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Abstract

The Active Flux scheme is a Finite Volume scheme with additional point values
distributed along the cell boundary. It is third order accurate and does not require a
Riemann solver: the continuous reconstruction serves as initial data for the evolution
of the points values. The intercell flux is then obtained from the evolved values along
the cell boundary by quadrature. This paper focuses on the conceptual extension of
Active Flux to include source terms, and thus for simplicity assumes the homogeneous
part of the equations to be linear. To a large part, the treatment of the source terms is
independent of the choice of the homogeneous part of the system. Additionally, only
systems are considered which admit characteristics (instead of characteristic cones).
This is the case for scalar equations in any number of spatial dimensions and systems
in one spatial dimension. Here, we succeed to extend the Active Flux method to
include (possibly nonlinear) source terms while maintaining third order accuracy of
the method. This requires a novel (approximate) operator for the evolution of point
values and a modified update procedure of the cell average. For linear acoustics with
gravity, it is shown how to achieve a well-balanced / stationarity preserving numerical
method.

Keywords: finite volume methods, Active Flux, source terms, balance laws, well-
balanced methods, gravity
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1 Introduction

Numerous phenomena of the physical world are modeled by hyperbolic balance laws (con-
servation laws augmented by source terms). This includes gas dynamics, the motion of
water waves, plasma physics and even general relativity. Often physical modeling requires
to include source terms, and conservation is modified due to creation or annihilation of
some of the evolved quantities. Chemical reactions, for example, change the number den-
sity of a species and produce or absorb heat (i.e. internal energy). Gravity accelerates
matter downwards and creates momentum. In the shallow water model describing the mo-
tion of a free water surface the bottom topography enters the equations through a source
term. Rewriting the hydrodynamic equations in a different coordinate system (e.g. in polar
coordinates) makes geometric source terms appear. All these applications require reliable
numerical methods which are able to deal with source terms.

Numerical methods for hyperbolic conservation laws with source terms first need to
perform well in the homogeneous case. This means for example that they need to cope with
discontinuities / weak solutions and with phenomena arising in multiple spatial dimensions,
such as involutions and non-trivial stationary states. This requirement has led [ER13,
FR15] to suggest Active Flux, an extension of the finite volume method. Additionally to the
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cell average, this scheme evolves point values located at the cell boundary. These are shared
among neighbouring cells, which gives rise to a continuous reconstruction. The update of
the point values is achieved by using an evolution operator that includes multi-dimensional
information. The presence of the point values along the cell boundary then allows to
compute the intercell flux via quadrature. Thus, Active Flux does not use Riemann solvers,
while still evolving the cell average as one of the discrete degrees of freedom just as Finite
Volume methods do. The additional (pointwise) degrees of freedom allow for the scheme
to be of high order of accuracy on a compact stencil. It has been shown in [BHKR19] that
this scheme is stationarity preserving and vorticity preserving for linear acoustics without
any fix. It is third order accurate. Extensions to nonlinear systems have been recently
suggested e.g. in [Fan17, HKS19, Bar21]. Active flux therefore seems to be promising for
resolving many of the structure preservation problems that currently available methods are
facing (an overview of existing methods for balance laws is given below).

In view of the many applications that involve source terms, this paper therefore aims
at deriving the necessary modifications for Active Flux to be applicable to balance laws
while retaining its third order accuracy. Active flux for equations with a source term
was considered in [NR16], where for stationary problems the necessary quadratures could
be chosen of lower order of accuracy (trapezoidal rule) than in the original Active Flux
method from [ER13] (Simpson’s rule) (see e.g. Eqn. (32) in [NR16]). For time-dependent
problems, in [NR16] the reduced order of accuracy of these quadratures is remedied by using
a high-order implicit time stepping method. The approach of the present work avoids sub-
iterations and multi-step time integrators, and the high order in time is achieved through
the choice of high order quadratures, that hardly entail any computational cost. Contrary
to [NR16], this paper presents a fully explicit method for hyperbolic problems with source
terms that reverts to the original Active Flux scheme of [ER11] when the source term
vanishes. As we aim at resolving the acoustic time scale, explicit time stepping is very
efficient.

Including the source term requires a number of modifications. The homogeneous part
of the equations therefore is for simplicity assumed to be a linear hyperbolic problem for
which characteristics are available. This is the case for scalar equations in any number
of spatial dimensions and for systems in one spatial dimension. For multi-dimensional
systems, the concept of characteristics needs to be replaced by characteristics cones. In the
homogeneous case, Active Flux has been used for this situation as well ([ER13, BHKR19]),
but an extension to inhomogeneous systems in multi-d, and to nonlinear systems remains
subject of future work. To a large part, the strategies presented in this paper will, however,
remain valid when the homogeneous part of the equations is nonlinear as well, and even
for nonlinear multi-dimensional systems.

As soon as a source term is added to a hyperbolic system, new stationary states arise
which often are of particular interest. The stationarity is due to the flux divergence being
equal to the source term. Many areas of application of balance laws involve studies of
dynamics on top of such an equilibrium (e.g. astrophysics, meteorology, tsunami modeling,
. . . ). This requires the numerical method to be very accurate on the stationary states in
order to avoid spurious, artificial perturbations. Therefore the error of a numerical solution
representing one of those stationary states should not increase with time, thus allowing the
simulation to run for a long time (see e.g. the review [EHB+21]).

Numerical methods which achieve this are called well-balanced, introduced in [GL96].
They make sure that the discretization of the flux divergence and the discretization of
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the source term match, and that the numerical method keeps the desired stationary state
exactly stationary for any resolution of the grid. The concept of well-balanced methods
has been extensively used in the context of shallow water equations with non-flat bottom
topography (e.g. [ABB+04, BV94, LeV98] and references therein). Here, the balance is the
so-called lake-at-rest solution, which amounts to an algebraic condition and can thus be
given explicitly.

Another area in which well-balanced methods have high relevance is the simulation
of hydrodynamic processes using compressible Euler equations with gravitational source
term. The so-called hydrostatic state (stationary state with no velocity) is described by
one PDE for two unknown functions. There are many hydrostatic states, depending on the
additional thermodynamical relation that one chooses in order to close this PDE. The fact
that the stationary state is itself given by a differential equation that cannot be immediately
integrated makes well-balancing much more delicate in this context. There are two different
ways which are currently used to construct well-balanced methods for the Euler equations
with gravity. The first and more traditional way is to restrict the class of hydrostatic
solutions which are balanced exactly or to choose a particular, but arbitrary hydrostatic
state (e.g. [CL94, LGB11, DZBK16, CK15, BCK16, CCK+18, BCKR19, BCK19]). This
is advantageous in all those applications where the stationary state is known, and the
evolution of perturbations around it shall be studied. If no information on the stationary
state can be assumed, then the only way to proceed is to make sure that the stationary
states of the numerical method are fulfilling some discretization of the corresponding PDE
(e.g. [DZBK14, KM16, BKCK20]).

In this paper this latter approach is used. In the situation of the stationary states
given by underdetermined PDEs, and not by algebraic equations, the relation between the
discrete stationary states and the stationary states of the PDE has been studied in [Bar19]
for linear problems. It turns out that many standard numerical methods add diffusion
even to those states that should remain stationary. The set of states that are actually
kept stationary by such methods is very small (e.g. uniform constants). Stationarity
preserving methods, on the other hand, do not apply diffusion to discrete data which fulfill
a discrete version of the PDE governing the stationary states. Stationarity preserving
methods thus keep stationary a much larger set of initial data. Independently of how
these discrete equations actually look like, it is their existence that makes a qualitative
difference. In a non-stationarity-preserving method, initial data sampled from an analytic
stationary state will decay due to the diffusion and become unrecognizable in the end. In
a stationarity preserving method, these initial data will evolve towards one of the many
discrete stationary states approximating the steady PDE, and will remain there forever
(up to machine precision). The long-time numerical solution will then indeed approximate
the analytic stationary state. For more details, see [Bar19]. In this paper we understand
the concept of well-balancing in this sense of stationarity preservation.

