasserstein gradient flow directly with
provable accuracy guarantee. Our algorithms are completely sample based so that they can be run efficiently
under deep learning framework, and can scale up to high dimensional cases.

4.1. Normalizing Flow as push forward maps. We choose Tθ as the so-called normalizing flow [59].
Here is a brief sketch of its structure: Tθ is written as the composition of K invertible nonlinear transforms:

Tθ = fK ◦ fK−1 ◦ ... ◦ f2 ◦ f1,

where each fk (1 ≤ k ≤ K) takes the form

fk(x) = x+ σ(wT
k x+ bk)uk.

Here wk, uk ∈ Rd, bk ∈ R, and σ is a nonlinear function, which can be chosen as tanh for example. In [59], it
has been shown that fk is invertible iff wT

k uk ≥ −1. Figure 2 shows several snapshots of how a normalizing
flow Tθ with length equal to 10 pushes forward standard Gaussian distribution to a target distribution.

In a normalizing flow, the parameters are: θ = (w1, u1, b1, ..., wK , uK , bK). The determinant of the
Jacobi matrix of Tθ, an important quantity for our schemes, can be explicitly computed by

det

(
∂Tθ(x)

∂x

)
=

K∏
k=1

(1 + σ′(wT
k xk + bk)wT

k uk),

where xk = fk ◦ fk−1 ◦ ... ◦ f1(x). Using the structure of normalizing flow, the logarithm of the density
ρθ = Tθ]p can be written as

(4.2) log ρθ(x) = log p◦T−1
θ (x)−

K∑
k=1

log(1+σ′(wT
k x̃k)wT

k uk), x̃k = fk◦...◦f1(T−1
θ (x)) = f−1

k+1◦...◦f
−1
K (x).
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Fig. 2: Top row from left to right are the probability densities of distributions f1]p, (f2 ◦ f1)]p, ..., (f10 ◦ f9 ◦
... ◦ f1)]p. The last image displays our target distribution. Bottom row displays the push-forward effect of
each single-layer transformation fk (1 ≤ k ≤ 10).

Then we can explicitly write the relative entropy functional H(θ) defined in (3.18) as,

(4.3) H(θ) = EX∼p[V (Tθ(X)) + Lθ(X)],

where Lθ is defined by,

Lθ(·) = log p(·)−
K∑
k=1

log(1 + σ′(wT
k Fk(·))wT

k uk) Fk(·) = fk ◦ fk−1 ◦ ... ◦ f1(·).

Once H(θ) is computed explicitly, so does the gradient ∇θH(θ).
In summary, we choose the normalizing flow because it has sufficient expression power to approximate

complicated distributions on Rd [59], and the relative entropy H(θ) has a very concise form (4.3), and its
gradient can be conveniently computed.

Remark 4.1. We want to emphasize here that the normalizing flow is not the only choice for Tθ. One
may choose other network structures as long as they have sufficient approximation power and can compute
the gradient of relative entropy efficiently.

4.2. Numerical scheme. For the convenience of our presentation, at the beginning of this section, we
first introduce the following definition.

Definition 4.2 (Orthogonal projection onto space of gradient fields). Consider vector field ~v ∈
L2(Rd;Rd, ρ). Define Projρ[~v] = ∇ψ as the L2(ρ)-orthogonal projection of ~v onto the subspace of gradi-
ent fields. Where ψ solves:

(4.4) min
ψ

{∫
|~v(x)−∇ψ(x)|2ρ(x) dx

}
.

Or equivalently ψ solves −∇ · (ρ(x)∇ψ(x)) = −∇ · (ρ(x)~v(x)).

4.2.1. Proposed Double-Minimization Scheme. Our numerical scheme is inspired by the following
semi-implicit scheme of (3.19),

θk+1 − θk
h

= −G−1(θk)∇θH(θk+1).

Equivalently, we can write it as a proximal algorithm,

(4.5) θk+1 = argmin
θ

{
1

2
〈θ − θk, G(θk)(θ − θk)〉+ hH(θ)

}
.

Recall Ψ as defined in Theorem 3.4, if we denote ψ = ΨT(θ − θk), we have 〈(θ − θk), G(θ)(θ − θk)〉 =∫
|∇ψ|2ρθk dx with ψ solves the equation

(4.6) −∇ · (ρθk∇ψ(x)) = −∇ · (ρθk∂θTθk(T−1
θk

(x))(θ − θk)).



NEURAL PARAMETRIC FOKKER-PLANCK EQUATION 17

By definition 4.2, ∇ψ is the orthogonal projection of vector field ∂θTθk(T−1
θk

(·))(θ− θk). Equivalently, ψ can
also be obtained by solving the least square problem (4.4).

Based on the observation that ∇ψ is obtained via orthogonal projection after replacing ∂θTθk(θ− θk) by
finite difference Tθ − Tθk , we end up with the following double-minimization scheme for solving (4.5)

min
θ

{(∫ (
2 ∇φ(x) · ((Tθ − Tθk) ◦ T−1

θk
(x))− |∇φ(x)|2

)
ρθk(x) dx

)
+ 2hH(θ)

}
with φ solves: min

φ

{∫
|∇φ(x)− ((Tθ − Tθk) ◦ T−1

θk
(x))|2ρθk(x) dx

}
.

(4.7)

Scheme (4.7) has an equivalent saddle point optimization formulation

(4.8) min
θ

max
φ

{(∫
(2∇φ(x) · ((Tθ − Tθk) ◦ T−1

θk
(x))− |∇φ(x)|2)ρθk(x) dx

)
+ 2hH(θ)

}
,

which can be directly derived from (4.5) via adjoint method. Their equivalence is explained in the next
remark.

Remark 4.3. Here we briefly demonstrate the equivalence among the three schemes (4.5), (4.7) and (4.8).
Our target function 1

2 〈θ − θk, G(θk)(θ − θk)〉+ hH(θ) can be formulated as∫
1

2
|∇ψ(x)|2ρθk(x) dx+ hH(θ) with the constraint: ψ solves (4.6).

By introducing the dual variable φ, and applying the adjoint method, we obtain

1

2
〈θ − θk, G(θk)(θ − θk)〉+ hH(θ)

= max
φ

min
ψ

{∫
1

2
|∇ψ(x)|2ρθkdx+ hH(θ) +

∫
φ(x)(∇ · (ρθk∇ψ(x))−∇ · (ρθk∂θTθk(T−1

θk
(x))(θ − θk))) dx

}
= max

φ
min
ψ

{∫ (
1

2
|∇ψ(x)|2 −∇φ(x) · ∇ψ(x) +∇φ(x) · ∂θTθk(T−1

θk
(x))(θ − θk))

)
ρθk(x) dx+ hH(θ)

}

= max
φ

{∫ (
−1

2
|∇φ(x)|2 +∇φ(x) · ∂θTθk(T−1

θk
(x))(θ − θk)

)
ρθk(x) dx+ hH(θ)

}(4.9)

In implementation, we substitute ∂θTθk(θ−θk) by Tθ−Tθk since the latter is tractable in computation. As a
consequence, by substituting (4.9) into (4.5) we obtain (by multiplying the entire function by 2) the saddle
scheme (4.8). To verify the equivalence between (4.8) and (4.7), we check the identity∫

(2∇φ(x) · ((Tθ − Tθk) ◦ T−1
θk

(x))− |∇φ(x)|2)ρθk(x) dx

=−
∫
|∇φ(x)− (Tθ − Tθk) ◦ T−1

θk
(x)|2ρθk(x) dx+

∫
|(Tθ − Tθk) ◦ T−1

θk
(x)|2ρθk(x) dx︸ ︷︷ ︸

Constant w.r.t. φ

Thus the φ-minimization process of (4.7) is equivalent to the φ-maximization process of (4.8). This leads to
the equivalence between (4.7) and (4.8).

Remark 4.4. Our proposed schemes (4.7), (4.8) can be viewed as an approximation to the JKO scheme
(4.1) with F being the relative entropy H(θ). To see this, we denote

E(φ) =

∫
(2∇φ(x) · ((Tθ − Tθk) ◦ T−1

θk
(x))− |∇φ(x)|2)ρθk(x) dx,

and set ψ̂ = argmax
φ

E(φ). We let ~vh(x) = 1
h (Tθ ◦ T−1

θk
(x)− x). Under mild conditions, one can show

(4.10) W 2
2 (ρθ, ρθk) = W 2

2 ((Id + h~vh)]ρθk , ρθk) =

∫
|∇ψ̂|2ρθk dx+ o(h2) = max

φ
E(φ) + o(h2).
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By replacing W 2
2 (ρθ, ρθk) in (4.1) by its approximation maxφ E(φ), we obtain scheme (4.7), (4.8).

Although (4.7) and (4.8) are mathematically equivalent, we use them for different purposes. The saddle
scheme (4.8) is our main tool to investigate the theoretical properties of our proposed method in Section
4.2.2, because it better reflects the nature of our approximation method. In our implementation, as discussed
in Section 4.2.3, we prefer the double minimization scheme (4.7). Our experience indicates that (4.7) makes
our code run more efficiently and behaves more stably than (4.8).

4.2.2. Local error of the proposed scheme . We now analyze the local error of scheme (4.8) as

well as (4.7) compared with the semi-implicit scheme (4.5). Let us denote maxφ E(φ) as Ŵ 2
2 (θ, θk) (Here

Ŵ2 is treated as an approximation of L2-Wasserstein distance (remark 4.4)). It is straightforward to verify

Ŵ2(θ, θ′) ≥ 0 and Ŵ2(θ, θ) = 0. Consider the following assumption,

(4.11) Ŵ 2
2 (θ, θ′) ≥ l(|θ − θ′|) for any θ, θ′ ∈ Θ.

Here l : R≥0 → R≥0 satisfies l(0) = 0. l(r) is continuous, strictly increasing when r ≤ r0 for a positive r0

and is bounded below by λ0 > 0 when r > r0. Notice that this assumption generally guarantees positive
definiteness of Ŵ2. Clearly, (4.11) only depends on the structure of Tθ, and we expect that (4.11) holds for
the neural networks used as pushforward maps, including the ones we used in this paper.

Theorem 4.5. Suppose assumption (4.11) holds true for the class of pushforward maps {Tθ}. Then the
local error of scheme (4.8) is of order h2, i.e., assume that θk+1 is the optimal solution to (4.8), then

(4.12) |θk+1 − θk + hG(θk)−1∇θH(θk+1)| ∼ O(h2).

or equivalently: lim suph→0+
|θk+1−θk+hG(θk)−1∇θH(θk+1)|

h2 < +∞.

Before proving Theorem 4.5, we introduce a few additional notations. We define ε ball in parameter

space as Bε(θk) = {θ | |θ − θk| ≤ ε}, let T
(i)
θ be the ith component (1 ≤ i ≤ d) of map Tθ. For fixed θk and

ε > 0 small enough, we assume the following two quantities are finite

(4.13) L(θk, ε) =

d∑
i=1

Ex∼p sup
θ∈Bε(θk)

{
|∂θT (i)

θ (x)|2
}
, H(θk, ε) =

d∑
i=1

Ex∼p sup
θ∈Bε(θk)

{
‖∂2
θθT

(i)
θ (x)‖22

}
.

To prove Theorem 4.5, we need the following three lemmas:

Lemma 4.6. Suppose we fix θ0 ∈ Θ, for arbitrary θ ∈ Θ and ∇φ ∈ L2(Rd;Rd, ρθ0) we consider

(4.14) F (θ,∇φ | θ0) =

(∫
(2∇φ(x) · (Tθ − Tθ0) ◦ T−1

θ0
(x)− |∇φ(x)|2) ρθ0(x) dx

)
+ 2hH(θ).

Then F (θ,∇φ | θ0) <∞, furthermore, F (·,∇φ | θ0) ∈ C1(Θ). We can compute

(4.15) ∂θF (θ,∇φ | θ0) = 2

(∫
∂θTθ(T

−1
θ0

(x))T ∇φ(x) ρθ0(x) dx+ h ∇θH(θ)

)
.

Lemma 4.7. Suppose we fix θ0 ∈ Θ and define J(θ) = sup
∇φ∈L2(Rd;Rd,ρθ0 )

F (θ,∇φ | θ0). Then J is differ-

entiable. If we denote ψ̂θ = argmax
φ
{F (θ,∇φ | θ0)}, then

∇θJ(θ) = ∂θF (θ,∇ψ̂θ | θ0) = 2

(∫
∂θTθ(T

−1
θ0

(x))T ∇ψ̂θ(x) ρθ0(x) dx+ h ∇θH(θ)

)
.

This lemma is an anology of the envelope theorem [1] under our problem setting.

Lemma 4.8. Under assumption(4.11), the optimal solution of (4.8) θk+1 satisfies,

|θk+1 − θk| ∼ o(1) i.e. lim
h→0+

|θk+1 − θk| = 0.
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This lemma provides a prior estimation of |θk+1 − θk|.
We prove Lemma 4.6, 4.7 and 4.8 in Appendix C.

Proof of Theorem 4.5. Let us consider F (θ,∇φ | θk), we denote ∇ψ̂θ = argmax
∇φ∈L2(Rd;Rd,ρθk )

{F (θ,∇φ | θk)}.

Then we can set

∇ψ̂θ = Projρθk
[(Tθ − Tθk) ◦ T−1

θk
], and J(θ) = sup

∇φ∈L2(Rd;Rd,ρθk )

F (θ,∇φ | θk)

Apply Lemma 4.7, we obtain:

∇θJ(θ) = 2

(∫
∂θTθ(T

−1
θk

(x))T ∇ψ̂θ(x) ρθk(x) dx+ h ∇θH(θ)

)
.

Due to the differentiability of J(θ), at the optimizer θk+1, the gradient must vanish, i.e.

(4.16)

(∫
∂θTθk+1

(T−1
θk

(x))T ∇ψ̂θk+1
(x) ρθk(x) dx

)
+ h∇θH(θk+1) = 0.

We use Taylor expansion at θk+1 to get Tθk+1
− Tθk = ∂θTθk(θk+1 − θk) +R(θk+1, θk), in which R(θ, θ′)(·) ∈

L2(Rd;Rm, ρθk), the ith entry of R(θ, θ′) is Ri(θ, θ
′)(x) = 1

2 (θ − θ′)T∂2
θθT

(i)

θ̃i(x)
(x)(θ − θ′), 1 ≤ i ≤ m, where

each θ̃i(x) = λi(x)θ + (1− λi(x))θ′ for some λi(x) ∈ [0, 1]. Then we can write:

(4.17) ∇ψ̂θk+1
= Projρθk

[(Tθk+1
−Tθk)◦T−1

θk
] = Projρθk

[∂θTθk ◦T
−1
θk

(θk+1−θk)]+Projρθk
[R(θk+1, θk)◦T−1

θk
].

On the other hand,

(4.18) ∂θTθk+1
= ∂θTθk + r(θk+1, θk).

Here r(θ, θ′) ∈ L2(Rd;Rd×m, ρθk), the (i, j) entry of r(θ, θ′)(x) is (θk+1 − θk)T∂θ(∂θjT
(i)

θ̃ij(x)
(x)), 1 ≤ i ≤

d, 1 ≤ j ≤ m, where each θ̃ij(x) = µij(x)θk+1 + (1 − µij(x))θk, for some µij(x) ∈ (0, 1). Applying (4.18),
(4.17) to (4.16), we obtain∫

∂θTθk(T−1
θk

(x))TProjρθk
[∂θTθk ◦ T

−1
θk

(x)(θk+1 − θk)] ρθk(x) dx

+

∫
∂θTθk(T−1

θk
(x))TProjρθk

[R(θk+1, θk) ◦ T−1
θk

](x) ρθk(x) dx

+

∫
r(θk+1, θk)(T−1

θk
(x))TProjρθk

[(Tθk+1
− Tθk) ◦ T−1

θk
](x) ρθk(x) dx = −h∇θH(θk+1).(4.19)

Recall definition of Ψ in Theorem 3.4, use (3.3) in lemma 3.3, we know that the first term on the left hand
side of (4.19) equals ∫

∇Ψ(x)∇Ψ(x)T(θk+1 − θk) ρθk(x) dx = G(θk)(θk+1 − θk).

