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ABSTRACT. Recently, the higher order averaging method for studying pe-
riodic solutions of both Lipschitz differential equations and discontinu-
ous piecewise smooth differential equations was developed in terms of
the Brouwer degree theory. Between the Lipschitz and the discontinuous
piecewise smooth differential equations, there is a huge class of differen-
tial equations lacking in a higher order analysis on the existence of periodic
solutions, namely the class of continuous non-Lipschitz differential equa-
tions. In this paper, based on the degree theory for operator equations, we
perform a higher order analysis of continuous perturbed differential equa-
tions and derive sufficient conditions for the existence and uniform con-
vergence of periodic solutions for such systems. We apply our results to
study continuous non-Lipschitz higher order perturbations of a harmonic
oscillator.

1. INTRODUCTION AND STATEMENTS OF THE MAIN RESULTS

The Averaging Method is a classical tool which is concerned with pro-
viding asymptotic estimates for solutions of non-autonomous differential
equations in the following standard form

(1) x′ = εF(t, x, ε),

where F : R× D× [0, ε0] → Rn is a continuous function T−periodic in the
variable t, with D being an open subset of Rn and ε0 > 0. Such asymptotic
estimates are given in terms of solutions of an “averaged equation.”

The averaging method dates back to the works of Lagrange and Laplace,
who provided an intuitive justification of the process and applied it to the
problem of perturbations in the solar system [23]. The first formalization
of this procedure was given by Fatou in 1928 [8]. Important contributions
to the theory were made by Krylov and Bogoliubov [16] in 1934 and Bo-
goliubov [2] in 1945. From then on, it has been an efective tool in studying
qualitative properties of ordinary differential equations.
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In particular, the averaging method has been proven to be very useful in
detecting periodic solutions. In [12, 23, 24], one can find results providing
sufficient conditions for the existence of periodic solutions for sufficiently
smooth differential equations. These results are based in a first order analy-
sis, which means that the obtained sufficient conditions depend only on the
function (t, x) 7→ F(t, x, 0), neglecting all the information that the deriva-
tives with respect to ε of F(t, x, ε) can provide. Later, [3] extended these re-
sults for studying the existence and also convergence of periodic solutions
for continuous differential equations, Lipschitz or not. The existence of peri-
odic solutions by the first order averaging method can also be obtained as an
immediate consequence of the continuation result [11, Theorem IV.1]. More
recently, [20] performed a higher order analysis for studying periodic solu-
tions of Lipschitz-continuous differential equations in terms of Brouwer de-
gree theory. The averaging method has also been extended for non-smooth
differential equations. In this context, the studies by [14, 19, 21, 18] gener-
alize the averaging method at any order for studying periodic solutions of
discontinuous piecewise smooth differential equations.

Between the Lipschitz-continuous and the discontinuous piecewise smooth
differential equations, there is a huge class of differential equations (1) lack-
ing in a higher order analysis on the existence of periodic solutions, namely
the class of continuous (non-Lipschitz) differential equations. Continuous
differential equations with non-Lipschitz nonlinearities appear naturally in
applications. We may quote, for instance, neural networks [1, 9, 25], weather
and climate models [13, 22], incompressible fluid dynamics [10, 15], and bio-
logical models of competition [4]. Under the Lipschitz assumption, analysis
strongly relies on the uniqueness property enjoyed by the solutions of dif-
ferential equations. However, in general, this property is lost for continuous
differential equations. Here, motivated by the analysis performed in [3], we
take advantage of the degree theory for operator equations to overcome this
difficulty and perform a higher order analysis on the existence of periodic
solutions for continuous differential equation in the standard form (1).

As a fundamental hypothesis on differential equation (1), we shall assume
that for a given open bounded subset V ⊂ Rn, with V ⊂ D,

H. there exists ε1 ∈ (0, ε0] such that, for each λ ∈ (0, 1) and ε ∈ (0, ε1],
any T-periodic solution of the differential equation

(2) x′ = ελF(t, x, ε), x ∈ V,

is entirely contained in V.

Remark 1. In applications, hypothesis H can be checked by obtaining a contra-
diction when its negation is assumed. The negation of hypothesis H provides nu-
merical convergent sequences (εm)m∈N ⊂ (0, ε0) and (λm)m∈N ⊂ (0, 1), such
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that εm → 0 as m → ∞, and a sequence of T-periodic solutions xm(t) ∈ V of
x′ = εmλmF(t, x, εm) for which there exists tm ∈ [0, T] such that xm(tm) ∈ ∂V
for each m ∈N. In particular,

xm(t) = xm(0) + εmλm

∫ t

0
F(s, xm(s), εm)ds and

∫ T

0
F(t, xm(t), εm)dt = 0,

for each m ∈N. Furthermore, as an application of Arzelá-Ascoli’s Theorem, the se-
quence of functions (xm)m∈N can be considered uniformly convergent to a constant
function in ∂V.

