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ABSTRACT

When we use simulation to assess the performance of stochastic systems, the input models used
to drive simulation experiments are often estimated from finite real-world data. There exist both
input model and simulation estimation uncertainties in the system performance estimates. Without
strong prior information on the input models and the system mean response surface, in this paper,
we propose a Bayesian nonparametric framework to quantify the impact from both sources of un-
certainty. Specifically, since the real-world data often represent the variability caused by various
latent sources of uncertainty, Dirichlet Processes Mixtures (DPM) based nonparametric input mod-
els are introduced to model a mixture of heterogeneous distributions, which can faithfully capture
the important features of real-world data, such as multi-modality and skewness. Bayesian posteriors
of flexible input models characterize the input model estimation uncertainty, which automatically
accounts for both model selection and parameter value uncertainty. Then, input model estimation
uncertainty is propagated to outputs by using direct simulation. Thus, under very general conditions,
our framework delivers an empirical credible interval accounting for both input and simulation un-
certainties. A variance decomposition is further developed to quantify the relative contributions from
both sources of uncertainty. Our approach is supported by rigorous theoretical and empirical study.

Keywords Nonparametric Bayesian approach, design of experiments, stochastic simulation, uncertainty quantifica-
tion, input uncertainty, Dirichlet processes mixtures

1 Introduction

Stochastic simulation is widely used in many applications to assess the performance of complex stochastic systems,
e.g., manufacturing, supply chain and health care systems. For example, when we simulate a healthcare service system,
the random patients interarrival and service times are characterized by input distributions. However, the input models,
defined as the driving stochastic processes in simulation experiments, are often estimated from finite real-world data.
Therefore, there exist two sources of system performance estimation uncertainty, including: (1) the input uncertainty
which is the output variation due to input model estimation error, and (2) the simulation uncertainty which is induced
by the simulation estimation error due to finite simulation budget. Ignoring either source of uncertainty can lead to
unfounded confidence in the simulation assessment of system performance.

Various approaches have been proposed in the literature to quantify the input and simulation uncertainties; see [7,
59, 41, 22] for a comprehensive review. Based on methodologies developed to quantify the input model estimation
uncertainty, they can be divided into frequentist and Bayesian approaches. The frequentist approaches typically study
the sampling distributions of point estimators of underlying input models. Since it could be hard to get the exact
sampling distributions in many situations, the asymptotic approximation, including the normal approximation and the
bootstrap, is often used to quantify the input model estimation uncertainty, which is valid when the amount of real-
world data is large. However, even in the current big data world, we often face the situations where the amount of
real-world data is limited, especially for high-tech products with short life cycles. For example, biopharmaceutical
manufacturing requires 9 to 12 months from raw materials sourcing to the finished drug products, and it requires
another 2 to 3 months for quality testing. However, the drug substances typically expire after 18 to 36 months; see
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[52]. Compared to frequentist methods, Bayesian approaches derive the posterior distributions quantifying the input
model estimation uncertainty and they do not need a large-sample asymptotic approximation for their validation. It is
also straightforward for Bayesian approaches to incorporate the prior information about the underlying input models;
see [70] for the discussion of frequentist v.s. Bayesian approaches for input uncertainty.

Thus, in this paper, we focus on developing a Bayesian nonparametric framework to quantify the estimation uncertainty
of system mean performance, especially when we do not have strong prior information on the underlying input models
and system mean response surface. We consider univariate input models, which model independent and identically
distributed (i.i.d.) data by mutually independent input distributions. Since we often assume that multivariate input
models are characterized by marginal distributions and the dependence in the simulation literature [14], the proposed
univariate input models can be used to construct input models with dependence through copula-based approaches; see
for example [13, 69].

Many existing methods assume specific parametric families for input models with unknown parameter values estimated
from finite real-world data; see the review in [7]. The input model estimation uncertainty can be quantified by the
posteriors of model parameters. However, the standard parametric distributions cannot always capture the rich features
in the real-world data, such as skewness and multi-modality. If the selected parametric families do not have sufficient
flexibility and cannot represent the underlying input models well, there always exists the distribution family selection
error which does not vanish as the amount of real-world data becomes large. This inconsistent estimation could lead
to incorrect inference even for the moderate size of real-world data [36].

One possible remedy for the inconsistency of parametric approaches is to introduce the family uncertainty, which
accounts for the input model selection error among a pre-specified pool of candidate parametric families. The study in
[20] proposed Bayesian Model Averaging (BMA) to quantify input model estimation uncertainty from both families
and parameter values, where the family uncertainty is characterized by the posterior probabilities of different candidate
parametric models. However, BMA is based on the assumption that all data come from one of candidate distributions;
see Section 14.1 in [16]. In other words, BMA relies on the assumption that all data are generated from a single
underlying true parametric family, and this family must be included as a candidate priori. Since it is difficult for
any standard parametric family to capture the rich features in the real-world data, it could be challenging to select
the appropriate candidate models for BMA. Furthermore, if the selected families are not mutually exclusive, such as
exponential and Gamma distributions, it can potentially lead to model identification problems.

Our study is motivated by the facts: (1) the real-world data represent the variability caused by various latent sources
of uncertainty, which can lead to rich features, e.g., heterogeneity, multi-modality, skewness, and tails; and (2) we
often have very limited real-world data in many applications. Flexible Dirichlet Processes Mixtures (DPM) based
Bayesian nonparametric approach is introduced for simulation input modeling and uncertainty quantification, which
can capture important features in the real-world data. The DPM with Gaussian kernel was introduced in the statistics
community; see for example [65, 24], etc. It is extended to other kernel functions; see for example [35, 39, 67]. In
general, DPM has demonstrated robust performance in terms of density estimation ([24, 33, 34], etc.). The Markov
chain Monte Carlo (MCMC) method enables efficient sampling of mixture distributions from the posterior; see for
example [24, 51, 35, 39, 64].

From the modeling perspective, DPM has clear advantages over standard parametric families because the variability
across different mixing components naturally represents various latent sources of uncertainty, which makes it straight-
forward to capture the important properties in the real-world data. Different from parametric approaches, the number
of mixing components and parameters can automatically adjust to the complex features of real data, such as multi-
modality, skewness, and tails. Thus, our empirical study demonstrates that DPM has better and more robust finite
sample performance. From the theoretical perspective, DPM is able to consistently estimate a wide class of distri-
butions under relatively general conditions ([28, 67], etc.). Compared to BMA, our approach avoids the difficulty of
selecting the “appropriate” candidate distributions. From the computational perspective, one can develop efficient
posterior samplers for DPM with popular exponential family kernel density (see our Section 2.2, [24, 51], etc.).

Among frequentist approaches, empirical distribution is the most commonly used nonparametric approach in the
simulation literature, and the bootstrap is typically used to quantify the input model estimation uncertainty; see for
example [9, 6]. Empirical distribution is simple and easy to implement. However, DPM has some important advan-
tages compared to empirical distribution. First, even though the underlying true distribution is continuous, empirical
distribution is always discrete. Smoothing methods, such as kernel estimators [53, 11] and splines [18], can be used to
smooth the empirical cumulative distribution functions (ecdf) at the cost of losing unbiasedness. Second, with limited
real-world data, the empirical distribution could overlook some important properties in the underlying input models.
For example, in the presence of extreme values, DPM with infinite mixture components can provide a better fit to the
tails. Third, the validity of using the bootstrap to quantify the input uncertainty relies on asymptotic approximation,
and therefore it requires large samples of real-world data. As we mentioned above, the decision makers often face
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the situations where the amount of real-world data is limited. As a Bayesian approach, DPM can overcome these
limitations. Our empirical study demonstrates that DPM has better finite sample performance compared to frequentist
competitors, especially when the sample size of real-world data is limited. The DPM-based input models have the
potential to detect the latent sources of uncertainty, and the selection of kernel function may impact the performance.

Therefore, in this paper, we develop a flexible Bayesian nonparametric framework to quantify the system mean response
estimation uncertainty. We first introduce DPM-based Bayesian nonparametric input modeling and uncertainty quan-
tification, which can capture the important properties in the real-world data. The samples drawn from posteriors of
flexible input models can automatically quantify both model selection and parameters value uncertainty. Then, the in-
put model estimation uncertainty is propagated to the output through direct simulation which runs simulations at each
posterior sample of input models to estimate the system mean response. Our framework leads to a sampling procedure
that delivers a percentile empirical credible interval (CrI) quantifying the overall uncertainty of system performance
estimation.

In sum, the main contributions of our paper are as follows.

1. We propose a DPM-based Bayesian nonparametric framework accounting for both input and simulation
uncertainties. It delivers a percentile empirical CrI quantifying the overall estimation uncertainty of system
mean response. Furthermore, a variance decomposition is developed to quantify the relative contributions
from input and simulation uncertainties.

2. We provide the theoretical support for our nonparametric framework. The theory includes the consistency of
univariate nonparametric continuous input models with supports, including (i)<+ ≡ [0,∞), the nonnegative
half real line; (ii) < ≡ (−∞,∞), the entire real line; or (iii) a bounded interval [a1, a2] ∈ <. Beyond the
existing consistency results of DPM with Gaussian and Gamma kernels for continuous distributions with
support < and <+, we further prove the new posterior consistency of DPM with Beta kernel for continuous
distributions supported on bounded intervals. In addition, we show the consistency of the proposed empirical
CrI accounting for both input and simulation uncertainties. As the amount of real-world data increases,
without strong prior information on the distribution family, the posterior distributions of input models can
converge to the underlying distributions. Given the finite real-world input data, as the simulation budget
increases, this interval converges to the CrI quantifying the impact of input uncertainty with the true mean
response surface known. Further, as the amount of real-world data and the simulation budget go to infinity,
the CrI converges to the true system performance.

3. Since real-world data often represent the variability caused by various latent sources of uncertainty in many
situations, the DPM-based input models provide sufficient flexibility to capture the important features in the
real-world data. The empirical study demonstrates that the proposed framework has better performance
than existing approaches in terms of both input density estimation and system mean response assessment.
In addition, the finite sample performance of proposed framework is robust to the violation of sufficient
conditions required by the asymptotic consistency proof for DPM-based input models.

The remainder of the paper is organized as follows. In Section 2, a Bayesian nonparametric framework is introduced to
quantify the overall uncertainty of the system performance estimates. We then report results of finite sample behaviors
on both input models and system mean response estimation in Section 3, and we conclude this paper in Section 4. All
proofs, derivations and other supplementary studies are included in the online Supplement.

2 A Bayesian Nonparametric Framework

When we use simulation to assess the stochastic system performance, the output from the j-th replication with input
models, denoted by F , can be written as

Yj(F ) = µ(F ) + ej(F )

where µ(F ) denotes the system mean response and ej(F ) represents the simulation error with mean zero and variance
σ2
e(F ). The input models in general could include multiple distributions, e.g., F ≡ {F1, F2, . . . , FL}. For ease of

presentation, we assume that F consists of a single univariate model; otherwise our DPM-based input modeling and
Bayesian uncertainty quantification can be applied to each distribution in F . Denote the underlying unknown true
input model by F c. We are interested in the system mean response at the true input model, denoted by µc ≡ µ(F c). In
this paper, we introduce a Bayesian nonparametric framework to quantify the overall estimation uncertainty of µc.

Since the simulation output depends on the choice of input distribution F , the input model failing to capture important
features of F c can lead to poor estimates of system performance. It is desirable to construct the input model that can
faithfully capture the important properties (e.g., heterogeneity, multi-modality, and skewness). Thus, in Section 2.1, we
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present the flexible nonparametric DPM-based input models, in which we use a mixture of heterogeneous distributions
to capture these rich properties induced by various latent sources of uncertainty.

The underlying true input distribution F c is estimated by finite real-world data of size m, denoted by Xm ≡
{X1, X2, . . . , Xm} with Xi

i.i.d.∼ F c. The posterior distribution of the flexible input model, denoted by p(F |Xm),
can be used to quantify the model estimation uncertainty. Since the DPM model does not have closed form distribu-
tions for analytical posterior analysis, we provide Gibbs samplers in Section 2.2 to efficiently draw posterior samples
of input models, FB ≡ {F̃ (1), F̃ (2), . . . , F̃ (B)}, from p(F |Xm) quantifying the input model estimation uncertainty.
We show the asymptotic consistency of p(F |Xm) in Section 2.3 and study its finite sample performance in Section 3.
In this paper, the notation ·̃ denotes posterior samples or random variables characterizing our belief on input model
or parameters.

Then, the direct simulation is used to propagate the input uncertainty to the output. At each sample F̃ (b) ∼ p(F |Xm)

with b = 1, 2, . . . , B, we generate nb replications and obtain the outputs Yb ≡ {Y1(F̃ (b)), Y2(F̃ (b)), . . . , Ynb(F̃
(b))}.

We estimate the mean response with sample mean Ȳb ≡ Ȳ (F̃ (b)) =
∑nb
j=1 Yj(F̃

(b))/nb and quantify the simulation

uncertainty with the sampling distribution of Ȳb|F̃ (b). The overall uncertainty of system mean response estimation is
characterized by the conditional distribution of the compound random variable U ≡ Ȳ (F̃ ), denoted by FU (·|Xm),
given the information obtained from the real-world data Xm. In Section 2.2, we propose a sampling procedure to
construct a (1 − α∗)100% percentile empirical CrI quantifying the overall estimation uncertainty of µc, denoted by
CrI =

[
Ȳ(d(α∗/2)Be), Ȳ(d(1−α∗/2)Be)

]
, based on the order statistics Ȳ(1) ≤ Ȳ(2) ≤ . . . ≤ Ȳ(B).

This empirical CrI accounts for both input and simulation uncertainties. We study the asymptotic properties of this
interval in Section 2.4. Define the random variable W ≡ µ(F̃ ) with F̃ ∼ p(F |Xm), which is the true system mean
response evaluated at the posterior sample of input model. Denote the conditional Cumulative Distribution Function
(c.d.f.) of W by FW (·|Xm). Let qW (γ|Xm) ≡ inf{q : FW (q|Xm) ≥ γ} be the conditional γ-quantile of W . We
prove that given the input data Xm, as the simulation budget increases, the interval

[
Ȳ(d(α∗/2)Be), Ȳ(d(1−α∗/2)Be)

]
converges to the true underlying CrI quantifying the impact of input uncertainty, [qW (α∗/2|Xm), qW (1−α∗/2|Xm)].
We also show that as the size of real-world data and the simulation budget go to infinity, it converges to the true mean
system response µc. In addition, if the interval

[
Ȳ(d(α∗/2)Be), Ȳ(d(1−α∗/2)Be)

]
is too wide, the decision maker needs

to know if the additional simulation could improve the estimation accuracy of µc. For this practical consideration, we
derive a variance decomposition to estimate the relative contributions from input and simulation uncertainties, and
further study the asymptotic property of the corresponding variance components in Section 2.5.

2.1 Input Modeling by Dirichlet Process Mixtures

According to [45, 5], given a kernel density function h(·), the input density defined on the sample space X from
DPM can be represented as f(x) =

∫
h(x|ψψψ)dG, where ψψψ denotes the parameters of kernel density function, and

an infinite mixture distribution G on the parameter space of ψψψ follows a Dirichlet process (DP), G ∼ DP (α,G0),
with G0 denoting the base distribution and α > 0 denoting the dispersion parameter. We say that DP (α,G0) assigns
probability on G , the space of all mixing distribution G. According to the definition of DP in [26], the random
distribution G over any finite measurable partitions, A1, . . . , Ar, of the space of ψψψ follows a Dirichlet distribution,(
G(A1), . . . , G(Ar)

)
∼ Dirichlet

(
αG0(A1), . . . , αG0(Ar)

)
. Thus, the data Xi drawn from DPM can be represented

as
Xi|ψψψi ∼ h(·|ψψψi), ψψψi| G ∼ G, G ∼ DP (α,G0). (1)

According to [51], by integrating over G, we have the conditional prior distribution for ψψψi,

ψψψi|ψψψ1, . . . ,ψψψi−1 ∼
1

i− 1 + α

i−1∑
i′=1

δ(ψψψi′) +
α

i− 1 + α
G0 (2)

where δ(ψψψ) is the distribution concentrated at ψψψ.

DPM is specified by three key components: the dispersion parameter α, the kernel density h(·), and the base distribu-
tion G0. The dispersion parameter α is related to the number of clusters generated in the DPM posterior. Based on
the right side of (2), given the cluster parameters of previous X1, X2, . . . , Xi−1, the probability that Xi is associated
to a new cluster is α

i−1+α . Thus, the DPM with a larger value of α tends to generate samples of input density f(·)
with more distinct active components; see more explanation in Section 2.2. The appropriate value of α can be inferred
from the real-world data.

The choice of the kernel density h(·) is based on the support of F c, and meanwhile it should account for the feasibility
of implementation in posterior computation. We present DPM models with three kernel densities, including Gamma,
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Gaussian, and Beta, which account for the real-world data that are supported on X, where X could be the half real
line <+, the whole real line <, or a finite interval [a1, a2] with −∞ < a1 < a2 < ∞. The scaled version of DPM
with Beta kernel is applicable to model continuous distributions with a known finite support interval [a1, a2] through
the transformation Xi = (X ′i − a1)/(a2 − a1), where X ′i denotes the raw data. Since Gamma, Gaussian, and Beta
distributions belong to the exponential family and allow conjugate priors for the parameters ψψψ of each cluster, we
derive efficient samplers to generate posterior samples of input model. Notice that even though these three kernels
allow us to model many input models commonly used in the simulation applications, we can also select other kernels,
such as exponential family density functions (e.g., Weibull) [17]. If the computational efficiency is not concerned, we
can use kernel densities that do not belong to exponential family, such as student t kernel density function.

To simplify the posterior inference and sampling, we consider the conjugate prior G0 for ψψψ, the parameters of each
cluster or kernel density function. For DPM with Gamma kernel, we letψψψ = (V, u)

> with V and u denoting the shape
and mean parameters. Motivated by the study on Gamma mixture distributions in [66], we consider a conditional
conjugate prior for V and u,

V ∼ Exponential(θ) and u ∼ Inv-Gamma(r, s). (3)
Equation (3) specifies G0(V, u) with the hyper-parameters θθθG = (θ, r, s).

For DPM with Gaussian kernel, we let ψψψ = (u, σ2)> with u and σ2 denoting the mean and variance parameters.
Following [27], we choose the conjugate prior,

u|σ2 ∼ N (u0, σ
2/m0) and σ2/σ2

0 ∼ Inv-Gamma
(
v0

2
,

1

2

)
. (4)

Equation (4) specifies G0(u, σ2) with hyper-parameters θθθG = (u0,m0, v0, σ0)>.

For DPM with Beta kernel, we let ψψψ = (ω, β)
> with ω and β denoting the two shape parameters. Since the Beta

distribution belongs to the exponential family, we choose the conjugate prior,

ω, β|λ0, λ1, λ2 ∝ exp

{
−λ1ω − λ2β − λ0 log

[
Γ(ω)Γ(β)

Γ(ω + β)

]}
. (5)

Equation (5) specifies G0(ω, β) with the hyper-parameters θθθG = (λ0, λ1, λ2)>.

2.2 Gibbs Sampler for DPM and Uncertainty Quantification Procedure for µc

For the real-world data Xm ≡ {X1, X2, . . . , Xm}, each observation Xi has the associated parameters ψψψi with
i = 1, 2, . . . ,m. For any set of cluster density parameters ψψψ generated by G0, this component is called active if it
has at least one associated observed data point from Xm. Otherwise, it is called inactive. According to Equation (2),
parameters ψψψi and ψψψi′ with i′ 6= i could take the same values. Let K0 denote the number of distinct values in
{ψψψi}mi=1, and represent the distinct parameter values as {ψψψ?1, . . . ,ψψψ?K0

}. Notice that K0 is bounded by m. Following
[50], we introduce the latent indicator variables c = (c1, c2, . . . , cm) that associate the data {X1, X2, . . . , Xm} to
{ψψψ?1, . . . ,ψψψ?K0

}, where ci = j if and only if ψψψi = ψψψ?j for i = 1, 2, . . . ,m and j = 1, 2, . . . ,K0. Thus, the real-world
data Xm are grouped to K0 active components with parameters {ψψψ?1, . . . ,ψψψ?K0

}.
Since the DPM model (1) does not have closed form distributions for analytical posterior analysis, we describe a
Gibbs sampler to generate posterior samples of input model quantifying the input model estimation uncertainty. We
first derive the conditional posteriors required in the sampling procedure. According to [51], by setting Xi to be the
last observation, the conditional prior of ci can be derived based on Equation (2),

P
(
ci = j|c−i) =

{
m−ij

m+α−1 if ∃cq = j for all q 6= i
α

m+α−1 otherwise

for i = 1, 2, . . . ,m, where c−i denotes all the latent variables except ci, and m−ij is the number of latent variables
with cq = j for all q ∈ {1, 2, . . . ,m} and q 6= i. Since the real-world data Xm = {X1, X2, . . . , Xm} are i.i.d., when
we classify Xi, we can suppose that all other observations have been classified. Then, given the active component
parameters Ψ? ≡ {ψψψ?1, . . . ,ψψψ?K0

} and Xi, by applying the Bayes’ rule, the conditional posterior is

p(ci = j|c−i,ψψψ?j , α,Xi) =

{
b0

m−ij
m+α−1h(Xi|ψψψ?j ) if ∃cq = j for all q 6= i

b0
α

m+α−1

∫
h(Xi|ψψψ)dG0 otherwise

(6)

where b0 is the normalizing constant.
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The posterior for dispersion parameter α conditional on the number of active components is p(α|K0) ∼ p(α)p(K0|α).
We impose a prior, p(α) = Gamma(ς1, ς2), on α, with shape ς1 > 0 and scale ς2 > 0. Thus, the hyper-parameters for
α are θθθα = (ς1, ς2)>. To simplify the sampling procedure for p(α|K0), following [24], we introduce a new random
variable ν and generate α from p(α|K0) by

ν|α,K0 ∼ Beta(α+ 1,m)

α|ν,K0 ∼ τGamma(ς1 +K0, ς2 − log(ν)) + (1− τ)Gamma(ς1 +K0 − 1, ς2 − log(ν)),
(7)

where τ is defined by τ/(1− τ) = (ς1 +K0 − 1)/[m(ς2 − log(ν))].

Therefore, given the real-world input data Xm, we provide a sampling procedure in Algorithm 1 to generate the
samples of compound random variable U = Ȳ (F̃ ) and further build a percentile empirical CrI accounting for both
input and simulation estimation uncertainties. First, based on the support of input model F c, choose an appropriate
kernel density function h(·), and then specify the hyper-parameters for both G0 and α in Step 1; see Section 3.1 for
the values of hyper-parameters used in our empirical study. Then, motivated by [51], in Step 2, we propose a Gibbs
sampling approach to generate B posterior samples of input distribution, F̃ (b) ∼ p(F |Xm) with b = 1, 2, . . . , B,
accounting for the input model estimation uncertainty. At each F̃ (b), run the simulations with nb replications, obtain
simulation outputs Yb, and record the sample mean Ȳb in Step 3. The simulation uncertainty is characterized by the
sampling distribution Ȳb|F̃ (b), with mean µ(F̃ (b)) and variance σ2

e(F̃ (b))/nb. Thus, the samples {Ȳ1, Ȳ2, . . . , ȲB}
of U = Ȳ (F̃ ) with F̃ (b) ∼ p(F |Xm) quantify both input and simulation uncertainties. We further construct a
(1− α∗)100% percentile empirical CrI,

[
Ȳ(d(α∗/2)Be), Ȳ(d(1−α∗/2)Be)

]
, quantifying the overall uncertainty of system

mean performance estimation in Step 4. Notice that the approaches proposed to improve the Gibbs sampling efficiency
for DPM through a collapse of the state space of the Markov chain in [47, 48, 46] could be incorporated into our
nonparametric Bayesian framework.

Algorithm 1 The Nonparametric Bayesian Framework for Uncertainty Quantification
1. Based on the support of F c, choose an appropriate kernel density function h(·). Then, specify hyper-parameters θθθG and θθθα
for the base distribution G0 and the dispersion parameter α.
2. Generate the posterior samples F̃ (b) ∼ p(F |Xm) through the Gibbs sampling for b = 1, 2, . . . , B:

(2.1) Initialization:
(a) Draw α̃ ∼ Gamma(ς1, ς2);
(b) Set ci = i for i = 1, 2, . . . ,m and K̃0 = m;
(c) Generate ψ̃ψψ

?

j ∼ p(ψψψ?j |Xj) with p(ψψψ?j |Xj) ∝ p(ψψψ?j )p(Xj |ψψψ?j ) for j = 1, 2, . . . , K̃0 by using the sampling procedure
described in Supplement A.1.

(2.2) In each Gibbs sampling iteration, there are three main steps described as follows:
(a) For i = 1, 2, . . . ,m, generate the parameters associated with the inactive component as ψ̃ψψ

?

K̃0+1 ∼ G0, and then draw

a sample c̃i from the conditional posterior p(ci = j|c̃−i, ψ̃ψψ
?

j , α̃,Xi) for j = 1, 2, . . . , K̃0 + 1 by applying (6); see the detailed
sampling procedure for DPM with Gamma, Gaussian, and Beta kernel densities in Supplement A.1. Then, remove inactive
components and update the number of active components K̃0;

(b) For the j-th active component with j = 1, 2, . . . , K̃0, generate the r-th parameter in ψψψ?j , denoted by ψ̃?jr , from
the conditional posterior p(ψ?jr|ψ̃ψψ

?

j,−r,X
j), where ψψψ?j,−r denotes the remaining parameters in ψψψ?j and Xj denotes all the data

associated to the j-th component; see the sampling procedure in Supplement A.1;
(c) Generate α̃ from the posterior p(α|K̃0) by using Equations (7).

3. At each F̃ (b) with b = 1, 2, . . . , B, generate input variates by using Equation (10), run simulations with nb replications, and
obtain the outputs Yb. Then, record the sample mean Ȳb =

∑nb
j=1 Yj(F̃

(b))/nb.
4. Report a (1− α∗)100% two-sided percentile empirical CrI for µc,

CrI =
[
Ȳ(d(α∗/2)Be), Ȳ(d(1−α∗/2)Be)

]
, (8)

with the order statistics Ȳ(1) ≤ Ȳ(2) ≤ . . . ≤ Ȳ(B).

Here, we present the detailed Gibbs sampling for generating posterior samples of indicator variables c =
(c1, c2, . . . , cm), component parameters Ψ?, and dispersion parameter α. For the initialization in Step (2.1), we
generate α̃ from the prior Gamma(ς1, ς2) and assign the observed data points Xm = {X1, X2, . . . , Xm} to distinct
components, which follows the idea of hierarchical agglomerative clustering; see Chapter 15 of [49]. Then, each
Gibbs sampling iteration in Step 2 includes three main parts. In Step (2.2.a), the conditional posterior in (6) is used
to generate the sample of c. For each observation Xi with i = 1, 2, . . . ,m in the real-world data Xm, since the
integration

∫
h(Xi|ψψψ)dG0 in Equation (6) is often intractable, we first sample the parameters for inactive component
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ψ̃ψψK̃0+1 ∼ G0. Then, we update the latent indicator ci conditional on all the other parameters, remove the inactive

components, and update the number of active distinct components K̃0. In Step (2.2.b), for each active component,
given the data associated to it, we update its kernel density parameters ψψψ?j with j = 1, 2, . . . , K̃0. The conditional
posteriors and the sampling procedure of c and ψψψ?j for Gamma, Gaussian, and Beta kernel densities are described in
Supplement A.1. In Step (2.2.c), we update the dispersion parameter α conditional on the number of active components
and generate a posterior sample by applying Equations (7).