By applying Cauchy–Schwarz inequality and (3.4) in lemma 3.3, we bound the ith entry of the second term
in (4.19) by:(∫

|∂θT (i)
θk

(x)|2 dp(x) ·
∫ d∑

i=1

|(θk+1 − θk)∂2
θθT

(i)

θ̃i(x)
(x)(θk+1 − θk)|2 dp(x)

) 1
2

≤

(
Ep|∂θT (i)

θk
(x)|2 · Ep

[
d∑
i=1

‖∂2
θθT

(i)

θ̃i(x)
(x)‖2

]) 1
2

|θk+1 − θk|2
denote as

= A(i)|θk+1 − θk|2.
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To bound the third term in (4.19), we consider Tθk+1
(x)− Tθk(x), the ith entry can be written as

T
(i)
θk+1

(x)− T (i)
θk

(x) = ∂θTθ̄i(x)(x)(θk+1 − θk),

here θ̄i(x) = ζi(x)θk+1 + (1− ζi(x))θk for some ζi(x) ∈ (0, 1). The ith entry of the third term of (4.19) can
be bounded by:(∫ d∑

i=1

|(θk+1 − θk)T∂θθT
(i)

θ̃ij(x)
(x)|2 dp(x) ·

∫
|T (i)
θk+1

(x)− T (i)
θk

(x)|2 dp(x)

) 1
2

≤

(
Ep

[
d∑
i=1

‖∂2
θθTθ̃ij(x)(x)‖22

]
· Ep|∂θT (i)

θ̄i(x)
(x)|2

) 1
2

|θk+1 − θk|2
denote as

= B(i)|θk+1 − θk|2.

We denote A ∈ Rm with entries A(i), 1 ≤ i ≤ m and similarly B ∈ Rm with entries B(i), 1 ≤ i ≤ m. (4.19)
leads to the following inequality,

|θk+1 − θk + hG(θk)−1∇θH(θk+1)| ≤ ‖G(θk)−1‖2(|A|+ |B|) |θk+1 − θk|2.

As we have shown in Lemma 4.8 that |θk+1 − θk| ∼ o(1) for any ε > 0 when step size h is small enough, we
always have θk+1 ∈ Bε(θk). Recall the notations in (4.13), we have |A|, |B| ≤

√
L(θk, ε)H(θk, ε). Thus we

have

|θk+1 − θk + hG(θk)−1∇θH(θk+1)| ≤ 2
√
L(θk, ε)H(θk, ε)‖G(θk)−1‖2|θk+1 − θk|2.

Denote θk+1 − θk = η, G(θk)−1∇θH(θk+1) = ξ and C = 2
√
L(θk, ε)H(θk, ε)‖G(θk)−1‖2, the previous

inequality is

(4.20) |η − h ξ| ≤ C|η|2.

Since |η − hξ| ≥ |η| − h|ξ|, we have

(4.21) C|η|2 ≥ |η| − h|ξ|.

Solving (4.21) gives

|η| ≤ 2|ξ|h
1 +

√
1− 4C|ξ|h

or |η| >
1 +

√
1− 4Ch|ξ|
2C

.

The second inequality leads to |θk+1 − θk| > 1
2C for any h > 0, which avoids |θk+1 − θk| ∼ o(1). Thus, when

h is sufficiently small, we have

(4.22) |η| ≤ 2|ξ|h
1 +

√
1− 4C|ξ|h

.

Combining (4.22) and (4.20), we have:

(4.23) |θk+1 − θk + hG(θk)−1∇θH(θk+1)| ≤ 4 C |ξ|2

(1 +
√

1− 4C|ξ|h)2
h2 ≤ 4C|ξ|2h2.

This proves the result.

Remark 4.9. One may be aware of the relation between the positive definite condition (4.11) and the

positive definiteness of the metric tensorG(θk). A positive definiteG(θ) guarantees the inequality Ŵ 2
2 (θ, θ′) ≥

C|θ−θ′|2 for θ′ ∈ Br0(θ) (r0 depends on θ is small enough). However, we are not able to bound Ŵ 2
2 (θ, θ′) from

below when |θ − θ′| > r0. On the other hand, (4.11) is a locally weaker condition than positive definiteness
of G(θ).
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4.2.3. Implementation. As mentioned in 4.2.1, we prefer double-minimization scheme (4.7) than
saddle scheme (4.8). We will thus implement scheme (4.7). Let us denote

J(θ) =

(∫ (
2 ∇ψ̂(Tθk(x)) · ((Tθ(x)− Tθk(x)))− |∇ψ̂(Tθk(x))|2

)
dp(x)

)
+ 2hH(θ)(4.24)

with ψ̂ = argmin
φ

{∫
|∇φ(Tθk)− (Tθ(x)− Tθk(x))|2dp(x)

}
(4.25)

We then solve ODE (3.19) at tk by solving

(4.26) θk+1 = argmin
θ

J(θ),

Here we provide some detailed discussion on our implementation.
• In our numerical computation, we approximate φ by ψν : M → R, which is a ReLU neural network

[17]. Here ν denotes the parameter vector of the network ψν . We know that in this case, ψν is a
piece-wise affine function and its gradient ∇ψν(·) forms a piece-wise constant vector field.

• The entire procedure of solving (4.26) can be formulated as nested loops:
– (inner loop) Every inner loop aims at solving (4.25) on ReLU functions ψν , i.e. solving:

(4.27) min
ν

{
EX∼p|∇ψν(Tθk(X))− (Tθ(X)− Tθk(X))|2

}
.

One can use Stochastic Gradient Descent (SGD) methods like RMSProp [63] or Adam [27] with
learning rate αin to deal with this inner loop optimization. In our implementation, we will stop
after Min iterations. Let us denote the optimal ν in each inner loop as ν̂;

– (outer loop) We apply similar SGD method to J(θ): using Lemma 4.7, we are able to compute
∇θJ(θ) as:

∇θJ(θ) = ∂θ

((∫
2∇ψ̂(x) · (Tθ ◦ T−1

θk
(x))ρθk(x) dx

)
+ 2hH(θ)

)
.

If we treat optimal ψ̂ as ψν̂ , what we need to do in each outer loop is to consider:

(4.28) J̃(θ) = EX∼p 2[∇ψν̂(Tθk(X)) · Tθ(X)] + 2h[V (Tθ(X)) + Lθ(X)]

and update θ for one step by our chosen SGD method with learning rate αout applied to
optimize J̃(θ). In our actual computation, we will stop the outer loop after Mout iterations.

• We now present the entire algorithm for computing (3.19) based on the scheme (4.7) in Algorithm
4.1. This algorithm contains the following parameters: T,N ;Mout,Kout, αout;Min,Kin, αin. Recall
we set reference distribution p as standard Gaussian on M = Rd.

Remark 4.10 (Rescaling). In our implementation, Tθ(X)− Tθk(X) is usually of order O(αout), which is
a small quantity. We can rescale it so that each inner loop can be solved in a more stable way with larger
stepsize (learning rate). That is to say, we choose some small ε ∼ O(αout) and consider

(4.29) min
θ

max
φ


(∫

(2∇φ(x) ·
(

1

ε
(Tθ − Tθk) ◦ T−1

θk
(x)

)
− |∇φ(x)|2)ρθk(x) dx

)
︸ ︷︷ ︸

Eε(φ)

+
2h

ε2
H(θ)

 .

We can also check

argmax Eε(φ) = Projρθk
[
1

ε
(Tθ − Tθk) ◦ T−1

θk
] =

1

ε
Projρθk

[(Tθ − Tθk) ◦ T−1
θk

] =
1

ε
argmax E(φ).

Using this, we are able to verify maxφ Eε(φ) = 1
ε2 maxφ E(φ). Thus the optimal solution of (4.29) is

argminθ

{
1

ε2
max
φ
E(φ) +

2h

ε2
H(θ)

}
= argminθ

{
max
φ
E(φ) + 2hH(θ)

}
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Algorithm 4.1 Computing (3.19) by scheme (4.8) on the time interval [0, T ]

1: Initialize θ
2: for i = 1, ..., N do
3: Save current parameter value to θ0: θ0 = θ
4: for j = 1, ...Mout do
5: for p = 1, ...,Min do
6: Sample {X1, ...,XKin} from p
7: Apply one SGD (Adam) step with learning rate αin to loss function of variable λ.

1

Kin

(
Kin∑
k=1

|∇ψν(Tθ0(Xk))− (Tθ(Xk)− Tθ0(Yk))|2
)

8: end for
9: Sample {X1, ...,XKout} from p

10: Apply one SGD (Adam) step with learning rate αout to loss function of variable θ.

1

Kout

(
Kout∑
k=1

2[∇ψν(Tθ0(Xk)) · Tθ(Xk)] + 2h[V (Tθ(Xk)) + Lθ(Xk)]

)

11: end for
12: Set θi = θ
13: end for
14: The sequence of probability densities {Tθ0 ]p, Tθ1 ]p, ..., TθN ]p} will be the numerical solution of

{ρt0 , ρt1 , ..., ρtN }, where ti = i TN (i = 0, 1, ..., N − 1, N). Here ρt solves the original Fokker–Planck
equation (2.3).

This shows that the equivalence between the modified scheme (4.29) and the original scheme (4.8).
In our actual implementation, we still prefer double-minimization scheme. We solve

(4.30) min
ν

{
EX∼p

∣∣∣∣∇ψν(Tθk(X))−
(
Tθ(X)− Tθk(X)

ε

)∣∣∣∣2
}
,

instead of (4.27) in each inner loop and set:

(4.31) J̃(θ) = EX∼p 2[∇ψν̂(Tθk(X)) · Tθ(X)] +
2h

ε
[V (Tθ(X)) + Lθ(X)]

in each outer loop. In actual experiments, we set ε = αout.

Remark 4.11 (Sufficiently large sample size). It is worth mentioning that the sample size Kin,Kout in
each SGD step (especially Kin) should be chosen reasonably large so that the inner optimization problem
can be solved with enough accuracy. In our practice, we usually choose Kin = Kout = max{1000, 300d}.
Here d is the dimension of sample space. This is very different from the small batch technique applied to
training neural network in deep learning [44].

Remark 4.12 (Using fixed samples). Our numerical experiments indicate that the same samples can
be used for both the inner and outer iterations, which may reduce the computational cost of our original
algorithm.

5. Asymptotic properties and error estimations. In this section, we establish numerical analysis
for the parametric Fokker–Planck equation (3.19).

5.1. An important quantity. Before our analysis, we introduce an important quantity that plays an
essential role in our numerical analysis. Let us recall the optimal value of the least square problem (3.20) in
Theorem 3.8 of section 3.2, or equivalently (3.21) of section 3.2, (3.26) of section 3.3. If we denote the upper
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bound of all possible values to be δ0, i.e.

(5.1) δ0 = sup
θ∈Θ

min
ξ∈Rm


∫ ∣∣∣∣∣

M∑
k=1

ξk∇ψk(x)−∇ (V (x) +D log ρθ(x))

∣∣∣∣∣
2

ρθ(x)dx

 ,

where ψk are solutions to (3.6) in Theorem 3.4, then this quantity provides crucial error bound between our
parametric equation and original equation in the forthcoming analysis. Ideally, we hope δ0 to be sufficiently
small. And this can be guaranteed if the neural network we select has universal approximation power. δ0
can be bounded by another constant with more approachable form

(5.2) δ̂0 = sup
θ∈Θ

min
ξ∈Rm


∫ ∣∣∣∣∣

M∑
k=1

ξk
∂Tθ(x)

∂θk
−∇ (V (x) +D log ρθ(x))

∣∣∣∣∣
2

ρθ(x)dx

 .

By (3.4) of Lemma 3.3, one can verify δ0 ≤ δ̂0. From (5.2), we observe that δ̂0 is determined by the optimal
linear combination of {∂Tθ∂θk

}Mk=1 to approximate the vector field ∇(V +D log ρθ). One may understand this
approximation from three different aspects.

• If Tθ is chosen as a linear combination of basis functions, i.e. Tθ(x) =
∑M
k=1 θkΦk(x), we can give an

explicit estimate on δ̂0. For example, if Φk(x) is picked as the Fourier basis and∇(V +D log ρθ) ∈ Hs

(s > 1), the classical spectral method theory can be applied to obtain an estimate δ̂0 = O(M−s)
[50, 67]. If Radial Basis Function is selected, an related approximation bounded can be obtained
too [9].

• Having a small value for δ̂0 as well as δ0 is equivalent to find a suitable Tθ such that a specific vector
field ∇(V +D log ρθ) can be accurately approximated in our estimate. In other words, when neural
networks are used for Tθ, one needs to pick a neural network structure such that it can approximate
∇(V +D log ρθ) well. This seems to be an easier question than the task for the so-called universal
approximation theory for neural networks, which requires Tθ to approximate an arbitrary function
in a space.

• In our implementation, we use Normalizing Flows, a special type of deep neural networks. Our
numerical examples seem to show promising performance. In the existing literature, although there
are several references providing the universal approximation power of neural networks [73, 15], the
results are mainly focused on general ReLU networks and on the approximation power of function
value, which is different from our case. To the best of our knowledge, there is no existing study
discussing explicit bounds for vector field approximation by deep neural networks. We believe that
the question of how δ0 or δ̂0 explicitly depends on the structure of Tθ is a fundamental research
problem that deserves careful investigations.

It is also worth mentioning that δ0 is used for a priori estimate in this section, because we don’t know
the exact trajectory of {θt} when solving ODE (3.19), and we take supremum over Θ to obtain δ0. Once
solved for {θt}, denote C as the set covering its trajectory, i.e.

(5.3) C = {θ | ∃ t ≥ 0, s.t. θ = θt}

We define another quantity δ1:

(5.4) δ1 = sup
θ∈C

min
ξ∈TθΘ

{∫
|∇Ψ(Tθ(x))Tξ −∇ (V +D log ρθ) ◦ Tθ(x)|2 dp(x)

}
.

Clearly, we have δ1 ≤ δ0. We can obtain corresponding posterior estimates for the asymptotic convergence
and error analysis by replacing δ0 with δ1.

5.2. Asymptotic Convergence Analysis. In this section, we consider the solution {θt}t≥0 of our
parametric Fokker–Planck equation (3.19). We define:

V =

{
V

∣∣∣∣∣V ∈ C2(Rd), V can be decomposed as: V = U + φ, with U, φ ∈ C2(Rd);

∇2U � KI with K > 0 and φ ∈ L∞(Rd)

}
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As we know, for the Fokker–Planck equation (2.3), when the potential V ∈ V, {ρt} will converge to the
Gibbs distribution ρ∗ = 1

ZD
e−V (x)/D as t → ∞ under the measure of KL divergence [20]. For (3.19), we

wish to study its asymptotic convergence property. We come up with the following result:

Theorem 5.1 (a priori estimation on asymptotic convergence). Consider the Fokker–Planck equation
(2.3) with the potential V ∈ V. Suppose {θt} solves the parametric Fokker–Planck equation (3.19), denote
δ0 as in (5.1). Let ρ∗(x) = 1

ZD
e−V (x)/D be the Gibbs distribution of original equation (2.3). Then we have

the inequality:

(5.5) DKL(ρθt‖ρ∗) ≤
δ0

λ̃DD2
(1− e−Dλ̃Dt) +DKL(ρθ0‖ρ∗)e−Dλ̃Dt.