After extending the Active Flux scheme to include source terms, we construct a well-
balanced Active Flux method for the equations of acoustics with gravity. The hydrostatic
solutions of acoustics with gravity are comparable to those of the compressible Euler equa-
tions with gravity, since they are given via the same underdetermined differential equation.
We show that the Active Flux scheme endowed with an exact evolution operator is intrin-
sically well-balanced. In practice, an approximate evolution operator needs to be used.
Hence we introduce an approximate evolution operator which retains the well-balanced
property.
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The paper is organized as follows: After the Active Flux scheme for homogeneous
problems is introduced in section 2, the modifications necessary for including source terms
are discussed: Section 3 discusses the evolution operators necessary for the update of the
point values and Section 4 is devoted to the modifications in the update of the average.
Here, the focus lies on linear systems of equations with possibly nonlinear source terms in
one spatial dimension and on linear advection in multiple spatial dimensions. Section 5
discusses well-balancing of Active Flux for linear acoustics with gravity. Section 6 finally
demonstrates numerically that the new method attains third order accuracy with linear
and nonlinear source terms, can be used to compute Riemann problems, and displays
well-balanced behavior for stationary states.

This work can be seen in the larger context of the quest for structure preserving numer-
ical methods, of which well-balanced methods form an example. Extending these results
to nonlinear hyperbolic equations with source terms and thus combining the structure
preserving properties of Active Flux remains subject of future work. However, the proce-
dures suggested in this paper are formulated with as little reference to the linearity of the
equations as possible.

2 The Active Flux scheme

Consider the initial value problem for an m × m system of hyperbolic balance laws in d
spatial dimensions3

∂tq +∇ · f(q) = s(q) q : R+
0 × Rd → Rm, f, s : Rm → Rm (1)

q(0,x) := q0(x) (2)

This section reviews the general idea of the Active Flux scheme. Instead of introducing
jumps at every cell interface, as is customary for finite volume schemes, Active Flux employs
a continuous reconstruction and evolves point values at the cell interfaces independently.
These point values are shared by the adjacent cells. Thus, despite evolving a cell average
Active Flux does not require a numerical flux function, as there is no Riemann Problem
to solve. Given the point values, the update of the cell average is immediately possible by
performing flux quadrature in time and along the cell interface. The distribution of degrees
of freedom is discussed in section 2.1, and the update of the average in section 2.2. What
remains, is the update of the point values. To this end, an IVP is solved (approximately)
with the initial data given by the globally continuous reconstruction. This is very different
from the usual approach of finite volume schemes and is described in sections 2.3–2.4.
Some of the details of the (approximate) evolution operator then depend on the particular
equation that is to be solved. After the general concept is outlined, the details that make
it applicable to hyperbolic balance laws are discussed in sections 3 and 4.

2.1 Degrees of freedom in the Active Flux scheme

The Active Flux scheme ([ER13, BHKR19], first introduced in [vL77]) is an extension of
the finite volume scheme. The Active Flux scheme evolves both the cell average and point

3In this paper, indices never denote derivatives. Boldface symbols denote vectors that have the same
dimension as the space.
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Figure 1: The degrees of freedom used for Active Flux. Stars indicate the location of point
values, and the cross (placed in the center symbolically) refers to the cell average. Left :
One spatial dimension. Right : Two spatial dimensions.

values which are distributed along the cell boundary. In particular, here the following two
choices are considered (see Figure 1):

• In one spatial dimension, there is a point value qi+ 1
2

located at each cell interface
xi+ 1

2
. Thus every cell has access to one cell average q̄i and two point values at its

interfaces.

• On Cartesian grids in two spatial dimensions, there is a point value qi+ 1
2
,j, qi,j+ 1

2
at

each edge midpoint and one at each node qi+ 1
2
,j+ 1

2
. Every cell has access to one cell

average q̄ij and 8 point values distributed along the cell interface.

Note that the point values at cell interfaces are shared by the adjacent cells. As will be
seen in the following, the reconstruction is globally continuous and no Riemann Problems
arise. In one spatial dimension, on average there are 2 degrees of freedom per cell: 1 cell
average and 2 interface values shared each by 2 cells. In two spatial dimensions, in the
setup described above, there are 4 degrees of freedom per cell: 1 cell average, 4 edge values,
each shared by two cells and 4 node values each shared by 4 cells.

Note also that Active Flux does not use a staggered grid. The degrees of freedom at
the cell boundaries are not averages over staggered volumes, but point values. This also
explains why there is no notion of a conservative update for these, because this concept
only applies to averages. The update of the cell average in the Active Flux method is, of
course, conservative (see below).

2.2 Update of the cell average

As the Active Flux scheme is an extension of the finite volume scheme, given a time-step-
average of the flux through the cell interface, the update of the average happens in the same
way as for finite volume schemes. As there is a point value located at the cell interface, a
Riemann Solver is not required to obtain the flux. In this section, this finite volume aspect
of Active Flux is described in an arbitrary number of spatial dimensions.

Consider the computational domain to be subdivided into polygonal computational
cells. Upon integration of (1) over one time step [tn, tn + ∆t] and over one computational
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cell C one obtains an evolution equation for the cell average q̄C := 1
|C|

∫
C dx q(t,x):

q̄n+1
C − q̄nC

∆t
+

1

|C|
1

∆t

tn+∆t∫
tn

dt

∫
∂C

dσ n · f(q(t,x)) =

1

∆t

tn+∆t∫
tn

dt
1

|C|

∫
C

dx s(q(t,x))

Here, as usual, the index of the time step is placed as a superscript and qnC denotes the
average in cell C at time tn. The boundary ∂C consists of edges e, such that one can rewrite

q̄n+1
C − q̄nC

∆t
+

1

|C|
1

∆t

tn+∆t∫
tn

dt
∑
e⊂∂C

∫
e

dσ ne · f(q(t,x)) =

1

∆t

tn+∆t∫
tn

dt
1

|C|

∫
C

dx s(q(t,x))

The vector ne is the outward unit normal of edge e. This expression, so far exact, becomes a
finite volume scheme upon replacing the exact normal flux and source averages by suitable
approximations f̂e and ŝC:

q̄n+1
C − q̄nC

∆t
+

1

|C|
∑
e⊂∂C

|e|f̂e = ŝC (3)

with

f̂e '
1

∆t

tn+∆t∫
tn

dt
1

|e|

∫
e

dσ ne · f(q(t,x)) (4)

ŝC '
1

∆t

tn+∆t∫
tn

dt
1

|C|

∫
C

dx s(q(t,x)) (5)

Usual finite volume schemes introduce a (piecewise continuous) reconstruction of the
averages, and obtain the numerical flux by an exact or approximate short-time evolution of
this reconstruction. For example, introducing a piecewise constant function whose averages
match the given cell averages, and solving the Riemann problems at the cell interfaces
allows to compute a numerical flux.

The Active Flux scheme does not need this. Indeed, the point values along the boundary
can be used to immediately approximate (4)–(5) by quadrature. The desired properties
(most importantly the desired order of accuracy) of the resulting scheme dictate the number
of point values along each edge and also the points in time at which these point values
need to be available.

The source term also contributes to the update of the cell average. The quadrature
necessary to approximate the source term average (5) to sufficient order in space and time
is suggested in this paper for the first time and discussed in section 4.
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2.3 Update of the point values

The cell average update, and in particular the computation of the intercell fluxes, requires
accurate point values at the cell boundary to be available.