After the convergence of Gibbs sampling, we record B posterior samples of input models, {F̃ (1), F̃ (2), . . . , F̃ (B)},
quantifying the input model estimation uncertainty. Each sample F̃ (b) with b = 1, 2, . . . , B is specified by the disper-
sion parameter α̃ and the parameters of active clusters or components corresponding to real-world data, denoted by
Ψ̃ ≡ {ψ̃ψψ1, ψ̃ψψ2, . . . , ψ̃ψψm} with ψ̃ψψi = ψ̃ψψ

?

c̃i for i = 1, 2, . . . ,m. In our empirical study, we use 500 burn-in iterations to
generate stable posterior samples. The density function of F̃ (b) can be represented as

f̃ (b)(x) =
1

m+ α̃(b)

m∑
i=1

h(x|ψ̃ψψ
(b)

i ) +
α̃(b)

m+ α̃(b)

∫
h(x|ψψψ)dG0. (9)

Notice that the number of active components, K̃0, can vary at different samples of input model. In Step 3, to estimate
the system mean response at the posterior sample of input model F̃ (b), we can generate input variates,

ψψψ|Ψ̃(b) ∼ 1

m+ α̃(b)

m∑
i=1

δ
(
ψ̃ψψ

(b)

i

)
+

α̃(b)

m+ α̃(b)
G0 and X|ψψψ ∼ h(·|ψψψ), (10)

to drive the simulation and estimate the mean response by Ȳb.

We derive the computational complexity to generate B posterior samples of input models, {F̃ (1), F̃ (2), . . . , F̃ (B)},
from the DPM posterior distribution. For Step (2.2.a), since we need to calculate the conditional posterior p(ci =

j|c̃−i, ψ̃ψψ
?

j , α̃,Xi) for i = 1, 2, . . . ,m and j = 1, 2, . . . , K̃0, the complexity is O(mK̃0). For Step (2.2.b), we need
to calculate the conditional posteriors for ψψψ?j with j = 1, 2, . . . , K̃0 (see the formula in Supplement A.1), which
include

∑mj
k=1 log(Xj

k) in Equation (17) for Gamma kernel,
∑mj
k=1(Xj

k − X̄j)2 in Equation (18) for Gaussian kernel,
and

∑mj
k=1 log(1−Xj

k) in Equation (20) for Beta kernel, where Xj
k denotes the k-th observation associated with

the j-th component and X̄j = 1
mj

∑mj
k=1X

j
k. For Gamma and Beta kernels, we develop Metropolis-Hasting nested

Gibbs samplers (see Supplement A.1) and run them for a fixed number of iterations independent of m and B in the
proposed algorithm. Thus, the computational complexity for implementing Step (2.2.b) is O(K̃0m). In Step (2.2.c),
the complexity for generating α̃ is O(1). Since the study in [32] (see Chapter 4 Proposition 4.8) shows that the
number of active components K̃0 in Dirichlet process is at most O(logm), the overall computational complexity to
generate B posterior samples of input model is O(Bm logm). In addition, suppose that each detailed simulation
output as a function of associated inputs has a fixed complexityO(1). Then, the computational complexity for running
simulations at B posterior samples of input models is O(BnR), where n and R represent the number of replications
and the simulation run-length assigned to each posterior sample F̃ (b) with b = 1, 2, . . . , B.

We need B to be reasonably large to accurately estimate the percentile CrI. In the empirical study, we set B = 1000
[70]. Without any prior information about the mean response µ(·), in this paper, we assign equal replications to all
samples of input distribution {F̃ (1), F̃ (2), . . . , F̃ (B)}. Since each simulation run can be computationally expensive, a
sequential design of experiments could efficiently use the computational budget and reduce the impact of simulation
estimation uncertainty on the system performance by finding the optimal setting for (B,n1, n2, . . . , nB) [71].

2.3 Posterior Consistency of Input Models

In the Bayesian paradigm, a very basic requirement is the posterior consistency at the true input distribution [28, 31].
It means that as the amount of real-world data increases, the posterior becomes more and more concentrated around
F c with probability approaching 1. The posterior consistency for DPM is studied in the statistics literature, such
as [28, 61, 67], etc. Given the prior set as in Equations (1), and the base measures G0 for Dirichlet Process set in
Equations (3), (4) or (5), Theorem 1 summarizes posterior consistency results on DPM with Gamma, Gaussian, and
Beta density functions as kernels for input distributions supported on [0,∞), <, and fixed interval [a1, a2].

The posterior consistency in Theorem 1 is stated in the sense of weak consistency. The posterior distribution p(· | Xm)
is said to be weakly consistent at F c (or f c), if with Pfc -probability 1; this means p(U | Xm) → 1 for all weak
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neighborhoods U of f c. We defer the detailed introduction and definitions of weak neighborhood, weak consistency,
and other related concepts in classic Bayesian nonparametric theory to Supplement B. We also refer the readers to
Chapter 4 of [33] and Chapter 7 of [32] for detailed discussions on posterior consistency.

Theorem 1 Let Xm ≡ {X1, X2, . . . , Xm} with Xi
i.i.d.∼ F c for i = 1, 2, . . . ,m.

(i) (Modified from [67] Theorem 14) Suppose the DPM with Gamma kernel has the prior specified as Equa-
tion (3). Let f c be a continuous and bounded density with support on [0,∞) satisfying the following con-
ditions: (a) f c(x) > 0 for all x ∈ (0,+∞) and f c(x) ≤ Cf < ∞ for some finite constant Cf for all
x ∈ [0,+∞); (b) |

∫∞
0
f c(x) log f c(x)dx| < ∞; (c)

∫∞
0
f c(x) log fc(x)

φδ(x)dx < ∞ for some δ > 0, where
φδ(x) = inf [x,x+δ) f

c(t) if 0 < x < 1 and φδ(x) = inf(x−δ,x] f
c(t) if x ≥ 1; (d) there exists ζ > 0 such

that
∫∞

0
max(x−ζ−2, xζ+2)f c(x)dx < ∞. Then, the posterior p(F |Xm) from DPM with Gamma kernel is

weakly consistent at F c.

(ii) ([61] Theorem 3.3) Suppose the DPM with Gaussian kernel has the prior specified as Equation (4). Let
F c (and the density f c) be supported on < and assume that it satisfies the following conditions: (a)∣∣∣∫ +∞
−∞ f c(x) log f c(x)dx

∣∣∣ < +∞; (b) there exists an η ∈ (0, 1), such that
∫ +∞
−∞ |x|

ηf c(x)dx < +∞;

(c) there exist constants σ1 > 0, c1 ∈ (0, η), c2 > c1, b1, b2 > 0, such that for the base measure G0(u, σ)
and for all large x > 0:

max
{
G0

(
[x− σ1x

η/2,+∞)× [σ1,+∞)
)
, G0

(
[0,+∞)× (x1−η/2,+∞)

)}
≥ b1x−c1 ;

max
{
G0

(
(−∞,−x+ σ1x

η/2]× [σ1,+∞)
)
, G0

(
(−∞, 0]× (x1−η/2,+∞)

)}
≥ b1x−c1 ;

G0

(
(−∞, x)× (0, ex

η−1/2)
)
> 1− b2x−c2 ; G0

(
(−x,+∞)× (0, ex

η−1/2)
)
> 1− b2x−c2 .

Then, the posterior p(F |Xm) from DPM with Gaussian kernel is weakly consistent at F c.

(iii) Suppose the DPM with Beta kernel has the prior specified as Equation (5). Let F c (and the density f c) be
supported on [a1, a2] and assume that f c(x) is continuous density on [a1, a2]. Then, the posterior p(F |Xm)
from DPM with Beta kernel is weakly consistent at F c.

The proof of Theorem 1 is given in Supplement B. This theorem indicates that the posterior of DPM with Gamma,
Gaussian, and Beta kernels can consistently estimate the true input distributions under some general sufficient con-
ditions, including the existence of moments and entropy of F c (or f c), and the boundedness and continuity of f c. In
particular, for DPM with Gamma kernel, the posterior consistency holds if the true density f c(x) is upper bounded
by constant, nonzero and continuous for all x > 0, with a finite entropy and finite moments of certain order. For DPM
with Gaussian kernel, the posterior consistency holds if the true density has a finite entropy and finite η-moment with
η ∈ (0, 1), thus including heavy-tailed distributions like Cauchy. For DPM with Beta kernel, the posterior consistency
holds as long as the true density is continuous on the finite interval [a1, a2]. Thus, there is no assumption on the
analytic forms of F c and f c required for the posterior consistency.

The posterior consistency in Theorem 1 for DPM with Gamma, Gaussian, and Beta kernels applies to a wide range of
true distributions. In Supplement B, we give examples of posterior consistency on the standard parametric distributions
that are commonly used in simulations, such as normal, logistic, Student’s t, Cauchy, uniform, triangular, power
function, Beta, truncated normal, log-normal, Gamma with shape parameter greater than 2, Weibull with shape
parameter greater than 3, log-logistic with shape parameter greater than 2, Pearson Type V and Type VI, Johnson
SB , Johnson SL, Johnson SU , by applying Theorem 1, though one of the main motivations for using DPM is to
flexibilly model the underlying distribution that does not belong to any standard distribution families.

Like any other statistical models, the proposed DPM-based input modeling cannot cover all situations. Some dis-
tributions, such as standard (unshifted) versions of the gamma, Pearson VI, Pearson V, and log-logistic with shape
parameter less than or equal to 2, and Weibull distributions with shape parameter less than or equal to 3, do not
satisfy the finite moment condition or bounded density requirement in Theorem 1. This does not necessarily mean that
the proposed nonparametric approach cannot consistently estimate such true distributions. Theorem 1 provides only
sufficient conditions on which posterior consistency holds. We provide the empirical study in Section 3 to demonstrate
the robustness of DPM finite-sample performance even when the sufficient conditions for the posterior consistency
listed in Theorem 1 does not hold.

Theoretically, by choosing different kernel functions, the DPM can lead to consistent posterior on the distributions that
are not covered by Theorem 1. For example, if the true density is completely monotone on [0,∞), such as Gamma,
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Pearson Type V, log-logistic, and Weibull distributions with shape parameters less than or equal to 2 or 3, the DPM
priors with exponential density or scaled uniform density kernels have consistent posterior on them, as shown by
Theorems 16 and 17 in [67].

Part (iii) of Theorem 1 is a completely new result. Existing Bayesian asymptotic results in the literature mainly focus
on different versions of Beta mixtures, such as the finite mixtures of Bernstein polynomials ([54, 67]), or the finite Beta
mixtures in [55]. The study in [29] contains partial results on the classes of distributions that can be expressed with
an infinite mixture of Betas. We present a general result for posterior consistency of DPM with Beta kernel and its
proof is given in Supplement B. Our empirical study also demonstrates the flexibility and adaptiveness of DPM with
Beta kernel for fitting the continuous distributions with known bounded support.

Theorem 1 directly applies to the situation that the support of the input distribution is known. As pointed out by
[42], such assumption could be a limitation for some cases. These distributions include, but not limited to, the shifted
(scaled) versions of the distributions on [0,∞) and [0, 1]. To deal with bounded or semi-bounded supported underlying
input distributions with boundaries unknown, we mildly extend the DPM prior as follows: Let ξ denote the boundary
value(s) of the support. For the bounded support case, we take ξ = (a1, a2), while for the half-bounded case, we
take ξ = a0 and let the support be [a0,∞) without loss of generality. We assign the prior π on ξ and the complete
nonparametric prior on the input distribution is given by:

Xi|ψψψi ∼ h(·|ψψψi), ψψψi | G ∼ G, G | ξ ∼ DP (α,G0)× 1l(ξ), ξ ∼ π. (11)

The mixing distribution G here is slightly different from the one defined in Model (1) and it assigns point mass 1 on
the boundary ξ for given ξ, where ξ is assigned a prior π as an index parameter.

With the prior defined as (11), we have corollaries as follows. Please refer to Supplement B Remark 3 for the detailed
discussion and proofs.

Corollary 1.1 Suppose that the true density f c is continuous and has bounded support with unknown boundary ξ =
(a1, a2). Let the DPM prior with location-scale transformed beta kernel as described above. Assume that the prior
on the index parameter (boundary values) satisfies that for any δ > 0, π([a1 − δ, a1] × [a2, a2 + δ]) > 0. Then the
posterior p(F |Xm) from DPM with transformed Beta kernel is weakly consistent at F c.

Corollary 1.2 Suppose the true density f c satisfies all the conditions in Theorem 1 Part (i), except that the support is
[a0,∞) with a0 unknown. Let the DPM prior with shifted Gamma density kernel as described in (68). Assume the
prior on the index parameter (boundary value) satisfies π([a0 − δ, a0]) > 0.Then the posterior p(F |Xm) from DPM
with the shifted Gamma kernel is weakly consistent at F c.

2.4 Asymptotic Properties of the CrI

In this section, we study the asymptotic properties of the empirical CrI constructed from our framework in Section 2.2.
In many situations, it could be hard or expensive to collect more real-world data when we make decisions. Therefore,
in Theorem 2 Part (i), we show that given finite real-world data Xm, as the simulation budget increases, the interval
constructed by our approach,

[
Ȳ(d(α∗/2)Be), Ȳ(d(1−α∗/2)Be)

]
, converges to the (1 − α∗)100% percentile CrI induced

by the input uncertainty with the true mean response surface µ(·) known, [qW (α∗/2|Xm), qW (1− α∗/2|Xm)]. In
Theorem 2 part (ii), we show that as the amount of real-world data and the simulation budget go to infinity, the
constructed CrI

[
Ȳ(d(α∗/2)Be), Ȳ(d(1−α∗/2)Be)

]
shrinks to the true mean response µc.

The convergence between two credible intervals in Theorem 2 is measured by the Hausdorff distance, denoted by
dH(·, ·), which is widely used for measuring the distance between two sets. It has a simplified expression whenA1 and
A2 are both closed intervals: If A1 = [a1, b1] and A2 = [a2, b2], then dH(A1, A2) = max(|a1 − a2|, |b1 − b2|). In
this case, the convergence under Hausdoff distance is the same as the point-wise convergence for the two endpoints of
CrIs.

For two generic distributions (and measures)F1 andF2 on<with the Borel sigma algebraB(<), their Lévy-Prokhorov
(L-P) distance ([15]) is defined by dLP (F1, F2) ≡ inf{η > 0 | F1(A) ≤ F2(Aη) + η and F2(A) ≤ F1(Aη) +
η, for all A ∈ B(<)}, where Aη ≡ {a ∈ < | ∃b ∈ A, |a − b| < η}. The L-P distance, denoted by dLP , is a metric
under which the convergence is equivalent to the weak convergence of measures on <.

Theorem 2 Let nmin = min{n1, n2, . . . , nB} ≥ 1. Suppose that the following conditions hold:

(1) The posterior distribution function FW (·|Xm) is continuous with a positive density on its support; Further-
more,

∫
< w

2dFW (w|Xm) <∞ almost surely for all m;
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(2) The simulation model satisfies E(Ȳb|F̃ (b)) = µ(F̃ (b)) and Var(Ȳb|F̃ (b)) = σ2
e(F̃ (b))/nb for b = 1, 2, . . . , B.

For almost surely all F̃ ∼ p(F |Xm), there exists a finite constant Cσ > 0 with σ2
e(F̃ ) ≤ C2

σ;

(3) For any ε > 0, there exists a finite δ > 0 such that |µ(F )− µ(F c)| < ε if dLP (F, F c) < δ;

(4) The posterior distribution p(F |Xm) is weakly consistent at F c.

Then,

(i) If Conditions (1) and (2) hold, then for some absolute constant C1 > 0 that does not depend on Xm and
µ(·), the CrI in Equation (8) satisfies

E
[∫ 1

0

dH
([
Ȳ(d(α∗/2)Be), Ȳ(d(1−α∗/2)Be)

]
, [qW (α∗/2|Xm) , qW (1− α∗/2|Xm)]

)
dα∗

∣∣∣Xm

]
≤ 2Cσ√

nmin
+

2C1

∫
R w

2dFW (w|Xm)
√
B

. (12)

Furthermore, for any given ε > 0, δ > 0, and fixed α∗ ∈ (0, 1), there exist some integers B1 and nmin,1 that
only depends on ε, δ, α∗, Cσ,Xm and the function µ(·), such that for all B > B1 and nmin > nmin,1,

P
(
dH

([
Ȳ(d(α∗/2)Be), Ȳ(d(1−α∗/2)Be)

]
,
[
qW (α∗/2|Xm) , qW (1− α∗/2|Xm)

])
< δ

∣∣∣Xm

)
> 1− ε.

(13)

(ii) If Conditions (1)–(4) hold, then for any given ε > 0, δ > 0, γ ∈ (0, 1), η ∈ (0, 2 min{γ, 1− γ}), there exist
sufficiently large integers B2 and nmin,2 that only depend on ε, δ, γ, η, Cσ,Xm and the function µ(·), and a
sufficiently large integer M0 that depends on ε, δ, η, such that for all B > B2, nmin > nmin,2, and m > M0,

PF c
[
P
(∣∣Ȳ(dγBe) − µ(F c)

∣∣ < δ
∣∣∣Xm

)
> 1− η

]
> 1− ε. (14)

Condition (1) is a mild condition that implies that the posterior distribution function of the system response µ(F̃ )

with F̃ ∼ p(F |Xm) is continuous and strictly increasing, with finite second moment. Condition (2) requires that the
simulation errors have a bounded variance. Condition (3) is about the continuity of the system response µ(F ) with
respect to F around F c in terms of the L-P distance that can be used to characterize the weak posterior consistency.
The similar continuity assumption is commonly used in the literature on input uncertainty and the Gaussian process
metamodel (an approximate input-output mean response surface) when the parametric family of input model is known;
see for example [3], [8] and [70]. Condition (3) generalizes it to the nonparametric situations. Condition (4) is a
direct consequence from Theorem 1 which only provides the asymptotic consistency for input models with support on
<+ and <.

Given finite real-world data Xm, Part (i) of Theorem 2 shows that as the simulation budget goes to infinity with
nmin, B → ∞, the empirical CrI obtained by our framework in Equation (8) converges to the true underlying CrI
[qW (α∗/2|Xm), qW (1−α∗/2|Xm)]. This convergence happens in the integrated sense, in which we take an average
of the Hausdorff distance over the significance level α∗ ∈ (0, 1). For finite B and nmin, the upper bound in (12)
further provides a detailed breakdown of the approximation error from the simulation estimation uncertainty. The first
error term on the right side of (12) comes from the finite replications (nmin) allocated to the posterior samples of input
model quantifying the input uncertainty. The second error term in (12) comes from using finite (B) posterior samples.
The convergence of CrI in (12) is stated in the Bayesian setup conditional on the real-world data Xm and it does
not require the sample size m → ∞. Therefore, the bound in Part (i) is non-asymptotic in m and only asymptotic in
the simulation budget (nmin, B). The relation (13) further expresses this relation using the convergence in posterior
probability for each fixed α∗ ∈ (0, 1). Notice that Part (i) only requires Conditions (1) and (2).

Part (ii) shows that the convergence of quantile as the amount of real-world data m increases to infinity, for which
we have used the continuity of µ(·) at F c from Condition (3) and the weak consistency of the posterior distribution
p(F |Xm) in Condition (4). The detailed proof of Theorem 2 is provided in Supplement C.

2.5 Variance Decomposition

Following the procedure in Section 2.2, we obtain samples of system mean response, Ȳb with b = 1, 2, . . . , B, quanti-
fying the estimation uncertainty of µc. We derive the variance decomposition in Theorem 3(i). The overall uncertainty
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can be written as the sum of two variance components, σ2
T = σ2

I + σ2
S , quantifying the relative contributions from

input and simulation uncertainties, which can guide how to improve the system performance estimation when the
overall uncertainty is too large. If σ2

S is dominant, more simulation resource can be invested to reduce the estimation
uncertainty of µc.

We further study the asymptotic property of both variance components σ2
I and σ2

S in Theorem 3(ii), which depend on
Xm. The component σ2

I measuring the impact from input uncertainty decreases as the amount of real-world data
increases. For the input model with support on <+, < or [a1, a2] satisfying the conditions in Theorem 1, as m→∞,
the impact of input uncertainty disappears or σ2

I converges to zero in probability σ2
I

p→ 0, since the posterior of
input model p(F |Xm) converges to F c and µ(·) is bounded and continuous around F c in terms of L-P distance. As
nmin →∞, the variance component σ2

S measuring the impact from the simulation uncertainty disappears σ2
S

p→ 0, if
σ2
e(·) is bounded. The detailed derivation of Theorem 3 is provided in Supplement D.

Theorem 3 At any F̃ (b) with b = 1, 2, . . . , B, let µb = µ(F̃ (b)) and σ2
b = σ2

e(F̃ (b)).

(i) Given Xm, the total variance of Ȳ (F̃ ) can be decomposed as

Var(Ȳ (F̃ )|Xm) = EF̃ (b)

[
σ2
b

nb

∣∣∣∣Xm

]
+ VarF̃ (b) [µb|Xm] (15)

On the right side of equation, σ2
S ≡ EF̃ (b)

[
σ2
b

nb

∣∣∣Xm

]
and σ2

I ≡ VarF̃ (b) [µb|Xm] measure the impacts from

simulation and input uncertainties. Since the sample mean and variance Ȳb and S2
b are the consistent estima-

tors for µb and σ2
b , we estimate σ2

S with σ̂2
S = 1

B

∑B
b=1

S2
b

nb
and estimate σ2

I with σ̂2
I = 1

B

∑B
b=1(Ȳb − ¯̄Y )2,

where ¯̄Y = 1
B

∑B
b=1 Ȳb.

(ii) Suppose that Conditions (2)–(4) in Theorem 2 hold. For almost surely all F̃ ∼ p(F |Xm), there exists a finite
constant Cµ > 0 such that |µ(F̃ )| ≤ Cµ. Then, as m and nmin go to infinity, the variance components σ2

I

and σ2
S converge to zero in probability: (a) σ2

I

p→ 0 as m→∞; and (b) σ2
S

p→ 0 as nmin →∞.

3 Empirical Study

We first compare the fitting performance of DPM models with the existing input modeling approaches by using sim-
ulated data in Section 3.1. The results demonstrate that DPM with appropriate kernel can capture the important
properties in the simulated data. It has better and more robust finite-sample performance than existing approaches,
including finite mixture, empirical distribution, kernel density estimation (KDE), and parametric distributions selected
by using the Anderson-Darling (AD) and Kolmogorov-Smirnov (KS) tests. Since some test examples in Section 3.1 vi-
olate the conditions in Theorem 1, the results also indicate that the performance of DPM is robust to the violation
of the sufficient conditions required for input model asymptotic consistency. Then, we use the real raw material de-
mand data collected from the biopharmaceutical manufacturing to show the robust performance of DPM model in
Section 3.2. Since the real-world data often represent many latent sources of uncertainties, we study the performance
on identifying the underlying sources of uncertainties in Section 3.3. The results indicate that DPM model works
better than existing finite mixture approach [19]. After that, we use an M/G/1 queue to study the performance of
our DPM-based Bayesian nonparametric framework in Sections 3.4. Results show that our approach has good and
robust performance when there is no strong prior information on the input model and the mean response surface. As
the amount of real-world data and the simulation budget increase, the empirical CrI

[
Ȳ(d(α∗/2)Be), Ȳ(d(1−α∗/2)Be)

]
shrinks closer to µc. Further, the ratio σ̂I/σ̂S provides a good indicator of the relative contributions from both input
and simulation uncertainty.

3.1 Input Density Estimation

In the empirical study, a Gamma prior is used for the dispersion parameter α ∼ Gamma(ς1, ς2). Since our sensitivity
study in Supplement E indicates that the input model performance is not sensitive to the values of hyper-parameters
θθθα, we set ς1 = 1 and ς2 = 1 in the empirical study. As for the hyper-parameters θθθG for the base distribution G0, we
use the noninformative prior. We set θ = 0.01, r = 2 and s = 2 for DPM with Gamma kernel density, and set µ0 = 0,
v0 = 1.5, m0 = 0.01 and σ0 = 1 for DPM with Gaussian kernel density. For DPM with Beta kernel density, we set
λ0 = 1, λ1 = λ2 = 0.01.
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We study the performance of the proposed nonparametric Bayesian input models by using simulated data generated
from the test examples listed in Table 1. Example 1 is an Pareto distribution with shape 1.1 and the support on <+,
which violates Condition (i) in Theorem 1. Examples 2 and 3 are shifted Gamma and shifted Weibull with shape less
than 1 and the support on <+, which have unknown lower endpoints of their support, and violate Condition (i) in
Theorem 1. Example 4 is Log-Logistic with shape less than 1 and the support on <+, which violates Condition (i)
in Theorem 1. Example 5 is a mixture distribution of log-normal with the support on <+. Example 6 is a mixture
distribution of Gumbel with the support on <. Both log-normal and Gumbel mixtures have heavy tails. Example 7 is
a mixture of Beta distributions, which has the support on [0, 1].

Table 1: Test examples to study the input distribution estimation

Example 1 Pareto Pareto(shape = 1.1, scale = 1)
Example 2 Shifted Gamma Gamma(0.5,1) with shift = 1
Example 3 Shifted Weibull Weibull(shape = 0.5, scale = 1) with shift = 1
Example 4 Log-logistic Log-logistic(shape = 0.5, scale = 1)
Example 5 Log-normal (L) Mixture 0.3L(0,0.1)+0.4L(1,0.1)+0.3L(2,0.1)
Example 6 Gumbel (Gum) Mixture 0.3Gum(1.5,0.1)+0.4Gum(2.5,0.3)+0.3Gum(5,0.5)
Example 7 Beta (Be) Mixture 0.3Be(10,90)+0.4Be(20,60)+0.3Be(10,10)

For Bayesian approaches, there exist various model selection criteria, including Bayes Factor [37], Posterior predic-
tive density [27], and Deviance Information Criteria [60]. However, they are not suitable here since we consider both
frequentist and Bayesian candidates. As the KS and AD test statistics are commonly used to study the goodness of
fit in the simulation community, we use the KS and AD criteria to study the fitting performance obtained by various
approaches. Since the underlying true input model F c for examples listed in Table 1 are known, we replace the hypoth-
esized distribution in these test statistics with F c to obtain corresponding distance measures. The KS distance, defined
asDm ≡ sup

x∈<
(|F c(x)−F̂m(x)|), records the largest vertical distance between F c(·) and the distribution estimated by

m real-world data, denoted by F̂m(·), which could be obtained by different approaches, including DPM with various
kernel densities, empirical distribution, KDE and parametric approaches. The KS distance assigns equal weight to
all x ∈ <. Since it is typically more challenging to estimate the tail behavior compared to the central part, the AD
distance, defined as A2

m ≡ m
∫∞
−∞ |F

c(x) − F̂m(x)|2w(x)dF c(x), places more weight on the tails of F c, where the
weight function is w(x) = 1/ (F c(x)(1− F c(x))). Thus, the AD distance can better detect the discrepancies in the
tails.