It is worth mentioning that, when the boundary of V, ∂V, is a smooth manifold,
hypothesis H holds provided that: “there exists ε1 ∈ (0, ε0] such that, for each
z ∈ ∂V, F(t, z, ε) is transversal to ∂V at z, for every t ∈ [0, T] and ε ∈ (0, ε1]”.
Indeed, assume that, for some λ ∈ (0, 1) and ε ∈ (0, ε1], ϕ(t) is a T-periodic
solution of x′ = ελF(t, x, ε) in V which is not entirely contained in V, that is,
there exists t̂ ∈ [0, T] such that ẑ = ϕ(t̂) ∈ ∂V. Since ϕ(t) ∈ V for every
t ∈ [0, T], we get that ϕ′(t̂) ∈ Tẑ∂V (tangent space of ∂V at ẑ), consequently,
F(t̂, ẑ, ε) is tangent to ∂V at ẑ. This last sufficient condition, although much more
restrictive than hypothesis H, is more computable and easier to be checked, so it is
important to keep it in mind.

Define the full averaged function f : D× [0, ε0] → Rn as the average of the
right-hand side of (1), that is,

f (z, ε) =
1
T

∫ T

0
εF(s, z, ε)ds.

Our first main result relates the existence of periodic solutions of the differ-
ential equation (1) to the Brouwer degree of the full averaged function.

Theorem A. Consider the continuous T-periodic non-autonomous differential equa-
tion (1). Assume that for a given open bounded subset V ⊂ Rn, with V ⊂ D,
hypothesis H holds,

(3) f (z, ε) 6= 0, for all z ∈ ∂V and ε ∈ (0, ε1],

and dB( f (·, ε∗), V, 0) 6= 0, for some ε∗ ∈ (0, ε1]. Then, for each ε ∈ (0, ε1],
there exists a T−periodic solution ϕ(t, ε) of the differential equation (1) satisfying
ϕ(t, ε) ∈ V, for every t ∈ [0, T].

In many situations, derivatives of F with respect to ε up to some order are
known. In these cases, the differential equation (1) writes

(4) x′ =
k

∑
i=1

εiFi(t, x) + εk+1R(t, x, ε),

where Fi : R× D → Rn, for i ∈ {1, . . . , k}, and R : R× D × [0, ε0] → Rn

are continuous functions T−periodic in the variable t. Accordingly, define
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f0 = 0 and, for each i ∈ {1, . . . , k}, denote by fi : D → Rn the average of Fi,
that is,

fi(z) =
1
T

∫ T

0
Fi(s, z)ds.

Also, define the k-truncated averaged function Fk : D × [0, ε0] → Rn and the
averaged remainder r : D× [0, ε0]→ Rn, respectively, by

Fk(z, ε) =
k

∑
i=1

εi fi(z) and r(z, ε) =
1
T

∫ T

0
R(s, z, ε)ds.

Our second main result relates the existence of periodic solutions of the
differential equation (4) to the Brouwer degree of the k-truncated averaged
function. This is a continuous (non-Lipschitz) version of the higher order
averaging theorem shown in [20].

Theorem B. Consider the continuous T-periodic non-autonomous differential equa-
tion (4). Assume that for a given open bounded subset V ⊂ Rn, with V ⊂ D,
hypothesis H holds,

(5) lim
ε→0

inf
z∈∂V

∣∣∣∣Fk(z, ε)

εk+1

∣∣∣∣ > max{|r(z, ε)| : (z, ε) ∈ V × [0, ε1]},

and dB(Fk(·, ε), V, 0) 6= 0, for ε > 0 sufficiently small. Then, there exists ε ∈
(0, ε1] such that, for each ε ∈ (0, ε], the differential equation (4) has a T−periodic
solution ϕ(t, ε) satisfying ϕ(t, ε) ∈ V, for every t ∈ [0, T].

As a consequence of Theorem B we get our third main result.

Theorem C. Consider the continuous T-periodic non-autonomous differential equa-
tion (4). Suppose that for some ` ∈ {1, 2, . . . , k}, f0 = . . . = f`−1 = 0, f` 6= 0,
and let z∗ ∈ D be an isolated zero of f`. Assume that there exists a bounded neigh-
bourhood V ⊂ Rn of z∗, with V ⊂ D and f`(z) 6= 0 for every z ∈ V \ {z∗},
such that hypothesis H holds and dB( f`, V, 0) 6= 0. Then, there exists ε ∈ (0, ε1]
such that, for each ε ∈ (0, ε], the differential equation (4) has a T−periodic solution
ϕ(t, ε) satisfying ϕ(t, ε) ∈ V, for every t ∈ [0, T], and ϕ(·, ε) → z∗ uniformly as
ε→ 0.

It is worth mentioning that, for ` = 1, the existence of an isolated zero of
f1 ensures that hypothesis H holds. Indeed, let V ⊂ Rn be a bounded neigh-
bourhood of z∗, with V ⊂ D, such that f1(z) 6= 0 for every z ∈ V \ {z∗}.
If hypothesis H does not hold on V, from Remark 1, we get a sequence of
T-periodic functions (xm)m∈N uniformly converging to a constant function
in ∂V, let us say z0, such that∫ T

0
F(t, xm(t), εm)dt = 0, m ∈N.
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Taking the limit in the integral above, we get that f1(z0) = 0, which contra-
dicts the fact that f1(z) 6= 0 for every z ∈ V \ {z∗}. Therefore, [3, Theorem
1.2] follows as a corollary of Theorem C, namely:

Corollary 1. Consider the continuous T-periodic non-autonomous differential equa-
tion (4). Let z∗ ∈ D be an isolated zero of f1 and assume that there exists a
bounded neighbourhood V ⊂ Rn of z∗, with V ⊂ D and f1(z) 6= 0 for every
z ∈ V \ {z∗}, such that dB( f1, V, 0) 6= 0. Then, there exists ε ∈ (0, ε1] such
that, for ε ∈ (0, ε], the differential equation (4) has a T−periodic solution ϕ(t, ε)
satisfying ϕ(t, ε) ∈ V, for every t ∈ [0, T], and ϕ(·, ε)→ z∗ uniformly as ε→ 0.