First consider the case where the source term vanishes: s = 0. For third order of accu-
racy, the integrals in (4) need to be approximated by Simpson’s rule. For the integration
in space this can easily be achieved using the available point values at each cell interface
as described in section 2.1. For the integration in time all point values need to be available
at tn, tn + ∆t

2
and tn + ∆t. Altogether this yields a space-time Simpson rule.

In order to obtain sufficiently accurate time evolved point values, in [vL77] it has
been suggested to reconstruct the data and to use an exact evolution operator. An exact
evolution operator generally is unavailable for nonlinear problems, and therefore in [Fan17,
HKS19, Bar21] approximate evolution operators have been proposed. Even for linear
systems of hyperbolic balance laws it is generally very difficult to obtain closed-form exact
evolution operators, as is shown in section 3.2. Therefore the point values in the Active
Flux scheme shall be evolved using a sufficiently high order approximate evolution operator
applied to a reconstruction of the discrete data. An exact evolution operator provides the
necessary upwinding in order to guarantee stability, and an approximate evolution operator
needs to do the same. The approximate evolution operator is introduced in section 3.3.

2.4 Reconstruction

The reconstruction shall interpolate the point values and its average over the computational
cell shall match the given cell average. In the following, to simplify notation, in one spatial
dimension a uniform grid is assumed, although the reconstruction can immediately be
generalized to nonuniform grids. In two spatial dimensions, a Cartesian grid is used.
See [ER13] for a reconstruction on triangular grids. As mentioned in section 2.1, in one
spatial dimension every cell has access to 3 degrees of freedom which makes a parabolic
reconstruction natural. With the above-mentioned setup it is unique and reads ([vL77,
FR15])

qrecon,i(x) = −3(2q̄i − qi− 1
2
− qi+ 1

2
)
(x− xi)2

∆x2
(6)

+ (qi+ 1
2
− qi− 1

2
)
x− xi

∆x
+

6q̄i − qi− 1
2
− qi+ 1

2

4
x ∈ [xi− 1

2
, xi+ 1

2
]
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In two spatial dimensions, in the setup as described above, every cell has access to 9 degrees
of freedom, and there is a unique biparabolic reconstruction, which reads

qrecon,ij(ξ∆x, η∆y) :=
9

4
q̄ij
(
−1 + 4ξ2

) (
−1 + 4η2

)
− 1

4
qW

(
−1− 4ξ + 12ξ2

) (
−1 + 4η2

)
− 1

4
qE

(
−1 + 4ξ + 12ξ2

) (
−1 + 4η2

)
− 1

4
qS

(
−1 + 4ξ2

) (
−1− 4η + 12η2

)
− 1

4
qN

(
−1 + 4ξ2

) (
−1 + 4η + 12η2

)
+

1

16
qSW(−1 + 2ξ)(−1 + 2η)(−1− 2η + 2ξ(−1 + 6η))

+
1

16
qSE(1 + 2ξ)(−1 + 2η)(1 + 2η + 2ξ(−1 + 6η))

+
1

16
qNW(−1 + 2ξ)(1 + 2η)(1− 2η + 2ξ(1 + 6η))

+
1

16
qNE(1 + 2ξ)(1 + 2η)(−1 + 2η + 2ξ(1 + 6η))

(7)

with ξ := x−xi
∆x

, η :=
y−yj
∆y

, ξ ∈
[
−1

2
, 1

2

]
, η ∈

[
−1

2
, 1

2

]
and

qNE = qi+ 1
2
,j+ 1

2
qNW = qi− 1

2
,j+ 1

2
qSW = qi− 1

2
,j− 1

2
qSE = qi+ 1

2
,j− 1

2
(8)

qN = qi,j+ 1
2

qS = qi,j− 1
2

qE = qi+ 1
2
,j qW = qi− 1

2
,j (9)

Note that both reconstructions are globally continuous and no Riemann Problems are
introduced. The reconstruction, however, is generally not continuously differentiable at
the cell interfaces.

2.5 Overview of the algorithm

The overall algorithm of Active Flux is as follows:

1. Given cell averages and point values, compute a reconstruction according to section
2.4.

2. Use the reconstruction as initial data in the update of the point values. The choices
of evolution operators considered so far are discussed in section 2.3 and evolution
operators in presence of source terms are suggested in section 3.3 below.

3. Given the updated point values along the cell interfaces, compute the intercell fluxes
via quadrature (sections 2.2 and 4 for the homogeneous and the inhomogeneous cases,
respectively).

4. Update the cell averages via (3).

8



The computations performed in the Active Flux algorithm are similar in structure and
amount to high order Finite Volume methods, leading to similar time consumption in prac-
tice. The latter require a repeated evaluation of the reconstruction and of the numerical
flux function for the individual steps of a time integrator (e.g. a Runge-Kutta method),
while Active Flux performs several evaluations of the evolution operator to compute values
for the flux quadrature in time (without recomputing the reconstruction). The shared de-
grees of freedom lead to lower memory usage in comparison to e.g. Discontinuous Galerkin
(DG) methods.

A CFL-type condition arises in the update of the point values: the domain of depen-
dence of the evolution operator needs to be contained in the neighboring cells. Denoting
by λmax the maximum speed of propagation, the time step needs to be chosen as

∆t ≤ Lmin

λmax

(10)

where Lmin = ∆x in one spatial dimension, and Lmin = 1
2

min(∆x,∆y) in two spatial
dimensions, if the point values are distributed as described in section 2.1. We introduce
the CFL number as ∆tλmax/Lmin.

3 Evolution of the point values in presence of a source

term

The evolution of the point values needs to account for the source term. Additionally, in
this paper a special focus shall lie on structure preservation properties of the resulting
scheme. In the homogeneous case such properties have been observed upon usage of an
exact evolution operator ([BHKR19]). In presence of a source term, one needs to use an
approximate evolution operator (section 3.3), but should nevertheless aim at making it
such that it does not spoil structure preservation (see section 5).

For certain equations, the inhomogeneous problem admits an exact solution (sections
3.1–3.2). This is valuable in order to assess specific properties of the numerical method
later.

3.1 Linear advection with a source term in multiple spatial di-
mensions

Consider a scalar equation (m = 1) and f(q) = Uq with U ∈ Rd. Then

∂tq + U · ∇q = s(q) (11)

amounts to the ODE

d

dt
q = s(q) (12)

along the straight characteristic of velocity U. This ODE can be easily solved analytically:∫ q(t,x)

q0(x−Ut)

dp

s(p)
= t (13)

9



E.g. for s(q) = κq this yields ln q(t,x)
q0(x−Ut) = κt, or

q(t,x) = q0(x−Ut) exp(κt) (14)

and for s(q) = κqB, B 6= 1

q(t,x) =
(

(q0(x−Ut))1−B + (1−B)κt
) 1

1−B
(15)

3.2 Linear acoustics with gravity in one spatial dimension

This section has threefold purpose. First, it introduces the acoustic equations with a gravity
source term, which form a very useful system for the study of structure preservation of
numerical methods. This is the set of equations for which a well-balanced method is
derived in 5. This section also demonstrates the difficulties of finding an exact solution to
an inhomogeneous system even if it is linear. Finally, the exact solution derived here is
used later in order to assess the accuracy of the numerical method.

The equations of linear acoustics in one spatial dimension endowed with a gravity source
term read:

∂tρ+ ∂xv = 0 (16)

∂tv + ∂xp = ρg g ∈ R (17)

∂tp+ c2∂xv = 0 (18)

The corresponding homogeneous problem (linear acoustics) is the linearization of the
Euler equations around the background state of constant density ρbg = 1, constant pressure

pbg and vanishing velocity. Then the speed of sound c =
√

γpbg

ρbg
is a constant (R 3 γ > 1).