Table 2 records the statistical behaviors of KS and AD distances (Dm and Am) obtained by DPM with Gamma,
Gaussian, and Beta kernel densities, finite mixture [19], empirical distribution, KDE, and parametric distributions
selected based on KS and AD criteria when m = 50, 100, 500. All results are based onN = 1000 macro-replications.
In the i-th macro-replication, we first draw m samples, denoted by X

(i)
m , from F c listed in Table 1 to mimic the

procedure collectingm “real-world data”. Then, various approaches are used to fit the real-world data, and calculate
the KS and AD distances for the fitted distributions. In the table, “parametric (AD)” and “parametric (KS)” refer to
the parametric distributions selected based on the AD and KS statistics by using @Risk [1]. KDE is obtained by using
the R function, kde, and the bandwidth is selected to minimize the mean integrated squared error [58]. For empirical
distribution, KDE and parametric approaches, we find the fitted distributions and then record the KS and AD distances
for these fitted distributions.

Differing from these frequentist approaches that provide the point estimates of input distribution, DPM and finite
mixture are Bayesian approaches. According to [27], the posterior predictive distribution, defined by f(X|Xm) =∫
f(X|F )dP (F |Xm), is recommended for assessing the fitting performance of input model to the real-world data.

Thus, the posterior predictive distribution is used to calculate the KS and AD distances. Specifically, we use the Gibbs
samplers described in Section 2.2 to generate 100 posterior samples of input models with the warmup equal to 500
and save the sample for each 10 draws. Then, we aggregate these posterior samples to obtain the posterior predictive
distribution, f̂(X|Xm) =

∑B′

b=1 f(X|F̃ (b))/B′ with F̃ (b) ∼ P (F |Xm) for b = 1, 2, . . . , B′ and B′ = 100. To
calculate the KS and AD distances, the posterior predictive distribution is used to replace F̂m(x) in Dm and A2

m. We
generate 10, 000 samples from F c and 10, 000 samples from posterior predictive distribution (i.e., draw 100 posterior
input models F̃ (b) with b = 1, 2, . . . , B′ and generate 100 samples of X from each F̃ (b)) to numerically estimate the
KS and AD distances.

In the i-th macro-replication, we obtain the KS and AD distances, denoted by D(i)
m and A(i)

m , with i = 1, 2, . . . , N .
Then, we record 95% symmetric CIs for both KS and AD distances, denoted by D̄±1.96SD/

√
N and Ā±1.96SA/

√
N ,

in Table 2, and highlight the smallest values, where D̄ =
∑N
i=1D

(i)
m /N , Ā =

∑N
i=1A

(i)
m /N , SD =

[∑N
i=1(D

(i)
m −
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Table 2: KS and AD distances obtained from DPM with Gamma, Gaussian and Beta kernel densities, the empirical
distribution, KDE and parametric distributions selected based on KS and AD tests.

m = 50 Example 1 Example 2 Example 3 Example 4 Example 5 Example 6 Example 7

DPM with Gamma Dm 0.089±0.001 0.116±0.001 0.123±0.002 0.072±0.001 0.050±0.001 NA 0.075±0.001
Am 12.079±0.153 15.649±0.210 13.172±0.231 11.253±0.144 7.093±0.098 NA 8.566±0.115

DPM with Gaussian Dm 0.135±0.002 0.133±0.002 0.146±0.002 0.098±0.001 0.062±0.001 0.071±0.001 0.084±0.001
Am 16.894±0.250 17.759±0.288 18.658±0.319 14.599±0.221 8.861±0.105 5.940±0.074 9.864±0.129

DPM with Beta Dm NA NA NA NA NA NA 0.068±0.001
Am NA NA NA NA NA NA 8.608±0.096

Finite Mixture Dm 0.113±0.001 0.230±0.003 0.206±0.002 0.142±0.002 0.143±0.002 0.094±0.001 0.082±0.001
Am 14.324±0.218 21.658±0.293 25.023±0.324 18.549±0.287 16.127±0.251 9.387±0.133 10.528±0.146

Empirical Distribution Dm 0.104±0.001 0.122±0.002 0.120±0.002 0.115±0.002 0.082±0.001 0.081±0.001 0.084±0.001
Am 12.224±0.163 16.181±0.188 13.769±0.169 13.934±0.174 9.734±0.118 6.592±0.087 9.809±0.120

KDE Dm 0.161±0.002 0.174±0.002 0.207±0.002 0.085±0.001 0.141±0.002 0.130±0.002 0.084±0.001
Am 19.086±0.266 20.654±0.291 23.996±0.325 13.404±0.190 18.951±0.283 11.245±0.148 10.408±0.142

Parametric (KS) Dm 0.153±0.002 0.180±0.002 0.191±0.002 0.076±0.001 0.147±0.002 0.128±0.002 0.110±0.001
Am 22.045±0.305 25.541±0.328 26.410±0.346 12.679±0.170 19.653±0.281 12.273±0.168 11.506±0.157

Parametric (AD) Dm 0.154±0.002 0.184±0.002 0.191±0.002 0.078±0.001 0.148±0.002 0.131±0.002 0.113±0.001
Am 21.922±0.292 25.528±0.303 26.207±0.352 12.100±0.174 19.744±0.283 11.924±0.159 11.233±0.152

m = 100 Example 1 Example 2 Example 3 Example 4 Example 5 Example 6 Example 7

DPM with Gamma Dm 0.058±0.001 0.088±0.001 0.084±0.001 0.051±0.001 0.056±0.001 NA 0.053±0.001
Am 8.095±0.114 9.093±0.142 10.516±0.166 7.160±0.109 6.121±0.088 NA 6.208±0.090

DPM with Gaussian Dm 0.091±0.001 0.100±0.001 0.117±0.002 0.069±0.001 0.064±0.001 0.062±0.001 0.056±0.001
Am 13.174±0.187 12.678±0.182 14.224±0.202 10.372±0.153 8.133±0.111 4.390±0.068 7.334±0.105

DPM with Beta Dm NA NA NA NA NA NA 0.049±0.001
Am NA NA NA NA NA NA 6.416±0.092

Finite Mixture Dm 0.096±0.001 0.176±0.002 0.185±0.002 0.064±0.001 0.094±0.001 0.066±0.001 0.061±0.001
Am 15.550±0.207 17.582±0.237 18.188±0.255 11.288±0.167 16.583±0.214 5.329±0.080 7.802±0.102

Empirical Distribution Dm 0.071±0.001 0.086±0.001 0.087±0.001 0.083±0.001 0.064±0.001 0.068±0.001 0.059±0.001
Am 8.319±0.115 9.621±0.134 9.687±0.139 8.860±0.128 6.874±0.096 5.443±0.075 7.230±0.098

KDE Dm 0.130±0.002 0.176±0.002 0.211±0.001 0.062±0.001 0.132±0.002 0.078±0.001 0.060±0.001
Am 15.431±0.204 18.544±0.239 22.895±0.315 10.623±0.161 18.037±0.243 6.386±0.094 8.095±0.112

Parametric (KS) Dm 0.141±0.002 0.174±0.002 0.182±0.002 0.049±0.001 0.146±0.001 0.087±0.001 0.086±0.001
Am 19.710±0.315 21.593±0.330 22.263±0.367 7.752±0.118 16.585±0.293 7.794±0.115 9.503±0.124

Parametric (AD) Dm 0.143±0.002 0.175±0.002 0.184±0.002 0.050±0.001 0.146±0.002 0.089±0.001 0.086±0.001
Am 19.448±0.322 21.081±0.335 22.928±0.354 7.680±0.114 16.330±0.287 7.542±0.109 9.337±0.133

m = 500 Example 1 Example 2 Example 3 Example 4 Example 5 Example 6 Example 7

DPM with Gamma Dm 0.042±0.001 0.065±0.001 0.061±0.001 0.034±0.001 0.028±0.001 NA 0.031±0.001
Am 5.022±0.073 8.577±0.118 7.397±0.109 3.820±0.057 3.147±0.054 NA 3.653±0.058

DPM with Gaussian Dm 0.050±0.001 0.053±0.001 0.059±0.001 0.033±0.001 0.031±0.001 0.026±0.001 0.035±0.001
Am 6.880±0.095 6.558±0.093 7.056±0.102 5.045±0.074 3.599±0.038 2.744±0.044 4.490±0.069

DPM with Beta Dm NA NA NA NA NA NA 0.026±0.001
Am NA NA NA NA NA NA 3.030±0.042

Finite Mixture Dm 0.082±0.001 0.105±0.001 0.134±0.002 0.070±0.001 0.114±0.001 0.041±0.001 0.040±0.001
Am 12.828±0.174 14.302±0.195 16.899±0.212 8.393±0.124 13.676±0.176 4.568±0.065 5.559±0.072

Empirical Distribution Dm 0.051±0.001 0.048±0.001 0.049±0.001 0.041±0.001 0.038±0.001 0.036±0.001 0.038±0.001
Am 5.527±0.078 6.059±0.091 6.038±0.088 4.254±0.060 3.570±0.052 3.673±0.055 4.922±0.067

KDE Dm 0.126±0.002 0.152±0.002 0.185±0.002 0.037±0.001 0.113±0.001 0.048±0.001 0.034±0.001
Am 14.327±0.193 15.277±0.205 18.839±0.226 6.375±0.099 15.735±0.211 6.066±0.094 5.172±0.073

Parametric (KS) Dm 0.139±0.002 0.167±0.002 0.174±0.002 0.038±0.001 0.135±0.002 0.072±0.001 0.065±0.001
Am 16.635±0.231 19.744±0.289 20.136±0.296 5.293±0.074 15.527±0.218 7.131±0.104 6.975±0.097

Parametric (AD) Dm 0.139±0.002 0.170±0.002 0.176±0.002 0.039±0.001 0.136±0.002 0.077±0.001 0.068±0.002
Am 16.469±0.230 19.682±0.286 20.122±0.303 5.118±0.071 15.760±0.220 7.530±0.109 6.883±0.095

D̄)2/(N − 1)
]1/2

and SA =
[∑N

i=1(A
(i)
m − Ā)2/(N − 1)

]1/2
. As m increases, the KS and AD distances obtained

from all approaches decrease, and the DPM with appropriate kernel density typically has the best performance. Notice
that DPM with Gamma and Beta kernel densities performs better than DPM with Gaussian kernel, which is the main
focus of study in both statistics and machine learning communities. Further, DPM with Gamma kernel fits different
input models with support on <+ well. Based on the results of AD distance, DPM tends to provide better estimation
on the tail behavior compared with the finite mixture, empirical, KDE and parametric distributions, especially when
m is not large.

3.2 Studying Input Model Performance by Using Real Raw Materials Demand Data

Besides the simulated data in Section 3.1, we also assess the performance of our nonparametric input models by using
the demand data of two representative raw materials (RM) collected from a real biopharmaceutical manufacturing
system. The sample sizes are 101 and 142 respectively. Since the underlying true distributions are unknown, cross
validation is applied for the density selection; see more detailed description in [44]. We perform a 5-folds cross
validation. Table 3 records the average log-likelihoods obtained by using different approaches. Specifically, we
randomly divide all the data into 5 sets, select one set for validation and use the remaining sets as training data. For
each combination of training and validation data sets, we first fit the input model by using the training data, apply it
to the validation data and calculate the log-likelihood. After that, we record the average log-likelihood obtained from
all combinations of training and validation data sets.
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Table 3: Average log-likelihood results of cross validation for the distribution density function selection

DPM Gamma Empirical Distribution KDE Parametric
Demand of raw material 1 -218.731 NA -226.928 -393.239
Demand of raw material 2 -233.971 NA -270.577 -605.704

Since the demand data have support on <+, we use DPM with Gamma kernel density. The distribution family for
the parametric approach is selected based on the KS test statistics by using @Risk since both this criteria and the
likelihood are related to the overall fitting performance of input model. In addition, we skip the empirical distribution
since it only has the information at the data points and does not return a density estimate.

Since the posterior predictive distribution is recommended for the model selection [27], for DPM, the likelihood is
calculated based on the posterior predictive distribution given by f

(
X

(i)
V |X

(i)
T

)
=
∫
f
(
X

(i)
V |F

)
dP
(
F |X(i)

T

)
, where

X
(i)
T and X

(i)
V denote the i-th combination of training and validation data with i = 1, 2, . . . , 5. Then, we record

the average log-likelihood
∑5
i=1 log

[
f
(
X

(i)
V |X

(i)
T

)]
/5. For the frequentist KDE and parametric approaches, we first

find the fitted input density based on the training set, denoted by f̂(·|X(i)
T ), then apply it to the validation data and

calculate the average log-likelihood
∑5
i=1 log

[
f̂
(
X

(i)
V |X

(i)
T

)]
/5. Table 3 demonstrates that DPM with Gamma kernel

maximizes the average log-likelihood and provides the best fit to the real RM demand data.

3.3 Identifying the Underlying Sources of Uncertainty

To study the number of components identified by DPM and the finite mixture [19], we consider a mixture distribution
as test example with F c equal to 0.3Gum(1, 0.1) + 0.3L(2, 0.1) + 0.4N (4, 0.5). It includes three components from
different parametric families, where the Gumbel and log-normal components are asymmetric and the normal compo-
nent is symmetric. Here, we use the DPM with Gaussian kernel, and record the marginal distribution for the number
of active components,

p̄(K0 = k) =

∫
p(K0 = k|Xm)dF c(Xm).

To differentiate from the prior distribution of K0, here we use the notation p̄(·). The probability p̄(K0 = k) is
estimated based on N = 100 macro-replications and B0 = 100 posterior samples of input model obtained in each
macro-replication with results shown in Table 4. In the i-th macro-replication, we generate X

(i)
m

i.i.d.∼ F c with i =

1, 2, . . . , N . The marginal probability p̄(K0 = k) is estimated by using 1
B0N

∑N
i=1

∑B0

b=1 δ(K
(b)
0 = k|X(i)

m ) for

k = 1, 2, . . . ,m, where δ(·|X(i)
m ) denotes an indicator function conditional on X

(i)
m for i = 1, 2, . . . , N . The posterior

samples of K0 and input model can be obtained by following the procedure in Section 2.2. We compare the posterior
of K0 obtained by DPM with that obtained from the finite Gaussian mixture using Maximum A Posteriori Importance
Sampling (MAPIS) described in [19]. We record the estimated marginal probability in Table 4 whenm = 50, 100, 500.
The DPM provides a better detection of the underlying number sources of uncertainty.

Table 4: The Estimated Marginal Distribution for the Number of Active Components, p̄(K0 = k)

k 1 2 3 4 5 6 7 8 9 >=10

m = 50
DPM 0.014 0.165 0.453 0.239 0.084 0.026 0.013 0.004 0.002 0

MAPIS 0.047 0.079 0.109 0.102 0.108 0.106 0.109 0.116 0.110 0.115

m = 100
DPM 0 0.138 0.503 0.255 0.072 0.023 0.008 0.001 0 0

MAPIS 0.036 0.070 0.114 0.111 0.118 0.107 0.112 0.117 0.115 0.099

m = 500
DPM 0 0.097 0.558 0.246 0.077 0.016 0.006 0 0 0

MAPIS 0.032 0.050 0.123 0.122 0.106 0.113 0.123 0.115 0.108 0.109

In addition, given the data Xm, Figures 1 and 2 give the representative posterior samples of input model obtained by
DPM and finite mixture [19] whenm = 500. The posterior density function of F̃ (b) is given in Equation (9), where the
integration can be estimated by 1

NG

∑NG
i=1 h(x|ψψψi) with ψψψi ∼ G0, and we use NG = 1000 here. In Figures 1 and 2,

the solid line represents the true density function, and the dashed lines represent the posterior samples of input model.
The figures show that DPM can deliver accurate density estimation.

3.4 An M/G/1 Queue

An M/G/1 queue is used to study the performance of our DPM-based nonparametric Bayesian framework, and we
compare it with the empirical distribution based direct bootstrap [10]. Suppose that the arrival process is known
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Figure 1: Posterior samples of input density obtained by
DPM

Figure 2: Posterior samples of input density obtained by
finite mixture

with the arrival rate equal to λ, and the true distribution of service time F c is unknown. We are interested in the
probability of each customer having the time staying in the system greater than a threshold, denoted by τ . The
unknown distribution for service time is estimated by using m = 50, 500 observations drawn from F c. Among the
seven examples in Table 1, Example 1 has infinite variance and Example 6 has support on <. Thus, we consider the
remaining five examples as shown in Table 5 as the underlying input distribution. For each case, the true mean system
response µc is estimated by a side experiment with the runlength equal to 106 customers.

Table 5: The settings for five M/G/1 test examples

Example Distribution of Service Time Inter-arrival Time Threshold µc (%)
Log-normal 0.3L(0, 0.1) + 0.4L(1, 0.1) + 0.3L(2, 0.1) Exp(λ = 0.2) τ = 25 8.43± 0.02
Log-logistic Log-logistic(shape = 0.5, scale = 1) Exp(λ = 0.1) τ = 20 11.23± 0.03

Shifted-Gamma Gamma(0.5, 1) with shift = 1 Exp(λ = 0.5) τ = 8 13.03± 0.03
Shifted-Weibull Weibull(0.5, 1) with shift = 1 Exp(λ = 0.25) τ = 40 11.98± 0.03

Beta 0.3Be(10, 90) + 0.4Be(20, 60) + 0.3Be(10, 10) Exp(λ = 3) τ = 3 8.37± 0.02

We use DPM with Gamma kernel to model the distribution of service time. By following the sampling pro-
cedure described in Section 2.2, we construct the (1 − α∗) × 100% = 90% percentile empirical CrI,[
Ȳ(d(α∗/2)Be), Ȳ(d(1−α∗/2)Be)

]
, accounting for both input and simulation uncertainties. We use ¯̄Y = 1

B

∑B
b=1 Ȳb

as the point estimator for the system mean response. For the direct bootstrap, we generate B sets of bootstrapped
input data, build empirical distributions, F̂ (1), F̂ (2), . . . , F̂ (B), and record the output sample mean Ȳb at each F̂ (b)

for b = 1, 2, . . . , B. A percentile CI is constructed according to [10], and similarly, ¯̄Y = 1
B

∑B
b=1 Ȳb is used as

the point estimator. We set B = 1000, and assign equal numbers of replications, n = 100, 1000, to each posterior
or bootstrapped sample of input model. Each simulation run starts with the empty system with both warmup and
runlength equal to 1000 customers.

To compare the performance of our approach with direct bootstrap, we first estimate the mean and standard deviation
(SD) of the deviation of the point estimator from µc, defined by Err = | ¯̄Y − µc|, and then report mean ± 1.96 ·
SD/
√
N of the CrI and CI width as shown in Table 6, where “DPM” and “EMP” represent our approach and

direct bootstrap, respectively. The results are based on N = 1000 macro-replications. Our proposed nonparametric
Bayesian framework provides smaller Err and CrI’s with shorter width.

Frequentist and Bayesian approaches have totally different philosophies in terms of uncertainty quantification and
performance evaluation. In the frequentist approaches, we construct the random confidence interval (CI) for true
mean response µc, and then the percentage covering µc is used to assess the performance of this interval. Different
from frequentist approaches, the belief of input uncertainty in Bayesian approaches is quantified by the posterior
distribution ofW ≡ µ(F̃ ) with F̃ ∼ p(F |Xm). By following the studies in [70, 2], we use the probability content (PC)
covering the posterior distribution of µ(F̃ ) to evaluate the CrI constructed by our approach. Specifically, to estimate
PC(C̃rI), we draw B = 1000 posterior samples of the input models F̃ (b) ∼ p(F |Xm) with b = 1, 2, . . . , B. At each
F̃ (b), the system mean response or the expected probability of each customer having the time staying in the system
greater than the threshold is estimated with side simulation experiments with the runlength equal to 105 customers.
The PC is estimated by P̂C(C̃rI) = 1

B

∑B
b=1 1

¯

(
µ(F̃ (b)) ∈ C̃rI

)
, where 1(·) represents the indicator function. The

standard deviation (SD) of the PC estimator is obtained by using N = 1000 macro-replications. For the frequentist
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bootstrap approach, the coverage probability (CP) of CI obtained by empirical distribution based bootstrap (EMP)
is estimated with ĈP = 1

N

∑N
i=1 1

¯

(
µc ∈ CI(i)

)
, where CI(i) represents the 90% CI constructed in the i-th macro-

replication. The standard deviation is estimated by
√

ĈP(1− ĈP). Based on the results in Table 6, the PC of CrI
delivered by the proposed Bayesian framework is close to the nominal value 90%. Overall, the coverage performance
of CrI is comparable with the CI obtained by the empirical distribution based bootstrap uncertainty quantification.
Since bootstrap uncertainty quantification is built on asymptotic approximation, our Bayesian approach tends to work
better when the amount of real-world data is limited, such as m = 50.

Table 6: The results obtained by using our Bayesian framework (DPM) and direct bootstrap (EMP)

Log-normal Err% (DPM) CrI Width% (DPM) P̂C(C̃rI)% (DPM) Err% (EMP) CI Width% (EMP) ĈP % (EMP)
m = 500, n = 1000 2.0 ± 0.012 6.8 ± 0.051 89.8 ± 0.086 2.6 ± 0.019 9.5 ± 0.068 89.6 ± 1.892
m = 500, n = 100 2.4 ± 0.019 7.3 ± 0.056 89.7 ± 0.121 2.9 ± 0.019 10.2 ± 0.081 89.4 ± 1.908
m = 50, n = 1000 5.1 ± 0.031 20.6 ± 0.149 89.7 ± 0.093 6.1 ± 0.037 25.8 ± 0.167 89.5 ± 1.901
m = 50, n = 100 5.5 ± 0.037 22.3 ± 0.143 88.8 ± 0.112 6.9 ± 0.037 27.1 ± 0.186 86.2 ± 2.138

Log-logistic Err% (DPM) CrI Width% (DPM) P̂C(C̃rI)% (DPM) Err% (EMP) CI Width% (EMP) ĈP % (EMP)
m = 500, n = 1000 3.8 ± 0.025 7.4 ± 0.056 89.8 ± 0.049 4.4 ± 0.031 9.8 ± 0.068 81.2 ± 2.422
m = 500, n = 100 4.5 ± 0.031 8.0 ± 0.062 89.8 ± 0.051 5.2 ± 0.037 10.5 ± 0.074 79.6 ± 2.497
m = 50, n = 1000 10.3 ± 0.068 18.6 ± 0.143 89.6 ± 0.104 12.2 ± 0.081 25.4 ± 0.192 67.2 ± 2.909
m = 50, n = 100 10.8 ± 0.074 19.8 ± 0.161 89.5 ± 0.128 12.8 ± 0.087 26.3 ± 0.198 62.4 ± 3.002
Shifted-Gamma Err% (DPM) CrI Width% (DPM) P̂C(C̃rI)% (DPM) Err% (EMP) CI Width% (EMP) ĈP % (EMP)

m = 500, n = 1000 4.3 ± 0.031 8.7 ± 0.068 89.8 ± 0.040 4.4 ± 0.031 9.6 ± 0.074 91.6 ± 1.719
m = 500, n = 100 4.8 ± 0.031 9.5 ± 0.074 89.8 ± 0.041 4.7 ± 0.031 10.1 ± 0.074 87.9 ± 2.021
m = 50, n = 1000 9.9 ± 0.068 28.2 ± 0.198 89.7 ± 0.041 10.5 ± 0.068 29.6 ± 0.211 84.2 ± 2.261
m = 50, n = 100 10.4 ± 0.068 29.0 ± 0.211 89.5 ± 0.044 10.9 ± 0.074 30.7 ± 0.236 84.1 ± 2.266
Shifted-Weibull Err% (DPM) CrI Width% (DPM) P̂C(C̃rI)% (DPM) Err% (EMP) CI Width% (EMP) ĈP % (EMP)

m = 500, n = 1000 6.4 ± 0.043 12.5 ± 0.112 89.4 ± 0.052 6.5 ± 0.043 13.3 ± 0.124 85.9 ± 2.157
m = 500, n = 100 6.9 ± 0.05 13.1 ± 0.118 89.8 ± 0.059 7.1 ± 0.05 13.9 ± 0.136 84.5 ± 2.243
m = 50, n = 1000 18.4 ± 0.136 40.9 ± 0.279 78.7 ± 0.354 22.0 ± 0.161 50.9 ± 0.341 75.6 ± 2.662
m = 50, n = 100 19.1 ± 0.143 41.7 ± 0.291 77.3 ± 0.382 22.8 ± 0.167 52.2 ± 0.359 76.1 ± 2.643

Beta Err% (DPM) CrI Width% (DPM) P̂C(C̃rI)% (DPM) Err% (EMP) CI Width% (EMP) ĈP % (EMP)
m = 500, n = 1000 1.5 ± 0.012 4.1 ± 0.037 89.4 ± 0.091 1.9 ± 0.019 4.5 ± 0.037 90.2 ± 1.843
m = 500, n = 100 1.8 ± 0.012 4.4 ± 0.037 88.7 ± 0.108 2.2 ± 0.019 4.9 ± 0.037 89.6 ± 1.892
m = 50, n = 1000 2.9 ± 0.025 10.0 ± 0.074 88.4 ± 0.111 3.7 ± 0.031 12.1 ± 0.099 89.8 ± 1.876
m = 50, n = 100 3.4 ± 0.031 10.5 ± 0.081 88.1 ± 0.120 4.1 ± 0.037 12.8 ± 0.099 86.8 ± 2.098

We also report the ratio σ̂2
I/σ̂

2
S in Table 7 from our approach according to Section 2.5, which provide insights on the

contributions of input and simulation estimation uncertainties.

Table 7: Ratio of Input and Simulation Uncertainties with 95% Confidence Interval

σ̂2
I/σ̂

2
S Log-normal Log-logistic Shifted-Gamma Shifted-Weibull Beta

m = 500, n = 1000 4.957 ± 0.077 8.792 ± 0.218 6.183 ± 0.108 8.034 ± 0.152 5.870 ± 0.088
m = 500, n = 100 0.635 ± 0.009 1.455 ± 0.015 0.924 ± 0.017 1.252 ± 0.019 0.908 ± 0.015
m = 50, n = 1000 8.492 ± 0.189 22.560 ± 0.544 11.273 ± 0.250 16.813 ± 0.388 9.405 ± 0.230
m = 50, n = 100 1.280 ± 0.036 4.642 ± 0.114 1.765 ± 0.052 3.508 ± 0.093 2.072 ± 0.052

4 Conclusions

Without strong prior information on the true input models and the system mean response surface, in this paper, a
Bayesian nonparametric framework is proposed to quantify the overall uncertainty of system mean performance esti-
mation. The DPM can model the mixture of heterogeneous distributions and capture the important properties in the
real-world data, including multi-modality, skewness, and tails. The posteriors of flexible input models can automati-
cally account for both model selection and parameters value uncertainty. Then, direct simulation is used to propagate
the input model estimation uncertainty to the outputs with the simulation uncertainty quantified by the sampling dis-
tribution of system mean responses. Therefore, given the real-world input data, our framework leads to a sampling
procedure that can deliver a conditional distribution of the system mean response and provide a percentile empirical
CrI accounting for both input and simulation uncertainties. A variance decomposition is further developed to quantify
the relative contributions from both sources of uncertainty. Our approach is supported by rigorous asymptotic study.
Given a finite amount of real-world data, as the simulation budget increases, our CrI converges to the CrI accounting
for input uncertainty with the true mean response surface known. As both real-world data and simulation budget go
to infinity, our empirical CrI converges to the true system response.