This paper is structured as follows. Section 2 contains some basic notions
and definitions on degree theory as well as some preliminary results. More
specifically, in Section 2.1, we introduce the Brouwer degree for studying
zeros of functions defined on finite dimensional spaces; in Section 2.2, we
introduce the Leray-Schauder degree, which is an extension of the Brouwer
degree for functions defined on infinite dimensional spaces; in Section 2.3,
we introduce the coincidence degree for studying fixed points of operator
equations; and in Section 2.4, we discuss a continuation result based on de-
gree theory for solutions of operator equations. Section 3 is completely de-
voted to the proof of our main results. Finally, in Section 4, we analyze the
following continuous higher order perturbation of a harmonic oscillator

(6) ẍ = −x + ε
(
x2 + ẋ2) + εk ẋ 3

√
x2 + ẋ2 − 1 + εk+1E(x, ẋ, ε),

where k is a positive integer and E is a continuous function on R3. Clearly,
the differential equation (6) is not Lipschitz in any neighborhood of S1 =
{(x, ẋ) ∈ R2 : x2 + ẋ2 = 1}. As an application of our main results, we get
the existence of a periodic solution xε(t) of (6) satisfying (xε(t), ẋε(t)) → S1

uniformly as ε → 0 (see Proposition 2). Notice that no previous version of
the averaging method could be applied to detect such a periodic solution.

2. DEGREE THEORY AND PRELIMINARY RESULTS

This section is devoted to the basic notions and definitions of degree the-
ory as well as some preliminary results.

2.1. Brouwer degree. The Brouwer degree is defined as an integer-valued
function that assigns to each triple ( f , V, y0), where V ⊂ Rn is an open
bounded subset of Rn, f : V → Rn is a continuous function, and y0 /∈
f (∂V), the number dB( f , V, y0) whose defining properties are:

B.1 (Existence) If dB( f , V, y0) 6= 0, then y0 ∈ f (V). Furthermore, if 1 :
V → Rn is the identity function and y0 ∈ V, then dB(1, V, y0) = 1.
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B.2 (Additivity) If V1, V2 ⊂ V are disjoint open subsets of V such that
y0 /∈ f (V\(V1 ∪V2)), then

dB( f , V, y0) = dB( f|V1
, V1, y0) + dB( f|V2

, V2, y0).

B.3 (Invariance under homotopy) If { ft : V → Rn | t ∈ [0, 1]} is a contin-
uous homotopy and {yt | t ∈ [0, 1]} is a continuous curve such that
yt /∈ ft(∂V), ∀t ∈ [0, 1] then dB( ft, V, yt) is constant in t.

An important property of the Brouwer degree, that follows directly from
Property B.3, is that it is locally constant, see [7, Theorem 3.1 (d5)]:

B.4 (Local constancy) dB(g, V, y0) = dB( f , V, y0) for every continuous
function g : V → Rn such that |g− f | < dist(y0, f (∂V)).

Another result concerning the invariance of the Brouwer degree under
small perturbations, that we shall use later on, is the following:

Lemma 1 ([5, Lemma 4]). Let V be an open bounded subset of Rm. Consider the
continuous functions fi : V → Rn, i ∈ {0, 1, · · · , κ}, and f , g, r : V × [0, ε0] →
Rn given by

g(z, ε) = f0(z) + ε f1(z) + · · ·+ εκ fκ(z) and f (z, ε) = g(z, ε) + εκ+1r(z, ε).

Let Vε ⊂ V, R = max{|r(z, ε)| : (z, ε) ∈ V× [0, ε0]} and assume that |g(z, ε)| >
R|ε|κ+1 for all z ∈ ∂Vε and ε ∈ (0, ε0]. Then, for each ε ∈ (0, ε0] we have
dB ( f (·, ε), Vε, 0) = dB (g(·, ε), Vε, 0) .

2.2. Leray-Schauder degree. The Leray-Schauder degree was introduced
by Leray and Schauder [17] in the context of compact perturbations of the
identity on normed linear spaces.

Definition 1 ([6],[7, Theorem 8.1]). Let X be a real normed linear space, Ω ⊂ X
be an open bounded subset of X, and M : Ω → X be a compact mapping. If
y0 /∈ (Id−M)(∂Ω), then the Leray-Schauder degree is an integer-valued function
defined by

dLS(Id−M, Ω, y0) = dB((Id−M1)|Ω∩X1
, Ω ∩ X1, y0),

where M1 : Ω→ X is any compact mapping satisfying

sup
x∈Ω
|M1x−Mx| < dist(y0, (Id−M)(∂Ω)),

and X1 is any finite dimensional subspace of X such that y0 ∈ X1 and M1(Ω) ⊂
X1.