The full system (16)–(18) can be understood as a particular kind of a linearization of the
Euler equations with gravity4

∂tρ+ ∂x(ρv) = 0 (19)

∂t(ρv) + ∂x(ρv
2 + p) = ρg (20)

∂te+ ∂x(v(e+ p)) = 0 (21)

e =
p

γ − 1
+

1

2
ρv2 − ρgx (22)

The static (stationary and v = 0) states of (19)–(21) are governed by ∂xp = ρg. This
equation can only be solved if e.g. ρ is given as a function of x, or if another relation is
provided between any two of the variables p, ρ, e. This multitude of possible stationary
states is reflected in the linearization (16)–(18). (This is the reason for this particular
choice of a linearization.) Observe that stationary states of (16)–(18) also are governed
by ∂xp = ρg and that p can only be computed if ρ is given as a function of x, or if
an additional relation is provided that links ρ and p. This is an example of a so-called

4Note that often the energy equation is written with a source term ρgv. This source term is unnecessary,
as it can be removed by redefining the notion of total energy. When the total energy includes the potential
energy −ρgx due to gravity, the conservation form of the energy equation is restored. The source term in
the momentum equation remains.
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non-trivial stationary state as introduced in [Bar19]. Examples of stationarity preserving
schemes for (16)–(18) have been discussed in [Bar18].

The exact solution of (16)–(18) is studied in the Appendix A. This solution is not
part of the suggested method but only serves auxiliary purposes, such as accuracy checks.
However it illustrates the difficulties encountered when solving linear systems with sources.
To the authors’ knowledge the exact solution to (16)–(18) is not available in the literature
so far.

3.3 Runge-Kutta method for linear systems with a source

Consider an m×m linear system in characteristic variables:

(∂t + λ`∂x)Q` = S`(Q1, . . . , Qm) ` = 1, . . . ,m (23)

Q` : R+
0 × R→ R λ` ∈ R S` : Rm → R

From now on, the capital letter Q denotes the characteristic variables of this particular
system, whereas q continues to denote a generic variable.

Recall the following theorem from [Bar21]:

Theorem 3.1. Assume a hyperbolic CFL condition ∆t/∆x → const as ∆t → 0. If the
approximate evolution Qapprox(t, x) approximates the exact solution Q(t, x) for fixed x at
least as

Qapprox(t, x) = Q(t, x) +O(t3) (24)

and the quadrature rules used to approximate (4)–(5) yield the exact value up to an error
of O(∆tα∆xβ), α + β ≥ 3 then Active Flux formally achieves third order accuracy.

Note that the simple approach of evolving each component of the source term along its
associated characteristic

Q`(t, x) ' Q`,0(x− λ`t) + tS`(Q1,0(x− λ`t), . . . , Qm,0(x− λ`t)) ` = 1, . . . ,m (25)

fails to be accurate enough (the error is O(t2) instead of O(t3)).
Recall the second order Runge-Kutta method for the ordinary differential equation

d

dt
q(t) = s(t, q(t)) q : R+

0 → R (26)

q(1)(αt) = q(0) + αts(0, q(0)) (27)

q(t) = q(0) + t

(
1− 1

2α

)
s(0, q(0)) + t

1

2α
s(αt, q(1)(αt)) +O(t3) (28)

for any α ∈ (0, 1). In particular choosing α = 1
2

(midpoint method) involves a predictor
value at half time step. This can be taken as inspiration for constructing a sufficiently
accurate approximate evolution operator:

11



Figure 2: Illustration of the intermediate solutions and the involved characteristics for the
first step in the Runge-Kutta scheme.

Theorem 3.2 (RK2 evolution operator). Choose (see Figure 2)

ξ`k := x− λ`t(1− α)− λkαt (29)

Q∗k` := Qk,0(ξ`k) + αtSk(Q1,0(ξ`k), . . . , Qm,0(ξ`k)) k, ` = 1, . . . ,m (30)

and

Q
(1)
` (t, x) := Q`,0(x− λ`t) +

(
1− 1

2α

)
S`(Q1,0(x− λ`t), . . . , Qm,0(x− λ`t))t (31)

+
t

2α
S`

(
Q∗1`, . . . , Q

∗
m`

)
` = 1, . . . ,m (32)

Then, for all α ∈ (0, 1)

Q
(1)
` (t, x) = Q`(t, x) +O(t3) ` = 1, . . . ,m (33)

Note that Q∗`j approximates Q`(αt, x− λjt(1− α)).

Proof. By explicitly computing the first three terms of the Taylor series in t one confirms
the statement. The exact solution is

Q`(t, x) = Q`,0(x) + t∂tQ`

∣∣∣
t=0

+
t2

2
∂2
tQ`

∣∣∣
t=0

+O(t3) (34)

= Q`,0(x) + t(S`,0 − λ`∂xQ`,0) (35)

+
t2

2

(∑
k

∂S`
∂Qk

(
Sk,0 − (λk + λ`)∂xQk,0

)
+ λ2

`∂
2
xQ`,0)

)
+O(t3)

where S`,0 denotes

S`,0 := S`(Q1,0(x), . . . , Qm,0(x)) (36)

12



and ∂S`
∂Qk

also is evaluated at x. Note that it has been used that ∂xλ` = 0 (i.e. that the

homogeneous system is linear), but the source S can be any differentiable function of Q.
Expand now (32) (` = 1, . . . ,m):

∂tQ
∗
k`

∣∣∣
t=0

= −(λ`(1− α) + λkα)∂xQk,0 + αSk,0 (37)

∂tQ
(1)
` (t, x) = −λ`∂xQ`,0(x− λ`t) (38)

+

(
1− 1

2α

)(
t
∑
k

∂S`
∂Qk

∂xQk,0(x− λ`t)(−λ`) (39)

+ S`(Q1,0(x− λ`t), . . . , Qm,0(x− λ`t))
)

(40)

+
1

2α

(
t
∑
k

∂S`
∂Qk

∂tQ
∗
k` + S`

(
Q∗1`, . . . , Q

∗
m`

))
(41)

t=0
= −λ`∂xQ`,0 + S`,0 (42)

∂2
tQ

(1)
` (t, x)

∣∣∣
t=0

= λ2
`∂

2
xQ`,0 +

(
1− 1

2α

)(
2
∑
k

∂S`
∂Qk

∂xQk,0(−λ`)

)
(43)

+
1

2α

(
2
∑
k

∂S`
∂Qk

∂tQ
∗
k`

∣∣∣
t=0

)
(44)

= λ2
`∂

2
xQ`,0 −

∑
k

∂S`
∂Qk

(
∂xQk,0 (λ` + λk)− Sk,0

)
(45)

Obviously the two Taylor series agree up to terms O(t3), which proves the statement.

Corollary 3.1 (Midpoint method). If α = 1
2
, then for `, k = 1, . . .m

ξ`j := x− (λ` + λj)
t

2
(46)

Q∗k` := Qk,0(ξ`k) +
t

2
Sk(Q1,0(ξk`), . . . , Qm,0(ξk`)) (47)

Q
(1)
` (t, x) := Q`,0(x− λ`t) + tS`

(
Q∗1`, . . . , Q

∗
m`

)
(48)

Corollary 3.2 (RK2 evolution operator for a scalar equation). For a scalar equation

(∂t + λ∂x)Q = S(Q) (49)

the algorithm reads

ξ := x− λt (50)

and

Q(1)(t, x) := Q0(x− λt) +

(
1− 1

2α

)
S(Q0(x− λt))t (51)

+
t

2α
S
(
Q0(ξ) + αtS(Q0(ξ))

)
(52)

13



For the equations (16)–(18) of linear acoustics with gravity, λ1 = c = −λ2, λ3 = 0. The
characteristic variables are

Q1 =
p+ cv

2
Q2 =

p− cv
2

Q3 = − p
c2

+ ρ (53)

and the gravity source term then is

S1 = −S2 =
g

2c
(Q1 +Q2) +

cg

2
Q3 S3 = 0 (54)

4 Update of the cell average in presence of a source

term

The update of the cell average needs to include the space-time average of the source term
according to (3) of section 2.2. This space-time average needs to be approximated by a
suitable quadrature / approximation with sufficient order of accuracy. Active flux has a
strong focus on providing discrete degrees of freedom along the boundary which allow to
perform a quadrature along the boundary. However, the evaluation of the source term
for the update of the cell average involves an averaging over the cell volume. It is more
difficult to achieve the desired order of accuracy here, as the setup lacks the quadrature
points that would have been natural for this task. A quadrature formula adapted to the
geometry of the Active Flux method is derived here.