Here λ̃D > 0 is the constant associated to the Logarithmic Sobolev inequality discussed in Lemma 5.2 with
potential function 1

DV .

To prove Theorem 5.1, we need the following two lemmas:

Lemma 5.2. [Holley-Stroock Perturbation] Suppose the potential V ∈ V is decomposed as V = U + φ
where ∇2U � KI and φ ∈ L∞. Let λ̃ = Ke−osc(φ), where osc(φ) = supφ − inf φ. Then the following
Logarithmic Sobolev inequality holds for any probability density ρ:

(5.6) DKL(ρ‖ρ∗) ≤
1

λ̃
I(ρ|ρ∗).

Here ρ∗ = 1
Z e
−V and I(ρ|ρ∗) is the Fisher information functional defined as:

I(ρ|ρ∗) =

∫ ∣∣∣∇ log

(
ρ(x)

ρ∗(x)

)∣∣∣2ρ(x) dx.

Lemma 5.2 is first proved in [20].

Lemma 5.3. For any θ ∈ Θ, we have:

(5.7) D2 I(ρθ|ρ∗) ≤ δ0 +∇θH(θ) ·G(θ)−1∇θH(θ),

where δ0 is defined in (5.1).

Proof of Lemma 5.3. Let us denote ξ = G(θ)−1∇θH(θ) for convenience. Suppose {θt} solves (3.19) with

θ0 = θ. By Theorem 3.7, d
dtρθt

∣∣∣
t=0

= −(Tθ])∗ξ is orthogonal projection of −gradWH(ρθ) onto TρθP with

respect to metric gW . Thus the orthogonal relation gives:

gW (−gradWH(ρθ),−gradWH(ρθ)) = gW (gradWH(ρθ)− (Tθ])∗ξ, gradWH(ρθ)− (Tθ])∗ξ)

+ gW ((Tθ])∗ξ, (Tθ])∗ξ).(5.8)

One can verify that the left hand side of (5.8) is:

(5.9) gW (−gradWH(ρθ),−gradWH(ρθ)) =

∫
|∇(V (x) +D log ρθ(x))|2ρ(x) dx = D2 I(ρθ|ρ∗).

Recall the equivalence between (3.20) and (3.21) and the definition of δ0 in (5.1), we know that the first
term on the right hand side of (5.8) has an upper bound

(5.10) gW (gradWH(ρθ)− (Tθ])∗ξ, gradWH(ρθ)− (Tθ])∗ξ) ≤ δ0.

The second term on the right hand side of (5.8) is:

gW ((Tθ])∗ξ, (Tθ])∗ξ) = (Tθ])
∗gW (ξ, ξ) = G(θ)(G(θ)−1∇θH(θ), G(θ)−1∇θH(θ))

= ∇θH(θ) ·G(θ)−1∇θH(θ)(5.11)

Combining (5.8), (5.9),(5.10) and (5.11) yields to (5.7).
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Proof of Theorem 5.1. Let us recall the relationship between KL divergence and relative entropy,

DKL(ρ‖ρ∗) =
1

D
H(ρ) + log(ZD).

Actually, we can treat DKL(ρθ‖ρ∗) as a Lyapunov function for our ODE (3.19), because by taking time
derivative of DKL(ρθt‖ρ∗), we obtain

d

dt
DKL(ρθt‖ρ∗) =

1

D

d

dt
H(ρθt) =

1

D
θ̇t · ∇H(θt) = − 1

D
∇H(θt) ·G−1(θt)∇H(θt).

Using the inequality in Lemma 5.3, we are able to show:

d

dt
DKL(ρθt‖ρ∗) ≤

δ0
D
−D I(ρθt |ρ∗).

By Lemma 5.2, we have:

d

dt
DKL(ρθt‖ρ∗) ≤

δ0
D
−D λ̃D DKL(ρθt‖ρ∗).

Therefore we obtain, by Grownwall’s inequality, the following estimate,

DKL(ρθt‖ρ∗) ≤
δ0

λ̃DD2
(1− e−Dλ̃Dt) +DKL(ρθ0‖ρ∗)e−Dλ̃Dt.

Remark 5.4. Following the previous proof, we can show a similar convergence estimation for the solution
{ρt}t≥0 of (2.3). Such result was first discovered in [7].

(5.12) DKL(ρt‖ρ∗) ≤ DKL(ρ0‖ρ∗) e−Dλ̃Dt ∀ t > 0.

A nominal modification of our proof for Theorem 5.1 leads to a posterior version of our asymptotic conver-
gence analysis, which is stated in the following theorem.

Theorem 5.5 (Posterior estimation on asymptotic convergence).

DKL(ρθt‖ρ∗) ≤
δ1

λ̃DD2
(1− e−Dλ̃Dt) +DKL(ρθ0‖ρ∗)e−Dλ̃Dt,

where δ1 is defined in (5.4).

5.3. Wasserstein error estimations. In this subsection, we establish our error bounds for both
continuous and discrete version of the parametric Fokker–Planck equation (3.19) as approximations to the
original equation (2.3).

5.3.1. Wasserstein error for the parametric Fokker–Planck equation. The following theorem
provides an upper bound between the solutions of (2.3) and (3.19).

Theorem 5.6. Assume that {θt}t≥0 solves (3.19) and {ρt}t≥0 solves (2.3). If the Hessian of the potential
function V in (2.3) is bounded below by a constant λ, i.e. ∇2V � λ I. the 2-Wasserstein difference between
ρt and ρθt can be bounded as

(5.13) W2(ρθt , ρt) ≤ Ωλ(t) =

{√
δ0
λ (1− e−λt) + e−λtW2(ρθ0 , ρ0), if λ 6= 0,√
δ0t+W2(ρθ0 , ρ0), if λ = 0.

To prove this inequality, we need the following lemmas.

Lemma 5.7 (Constant speed of geodesic). The geodesic connecting ρ0, ρ1 ∈ P(M) is described by,

(5.14)

{
∂ρt
∂t +∇ · (ρt∇ψt) = 0
∂ψt
∂t + 1

2 |∇ψt|
2 = 0

ρt|t=0 = ρ0, ρt|t=1 = ρ1.
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P

ρ0

ρt ( or ρ̄1)

ρθ0
ρθt (or ρ̄0)

−gradWH(ρθt)

ρ̇t = −gradWH(ρt)

ρ̇θt = −gradWH(ρθt)|P(Θ)

˙̄ρ1

− ˙̄ρ0PΘ

{ρs}s≥0

{ρθs}s≥0

{ρ̄τ}0≤τ≤1

TρθtPΘ

Fig. 3: An illustrative diagram for the proof of Theorem 5.6

Using the notation ρ̇t = ∂tρt = −∇ · (ρt∇ψt) ∈ TρtP(M), gW (ρ̇t, ρ̇t) is constant for 0 ≤ t ≤ 1 and
gW (ρ̇t, ρ̇t) = W 2

2 (ρ0, ρ1) for 0 ≤ t ≤ 1.

Lemma 5.8 (Displacement convexity of relative entropy). Suppose {ρt} solves (5.14), the relative
entropy H in (2.9) has potential V satisfying ∇2V � λI, then we have d

dtg
W (gradWH(ρt), ρ̇t) ≥ λW 2

2 (ρ0, ρ1).

Or equivalently, d2

dt2H(ρt) ≥ λW 2
2 (ρ0, ρ1).

Lemma 5.7 originates from section 7.2 of [4]. A generalization of it has been proved in Lemma 5 of [41].
A more general version on the displacement convexity related to Lemma 5.8 has been discussed in chapter
16 and 17 of [69]. To be self-contained, we provide direct proofs to both Lemma 5.7 and 5.8 in Appendix D.

Proof of Theorem 5.6. Figure 3 provides a sketch of our proof: For a given time t, the geodesic {ρ̄τ}0≤τ≤1

on Wasserstein manifold P(M) that connects ρθt and ρt satisfies the geodesic equations (5.14). If differen-
tiating W 2

2 (ρθt , ρt) with respect to time t according to Theorem 23.9 of [69], we are able to deduce

(5.15)
d

dt
W 2

2 (ρθt , ρt) = 2gW (ρ̇θt ,− ˙̄ρ0) + 2gW (ρ̇t, ˙̄ρ1),

in which ˙̄ρ0 = ∂τ ρ̄τ |τ=0 = −∇ · (ρ̄0∇ψ0), ˙̄ρ1 = ∂τ ρ̄τ |τ=1 = −∇ · (ρ̄1∇ψ1). Notice that

ρ̇θt = (Tθ])∗θ̇t ρ̇t = −gradWH(ρt) = ∇ · (ρt∇(V +D log ρt)).

Using the definition (2.6) of Wasserstein metric, we can compute (recall that ρθt = ρ̄0, ρt = ρ̄1):

gW (ρ̇θt , ˙̄ρ0) =

∫
∇(V +D log ρ̄0) · ψ0 ρ̄0 dx gW (ρ̇t, ˙̄ρ1) =

∫
∇(V +D log ρ̄1) · ψ1 ρ̄1 dx.

Now we can write (5.15) as,

1

2

d

dt
W 2

2 (ρθt , ρt) =gW ((Tθt])∗θ̇t + gradWH(ρθt),− ˙̄ρ0) + gW (−gradWH(ρθt),− ˙̄ρ0) + gW (−gradWH(ρt), ˙̄ρ1)

set: ξ=−θ̇t
= gW (gradWH(ρθt)− (Tθt])∗ξ, − ˙̄ρ0)− (gW (gradWH(ρ̄1), ˙̄ρ1)− gW (gradWH(ρ̄0), ˙̄ρ0)).(5.16)
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For the first term in (5.16), we use Cauchy–Schwarz inequality, (5.1), and Lemma 5.7, which implies
g( ˙̄ρ0, ˙̄ρ0) = W 2

2 (ρθt , ρt), to obtain

gW (gradWH(ρθt)− (Tθt])∗ξ,− ˙̄ρ0) ≤
√
gW (gradWH(ρθt)− (Tθt])∗ξ, gradWH(ρθt)− (Tθt])∗ξ)

√
gW ( ˙̄ρ0, ˙̄ρ0)

≤
√
δ0W (ρθt , ρt).(5.17)

For the second term in (5.16) , we write it as:

(5.18) gW (gradWH(ρ̄1), ˙̄ρ1)− gW (gradWH(ρ̄0), ˙̄ρ0) =

∫ 1

0

d

dτ
gW (gradWH(ρ̄τ ), ˙̄ρτ ) dτ.

By Lemma 5.8, we have:

(5.19) gW (gradWH(ρ̄1), ˙̄ρ1)− gW (gradWH(ρ̄0), ˙̄ρ0) ≥ λ W 2
2 (ρθt , ρt).

Combining inequalities (5.17), (5.19) and (5.16), we get

1

2

d

dt
W 2

2 (ρθt , ρt) ≤ −λW 2
2 (ρθt , ρt) +

√
δ0 W2(ρθt , ρt).

This is:

d

dt
W2(ρθt , ρt) ≤ −λW2(ρθt , ρt) +

√
δ0.

When λ 6= 0, the Grownwall’s inequality gives

W2(ρθt , ρt) ≤
√
δ0
λ

(1− e−λt) + e−λtW2(ρθ0 , ρ0).

When λ = 0, the inequality is d
dtW2(ρθt , ρt) ≤

√
δ0, direct integration yields

W2(ρθt , ρt) ≤
√
δ0t+W2(ρθ0 , ρ0) .

When the potential V is strictly convex, i.e. λ > 0. (5.13) in Theorem 5.6 provides a nice estimation of

the error term W2(ρθt , ρt) at any time t that is always upper bounded by max{
√
δ0
λ ,W2(ρθ0 , ρ0)}.

In case that the potential V is not strictly convex, i.e. λ could be 0 or negative, the right hand side in
(5.13) may increase to infinity when time t → ∞. However, (5.5) and (5.12) reveals that both ρθt and ρt
stay in a small neighbourhood of the Gibbs ρ∗ when t is large. When taking this into account, we are able
to show that the error term W2(ρθt , ρt) doesn’t get arbitrarily large. In the following theorem, we provide a
uniform bound for the error depending on t.

Theorem 5.9. Suppose {ρt}t≥0 solves (2.3) and {ρθt}t≥0 solves (3.19), the Hessian of the potential
V ∈ V is bounded from below by λ, i.e. ∇2V � λI, then

(5.20) W2(ρθt , ρt) ≤ min

Ωλ(t),

√
2δ0

λ̃2
DD

2
+


√√√√∣∣∣∣∣2K1 −

2δ0

λ̃2
DD

2

∣∣∣∣∣+

√
2K2

λ̃D

 e−
λ̃D
2 Dt

 ,

where function Ωλ(t) is defined in (5.13), E0 = W2(ρθ0 , ρ0), K1 = DKL(ρθ0‖ρ∗), and K2 = DKL(ρ0‖ρ∗).

Lemma 5.10 (Talagrand inequality [48, 69]). If the Gibbs distribution ρ∗ satisfies the Logarithmic
Sobolev inequality (5.6) with constant λ̃ > 0, ρ∗ also satisfies the Talagrand inequality:

(5.21)

√
2
DKL(ρ‖ρ∗)

λ̃
≥W2(ρ, ρ∗). for any ρ ∈ P.
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Proof of Theorem 5.9. The first term is already provided in Theorem 5.6, the second term is just a quick
result of Theorem 5.1 and Talagrand inequality: for t fixed, (5.5) together with Talagrand inequality (5.21)
gives:

W2(ρθt , ρ∗) ≤

√
2
DKL(ρθt‖ρ∗)

λ̃D
≤
√

2δ0

λ̃2
DD

2
(1− e−λ̃DDt) + 2K1e−λ̃DDt

≤
√

2δ0

λ̃2
DD

2
+

√√√√∣∣∣∣∣2K1 −
2δ0

λ̃2
DD

2

∣∣∣∣∣e− λ̃D2 Dt.

Similarly, (5.12) and (5.21) gives

W2(ρt, ρ∗) ≤

√
2
DKL(ρt‖ρ∗)

λ̃D
≤

√
2K2

λ̃D
e−

λ̃D
2 Dt.

Applying triangle inequality of Wasserstein distance W2(ρθt , ρt) ≤W2(ρθt , ρ∗) +W2(ρt, ρ∗), we get (5.20).

Based on Theorem 5.9, we can obtain a uniform a priori error estimate.

Theorem 5.11 (Main Theorem on a priori error analysis of the parametric Fokker–Planck equation).
Assume E0 = W2(ρθ0 , ρ0) and δ0 defined in (5.1) are sufficiently small in the sense that

(5.22) E0 < A
√
δ0 +B,

√
δ0 + E0 ≤ Be−µD(A+1).

Then the approximation error W2(ρθt , ρt) at any time t > 0 can be uniformly bounded by E0 and δ0.
• When λ > 0, W2(ρθt , ρt) ≤ max{

√
δ0/λ,E0} ∼ O(

√
δ0 + E0),

• When λ = 0, W2(ρθt , ρt) ≤
√
δ0
µD

log B√
δ0+E0

+ E0 ∼ O(
√
δ0 log 1√

δ0+E0
+ E0),

• When λ < 0, W2(ρθt , ρt) ≤ A
√
δ0 +B

|λ|
|λ|+µD

(
E0 +

√
δ0/|λ|

) µD
|λ|+µD ∼ O((E0 +

√
δ0)

λ̃DD

2|λ|+λ̃DD ).
Here A,B, µD are O(1) constants depending on V,D, ρ0, θ0. Their values are given in (5.24).