Considering the setting in Definition 1, one can prove that the Leray-
Schauder degree has the following properties (see, for instance [7]):
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LS.1 (Existence) If dLS(Id− M, Ω, y0) 6= 0, then there exists x ∈ Ω such
that x−Mx = y0.

LS.2 (Additivity) If Ω1, Ω2 ⊂ Ω are open disjoint subsets of Ω such that
y0 /∈ (Id−M)(Ω\(Ω1 ∪Ω2), then

dLS(Id−M, Ω, y0) = dLS((Id−M)|Ω1
, Ω1, y0)+ dLS((Id−M)|Ω2

, Ω2, y0).

LS.3 (Invariance under homotopy) Let H : Ω× [0, 1] → X be a compact
mapping and {yt ∈ X | t ∈ [0, 1]} be a continuous curve such that x−
H(x, t) 6= yt, for all (x, t) ∈ ∂Ω× [0, 1]. Then, dLS(Id− H(·, t), Ω, yt)
is constant in t.

One can readily see the similarity between these properties and the prop-
erties B.1-B.3. Indeed, as we can see from Definition 1, the Leray-Schauder
degree is obtained from the Brouwer degree by approximating the infinite
dimensional space X by finite dimensional ones. In particular, in this sce-
nario, if X is finite dimensional, then dLS(I −M, Ω, y0) = dB(I −M, Ω, y0).

2.3. Coincidence degree. Finally, consider two real normed vector spaces
X and Z, and dom L a subspace of X. Let L : dom L ⊂ X → Z be a linear
mapping, Ω an open bounded subset of X, and N : Ω ⊂ X → Z any
mapping. The coincidence degree concerns the existence of solutions of the
operator equation

Lx = Nx, x ∈ Ω,
under suitable assumptions on L, N, and Ω.

We say that L is a Fredholm mapping of index 0 if Im L is a closed subset
of Z, Ker L and Coker L = Z/Im L are finite dimensional, and dim Ker L =
dim Coker L.

Now, we introduce the concept of L−compact mapping for a Fredholm
mapping L of index 0. Let P : X → X and Q : Z → Z be continuous
projections such that the sequence

(7) X dom L Z ZP L Q

is exact, i.e. Im P = Ker L and Im L = Ker Q. It can be seen that LP =
L|Ker P ∩ dom L is an isomorphism. Therefore, we can take its inverse, de-
noted by KP, and define the generalized inverse of L by KP,Q = KP(Id−Q).
Also, denote by Π : Z → Coker L the canonical projection that sends any
y ∈ Z onto its equivalence class in Coker L. Accordingly, we say that a map-
ping N : Ω ⊂ X → Z is L−compact on Ω if the mappings ΠN : Ω ⊂ X →
Coker L and KP,QN : Ω ⊂ X → X are compact on Ω, that is, ΠN and KP,QN
are continuous on Ω such that ΠN(Ω) and KP,QN(Ω) are relatively com-
pact. At this point it is worth noting that the projectors P and Q are not
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unique in general, but one can prove that the definition of L−compactness
does not depend upon the choices of P and Q.

The next proposition is a key result for the definition of coincidence de-
gree.

Proposition 1 ([11, Proposition III.0]). Let L : dom L ⊂ X → Z be a linear
mapping. If there exists a linear injective mapping Λ : Coker L → Ker L, then
Lx = y, for some y ∈ Z, if, and only if, (Id− P)x = (ΛΠ + KP,Q)y.

For y = Nx, this proposition says that, as long as there exists a linear
injective mapping Λ : Coker L → Ker L, the set of solutions of Lx = Nx is
equal to the set of fixed points of the mapping

M = P + (ΛΠ + KP,Q)N.

Moreover, M can be proven to be a compact mapping provided that L is a
Fredholm mapping of index 0 and N is L−compact on Ω (see [11, Propo-
sitions III.2 and III.3]). Accordingly, if one has, in addition, that 0 /∈ (L −
N)(∂Ω ∩ dom L), then the Leray-Schauder degree of Id− M with respect
to Ω and 0, dLS(Id−M, Ω, 0), is well-defined. This motivates the following
definition:

Definition 2. Let L : dom L ⊂ X → Z be a linear Fredholm mapping of index 0
and N : Ω ⊂ X → Z be an L-compact mapping on Ω. The coincidence degree of
L and N with respect to Ω is defined as d((L, N), Ω) := dLS(Id−M, Ω, 0).

Remark 2. In the definition above, it is worthwhile to point out that |d((L, N), Ω)|
only depends on L, N and Ω. The sign of d((L, N), Ω) depends on wether or not
Λ is an orientation preserving isomorphism.

In the above setting, the properties LS.1-LS.3 of the Leray-Schauder de-
gree induce the following properties on the coincidence degree.

C.1 If d((L, N), Ω) 6= 0, then there exists x ∈ Ω such that Lx = Nx.
C.2 If Ω1, Ω2 ⊂ Ω are open disjoint subsets of Ω, then

d((L, N), Ω) = d((L, N), Ω1) + d((L, N), Ω2).