4.1 One spatial dimension

The approximation (5)

ŝC '
1

∆t

tn+∆t∫
tn

dt
1

|C|

∫
C

dx s(q(t,x)) (55)

of the source term in (3) requires a space-time quadrature that is exact for parabolic
functions. The natural candidate would be Simpson’s rule in both space and time (as used
for the numerical flux), but there are not enough quadrature points for it. For example in
one spatial dimension, the available information is

tn+1 qn+1
i− 1

2

qn+1
i+ 1

2

tn+ 1
2 q

n+ 1
2

i− 1
2

q
n+ 1

2

i+ 1
2

tn qn+1
i− 1

2

q̄ni qn
i+ 1

2

xi− 1
2

xi+ 1
2

These are only 7 values (the box emphasizes that one of the values is a cell average,
whereas the others are point values).

14



4.1.1 Linear source term

Consider first a linear source term, i.e. s′′ = 0. Such source terms are relevant in practice
(e.g. compressible Euler equations with gravity), and therefore it is worth dealing with
them specifically as they allow for a simpler approach. For linear source it is possible to first
find a quadrature for q and to apply s to the result. In order to find a quadrature formula
for q, one needs to find a space-time polynomial P(t, x) of at least second degree which
interpolates the available 7 data. Integrating this polynomial would yield a quadrature
formula for q. Here we suggest to use

P(t, x) = (a0 + a1x+ a2t+ a3x
2 + a4xt+ a5t

2) + a6xt
2 (56)

There is a unique set of coefficients a0, . . . , a6 which makes polynomial (56) fulfill

P(tn+1, xi− 1
2
) = qn+1

i− 1
2

P(tn+1, xi+ 1
2
) = qn+1

i+ 1
2

(57)

P(tn+ 1
2 , xi− 1

2
) = q

n+ 1
2

i− 1
2

P(tn+ 1
2 , xi+ 1

2
) = q

n+ 1
2

i+ 1
2

(58)

P(tn, xi− 1
2
) = qn

i− 1
2

x
i+ 1

2∫
x
i− 1

2

dxP(tn, x) = qni ∆x P(tn, xi+ 1
2
) = qn

i+ 1
2

(59)

Inserting this polynomial in (5) and integrating it instead of the source yields the
following quadrature formula:

1

∆t

∫ ∆t

0

dt
1

∆x

∫ ∆x
2

−∆x
2

dx q(tn + t, xi + x) =

q̄ni +
1

12

(
−5(qn

i− 1
2

+ qn
i+ 1

2
) + qn+1

i− 1
2

+ qn+1
i+ 1

2

+ 4(q
n+ 1

2

i− 1
2

+ q
n+ 1

2

i+ 1
2

)
) (60)

The weights can be depicted as

tn+1 1
12

1
12

tn+ 1
2

4
12

4
12

tn − 5
12

1 − 5
12

xi− 1
2

xi+ 1
2

Again, the box indicates that the corresponding weight refers to the cell average, whereas
the others multiply point values.

The time levels (n, n+ 1
2
, n+1) contribute with weights

(
1
6
, 2

3
, 1

6

)
, such that this quadra-

ture formula is a modification of Simpson’s rule in time. Note that it is not possible to
use terms proportional to x3, x2t or t3 instead of the term xt2 in the polynomial ansatz, as
then the system (57)–(59) does not admit a solution. In a sense this is therefore the only
choice of a simple quadrature formula.

Quadrature formula (60) can be used immediately in order to approximate (5) for linear
source terms.
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4.1.2 Nonlinear source term

For nonlinear s, the average

x
i+ 1

2∫
x
i− 1

2

dx s(q(tn, x)) (61)

in general is different from

s


x
i+ 1

2∫
x
i− 1

2

dx q(tn, x)

 (62)

Point values, however, do not present any difficulties: one can just evaluate s on them.
Therefore we suggest to consider a reconstruction qrecon,i(x) that interpolates qn

i− 1
2

and

qn
i+ 1

2

and whose average agrees with q̄ni . It is computed anyway in order to update the

point values in time, see equation (6). This reconstruction can be easily evaluated at the
midpoint of the cell. Then, instead of the cell averages, one works with a seventh point
value qrecon,i(0) = 1

4
(6q̄ni −qni− 1

2

−qn
i+ 1

2

). Of course, this is equivalent to replacing the average

by a Simpson’s rule in the quadrature, and thus the order of the quadrature is not reduced.
Therefore when using only point values (the 6 pointwise degrees of freedom and one value
at the cell midpoint) the weights of the quadrature formula read

tn+1 1
12

1
12

tn+ 1
2

4
12

4
12

tn − 3
12

8
12

− 3
12

xi− 1
2

xi+ 1
2

Equation (5) then is replaced by the quadrature

ŝi =
s(qn+1

i− 1
2

) + s(qn+1
i+ 1

2

) + 4
(
s(qn+1

i− 1
2

) + s(qn+1
i+ 1

2

)
)
− 3
(
s(qn+1

i− 1
2

) + s(qn+1
i+ 1

2

)
)

+ 8qrecon,i(0)

12
(63)

This quadrature can now be used for nonlinear s. As (63) uses a Simpson quadrature
instead of the average, upon usage of a linear source s, it reduces to the expression (60)
because of the quadratic reconstruction.

If the source term vanishes, the scheme becomes conservative in the sense that averages
are updated using numerical fluxes.
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4.2 Two spatial dimensions

4.2.1 Linear source term

Similarly, consider the setup of the Active Flux method on two-dimensional Cartesian grids
as described in 2.1. The available degrees of freedom are

3× 4 nodes: qn
i± 1

2
,j± 1

2
, q
n+ 1

2

i± 1
2
,j± 1

2

, qn+1
i± 1

2
,j± 1

2

3× 2 vertical edges: qn
i± 1

2
,j
, q
n+ 1

2

i± 1
2
,j
, qn+1
i± 1

2
,j

3× 2 horizontal edges: qn
i,j± 1

2
, q
n+ 1

2

i,j± 1
2

, qn+1
i,j± 1

2

1 average: q̄nij

The ansatz for a space-time polynomial is

P(t, x, y) =

( ∑
ζ+η+ϑ≤4

aζηϑ · xζyηtϑ
)

+ a212x
2yt2 + a122xy

2t2 (64)

It admits a unique solution to the interpolation problem given the available degrees of
freedom and yields the following quadrature formula (see also figure 3):

1

∆x

∫ ∆x
2

−∆x
2

dx
1

∆y

∫ ∆y
2

−∆y
2

dy
1

∆t

∫ ∆t

0

dt q(t, x, y) = q̄nij

−20

72
(qnE + qnN + qnS + qnW) +

5

72
(qnNE + qnNW + qnSE + qnSW )

+
16

72

(
q
n+ 1

2
E + q

n+ 1
2

N + q
n+ 1

2
S + q

n+ 1
2

W

)
− 4

72

(
q
n+ 1

2
NE + q

n+ 1
2

NW + q
n+ 1

2
SE + q

n+ 1
2

SW

)
+

4

72

(
qn+1

E + qn+1
N + qn+1

S + qn+1
W

)
− 1

72

(
qn+1

NE + qn+1
NW + qn+1

SE + qn+1
SW

)
(65)

The time levels (n, n + 1
2
, n + 1) contribute again with weights (1

6
, 2

3
, 1

6
), and the edges

always contribute −4 times the nodes.