The empirical study demonstrates obvious advantages of Bayesian nonparametric DPM for input density estimation
compared to existing approaches, including empirical distribution, KDE and parametric approaches. The simulation
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results indicate that our framework is robust to possible violation of the sufficient conditions required for the asymptotic
consistency of DPM. Our approach demonstrates better empirical performance than the nonparametric bootstrap in
uncertainty quantification. The ratio σI/σS provides a good measure of the relative contributions from input and
simulation uncertainties.
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A Appendix: Gibbs Samplers for DPM with Gamma, Gaussian and Beta Kernels

For DPM with Gamma, Gaussian and Beta kernels, we provide the posterior inference and sampling for the indicator
variables c and component parametersψψψ?j for j = 1, 2, . . . ,K0 used in Steps 1 and 2 of the Gibbs samplers presented
in Section 2.2. We describe the main results to support the Gibbs sampling in Section A.1. Then, in Section A.2, we
provide the detailed derivation of the results used in the sampling procedure.

A.1 Gibbs Sampling for c and Ψ?

A.1.1 DPM with Gamma Kernel

Here, we present a posterior sampler for the DPM with Gamma kernel. Given the base distributionG0 in Equation (3),
we first generate samples of latent variables c for Step 1 of the Gibbs sampler in Section 2.2. According to Equation (6),
the conditional posterior probabilities of ci in DPM with Gamma kernel is

p(ci = j|c−i,ψψψ?j , α,Xi) =

{
b0

m−ij
m+α−1X

Vj−1
i e

−
Vj
uj
Xi if ∃cq = j for all q 6= i

b0
α

m+α−1

∫
XV−1
i e−

V
uXidG0(V, u) otherwise

(16)

where b0 denotes the normalizing constant. When Xi comes from a new component, the conditional posterior for ci
in Equation (16) is not analytically tractable and a sampling approach is used to generate samples of c by following
Algorithm 4 in the reference [51].

Next we generate samples of the parameters ψψψ?j = (Vj , uj)
> for Step 2 of the Gibbs sampler. By the Bayes’ rule,

p(Vj |uj ,Xj) ∝ p(Vj)f(Xj |Vj , uj) and p(uj |Vj ,Xj) ∝ p(uj)f(Xj |Vj , uj), the conditional posteriors of Vj and uj
are given by

Vj |uj ,Xj ∝
V
mjVj
j

Γ(Vj)mj
exp

[
−Vj

(
θ +

∑mj
k=1X

j
k

uj
+mj log(uj)−

mj∑
k=1

log(Xj
k)

)]
(17)

uj |Vj ,Xj ∼ Inv-Gamma

(
r +mjVj , s+ Vj

mj∑
k=1

Xj
k

)
where Xj

k are the kth observation associated to the j-th component and mj is the size of Xj . The detailed derivation
for these posteriors can be found in Section A.2.1.

The conditional posterior p(Vj |uj ,Xj) in Equation (17) is not a standard distribution. A Metropolis-Hasting (M-H)
nested Gibbs sampler is developed to generate samples of Vj from the conditional posterior. Specifically, denote the
sample from the previous iteration in the nested M-H sampling by V 0

j . We first generate a candidate sample Ṽj from a
proposal distribution, denoted by g(·, V 0

j ), and accept it with probability

min

{
1,
p(Ṽj |uj ,Xj)g(V 0

j , Ṽj)

p(V 0
j |uj ,Xj)g(Ṽj , V 0

j )

}
,

where p(V 0
j |uj ,Xj) and p(Ṽj |uj ,Xj) are the conditional posteriors from Equation (17). Otherwise, retain the value

of V 0
j . The proposal distribution g(·, V 0

j ) is chosen to be Gamma(d, d/V 0
j ) with mean located at V 0

j . This proposal
distribution is determined by using the Stirling approximation so that it can capture the tail of the conditional posterior
p(Vj |uj ,Xj) well. The detailed derivation can be found in Section A.2.1. To make the proposal distribution relatively
flat, we recommend that the value of d is set to be small, e.g., d = 2 used in our empirical study.

A.1.2 DPM with Gaussian Kernel

Given the base distribution G0 in Equation (4), we first generate samples of the latent variables c for Step 1 of the
Gibbs sampler. If ci is associated with an existing jth component, then

p(ci = j|c−i,ψψψ?j , α,Xi) = b0
m−ij

m+ α− 1

1√
2πσj

e−(Xi−uj)2/2σ2
j .

If ci is associated with a new component, then

p(ci = j|c−i,ψψψ?j , α,Xi) = b0
α

m+ α− 1

(v0/2)
v0/2

Γ(v0/2)
σv0

0

√
m0

2π(m0 + 1)

Γ(A)

BA
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where A = (v0 + 1)/2, B = [v0σ
2
0 + m0(Xi − u0)2/(m0 + 1)]/2 and b0 is the normalizing constant. The detailed

derivation for this conditional posterior can be found in Section A.2.2.

Next we generate samples of the parameters ψψψ?j = (uj , σ
2
j )> for Step 2 of the Gibbs sampler. The conditional

posteriors for uj and σj are derived by following Chapter 3 in the reference [27]

uj |σj ,Xj ∼ N

(
m0

m0 +mj
u0 +

mj

m0 +mj
X̄j ,

σ2
0j

m0 +mj

)
, (18)

σ2
j /σ

2
0

∣∣∣Xj ∼ Inv-Gamma
(
v0 +mj

2
,

1

2

)
,

where

σ2
0j =

v0σ
2
0 +

∑mj
k=1(Xj

k − X̄j)2 +
m0mj(X̄

j−u0)2

m0+mj

v0 +mj
with X̄j =

1

mj

mj∑
k=1

Xj
k.

A.1.3 DPM with Beta Kernel

Here we develop a posterior sampler for DPM with the Beta kernel density to fit the input models with compact
supports. We assume that Xi|ci = j, ωj , βj ∼ Beta(ωj , βj) and denote the parameters for the jth component by
ψψψ?j = (ωj , βj)

>. Equation (5) provides the base function G0(ω, β). The derivation for this prior can be founded in
Section A.2.3.

We first generate samples of the latent variable ci for Step 1 of the Gibbs sampler. According to Equation (6), the
conditional posterior probabilities of ci in DPM with Beta kernel is

p(ci = j|c−i,ψψψ?j , α,Xi) =

{
b0

m−ij
m+α−1X

ωj−1
i (1−Xi)

βj−1 if ∃cq = j for all q 6= i

b0
α

m+α−1

∫
Xω−1
i (1−Xi)

β−1dG0(ω, β) otherwise

where b0 denotes the normalizing constant. Since the conditional posterior for ci associated with a new component
does not have a closed form, we use the sampling approach by following Algorithm 4 in the reference [51] to generate
samples of ci.

Next we generate samples of the parameters ψψψ?j = (ωj , βj)
> for Step 2 of the Gibbs sampler. By applying the

Bayes’ rule, p(ωj |βj ,Xj) ∝ p(ωj)p(X
j |ωj , βj) and p(βj |ωj ,Xj) ∝ p(βj)p(X

j |ωj , βj), the conditional posteriors
of component parameters ωj and βj are given by

ωj |βj ,Xj ∝ exp

{[
−λ1 +

mj∑
k=1

log(Xj
k)

]
ωj − (λ0 +mj) log

[
Γ(ωj)

Γ(ωj + βj)

]}
, (19)

βj |ωj ,Xj ∝ exp

{[
−λ2 +

mj∑
k=1

log(1−Xj
k)

]
βj − (λ0 +mj) log

[
Γ(βj)

Γ(ωj + βj)

]}
. (20)

The detailed derivation for these posteriors can be found in Section A.2.3.

Since the conditional posteriors in Equations (19) and (20) are not standard distributions, we again develop an M-H
nested Gibbs sampler to generate samples for ωj and βj . Denote the samples from the previous iteration in the M-
H sampling by ω0

j and β0
j . By using the Stirling approximation, we choose Gamma(d, d/a) with relatively small d

and mean a equal to ω0
j or β0

j as the proposal distribution; See the detailed derivation in Section A.2.3. Denote the
proposal density by g(·, a). Specifically, for ωj , we randomly sample a candidate ω̃j from the proposal distribution
Gamma(d, d/ω0

j ), and accept ω̃j with probability

min

{
1,
p(ω̃j |β0

j ,X
j)g(ω0

j , ω̃j)

p(ω0
j |β0

j ,X
j)g(ω̃j , ω0

j )

}
,

where p(ω̃j |β0
j ,X

j) and p(ω0
j |β0

j ,X
j) are the conditional posterior in Equation (19). Otherwise, retain the value of

ω0
j . Similarly, for βj , we randomly sample a candidate β̃j from the proposal distribution Gamma(d, d/β0

j ), and accept
β̃j with probability

min

{
1,
p(β̃j |ω0

j ,X
j)g(β0

j , β̃j)

p(β0
j |ω0

j ,X
j)g(β̃j , β0

j )

}
,
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where p(β̃j |ω0
j ,X

j) and p(β0
j |ω0

j ,X
j) are the conditional posteriors in Equation (20). Otherwise, retain the value of

β0
j . In our empirical study, we set d = 2 when we sample both ωj and βj .

A.2 Derivation of the Results Used in the Gibbs Sampling

In this section, we provide the detailed derivation of priors, proposal distributions, and conditional posteriors used in
the Gibbs samplers for DPM with Gamma, Gaussian and Beta kernel densities in Section A.1.

A.2.1 Conditional Posteriors of DPM with Gamma Kernel

We derive the conditional posteriors of parametersψψψ?j = (Vj , uj) with j = 1, 2, . . . ,K0 for DPM with Gamma kernel.
Given the priors Vj ∼ exp(θ), uj ∼ Inv-Gamma(r, s) and the likelihood Xi|ci = j,ψψψ?j ∼ Gamma(Vj , Vj/uj), by the
Bayes’ rule, we have the conditional posterior for Vj

p(Vj |Xj , uj) ∝ p(Vj)
mj∏
k=1

p
(
Xj
k|Vj , uj

)
∝ e−θVj

mj∏
k=1

(Vj/uj)
Vj

Γ(Vj)
(Xj

k)Vj−1e−(Vj/uj)X
j
k

∝
V
mjVj
j

Γ(Vj)mj
exp

{
−Vj

[
θ +

∑mj
k=1X

j
k

uj
+mj log(uj)−

mj∑
k=1

log
(
Xj
k

)]}
. (21)

Since the conditional posterior of Vj in Equation (21) is not a standard distribution, we develop an M-H sampling
algorithm to generate samples of Vj . We first find an appropriate proposal distribution for the M-H sampling. To get
a fair degree of probability drawing samples from the tail part of the conditional posterior p(Vj |Xj , uj), the Stirling
approximation, n! ≈

√
2πn(n/e)n for large n, is used to find an appropriate family for the proposal distribution.

Since Γ(n) = (n− 1)!,

p
(
Vj |Xj , uj

)
∝

V
mjVj
j

Γ(Vj)mj
exp

{
−Vj
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∑mj
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j
k
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mj∑
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log(Xj
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]}

≈
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j√
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e

)Vj−1


mj

e−VjB , if Vj is large

≈

[
V
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j
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√
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2π
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]mj
e−VjB

≈

(√
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)mj
e−VjB ≈

(
1

2π

)mj/2
(Vj)

mj/2e−Vj(B−mj)

where B = θ +
∑mj
k=1X

j
k/uj + mj log(uj) −

∑mj
k=1 log(Xj

k). This approximation holds when Vj is large and it
returns a Gamma kernel function. Thus, we choose the proposal distribution to be Gamma(d, d/V 0

j ) with mean V 0
j

denoting the sample obtained from the previous M-H iteration. To have a non-negligible probability to draw samples
far from V 0

j , the value of d is recommended to be small, e.g., d = 2 used in our empirical study.
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Next we derive the conditional posterior for parameter uj . By applying the Bayes’ rule, we have

p(uj |Xj , Vj) ∝ p(uj)
mj∏
k=1

p(Xj
k|Vj , uj)

∝ u
−(r+1)
j e−s/uj

mj∏
i=1

(Vj/uj)
Vj

Γ(Vj)
(Xj

k)Vj−1e−(Vj/uj)X
j
k

∝ u
−(r+1+mjVj)
j exp

[
−
s+ Vj

∑mj
k=1X

j
k

uj

]

∼ Inv-Gamma

(
r +mjVj , s+ Vj

mj∑
k=1

Xj
k

)
.

A.2.2 Conditional Posteriors of DPM with Gaussian Kernel

For DPM with Gaussian kernel, we choose a conditional conjugate joint prior distribution for the component param-
eters ψψψ?j = (uj , σ

2
j ) with j = 1, 2, . . . ,K0,

uj |σ2
j ∼ N (u0, σ

2
j /m0) and σ2

j /σ
2
0 ∼ Inv-Gamma

(
v0

2
,

1

2

)
which determines the base function G0(u, σ2) with hyper-parameters θθθG = (u0,m0, v0, σ0).

Here, we derive the conditional posteriors of the latent variables c. For i = 1, 2, . . . ,m, if Xi is associated to an
existing component, by applying the Bayes’ rule,

p(ci = j|c−i,ψψψ?j , α,Xi) = b0 · p(ci = j|α, c−i)p(Xi|ci = j,ψψψ?j ) = b0
m−ij

m+ α− 1

1√
2πσj

e−(Xi−uj)2/2σ2
j .

If Xi is associated to a new component,
p(ci = j|c−i,ψψψ?j , α,Xi) = b0 · p(ci = j|α, c−i)p(Xi|ci = j,ψψψ?j )

= b0
α

m+ α− 1

∫ ∞
0

∫ ∞
−∞

p(Xi|uj , σ2
j )p(uj |σ2

j )p(σ2
j )dujdσ

2
j

= b0
α

m+ α− 1

∫ ∞
0

∫ ∞
−∞

(2πσ2
j )−1/2e

−
(Xi−uj)2

2σ2
j ×

(
2πσ2

j

m0

)−1/2

exp

[
−m0(uj − u0)2

2σ2
j

]

× (v0/2)v0/2

Γ(v0/2)
σv0

0 (σ2
j )−(v0/2+1)e

(
− v0σ

2
0

2σ2
j

)
dujdσ

2
j

= b0
α

m+ α− 1

(v0/2)v0/2

Γ(v0/2)
σv0

0

√
m0/2π

∫ ∞
0

∫ ∞
−∞

(σ2
j )−(

v0+3
2 )(2πσ2

j )−1/2

× exp

−
 (m0 + 1)(uj − Xi+m0u0

m0+1 )2 + m0(Xi−u0)2

m0+1 + v0σ
2
0

2σ2
j

 dujdσ2
j

= b0
α

m+ α− 1

(v0/2)v0/2

Γ(v0/2)
σv0

0

√
m0

2π(m0 + 1)

∫ ∞
0

∫ ∞
−∞

(
2πσ2

j

m0 + 1

)−1/2

× exp

−

(
uj − Xi+m0u0

m0+1

)2

2σ2
j /(m0 + 1)


 duj exp

−
 m0(Xi−µ0)2

m0+1 + v0σ
2
0

2σ2
j

 (σ2
j )−(

v0+1
2 +1)dσ2

j

= b0
α

m+ α− 1

(v0/2)v0/2

Γ(v0/2)
σv0

0

√
m0

2π(m0 + 1)

∫ ∞
0

exp

−
 m0(Xi−u0)2

m0+1 + v0σ
2
0

2σ2
j

 (σ2
j )−(

v0+1
2 +1)dσ2

j

= b0
α

m+ α− 1

(v0/2)v0/2

Γ(v0/2)
σv0

0

√
m0

2π(m0 + 1)

Γ(A)

BA
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where b0 is a normalization constant, A = v0+1
2 and B =

[
v0σ

2
0 + m0(Xi−u0)2

m0+1

]
/2.

A.2.3 Conditional Posteriors of DPM with Beta Kernel

In this section, we first find a conjugate joint prior and then derive the conditional posteriors of parameters ψψψ?j =
(ωj , βj) with j = 1, 2, . . . ,K0 for DPM with Beta kernel density. The likelihood is Xi | ci = j,ψψψ?j ∼ Beta(ωj , βj).
Since Beta distribution belongs to the exponential family, we rewrite the Beta density into the general form

p(x|ωj , βj) =
Γ(ωj + βj)

Γ(ωj)Γ(βj)
xωj−1(1− x)βj−1 =

Γ(ωj + βj)

Γ(ωj)Γ(βj)
e(ωj−1) log(x)+(βj−1) log(1−x).

Thus, we choose a conjugate joint prior for (ωj , βj) with the hyper-parameters θθθG = (λ0, λ1, λ2) [20]

ωj , βj |λ0, λ1, λ2 ∝ exp

{
−λ1ωj − λ2βj − λ0 log

[
Γ(ωj)Γ(βj)

Γ(ωj + βj)

]}
.

Then, we derive the conditional posteriors for parameters (ωj , βj) used in the Gibbs sampler in Section A.1.3. By
applying the Bayes’ rule, the conditional posterior for ωj is

p(ωj |βj ,Xj) ∝ p(ωj |βj)p(Xj |ωj , βj)

∝ exp

{
−λ1ωj − λ0 log

[
Γ(ωj)

Γ(ωj + βj)

]} mj∏
k=1

Γ(ωj + βj)

Γ(ωj)
(Xj

k)ωj−1

∝ exp

{(
−λ1 +

mj∑
k=1

log(Xj
k)

)
ωj − (λ0 +mj) log

[
Γ(ωj)

Γ(ωj + βj)

]}
. (22)

Since the conditional posterior for ωj in Equation (22) is not a standard distribution, we develop an M-H sampling
algorithm to draw samples of ωj by following the similar procedure used in DPM with Gamma kernel density. The
Stirling approximation is used to find an appropriate proposal distribution family. As ωj is large, the conditional
posterior distribution can be approximated by

p(ωj |βj ,Xj) ∝ e(−λ1+
∑mj
k=1 log(Xjk))ωj−(λ0+mj) log

[
Γ(ωj)

Γ(ωj+βj)

]

≈ e(−λ1+
∑mj
k=1 log(Xjk))ωj

[
(ωj + βj − 1)!

(ωj − 1)!

]λ0+mj

≈ e−(λ1−
∑mj
k=1 log(Xjk))ωj

(
ω
βj
j

)λ0+mj
, if ωj is large

∼ Gamma

(
βj(λ0 +mj) + 1, λ1 −

mj∑
k=1

log(Xj
k)

)
.

Thus, Gamma(d, d/ω0
j ) with small d, e.g., d = 2 used in the empirical study, is used as the proposal distribution,

where ω0
j denotes the sample obtained from the previous M-H sampling iteration.

Next, by applying the Bayes’ rule, we derive the conditional posterior for βj

p(βj |ωj ,Xj) ∝ p(βj |ωj)p(Xj |ωj , βj)

∝ exp

{
−λ2βj − λ0 log

[
Γ(βj)

Γ(ωj + βj)

]} mj∏
k=1

Γ(ωj + βj)

Γ(βj)

(
1−Xj

k

)βj−1

∝ exp

{(
−λ2 +

mj∑
k=1

log(1−Xj
k)

)
βj − (λ0 +mj) log

[
Γ(βj)

Γ(ωj + βj)

]}
. (23)

Notice that Equations (22) and (23) have the similar form, and they do not belong to any standard distribution. Thus,
an M-H sampling approach is developed to generate samples for βj . An appropriate proposal distribution family is
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found by applying the Stirling approximation,

p(βj |ωj ,Xj) ∝ e(−λ2+
∑mj
k=1 log(1−Xjk))βj−(λ0+mj) log

[
Γ(βj)

Γ(ωj+βj)

]

≈ e(−λ2+
∑mj
k=1 log(1−Xjk))βj

[
(ωj + βj − 1)!

(βj − 1)!

]λ0+mj

≈ e−(λ2−
∑mj
k=1 log(1−Xjk))βj (βωjj )λ0+mj

, if βj is large

∼ Gamma

(
ωj(λ0 +mj) + 1, λ2 −

mj∑
k=1

log(1−Xj
k)

)
.

In the M-H sampling, Gamma(d, d/β0
j ) with small d is used as the proposal distribution, where β0

j denotes the sample
obtained from the previous iteration.

B Appendix: Posterior Consistency of DPM Nonparametric Input Models

We first introduce a series of basic definitions and theorems related to posterior consistency from Bayesian nonpara-
metrics theory. We refer the readers to the textbooks of [33] and [32] for technical details.

Definition B.1 ([28]) Let F be the set of all densities on < with respect to the Lebesgue measure on <. Let f c ∈ F
denote the true probability density and Pfc be its associated probability measure. A weak neighborhood U of f c is a
set containing a set of the form

V =

{
f ∈ F :

∣∣∣∣∫ φi(x)f(x)dx−
∫
φi(x)f c(x)dx

∣∣∣∣ < ε, i = 1, . . . , k

}
,

where φi’s are bounded continuous functions on < and k is a positive integer.

The weak neighborhood is defined on the space of probability measures topologized by weak convergence (convergence
in distribution). Refer to [15] Chapter 1 Section 2 for more details on weak convergence.

Definition B.2 ([28]) Let Xm = {X1, . . . , Xm} be an i.i.d. sample from F c (with density f c). The posterior distri-
bution p(· | Xm) is said to be weekly consistent at F c or f c, if with Pfc -probability 1,

p(U | Xm)→ 1, as m→∞, (24)

for all weak neighborhoods U of f c.

Then we define the concept of Kullback-Leibler (K-L) support:

Definition B.3 ([28]) Let p be a prior distribution over the space F , the set of all densities on < with respect to the
Lebesgue measure on <. A density f c is said to be in the Kullback-Leibler (K-L) support of the prior p (denoted by
f c ∈ KL(p)), if for all ε > 0, p(Kε(f c)) > 0, where Kε(f c) = {g ∈ F :

∫
f c(x) log fc(x)

g(x) dx < ε} is the K-L
neighborhood of f c.

Following this definition, we cite Theorem 4.4.2 in [33], which is essentially derived from the Schwartz theorem ([57]):

Theorem 4 ([33] Theorem 4.4.2) Let p be a prior distribution over the space F , the set of all densities on < with
respect to the Lebesgue measure on <. If f c is in the Kullback-Leibler (K-L) support of p, then the posterior is weakly
consistent at f c.

Theorem 4 shows that f c being in the K-L support of the prior p implies the posterior weak consistency. Therefore, to
prove Theorem 1, it is sufficient to show that f c is in the K-L support of those priors under the conditions of Theorem
1.

In this paper, we define the support of a probability measure using the following standard definition on page 23 of
[15]:

Definition B.4 ([15]) If F is a σ-field in Ω and P is a probability measure on F , the triple (Ω,F , P ) is called a
probability measure space, or simply a probability space. A support of P is any F-measurable set A for which
P (A) = 1, denoted by A = supp(P ).
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To make our proof self-contained, we cite the original theorems and lemmas given in [67] that are used in the proof of
Theorem 1. In the citation, we changed the notation system in the original paper to the one used in this paper for easy
understanding.

Theorem 5 (Theorem 1 of [67]) Let f c be the true density. Let h(x;ψ, φ) be a kernel density, where ψ is the mixing
parameter and φ is the hyper-parameter which lies in the parameter space Φ. Consider the mixture distribution
fG,φ =

∫
h(x;ψ, φ)dG(ψ), where G lies in the space of all mixing distributions G . Let µ and Π be priors for the

hyper parameter and the mixing distribution, and p be the prior on F induced by µ×Π. If for any ε > 0, there exists
a mixing distribution Gε, a hyper-parameter φε, a set A ⊂ Φ with µ(A) > 0, and a set W ⊂ G with Π(W ) > 0, such
that

A1.
∫
f c log fc

fGε,φε
< ε,

A2.
∫
f c log

fGε,φε
fGε,φ

< ε for every φ ∈ A, and

A3.
∫
f c log

fGε,φ
fG,φ

< ε for every G ∈ W , φ ∈ A,

then f c ∈ KL(p).

This is Theorem 1 in [67], which was constructed for Bayesian nonparametric kernel mixture models that are more
general than the model (1). The kernel function for DPM considered in the cited theorem contains two of parameters ψ
and φ, while the prior being focused in this paper as presented in (1) has only one parameter ψ. As same as presented
in (1), φ in Theorem 5 is mixed over by the mixing distribution G, which is further given a prior DP (α,G0). The
additional parameter φ in Theorem 5 is known as the hyper-parameter and is given a separate prior µ directly. We
use Ψ to denote the sample space of ψ, and M (Ψ) to denote the space of mixing distributions on Ψ. Notice that
W ⊂M (Ψ).

Prior (1) does not involve the hyper-parameter φ, and hence it is equivalent to the prior induced by Π only, instead of
by µ × Π. Specifically, Π is the Dirichlet Process (DP) with parameters α and base measure G0 on G , the space of
mixing distribution G; and p is the induced Dirichlet Process Mixtrure (DPM) on F , the space of density functions.
Therefore, to prove Theorem 1, we only need to verify Conditions A1 and A3 in Theorem 5.

Applying Theorem 5 to prove the consistency is to verify that Conditions A1, A2 and A3 are satisfied for a given prior.
Usually, Condition A1 is directly verified by construction, while A2 and A3 are verified through the following two
lemmas.

Lemma 6 (Lemma 2 of [67]) Let f c, Π, µ and p be the same as in Theorem 5. If for any ε > 0, there exist a mixing
distribution Gε, a set D ⊇ supp(Gε), and φε ∈ supp(µ) such that Condition A1 holds and the kernel density function
h satisfies

A4. for any given x and ψ, the map φ 7→ h(x;ψ, φ) is continuous on the interior of supp(µ);

A5.
∫
X
f c(x)

{∣∣∣log
supψ∈D h(x;ψ,φε)

infψ∈D h(x;ψ,φ)

∣∣∣+
∣∣∣log

supψ∈D h(x;ψ,φ)

infψ∈D h(x;ψ,φε)

∣∣∣} dx < ∞ for every φ ∈ N(φε), where N(φε) is
an open neighborhood of φε;

A6. for any given x ∈ X, ψ ∈ D and φ ∈ N(φε), there exists a function k(x, ψ) such that k(x, ψ) ≥ h(x;ψ, φ),
and

∫
k(x, ψ)dGε(ψ) <∞;

then there exists a set A ⊂ Φ such that Condition A2 holds.