Proof of Theorem 5.11 . When λ > 0, by (5.20), we have E(t) ≤
√
δ0
λ +

(
E0 −

√
δ0
λ

)
e−λt, the right

hand side can be bounded by max{E0,
√
δ0
λ }.

When λ < 0, we denote the right hand side of (5.20) as

(5.23) E(t) = min

{
− 1

|λ|
√
δ0 +

(
E0 +

√
δ0
|λ|

)
e|λ|t, A

√
δ0 +Be−µDt

}
,

where

(5.24) A =

√
2

λ̃DD
, B =

√√√√∣∣∣∣∣2K1 −
2δ0

λ̃2
DD

2

∣∣∣∣∣+

√
2K2

λ̃D
, and µD =

λ̃DD

2

are all positive numbers. The first term in (5.23) is increasing as a function of time t while the second term
is decreasing, combining E0 < A

√
δ0 +B, we know t0 = argmaxt≥0E(t) is unique and satisfies

(5.25) − 1

|λ|
√
δ0 +

(
E0 +

√
δ0
|λ|

)
e|λ|t0 = A

√
δ0 +Be−µDt0 ,

as indicated in Figure 4.

Since A > 0, (5.25) leads to
(
E0 +

√
δ0
|λ|

)
e|λ|t0 > Be−µDt0 , thus

(5.26) t0 >
logB − log

(
E0 +

√
δ0
|λ|

)
|λ|+ µD

.
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t

E(t)

− 1
|λ|
√
δ0 +

(
E0 +

√
δ0
|λ|

)
e|λ|t

A
√
δ0 +Be−µDt

t0

Fig. 4: An illustrative diagram for the proof of Theorem 5.11

Using (5.26), we show

(5.27) max
t≥0

E(t) = E(t0) = A
√
δ0 +B e−µDt0 < A

√
δ0 +B

|λ|
|λ|+µD

(
E0 +

√
δ0
|λ|

) µD
|λ|+µD

.

As a result, W2(ρθt , ρt) can be uniformly bounded by the right hand side of (5.27). Since A,B are O(1)

coefficients, this uniform bound is dominated by the term O(
(
E0 +

√
δ0
|λ|

) µD
|λ|+µD ) = O((E0 +

√
δ0)

λ̃DD

2|λ|+λ̃DD ).

At last, when λ = 0, by (5.20)

E(t) = min
{√

δ0t+ E0, A
√
δ0 +Be−µDt

}
,

Let us denote f(t) = A
√
δ0 + Be−µDt −

√
δ0t − E0. Similar to the analysis for the case λ < 0, we denote

t0 = argmaxt≥0E(t), then t0 is unique and solves f(t0) = 0. Since f(t) is decreasing with f(A + 1) > 0,
t0 > A+ 1. Then we have

max
t≥0

E(t) = E(t0) = A
√
δ0 +Be−µDt0 =

√
δ0t0 + E0 >

√
δ0(A+ 1) + E0

This leads to Be−µDt0 >
√
δ0 + E0, i.e. t0 <

1
µD

log B√
δ0+E0

. Thus we have

max
t≥0

E(t) = E(t0) =
√
δ0t0 + E0 <

√
δ0
µD

log
B√

δ0 + E0

+ E0.

Therefore W2(ρθt , ρt) can be uniformly bounded by the term
√
δ0
µD

log B√
δ0+E0

+E0 ∼ O(
√
δ0 log 1√

δ0+E0
+E0).

Remark 5.12. In the case that V ∈ V is not convex, we can decompose V by V = U +φ with ∇2U � KI
(K > 0) and ∇2φ � KφI. We can still assume ∇2V � λI, but λ may be negative. One can verify that

Kφ < 0 and |Kφ| − K ≥ |λ|. On the other hand, one can compute λ̃D = K
D e
− osc(φ)

D . Combining them
together, we provide a lower bound for α:

α ≥ γ(D,U, φ) =
1

1 + 2
(
|Kφ|
K − 1

)
e

osc(φ)
D

One can verify that increasing the diffusion coefficient D or convexity K, or decreasing the oscillation osc(φ)
and convexity Kφ can improve the lower bound γ(D,U, φ) for the order α.

In a similar way, we can establish the corresponding posterior error estimate for W2(ρθt , ρt):

Theorem 5.13 (Posterior error analysis of the parametric Fokker–Planck equation). Suppose E0 =
W2(ρθ0 , ρ0) and δ1defined in (5.4) satisfy the condition (5.22) with δ0 replaced by δ1. Then

1. When λ ≥ 0, W2(ρθt , ρt) can be uniformly bounded by O(E0 +
√
δ1);

2. When λ = 0, W2(ρθt , ρt) can be uniformly bounded by O(
√
δ1 log 1√

δ1+E0
+ E0);

3. When λ < 0, W2(ρθt , ρt) can be uniformly bounded by O((E0 +
√
δ1)

λ̃DD

2|λ|+λ̃DD ).



30 SHU LIU, WUCHEN LI, HONGYUAN ZHA, HAOMIN ZHOU

P(Rd)

ρ0

ρθ0

ρθk

ρtk

ρθk−1

ρtk−1

ρ?tk

ρ̃tk

Fig. 5: Trajectory of {ρθk}k=0,...,N is our numerical solution; trajectory of {ρt}t≥0 is the real solution of the
Fokker–Planck Equation; {ρ̃t}t≥tk−1

solves (5.30); {ρ?t }t≥tk−1
solves (5.31).

5.3.2. Wasserstein error for the time discrete schemes. To solve (3.19) numerically, we need
time discrete schemes, such as the one proposed in (4.8). In this subsection, we present the error estimate
in Wasserstein distance for our scheme. We begin our analysis by focusing on the forward Euler scheme,
meaning that we apply forward Euler scheme to solve (3.19) and compute θk at each time step. We denote
ρθk = Tθk ]p. We estimate the W2-error between ρθk and the real solution ρtk . Then we analyze the W2

distance between the solutions obtained by forward Euler scheme and our scheme (4.8) respectively, which
in turn give us the W2 error estimate for our scheme.

Theorem 5.14 (a priori error analysis of forward Euler scheme). Let θk (k = 0, 1, . . . , N) be the
solution of forward Euler scheme applied to (3.19) at time tk = kh on [0, T ] with time step size h = T

N ,
ρθk = Tθk ]p, and {ρt}t≥0 solves the Fokker–Planck Equation (2.3) exactly. Assume that the Hessian of the

potential function V ∈ C2(Rd) can be bounded from above and below, i.e. λI � ∇2V � ΛI. Then

(5.28) W2(ρθk , ρtk) ≤ (
√
δ0h+ Ch2)

1− e−λtk
1− e−λh

+ e−λtkW2(ρθ0 , ρ0) for any tk = kh, 0 ≤ k ≤ N,

where C is a constant whose direct formula is provided in (5.45).

In order to estimate W2(ρθk , ρtk), we use the triangle inequality of W2 distance [69] to separate it into
three parts:

(5.29) W2(ρθk , ρtk) ≤W2(ρθk , ρ̃
?
tk

) +W2(ρ?tk , ρ̃tk) +W2(ρ̃tk , ρtk).

Here {ρ̃t}tk−1≤t≤tk satisfies:

(5.30)
∂ρ̃t
∂t

= ∇ · (ρ̃t∇V ) +D∆ρ̃t , ρ̃tk−1
= ρθk−1

,

and {ρ?t }t≥tk−1
satisfies:

(5.31)
∂ρ?t
∂t

= ∇ · (ρ?t∇(V +D log ρθk−1
)) , ρ?tk−1

= ρθk−1
.

Figure 5 shows the relations of different items used in our proof. We present three lemmas that estimate
three terms in (5.29) respectively.

Lemma 5.15. W2(ρθk , ρ
?
tk

) in (5.29) can be upper bounded by
√
δ0h+O(h2).
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original position of a particle x

Ttk−1→tk(x)
where our para-
metric Fokker
Planck equation
sends x to

T̃tk−1→tk(x)

G̃tk−1→tk(x)

Gtk−1→tk(x)

where the actual
Vlasov dynamic
send x to

Expectation of this
distance w.r.t. ρθk−1

gives upper bound of
W2(ρθk , ρ

?
tk

)

Fig. 6: Illustration of proof strategy for Lemma 5.15

An explicit formula for the coefficient of h2 is included in the following proof.

Proof. We establish the desired estimation by introducing several different pushforward maps as shown
in Figure 6 and then applying triangle inequality.

(a) We know ρθk−1
= Tθk−1 ]

p and ρθk = Tθk ]p, let us denote Ttk−1→tk = Tθk ◦ T
−1
θk−1

. Then ρθk =

Ttk−1→tk ]ρθk−1
.

(b) Let ξk−1 = θ̇k−1 = −G(θk−1)−1∇θH(θk−1) and by convention, we denote Ψ as solution of (3.6).
We consider the map T̃tk−1→tk(·) = Id + h∇Ψ(·)Tξk−1.

(c) We denote ζθ(·) = V (·) +D log ρθ(·). The particle version (recall (2.4)) of (5.31) is:

(5.32) żt = −∇ζθk−1
(zt) 0 ≤ t ≤ h with initial condition z0 = x ∼ ρθk−1

.

we denote the solution map of (5.32) by Gtk−1→tk(x) = ztk . Then ρ?tk = Gtk−1→tk ]ρθk−1
.

(d) The map Gtk−1→tk is obtained by solving an ODE, in order to compare the difference with Ttk−1→tk ,
we consider the ODE with fixed initial vector field:

(5.33) ˙̃zt = −∇ζθk−1
(x) 0 ≤ t ≤ h z̃0 = x ∼ ρθk−1

.

This ODE will induce the solution map G̃tk−1→tk(·) = Id− h∇ζθk−1
(·).

With the maps defined in (a),(b),(c),(d), and using the triangle inequality of W2 distance, we have,

W2(ρθk , ρ̃
?
tk

) = W2(Ttk−1→tk]ρθk−1
, Gtk−1→tk]ρθk−1

)

≤W2(Ttk−1→tk]ρθk−1
, T̃tk−1→tk]ρθk−1

)︸ ︷︷ ︸
(A)

+W2(T̃tk−1→tk]ρθk−1
, G̃tk−1→tk]ρθk−1

)︸ ︷︷ ︸
(B)

+W2(G̃tk−1→tk]ρθk−1
, Gtk−1→tk]ρθk−1

)︸ ︷︷ ︸
(C)

.

In the rest of the proof, We give upper bounds for distances (A),(B) and (C) respectively.
(A) Let us define ξ(θ) = −G(θ)−1∇H(θ). Now we set θ(τ) = θk−1 + τ

h (θk − θk−1) = θk−1 + τξ(θk−1).

For any x, consider xτ = Tθ(τ)(T
−1
θk−1

(x)) with 0 ≤ τ ≤ h, then {xτ}0≤τ≤h satisfies

(5.34) ẋτ = ∂θTθ(τ)(T
−1
θ(τ)(xτ ))ξ(θk−1) 0 ≤ τ ≤ h.

If x0 ∼ ρθk−1
in (5.34), it is clear that xh ∼ Ttk−1→tk ]ρθk−1

. Furthermore, we denote the distribution

of xτ as ρτ and {ψτ} satisfying

(5.35) −∇ · (ρτ (x)∂θTθ(τ)(T
−1
θ(τ)(x))ξk−1) = −∇ · (ρτ (x)∇ψτ (x)) 0 ≤ τ ≤ h.
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If we consider

ẏτ = ∇ψτ (yτ ) 0 ≤ τ ≤ h with y0 ∼ ρθk−1
,

and denote %τ as the distribution of yτ , by continuity equation and (5.35), we know ρτ = %τ for
0 ≤ τ ≤ h, thus yh ∼ Ttk−1→tk ]ρθk−1

. On the other hand, when τ = 0, (5.35) shows ∇ψ0(x) =

∇Ψ(x)Tξk−1. Combining them together, we bound term (A) as,

W 2
2 (Ttk−1→tk]ρθk−1

, T̃tk−1→tk]ρθk−1
)

≤Ey0∼ρθk−1
|yh − (y0 + h∇ψ0(y0))|2 = Ey0∼ρθk−1

∣∣∣∫ h

0

(∇ψτ (yτ )−∇ψ0(y0)) dτ
∣∣∣2

=Ey0

∣∣∣∣∣
∫ h

0

∫ τ

0

d

ds
(∇ψs(ys)) ds dτ

∣∣∣∣∣
2

= Ey0

∣∣∣∣∣
∫ h

0

∫ h

s

d

ds
(∇ψs(ys)) dτ ds

∣∣∣∣∣
2

=Ey0

∣∣∣∣∣
∫ h

0

(h− s) d
ds

(∇ψs(ys)) ds

∣∣∣∣∣
2

≤ Ey0

∫ h

0

(h− s)2 ds

∫ h

0

∣∣∣∣ dds (∇ψs(ys))
∣∣∣∣2 ds

=
h3

3

∫ h

0

Ey0

∣∣∣∣ dds (∇ψs(ys))
∣∣∣∣2 ds =

h4

3

(
1

h

∫ h

0

Eys

∣∣∣∣∂∇ψs(ys)∂t
+∇2ψs(ys)∇ψs(ys)

∣∣∣∣2 ds

)
Notice that ys follows the distribution ρs = (Tθk−1+sξ(θk−1) ◦ T−1

θk−1
)]ρθk−1

= Tθk−1+sξ(θk−1)]p.
If we define

M(θ, s) =

∫ ∣∣∣∣ ∂∂t∇ψs(Tθ(s)(z)) +∇2ψs(Tθ(s)(z))∇ψs(Tθ(s)(z))
∣∣∣∣2 p(z) dz with θ(s) = θ + sξ(θ),

(5.36)

and ψs solving −∇ · (ρs∇ψs) = −∇ · (ρs ∂θTθ(s) ◦ T−1
θ(s) ξ(θ)), here ρs = Tθ+sξ(θ)]p.

we are able to derive

(5.37) W 2
2 (Ttk−1→tk]ρθk−1

, T̃tk−1→tk]ρθk−1
) ≤ 1

3
sup

0≤s≤h
M(θk−1, s)h

4.

(B) We have

W 2
2 (T̃tk−1→tk]ρθk−1

, G̃tk−1→tk]ρθk−1
) ≤

∫
|T̃tk−1→tk(x)− G̃tk−1→tk(x)|2ρθk−1

(x) dx

= h2

(∫
|∇Ψ(x)Tξ(θk−1)− (−∇ζθk−1

(x))|2ρθk−1
(x) dx

)
= h2

(∫
|∇Ψ(Tθk−1

(x))Tξ(θk−1)− (−∇(V +D log ρθk−1
) ◦ Tθk−1

(x))|2 dp(x)

)
≤ δ0 h2.

The last inequality is due to Theorem 3.8 and definition (5.1).

(C) Recall that {zt} and {z̃t} solve (5.32) and (5.33) with initial condition z0 = z̃0 = x respectively,
similar to the analysis in (A), we can estimate term (C) as

W 2
2 (G̃tk−1→tk]ρθk−1

, Gtk−1→tk]ρθk−1
)

≤Ex∼ρθk−1
|zh − z̃h|2 = Ex∼ρθk−1

∣∣∣∣∣
∫ h

0

∇ζk−1(x)−∇ζk−1(zτ ) dτ

∣∣∣∣∣
2

=Ex

∣∣∣∣∣
∫ h

0

∫ τ

0

d

ds
∇ζθk−1

(zs) ds dτ

∣∣∣∣∣
2

= Ex

∣∣∣∣∣
∫ h

0

(h− s) d
ds
∇ζθk−1

(zs) ds

∣∣∣∣∣
2

≤Ex
h3

3

∫ h

0

∣∣∣∣ dds∇ζθk−1
(zs)

∣∣∣∣2 ds =
h4

3

(
1

h

∫ h

0

Ezs
∣∣∇2ζθk−1

(zs)ζθk−1
(zs)

∣∣2 ds

)
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We define

N(θ, s) = Ezs
∣∣∇2ζθ(zs)ζθ(zs)

∣∣2 , with ζθ(·) = V (·) +D log ρθ(·),
żt = −∇ζθ(zt), z0 ∼ ρθ.