4.2.2 Nonlinear source term

Again, for nonlinear source instead of the average it is necessary to use the evaluation of
the reconstruction at the cell midpoint. This amounts to an approximation of the average
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Figure 3: Illustration of the weights of the space time quadrature formula (65).

by a two-dimensional Simpson rule. Then the source term is approximated as follows:

1

∆x

∫ ∆x
2

−∆x
2

dx
1

∆y

∫ ∆y
2

−∆y
2

dy
1

∆t

∫ ∆t

0

dt s(q(t, x, y)) =
32

72
s(qrecon,ij(0, 0))

− 12

72
(s(qnE) + s(qnN) + s(qnS) + s(qnW))

+
7

72
(s(qnNE) + s(qnNW ) + s(qnSE) + s(qnSW ))

+
16

72

(
s(q

n+ 1
2

E ) + s(q
n+ 1

2
N ) + s(q

n+ 1
2

S ) + s(q
n+ 1

2
W )

)
− 4

72

(
s(q

n+ 1
2

NE ) + s(q
n+ 1

2
NW ) + s(q

n+ 1
2

SE ) + s(q
n+ 1

2
SW )

)
+

4

72

(
s(qn+1

E ) + s(qn+1
N ) + s(qn+1

S ) + s(qn+1
W )

)
− 1

72

(
s(qn+1

NE ) + s(qn+1
NW ) + s(qn+1

SE ) + s(qn+1
SW )

)

(66)

In case that the data only depend on one of the spatial variables, the two-dimensional
quadratures (65) and (66) do not exactly reduce to the one dimensional quadratures (60)
and (63). This is because (cf. Figure 3) the point values on edge midpoints

(
0,±∆y

2

)
do

not disappear even if the data depend only on x, and therefore the available degrees of
freedom remain different from the one-dimensional case.

5 Well-balanced property for acoustics with gravity

5.1 Exact evolution operator

As described in 3.2, a closed-form exact evolution operator for acoustics with gravity is very
difficult to obtain. Nevertheless, it is still possible to show that a scheme endowed with
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such an operator would be well-balanced / stationarity preserving; i.e. that there exists a
discretization of the stationary states of the PDE which remains exactly stationary. This
proof does not require the evolution operator to be known explicitly, but only relies on the
fact that the evolution operator is exact. Besides its fundamental importance, this result
is used in section 5.2 to analyze the situation for the approximate evolution operator and
to achieve the well-balanced property for it.

The numerical stationary states are best studied upon the (discrete) Fourier transform.
Define tx := exp(ikx∆x), ty := exp(iky∆y). Here i is the imaginary unit and k = (kx, ky) ∈
R2 is the wave vector characterizing the spatial frequency of the Fourier mode. Applying
the Fourier transform introduces one mode q̄ for the averages and one mode q for the point
values; this implies writing qi := q̄tixt

j
y, qi+ 1

2
:= qtixt

j
y.

Theorem 5.1 (Stationarity preservation with exact evolution). If the discrete data fulfill

ρ̄i =
ρi+ 1

2
+ ρi− 1

2

2
(67)

pi+ 1
2
− pi− 1

2

∆x
= g

ρi− 1
2

+ ρi+ 1
2

2
(68)

p̄i+1 − p̄i
∆x

= g
ρi+ 3

2
+ 4ρi+ 1

2
+ ρi− 1

2

6
(69)

and the exact evolution operator for (16)–(18) is used, then the numerical solution remains
stationary.

Proof. The proof consists of two parts.

i) Consider first the evolution of the point values. When the exact evolution operator is
used to update the point values, they remain stationary if the reconstruction fulfills

vrecon(x) = const ∂xprecon(x) = ρrecon(x)g (70)

Upon the Fourier transform this becomes (w.l.o.g. xi = 0)

−3

(
2p̄− p

(
1 +

1

tx

))
2x

∆x2
+ p

(
1− 1

tx

)
1

∆x
= (71)

−3g

(
2ρ̄− ρ

(
1 +

1

tx

))
x2

∆x2
+ gρ

(
1− 1

tx

)
x

∆x
+ g

6ρ̄− ρ
(

1 + 1
tx

)
4

This shall be valid for all x:

2ρ̄− ρ(1 + 1/tx) = 0 (72)

−2p̄tx + p(tx + 1) =
∆xgρ(tx − 1)

6
(73)

p(tx − 1) = ∆xg
6ρ̄tx − ρ(tx + 1)

4
(74)
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These are three equations for four variables. In particular

ρ̄ =
ρ(1 + 1/tx)

2
(75)

p = ∆xgρ
tx + 1

2(tx − 1)
(76)

p̄ = ∆xgρ
t2x + 4tx + 1

6tx(tx − 1)
(77)

These statements can be rewritten as finite difference formulae by inverting the Fourier
transform to yield (67)–(69).

ii) Assume now (75)–(77) to be true. Simpson’s rule in time for the flux average is trivial,
and thus the update of the cell average amounts to

v̄n+1 − v̄n

∆t
+
p(1− 1/tx)

∆x
=
v̄n+1 − v̄n

∆t
+ gρ

tx + 1

2tx
(78)

=
v̄n+1 − v̄n

∆t
+ gρ̄ (79)

The quadrature formula (60) for the source reduces to gρ̄ if the point values are
stationary, which implies v̄n+1 = v̄n. This completes the proof.

The equations (75)–(77) contain ρ as a free variable. One can rewrite the system making
p the free variable:

ρ̄ =
p(tx − 1)

tx∆xg
ρ =

2p(tx − 1)

∆xg(tx + 1)
p̄ = p

t2x + 4tx + 1

3tx(tx + 1)
(80)

This form will be useful later.
Equations (68)–(69) are finite difference approximations of ∂xp = ρg. By construction,

the discrete stationary states are those whose reconstruction fulfills (70) in every cell.
Equation (67) implies that the reconstructed ρ of the discrete stationary state is linear,
which is clear: for quadratic reconstructions to fulfill (70), ρrecon has to be linear in each
cell. The slope of the linear function can vary from cell to cell.

5.2 Approximate evolution operator

The above section identifies conditions (67)–(69) on the discrete data for them to remain
stationary upon usage of the exact evolution operator. Unfortunately, such an operator is
unavailable in practice. Having identified an approximate solution operator, which agrees
with the exact solution up to terms O(t3) in section 3.3, here we study whether it keeps
the same data (67)–(69) stationary as well.