Lemma 7 (Lemma 3 of [67]) Let f c, Π, µ and p be the same as in Theorem 5. If for any ε > 0, there exist a mixing
distribution Gε ∈ supp(Π), a hyper-parameter φε ∈ supp(µ), and a set A ∈ Φ with µ(A) > 0, such that Conditions
A1 and A2 hold and for some D ⊇ supp(Gε), the kernel density function h and the prior Π satisfy

A7. for any φ ∈ A,
∫
X
f c(x) log

fGε,φ(x)
infψ∈D h(x;ψ,φ)dx <∞;

A8. for any ε > 0, there exists a compact set C ⊂ X with the complement set denoted by Cc, such that∫
Cc
f c(x) log

fGε,φ(x)

infψ∈D h(x;ψ, φ)
dx < ε/4, (25)

and Pfc(Cc) < ε/(4 log 2), we have that c := infx∈C infψ∈D h(x;ψ, φ) > 0;
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A9. for any given φ ∈ A and some compact C ⊂ X as required in A8, such that the family of maps {ψ 7→
h(x;ψ, φ), x ∈ C} is uniformly equicontinuous on D;

then there exists a set W ⊂M (Ψ) such that Condition A3 holds and Π(W ) > 0.

Notice that, Conditions A8 and A9 are a little different from their original form in [67]. The modification of Condition
A9 follows [68], while the modification on A8 is justified by the fact that in detailed proof of this lemma in [67]. We
only need the existence of C that satisfies (25) and Pfc(Cc) < ε/(4 log 2), where the existence is implied by Condition
A7. Since the conditions of the lemma are different from the original version in [67], we include the proof of this
lemma below, which reflexes the change in the conditions.

Proof of Lemma 7:

For any φ ∈ A, write ∫
X

f c(x) log
fGε,φ(x)

fG,φ(x)
dx =

∫
Cc
f c(x) log

fGε,φ(x)

fG,φ(x)
dx

+

∫
C

f c(x) log
fGε,φ(x)

fG,φ(x)
dx. (26)

Now, since Gε(D) = 1 > 1
2 , V = {G : G(D) > 1

2} is an open neighborhood of Gε by the Portmanteau Theorem.
For any G ∈ V and φ ∈ A, ∫

Cc
f c(x) log

fGε,φ(x)

fG,φ(x)
dx

≤
∫
Cc
f c(x) log

fGε,φ(x)∫
ψ∈D infψ∈D h(x;ψ, φ)dG(ψ)

dx

≤
∫
Cc
f c(x) log

fGε,φ(x)

infψ∈D h(x;ψ, φ)
∫
ψ∈D dG(ψ)

dx

<

∫
Cc
f c(x) log

2fGε,φ(x)

infψ∈D h(x;ψ, φ)
dx

The last term in the above inequality is due to the fact that G(D) > 1/2 as defined in the definition of V . Now we
have that ∫

Cc
f c(x) log

2fGε,φ(x)

infψ∈D h(x;ψ, φ)
dx

=

∫
Cc
f c(x) log

fGε,φ(x)

infψ∈D h(x;ψ, φ)
dx+ (log 2)Pfc(C

c);

where Pfc(Cc) =
∫
Cc
f c(x)dx, and Pfc denotes the probability measure corresponding to f c. By Condition A7,

there exists compact C ⊂ X, such that∫
Cc
f c(x) log

fGε,φ(x)

infψ∈D h(x;ψ, φ)
dx < ε/4. (27)

We can further ensure that Pfc(Cc) < ε/(4 log 2), so the bound for
∫
Cc
f c log

fGε,φ
fG,φ

is less than ε/2. Now, if we can

show that for the given ε > 0, there exists a weak neighborhood U of Gε, such that
∫
C
f c(x) log

fGε,φ(x)
fG,φ(x) dx < ε/2

for any G ∈ U and φ ∈ A, then Lemma 7 is proved by letting W = U ∩ V .

Observing that for any given φ ∈ A, the family of maps {ψ 7→ h(x;ψ, φ) : x ∈ C} is uniformly equicontinuous on
D ⊂ Ψ. By the Arzela-Ascoli theorem (see [56] [pp. 169]), for any δ > 0, there exist x1, x2, . . . , xm, such that, for
any x ∈ C,

sup
ψ∈D
|h(x;ψ, φ)− h(xi;ψ, φ)| < cδ. (28)

for some i = 1, 2, . . . , k.

Let U = {G : |
∫
D
h(xi;ψ, φ)dGε(ψ) −

∫
D
h(x;ψ, φ)dG(ψ)| < cδ, x ∈ C, i = 1, 2, . . . , k}. Then U is an open

weak neighborhoods of Gε since Gε ∈ supp(Π) and Gε(∂D) = 0. Hence, given φ ∈ A, for any G ∈ U ∩ V and
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x ∈ C, by applying Condition A8,∣∣∣∣
∫

Ψ
h(x;ψ, φ)dGε(ψ)∫

Ψ
h(x;ψ, φ)dG(ψ)

− 1

∣∣∣∣ ≤ ∣∣∣∣
∫
D
h(x;ψ, φ)dGε(ψ)∫

D
h(x;ψ, φ)dG(ψ)

− 1

∣∣∣∣
=

∣∣∣∣
∫
D
h(x;ψ, φ)dGε(ψ)−

∫
D
h(x;ψ, φ)dG(ψ)∫

D
h(x;ψ, φ)dG(ψ)

∣∣∣∣
≤ cδ

c/2
= 2δ,

since |
∫
D
h(x;ψ, φ)dGε(ψ) −

∫
D
h(x;ψ, φ)dG(ψ)| < cδ for any G ∈ U , and

∫
D
h(x;ψ, φ)dG(ψ) ≤

infx∈C infψ∈D h(x;ψ, φ)G(D) ≥ c/2. By choosing δ small enough, we can ensure that the right hand side (RHS) of
the last display is less than ε/2. Hence, for any given φ ∈ A∫

C
f c(x) log

fGε,φ(x)
fG,φ(x) dx ≤ supx∈C log

fGε,φ(x)
fG,φ(x) ≤ supx∈C

∣∣∣ fGε,φ(x)
fG,φ(x) − 1

∣∣∣ ≤ supx∈C

∣∣∣ ∫Ψ h(x;ψ,φ)dGε(ψ)∫
Ψ
h(x;ψ,φ)dG(ψ)

− 1
∣∣∣ < ε/2

for any G ∈ U ∩ V . 2

Next, we present several lemmas which will be used for proving Theorem 1 Part (i), together with their proofs when
necessary. Differing with Theorem 14 in [67], the restriction of f c(0) > 0 is not necessary here. In the proofs of the
Lemmas and Theorem 1 (i), we will provide the detailed explanations.

Lemma 8 (Lemma 7 in [67]) Let l be a positive integer and Al = [al, bl] ⊂ X, and let hl(x, t) be a sequence of
continuous functions for x ∈ X and t ∈ Al. Define fl(x) =

∫
Al
hl(x, t)f(t)dt, m = 1, 2, . . ., where f is bounded,

uniformly continuous and integrable on X. If hl satisfies that for any al, bl ∈ X,

C1.
∫
Al
hl(x, t)dt→ 1 as l→∞,

C2. for each δ > 0,
∫
|x−t|>δ,t∈Al |hl(x, t)|dt→ 0 as l→∞,

C3.
∫
Al
|hl(x, t)|dt ≤M(x) <∞ for each x ∈ X, l = 1, 2 . . ., where the bound M(x) may depend on x but not

on l,

then fl(x)→ f(x) for each x ∈ X as l→∞.

Proof of Lemma 8:

For any ε > 0, there is δ > 0 so small that that |f(t)− f(x)| < ε for |x− t| ≤ δ. By Condition C1,

fl(x)− f(x) =

∫
Al

[f(t)− f(x)]hl(x, t)dt+ o(1), (29)

where the last term goes to 0 as l → ∞, for each x ∈ X. To complete the proof, we will show that
∫
Al

[f(t) −
f(x)]hl(x, t)dt→ 0 as l→∞ for all x ∈ X. By Condition C3, we have that∣∣∣ ∫

|x−t|≤δ, t∈Al
[f(t)− f(x)]hl(x, t)dt

∣∣∣ ≤ ε∫
|x−t|≤δ, t∈Al

|hl(x, t)|dt ≤ εM(x). (30)

We also have that ∫
|x−t|>δ, t∈Al

[f(t)− f(x)]hl(x, t)dt→ 0 as l→∞, (31)

by Condition C2, and the condition that function f is bounded. Combining (29)-(31), we have |fl(x) − f(x)| ≤
εM(x) + o(1), and hence the result follows. 2

In the following, we first fix some notation for proving the posterior consistency of DPM of Gamma. Let hl(x;V ) ≡
h(x;V, V/l) be the Gamma density kernel with shape parameter V and mean equals to V/l, where V > 0 and l > 0.
Define

hl(x;V ) = h(x;V, V/l) =
lV

Γ(V )
xV−1e−x/l (32)
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Let

fl(x) = tl

∫ 1+l2

2

hl(x;V )l−1f c((V − 1)/l)dV (33)

where tl = (
∫ l
l−1 f

c(s)ds)−1.

Lemma 9 (Lemma 8 in [67]) Let hl(x;V ) be defined as (32). If Condition (d) in Theorem 1 is satisfied, then there
exists a function 0 < C(x) < 1 such that for all sufficiently large l > 0,

C(x) ≤


∫ x+δ

l−1∨x hl(x; lv + 1)dv, l−1 < x < 1,∫ l∧x
x−δ hl(x; lv + 1)dv, 1 ≤ x ≤ l + l−1,

(34)

and
∫
X
f c(x) log 1

C(x)dx <∞.

Proof of Lemma 9:

For l−1 < x < 1, applying Stirling’s inequality and noting that v < x + δ < 1 + δ (with δ > 0 chosen later) in the
following integral, it follows that∫ x+δ

l−1∨x
hl(x; lv + 1)dv

=

∫ x+δ

l−1∨x

llv+1xlve−lx

Γ(lv + 1)
dv

≥
∫ x+δ

l−1∨x

llv+1xlve−lx√
2π(lv + 1)lv+1/2 exp{−(lv + 1) + (12x)−1}

dv

=

√
l

2π
exp(1− (12x)−1)

∫ x+δ

l−1∨x

xlvel(v−x)

(v + l−1)lv+1/2
dv

≥
√
l√

2π(1 + δ + l−1)
exp(1− (12x)−1)

∫ x+δ

l−1∨x

xlvel(v−x)

(v + l−1)lv
dv. (35)

Note that ∫ x+δ

l−1∨x

xlvel(v−x)

(v + l−1)lv
dv

=

∫ x+δ

l−1∨x
exp

[
lv

{
log

x

v + l−1
− (

x

v
− 1)

}]
dv

=

∫ x+δ

l−1∨x
exp

[
lv
{

log
x

v + l−1
−
( x

v + l−1
− 1
)

+
( x

v + l−1
− 1
)
−
(x
v
− 1
)}]

dv

>

∫ x+δ

l−1∨x
exp

[
lv

{
− 1

2 x
v+l−1

(
x

v + l−1
− 1

)2

+
−x/l

v(v + l−1)

}]
dv

=

∫ x+δ

l−1∨x
exp

[
−lv(x− v − l−1)2 − 2x2

2x(v + l−1)

]
dv.

The above inequality holds, because of that, for 0 < u < 1,

log u− (u− 1) = −(1− u)2

{
1

2
+

(1− u)

3
+

(1− u)2

4
+ · · ·

}
≥ − (1− u)2

2

{
1 + (1− u) + (1− u)2 + · · ·

}
= − (1− u)2

2u
.
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Since 1 + δ > x+ δ > v > x in the following integral, we have that∫ x+δ

l−1∨x
exp

(
−lv(x− v − l−1)2 − 2x2

2x(v + l−1)

)
dv

≥
∫ x+δ+l−1

(l−1∨x)+l−1

exp

(
−l(1 + δ)(x− ṽ)2 − 2x2

2x2

)
dṽ

=

√
2π

l

x√
1 + δ

e−1

{
Φ

(
δ + l−1

x/
√
l(1 + δ)

)
− Φ

(
l−1

x/
√
l(1 + δ)

)}

≥
√

2π

l

x√
1 + δ

e−1

{
Φ

(
δ + l−1

x/
√
l(1 + δ)

)
− Φ

(
l−1

x/
√
l(1 + δ)

)}
, (36)

where ṽ = v + l−1 and Φ(·) is the cdf of the standard normal distribution. For l large, such that δ > l−1/2,

Φ

(
δ + l−1

x/
√
l(1 + δ)

)
− Φ

(
l−1

x/
√
l(1 + δ)

)

= Φ

(√
1 + δ

l1/2δ + l−1/2

x

)
− Φ

(√
1 + δ

l−1/2

x

)
≥ Φ(2

√
1 + δ

√
δ/x)− Φ(

√
1 + δ δ/x)

≥ Φ(2
√

1 + δ δ/x)− Φ(
√

1 + δ δ/x). (37)
The last inequality holds since we chose δ < 1. Now for u > 0,

1+u2

u φ(u)
1

2uφ(2u)
= 2(1 + u2)e3u2/2 ≥ 2,

where φ(x) = (2π)−1/2e−x
2/2 is the standard normal pdf. By the fact that

x

1 + x2
φ(x) < 1− Φ(x) <

φ(x)

x
, (38)

we have that

Φ(2u)− Φ(u) ≥ 1 + u2

u
φ(u)− 1

2u
φ(2u) ≥ 1

2u
φ(2u).

Hence, the the right hand side (RHS) of (37) is greater than
x

2δ
√

2π(1 + δ)
exp

(
−2(1 + δ)δ2

x2

)
. (39)

Now, combining the expressions (35), (36) and (39), it follows that

C(x) =
x2

2δ(1 + δ)
√

2 + δ
exp

(
− 1

12x
− 2(1 + δ)δ2

x2

)
, 0 < x < 1, (40)

satisfies (34) for l−1 < x < 1.

Now let l + l−1 > x ≥ 1. Applying Stirling’s inequality, we have that∫ l∧x

(x−δ)
hl(x; lv + 1)dv

=

∫ l∧x

(x−δ)

llv+1xlve−lx

Γ(lv + 1)
dv

≥
∫ l∧x

(x−δ)

llv+1xlve−lx√
2π(lv + 1)lv+1/2 exp[−(lv + 1) + (12x)−1]

dv

=

√
l

2π
e1−(12x)−1

∫ l∧x

(x−δ)

xlvel(v−x)

(v + l−1)lv+1/2
dv

≥
√
l e1−(12x)−1√
2π(x+ δ)

∫ x∧l

x−δ
exp

[
lv

{
log

(
x

v + l−1

)
+ (1− x

v
)

}]
dv, (41)

30



since v + l−1 < x+ δ, when l > δ−1. Note that

log u− (u− 1) = (u− 1)2

{
−1

2
+

(u− 1)

3
− (u− 1)2

4
+ · · ·

}
≥ (u− 1)2

{
−1

2
+ (u− 1)− (u− 1)2 + · · ·

}
= (u− 1)2

{
−1

2
−
[
(1− u) + (1− u)2 + (1− u)3 + · · ·

]}
= (u− 1)2

(
−1

2
− 1− u

u

)
,

for 0 < u < 1. Further, log u− (u− 1) ≥ −(u− 1)2/2, for 1 ≤ u < 2, since (u−1)
3 − (u−1)2

4 + (u−1)3

5 − · · · ≥ 0.
Note that 0 < x

v+l−1 ≤ 1
1−δ , where δ < 1

2 without loss of generality. Now it follows that

log

(
x

v + l−1

)
+ 1− x

v

= log

(
x

v + l−1

)
−
(

x

v + l−1
− 1

)
+

(
x

v + l−1
− 1

)
−
(x
v
− 1
)

≥
(
−1

2
− v + l−1 − x

x

)(
x

v + l−1
− 1

)2

+
x

(v + l−1)lv
. (42)

Letting ṽ denote v + l−1, RHS of (42) is equal to

(x− 2ṽ)(x− ṽ)2

2xṽ
+

x

lvṽ
≥ − (x− ṽ)2

2ṽ2
+

x

lvṽ
,

since x−2ṽ
x ≥ −1 for ṽ < x+ l−1 (i.e. v < x) and x > 1. Now,∫ x∧l

x−δ
exp

[
lv

{
log

(
x

v + l−1

)
+
(

1− x

v

)}]
dv

=

∫ (x∧l)+l−1

x−δ+l−1

exp

[
− lv(x− ṽ)2

2(x− δ)2
+
x

ṽ

]
dṽ

≥ e1/2

∫ (x∧l)+l−1

x−δ+l−1

exp

[
− lx(x− ṽ)2

2(x− δ)2

]
dṽ

≥ e1/2

√
2π

lx
(x− δ)

{
Φ

(√
lx (δ − l−1)

x− δ

)
− 1

2

}

≥ e1/2

√
2π

lx
(x− δ)

{
Φ

( √
x δ

2(x− δ)

)
− 1

2

}
≥ 1

2
δ

√
e

l
exp

(
− xδ2

8(x− δ)2

)
, (43)

for l/2 > δ−1, since Φ(z) − 1/2 > φ(z)z for any z > 0 and since x > v > 1 − δ for all x > 1. Combining
expressions (41) and (43) and simplifying, we conclude that

C(x) =
δ exp(3/2− 12x−1)

2
√

2π(x+ δ)
exp

(
− xδ2

8(x− δ)2

)
, x ≥ 1, (44)

satisfies (34) for 1 ≤ x < l + l−1.

Now for C(x) defined by (40) and (44) satisfies (34). Further, by straightforward calculations,
∫
X
f c(x) log 1

C(x)dx <

∞ under Condition (d) in Theorem 1. 2
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Lemma 10 (Lemma 6 in [67]) For fl(x) defined in (33), fl(x)→ f c(x) as l →∞ for each given x > 0, where f c is
bounded, uniformly continuous and integrable on X.

Proof of Lemma 10:

To use Lemma 8, we re-parameterize the kernel function by the following tranformations. Let v = (V − 1)l−1 and
u = l−1. Let

h(x; v, u) =
xv/ue−x/u

Γ(v/u+ 1)uv/u+1
,

and let hl(x; v) = h(x; v, l−1), where v ∈ Al, Al = [l−1, l], for l > 0. Now we have that

fl(x) = tl

∫ 1+l2

2

hl(x;V )l−1f c((V − 1)/l)dV =

∫ l

l−1

hl(x; v)f c(v)dv,

and we show that such hl(x; v) satisfies Conditions C1–C3 in Lemma 8.

Observe that
d

dV
log(hl(x;V )) = log l + log x−Ψ0(V ), (45)

where Ψ0(z) = d
dz log(Γ(z)) is the digamma function. Also Ψ0(z) is continuous and monotone increasing for z ∈

(0,∞), Ψ0(z + 1) = Ψ0(z) + 1
z , and Ψ0(z)− log(z − 1)→ 0; see [4][pp. 549–555] for details.

Given x > 0, consider expression (45). For l sufficient large, such that l−1 < x < l + l−1, we have

d

dv
hl(x; v)

 > 0 l−1 ≤ v < x− l−1,

< 0 l ≥ v > x− l−1 + ρ,
(46)

where ρ is some small positive number. Also, note that d2

dv2hl(x; v) < 0 for all x > 0 and l−1 ≤ v ≤ l. Thus, the first
order derivative changes from positive to negative as v changes from l−1 to l for given x and sufficient large l. Hence,
there exists l0 such that h(x; v, l−1) is increasing as a function of v when v ≤ l0 and decreasing when v > l0. For
sufficient large l,

e−xl

 [l2]∑
t=0

(xl)t

t!
− 1− (xl)[l0]+1

([l0] + 1)!


≤ e−xl

[∫ l2

1

(xl)vl

Γ(vl + 1)
d(vl)

]
≤ e−xl

∫ l2

1

(xl)vl

Γ(vl + 1)
d(vl) =

∫ l

l−1

hl(x; v)dv

≤ e−xl
 [l2]∑
t=0

(xl)t

t!
− 1 +

(xl)l0

([l0]− 1)!

 , (47)

where [z] stands for the largest integer less than or equal to z. Expression (47) is obtained by discretizing the integral
term in the mid line of the expression. Notice that

∑[l2]
t=0

(xl)t

t! is the Taylor’s expension of exl, using the expression for
the remainder of Taylor’s series, we have that

e−xl

 [l2]∑
t=0

(xl)t

t!
− 1− (xl)[l0]+1

([l0] + 1)!

 ≥ 1−
(xl)[l2]+1

([l2]+1)! e
x∗l

exl
− 1

exl
−

(xl)[l0]+1

([l0]+1)!

exl
, (48)

where x∗ ∈ (0, x). It is obvious that the expression in (48) tends to 1 as l → ∞. Similarly, we have that the RHS of
(47) tends to 1 as l→∞. Hence,∫ l

l−1

h(x; v, u)dv = e−xl
∫ l2

1

(xl)vl

Γ(vl + 1)
d(vl)→ 1 as l→∞,

that is, Condition C1 is satisfied.

From above, we also know that Condition C3 is satisfied, since hl(x; v) > 0 for all v ∈ Al and x ∈ X.
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To verify Condition C2, for any δ > 0 and x ∈ X, we want∫
|x−v|>δ ,v∈Am

∣∣∣hl(x, v)
∣∣∣dv =

∫
|x−v|>δ, v∈Al

e−xl(xm)vl

Γ(vl + 1)
dv → 0,

as l→∞. We show that for any δ > 0,

l sup
|x−v|>δ,v∈Al

e−xl(xl)vl

Γ(vl + 1)
→ 0 as l→∞,

which is equivalent to showing that

log l + log
e−xl(xl)vl

Γ(vl + 1)
→ −∞ for all v ∈ Al, |x− v| > δ.

For any v such that v ∈ Al, |x− v| > δ, we have by Stirling’s inequality for factorials,

log l + log
e−xl(xl)vl

Γ(vl + 1)

≤ log l + log
e−xl(xl)vl

[vl]!

≤ log l + vl log(xl)− xl − vl log vl + vl

= log l + {1 + log(x/v)− x/v}vl→ −∞,

as l → ∞, since for any given x and δ, there exists q < 0 such that 1 + log(x/v) − x/v < q for all the v ∈ Al,
|x− v| > δ.

Thus Conditions C1–C3 in Lemma 8 are all satisfied and we have that fl(x)→ f c(x) as l→∞ for each x > 0. 2

Lemma 11 (Lemma 5 in [67]) Let fl(x) be defined as in (33). If the conditions of Theorem 1 (i) are satisfied, then∫
X
f c(x) log fc(x)

fl(x) dx→ 0 as l→∞.

Proof of Lemma 11:

First, we derive the lower bound of fl(x) for x in different intervals.

Following expression (45), for x < l−1, log(lx) < 0, and Ψ0(V ) ≥ Ψ0(2) = 0.42 for V ∈ [2, 1 + l2], and hence
d
dV log(hl(x;V )) < 0. For x > l + l−1 and V ∈ [2, 1 + l2], log(lx) ≥ log(l2) ≥ Ψ0(1 + l2) ≥ Ψ0(V ), and hence
d
dV log(hl(x;V )) > 0. Thus replacing V by 1 + l2 in the integrand, we obtain a lower bound for fl(x) with x < l−1

as,

fl(x) ≥ tl
∫ 1+l2

2

xl
2

e−lxll
2+1

Γ(l2 + 1)
f c(α)dα =

xl
2

e−lxll
2+1

Γ(l2 + 1)
. (49)

Similarly, replacing α by 2 in the integrand, we obtain that for x > l + l−1,

fl(x) ≥ xe−lxl2. (50)

Consider the RHS of equation (49). For x < l−1, we have

d

dl
log

(
xl

2

e−xlll
2+1

Γ(l2 + 1)

)
= 2l[ log(xl)−Ψ0(l2 + 1)] +

l2 + 1

l
− x < 0,

for all l sufficiently large, where c1 > 0 is some constant. Consider the RHS of equation (50), for x > l + l−1, we
have d

dl

(
xe−xll2

)
= xle−xl(2− xl) < 0.

Hence, replacing l by x−1 on the RHS of (49), we obtain a lower bound of fl(x) for x < l−1 as below,

fl(x) ≥ xl
2

e−xl ll
2+1

Γ(l2 + 1)
≥ xx

−2

e−1x−x
−2−1

Γ(x−2 + 1)
=

1

exΓ(x−2 + 1)
; (51)
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and similarly, replacing l by x on the RHS of (50), we obtain that for x > l + l−1,

fl(x) ≥ xe−xl l2 ≥ e−x
2

x3. (52)

Now, we consider fl(x) for l−1 ≤ x ≤ l + l−1. Let δ > 0 be fixed and v = (V − 1)/l. For l large,

fl(x) ≥
∫ x+δ

x−δ
hl(x; lv + 1)tlf

c(v)dv

≥

 φδ(x)tl
∫ x+δ

l−1∨x hl(x; lv + 1)dv, x < 1

φδ(x)tl
∫ l∧x
x−δ hl(x; lv + 1)dv, x ≥ 1

≥ C(x)φδ(x),

where C(x) is given in Lemma 9.

Now we have the lower bound of function fl(x),

fl(x) ≥


C(x)φδ(x), R−1 ≤ x ≤ R,

min(C(x)φδ(x), 1
exΓ(x−2+1) ), 0 < x < R−1,

min(C(x)φδ(x), e−x
2

x3), R < x,

(53)

where 0 < R < l. Hence, we have that

log
f c(x)

fl(x)
≤ ξ(x)

:=



log fc(x)
C(x)φδ(x) , R−1 ≤ x ≤ R,

max
{

log fc(x)
C(x)φδ(x) , log([exΓ(x−2 + 1)]−1f c(x))

}
, 0 < x < R−1,

max
{

log fc(x)
C(x)φδ(x) , log fc(x)

e−x2x3

}
, R < x.

Since f c(x) < Cf <∞, we also have that log fc

fl
≥ log fc(x)

Cf t2
for l > 2, where t2 is the tl defined in (33) with l = 2.

Further, as log fc(x)
Cf t2

< 0, we have | log fc(x)
fl(x) | ≤ max{ξ(x), | log fc(x)

Cf t2
|}.