C.3 Let N : Ω × [0, 1] → Z be a L−compact mapping on Ω × [0, 1]
such that 0 /∈ (L − N(·, t))(dom L ∩ ∂Ω) for each t ∈ [0, 1]. Then,
d((L, N(·, t)), Ω) is constant in t.

2.4. A continuation theorem. Let L : dom L ⊂ X → Z be a linear Fredholm
mapping of index 0 and consider P : X → X and Q : Z → Z continuous
projections such that the sequence (7) is exact, that is, Im P = Ker L and
Im L = Ker Q. Let N : Ω× [0, 1] → Z be an L−compact mapping on Ω×
[0, 1], where Ω ⊂ X is open and bounded.
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In this section, following [11, Chapter IV] closely, we discuss sufficient
conditions in order to guarantee that the operator equation

Lx = λN(x, λ), (x, λ) ∈ Ω× [0, 1],(8)

has solutions for each λ ∈ [0, 1]. The following proposition is an important
tool in this quest.

Lemma 2 ([11, Lemma IV.1]). For each λ ∈ (0, 1], the set of solutions of (8)
coincides with the set of solutions of

Lx = Ñ(x, λ) := QN(x, λ) + λ(Id−Q)N(x, λ).

For λ = 0, every solution of the latter equation is a solution of (8).

Accordingly, based on the coincidence degree theory discussed in the pre-
vious section, we shall compute the coincidence degree d((L, Ñ(·, λ)), Ω),
for each λ ∈ [0, 1]. Thus, assuming

A.1 Lx 6= λN(x, λ), for every x ∈ dom L ∩ ∂Ω and λ ∈ (0, 1); and
A.2 QN(x, 0) 6= 0, for every x ∈ Ker L ∩ ∂Ω,

we have that either Lx = Ñ(x, 1), for some x ∈ dom L ∩ ∂Ω, or

(9) d((L, Ñ(·, λ)), Ω) = dB(JQN(·, 0)|Ker L∩Ω
, Ker L ∩Ω, 0),

for each λ ∈ [0, 1], where J : Im Q→ Ker L is an isomorphism.
Indeed, it is straightforward to see that Ñ is L-compact on Ω× [0, 1]. As-

suming A.1, A.2, and Lx 6= Ñ(x, 1), for every x ∈ dom L ∩ ∂Ω, and taking
Lemma 2 into account, one can see that 0 /∈ (L− Ñ(·, λ))(dom L ∩ ∂Ω), for
each λ ∈ [0, 1]. Thus, by property C.3, we get

(10) d((L, Ñ(·, λ), Ω) = d((L, QN(·, 0)), Ω),

for each λ ∈ [0, 1]. By definition of the Coincidence Degree (see Definition
2), we have

(11)
d((L, QN(·, 0)), Ω) = dLS(Id− P− (ΛΠ + KP,Q)QN(·, 0), Ω, 0)

= dLS(Id− P−ΛΠQN(·, 0), Ω, 0),

where, we recall, Π : Z → Coker L is the canonical projection and Λ :
Coker L → Ker L is an isomorphism. Therefore, applying the definition
of the Leray-Schauder Degree (see Definition 1) for X1 = Ker L and M1 =
M = P + ΛΠQN(·, 0), and using the fact that (Id− P)|Ker L = 0, we obtain
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that

(12)

dLS(Id− P−ΛΠQN(·, 0), Ω, 0)

= dB((Id− P−ΛΠQN(·, 0))|Ω∩Ker L, Ω ∩Ker L, 0)

= dB(−ΛΠQN(·, 0)|Ω∩Ker L, Ω ∩Ker L, 0),

= dB(JQN(·, 0)|Ω∩Ker L, Ω ∩Ker L, 0),

where J = −ΛΠQ and ΠQ := Π|Im Q are isomorphisms. Taking the rela-
tionships (10), (11), and (12) into account, we get (9).

Notice that, in the reasoning above, we are fixing the isomorphism Λ :
Coker L → Ker L and choosing J = −ΛΠQ. Nevertheless, since Λ is arbi-
trary and ΠQ is an isomorphism, we could fix any isomorphism J : Im Q→
Ker L and choose Λ = −JΠ−1

Q .
Then, we get the following continuation result, which was proven in [11]:

Theorem 1 ([11, Corollary IV.1]). In addition to condition A.1 and A.2, assume
that dB(JQN(·, 0)|Ω∩Ker L

, Ω ∩Ker L, 0) 6= 0. Then, the operator equation (8) ad-
mits a solution, which lies in Ω (resp. Ω) for λ ∈ [0, 1) (resp. λ = 1).

It is worth mentioning that, in the construction of the Brouwer degree per-
formed in Section 2.1, we are tacitly assuming that the involved spaces are
not 0−dimensional. However, the Brouwer degree can be extended to the
0−dimensional scenario by defining dB(Id, {0}, 0) = 1 and dB(Id, ∅, 0) = 0
(see [11, Section IV]). With that in mind, Theorem 1 also holds when Ker L =
{0}. Indeed, in this case, P = 0, Q = 0, Π = 0, and KP,Q = L−1. Thus, on
can see that conditions A.2 and dB(JQN(·, 0)|Ω∩Ker L

, Ω ∩ Ker L, 0) 6= 0 are
equivalent to 0 /∈ ∂Ω and 0 ∈ Ω, respectively. Therefore, going back to re-
lationship (11), we obtain d((L, QN(·, 0)), Ω) = dLS(Id, Ω, 0) = 1, and then
Theorem 1 follows.