Theorem 5.2. If the discrete data fulfill (67)–(69) and the approximate evolution operator
of theorem 3.2 for (16)–(18) is used, then both the pressure p and the density ρ remain
stationary over one time step, but the velocity undergoes the time evolution

vi+ 1
2
(t) = −αg

2

4

ρi+ 1
2
− ρi− 1

2

∆x
t3 (81)
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Proof. Assume the initial data to fulfill (67)–(69), or equivalently (70). Using (6) (and
applying the discrete Fourier transform straight away) (70) implies

precon(x) =
1

4

(
6p̄− p

(
1 +

1

tx

))
+

x

∆x

(
1− 1

tx

)
p− 3

x2

∆x2

(
2p̄− p

(
1 +

1

tx

))
(82)

ρrecon(x) =
1

g∆x

(
p

(
1− 1

tx

)
− 6

x

∆x

(
2p̄− p

(
1 +

1

tx

)))
(83)

vrecon(x) = 0 (84)

and using (53) therefore

Q1,0(x) = Q2,0(x) = −p(1 + tx)− 6p̄tx
8tx

+
p(tx − 1)x

2∆xtx
+

3(p(1 + tx)− 2p̄tx)x
2

2∆x2tx
(85)

Q3,0(x) =
p(−1 + tx)

∆xgtx
+
p− 6p̄tx + ptx

4c2tx
(86)

+
(−∆xgp(tx − 1) + 6c2(p(1 + tx)− 2p̄tx))x

c2∆x2gtx
− 3(p(1 + tx)− 2p̄tx)x

2

c2∆x2tx

Evaluating the Runge-Kutta algorithm of section 3.3 on these initial data (at x = ∆x
2

)
yields

(ρ, v∗, p)T with v∗ = − αg(tx − 1)2

2∆x2tx(tx + 1)
pt3 (87)

(α is the parameter appearing in the RK2 method.)
Recall that ρ and p are the Fourier coefficients of the point values of the density and

the pressure. Obviously ρ and p remain stationary, but the velocity does not. Using (80)
v∗ can be rewritten as

v∗ = − αg
2

4∆x

(
1− 1

tx

)
ρt3 = −αg

2

4

ρi+ 1
2
− ρi− 1

2

∆x
t3 (88)

having applied the inverse Fourier transform in the last step.

Observe that the time evolution of the velocity is consistent with the accuracy of the
algorithm (O(t3)).

Corollary 5.1 (Stationarity preservation with approximate evolution). If the algorithm
of section 3.3 is modified by adding the term

αg2

4

ρi+ 1
2
− ρi− 1

2

∆x
t3 (89)

to the velocity evolution, then

i) its accuracy is not changed

ii) it becomes stationarity preserving / well-balanced with the same discrete stationary
states as the exact evolution operator.
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The two forms (87) and (81) of v∗ are equivalent, because the initial data have been
chosen to be stationary, and thus additionally fulfill (80). The proposed modification is
to always add −v∗ to the velocity evolution, irrespective of whether the data fulfill (80)
or not. At this point the Fourier coefficients of ρ and p are independent and it matters
whether the correction is used in the form (87) or (81). Of course, also the inverse Fourier
transform has to be applied to the expression first in order for the correction to attain the
form of a finite difference formula. Compact finite difference formulae are in one-to-one-
correspondence with Laurent polynomials in tx. An expression such as 1

tx+1
= 1−tx+t2x∓. . .

is an expression involving an unbounded stencil and cannot be implemented in usual codes.
Therefore (81) cannot be used as a correction because the correction would have a non-
compact stencil (just as the equivalent expressions involving only ρ̄ or p̄). This is why the
form (87) which involves point values of ρ is preferred.

Being always present in the velocity evolution (and not only at stationary states), the
modification (89) might in general affect the stability of the algorithm, but it has not been
found to have any effect on the stability in practice.

6 Numerical examples

The numerical examples of this section serve to illustrate the performance of the new
method. The equations discussed are linear advection with different source terms (in one
and two spatial dimensions, as introduced in section 3.1) and linear acoustics with gravity
(introduced in section 3.2). In both cases it is demonstrated that the method achieves
third order of accuracy in the experiments. For acoustics with gravity additionally the
discrete stationary states are studied and shown to agree with the prediction of section 5.

6.1 Linear advection

Consider first

∂tq + U · ∇q = κq (90)

with the exact solution given by (14). In Figures 4–6 the exact solution operator is used
for the evolution of the point values and third order convergence is observed. This shows
that the quadrature formulae (60) and (65) used to evolve the cell averages indeed yield
a third order scheme. Figure 4 shows the setup for a one-dimensional situation together
with a convergence study, Figure 5 shows the setup in two spatial dimensions and Figure
6 shows the corresponding convergence study.

Consider now

∂tq + U · ∇q = κqB B 6= 1 (91)

with the exact solution (15) and κ = 7, B = 3. Figure 7 (left) shows the initial data and
the numerical solution, and Figure 7 (right) shows a convergence study for the approximate
evolution operator from Corollary (3.2). One observes third order accuracy, as expected.

6.2 Acoustics with gravity

Consider now the equations of linear acoustics with a gravity source term (16)–(18). The
exact solution operator is only partly available in closed form, and therefore the approxi-
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Figure 4: Gaussian initial data for (90) with U = ex, κ = 7. Note that due to the source
term, the Gaussian is advected and also changes shape. Exact evolution operator (14) and
quadrature formula (60) have been used with CFL = 0.9. Left : Initial data and solution
at t = 0.05 (cell averages) on a grid with 1000 cells. Right : Error of the numerical solution
as a function of the grid size shows third order convergence.

Figure 5: Gaussian initial data for (90) with U = (1, 0.1), κ = 7. Note that due to the
source term, the Gaussian is advected and also changes shape. Exact evolution operator
(14) and quadrature formula (65) have been used with CFL = 0.9. Left : Initial setup.
Right : Numerical solution at t = 0.05 on a 100× 100 Cartesian grid.
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Figure 6: Convergence study for the setup shown in Figure 5. One observes third order
accuracy.

Figure 7: Gaussian initial data for (91) with s(q) = κqB and U = ex, κ = 7, B = 3. Runge-
Kutta approximate evolution operator from Corollary 3.2 (with α = 1

2
) and quadrature

formula (63) have been used with CFL = 0.9. The solution has been computed on a grid
covering [−1 : 2], but the error is only computed inside [0, 1] to exclude any boundary
influence. Left : Initial setup and solution at t = 0.05 (cell averages) on a grid with 1000
cells. Right : Error of the numerical solution as a function of the grid size shows third order
convergence. The exact solution is given by (15).

24



Figure 8: Setup of a stationary parabola (92) for (16)–(18), solved using the Runge-Kutta
approximate evolution operator of section 3.3 with and without well-balancing (89). Here
g = −1, and the setup is solved on a grid covering [−1.5, 2.5], but the error is only measured
inside [0, 1] (∆x = 10−2) to exclude the influence of the boundaries. Left : Setup. Right :
Error of numerical solution (point values) as a function of time. Thin lines: without the
well-balancing (89). Thick lines: including the well-balancing (89). In the latter case one
only observes an evolution due to machine error.

mate Runge-Kutta evolution operator of section 3.3 is used in combination with the well-
balancing fix (89). The parameter α in the Runge-Kutta method is chosen to α = 1

2
and

CFL = 0.9 everywhere.
Figure 8 shows a stationary setup given by

p = A1x
2 + A2x+ A3 ρ = 2A1x/g + A2/g v = 0 (92)

with A1 = 17, A2 = −3, A3 = 1. This parabola is exactly recovered by the reconstruction,
and thus remains stationary up to machine precision. This experiment shows that the
well-balancing fix works as it should.

Consider next (Figure 9) the stationary setup fulfilling p = Kργ, i.e.

ρ =

(
g(γ − 1)

Kγ
x+ ργ−1

0

) 1
γ−1

(93)

with K = 1, γ = 1.4, ρ0 = 100. This is reminiscent of an isentropic atmosphere in the
context of the Euler equations. This setup is not recovered exactly by the reconstruction,
but one observes a numerical evolution towards a discrete stationary state which then
persists forever.

Next, a perturbation

200 exp(−100x2) (94)

in the pressure is added onto the setup (93). In order to study the accuracy of the scheme
on this setup, it is solved on a grid of 131072 = 218 cells and the solution is used as
reference. Again, g = −1, K = 1, γ = 1.4. Figure 10 shows the setup and the numerical
solution at t = 0.5, and Figure 11 shows a convergence study which displays third order
convergence.
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Figure 9: Stationary setup (93) for (16)–(18), solved using the Runge-Kutta approximate
evolution operator of section 3.3 with well-balancing (89). Here g = −1, and the setup is
solved on a grid covering [−5.5, 5.5], but the error is only measured inside [−3, 3] (∆x =
1/300) to exclude the influence of the boundaries. Left : Setup (cell averages). Right :
Error of numerical solution (point values) as a function of time. One observes a transition
towards a numerical stationary state which then persists forever.