By Condition (b) in Theorem 1,
∫
| log fc(x)

Cf t2
|f c(x)dx= logCf t2 −

∫
f c log(f c)dx < ∞, since f c(x) < Cf for all

x ∈ C and t2 ≤ 1. Now, consider
∫
ξ(x)f c(x)dx, which equals to∫ R

R−1

f c(x) log
f c(x)

C(x)φδ(x)
dx

+

∫ R−1

0

f c(x) max

{
log

f c(x)

C(x)φδ(x)
, log(f c(x))− log(exΓ(x−2 + 1))

}
dx

+

∫ ∞
R

f c(x) max

{
log

f c(x)

C(x)φδ(x)
, log(f c(x))− log(e−x

2

x3)

}
dx

≤
∫ ∞

0

f c(x) log
f c(x)

φδ(x)
dx+

∫ ∞
0

f c(x) log
1

C(x)
dx (54)

+

∫
(0,R−1]∩A

f c(x)
[

log([exΓ(x−2 + 1)]−1f c(x))
]
dx

+

∫
(R,∞)∩B

f c(x)
[

log
f c(x)

e−x2x3

]
dx,

where A = {x : f c(x) ≥ [exΓ(x−2 + 1)]−1}, and B = {x : f c(x) ≥ e−x
2

x3}. The above relation (54) holds since
C(x) < 1 by Lemma 9 and max(x1, x2) ≤ x1 + x+

2 if x1 > 0.
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The first term on the RHS of (54) is less than infinity by Condition (c) in Theorem 1. By Lemma 9, the second terms on
the RHS of (54) is also less than infinity. Note that, by Stirling’s inequality, (see [25] [vol. I. pp. 50-53])∣∣∣ log

1

exΓ(x−2 + 1)

∣∣∣
≤ | log x|+ 1 + log(2π) + (x−2 + 1) log(x−2 + 1) +

(x−2 + 1)2 + 1

12(x−2 + 1)
,

for 0 < x < 1. Hence, the third term on the RHS of (54) is less than infinity by Condition (d) in Theorem 1. Similarly,
so is the fourth term.

Since
∫∞

0
f c(x) log fc(x)

fl(x) dx ≤
∫∞

0
f c(x)ξ(x)dx <∞, we have that for any ε > 0, there exists l0, such that for l ≥ l0,∫∞

l0
f c(x) log fc(x)

fl(x) < ε/2. By Lemma 10, we have that fl(x)→ f c(x) for each x ∈ [0, l0] when l→∞, since f c(x)

is uniformly continuous, bounded and integrable on [0, l0]. Thus, by the Dominated Convergence Theorem (DCT), for
any ε > 0, there exists l1, such that for l > l1,

∫ l0
0
f c(x) log fc(x)

fl(x) dx < ε/2. Therefore, for any ε > 0, there exists l0
and l1, such that for l > max(l0, l1) we have that∫

X

f c(x) log
f c(x)

fl(x)
dx =

∫ l0

0

f c(x) log
f c(x)

fl(x)
dx+

∫ ∞
l0

f c(x) log
f c(x)

fl(x)
dx < ε. 2

Notice that the condition of of Lemma 11 in this paper is different from its original form corresponding to the change
in condition in Theorem 1 (i), which removed the restriction f c(0) 6= 0. Lemma 11 is applicable for Gamma kernel,
and proved below by applying Lemma 10, DCT, and the fact that that log fc(x)

fl(x) is bounded from below by ξ(x)

and f c(x)ξ(x) is integerable on [0,∞). Lemma 10 is the same as Lemma 6 in [67], which provides the point-wise
convergence, fl(x)→ f c(x) as l→∞, for each x > 0. Lemma 10 is then proved by verifying that Conditions C1-C3
in Lemma 8 (Lemma 7 in [67]) are satisfied by the Gamma kernel. As pointed out in [67] page 324, Lemma 8 is
applicable when the support of function hl and f c is possibly non-compact. To apply DCT and show that the two facts
mentioned above are true with respect to the Gamma kernel, we used the Conditions (b) and (c) in Theorem 1, and
result of Lemma 9. Lemma 9 is the same as Lemma 8 in in [67], which is about the property of the kernel function,
and does not involve the true density function f c. Its proof depends on the Condition (d) in Theorem 1. Refer to the
lemmas and their proofs above for details.

Proof. of Theorem 1 (i):

Part (i) is a modified version of Theorem 14 in [67], where the original condition:
B4. for some 0 < M <∞ , 0 < f c(x) ≤M for all x; is changed to:
(a) f c is nowhere zero, except at x = 0 and bounded above by Cf <∞.

Since no hyper-parameter involved in (1), to complete the proof, we only need to verify Conditions A1 and A3 in
Theorem 5. More specifically, we are going to show:

a1.
∫
f c log fc

fGε
< ε,

a2.
∫
f c log

fGε
fG

< ε for every G ∈ W ,

where fG :=
∫
h(x;ψ)dG(ψ), to complete the proof.

For any l > 0, let Gl denote F ∗l × δ(V/l), where F ∗l is the probability measure corresponding to tll−1f c((V −
1)/l)1l(V ∈ [2, 1 + l2]) as a density function for V , and 1l is the indicator function. Obviously, Gl is compactly
supported, and we let fl(x) = fGl(x). Let Fl be the probability measure corresponding to fl. By Lemma 11,∫
f c(x) log fc(x)

fl(x) dx→ 0 as l→∞, which implies that Condition a1 is satisfied.

Now we need to verify Condition A3 (equivalently Condition a2) to complete the proof for part (i). This is shown by
verifying the Conditions A7, A8, and A9 without considering φ and A in the statement of Lemma 7. For any given
ε > 0, let D = {(V, V/lε) : V ∈ [2, 1 + l2ε ]}, where lε is such that

∫
f c(x) log fc(x)

flε (x) < ε. By the verification of
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Condition A1, we have that lε exists. To verify Condition A7, it is sufficient to show that
∫
f c(x)| log flε(x)|dx < ∞

and
∫
f c(x)| log inf(V,u)∈D h(x;V, u)|dx <∞. Observe that

d

dV
log(hl(x;V )) = log l + log x−Ψ0(V ),

where Ψ0(z) = d
dz log(Γ(z)), is the digamma function. Also Ψ0(z) is continuous and monotone increasing for

z ∈ (0,∞), Ψ0(z + 1) = Ψ0(z) + 1
z , and Ψ0(z)− log(z − 1)→ 0; see [4][pp. 549–555] for details. We have that

for x ≤ l−1, log(lx) < 0, and Ψ0(V ) ≥ Ψ0(2) = 0.42 for V ∈ [2, 1 + l2], and hence d
dV log(hl(x;V )) < 0. For

x ≥ l and V ∈ [2, 1 + l2], log(lx) ≥ log(l2) ≥ Ψ0(1 + l2) ≥ Ψ0(V ), and hence d
dV log(hl(x;V )) > 0. Then, for l

sufficient large, such that l−1 < x < l + l−1, we have

d

dV
hl(x;V )

 > 0 2 ≤ V < x− 2,

< 0 l2 + 1 ≥ V > x− 2 + ρ,

where ρ is some small positive number. Also, note that d2

dv2hl(x; v) < 0 for all x > 0 and 2 ≤ v ≤ l2 + 1. Thus, the
first order derivative changes from positive to negative as v changes from l−1 to l for given x and sufficient large l.
Hence, for any given l sufficiently large, there exists l0, such that h(x;V, V l−1) is increasing as a function of v when
v ≤ l0 and decreasing when v > l0. Therefore, we have that

log inf
(V,u)∈D

h(x;V, u) = log(min{h(x; 1 + l2ε , l
−1
ε ), h(x; 2, l−1

ε )}),

for any 0 < x <∞. Hence,

| log inf
(V,u)∈D

h(x;V, u)| < xlε + (l2ε )| log x|+ | log(Γ(l2ε + 1)l
−(l2ε+1)
ε )|+ | log(l−2

ε )|.

By Condition (c) of Theorem 1 (i), we have that
∫
| log inf(V,u)∈D h(x;V, u)|f c(x)dx <∞. Further, log flε(x) is also

f c-integrable by a similar argument.

To see that Condition A8 is satisfied, letD = {(V, V/lε) : V ∈ [2, 1+ l2ε ]}, the same as we used for verifying condition
A7. Since Condition A7 is satisfied, for C := [l−1, l], we can always have a large enough l such that inequality (25)
and Pfc(Cc) < ε/(4 log 2) both satisfied. For such C and D, we have that infx∈C infψ∈D h(x, ψ) > 0, where

h(x, ψ) =
lVε

Γ(V )x
V−1e−x/lε is the Gamma density with parameters in D.

Condition A9 is also satisfied for the C and D defined as above. Due to the setting of D, we need to show that
lVε

Γ(V )x
V−1e−x/lε is uniformly equicontinuous on [2, 1+ lε] as a function of V while x ∈ [l−1, l]. By direct calculation,

we have that
d

lVε
Γ(V )x

V−1e−x/lε

dV
=
e−x/lε

x

[
log(lε)xe

V log(lε)xΓ(V ) + eV log(lε)xΨ0(V )
]
, (55)

where Ψ0(·) is the digamma function. Notice that (55) is bounded as a function of V for any given x ∈ [1/l, l],

which implies that lVε
Γ(V )x

V−1e−x/lε is pointwise equicontinuous on [1/l, l], and it is also bounded as a function of
V ∈ [l−1

ε , lε] and x ∈ [l−1, l], which implies that it is uniformly equicontinuous. 2

Proof. of Theorem 1 (ii): Part (ii) of this theorem has been proved by Theorem 3.3 of [61].

Before proving Part (iii) of Theorem 1, we cite the following lemma from [67].

Lemma 12 For any density f c on [0, 1] and any ε > 0, there exist m > 0 and f1(x) ≥ m > 0, such that p(Kε(f1)) >
0 implies that p(K2ε+

√
ε(f

c)) > 0, where Kε(·) is defined in Definition B.3.

Proof. of Theorem 1 (iii): Based on Lemma 12, we only need to consider the densities that bounded away from 0. By
Theorem 1 of [23], Bernstein polynomials uniformly approximate any continuous density. Hence, for any ε > 0 and
continuous density f c(x), there exists

f(x) =

k∑
j=0

wj

(
k

j

)
xj(1− x)k−j , (56)
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where
∑k

0 wj = 1, such that |f(x)− f c(x)| < ε for any x ∈ [0, 1]. It follows that Condition A1 is satisfied, when Gε
is defined as Gε(α = j + 1, β = k − j + 1) = wj for j = 0. . . . , k, and 0 otherwise.

We use Lemma 7 to verify that Condition A3. Let

D = ∪j=0,...,k[j + 1− δ, j + 1 + δ]× [k − j + 1− δ, k − j + 1 + δ]

be a set that contains support of Gε, for some 0 < δ < 1. It is sufficient to show that Condition A7. holds by showing
that

∫
| log fGε |f c(x)dx < ∞ and

∫
log inf(α,β)∈D h(x;α, β)f c(x)dx < ∞. Note that the h(x;α, β) is the Beta

probability density function with parameter α and β here. The first inequality holds, since we only considering f c(x)
bounded away from 0 and any continuous function on [0, 1] is bounded. Since f c(x) is bounded on [0, 1], to show the
second inequality holds is equivalent to show

∫ 1

0
| log inf(α,β)∈D h(x;α, β)|dx <∞. By the definition of D, We have

that B(α, β) is bounded, where B(·) is beta function. Hence, we only need to show that

∫ 1

0

| log inf
(α,β)∈D

xα−1(1− x)β−1|dx <∞. (57)

We have that xα+β−2 ≤ xα−1(1− x)β−1 for 0 ≤ x ≤ 0.5, and (1− x)α+β−2 ≤ xα−1(1− x)β−1 for 1 ≥ x > 0.5.
For any given ε > 0, let k is chosen by (56), and 0 < δ < 1 as defined above, we have

∫ 1

0

| log inf
(α,β)∈D

xα−1(1− x)β−1|dx
(∗)
≤ (k + δ)

∫ 1

0

(| log x|+ | log(1− x)|)dx < 2(k + 1) <∞,

since
∫ 1

0
| log x|dx = 1. Step (*) holds since α−1 +β−1 ≤ k+ δ, when (α, β) ∈ D. Therefore, Condition A7 holds.

We have the equicontinuity of Beta density family since xα−1(1 − x)β−1 is continuous function on α and β for any
x ∈ C ⊂ (0, 1), where C is a compact set, and hence Condition A9 is satisfied. Condition A8 is satisfied, since by
Condition A7, the compact C with Pfc(Cc) < ε/(4 log 2) and satisfies (25) exists, and Beta density always greater
than 0 on C ⊂ (0, 1). Therefore, Condition A3 is satisfied, and the proof is completed. 2

Remark 1 It is worth pointing out that all the priors we have chosen, with more consideration of the computational
convenience, satisfy the conditions in Theorem 1, which means that the weak consistency holds true as long as f c
satisfies the conditions in Theorem 1. For Gamma and Beta kernel cases, there is no explicit condition required on
the choice of the “parameters” of the Dirichlet process, the α and G0. Therefore, we only need to show that the G0

we chose satisfies Condition (c) in Part (ii) of Theorem 1 for Gaussian kernel case. The prior chosen in this paper for
G0 is the conjugate normal-inverse gamma distribution in (4) with hyperparameters µ0, v0,m0, σ0. We show that this
prior satisfies Condition (c) in Theorem 1 Part (ii).

Lemma 13 The normal-inverse gamma prior specified in (4) with µ0 = 0, v0 ∈ (1, 2), m0 > 0 and σ0 > 0 satisfies
the conditions in Theorem 1 Part (ii).

Proof of Lemma 13:

We proceed with the same argument as in Remark 3.4 of [61]. We let η ∈ (v0/(1 + v0/2), 1), c1 = v0(2 − η)/2,
c2 = v0 in Condition (c). Then c1 > 0 and c1−η = v0−(1+v0/2)η < 0, satisfying c1 ∈ (0, η); c2−c1 = v0η/2 > 0,
satisfying c2 > c1. Such choices are possible since v0 ∈ (1, 2). We show that all the inequalities in Condition (c) hold.
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The first inequality in Condition (c): Since σ2/σ2
0 ∼ Inv-Gamma(v0/2, 1/2), we have that σ2

0/σ
2 ∼

Gamma(v0/2, 1/2). For any x > max{σ2/(2−η)
0 , 1},

G0

(
[0,+∞)× (x1−η/2,+∞)

)
= G0 (u ∈ [0,+∞) | σ) ·G0

(
σ ∈ (x1−η/2,+∞)

)
(i)
=

1

2
P
(
σ > x1−η/2

)
=

1

2
P
(
σ2

0/σ
2 < σ2

0x
−(2−η)

)
=

1

2

∫ σ2
0x
−(2−η)

0

1

2v0/2Γ(v0/2)
tv0/2−1e−t/2dt

(ii)

≥ 1

2v0/2+1Γ(v0/2)
(σ2

0x
−(2−η))v0/2−1

∫ σ2
0x
−(2−η)

0

e−t/2dt

=
1

2v0/2+1Γ(v0/2)
(σ2

0x
−(2−η))v0/2−1 · 2

[
1− exp(−σ2

0x
−(2−η)/2)

]
(iii)

≥ 1

2v0/2Γ(v0/2)
(σ2

0x
−(2−η))v0/2−1 · 1

4
σ2

0x
−(2−η)

=
1

2v0/2+2Γ(v0/2)
(σ2

0)v0/2 · x−(2−η)v0/2

where in (i) we use the fact that the prior of u | σ2 is the symmetric distribution N(0, σ2/m0), in (ii) we use the fact
that v0/2−1 < 0 and the function tv0/2−1 decreases with t, and in (iii) we use the inequality 1−exp(−t) > t/2 on t ∈
(0, 1/2) and the fact that x > σ

2/(2−η)
0 (so that σ2

0x
−(2−η)/2 < 1/2). Hence we can take b1 = 1

2v0/2+2Γ(v0/2)
(σ2

0)v0/2

and c1 = v0(2− η)/2 as specified before, and the first inequality of Condition (c) is proved.

The second inequality in Condition (c): Since the prior of u | σ2 is the symmetric distribution N(0, σ2/m0),

G0

(
(−∞, 0]× (x1−η/2,+∞)

)
= G0 (u ∈ (−∞, 0] | σ) ·G0

(
σ ∈ (x1−η/2,+∞)

)
= 1

2 P
(
σ > x1−η/2) .

The rest is exactly the same as the proof for the first inequality of Condition (c).

The third and fourth inequalities in Condition (c): Since the prior of u | σ2 is the symmetric distribution
N(0, σ2/m0), by symmetry we only prove the third inequality, and the fourth inequality follows the same proof.
Since

1−G0

(
(−∞, x)× (0, ex

η−1/2)
)
≤ G0(u ∈ [x,+∞)) +G0(σ ∈ [ex

η−1/2,+∞)), (58)

it suffices to upper bound both terms G0(u ∈ (x,+∞)) and G0(σ ∈ (0, ex
η−1/2)), respectively. For the second term

in (58), we have that for all x > 1,

G0(σ ∈ [ex
η−1/2,+∞)) = P

(
σ2

0/σ
2 ≤ σ2

0e
−2xη+1

)
=

∫ σ2
0e
−2xη+1

0

1

2v0/2Γ(v0/2)
tv0/2−1e−t/2dt ≤

∫ σ2
0e
−2xη+1

0

1

2v0/2Γ(v0/2)
tv0/2−1 · 1dt

=
1

2v0/2−1v0Γ(v0/2)
σv0

0 e−v0x
η+v0/2 < C1x

−c2 , (59)

38



for sufficiently large constant C1 > 0, where the last step follows since limx→+∞ e−v0x
η

/x−c2 = 0. Now for the first
term in (58), we have that for all sufficiently large x > 1,

G0(u ∈ ([x,+∞)) =

∫ ∞
0

G0(u ∈ [x,+∞) | σ)
1

2v0/2Γ(v0/2)
tv0/2−1e−t/2dt

(i)
=

∫ ∞
0

[
1− Φ(x/

√
1/(m0t))

] 1

2v0/2Γ(v0/2)
tv0/2−1e−t/2dt

(ii)

≤ 1

2v0/2Γ(v0/2)

∫ ∞
0

φ(
√
m0tx)√
m0tx

tv0/2−1e−t/2dt

=
1√

2πm02v0/2Γ(v0/2)
· 1

x

∫ ∞
0

t
v0−1

2 −1e−
m0x

2+1
2 tdt

(iii)
=

1√
2πm02v0/2Γ(v0/2)

· 1

x
(
m0x2+1

2

) v0−1
2

∫ ∞
0

s
v0−1

2 −1e−sds

=
Γ((v0 − 1)/2)

2
√
πm02v0/2Γ(v0/2)

1

x (m0x2 + 1)
v0−1

2

≤ Γ((v0 − 1)/2)

2
√
π2v0/2m

v0/2
0 Γ(v0/2)

x−v0 . (60)

where in (i) we use the prior u | σ2 ∼ N(0, σ2/m0), in (ii) we use the inequality 1−Φ(z) ≤ φ(z)/z for all sufficiently
large z > 0, in (iii) we use the change of variable s = m0x

2+1
2 t. Since we have set c2 = v0, now we combine (58),

(59), and (59) to conclude that

1−G0

(
(−∞, x)× (0, ex

η−1/2)
)
≤

(
Γ((v0 − 1)/2)

2
√
π2v0/2m

v0/2
0 Γ(v0/2)

+ C1

)
x−c2 . (61)

Then we set b2 = Γ((v0−1)/2)

2
√
π2v0/2m

v0/2
0 Γ(v0/2)

+C1 and this proves the third inequality of Condition (c). The fourth inequality

follows similarly. 2

Remark 2 Theorem 1 is applicable to the following distributions that belong to commonly used distribution families.

1. Distributions on [a1, a2]

For distributions defined on [a1, a2] with a1 and a2 known, all the continuous densities on [a1, a2] satisfy the
conditions in Theorem 1 Part (iii). Therefore it is easy to see that when f c is the density function of one of
the following distributions, the consistency holds, since f c is continuous on [a1, a2]:

(a) Uniform distribution on [a1, a2]: observed input Y ∼ Uniform(a1, a2). We apply DPM with Beta
kernel on transformed X = (Y − a1)/(a2 − a1). It is easy to see that X has continuous density
function, which is defined on [0, 1], and hence the posterior consistency holds;

(b) Power function distribution on [a1, a2]: Let Y denote the observed input that follows the power
function distribution on [a1, a2]. We apply DPM with Beta kernel on transformed data X = (Y −
a1)/(a2 − a1). It is easy to see that X has continuous density function, which is defined on [0, 1],
and hence the posterior consistency holds;

(c) Triagular Distribution on [a1, a2]: Let Y denote the observed input that follows the triangular
distribution on [a1, a2].We apply DPM with Beta kernel on transformed X = (Y − a1)/(a2 − a1).
It is easy to see that X has continuous density function, which is defined on [0, 1], and hence the
posterior consistency holds;

(d) Beta distributions (with location-scale transformation): Observed input can be modeled as Y =
a1 + (a2 − a1)X , where X ∼ Beta(α, β), apply the DPM with Beta kernel on X . We have that
X has continuous density function, which is defined on [0, 1], and hence the posterior consistency
holds;

(e) Truncated Normal distribution on [a1, a2]: The observed input variable Y ∼
TruncNorm(µ, σ2, a1, a2), which is the normal distribution N (µ, σ2) truncated to the interval

39



[a1, a2]. We apply the DPM with Beta kernel on the transformed variable X = (Y −a1)/(a2−a1).
It is easy to see that X has continuous density function, which is defined on [0, 1], and hence the
posterior consistency holds;

(f) Johnson’s SB distribution on [a1, a2]: By definition of Johnson’s SB , the observed input can be
presented as X = σg((Y − γ)/δ) + µ, where Y ∼ N (0, 1), and g(x) = 1/(1 + exp(−x)). Notice
that a1 = µ and a2 = µ + σ. We apply the DPM with Beta kernel on the transformed variable
Z = (Y − a1)/(a2− a1). It is obvious that Z has continuous density function and defined on [0, 1],
and hence the posterior consistency holds.

2. Distributions on <
We apply the DPM with Gaussian kernel to model input distributions on <. We show that the consistency
holds for the following distributions by verifying the conditions in Part (ii) of Theorem 1. Since only condi-
tions

(a): |
∫∞
−∞ f c(x) log f c(x)dx| <∞, and

(b) there exists an η ∈ (0, 1), such that
∫∞
−∞ |x|

ηf c(x)dx <∞,
are related to the properties of f c, we verify these two conditions for the following examples:

(a) Normal distribution: The true density f c(x) is φµ,σ(x), the normal density function with mean µ
and standard deviation σ.
For Condition (a), we have that log f c(x) = − log(2πσ) − (x − µ)2/(2σ2), and∣∣∣∫∞−∞ (− log(2πσ)− (x− µ)2/(2σ2)

)
φµ,σ(x)dx

∣∣∣ = | − log(2πσ)− 1/2| <∞.

For Condition (b), we have that, for any given η ∈ (0, 1),∫ ∞
−∞
|x|ηφµ,σ(x)dx ≤

∫ ∞
−∞
|x|ηφ0,σ(x)dx ≤ 2

∫ 1

−1

|x|ηφ0,σ(x)dx+ 2

∫ ∞
1

|x|ηφ0,σ(x)dx

≤ 1− 2 (1− Φ(1/δ)) +

∫ ∞
−∞
|x|φ0,σ(x)dx ≤ 1/(πσ) +

√
2/πσ <∞

(b) Logistic distribution: The true density function is

f c(x) = e−
x−µ
s /(s(1 + e−

x−µ
s )2),

For Condition (a), we have that log f c(x) = −(x − µ)/s − 2 log(1 + e−(x−µ)/s) − log s.
To verify Condition (a), it is sufficient to show that |

∫∞
−∞ xf c(x)dx| < ∞ and |

∫∞
−∞ log(1 +

e−(x−µ)/s)f c(x)dx| < ∞. The first inequality holds since the logistic distribution has finite first
moment. The second one holds, since∣∣∣∣∫ ∞

−∞
log(1 + e−(x−µ)/s)f c(x)dx

∣∣∣∣ ≤ ∣∣∣∣∫ µ

−∞
log(2e−(x−µ)/s)f c(x)dx

∣∣∣∣
+

∣∣∣∣∫ ∞
µ

log(1 + 1)f c(x)dx

∣∣∣∣
≤

∣∣∣∣∫ µ

−∞
−(x− µ)/sf c(x)dx

∣∣∣∣+ log 2 = log 8 <∞,

where the last equality is based on the expectation of half logistic distribution is log 4.
For Condition (b), we have that, for any 0 < η < 1,∫ ∞

−∞
|x|ηf c(x)dx =

∫ ∞
1

|x|ηf c(x)dx+

∫ −1

−∞
|x|ηf c(x)dx+

∫ 1

1

|xη|f c(x)dx

≤ 2

∫ ∞
0

|x|f c(x)dx+

∫ 1

−1

1 · f c(x)dx ≤ 2 log 4 + 1 <∞.

(c) Student’s t distribution: The true density function is given by

f c(x) =
Γ(ν+1

2 )
√
νπΓ(ν/2)

(
1 +

x2

ν

)− ν+1
2

.
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The entropy of Student’s t distribution is∣∣∣∣∫ ∞
−∞

f c(x) log f c(x)dx

∣∣∣∣ =
ν + 1

2
[Ψ0((ν + 1)/2)−Ψ0(ν/2)] + log[

√
νB(ν/2, 1/2)],

where Ψ0(x) = Γ′(x)/Γ(x) is the digamma function for all x > 0 and is monotonely increasing in
x, and B(a, b) is the Beta function with parameters a > 0 and b > 0. This entropy is always finite
for all ν > 0. Therefore, Condition (a) is satisfied.
For Condition (b), since∫ ∞

−∞
|x|ηf c(x)dx =

∫ ∞
−∞

Γ(ν+1
2 )

√
νπΓ(ν/2)

|x|η(
1 + x2

ν

) ν+1
2

dx,

it is obvious that this integral is finite if 0 < η < ν.
(d) Cauchy distribution: The Cauchy distribution is the same as the Student’s t distribution with ν = 1.

Therefore Conditions (a) and (b) are verfied as above.
(e) Johnson’s SU distribution: The random variable that follows Johnson’s SU distribution can be

represented as X = σ sinh((Y −γ)/δ) +µ, where Y ∼ N (0, 1) and sinh(x) = (ex− e−x)/2. The
probability density function f c(x) of X is

e−
1
2 (γ+δ sinh−1( x−µσ ))2

δ√
2π
√

(x− µ)2 + σ2

Since the Johnson’s SU distribution has bounded density function and finite first moment, Condition
(b) is obviously satisfied.
To check Condition (a), without loss of generality, we let µ = 0 and σ = 1. Then it is sufficient to
show that∫ ∞

∞

log(1 + x2)f c(x)dx+

∣∣∣∣∫ ∞
∞

sinh−1(x)f c(x)dx

∣∣∣∣+

∫ ∞
∞

sinh−2(x)f c(x)dx <∞ (62)

By the facts that f c(x) for Johnson’s SU is bounded, sinh−1(x) = O (log(x)), and Johnson’s SU
distribution has finite first order moment, we have that inequality (62) holds.

(f) Gumbel distribution: The Gumbel distribution with location parameter µ and scale parameter β
has the following density function:

f c(x) =
1

β
exp

(
−x− µ

β
− e−

x−µ
β

)
, x ∈ <,

where µ ∈ < and β > 0.
Because the entropy of this Gumbel distribution is∫ ∞

−∞
xf c(x)dx = lnβ + Ce + 1,

where Ce = 0.5772 . . . is the Euler-Mascheroni constant, we know that Condition (a) is satisfied.
Furthermore, for this Gumbel distribution, the mean is µ + Ceβ and the variance is π2β2/6. To
verify Condition (b), we have that∫ ∞

−∞
|x|f c(x)dx = E|X| ≤

√
E(X2) = var(X) + (E|X|)2

=
π2β2

6
+ (µ+ Ceβ)2 < +∞,

which means that Condition (b) is also satisfied by the Gumbel distribution with η = 1.