3. PROOF OF THE MAIN RESULTS

We denote by C[0, T] the space of all continuous functions defined in [0, T]
with values in Rn and define the function spaces

C0 = {x ∈ C[0, T] : x(0) = 0} and CT = {x ∈ C[0, T] : x(0) = x(T)},
both endowed with the sup-norm making them into real Banach spaces. Set
X = CT and Z = C0 and, for a given open bounded subset V of Rn, take
Ω = {x ∈ CT : x(t) ∈ V, ∀ t ∈ [0, T]}, which is an open bounded subset of
CT.

Define the linear mapping L : CT → C0 by

Lx(t) = x(t)− x(0),
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and, for each ε ∈ (0, ε0], define Nε : Ω→ C0 by

Nε(x)(t) =
∫ t

0
ε F(s, x(s), ε)ds.

Notice that a function x ∈ CT is a T−periodic solution of the differential
equation (1) in V if, and only if, it is a solution of the operator equation

(13) Lx = Nε(x), x ∈ Ω.

Proof of Theorem A. Consider Nε(x, λ) = Nε(x). In order to obtain the ex-
istence of a solution of the operator equation (13) and conclude this proof,
we shall apply Theorem 1 for λ = 1 to the operator equation

(14) Lx = λNε(x, λ), (x, λ) ∈ Ω× [0, 1].

Firstly, we must check that L is a Fredholm mapping of index 0 and that
Nε is L−compact on Ω× [0, 1], for each ε ∈ (0, ε0]. Notice that Im L = CT ∩
C0, which is closed in C0. In addition,

Ker L =
{

x ∈ CT : x(t) = z, z ∈ Rn},

that is, the space of all constant function in Rn, which can be identified with
Rn, and

Coker L =
{
[y] := y + Im L : y ∈ C0

}
.

One can readily see that [y1] = [y2] if, and only if, y1(T) = y2(T), which
means that Coker L can also be identified with Rn. Hence, dim Ker L =
dim Coker L and, therefore, L is a Fredholm mapping of index 0. Moreover,
the natural projection Π : C0 → Coker L is given by Πy = [y(T)]. Now,
in the above setting, consider the continuous projections P : CT → CT and
Q : C0 → C0 defined by

Px(t) = x(0) and Qy(t) =
t y(T)

T
, for t ∈ [0, T],

respectively, and let Λ : Coker L → Ker L be defined by Λ[z](t) = −z, for
t ∈ [0, T]. From here, it is straightforward to check that Im P = Ker L and
Im L = Ker Q, which implies that the sequence in (7) is exact, and that Nε is
L−compact on Ω× [0, 1], for each ε ∈ (0, ε1].

In addition, Im Q =
{

x ∈ C0 : x(t) = t v, v ∈ Rn}, which can be iden-
tified with Rn. Thus, consider the isomorphism J : Im Q → Ker L given
by

Jy(t) =
y(T)

T
.

Now, we are in position of checking the conditions to apply Theorem 1 .
Notice that Lx = λNε(x, λ) for some x ∈ Ω, λ ∈ [0, 1], and ε ∈ (0, ε1] if,

and only if, x is a T−periodic solution of the differential equation (2). Thus,
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taking hypothesis H into account, we get that, for each ε ∈ (0, ε1], Lx 6=
λNε(x, λ), for every x ∈ dom L ∩ ∂Ω and λ ∈ (0, 1). Therefore, condition
A.1 of Theorem 1 holds, for each ε ∈ (0, ε1].

In addition, for x ∈ Ker L ∩ ∂Ω, that is, x(t) ≡ z ∈ ∂V,

QNε(x, 0)(t) =
t
T

∫ T

0
εF(s, z, ε)ds = t f (z, ε),

which, by hypothesis, is not the 0 constant function in C0. Therefore, condi-
tion A.2 of Theorem 1 holds, for each ε ∈ (0, ε1].

Finally, for x ∈ Ker L∩Ω, say x(t) ≡ z ∈ V, we have JQNε(x, 0) = f (z, ε).
Thus,

dB(JQNε(·, 0)|Ker L∩Ω, Ker L ∩Ω, 0) = dB( f (·, ε), V, 0).

We claim that dB( f (·, ε), V, 0) 6= 0 for each ε ∈ (0, ε1]. Indeed, denote E =
{ε ∈ (0, ε1] : dB( f (·, ε), V, 0) 6= 0}. By hypothesis, there exists ε∗ ∈ (0, ε1]
such that dB( f (·, ε∗), V, 0) 6= 0, thus E 6= ∅. Moreover, given ε̂ ∈ E , by hy-
pothesis (3) and compactness of ∂V, there exists a small open interval I con-
taining ε̂ such that f (z, ε) 6= 0 for all z ∈ ∂V and ε ∈ I and, then, from Prop-
erty B.4, I can be taken smaller if necessary in order that dB( f (·, ε), V, 0) =
dB( f (·, ε̂), V, 0) 6= 0, for every ε ∈ I . Thus, I ∩ (0, ε1] ⊂ E , which means that
E is open in (0, ε1]. Analogously, one can see that (0, ε1] \ E = {ε ∈ (0, ε1] :
dB( f (·, ε), V, 0) = 0} is open in (0, ε1] and, consequently, E is also closed in
(0, ε1]. Hence, from the connectedness of (0, ε1], we obtain E = (0, ε1].