Similar to (A), we have:

W 2
2 (G̃tk−1→tk]ρθk−1

, Gtk−1→tk]ρθk−1
) ≤ 1

3
sup

0≤s≤h
N(θk−1, h)h4

Combining the estimates for terms (A),(B) and (C), and defining

(5.38) M(θ, h) = sup
0≤s≤h

M(θk−1, s), N(θ, h) = sup
0≤s≤h

N(θk−1, s),

we obtain

W2(ρθk , ρ̃
?
tk

) ≤
√
δ0h+

M(θk−1, h) +N(θk−1, h)√
3

h2.

Lemma 5.16. The second term in (5.29) can be upper bounded by O(h2).

Proof. Recall that ρ̃t is defined by (5.30) and ρ∗t is defined by (5.31). We can rewrite (5.31) as:

∂ρ?t
∂t

= ∇ · (ρ?t (∇V +D∇ log ρθk−1
−D∇ log ρ?t )) +D∆ρ?t tk−1 ≤ t ≤ tk

We consider the following Stochastic Differential Equations (SDEs) sharing the same trajectory of Brownian
motion {Bτ}0≤τ≤h and initial condition:

dxτ = −∇V (xτ )dτ +
√

2D dBτ(5.39)

dx?τ = −∇V (x?τ )dτ + (D∇ log ρ?tk−1+τ (x?τ )−D∇ log ρθk−1
(x?τ ))dτ +

√
2D dBτ(5.40)

with initial condition: x0 = x?0 ∼ ρθk−1
and 0 ≤ τ ≤ h.

Subtracting (5.39) from (5.40), we get:

x?τ − xτ =

∫ τ

0

∇V (xs)−∇V (x?s) + ~r(x?s, s) ds,

in which we denote ~r(x, τ) = D∇ log ρ?tk−1+τ (x)−D∇ log ρθk−1
(x) for convenience. Hence,

E|x?τ − xτ |2 = E
∣∣∣∣∫ τ

0

∇V (xs)−∇V (x?s) + ~r(x?s, s) ds

∣∣∣∣2
≤ 2 E

∣∣∣∣∫ τ

0

∇V (xs)−∇V (x?s) ds

∣∣∣∣2 + 2 E
∣∣∣∣∫ τ

0

~r(x?s, s) ds

∣∣∣∣2
≤ 2 E

[
τ

∫ τ

0

|∇V (xs)−∇V (x?s)|2 ds
]

+ 2 E
[
τ

∫ τ

0

|~r(x?s, s)|2 ds
]

= 2τ

(∫ τ

0

E|∇V (xs)−∇V (x?s)|2 + E|~r(x?s, s)|2 ds
)

Since Hessian of V is bounded from above by Λ, |∇V (x)−∇V (y)| ≤ Λ|x− y| for any x, y ∈ Rd, we have the
inequality:

(5.41) E|x?τ − xτ |2 ≤ 2τΛ2

∫ τ

0

E|x?s − xs|2 ds+ 2τ

∫ τ

0

E|~r(x?s, s)|2 ds
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If we define Uτ =
∫ τ

0
E|x?s − xs|2 ds and Rτ =

∫ τ
0
E|~r(x?s, s)|2 ds, (5.41) becomes:

U ′τ ≤ 2Λ2τUτ + 2τRτ

By integrating this inequality, we have Uτ ≤
∫ τ

0
2eΛ(τ2−s2)sRs ds and U ′τ ≤ 4Λ2τ

∫ τ
0
eΛ(τ2−s2)sRsds+ 2τRτ .

Therefore

W2(ρ?tk , ρ̃tk) ≤
√
E|x?h − xh|2 =

√
U ′h ≤

√
4Λ2h

∫ h

0

eΛ(h2−s2)sRs ds+ 2hRh

Since Rτ is increasing with respect to τ , we are able to estimate

(5.42) W2(ρ?tk , ρ̃tk) ≤

√
4Λ2h2

∫ h

0

eΛ(h2−s2)sds+ 2h
√
Rh =

√
2Λ(eΛh2 − 1)h+ 2h

√
Rh.

Next we estimate Rh. Recall ρ∗tk−1
= ρθk−1

as in (5.31), we have

Rh =

∫ h

0

Ex?s |D log ρ?tk−1+s(x
?
s)−D log ρ?tk−1

(x?s)|2 ds = D2

∫ h

0

Ex?s

∣∣∣∣∫ s

0

∂

∂t
∇ log ρ?tk−1+t(x

?
s) dt

∣∣∣∣2 ds

≤D2

∫ h

0

Ex?s

[
s

∫ s

0

∣∣∣∣ ∂∂t∇ log ρ?tk−1+t(x
?
s)

∣∣∣∣2 dt

]
ds = D2

∫ h

0

∫ s

0

s

∫ ∣∣∣∣ ∂∂t∇ log ρ?tk−1+t

∣∣∣∣2 ρ?tk−1+s dx dt ds.

By (5.31), one can further compute ∂
∂t log ρ?tk−1+t = −∇ log ρ?tk−1+t · ∇ζθk−1

−∆ζθk−1
. Let us define

L(θ, t, s) =

∫
|∇(∇ log ρt · ∇ζθ + ∆ζθ)|2ρs dx with ζθ = V +D log ρθ

and
∂ρs
∂s

+∇ · (ρs∇ζθ) = 0 ρ0 = ρθ

Then we have the estimation

Rh ≤ D2

∫ h

0

∫ s

0

s ·
(

sup
0≤t≤s≤h

L(θk−1, t, s)

)
dt ds =

D2

3
sup

0≤t≤s≤h
L(θk−1, t, s) h

3.

Let us also define

(5.43) L(θ, h) =

(
sup

0≤t≤s≤h
L(θ, t, s)

) 1
2

Thus (5.42) becomes W2(ρ?tk , ρ̃tk) ≤
√

2D2

3 (Λ(eΛh2 − 1) + 2)L(θk−1, h) h2. When the stepsize h is small

enough, we have eΛh2

< 2. Let us denote K(D,Λ) =
√

2D2

3 (Λ + 2). Thus we have W2(ρ?tk , ρ̃tk) ≤
K(D,Λ)L(θk−1, h) h2.

Remark 5.17. Analyzing the discrepancy of stochastic particles under different movements provides a
natural upper bound for W2 distance. Both Lemma 5.15 and Lemma 5.16 are derived by making use of the
particle version of their corresponding density evolution. Such proving strategy was motivated from section
3.3.

Lemma 5.18. The third term in (5.29) satisfies W2(ρtk , ρ̃tk) ≤ e−λhW2(ρtk−1
, ρθk−1

). Here we recall that
λ satisfies ∇2V � λI.

This lemma is a direct corollary of the following theorem:

Theorem 5.19. Suppose the potential V ∈ C2(Rd) satisfying ∇2V � λI for a finite real number λ, i.e.

the matrix ∇2V (x)−λI is semi-positive definite for any x ∈ Rd. Given ρ1, ρ2 ∈ P, and denote ρ
(1)
t and ρ

(2)
t
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the solutions of the Fokker–Planck equation with different initial distributions ρ1 and ρ2 respectively, i.e.

∂ρ
(1)
t

∂t
= ∇ · (ρ(1)

t ∇V ) +D∆ρ
(1)
t ρ

(1)
0 = ρ1,

∂ρ
(2)
t

∂t
= ∇ · (ρ(2)

t ∇V ) +D∆ρ
(2)
t ρ

(2)
0 = ρ2.

Then

(5.44) W2(ρ
(1)
t , ρ

(2)
t ) ≤ e−λtW2(ρ1, ρ2)

This is a known stability result on Wasserstein gradient flows. One can find its proof in [4] or [69]. With
the results in Lemmas 5.15,5.16,5.18, we are ready to prove Theorem 5.14.

Proof. (Proof of Theorem 5.14) For convenience, we write

Errk = W2(ρθk , ρtk) k = 0, 1, ..., N.

Combining Lemma 5.15, Lemma 5.16 and Lemma 5.18, the triangle inequality (5.29) becomes

Errk ≤
√
δ0 h+

(
1√
3
M(θk−1, h) +

1√
3
N(θk−1, h) +K(D,Λ)L(θk−1, h)

)
h2 + e−λh Errk−1.

Let us denote the constant C depending on initial parameter θ0, time stepsize h and time steps N :

(5.45) C(θ0, h,N) = max
0≤k≤N−1

{
1√
3
M(θk−1, h) +

1√
3
N(θk−1, h) +K(D,Λ)L(θk−1, h)

}
.

In the following discussion, we will denote C = C(θ0, h,N) for simplicity. By (5.45), We have:

(5.46) Errk ≤
√
δ0h+ Ch2 + e−λhErrk−1

Multiplying eλkh to both sides of (5.46), we get:

(5.47) eλkhErrk ≤ (
√
δ0 h+ Ch2)eλkh + eλ(k−1)hErrk−1.

For any n, 1 ≤ n ≤ N , summing (5.47) from 1 to n, we reach

eλnhErrn ≤ (
√
δ0h+ Ch2)

(
n∑
k=1

eλkh

)
+ Err0 = (

√
δ0h+ Ch2)

eλ(n+1)h − eλh

eλh − 1
+ Err0.

Recall that tn = nh for 1 ≤ n ≤ N , it leads to:

Errn ≤ (
√
δ0h+ Ch2)

1− e−λtn
1− e−λh

+ e−λtnErr0 n = 1, ..., N.

Theorem 5.14 indicates that the errorW2(ρθk , ρtk) is upper bounded byO(
√
δ0)+O(Ch)+O(W2(ρθ0 , ρ0)).

Here O(
√
δ0) is the essential error term that originates from the approximation mechanism of our paramet-

ric Fokker–Planck equation. The O(Ch) error term is induced by the finite difference scheme. And the
O(W2(ρθ0 , ρ0)) term is the initial error.

It is worth mentioning that the error bound for forward Euler scheme in (5.28) matches the error bound
for the continuous scheme (5.13) as we reduce the effects introduced by finite difference. To be more precise,
under the assumption limh→0 C(θ0, h,N)h = 0, we have:

lim
h→0

(
√
δ0h+ Ch2)

1− e−λt

1− e−λh
+ e−λtW2(ρθ0 , ρ0)

= lim
h→0

(
√
δ0 + Ch)(1− e−λt) h

1− e−λh
+ e−λtW2(ρθ0 , ρ0) =

√
δ0
λ

(1− e−λt) + e−λtW2(ρθ0 , ρ0)

this indicates that error bounds (5.28) and (5.13) are compatible as h→ 0.
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Remark 5.20 (O(h) error order). Under further assumptions that Θ = Rm, Tθ(x) ∈ C3(Θ× Rd) and

(5.48) lim
θ→∞

H(θ) = +∞

we can show the finite difference error term O(Ch) is of order O(h). In fact, the solution obtained from
forward Euler scheme is always restricted in a fixed bounded region of Θ. To be more precise, suppose
the initial value is θ0, we consider Θ0 = {θ|H(θ) ≤ H(θ0)}. By (5.48), one can verify Θ0 is bounded and
closed set and thus is compact. We set l = maxθ∈Θ0

|G(θ)−1∇θH(θ)|. Then we consider a slightly larger set
Θl

0 = {θ | there exists θ′ ∈ Θ0, s.t. |θ − θ′| ≤ l}. Notice that Θl
0 is also bounded. We define

σGmin = min
θ∈Θl0

σmin(G(θ)) σHmax = max
θ∈Θl0

σmax(∇2
θθH(θ)).

Here σmax(A), σmin(A) denotes the maximum and the minimum singular values of matrix A. We can show

that for any time step size h < min{ 2σGmin

σHmax
, 1}, the numerical solution {θk}Nk=1 obtained by applying forward-

Euler scheme to (3.19) is included in Θ0. To prove this, we first show θ1 ∈ Θ0, we consider

H(θ1) = H(θ0 − hG(θ0)−1∇θH(θ0)) =H(θ0)− hξTG(θ0)ξ +
h2

2
ξT∇2

θθH(θ̃)ξ

≤H(θ0)− hσGmin|ξ|2 +
h2

2
σHmax|ξ|2 ≤ H(θ0)

Here we denote ξ = G(θ0)−1∇θH(θ0). The second equality is due to Tθ(x) ∈ C3(Θ × Rd) and thus H(·) ∈
C2(Θ). We notice that θ̃ = θ0+τ(hG(θ0)−1∇θH(θ0)) with 0 ≤ τ ≤ 1 and thus θ̃ ∈ Θl

0. Since H(θ1) ≤ H(θ0),
we know θ1 ∈ Θ0. Applying a similar argument with θ0 being replaced by θ1, we can further prove θ2 ∈ Θ0.
By induction, we can prove {θk}Nk=1 ⊂ Θ0. Since M(θ, s),N(θ, s),L(θ, s) depend continuously on θ, s, their
supreme values on compact set Θ0 × [0, 1] must be finite so we know C(θ0, h,N) in (5.45) is upper bounded
by a constant independent of h as well as N (recall N = T

h ). Thus the error term O(Ch) is of O(h) order.

Similar to the discussion in previous sections, we can naturally extend Theorem 5.14 to a posterior
estimate.

Theorem 5.21 (posterior error analysis of forward Euler scheme).

W2(ρθk , ρtk) ≤ (
√
δ1h+ Ch2)

1− e−λtk
1− e−λh

+ e−λtkW2(ρθ0 , ρ0) for any tk = kh, 0 ≤ k ≤ N.

The explicit definition of the constant C is in (5.45).

Up to this point, we mainly analyze the error term for the forward Euler scheme. In our numerical
implementation, we adopt the scheme (4.8), which turns out to be a semi-implicit scheme with O(h2) local
error. In the following discussion, we compare the difference between the numerical solutions of our semi-
implicit scheme and forward Euler scheme.

Recall that the parametric Fokker–Planck equation (3.19) is an ODE: θ̇ = −G(θ)−1∇θH(θ). We consider
two numerical schemes:

θn+1 =θn − hG(θn)−1∇θH(θn) θ0 = θ, n = 1, 2, ..., N forward Euler scheme,(5.49)

θ̂n+1 =θ̂n − hG(θ̂n)−1∇θH(θ̂n+1) θ̂0 = θ, n = 1, 2, ..., N semi-implicit Euler scheme.(5.50)

We denote F (θ′) = G(θ′)−1∇θF (θ′′), and set:

L1 = max
1≤n≤N

{
‖F (θn)− F (θ̂n)‖/‖θn − θ̂n‖

}
, L2 = max

1≤k≤N
{‖∇θH(θ̂n)−∇θH(θ̂n+1)‖/‖θ̂n − θ̂n+1‖},

M1 = max
1≤n≤N

{‖G(θ̂n)−1‖}, M2 = max
1≤n≤N

{‖∇θH(θ̂n)‖},

where ‖ · ‖ is a vector norm (or its corresponding matrix norm).
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Theorem 5.22 (Relation between forward Euler and proposed semi-implicit schemes). The numerical

solutions θn and θ̂n of the forward Euler and semi-implicit schemes with time stepsize h and Nh = T satisfy

‖θn − θ̂n‖ ≤ ((1 + L1h)n − 1)
M2

1M2L2

L1
h n = 1, 2, ..., N

This result implies that ‖θn − θ̂n‖ can be upper bounded by (eL1T − 1)
M2

1M2L2

L1
h. When assuming

the upper bounds L1, L2,M1,M2 ∼ O(1) as h → 0 (or equivalently N → ∞), the differences between our
proposed semi-implicit scheme and forward Euler scheme can be bounded by O(h). As a consequence, we
are able to establish O(h) error bound for our proposed scheme (4.8).