Figure 10: Setup (93) endowed with the pressure perturbation (94) solved using the Runge-
Kutta approximate evolution operator of section 3.3 with well-balancing (89). Left : Initial
data (cell averages). Right: Numerical solution (cell averages) at t = 0.5 on a grid covering
[−5.5, 5.5], but only the subinterval [−3, 3] is considered in order to exclude the influence
of the boundaries. ∆x = 0.01, CFL = 0.9.
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Figure 11: Setup of Figure 10. The error of the numerical solution is measured on the
point values. One observes third order accuracy.

Consider finally a Riemann problem:

ρ = 3.5 p = 1.5 v =

{
1 0.25 ≤ x ≤ 0.75

3 else
(95)

This Riemann problem can be solved exactly using the formula (113)–(115). Note that if
all quantities are constant in space, then they solve

∂tρ = 0 ∂tp = 0 ∂tv = ρg (96)

which means that ρ and p remain stationary, but that v = v(t = 0) + ρgt. The solution to
the initial data (95) therefore can be obtained by adding the time evolution of (0, v0(x), 0)T

(via numerical quadrature of (113)–(115)) and the time evolution of (ρ, 0, p)T which is just
(ρ, ρgt, p)T. Figure 12 shows the numerical and the exact solution.

7 Conclusions and outlook

Active flux is a novel kind of numerical method for hyperbolic problems, extending the
finite volume method. Instead of computing the intercell flux via a Riemann problem it
relies on a continuous reconstruction and on accurately evolved point values along the cell
boundary. They then immediately serve as quadrature values for the computation of the
intercell flux. The extension of Active Flux to time dependent balance laws presented
in this paper requires a modification in both these aspects: the evolution of the point
values and the average update need to account for the source term. Here, an approximate
evolution operator is suggested for the point value update; this is done for linear systems
with possibly nonlinear source terms in one spatial dimension, and linear scalar equations
with source terms in multiple spatial dimensions. A suitable quadrature is suggested
in order to approximate the contribution of the source term to the cell average. This
quadrature can be applied to any system of (nonlinear) balance laws.

We aim at combining the strategy presented in this paper with an approximate evolution
operator for a nonlinear homogeneous problem (such as those suggested in [Bar21]) in
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Figure 12: Riemann problem setup (95) solved using the Runge-Kutta approximate evo-
lution operator of section 3.3 with well-balancing (89). Here, g = −10. Left : Initial data.
Right: Numerical solution (dots) and exact solution (solid line) at t = 0.1. ∆x = 0.01,
CFL = 0.9. Averages of the numerical solution are shown are shown.

future. Multi-dimensional systems of hyperbolic conservation laws are very different from
their one-dimensional counterparts because in general characteristics are unavailable and
need to be conceptually replaced by characteristic cones. Examples of evolution operators
that make use of such cones can be found in [ER13, FR15, Fan17, BHKR19]. Combining
these with an approximate evolution of the source term shall pave the way towards the
extension of Active Flux to nonlinear multi-dimensional balance laws and the derivation
of accurate structure preserving (in particular well-balanced) methods for them.
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A Exact solution of linear acoustics with gravity

System (16)–(18) can in principle be immediately solved exactly via Fourier transform by
inserting the ansatz 

ρ

v

p

 =


ρ̂

v̂

p̂

 exp(ik · x− iωt) (97)

into (16)–(18):

ω


ρ̂

v̂

p̂

 =


0 k 0

ig 0 k

0 c2k 0




ρ̂

v̂

p̂

 (98)

Therefore ω = 0, or ω = ±
√
c2k2 + igk. The complex eigenvalue can be removed upon

transforming

ρ = ρ̃eµx v = ṽeµx p = p̃eµx (99)

with

µ :=
g

2c2
(100)

System (16)–(18) then reads

∂tρ̃+ ∂xṽ = −µṽ (101)

∂tṽ + ∂xp̃ = ρ̃g − µp̃ (102)

∂tp̃+ c2∂xṽ = −c2µṽ (103)

Now, a solution of (101)–(103) shall be found. For better readability, drop the tilde. Upon
the Fourier transform (101)–(103) becomes

ω


ρ̂

v̂

p̂

 = E


ρ̂

v̂

p̂

 E =


0 k − iµ 0

ig 0 k − iµ

0 c2k − ic2µ 0

 (104)

The eigenvalues of E are now real: ω1 = 0, ω2,3 = ±c
√
k2 + µ2. Although this transfor-

mation brings the endeavor of finding the exact solution to (16)–(18) into the realm of the
possible, technical difficulties prevent one from actually computing all Green’s functions in
closed form.

Assume therefore that the only non-vanishing initial data are in the velocity. Then the
Fourier mode at initial time reads

(0, v̂, 0)T exp(ikx) (105)
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and at a later time it becomes

3∑
m=1

vm exp(ikx− iωmt) (106)

where the decomposition of (0, v̂, 0)T in the eigenbasis of E is used, i.e.

(0, v̂, 0)T =
3∑

m=1

vm Evm = ωmvm (107)

Such a basis is given e.g. by

e1 =


µ+ ik

0

g

 e2,3 =


µ+ ik

±ic
√
k2 + µ2

c2(µ+ ik)

 (108)

Collecting the terms yields the time evolution of the Fourier mode (105):

v̂ exp(ikx)


−

(µ+ ik) sin
(
ct
√
k2 + µ2

)
c
√
k2 + µ2

cos
(
ct
√
k2 + µ2

)
−
c2(µ+ ik) sin

(
ct
√
k2 + µ2

)
c
√
k2 + µ2


(109)

= v̂


−(µ+ ∂x)

∂t

−c2(µ+ ∂x)

 exp(ikx)
sin
(
ct
√
k2 + µ2

)
c
√
k2 + µ2

(110)

Green’s function is obtained by inserting the Fourier transform of a Dirac δx′ at x′, i.e.
taking v̂ = exp(−ikx′)√

2π
and performing the inverse Fourier transform with the help of formula

1.7 (30) in [Bat54]. This yields, wherever defined,
Gρ(t, x;x′)

Gv(t, x;x′)

Gp(t, x;x′)

 =


−(µ+ ∂x)

∂t

−c2(µ+ ∂x)

 1

2c
J0

(
µ
√

(ct)2 − (x− x′)2
)

(111)

+


−δx+ct − δx−ct

2c
δx+ct + δx−ct

2

c (δx+ct − δx−ct)
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where J0 is the 0-th order Bessel function of the first kind, and J ′0 = −J1. Then the solution
is obtained by performing a convolution with the initial data. Reinstalling the tilde one
has

ṽ(t, x) =

∫
dx′Gv(t, x;x′)ṽ0(x′) (112)

v(t, x) =

∫
dx′Gv(t, x;x′)eµ(x−x′)v0(x′) (113)

=
1

2

∫
dx′ eµ(x−x′)∂ctJ0

(
µ
√

(ct)2 − (x− x′)2
)
v0(x′)

+
1

2

(
e−µctv0(x+ ct) + eµctv0(x− ct)

)
ρ(t, x) = − 1

2c

∫
dx′ eµ(x−x′) (µ+ ∂x) J0

(
µ
√

(ct)2 − (x− x′)2
)
v0(x′) (114)

− 1

2c

(
e−µctv0(x+ ct)− eµctv0(x− ct)

)
and analogously for p. However, it is easier to note that

∂t(c
2ρ− p) = 0 (115)

such that

p(t, x) = p0(x) + c2
(
ρ(t, x)− ρ0(x)

)
(116)
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