Therefore, we conclude that all conditions of Theorem 1 hold, for each
ε ∈ (0, ε1]. Hence, applying Theorem 1 for λ = 1 to the operator equation
(14) for each ε ∈ (0, ε1] , we get the existence of a solution of the operator
equation (13) and, consequently, a T−periodic solution ϕ(t, ε) of the dif-
ferential equation (1), for each ε ∈ (0, ε1], such that ϕ(t, ε) ∈ V for every
t ∈ [0, T]. �

Remark 3. In the proof of Theorem A, the maps L and Nε are not the unique
possibility for obtaining the result. Indeed, as pointed out by an anonymous referee,
one could take dom L = {x ∈ CT : x is differentiable}, Lx(t) = ẋ(t), and
Nε(x)(t) = εF(t, x(t), ε). Then, by a suitable choice of the projectors P and Q, the
proof would follow analogously.

Proof of Theorem B. For system (4), we have

f (z, ε) =
1
T

∫ T

0

(
k

∑
j=1

εjFj(s, z) + εk+1R(s, z, ε)

)
ds = Fk(z, ε) + εk+1r(z, ε).

By hypothesis (5), there exists ε ∈ (0, ε1] such that

|Fk(z, ε)| > |εk+1| max{|r(z, ε)| : (z, ε) ∈ V × [0, ε1]},



AVERAGING FOR CONTINUOUS DIFFERENTIAL EQUATIONS 13

for every ε ∈ (0, ε]. In particular, hypothesis (3) of Theorem A holds for ε ∈
(0, ε]. In addition, taking Vε = V in Lemma 1, we get that dB( f (·, ε), V, 0) =
dB(Fk(·, ε), V, 0) 6= 0, for ε ∈ (0, ε]. Finally, by hypothesis, dB(Fk(·, ε), V, 0) 6=
0 for ε > 0 sufficiently small. Thus applying a topological argument, analo-
gous to the one used at the end of the proof of Theorem A, we get

dB( f (·, ε), V, 0) = dB(Fk(·, ε), V, 0) 6= 0,

for every ε ∈ (0, ε]. From here, the result follows from Theorem A. �

Remark 4. In the proof of Theorem B, one can see that ε can be chosen to be any
value in (0, ε1] such that

inf
z∈∂V
|Fk(z, ε)| > |εk+1| max{|r(z, ε)| : (z, ε) ∈ V × [0, ε1]},

for every ε ∈ (0, ε]. This provides a way for estimating the interval of the parameter
ε where we have ensured the existence of a T-periodic solution of the differential
equation (4).

Proof of Theorem C. Without loss of generality, we can assume that ` = k.
Consider neighbourhoods Vµ = B(z∗, µ) ⊂ V, for µ > 0 sufficiently small.
Clearly Vµ → {z∗} as µ → 0. Now, f0 = · · · = fk−1 = 0, then Fk(·, ε) =

εk fk(z). Moreover, since fk(z) 6= 0, for every z ∈ ∂Vµ and r(z, ε) is continu-
ous, consequently, bounded on compact sets, we conclude that

lim
ε→0

inf
z∈∂Vµ

∣∣∣∣∣ εk fk(z)
εk+1

∣∣∣∣∣ = lim
ε→0

inf
z∈∂Vµ

∣∣∣∣ fk(z)
ε

∣∣∣∣ = ∞

> max{|r(z, ε)| : (z, ε) ∈ V × [0, ε1]}.

Thus, hypothesis (5) of Theorem B holds. In addition, for every ε > 0, we
have dB(Fk(·, ε), Vµ, 0) = dB( fk(z), Vµ, 0), which, is distinct from zero, by
hypothesis. Hence, by Theorem B, there exists εµ > 0 and a T−periodic
solution ϕ(·, ε) of (4) such that ϕ(t, ε) ∈ Vµ, ∀ t ∈ [0, T] and for each ε ∈
(0, εµ]. Now, given any ξ > 0, put µ = ξ/2 and δ = εµ. By the conclusion
above, 0 < ε < δ implies supt∈[0,T] |ϕ(t, ε)− z∗| ≤ ξ/2 < ξ. That is precisely
to say that ϕ(·, ε)→ z∗ uniformly as ε→ 0. This completes the proof. �

Remark 5. In Theorem C, taking Remark 4 into account, one can see that, for any
ε ∈ (0, ε1] such that

0 < ε <
1

M`
min
z∈∂V
| f`(z)|,

where

M` = max{| f`+1(z) + · · ·+ εk−`−1 fk(z) + εk−`r(z, ε)| : (z, ε) ∈ V × [0, ε1]},
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a T−periodic solution ϕ(t, ε) ⊂ V of differential equation (4) exists for every ε ∈
(0, ε]. It is worth mentioning that, since ε ∈ (0, ε1], the estimation above is helpful
only when the value of ε1 is known, which is established by hypothesis H. Remark
1 provides a route to prove the existence of such ε1, however, estimating its value is
not always possible.