Proof of Theorem 5.22. If we subtract (5.50) from (5.49),

(θn+1 − θ̂n+1) = (θn − θ̂n)− h(G(θn)−1∇θH(θn)−G(θ̂n)−1∇θH(θ̂n+1))

and denote en = θn − θ̂n and F (θ) = G(θn)−1∇θH(θ), we may rewrite this equation as

en+1 = en − h(F (θn)− F (θ̂n) +G(θ̂n)−1(∇θH(θ̂n)−∇θH(θ̂n+1))).

Recall the definitions of L1, L2,M1, we have

‖en+1‖ ≤ ‖en‖+ hL1‖en‖+ hM1L2‖θ̂n+1 − θ̂n‖.

By the semi-simplicit scheme, we have

θ̂n+1 − θ̂n = −hG(θ̂n)−1∇θH(θ̂n+1)

Thus |θ̂n+1 − θ̂n‖ ≤ hM1M2. This gives us a recurrent inequality,

‖en+1‖ ≤ ‖en‖+ hL1‖en‖+M2
1M2L2h

2,

which implies(
‖en+1‖+

M2
1M2L2

L1
h

)
≤ (1 + hL1)

(
‖en‖+

M2
1M2L2

L1
h

)
n = 0, 1, ..., N − 1.

This leads to:

‖en‖ ≤ ((1 + hL1)n − 1)
M2

1M2L2

L1
h.

When we solve the ODE on [0, T ] with h = T/N , we have (1 + hL1)n ≤ (1 + hL1)N =
(
1 + L1T

N

)N ≤ eL1T .

This means all terms {‖en‖}1≤n≤N can be upper bounded by (eL1T − 1)
M2

1M2L2

L1
h.

Remark 5.23. In order to make our argument clear and concise, we omitted the errors introduced by the
approximation of ReLU function ψν . Careful analysis on how well ∇ψν can approximate a general gradient
field is among our future research directions.

Remark 5.24. The convergence property of the Stochastic Gradient Descent method (mainly Adam
method) used in our Algorithm 4.1 is not discussed in details. One can check its convergence analysis in
the paper [27]. Based on our experiences, for most of the smooth potential functions V ∈ V with diffusion
coefficient D not too small (i.e. D > 0.1), our algorithm shows convergent behavior and produces accurate
result when checking against the true solution if it is possible.

6. Numerical examples. In this section, we consider solving the Fokker–Planck equation (2.3) on Rd
with initial condition ρ0(x) = N (0, Id)

2 by using Algorithm 4.1. We demonstrate several numerical examples

2We can set initial value θ0 so that Tθ0 = Id and thus ρ0 = Tθ0 ]p is standard Gaussian distribution.
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with different potential functions V . In the following experiments, unless specifically stated, we choose the
length of normalizing flow Tθ as 60. We set ψν : Rd → R as ReLU network with number of layers equals 6
and hidden dimension equals 20. We use Adam (Adaptive Moment Estimation) Stochastic Gradient Descent
method [27] with default parameters D1 = 0.9, D2 = 0.999; ε = 10−8. For the parameters of Algorithm 4.1,
we choose αout = 0.005, αin = 0.0005. We follow Remark 4.11 to choose Kin,Kout = max{1000, 300d}.
Based on our experience, we set Mout = O( h

αout
). The suitable value of Min can be chosen after several quick

tests to make sure that every inner optimization problem (4.27) can be solved.
Our Python code is uploaded to Github, which can be downloaded from website https://github.com/

LSLSliushu/Parametric-Fokker--Planck-Equation.

6.1. Quadratic Potential. Our first set of examples uses quadratic potential V . In this case, we can
compute the explicit solution of (2.3). These examples are used for the verification purpose, because we can
check the results with exact solutions.

6.1.1. 2D cases. We take d = 2, and set V (x) = 1
2 (x − µ)TΣ−1(x − µ), with µ = [3, 3]T and Σ =

diag([0.25, 0.25]). The solution of (2.3) is:

ρt = N (µ(t),Σ(t)) µ(t) = (1− e−4t)µ, Σ(t) =

[
1
4 + 3

4e
−8t

1
4 + 3

4e
−8t

]
t ≥ 0.

We solve the equation in time interval [0, 0.7] with time stepsize 0.01. We set Mout = 20 and Min = 100.
To compare against the exact solution, we set M = 6000 and sample {X1, ...,XM} ∼ Tθk ]p at time tk

and use:

µ̂k =
1

M

M∑
j=1

Xj , Σ̂k =
1

M − 1

M∑
j=1

(Xj − µ̂k)(Xj − µ̂k)T

to compute for its empirical mean and covariance of ρ̂k. We plot the blue curves {µ̂(k)}, {µ̂(k)
2 }, {(Σ̂

(k)
11 , Σ̂

(k)
22 )},

{(µ̂(k)
1 , Σ̂

(k)
11 )} in Figure 11, these plots properly captures the exponential convergence exhibited by the explicit

solution (red curves) {µ(t)}, {µ2(t)}, {(Σ11(t),Σ22(t))}, {(µ1(t),Σ11(t))}.

Fig. 7: {µ̂(k)} Fig. 8: {µ̂(k)
1 } Fig. 9: {(Σ̂(k)

11 , Σ̂
(k)
22 )} Fig. 10: {(µ̂(k), Σ̂

(k)
11 )}

Fig. 11: Plot of empirical statistics (numerical solution: blue; real solution: red)

We also exam the network ψν̂ trained at the end of each outer iteration. Generally speaking, the gradient
field ∇ψν̂ reflects the movements of the particles under the Vlasov-typed dynamic (2.4) at every time step.
Here are the graph of ψν̂ at k = 10, k = 140 (Figure 12, Figure 13). As we can see from these graphs, the
gradient field is in the same direction, but judging from the variation of two ψν̂s, when k = 10, |∇ψν̂ | is
much greater than its value at k = 140. This is because when t = 140, the distribution is already close to the
Gibbs distribution, the particles no longer need to move for a long distance to reach their final destination.

https://github.com/LSLSliushu/Parametric-Fokker--Planck-Equation
https://github.com/LSLSliushu/Parametric-Fokker--Planck-Equation
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Fig. 12: Graph of ψν̂ after Mout = 20 outer itera-
tions at k = 10th time step

Fig. 13: Graph of ψν̂ after Mout = 20 outer itera-
tions at k = 140th time step

In the next example, we apply our algorithm to the Fokker–Planck equation with non-isotropic potential

V (x) =
1

2
(x− µ)TΣ−1(x− µ) µ =

[
3
3

]
and Σ =

[
1

1
4

]
.

One can verify that the solution to (2.3) is

ρt = N (µt,Σt) µt =

[
3(1− e−t)
3(1− e−4t)

]
, Σt =

[
1

1
4 (1 + 3e−8t)

]
.

We use the same parameters as before. We solve (2.3) on time interval [0, 1.4] with time step size 0.005.
Similarly, we also plot the empirical mean trajectory, one can compare it with the true solution µ(t) =

(3(1 − e−t), 3(1 − e−4t)). Both the curvature and the exponential convergence to µ are captured by our
numerical result. To demonstrate the effectiveness of our formulation, we also compare the mean trajectory
obtained by our result (Figure 14) with the mean trajectory obtained by computing the flat gradient flow
θ̇ = −∇θH(θ) (Figure 15). It reveals very different behavior of the Wasserstein gradient (G(θ)−1∇θ) flow
and the flat gradient (∇θ) flow. Clearly, our approximation based on Wasserstein gradient flow captures
the exact mean function much more accurately. We compare the graph of trained ψν̂ at different time steps

Fig. 14: mean trajectory of {ρθt} w.r.t. θ̇ =
−G(θ)−1∇θH(θ)

Fig. 15: mean trajectory of {ρθt} w.r.t. θ̇ =
−∇θH(θ)

k = 10, 140 (Figure 16, 17). The directions of ∇ψν̂ at k = 10 and k = 140 is different from the previous
example. This is caused by the non-isotropic quadratic (Gaussian) potential V used in this example.
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Fig. 16: Graph of ψν̂ after Mout = 20 outer itera-
tions at k = 10th time step

Fig. 17: Graph of ψν̂ after Mout = 20 outer itera-
tions at k = 140th time step

6.1.2. Verification of the error estimate. We verify the O(h) error estimation discussed in 5.3.2
based on numerical experiments with quadratic potentials. We consider V (x) = |x − µ|2 defined on R2

with µ = (12.0, 12.0) and ρ0 as standard Gaussian on time interval [0, 1]. We run our algorithm with several
different time step size h = 0.01, 0.05, 0.08, 0.1, 0.2, 0.3 and record their corresponding mean trajectory {µ̂(k)}
as defined in Section 6.1.1. During this process, we need to adjust our hyperparameters αin, αout,Min,Mout

correspondingly in order to guarantee the convergence of Adam method. Denote {µ(tk)} as the real solution.
We compute the average l2 error of mean values as AveErr(h) = 1

N

∑
k |µ̂(k) − µ(tk)|. We pick h in a range

larger than 0.01 because when h is smaller, the influence from the approximation error δ0 of normalizing
flow Tθ as well as initial error W2(ρ0, ρθ0) start to dominate the overall error. Figure 18 exhibits the linear
relationship between our numerical error AveErr(h) and time step size h, which confirms our theoretical
estimates.

Fig. 18: Numerical errors versus time stepsize h.

Remark 6.1. The reason of choosing quadratic potential is because its corresponding Fokker–Planck
equation has an explicit solution. The reason that we focus on the average error of mean vectors is mainly
due to computational accuracy and convenience: one can approximate the error of the mean vector of
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a distribution by computing the arithmetic average of samples, which is faster and more accurate than
computing for the L2-Wasserstein error among two distributions.

6.1.3. Higher dimension. We implement our algorithm in higher dimensional space. In the next
example, we take d = 10, and consider the quadratic potential

V (x) =
1

2
(x− µ)TΣ−1(x− µ) Σ = diag(ΣA, I2,ΣB , I2,ΣC) µ = (1, 1, 0, 0, 1, 2, 0, 0, 2, 3)T.

Here we set the diagonal blocks as:

ΣA =

[
5
8 − 3

8
− 3

8
5
8

]
ΣB =

[
1

1
4

]
ΣC =

[
1
4

1
4

]
.

We solve the equation in time interval [0, 0.7] with time stepsize 0.005. We set Mout = 20 and Min = 100.
To demonstrate the results, 6000 samples from the reference distribution p are drawn and pushforwarded
by using our computed map Tθk . We plot a few snapshots of the pushforwarded points (from t = 0.05 to
t = 0.70) in Figure 22. One can check that the distribution of our numerical computed samples gradually
converges to the Gibbs distribution N (µ,Σ).

We solve (2.3) on time interval [0, 2] with time step size h = 0.005. We set Kin = Kout = 3000 and
choose Mout = 30, Min = 100. To demonstrate the results, 6000 samples from the reference distribution p
are drawn and pushforwarded by using our computed map Tθk . We exhibit the projection of the samples on
0−1, 4−5 and 8−9 plane in Figure 22 at time t = 2.0. One can verify that the distribution of our numerical
computed samples converges to the Gibbs distribution N (µ,Σ). The explicit solution to the Fokker–Planck

Fig. 19: projection of samples on
0-1 plane

Fig. 20: projection of samples on
4-5 plane

Fig. 21: projection of samples on
8-9 plane

Fig. 22: Sample points of computed ρθt projected on different planes at t = 2.0

equation is always Gaussian distribution N (µ(t),Σ(t)) with mean µ(t) and covariance matrix Σ(t):

µ(t) =(1− e−t, 1− e−t, 0, 0, 1− e−t, 2(1− e−4t), 0, 0, 2(1− e−4t), 3(1− e−4t))T

Σ(t) =diag(ΣA(t), I,ΣB(t), I,ΣC(t))

with ΣA(t) =

[
5
8 + f(t) − 3

8 + f(t)
− 3

8 + f(t) 5
8 + f(t)

]
, ΣB(t) =

[
1

1+3e−8t

4

]
, ΣC(t) =

[
1+3e−8t

4
1+3e−8t

4

]

here f(t) = −2

7
e−t +

1

3
e−2t +

55

168
e−8t

To compare against the exact solution, we set sample size M = 6000 and compute the empirical mean
µ̂k and covariance Σ̂k of our numerical solution ρ̂k at time tk. We evaluate the error between µ̂(k) and
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Fig. 23: mean error (l2) Fig. 24: covariance error (‖ · ‖F ) Fig. 25: Plot of {H(θ)}

µ(tk); Σ̂(k) and Σ(tk). We plot the error curves of ‖µ̂(k) − µ(tk)‖2 (Figure 23) and ‖Σ̂(k) − Σ(tk)‖F (Figure
24). Here ‖ · ‖F is the matrix Frobenius norm. Figure 25 captures the exponential decay of H along its
Wasserstein gradient flow, this verifies the entropy dissipation property of the Fokker–Planck equation with
convex potential function V .

In this case, we take a closer look at the loss in the inner loops. Figure 26 shows the first 10 (out of
20) loss plots when applying SGD method to solve (4.30) with k = 200 (t = 200 · h = 1.0). The remaining
loss plots from the 11th outer iteration to 20th iteration are similar to the plots in the second row. The
situations are similar for other time step k. We believe that Min = 100 works well in this problem, the SGD
method we used can thoroughly solve the variational problem (4.30) for each outer loop.

(a) 1st iteration (b) 2nd iteration (c) 3th iteration (d) 4th iteration (e) 5th iteration

(f) 6th iteration (g) 7th iteration (h) 8th iteration (i) 9th iteration (j) 10th iteration

Fig. 26: Plots of inner loop losses

6.2. Experiments with more general potentials. In this section, we exhibit two examples with
more general potentials in higher dimensional space.

6.2.1. Styblinski-Tang potential. In this example, we set dimension d = 30, and consider the Sty-
blinski–Tang function [66]

V (x) =
3

50

(
d∑
i=1

x4
i − 16x2

i + 5xi

)
.

We solve (2.3) with potential V on time interval [0, 3] with time step size h = 0.005. We set Kin = Kout =
9000 and Min = 100, Mout = 30.
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To exhibit sample results, due to the symmetric structure of the potential function, we project the
sample points in R30 to some random plane, such as 5− 15 plane used in this paper. The sample plots and
their estimated densities are presented in Figure 27.

(a) t=0.30 (b) t=0.60 (c) t=0.90 (d) t=1.20 (e) t=1.50 (f) t=1.80

(g) t=0.30 (h) t=0.60 (i) t=0.90 (j) t=1.20 (k) t=1.50 (l) t=1.80

Fig. 27: Sample points and estimated densities of ρθt on 5− 15 plane at different time nodes

In this special example, the potential function is the direct addition of same functions, we can exploit
this property and show that any marginal distribution

%j(xj , t) =

∫
...

∫
ρ(x, t) dx1...dxj−1dxj+1...dxd

of the solution ρt solves the following the 1D Fokker–Planck equation:

(6.1)
∂%(x, t)

∂t
=

∂

∂x
(%(x, t) V ′(x)) +D∆%(x, t) %(·, 0) = N (0, 1) with V (x) =

3

50
(x4 − 16x2 + 5x).