3. Distributions on [0,∞)

We use the DPM with Gamma kernel to model input distributions on [0,∞). We show that the posteriors are
consistent for the following distributions by verifying that the conditions in part (i) of Theorem 1 are satisfied.

Condition (a) is obviously true for all the following distributions.
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Condition (c) requires that
∫∞

0
f c(x) log fc(x)

φδ(x)dx < ∞ for some δ > 0, where φδ(x) = inf [x,x+δ) f
c(t) if

0 < x < 1 and φδ(x) = inf(x−δ,x] f
c(t) if x ≥ 1. Notice that all the following distributions are unimodal

and have upper bounded densities. By the definition of φδ(·), log fc(x)
φδ(x) = 0 in the following situations: (i)

m ≥ 1 and 0 < x < 1; (ii) x ≥ m ≥ 1; (iii) 0 < x ≤ m < 1, where m denotes the mode of the distribu-
tion. Therefore,

∫∞
0
f c(x) log fc(x)

φδ(x)dx =
∫m

1
f c(x) log fc(x)

φδ(x)dx when m ≥ 1, and
∫ 1

m
f c(x) log fc(x)

φδ(x)dx

when 0 ≤ m < 1. Due to the continuity of all the following f c(x) on the compact subset [1,m] or
[m, 1], we have that log fc(x)

φδ(x) is bounded on [1,m] or [m, 1], and hence
∫ 1

m
f c(x) log fc(x)

φδ(x)dx < ∞ or∫m
1
f c(x) log fc(x)

φδ(x)dx < ∞, correspondingly, which implies that all the following listed distributions satis-
fies Condition (c).

Below we show that Conditions (b) and (d) are satisfied for each of the following listed distributions respec-
tively. Recall that Conditions (b) and (d) are:
(b) |

∫∞
0
f c(x) log f c(x)dx| <∞,

(d) there exists ζ > 0 such that
∫∞

0
max(x−ζ−2, xζ+2)f c(x)dx <∞.

(a) Inverse Gaussian distribution: The density function

f c(x) =

[
λ

2πx3

]1/2

exp

{
−λ(x− µ)2

2µ2x

}
To show that Condition (b) holds, we have that∣∣∣∣∫ ∞

0

f c(x) log f c(x)dx

∣∣∣∣ ≤ c1 +

∣∣∣∣∫ ∞
0

(−1.5 log x− c2(x− µ)2/x)f c(x)dx

∣∣∣∣
≤ c1 + c3

∫ 1

0

1

x
f c(x)dx+ c4

∫ ∞
1

xf c(x)dx

≤ c1 + c3
∫ 1

0

x−2.5 exp(−λ/(2x))dx+ c4µ <∞,

since
∫ 1

0
x−2.5 exp(−λ/(2x))dx <∞, where c1, c2, c3 and c4 are some constants.

For Condition (d), since the inverse Gaussian distribution has finite third moment, we only
need to show that there exists ζ > 0 such that

∫ 1

0
x−ζ−2f c(x)dx < ∞, which is true, since∫ 1

0
x−3.5−ζ exp(−λ/(2x))dx <∞ for any ζ > 0.

(b) Log-Normal distribution: The density function f c(x) = 1
xσ
√

2π
exp(− (log x−µ)2

2σ2 ).
To show that Condition (b) holds, is to show that∣∣∣∣∫ ∞

0

(
− log x− (log x− µ)2/(2σ2)

) 1

xσ
√

2π
exp(− (log x− µ)2

2σ2
)dx

∣∣∣∣ <∞ (63)

Consider a variable transformation y = log x, we have that the integral in (63) is euqal to∣∣∣∣∫ ∞
−∞

(−y − y2/σ2)
1

σ
√

2π
exp(− (y − µ)2

2σ2
)dy

∣∣∣∣ ,
which is finite, since the normal distribution has finite mean and variance.
For Condition (d), we know that the third moment of log-normal distribution is finite. Therefore,
we only need to show that

∫ 1

0
x−2−ζf c(x)dx < ∞. Substituting x by ey , the integration is then

equal to
∫∞
−∞ e(−2−ζ)yφ(y)dy, where φ(y) denotes the density function of normal distribution with

parameter µ and σ. The same as calculating the moment generating function for normal distribution,
we have that

∫∞
−∞ e(−2−ζ)yφ(y)dy = exp(µ(−2− ζ) + σ2(−2− ζ)2/2), which is finite.

(c) Log-logistic distribution with shape parameter β > 2: The density function for log-logistic dis-
tribution is f c(x) = (β/α)(x/α)β−1

(1+(x/α)β)2 .

To show that Condition (b) holds, it is sufficient to show that
∫∞

0
[| log x| + | log(1 +

(x/α)β)|]f c(x)dx < ∞. Since the half logistic distribution has finite mean, see [40] for more
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details, we have that
∫∞

0
| log x|f c(x)dx <∞ by variable transformation. The rest is to show that∫ ∞

0

| log(1 + (x/α)β)|f c(x)dx =

∫ α

0

| log(1 + (x/α)β)|f c(x)dx

+

∫ ∞
α

| log(1 + (x/α)β)|f c(x)dx

≤
∫ α

0

log 2f c(x)dx+

∫ ∞
α

β| log x|f c(x)dx+ c (64)

is finite, where c is a constant,
∫ α

0
f c(x) log 2dx < log 2, and

∫∞
α
β| log x|f c(x)dx < ∞ can be

shown by variable transformation and the fact that the half logistic distribution has finite mean.
To verify Condition (d), we notice that the k-th moment of log-logistic distribution exists when k < β.
Therefore, what left to be shown is that

∫∞
0
x−2−ζf c(x)dx < ∞. By substituting x by ey , we have

that
∫∞

0
x−2−ζf c(x)dx =

∫∞
−∞ e(−2−ζ)y e−β(y−logα)

(1+e−β(y−logα))
2
/β
dy = α−2−ζB(1 − 2+ζ

β , 1 + 2+ζ
β ),

which is finite. Hence, Condition (d) holds for ζ ∈ (0, β − 2).
(d) Pearson Type V (Inverse Gamma) distribution with shape parameter α > 2: Pearson Type

V distribution is also known as the inverse Gamma distribution and Wald distribution. For Y ∼
Gamma(α, β), we have that X = 1/Y ∼ Inv-Gamma(α, 1/β), whose density function f c(x) =
βα

Γ(α)x
−α−1 exp(−βx ).

It is sufficient to show Condition (b) is satisfied by showing that Efc(x)(logX) and Efc(x)(1/X) are
both finite. Since 1/X = Y ∼ Gamma(α, β), we have that Efc(x)(1/X) = E(Y ) = αβ < ∞. We
also have ∫ ∞

1

| log x|f c(x)dx <

∫ ∞
1

xf c(x)dx <

∫ ∞
0

xf c(x)dx <∞, (65)

and ∫ 1

0

| log x|f c(x)dx <

∫ 1

0

f c(x)

x
dx <

∫ ∞
0

f c(x)

x
dx = αβ <∞. (66)

Combining (65) and (66), we have that |
∫∞

0
log xf c(x)dx| < ∞, which means that the inverse

gamma distribution with α > 2 satisfies Condition (b).
For Condition (d), we have that∫ ∞

0

max(x−ζ−2, xζ+2)f c(x)dx <

∫ ∞
0

x−ζ−2f c(x)dx+

∫ ∞
0

xζ+2f c(x)dx

=

∫ ∞
0

yζ+2g(y)dy +

∫ ∞
0

xζ+2f c(x)dx,

where g(y) denotes the density function of Gamma(α, 1/β). Notice that∫ ∞
0

xζ+2f c(x)dx = c

∫ ∞
0

xζ+1−α exp(−β/x)dx <∞,

where c is a constant and ζ ∈ (0, α− 2). Also, for any ζ ∈ (0, 1), we have that
∫∞

0
yζ+2g(y)dy <

∞, due to the fact that Gamma distribution has finite third moment.
(e) Gamma Distribution with shape parameter α > 2: The density function for Gamma distribution

f c(x) = cxα−1e−βx, where c is a constant.
To show that Condition (b) holds, it is sufficient to show that

∫∞
0
xf c(x)dx and

∫∞
0
| log x|f c(x)dx

both are finite. The first one is obviously true, since Gamma distribution has finite mean. We
have that

∫∞
0
| log x|f c(x)dx =

∫ 1

0
| log(x)|f c(x)dx +

∫∞
1

log(x)f c(x)dx ≤
∫ 1

0
(1/x)f c(x)dx +∫∞

1
xf c(x)dx =

∫∞
1
yg(y)dy +

∫∞
1
xf c(x)dx, where g(·) here denotes the density function of

Inv-Gamma(α, β). We have that
∫∞

1
yg(y)dy <

∫∞
0
yg(y)dy < ∞, since the inverse-Gamma dis-

tribution has finite mean, and
∫∞

1
xf c(x)dx <

∫∞
0
xf c(x)dx < ∞, since the Gamma distribution

has finite mean.
By the transformation of Y = 1/X , it will be the same to show that Condition (d) is satisfied
for Gamma distribution with shape parameter α > 2 as for Pearson Type V (inverse Gamma)
distribution with shape parameter α > 2.
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(f) Weibull Distribution with shape parameter k > 3: The density function f c(x) = cxk−1e−(x/λ)k

where c is a constant.
We have that if

∫∞
0
xkf c(x)dx and

∫∞
0
| log(x)|f c(x)dx are both finite, then Conditon (b) is

satisfied. Notice that
∫∞

0
xkf c(x)dx = c1

∫∞
0
x2k−1e−(x/λ)kdx = c2

∫∞
0
y2k−1e−y

k

dy =

c3
∫∞

1
ze−zdz = 2c3/e <∞. and∫ ∞

0

| log(x)|f c(x)dx =

∫ 1

0

| log(x)|f c(x)dx+

∫ ∞
1

log(x)f c(x)dx

≤ c

∫ 1

0

xe−(x/λ)kdx+

∫ ∞
1

xf c(x)dx

≤ 1 + λΓ(1 + 1/k) <∞

For Condition (d), we have that Weibull distribution has finite third moment. Therefore we only
need to show that

∫ 1

0
x−2−ζf c(x)dx < ∞ for some ζ ∈ (0, 1), which is equivalent to show that∫ 1

0
xk−3−ζe−(x/λ)kdx <∞. This inequality holds when k > 3 and ζ ∈ (0, k − 3).

(g) Inverse Weibull with shape parameter β > 2: The probability density function for inverse Weibull
distribution is

f c(x) = βαβx−(β+1) exp
(
−(α/x)β

)
.

We have that When X ∼ Inv-Weibull(α, β), where Inv-Weibull stands for inverse Weibull distribu-
tion, 1/X ∼ Weibull(α, β).
Notice that if

∫∞
0
x−βf c(x)dx and

∫∞
0
| log(x)|f c(x)dx are both finite, then Condition (b) is satis-

fied. By transformation y = 1/x, we have that
∫∞

0
x−βf c(x)dx =

∫∞
0
yβg(y)dy <∞, where g(y)

denotes the Weibull density function, and the inequality holds by the same argument as for Weibull
distribution. We also have that∫ ∞

0

| log(x)|f c(x)dx =

∫ 1

0

| log(x)|f c(x)dx+

∫ ∞
1

log(x)f c(x)dx

≤
∫ 1

0

(1/x)f c(x)dx+

∫ ∞
1

xf c(x)dx

≤ c+ α−1Γ(1− 1/β) <∞,
where c is a constant that followed the same argument as above, and α−1Γ(1− 1/β) is the mean of
the inverse Weibull distribution, see [38] for more details.
For Condition (d), we have that inverse Weibull distribution has finite third moment. Therefore we
only need to show that

∫∞
1
x2+ζf c(x)dx <∞ for some ζ ∈ (0, 1), which is equivalent to show that∫∞

1
x1−β+ζe−(α/x)βdx <∞. This inequality holds when β > 2 and ζ ∈ (0, β − 2).

(h) Johnson’s SL distribution with parameter µ known: Let Y ∼ N (µ, σ3), then X = σ exp((Y −
γ)/δ) + µ follows the Johnson’s SL distribution, whose probability density function is

f c(x) =
e−

1
2 (γ+δ log( x−µσ ))2

δ√
2π(x− µ)

.

We can see that random variable X can be constructed by a location-scale transformation from a
log-normal distributed random variable Z = exp((Y − γ)/δ). We will discuss the situation for µ
is unknown in Remark 3. With µ known, we apply the DPM prior with Gamma kernel on X − µ,
which is supported on [0,∞). When X − µ is only scale transformed from log-normal distributed
random variable, the satisfaction of Conditions (b) and (d) follows similarly to the calculation for
the log-normal distribution.

(i) Pearson Type VI distribution with parameter α1 > 2 and α2 > 2: The probability density
function for this distribution is

f c(x) =
1

βB(α1, α2)

(x/β)α1−1

(1 + x/β)α1+α2
.

For the satisfaction of Condition (b), it is sufficient to show that
∫∞

0
| log x|f c(x)dx and∫∞

0
log(1 + x/β)f c(x)dx are both finite. We have that

∫∞
0
| log x|f c(x)dx ≤

∫ 1

0
(1/x)f c(x)dx +
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∫∞
1
xf c(x)dx < ∞ for α2 > 1, since Pearson Type VI distribution has finite mean when α2 > 1.

We also have that
∫∞

0
log(1 +x/β)f c(x)dx <

∫∞
0

(x/β)f c(x)dx <∞, when α2 > 1 for the same
reason.

To verify that Condition (d) holds, we need: (i)
∫ 1

0
xα1−3−ζ

(1+x/β)α1+α2
dx < ∞, which holds true for

all ζ ∈ (0, α1 − 2) since α1 > 2; and (ii)
∫∞

1
xα1+1+ζ

(1+x/β)α1+α2
dx < ∞, which holds true for all

ζ ∈ (0, α2 − 2) since α2 > 2. 2

Remark 3 To focus on the main ideas of this paper, we have discussed the situations where the support of the distribu-
tion for input variables are known. As pointed out by [42], the assumption that the support of underlying input model
is known could be a limitation for some cases where the support is unknown. Nevertheless, with mild modification on
the DPM prior we introduced in the main part of this paper, the modified priors can be showed to satisfy the posterior
consistency property even if the support is unknown.

Although the exact support of the input distribution is unknown, it is typically reasonable to assume that we know
whether the support is bounded, half-bounded, or supported on the whole real line. Under such assumption, we
can extend the DPM model introduced in (1) with one more layer of prior on the boundary value(s) for bounded
or half-bounded supports, such that the extended new model will maintain posterior consistency for the true input
distributions. Those shifted version of the commonly used distributions will be consistently estimated under such an
extended version of DPM.

Specifically, the prior is defined as expression (11). Note that such setting is different from setting the boundary as
hyper-parameters of the kernel density function. From the modeling point of view, we can set ξ as hyper-parameters of
the kernel densities and set µ as its prior; see [67] for more details on such setting. However, though we believe such
setting could still lead to consistent estimation, the proof will be dramatically complicated. By [67], we will need to
verify Condition A2 in their Theorem 1, and cannot directly apply their Lemma 2, due to the Condition A5, mostly. To
work out this situation is totally out of the scope of this paper. Hence, we show that the approach by introducing an
index parameter is consistent here, which is sufficient for demonstrating that the posterior consistency can be hold for
estimating input distributions without knowing exactly its support.

To achieve this, we use Lemma 1 in [67]. For the completeness of our argument, we cite their Lemma 1 here:

Lemma 14 (Lemma 1 in [67]) Let f | ξ ∼ Π∗ξ , where ξ is an indexing parameter following a prior π and let f c be
the true density. Suppose that there exists a set B with properties Π(B) > 0 and B ⊂ {ξ : f c ∈ KL(Π∗ξ)}. Then
f c ∈ Π∗, where the prior Π∗ =

∫
Π∗ξdπ(ξ).

When the support is bounded but the boundary is unknown, we use a DPM with location-scale transformed Beta kernel
as the prior. More specifically, the prior is set as (11), where the kernel function is the transformed Beta density with
parameters for boundaries

h(x;ω, β, a1, a2) =
Γ(ω, β)

Γ(ω)Γ(β)

(
x− a1

a2 − a1

)ω−1(
1− x− a1

a2 − a1

)β−1

, (67)

and the base distribution G0 for Dirichlet Process is specified as (5).

PROOF OF COROLLARY 1: Let B = [a1 − δ, a1] × [a2, a2 + δ]. Then by Lemma 14, it is sufficient to prove this
corollary by showing that for any ξ = (a1 − λ, a2 + λ) ∈ B (with 0 < λ ≤ δ), f c ∈ KL(Π∗ξ). Denote the true
density function on [a1 − λ, a2 + λ] by f c(x), which is f c(x) = f c(x) for x ∈ [a1, a2] and f c(x) = 0 otherwise. If
f c(a1) = f c(a2) = 0, then we can directly apply Theorem 1 Part (iii), and prove the corollary.

When f(a1) > 0 or f(a2) > 0, similar to Lemma 12, we need to construct a new density function f1(x) to approximate
f c(x). For a given m > 0, define f3(x) = [(x − a1 + m)/m]f c(a1) when x ∈ [a1 − m, a1], and f4(x) =
[(a2 + m − x)/m]f c(a2) when x ∈ [a2, a2 + m]. Let f2(x) = f c(x) + f3(x) + f4(x). Then we define f1(x) =
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max(f2(x),m)∫ a2+λ

a1−λ
max(f2(x),m)dx

. Notice that∫ a2+λ

a1−λ max(f2(x),m)dx =
∫ a2

a1
max(f2(x),m)dx+

∫ a1

a1−λ max(f3(x),m)dx+
∫ a2+λ

a2
max(f4(x),m)dx

≤
∫ a2

a1

max(f2(x),m)dx+

∫ a1

a1−λ
(f3(x) +m)dx+

∫ a2+λ

a2

(f4(x) +m)dx

=
∫ a2

a1
max(f2(x),m)dx+ m2−[max(m−λ,0)]2

2m f c(a1) +mλ+ m2−[max(m−λ,0)]2

2m f c(a2) +mλ

≤
∫ a2

a1

max(f2(x),m)dx+ (f c(a1) + f c(a2))m/2 + 2mλ.

If we let c =
∫ a2

a1
max(f2(x),m)dx+(f c(a1)+f c(a2))m/2+2mλ, then by this construction, the denominator in the

definition of f1(x) is less than or equal to c, which means that f c(x) ≤ f2(x) ≤ max(f2(x),m) ≤ cf1(x). Moreover,
c → 1 when m → 0. This implies that: (i) f1 > m > 0 is continuous on [a1 − λ, a2 + λ] for some m > 0, and (ii)
for any ε > 0, there exists a c > 0, such that (1 + c) log c < ε and cf1(x) > f c(x). Then such f1(x) will satisfy the
requirements in the proof for Theorem 1 Part (iii). The conclusion of Corollary 1.1 follows from the proof of Theorem
1 Part (iii). 2

Before we show that weak consistency for the DPM prior will hold under some mild conditions when the true density
functions have half bounded support and unknown end points, we need to extend the Lemma 12 to the following form:

Lemma 15 Let f c(x) be a continuous and bounded density with support on [a0,∞). Let p be a prior on Da0−δ , the
space of all densities supported on [a0 − δ,∞), where δ > 0. For any ε > 0, there exist m > 0 and f1(x) ≥ m > 0
for x ∈ [a0 − δ, a0] such that p(Kε(f1)) > 0 implies that p(K3(ε+

√
ε)(f

c)) > 0.

PROOF. Let f3(x) = [(x − a0 + m)/m]f c(a0) when x ∈ [a1 −m, a1], and let f2(x) = f c(x) + f3(x). Then we
define

f1(x) =


max(f2(x),m)∫ a0

a0−δ
max(f2(x),m)dx+

∫∞
a0
fc(x)dx

, for x ∈ [a0 − δ, a0];

fc(x)∫ a0
a0−δ

max(f2(x),m)dx+
∫∞
a0
fc(x)dx

, for x ∈ (a0,∞).

By Lemma 5.1 in [30], we have K(f c; f) ≤ (c + 1) log c + c[K(f1; f) +
√
K(f1; f)], where K(f1; f2) =∫

f1 log(f1/f2) is the Kullback-Leibler divergence and c =
∫ a0

a0−δ max(f2(x),m)dx +
∫∞
a0
f c(x)dx ≤ 1 +

f c(a0)m/2 + δm. We have that c → 1 when m → 0. Therefore, for any given ε > 0, there exists suffi-
ciently small m > 0 such that (c + 1) log c < ε and c < 2. As a result, for any ε > 0, K(f1; f) < ε
implies that K(f c; f) < ε + 2(ε +

√
ε) < 3(ε +

√
ε), which implies that K3(ε+

√
ε)(f

c) ⊇ Kε(f1) and hence
p(K3(ε+

√
ε)(f

c)) ≥ p(Kε(f1)) > 0. 2

When the support is half bounded but the boundary is unknown, we use a DPM with location shifted Gamma kernel
as the prior. More specifically, the prior is set as (11), where the kernel function is the shifted Gamma density with
parameters for boundaries

h(x;V, u, a0) =
1

Γ(V )(u/V )V
(x− a0)V−1e−xV/u, (68)

and the base distribution G0 for Dirichlet Process is specified as (3).

The proof of Corollary 1.2 follows the same approach as the one for Corollary 1.1, by using Lemma 15 (which is
adapted from Lemma 12), and hence we omit the detailed proof here. Also notice that this corollary will apply to all
commonly used distributions on [0,∞) discussed above in their shifted version.

Remark 4 Pareto distribution is also commonly used in simulation for modeling input data. It has a location param-
eter, which makes it not be supported on [0,∞). Moreover, to obtain the consistency result, we need some limits on
the parameters of this distribution and some extra conditions on the parameters chosen for DPM prior with Gamma
density kernel. We use the Pareto distribution as an example to demonstrate that distributions like this can still be
consistently estimated through a DPM prior without knowing the exact boundary value. If we have reasonably strong
suspect that the true distribution is Pareto distribution or of similar type, then the exponential kernel and the location-
scale uniform kernel are better choices than the Gamma kernel in the DPM prior.

Pareto Distribution: The probability density function for this distribution is

f c(x) =
αxαm
xα+1

, for x > xm.
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Assume that xm is known. To show the consistency holds for this distribution when the DPM kernel function is either
exponential or scaled uniform density, we need to verify the conditions in Theorems 16 and 17 in [67]. First, we
need

∫
| log f c(x)|f c(x)dx <∞, which is obviously true for the Pareto distribution. While using exponential density

kernel, we need
∫
xf c(x)dx < ∞, which is true when α > 1, since Pareto distribution has finite mean when α > 1.

Otherwise, we can use the scaled uniform density kernel, which does not require finite mean for consistency, but
requires that the true density function must be continuous and decreasing, which is satisfied by the Pareto distribution.
For using the DPM with exponential kernel, one last requirement is that F

c
(x) = 1 − F c(x) need to be completely

monotone, which is also true for the Pareto distribution.

Furthermore, all the following distributions have completely monotone F (x): the exponential distribution, the Weibull
distributions with shape parameter less than 1, and the Gamma distributions with shape parameter less than or equal
to 1. If the true density f c is one of these distributions, then using the exponential kernel in our DPM model can lead
to posterior consistency at f c. See [21] for more about the completely monotone property.

To extend the result to the situation when xm is unknown, we can use the same approach as in Remark 3. More
specifically, we can treat xm as an index parameter, assign a prior π on it, and set the complete prior as (11) with
either the exponential or the scaled uniform density as the kernel. Then as long as π[a0 − δ, a0] > 0, where a0 is the
true value for the parameter xm, the posterior is weakly consistent at F c(x).

C Appendix: Asymptotic Properties of Bayesian Nonparametric Framework

To prove Theorem 2, we first introduce some useful definitions and lemmas. In the following, with a little bit abuse of
notation, for a generic random variable U , we use FU to denote both its distribution and its cdf. We first introduce the
Wasserstein-p distance (or Mallow’s metric).

Definition C.1 ([63] Definition 6.1) Let U and V be two random variables whose marginal distributions are FU and
FV . Then the Wasserstein-p distance is

dp(U, V ) =

(
inf

G∈C(FU ,FV )

∫
R×R
|u− v|pdG(u, v)

)1/p

,

where C(FU , FV ) represents the set of all joint distributions on R× R with marginal distributions FU and FV .

Such a joint distribution G(u, v) is usually called a coupling of (FU , FV ). Based on this definition, if F represents a
generic distribution on R, one can define the Wasserstein-p spaceMp = {F :

∫
R |x − x0|pdF (x) < ∞} for some

x0 ∈ R according to Definition 6.4 of [63]. Furthermore, [63] has shown that this definition does not depend on the
choice of x0. In fact,Mp is the set of all distributions on R with finite pth moment.

It is well known that the Wasserstein-p distance metricizes the space of Mp. In particular, we have the following
lemma.

Lemma 16 ([63] Theorem 6.8) Let {F` : ` = 1, 2, . . .} be a sequence of distributions on R. Let F0 be a distribution on
R. If F0, F1, F2, . . . ,∈ Mp with 1 ≤ p <∞, then the weak convergence of F` to F0 is equivalent to dp(F`, F0)→ 0
as `→∞.

Now we cite a key result that relate the Wasserstein distance on R to the quantile function. For any u ∈ [0, 1], let
F−1(u) = inf{x ∈ R : F (x) ≥ u} be the quantile function of F (the cdf F (x) is assumed to be a right-continuous
function with left limit, by convention). Note that this definition works for both discrete and continuous distributions.
Then we have the following property.

Lemma 17 ([12] Lemma 8.2) For any pairs of distributions FU , FV ∈Mp with 1 ≤ p <∞,

dp(FU , FV ) =

(∫ 1

0

|F−1
U (u)− F−1

V (u)|pdu
)1/p

.

We also need the following result on the convergence of quantile functions.

Lemma 18 ([62] Lemma 21.2) Let {F` : ` = 1, 2, . . .} be a sequence of distributions on R. Let F0 be a distribution
on R. Then F` converges to F0 weakly as ` → ∞ if and only if lim`→∞ F−1

` (u) = F−1
0 (u) for any continuity point

u ∈ [0, 1] of F−1
0 .
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An immediate consequence of Lemma 16 and Lemma 18 is the following.

Lemma 19 Let {F` : ` = 1, 2, . . .} be a sequence of distributions on R. Let F0 be a distribution on R. Suppose that
F0, F1, F2, . . . ∈ Mp with 1 ≤ p < ∞. Then dp(F`, F0) → 0 as ` → ∞ if and only if lim`→∞ F−1

` (u) = F−1
0 (u)

for any continuity point u ∈ [0, 1] of F−1
0 .

Lemma 19 allows us to directly connect the convergence in Wasserstein-p distance to the convergence of quantiles.

We cite another important theorem from [43].