We then solve the SDE associated to (6.1):

(6.2) dXt = −V ′(Xt) dt+
√

2DdBt X0 ∼ N (0, 1).

Since (6.2) is an SDE in one dimensional space, we can solve it with high accuracy by Euler-Maruyama
scheme [29] and use it as a benchmark for our numerical solution. The following Figure 28 exhibits both
the estimated densities for our numerical solutions (marginal distribution on the 15th component) and the
solution of (6.2) given by Euler-Maruyama scheme with step size 0.005. The sample sizes for both solutions
equal to 6000.

We also illustrate the graphs of ψν̂ on 5− 15 plane trained at different time steps in Figure 29.

6.2.2. Affects of different initial distributions. Different initial conditions ρ0 affect the behavior
of solutions of neural parametric Fokker–Planck equations differently, especially on the convergence speed to
the Gibbs distribution. Here is an example. We consider V as Styblinski-Tang potential in R2. We compute
the solutions with three different initial distributions given as Gaussian distributions with covariances

Σ1 =

[
1

1

]
,Σ2 =

[
13
8

5
8

5
8

13
8

]
,Σ3 =

[
13
8 − 5

8
− 5

8
13
8

]
,

respectively. Although the solutions converge to the Gibbs distribution, as expected from the theory, regard-
less of the initial density, their convergence speed may be different. Figure 30 shows the initial distributions
and the corresponding densities (which are the estimations of the samples obtained from our algorithm)
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t=0.30 t=0.60 t=0.90 t=1.20 t=1.50 t=1.80

Fig. 28: Estimated densities of our numerical solution(red) (projected onto the 15th component) and the
solution given by Euler Maruyama scheme(blue)

ψν̂ at k = 30 ψν̂ at k = 150 ψν̂ at k = 360

Fig. 29: Graph of ψν̂ on 5− 15 plane trained at different time steps

at t = 1.0. As we can observe, the numerical result produced by ρ0 = N (0,Σ1) is already close to Gibbs
distribution at t = 1.0, while numerical results associated to Σ2,Σ3 still have noticeable differences from
Gibbs. They seems to be trapped in intermediate metastable statuses that are clearly influenced by the
orientations in initial distributions.

ρ0 = N (0,Σ1) t = 1.0 ρ0 = N (0,Σ2) t = 1.0 ρ0 = N (0,Σ3) t = 1.0

Fig. 30: Different behaviors of numerical solution with different ρ0s

In general, we believe that the choice of ρ0 affects the behavior of numerical solution. Choosing a suitable
ρ0 may shorten the computing time in the training process.

6.2.3. Solving the equation with different diffusion coefficients. The different behaviors of the
Fokker–Planck equation caused by different diffusion coefficients D can be captured by our algorithm. As the
following figure shows, we apply our method to solve Fokker–Planck equation with Styblinski-Tang potential
function with D = 0.1, 1.0, 10.0 and exhibit samples points and estimated density surfaces at the time t = 3.0.
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(a) Samples D = 10 (b) Samples D = 1 (c) Samples D = 0.1

(d) Density D = 10 (e) Density D = 1 (f) Density D = 0.1

Fig. 31: Samples and estimated densities at t = 3.0, from left to right: D = 10, D = 1.0, D = 0.1

6.2.4. Rosenbrock potential. In this example, we set dimension d = 10. We consider the Rosenbrock
typed function [62]:

V (x) =
3

50

(
d−1∑
i=1

10(xk+1 − x2
k)2 + (xk − 1)2

)
,

which involve interactions among its coordinates. We solve the corresponding (2.3) on time interval [0, 1]
with step size h = 0.005. We set the length of normalizing flow Tθ as 100. We set Kin = Kout = 3000 and
Min = 100, Mout = 60.
Here are the sample results, we exhibit the projection of sample points on the 1− 2, 7− 8 and 9− 10 plane
in Figure 32. Blue samples are obtained from our numerical solution while red samples are obtained by
applying Euler-Maruyama scheme with the same step size.

6.3. Discussion on time consumption. we should point out that the running time of our algorithm
depends on the following three aspects:

(i) Dimension d of the problem; potential function V ;
(ii) The size of normalizing flow Tθ and fully connected neural network ψν ;
(iii) Number of time steps N ; outer iterations Mout; inner iterations Min; sample size Kout and Kin.

Among them, the networks in (ii) are selected according to (i). The hyper-parameters Mout,Mout,Kout,Kin

in (iii) are chosen based on our trial and error as well as Remark 4.11 stated earlier in this paper.
All numerical examples reported in this paper are computed on a Laptop with Intel Core™ i5-8250U

CPU @ 1.60GHz × 8 processor. For most of the high dimensional examples (d ≥ 10), we choose the length
of Tθ between 60 and 100; for the ReLU network ψν , we set its number of layers equal to 6 with hidden
dimension 20. We set Mout ∼ 50,Min ∼ 100 and choose sample sizes Kout,Kin according to Remark 4.11.
The total running time is ranged in 20− 40 hours.

We observe that the running time of our algorithm is dominated by the inner loop of Algorithm 4.1,
i.e. the part for optimizing over ψν . The cost associated with this part can be estimated as O(N ·Mout ·
Min · (Kinta + tb)), where ta denotes the time cost of using backpropagation to evaluate the gradient w.r.t.
ν of each |∇ψν(Tθ0(Xk)) − (Tθ(Xk) − Tθ0(Yk))|2 in every inner loop of Algorithm 4.1, and tb denotes the
time for updating ν by Adam method. Here ta, tb both depend on d, V and the sizes of networks Tθ, ψν .



46 SHU LIU, WUCHEN LI, HONGYUAN ZHA, HAOMIN ZHOU

(a) t = 0.05 (b) t = 0.35 (c) t = 0.50 (d) t = 1.00

(e) t = 0.05 (f) t = 0.35 (g) t = 0.50 (h) t = 1.00

(i) t = 0.05 (j) t = 0.35 (k) t = 0.50 (l) t = 1.00

Fig. 32: Samples of our numerical solution (blue) and Euler-Maruyama (red) on different planes at different
time nodes

According to our experiences, for most of the cases, ta is of the order of magnitude around 10−5s and tb is
around 10−2s.

Although the cost for our current implementation of the train process is still high, we want to remind
that there is a distinct advantage in the sampling application, namely that the network training just needs
to be done once. The trained network can be reused to generate samples, regardless the sample size, from
distribution ρt by pushing forward samples from the reference distribution p with negligible additional cost.
This is in sharp contrast to the classical MCMC sampling techniques, which requires to solve the SDE
associated with Fokker–Planck equation by numerical methods, such as Euler-Maruyama scheme, for every
sample.

7. Discussion. In this paper, we design and analyze an algorithm for computing the high dimen-
sional Fokker–Planck equations. Our approach is based on transport information geometry with probability
formulations arisen in deep learning generative models. We first introduce the parametric Fokker–Planck
equations, a set of ODE, to approximate the original Fokker–Planck equation. The ODE can be viewed
as the “spatial” discretization of the PDE using neural networks. We propose a variational version of the
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semi-implicit Euler scheme and design a discrete time updating algorithm to compute the solution of the
parametric Fokker–Planck equations. Our method is a sampling based approach that is capable to handle
high dimensional cases. It can also be viewed as an alternative of the JKO scheme used in conjunction with
neural networks. More importantly, we prove the asymptotic convergence and error estimates, both under
the Wasserstein metric, for our proposed scheme.

We hope that our study may shed light on principally designing deep neural networks and other machine
learning approaches to compute solutions of high dimensional PDEs, and systematically analyzing their
error bounds for understandable and trustworthy computations. Our parametric Fokker–Planck equations
are derived by approximating the density function in free energy using neural networks, and then following
the rules in calculus of variation to get its Euler-Langrange equation. The energy law and principles in
variational framework build a solid foundation for our “spatial” discretization that is able to inherit many
desirable physical properties shared by the PDEs, such as relative entropy dissipation in a neural network
setting. Our numerical scheme provides a systemic mechanism to design sampling efficient algorithms,
which are critical for high dimensional problems. One distinction of our method is that, contrary to the data
dependent machine learning studies in the literature, our approach does not require any knowledge of the
”data” from the PDEs. In fact, we generate the “data” to compute the numerical solutions, just like the
traditional numerical schemes do for PDEs. More importantly, we carried out the numerical analysis, using
tools such as KL divergence and Wasserstein metric from the transport information geometry, to study the
the asymptotic convergence and error estimates in probability space. We emphasize that the Wasserstein
metric provides a suitable geometric structure to analyze the convergence behavior in generative models,
which are widely used in machine learning field. For this reason, we believe that our investigations can be
adopted to understand many machine learning algorithms, and to design efficient sampling strategies based
on pushforward maps that can generate flows of samples in generative models.

We also believe that the approaches in algorithm design and error analysis developed in this study can be
extended to other equations, such as porous media equation, Schrödinger equation, and Schrödinger bridge
system, and many more. Those topics are worth to be further investigated in the future.
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1620345 and DMS-1830225 and by ONR grant N000141310408. The work of the second author was supported
by a start-up fund from the University of South Carolina and NSF grant RTG:2038080. The work of the
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Appendix A. Proof of Lemma 3.3.

Lemma 3.3. Suppose ~u,~v are two vector fields defined on Rd, suppose ϕ,ψ solves −∇·(ρ∇ϕ) = −∇·(ρ~u)
and −∇ · (ρ∇ψ) = −∇ · (ρ~v), or equivalently, Projρ[~u] = ∇ϕ and Projρ[~v] = ∇ψ (cf. Definition 4.2). Then:∫

~u(x) · ∇ψ(x)ρ(x) dx =

∫
∇ϕ(x) · ∇ψ(x)ρ(x) dx;(3.3) ∫

|∇ψ(x)|2ρ(x) dx ≤
∫
|~v(x)|2ρ(x) dx.(3.4)

Proof of Lemma 3.3. For (3.3):∫
~u(x)·∇ψ(x)ρ(x) dx =

∫
−∇·(ρ(x)~u(x))ψ(x) dx =

∫
−∇·(ρ(x)∇ϕ(x))ψ(x) dx =

∫
∇ϕ(x)·∇ψ(x)ρ(x) dx.

For (3.4): ∫
|~v(x)|2ρ(x) dx =

∫
(|∇ψ(x)|2 + 2(~v(x)−∇ψ(x)) · ∇ψ(x) + |~v(x)−∇ψ(x)|2)ρ(x) dx

=

∫
(|∇ψ(x)|2 + |~v(x)−∇ψ(x)|2)ρ(x) dx ≥

∫
|∇ψ(x)|2ρ(x) dx.

The second equality is due to (3.3).

Appendix B. Proof of Theorem 3.7 .
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Theorem 3.7. Suppose {θt}t≥0 solves (3.19). Then {ρθt} is the gradient flow of H on probability
submanifold PΘ. Furthermore, at any time t, ρ̇θt = d

dtρθt ∈ TρθtPΘ is the orthogonal projection of

−gradWH(ρθt) ∈ TρθtP onto the subspace TρθtPΘ with respect to the Wasserstein metric gW .

Theorem 3.7 easily follows from the following two general results about manifold gradient.

Theorem B.1. Suppose (N, gN ), (M, gM ) are Riemannian Manifolds. Suppose ϕ : N →M is isometric.
Consider F ∈ C∞(M), define F = F ◦ ϕ ∈ C∞(N). Suppose {xt}t≥0 is the gradient flow of F on N :

ẋ = −gradNF (x).

Then {yt = ϕ(xt)}t≥0 is the gradient flow of F on M . That is, {yt} satisfies ẏ = −gradMF(y).

Proof. Since we always have ẏt = ϕ∗ẋt = −ϕ∗gradNF (xt), we only need to show that ϕ∗gradNF (xt) =
gradMF(ϕ(xt)). Fix the time t, consider any curve {ξτ} on N passing through xt at τ = 0, since ϕ is
isometry, we have gN = ϕ∗gM , thus:

d

dτ
F (ξτ )

∣∣∣
τ=0

= gN (gradNF (xt), ξ̇0) = ϕ∗gM (gradNF (xt), ξ̇0) = gM (ϕ∗gradNF (xt), ϕ∗ξ̇0).

On the other hand, denote ητ = ϕ(ξτ ), we have:

d

dτ
F (ξτ )

∣∣∣
τ=0

=
d

dτ
F(ητ )

∣∣∣
τ=0

= gM (gradMF(yt), η̇0) = gM (gradMF(yt), ϕ∗ξ̇0).

As a result, gM (ϕ∗gradNF (xt) − gradMF(yt), ϕ∗ξ̇0) = 0 for all ξ̇0 ∈ TxtN . Since ϕ∗ is surjective, we have
ϕ∗gradNF (xt) = gradMF(ϕ(xt)).

Theorem B.2. Suppose (M, gM ) is Riemannian manifold, Msub ⊂M is the submanifold of M . Assume
Msub inherits metric gM , i.e. define ι : Msub → M as the inclusion map, which induces a metric tensor
on Msub as gMsub = ι∗gM . For any F ∈ C∞(M), denote the restriction of F on Msub as Fsub. Then the
gradient gradMsub

Fsub(x) ∈ TxMsub is the orthogonal projection of gradMF(x) ∈ TxM onto subspace TxMsub

with respect to the metric gM for any x ∈Msub.

Proof. For any x ∈Msub, consider any curve {γτ} on M sub passing through x at τ = 0. We have

d

dτ
F sub(γτ )

∣∣∣
τ=0

= gMsub(gradMsub
F sub(x), γ̇0) = gM (ι∗gradMsub

F sub(x), ι∗γ̇0) = gM (gradMsub
F sub(x), γ̇0).

The last equality is because ι∗ restricted on TMsub is identity. On the other hand, F sub(γτ ) = F(γτ ) for all
τ . We also have:

d

dτ
F sub(γτ )

∣∣∣
τ=0

= gM (gradMF(x), γ̇0).

Combining them we know

gM (gradMsub
F sub(x)− gradMF(x), v) = 0 ∀ v ∈ TxMsub ⇒ gradMsub

F sub(x)− gradMF(x) ⊥gM TxMsub,

which proves this result.

Proof. (Theorem 3.7) To prove the first part of Theorem 3.7, we apply Theorem B.1 with (N, gN ) =
(Θ, G), M = PΘ with its metric inherited from (P, gW ) and ϕ = T(·)]. To prove the second part, we apply
Theorem B.2 with (M, gM ) = (P, gW ), Msub = PΘ.

Appendix C. Proof of Lemma 4.6 4.7 and 4.8.

Lemma 4.6. Suppose we fix θ0 ∈ Θ, for arbitrary θ ∈ Θ and ∇φ ∈ L2(Rd;Rd, ρθ0) we consider

(4.14) F (θ,∇φ | θ0) =

(∫
(2∇φ(x) · (Tθ − Tθ0) ◦ T−1

θ0
(x)− |∇φ(x)|2) ρθ0(x) dx

)
+ 2hH(θ).
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Then F (θ,∇φ | θ0) <∞, furthermore, F (·,∇φ | θ0) ∈ C1(Θ). We can compute

(4.15) ∂θF (θ,∇φ | θ0) = 2

(∫
∂θTθ(T

−1
θ0

(x))T ∇φ(x) ρθ0(x) dx+ h ∇θH(θ)

)
.

Proof. To show F (θ,∇φ |θ0) <∞, we write

F (θ,∇ |θ0) =

∫
2∇φ · Tθ(T−1

θ0
(x))ρθ0 dx︸ ︷︷ ︸

A

−
∫

2∇φ(Tθ0(x)) · xdp(x)︸ ︷︷ ︸
B

−
∫
|∇φ(x)|2ρθ0(x) dx︸ ︷︷ ︸

C

+2hH(θ).