Lemma 20 (A special case of [43] Theorem 3.1) Let U1, . . . , UN be i.i.d. random variables from a distribution F0 on
R. Let F̂N be the empirical distribution of U1, . . . , UN . Suppose that

∫
R |u|

2dF0(u) < ∞. Then E[d1(F̂N , F0)] ≤
C1

∫
R |u|

2dF0(u) ·N−1/2, where d1 is the Wasserstein-1 distance, and C1 is an absolute positive constant that does
not depend on F0.

Lemma 20 is a special case of Theorem 3.1 of [43]. In particular, we take d = 1, p = 1, and q = 2 and simplify the
upper bounds in their theorem.

Lemma 21 If the posterior p(F |Xm) is weakly consistent at F c, then for any given ε1 > 0, ε2 > 0, ε3 > 0, there
exists a sufficiently large integer M0, such that for all m > M0,

PF c
[
P
({

dLP (F̃ , F c) > ε1

} ∣∣Xm

)
> ε2

]
< ε3,

where F̃ ∼ p
(
F
∣∣Xm

)
and PF c denotes the probability measure of Xm, i.e., the measure of the true input distribution

F c.

Proof of Lemma 21:

We show that the consistency in weak neighborhood is sufficient to imply the consistency in Lévy-Prokhorov metric,
which is what we need for showing asymptotic properties of the proposed simulation method based on nonparametric
Bayesian framework. For the true probability distribution F c (with density f c) on <, let Wε = {F : dLP (F, F c) < ε}
denote an open neighborhood of F c in Lévy-Prokhorov metric. By the definition of Lévy-Prokhorov metric, we have
that

Wε = ∩A∈B(<){P : Pfc(A) + ε ≥ P (Aε) and P (Aε) ≥ Pfc(A)− ε}
= ∩A∈B(<){P : Pfc(A) + ε+ P (Aε\A) ≥ P (A) ≥ Pfc(A)− ε− P (Aε\A)}
⊇ ∩A∈B(<){P : Pfc(A) + ε ≥ P (A) ≥ Pfc(A)− ε} ≡W ∗ε , (69)

where B(<) is the collection of all Borel sets on <, Pfc and P are the probability associated with distributions
F c and F respectively, and W ∗ε defined as above is a weak neighborhood of F c. Since weak consistency implies
that p(W ∗ε | X1, . . . , Xn) converges to 1 in Pfc -probability as n → ∞ for any ε > 0, we have that for any ε > 0,
1 ≥ p(Wε | X1, . . . , Xn) ≥ p(W ∗ε | X1, . . . , Xn), which implies that the posterior probability on any Lévy-Prokhorov
neighborhood of the true distribution F c converges to 1 in Pfc -probability as n→∞. We write this relation in ε− δ
language and the lemma follows. 2

Proof of Theorem 2 (i):

For abbreviation, we write µb = µ(F̃ (b)) and σ2
b = σ2

e(F̃ (b)) for b = 1, . . . , B. We first rank the means of simulation
outputs {Ȳb}Bb=1 as Ȳ(1) < Ȳ(2) < . . . < Ȳ(B). Suppose (k1, k2, . . . , kB) is the permutation of integers (1, 2, . . . , B)

such that Ȳkb = Ȳ(b) for b = 1, 2, . . . , B. In other words, kb is the original subscript of Ȳ(b) before they are ranked. We
define a sequence with subscript “(b)” as the same sequence with the original subscript kb, i.e., µ(b) = µkb , σ

2
(b) =

σ2
kb
, n(b) = nkb for b = 1, 2, . . . , B. In this way, we have that for b = 1, . . . , B,

E
[
Ȳ(b)|Xm,FB

]
= µ(b), Var

[
Ȳ(b)|Xm,FB

]
=
σ2

(b)

n(b)
. (70)

Let FȲ ,B be the empirical distribution of the “sample” {Ȳb}Bb=1. Let Fµ,B be the empirical distribution of the “sam-
ple” {µb}Bb=1. By Condition (1), since the posterior distribution of W is continuous, we have that with probability 1,
all values of {µb}Bb=1 are distinct.
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Then both FȲ ,B and Fµ,B are discrete distributions supported on at most B points. Hence both FȲ ,B and Fµ,B
have finite 2nd moments almost surely, which means that they lie inM2. We can see that the set of all couplings of
(FȲ ,B , Fµ,B) is given by the set of all bivariate probability distributions G(u, v) in the set

C(FȲ ,B , Fµ,B) =
{
G(u, v) =

B∑
b1=1

B∑
b2=1

wb1b2δ(Ȳb1 ,µb2 )(u, v) :

wb1b2 ≥ 0, for b1 = 1, . . . , B, and b2 = 1, . . . , B,

and
B∑

b1=1

wb1b2 =
1

B
, for b2 = 1, . . . , B,

and
B∑

b2=1

wb1b2 =
1

B
, for b1 = 1, . . . , B

}
. (71)

In other words, any G ∈ C(FȲ ,B , Fµ,B) is supported on at most B2 points. Now we look at a particular coupling
G◦(u, v) = 1

B

∑B
b=1 δ(Ȳb,µb), i.e., G◦ is the empirical measure supported on the B original pairs {(Ȳb, µb)}Bb=1 with

no misalignment (here δx stands for the Dirac measure at the point x). Then G◦ ∈ C(FȲ ,B , Fµ,B). By Definition C.1,
we have that for p = 1,

d1

(
FȲ ,B , Fµ,B

)
= inf
G∈C(FȲ ,B ,Fµ,B)

∫
R×R
|u− v|dG(u, v)

≤
∫
R×R
|u− v|dG◦(u, v) =

1

B

B∑
b=1

∣∣Ȳb − µb∣∣ ≤ ( 1

B

B∑
b=1

∣∣Ȳb − µb∣∣2)1/2

. (72)

The first inequality follows because the infimum over C(FȲ ,B , Fµ,B) is always no larger than one particular element
in C(FȲ ,B , Fµ,B) (in this case, G◦). The second inequality is a simple application of Cauchy-Schwarz inequality.

According to Condition (2), σ2
b ≤ C2

σ for all b = 1, . . . , B, (70) and (72) together imply that

E
[
d2

1

(
FȲ ,B , Fµ,B

) ∣∣∣Xm,FB
]
≤ E

[
1

B

B∑
b=1

∣∣Ȳb − µb∣∣2 ∣∣∣Xm,FB

]

=
1

B

B∑
b=1

E
[∣∣Ȳb − µb∣∣2 ∣∣∣Xm,FB

]
=

1

B

B∑
b=1

E
[
σ2
b

nb

∣∣∣Xm,FB
]
≤ C2

σ

nmin
. (73)

Since this upper bound does not depend on FB , we can remove the condition on FB by taking iterated expectation:

E
[
d2

1

(
FȲ ,B , Fµ,B

) ∣∣∣Xm

]
= E

{
E
[
d2

1

(
FȲ ,B , Fµ,B

) ∣∣∣Xm,FB
]}
≤ C2

σ

nmin
. (74)

Since µb = µ(F̃ (b)) and F̃ (b) (b = 1, . . . , B) are random draws from the posterior p(F |Xm), we have that {µb}Bb=1

is a random sample of the random variable W = µ(F̃ ) with F̃ ∼ p(F |Xm). Now we invoke Lemma 20 and obtain
that conditional on Xm,

E
[
d1(Fµ,B , FW (·|Xm))

∣∣Xm

]
≤
C1

∫
R w

2dFW (w|Xm)
√
B

. (75)

According to Condition (1),
∫
R w

2dFW (w|Xm) is almost surely finite, so is the upper bound in (75).

Now we combine (74) and (75), and use the triangle inequality and Cauchy-Schwarz inequality to obtain that

E
[
d1(FȲ ,B , FW (·|Xm))

∣∣Xm

]
≤ E

[
d1(FȲ ,B , Fµ,B)

∣∣Xm

]
+ E

[
d1(Fµ,B , FW (·|Xm))

∣∣Xm

]
≤
√

E
[
d2

1(FȲ ,B , Fµ,B)
∣∣Xm

]
+ E

[
d1(Fµ,B , FW (·|Xm))

∣∣Xm

]
≤ Cσ√

nmin
+
C1

∫
R w

2dFW (w|Xm)
√
B

. (76)
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We note that for any u ∈ (0, 1), F−1
Ȳ ,B

(u) = ȲduBe since FȲ ,B is a discrete distribution supported on {Ȳb}Bb=1, and

F−1
W (u|Xm) = qW (u|Xm). By Lemma 17, we have that

E
[
d1(FȲ ,B , FW (·|Xm))

∣∣Xm

]
= E

[∫ 1

0

∣∣∣F−1
Ȳ ,B

(u)− F−1
W (u|Xm)

∣∣∣ du ∣∣∣Xm

]
= E

[∫ 1

0

∣∣ȲduBe − qW (u|Xm)
∣∣ du ∣∣∣Xm

]
≤ Cσ√

nmin
+
C1

∫
R w

2dFW (w|Xm)
√
B

, (77)

where the last inequality follows from (76).

Now for the Hausdorff distance we have considered, we have the following relation∫ 1

0

dH
([
Ȳ(d(α∗/2)Be), Ȳ(d(1−α∗/2)Be)

]
, [qW (α∗/2|Xm) , qW (1− α∗/2|Xm)]

)
dα∗

=

∫ 1

0

[∣∣Ȳ(d(α∗/2)Be) − qW (α∗/2|Xm)
∣∣] dα∗ +

∫ 1

0

[∣∣Ȳ(d(1−α∗/2)Be) − qW (1− α∗/2|Xm)
∣∣] dα∗

= 2

∫ 1/2

0

[∣∣Ȳ(duBe) − qW (u|Xm)
∣∣] du+ 2

∫ 1

1/2

[∣∣Ȳ(dvBe) − qW (v|Xm)
∣∣] dv

= 2

∫ 1

0

[∣∣Ȳ(duBe) − qW (u|Xm)
∣∣] du. (78)

Therefore, (77) and (78) together imply that

E
[∫ 1

0

dH
([
Ȳ(d(α∗/2)Be), Ȳ(d(1−α∗/2)Be)

]
, [qW (α∗/2|Xm) , qW (1− α∗/2|Xm)]

)
dα∗

∣∣∣Xm

]
≤ 2Cσ√

nmin
+

2C1

∫
R w

2dFW (w|Xm)
√
B

. (79)

This has proved (12) in Part (i) of Theorem 2.

Next we prove (13). We first notice that according to Condition (1), given Xm, FW (w|Xm) is a strictly increasing
continuous cdf on its support. Therefore, its inverse F−1

W (u|Xm) is also a strictly increasing function for all u ∈ (0, 1).
By Lemma 19, for any given number δ > 0 and any given γ ∈ (0, 1), there exists ζ = ζ(δ, γ,Xm) > 0, such that

d1(FȲ ,B , FW (·|Xm)) < ζ =⇒ |Ȳ(dγBe) − qW (γ|Xm)| < δ

2
. (80)

Conditional on the input data Xm, for any ζ as above and any given ε > 0, we can set B0 =
B0(ζ(δ, γ,Xm), ε,Xm) = d16C2

1 (
∫
R w

2dFW (w|Xm))2/(ζ2ε2)e and nmin,0 = nmin,0(ζ(δ, γ,Xm), ε,Xm) =

d16C2
σ/(ζ

2ε2)e, such that by Markov’s inequality and Equation (77), for all B > B0 and nmin > nmin,0,

P
(
d1(FȲ ,B , FW (·|Xm)) ≥ ζ

∣∣∣Xm

)
≤

E
[
d1(FȲ ,B , FW (·|Xm))

∣∣∣Xm

]
ζ

≤ 1

ζ

(
2Cσ√
nmin

+
2C1

∫
R w

2dFW (w|Xm)
√
B

)

<
1

ζ

 Cσ√
16C2

σ/(ζ
2ε2)

+
C1

∫
R w

2dFW (w|Xm)√
16C2

1 (
∫
R w

2dFW (w|Xm))2/(ζ2ε2)


=
ε

4
+
ε

4
=
ε

2
. (81)

(80) and (81) together imply that for all B > B0 and nmin > nmin,0,

P
(
|Ȳ(dγBe) − qW (γ|Xm)| ≥ δ

2

∣∣∣Xm

)
≤ P

(
d1(FȲ ,B , FW (·|Xm)) ≥ ζ

∣∣∣Xm

)
<
ε

2
. (82)

Now in (82), we replace γ by both α∗/2 and 1− α∗/2, and let B1 = max{B0(ζ(δ, α∗/2,Xm), ε,Xm), B0(ζ(δ, 1−
α∗/2,Xm), ε,Xm)}, and
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nmin,1 = max{nmin,0(ζ(δ, α∗/2,Xm), ε,Xm), nmin,0(ζ(δ, 1 − α∗/2,Xm), ε,Xm)}. Then from (82), we have that
for all B > B1 and nmin > nmin,1,

P
(
dH

([
Ȳ(d(α∗/2)Be), Ȳ(d(1−α∗/2)Be)

]
,
[
qW (α∗/2|Xm) , qW (1− α∗/2|Xm)

])
≥ δ

∣∣∣Xm

)
= P

(∣∣Ȳ(d(α∗/2)Be) − qW (α∗/2|Xm)
∣∣+
∣∣Ȳ(d(1−α∗/2)Be) − qW (1− α∗/2|Xm)

∣∣ ≥ δ ∣∣∣Xm

)
≤ P

(∣∣Ȳ(d(α∗/2)Be) − qW (α∗/2|Xm)
∣∣ ≥ δ

2

∣∣∣Xm

)
+ P

(∣∣Ȳ(d(1−α∗/2)Be) − qW (1− α∗/2|Xm)
∣∣ ≥ δ

2

∣∣∣Xm

)
<
ε

2
+
ε

2
= ε. (83)

Hence (13) has been proved. 2

Proof of Theorem 2 (ii):

According to Condition (3), for any δ > 0, there exists ε1 > 0, such that |µ(F )− µ(F c)| < δ/2 if dLP (F, F c) < 2ε1.
In other words,

|µ(F )− µ(F c)| > δ =⇒ |µ(F )− µ(F c)| ≥ δ/2
=⇒ dLP (F, F c) ≥ 2ε1 =⇒ dLP (F, F c) > ε1. (84)

Based on Lemma 21, for any given ε1 > 0, ε2 > 0, ε3 > 0, there exists a sufficiently large integer M0, such that for
all m > M0,

PF c
[
P
({
dLP (F̃ , F c) > ε1

} ∣∣Xm

)
> ε2

]
< ε3, (85)

where F̃ ∼ p
(
F
∣∣Xm

)
and PF c denotes the probability measure of Xm. Now the weak consistency of p(F |Xm) at F c

as defined in (85) is assumed in Condition (4). Hence, from (84) and (85), we have that for any δ > 0, ε2 > 0, ε3 > 0,
there exists a large integer M0 that depends on δ, ε2, ε3, such that for all m > M0,

PF c
[
P
({∣∣∣µ(F̃ )− µ(F c)

∣∣∣ > δ
} ∣∣Xm

)
> ε2

]
≤ PF c

[
P
({
dLP (F̃ , F c) > ε1

} ∣∣Xm

)
> ε2

]
< ε3,

or equivalently

PF c
[
P
({
µ(F c)− δ ≤ µ(F̃ ) ≤ µ(F c) + δ

} ∣∣Xm

)
> 1− ε2

]
= PF c

[
P
({
|µ(F̃ )− µ(F c)| ≤ δ

} ∣∣Xm

)
> 1− ε2

]
≥ 1− ε3. (86)

According to Condition (1), the conditional posterior distribution FW (·|Xm) for W = µ(F̃ ) with F̃ ∼ p(F |Xm) has
a positive density on its support. Therefore, in its support, FW (·|Xm) is a strictly monotone continuous cumulative
distribution function, and its quantile function (as its inverse) qW (γ|Xm) is also continuous. Based on this relation,
we have that for W = µ(F̃ ),

P
({
µ(F c)− δ ≤ µ(F̃ ) ≤ µ(F c) + δ

} ∣∣Xm

)
> 1− ε2

=⇒ P
({
µ(F c)− δ ≤ µ(F̃ )

} ∣∣Xm

)
> 1− ε2

=⇒ P
(
{µ(F c)− δ ≤W}

∣∣Xm

)
> 1− ε2

=⇒ 1− FW (µ(F c)− δ
∣∣Xm) > 1− ε2

=⇒ FW (µ(F c)− δ
∣∣Xm) ≤ ε2. (87)

And similarly

P
({
µ(F c)− δ ≤ µ(F̃ ) ≤ µ(F c) + δ

} ∣∣Xm

)
> 1− ε2

=⇒ P
({
µ(F̃ ) ≤ µ(F c) + δ

} ∣∣Xm

)
> 1− ε2

=⇒ P
(
{W ≤ µ(F c) + δ}

∣∣Xm

)
> 1− ε2

=⇒ FW (µ(F c) + δ
∣∣Xm) > 1− ε2. (88)

51



Now for any given quantile γ ∈ (0, 1), if 0 < ε2 < min{γ, 1 − γ}, then ε2 < γ < 1 − ε2. For such small ε2, the
continuity of the quantile function qW (γ|Xm), (87) and (88) imply that

FW (µ(F c)− δ
∣∣Xm) ≤ ε2 < γ < 1− ε2 < FW (µ(F c) + δ

∣∣Xm)

=⇒ µ(F c)− δ < qW (γ|Xm) < µ(F c) + δ =⇒ |qW (γ|Xm)− µ(F c)| < δ. (89)

If we combine the relations from (86), (87), (88), and (89), then we have shown that for any given δ > 0, ε3 > 0, γ ∈
(0, 1), ε2 ∈ (0,min{γ, 1 − γ}), there exists a sufficiently large integer M0 that depends on δ, ε2, ε3, such that for all
m > M0,

PF c [|qW (γ|Xm)− µ(F c)| < δ]

≥ PF c
[
FW (µ(F c)− δ

∣∣Xm) ≤ ε2 < γ < 1− ε2 < FW (µ(F c) + δ |Xm )
]

= PF c
[
FW (µ(F c)− δ

∣∣Xm) ≤ ε2 and FW (µ(F c) + δ |Xm) > 1− ε2
]

≥ PF c
[
P
({
µ(F c)− δ ≤ µ(F̃ ) ≤ µ(F c) + δ

} ∣∣Xm

)
> 1− ε2

]
≥ 1− ε3. (90)

From Equation (82) in the proof of Part (i), we have that for the δ > 0, ε2 > 0, and γ ∈ (0, 1) given as above,
there exist B2 and nmin,2 that only depend on ε2, δ, γ, Cσ,Xm and the function µ(·), such that for all B > B2 and
nmin > nmin,2,

P
(∣∣Ȳ(dγBe) − qW (γ|Xm)

∣∣ > δ
∣∣∣Xm

)
< ε2.

Since this relation always holds true conditional on Xm, it implies that

PF c
[
P
(∣∣Ȳ(dγBe) − qW (γ|Xm)

∣∣ > δ
∣∣∣Xm

)
> ε2

]
= 0. (91)

Finally, based on (90) and (91), we have that

PF c
[
P
(∣∣Ȳ(dγBe) − µ(F c)

∣∣ ≥ 2δ
∣∣∣Xm

)
> 2ε2

]
≤ PF c

[
P
(∣∣Ȳ(dγBe) − qW (γ|Xm)

∣∣+ |qW (γ|Xm)− µ(F c)| ≥ 2δ
∣∣∣Xm

)
> 2ε2

]
≤ PF c

[
P
(∣∣Ȳ(dγBe) − qW (γ|Xm)

∣∣ > δ
∣∣∣Xm

)
+ P

(
|qW (γ|Xm)− µ(F c)| ≥ δ

∣∣∣Xm

)
> 2ε2

]
≤ PF c

[
P
(∣∣Ȳ(dγBe) − qW (γ|Xm)

∣∣ > δ
∣∣∣Xm

)
> ε2

]
+ PF c

[
P
(
|qW (γ|Xm)− µ(F c)| ≥ δ

∣∣∣Xm

)
> ε2

]
(∗)
≤ PF c

[
P
(∣∣Ȳ(dγBe) − qW (γ|Xm)

∣∣ > δ
∣∣∣Xm

)
> ε2

]
+ PF c [|qW (γ|Xm)− µ(F c)| ≥ δ]

(∗∗)
< 0 + ε3 = ε3, (92)

where (*) follows because given Xm, {|qW (γ|Xm)− µ(F c)| ≥ δ} is a deterministic event (with conditional proba-
bility either 0 or 1); (**) follows because of (90). Note that since B2(ζ, ε2,Xm) and nmin,2(ζ, ε2,Xm) depend on
ζ, ε2,Xm, and ζ depends on δ, γ,Xm, soB2 and nmin,2 depend on δ, γ, ε2,Xm. Therefore, the conclusion of Theorem
2 (ii) follows by renaming 2δ by δ, 2ε2 by η (such that η <∈ (0, 2 min{γ, 1− γ})), and 2ε3 by ε. 2

D Appendix: Variance Decomposition of System Performance Estimation

Proof of Theorem 3(i):

Given the real-world data Xm, the variance of Ȳ (F̃ ) quantifies the overall estimation uncertainty of the system mean
response µc = µ(F c). Here, we decompose this variance to measure the relative contributions from the input and
simulation uncertainties,

Var(Ȳ (F̃ )|Xm) = EF̃ (b) [Var(Ȳb|Xm, F̃
(b))|Xm] + VarF̃ (b) [E(Ȳb|Xm, F̃

(b))|Xm]

= EF̃ (b)

[
σ2
b

nb

∣∣∣∣Xm

]
+ VarF̃ (b) [µb|Xm] (93)

≈ 1

B

B∑
b=1

S2
b

nb
+

1

B

B∑
b=1

(Ȳb − ¯̄Y )2.

52



On the right side of Equation (93), the first term σ2
S ≡ EF̃ (b)

[
σ2
b

nb

∣∣∣Xm

]
measures the impact from simulation un-

certainty and the second term σ2
I ≡ VarF̃ (b) [µb|Xm] measures the impact from input uncertainty. Since the sample

mean and variance Ȳb and S2
b are the consistent estimators for µb and σ2

b , we estimate σ2
S with σ̂2

S = 1
B

∑B
b=1

S2
b

nb
and

estimate σ2
I with σ̂2

I = 1
B

∑B
b=1(Ȳb − ¯̄Y )2, where ¯̄Y = 1

B

∑B
b=1 Ȳb. 2

Proof of Theorem 3(ii):

We first prove σ2
S

p→ 0 as nmin →∞. For any δ > 0, ε > 0, Cσ > 0, let nmin > Cσ/(δε) such that

P[σ2
S(Xm) ≥ δ]

(∗)
≤ 1

δ
E
[
σ2
S(Xm)

]
=

1

δ
E
[

E
[
σ2
b

nb

∣∣∣∣Xm

]]
(∗∗)
≤ 1

δ

Cσ
nmin

< ε,

where (*) follows by the Markov’s inequality and (**) follows according to Condition (2) of Theorem 2. Thus, σ2
S

p→ 0
as nmin →∞.

Then, we prove σ2
I

p→ 0 as m→∞. By the Markov’s inequality, we have for any δ > 0,

P
[
σ2
I (Xm) ≥ δ

]
≤ 1

δ
E
[
σ2
I (Xm)

]
=

1

δ
E
[
E
[
(µb − µ̄)2|Xm

]] (∗)
≤ 1

δ
E
[
E[(µb − µc)2|Xm]

]
, (94)

where (*) follows because the sample mean µ̄ = arg minµ E(µb − µ)2.

Since |µ(F̃ )| ≤ Cµ for almost surely all F̃ ∼ p(F |Xm), we have that (µb − µc)2 ≤ 2[µ2
b + (µc)2] ≤ 2[C2

µ + (µc)2]
for all b = 1, 2, . . . , B. Then for any δ1 > 0,

E
[
(µb − µc)2

∣∣Xm

]
=E
[
(µb − µc)2 · I(|µb − µc| ≤ δ1)

∣∣Xm

]
+ E

[
(µb − µc)2 · I(|µb − µc| > δ1)

∣∣Xm

]
≤δ2

1 + 2
[
C2
µ + (µc)2

]
P
[
|µb − µc| > δ1

∣∣Xm

]
, (95)

where I(·) is the indicator function. From (84) obtained by applying Condition (3) of Theorem 2, for any δ1 > 0, there
exists ε1 > 0 such that |µ(F )− µ(F c)| > δ1 =⇒ dLP (F, F c) > ε1. By Condition (4) of Theorem 2, for this ε1 and
any ε2 > 0, ε3 > 0, there exists a large integer m0 that depends on ε1, ε2, ε3, such that for all m > m0,

PF c
[
P
({
dLP (F̃ , F c) > ε1

} ∣∣Xm

)
> ε2

]
< ε3.

Thus, for all m > m0,
PF c

[
P
(
{|µb − µc| > δ1}

∣∣Xm

)
> ε2

]
≤ PF c

[
P
({
dLP (F̃ , F c) > ε1

} ∣∣Xm

)
> ε2

]
< ε3. (96)

Then, (95) and (96) together imply that for all m > m0,
E
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]
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where (*) follows from (96). For any ε > 0 and the δ > 0 given in (94), we can choose δ1 =
√
εδ/2, ε2 = ε3 =

εδ/
[
8C2

µ + 8(µc)2
]
, such that from (94) and (97),
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Table 8: KS and AD distances for Examples 1–4 with different hyper-parameters θθθα
m = 50 Example 1 Example 2 Example 3 Example 4

Gamma(0.5, 0.5)
Dm 0.106±0.002 0.073±0.001 0.075±0.001 0.070±0.001
Am 11.870±0.175 7.594±0.097 6.365±0.096 8.808±0.097

Gamma(1, 1)
Dm 0.102±0.002 0.071±0.001 0.072±0.001 0.068±0.001
Am 11.278±0.158 7.203±0.088 6.083±0.093 8.253±0.092

Gamma(4, 4)
Dm 0.104±0.002 0.074±0.001 0.075±0.001 0.069±0.001
Am 11.495±0.166 7.787±0.104 6.484±0.098 8.490±0.095

Gamma(2, 4)
Dm 0.105±0.002 0.072±0.001 0.073±0.001 0.068±0.001
Am 11.762±0.174 7.419±0.092 6.207±0.094 8.337±0.094

as long as m > m0, where m0 depends on ε1, ε2, ε3, or equivalently, m0 depends on ε and δ. This has shown that
σ2
I

p→ 0 as m→∞. 2

E Appendix: Sensitivity Analysis of Hyper-parameters for θθθα

We use examples listed in Table 1 with sample size m = 50 to study the sensitivity to the values of hyper-parameters
θθθα. DPM with appropriate kernel densities are used for different examples. That means DPM with Gamma kernel
used for Example 1 and 2, DPM with Gaussian kernel used for Examples 3, and DPM with Beta kernel used for
Example 4. Table 8 records 95% symmetric CIs of KS and AD distances obtained from 1000 macro-replications. The
results indicate that the values of hyper-parameters θθθα have an insignificant impact on the input model estimation,
where Gamma(2, 4) prior was used in [24] and the discrete Gamma(1, 1) prior was used in [64]. The choice of
hyper-parameters does not have significant impact on the density estimation accuracy.
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