By Cauchy–Schwarz inequality, the first two terms can be estimated as

|A−B| ≤ 2‖∇φ‖L2(ρθ0 )

(∫
|Tθ(x)|2dp(x) +

∫
x2dp(x)

)
.

Recall (3.1) and p having finite second order moment, we know the first two terms are finite. In addition
C = ‖∇φ‖2L2(ρθ0 ) <∞. We thus have shown F (θ,∇φ |θ0) <∞.

To show F (·,∇φ |θ0) ∈ C1(Θ), recall Tθ(x) ∈ C2(Θ × Rd) as mentioned in 3.1. We know the relative
entropy H(·) ∈ C1(Θ), thus we only need to prove for F̃ (·,∇φ |θ0) = F (·,∇φ |θ0) − 2hH(θ). We consider
ξ ∈ Rm with |ξ| small enough and θ + ξ ∈ Θ. Then the difference

(C.1) F̃ (θ + ξ,∇φ |θ0)− F̃ (θ,∇φ |θ0) =

∫
2∇φ(x) · (Tθ+ξ − Tθ) ◦ T−1

θ0
(x) ρθ0(x) dx

We denote the ith component of Tθ as T
(i)
θ , 1 ≤ i ≤ d. By Taylor expansion (w.r.t. θ), we have T

(i)
θ+ξ(x) −

T
(i)
θ (x) = ∂θT

(i)
θ (x)Tξ + 1

2ξ
T∂2

θθTθ+λi(x)ξ(x)ξ with λi(x) ∈ [0, 1], then the right hand side of (C.1) is

(C.2)

(∫
2∂θTθ(T

−1
θ0

(x))T∇φ(x)ρθ0 dx

)T

ξ︸ ︷︷ ︸
Denote as J (θ)Tξ

+

∫ ( d∑
i=1

∂xiφ · (ξT∂2
θθT

(i)
θ+λi(x)ξ(T

−1
θ0

(x))ξ)

)
ρθ0 dx

By Cauchy-Schwarz inequality, the sum in the second term of (C.2) can be estimated as(
d∑
i=1

|∂xiφ|2
) 1

2

·

(
d∑
i=1

|ξT∂2
θθT

(i)
θ+λi(x)ξ(T

−1
θ0

(x))ξ|2
) 1

2

≤ |∇φ| ·

(
d∑
i=1

‖∂2
θθT

(i)
θ+λi(x)ξ(T

−1
θ0

(x))‖22

) 1
2

|ξ|2

Let us recall (4.13) and the absolute value of the second term in (C.2) can be upper bounded by

(∫
|∇φ|2ρθ0 dx

) 1
2

·

(∫ d∑
i=1

‖∂2
θθT

(i)
θ+λi(x)ξ(x)‖22dp(x)

) 1
2

|ξ|2 ≤ ‖∇φ‖2L2(ρθ0 ) ·
√
H(θ0, |ξ|)|ξ|2.

This inequality is due to (4.13). As a result, we have

(C.3)
|F̃ (θ + ξ,∇φ |θ0)− F̃ (θ,∇ |θ0)− J (θ)Tξ|

|ξ|
≤ ‖∇φ‖2L2(ρθ0 ) ·

√
H(θ0, |ξ|) |ξ|.

Since H(θ0, ε) is increasing w.r.t. ε, when we send |ξ| → 0, the upper bound in (C.3) approaches to 0.
This verifies the differentiability of F̃ (·,∇φ |θ0).Thus F (·,∇φ |θ0) is also differentiable and ∂θF (θ,∇φ |θ0) =
J (θ)+2h∇θH(θ). At last, to show that F (·,∇φ |θ0) ∈ C1(Θ), we only need to prove the continuity of J (θ).
One only need to notice that

2∂θT
(i)
θ′ (T−1

θ0
(x))T∇φ(x) ≤ |∂θ′T (i)

θ (T−1
θ0

(x))|2 + |∇φ(x)|2 ≤ L2(T−1
θ0

(x)|θ) + |∇φ(x)|2 ∀ θ′, |θ′ − θ| < r(θ).

The last inequality is due to condition (3.2). Since L2(T−1
θ0

(x)|θ) + |∇φ(x)|2 ∈ L1(ρθ0), then by dominated
convergence theorem, we are able to prove the continuity of ∂θF (θ,∇φ |θ0).
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Lemma 4.7. Suppose we fix θ0 ∈ Θ and define J(θ) = sup
∇φ∈L2(Rd;Rd,ρθ0 )

F (θ,∇φ | θ0). Then J is differ-

entiable. If we denote ψ̂θ = argmax
φ
{F (θ,∇φ | θ0)}, then

∇θJ(θ) = ∂θF (θ,∇ψ̂θ | θ0) = 2

(∫
∂θTθ(T

−1
θ0

(x))T ∇ψ̂θ(x) ρθ0(x) dx+ h ∇θH(θ)

)
.

Proof. Let us denote Ξθ = (Tθ − Tθ0) ◦ T−1
θ0

. Then for any ξ ∈ Rm such that θ + ξ ∈ Θ, we set

ψ̂θ+ξ = argmax
φ
{F (θ + ξ,∇φ | θ0)}. Then according to Definition 4.2, ψ̂θ, ψ̂θ+ξ solves

(C.4) −∇ · (ρθ0∇ψ̂θ) = −∇ · (ρθ0Ξθ) −∇ · (ρθ0∇ψ̂θ+ξ) = −∇ · (ρθ0Ξθ+ξ).

Subtracting the two equations, then multiply ψ̂θ+ξ − ψ̂θ on both sides and integrate yields∫
|∇ψ̂θ+ξ −∇ψ̂θ|2ρθ0 dx =

∫
(∇ψ̂θ+ξ −∇ψ̂θ) · (Ξθ+ξ − Ξθ)ρθ0 dx.

Then by Cauchy–Schwarz inequality, we derive∫
|∇ψ̂θ+ξ −∇ψ̂θ|2ρθ0 dx ≤

∫
|Ξθ+ξ − Ξθ|2ρθ0 dx.

Now since Ξθξ(x)− Ξθ(x) = (Tθ+ξ − Tθ) ◦ T−1
θ0

(x), by mean value theorem, the ith component of Ξθ+ξ(x)−
Ξθ(x) can be written as ∂θT

(i)
θ+λi(x)ξ(T

−1
θ0

(x))Tξ with λi(x) ∈ [0, 1]. Then recall the definition of L(θ, ε) in

(4.13), we can verify ∫
|Ξθ+ξ − Ξθ|2ρθ0 dx =

∫
|Tθ+ξ(x)− Tθ(x)|dp(x) ≤ L(θ, |ξ|)|ξ|2.

Thus we have the following estimation

(C.5)

∫
|∇ψ̂θ+ξ −∇ψ̂θ|2ρθ0 dx ≤ L(θ, |ξ|)|ξ|2

Now let us consider J(θ + ξ)− J(θ)

J(θ + ξ)− J(θ) = F (θ + ξ,∇ψ̂θ+ξ | θ0)− F (θ,∇ψ̂θ | θ0)

= F (θ + ξ,∇ψ̂θ+ξ | θ0)− F (θ,∇ψ̂θ+ξ | θ0)︸ ︷︷ ︸
A

+F (θ,∇ψ̂θ+ξ | θ0)− F (θ,∇ψ̂θ | θ0)︸ ︷︷ ︸
B

.(C.6)

Now according to Lemma 4.6, F (·,∇φ | θk) ∈ C1(Θ). By mean value theorem, term A can be written as

A =F (θ + ξ,∇ψ̂θ+ξ | θ0)− F (θ,∇ψ̂θ+ξ | θ0) = ∂θF (θ + τξ,∇ψ̂θ+ξ | θ0)ξ with τ ∈ [0, 1]

=∂θF (θ,∇ψ̂θ | θ0)Tξ + (∂θF (θ + τξ,∇ψ̂θ | θ0)− ∂θF (θ,∇ψ̂θ | θ0)︸ ︷︷ ︸
r1(θ, ξ)

)Tξ

+ (∂θF (θ + τξ,∇ψ̂θ+ξ | θ0)− ∂θF (θ + τξ,∇ψ̂θ | θ0)︸ ︷︷ ︸
r2(θ, ξ)

)Tξ.

Term B can be computed as

B = F (θ,∇ψ̂θ+ξ | θ0)− F (θ,∇ψ̂θ | θ0) =

∫
(2(∇ψ̂θ+ξ −∇ψ̂θ) · Ξθ − (|∇ψ̂θ+ξ|2 − |∇ψ̂θ|2))ρθ0 dx

= 2

∫
(∇ψ̂θ+ξ −∇ψ̂θ) · (Ξθ −∇ψ̂θ)ρθ0 dx−

∫
|∇ψ̂θ+ξ −∇ψ̂θ|2ρθ0 dx = −

∫
|∇ψ̂θ+ξ −∇ψ̂θ|2ρθ0 dx.
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The last equality is due to integration by parts and (C.4).
Now substituting A and B in (C.6) yields

J(θ + ξ)− J(θ) = ∂θF (θ,∇ψ̂θ | θ0) + r1(θ, ξ)Tξ + r2(θ, ξ)Tξ − ‖∇ψ̂θ+ξ −∇ψ̂θ‖2L2(ρθ0 )

We can estimate

(C.7)

∣∣∣J(θ + ξ)− J(θ)− ∂θF (θ,∇ψ̂θ | θ0)Tξ
∣∣∣

|ξ|
≤ |r1(θ, ξ)|+ |r2(θ, ξ)|+ 1

|ξ|
‖∇ψ̂θ+ξ −∇ψ̂θ‖2L2(ρθ0 )

Now we prove the right hand side of (C.7) approaches to 0 as ξ → 0. Since ∂θF (·,∇ψ̂θ | θ0) ∈ C1(Θ), using
continuity, we know limξ→0 r1(θ, ξ) = 0. For r2(θ, ξ), when |ξ| is sufficiently small, we have

|r2(θ, ξ)| =
∣∣∣∣∫ ∂θTθ+τξ(T

−1
θ0

(x))T(∇ψ̂θ+ξ(x)−∇ψ̂θ(x))ρθ0(x) dx

∣∣∣∣
≤
(∫
‖∂θTθ+τξ(x)‖2F dp(x)

) 1
2
(∫
|∇ψ̂θ+ξ −∇ψ̂θ|2ρθ0 dx

) 1
2

≤
√
‖L2(·|θ)‖L1(p)

√
L(θ, |ξ|)|ξ|

The last inequality is due to (3.2) (when |ξ| is small enough so that |ξ| < r(θ)) and (C.5). Using this we are

able to show limξ→0 r2(θ, ξ) = 0. Using (C.5) again, we can verify 1
|ξ|‖∇ψ̂θ+ξ−∇ψ̂θ‖

2
L2(ρθ0 ) ≤ L(θ, |ξ|)|ξ| → 0

as ξ → 0. Thus J is differentiable at θ and we know ∇θJ(θ) = ∂θF (θ,∇ψ̂θ | θ0). We complete the proof by
applying (4.15) of Lemma (4.6).

Lemma 4.8. Under assumption(4.11), the optimal solution of (4.8) θk+1 satisfies,

|θk+1 − θk| ∼ o(1) i.e., lim
h→0+

|θk+1 − θk| = 0.

Proof of Lemma 4.8. Recall the function to be minimized in (4.8) is J(θ) = Ŵ 2
2 (θ, θk) + 2hH(θ). If

choosing θ = θk in (4.8), we have J(θk) = 2hH(θk). Thus J(θk+1) ≤ J(θk) = 2hH(θk). Since H(θk) ≥ 0,

this leads to Ŵ 2
2 (θk+1, θk) ≤ 2hH(θk). When h is small enough, |θk+1 − θk| ≤ l−1(2hH(θk)), here l−1 is

the inverse function of l defined on [0, l(r0)]. We know l−1(0) = 0 and l−1 is also continuous and increasing
function. This leads to limh→0+ |θk+1 − θk| ≤ limh→0+ l−1(2hH(θk)) = 0.

Appendix D. Proofs for Lemma 5.7 and 5.8.

Lemma 5.7. The geodesic connecting ρ0, ρ1 ∈ P(M) is described by,

(5.14)

{
∂ρt
∂t +∇ · (ρt∇ψt) = 0
∂ψt
∂t + 1

2 |∇ψt|
2 = 0

ρt|t=0 = ρ0, ρt|t=1 = ρ1.

Using the notation ρ̇t = ∂tρt = −∇ · (ρt∇ψt) ∈ TρtP(M), gW (ρ̇t, ρ̇t) is constant for 0 ≤ t ≤ 1 and
gW (ρ̇t, ρ̇t) = W 2

2 (ρ0, ρ1) for 0 ≤ t ≤ 1.

Proof. Recall the definition (2.6) of Wasserstein metric gW , gW (ρ̇t, ρ̇t) =
∫
|∇ψt|2ρt dx. Since {ρt} is

the geodesic on (P(M), gW ), the speed gW (σt, σt) remains constant. To directly verify this, we compute the
time derivative:

d

dt
gW (ρ̇t, ρ̇t) =

d

dt

(∫
|∇ψt|2ρt dx

)
=

∫
∂

∂t
|∇ψt|2ρt dx+

∫
|∇ψt|2∂tρt dx.

Using the first equation in (5.14), we obtain∫
|∇ψt|2∂tρt dx =

∫
|∇ψt|2 · (−∇ · (ρt∇ψt)) dx =

∫
∇(|∇ψt|2) · ∇ψtρt dx,

Taking the spatial gradient of the second equation in (5.14), we have

∂t(∇ψt) = −∇(
1

2
|∇ψt|2).
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Then ∫
∂

∂t
|∇ψt|2ρt dx =

∫
2∂t(∇ψt) · ∇ψtρt dx =

∫
−∇(|∇ψt|2) · ∇ψtρt dx.

Adding them together, we verify d
dtg

W (ρ̇t, ρ̇t) = 0, hence
∫ 1

0
gW (ρ̇t, ρ̇t) dt = W 2

2 (ρ0, ρ1). Thus we know
gW (ρ̇t, ρ̇t) = W 2

2 (ρ0, ρ1) for any 0 ≤ t ≤ 1.

Lemma 5.8. Suppose {ρt} solves (5.14), the relative entropy H in (2.9) has potential V satisfying ∇2V �
λI, then we have d

dtg
W (gradWH(ρt), ρ̇t) ≥ λW 2

2 (ρ0, ρ1). Or equivalently, d2

dt2H(ρt) ≥ λW 2
2 (ρ0, ρ1).

Proof. Let us write:

gW (gradWH(ρt), ρ̇t) =

∫
∇(V +D log ρt) · ∇ψt ρt dx.

Then:

d

dt
gW (gradWH(ρt), ρ̇t) =

d

dt

(∫
∇(V +D log ρt) · ∇ψt ρt dx

)
=

∫
(∇ψT

t ∇2V∇ψt + Tr(∇2ψt∇2ψt)) ρt dx.

The second equality can be carried out by direct calculations. One can check [68] or [69] for its complete
derivation. Using ∇2V � λI, we get

d

dt
gW (gradWH(ρt), ρ̇t) ≥

∫
λ|∇ψt|2ρt dx = λ gW (ρ̇t, ρ̇t) = λW 2

2 (ρ0, ρ1).

The last equality is due to Lemma 5.7. By the definition of Wasserstein gradient (2.8), we have d
dtH(ρt) =

gW (gradWH(ρt), ρ̇t), we also proved d2

dt2H(ρt) ≥ λW 2
2 (ρ0, ρ1).
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