4. NON-LIPSCHITZ PERTURBATION OF A HARMONIC OSCILLATOR

Consider the continuous higher order perturbation of a harmonic oscilla-
tor (6),

ẍ = −x + ε
(
x2 + ẋ2) + εk ẋ 3

√
x2 + ẋ2 − 1 + εk+1E(x, ẋ, ε),

where k is a positive integer and E is a continuous function on R3. Clearly,
the differential equation (6) is not Lipschitz in any neighborhood of S1 =
{(x, ẋ) ∈ R2 : x2 + ẋ2 = 1}. In the next result, Theorem C is applied to show
the existence of a periodic solution xε(t) of (6) satisfying (xε(t), ẋε(t)) → S1

uniformly as ε→ 0. Notice that such a periodic solution is not detectable by
any Lipschitz version of averaging method.

Proposition 2. For any positive integer k and |ε| 6= 0 sufficiently small, the differ-
ential equation (6) admits a periodic solution x(t; ε) satisfying (x(t; ε), ẋ(t; ε)) →
S1 uniformly as ε→ 0.

Proof. Changing to polar coordinates x = r cos θ, ẋ = −r sin θ and taking θ
as the new independent variable, the differential equation (6) becomes

(15) dr
dθ

= εF(θ, r, ε),

where

F(θ, r, ε) = −
k−1

∑
i=1

εi−1ri+1 cosi−1 θ sin θ

+εk−1r
(

3
√

r2 − 1 sin θ − rk cosk−1 θ
)

sin θ + εkR(θ, r, ε),

which is not Lipschitz in any neighbourhood of r = 1. Let V = (1− α, 1+ α)
for some 0 < α < 1. Notice that

fi = 0, for i ∈ {1, 2, . . . , k− 1}, and fk(r) =
r 3
√

r2 − 1
2

.

Moreover, fk has a unique positive zero r∗ = 1 and is homotopic to the
mapping r 7→ r− 1 in V. Therefore, dB( fk, V, 0) 6= 0.

In what follows we shall assume that ε > 0. The result for ε < 0 can be
obtained analogously just by considering −F(θ, r, ε). In order to apply The-
orem C, it remains to check hypothesis H. From Remark 1, the negation of
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hypothesis H provides numerical convergent sequences (εm)m∈N ⊂ (0, ε0]
and (λm)m∈N ⊂ (0, 1), such that εm → 0 as m→ ∞, and a sequence (rm)m∈N

of 2π-periodic solutions of

(16) r′ = εmλmF(θ, r, εm), r ∈ V,

for which there exists θm ∈ [0, 2π] such that rm(θm) ∈ ∂V for each m ∈
N. As an application of Arzelá-Ascoli’s Theorem, the sequence of func-
tions (rm)m∈N can be taken uniformly convergent to a constant function
r0 ∈ ∂V = {1± α}. In particular,∫ 2π

0
F(θ, rm(θ), εm)dθ = 0,

which implies that

(17)
∫ 2π

0
rm(θ)

3
√

rm(θ)2 − 1 sin2 θdθ =
1

εk−1
m

k

∑
i=1

εi−1
m Gi+1,i−1

m +O(εm),

where

Gi,j
m =

∫ 2π

0
rm(θ)

i cosj(θ) sin(θ) dθ.

Here, although (εm)m∈N is a numerical sequence, we borrow the Landau’s
symbol notation hm = O(εp

m), for some p ∈ N, to mean that there exists a
positive constant C such that |hm| ≤ C|εp

m|, for m sufficiently large. Note
that, by applying integration by parts and using that rm(θ) is 2π−periodic,
we obtain

Gi,j
m = − i

j + 1

∫ 2π

0
rm(θ)

i−1 cosj+1(θ)r′m(θ) dθ.

Since rm(θ) satisfies (16), we conclude that

Gi,j
m = − i

j + 1

k−1

∑
l=1

λmεl
m

∫ 2π

0
rm(θ)

j+l cosj+l(θ) sin θ dθ +O(εk
m)

= − i
j + 1

k−1

∑
l=1

λmεl
mGi+l,j+l(rm) +O(εk

m)

= O(εm).

Applying the above procedure recursively, we conclude that Gi,j
m = O(εk

m).
Thus, from (17), we get that∫ 2π

0
rm(θ)

3
√

rm(θ)2 − 1 sin2 θdθ = O(εm).
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Since rm → r0 ∈ {1± α} uniformly, we compute the limit of the integral
above as ∫ 2π

0
r0

3
√

r2
0 − 1 sin2 θdθ = 0,

which is an absurd, because∫ 2π

0
r0

3
√

r2
0 − 1 sin2 θdθ = πr0

3
√

r2
0 − 1 6= 0,

for r0 6= 1. Thus, we obtain that hypothesis H holds and Theorem C can be
applied in order to conclude this proof. �

It is worth mentioning that the software application MATHEMATICA®
was used to illustrate numerically the existence of the periodic solution en-
sured by Proposition 2 for some values of k and ε. In Figures 1, 2, and 3
we show the displacement function obtained for some of these simulations,
which has its zero corresponding to a periodic solution.
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FIGURE 1. Displacement function of differential equation (15)
assuming k = 1 and E = 0 for ε = 1/20 (left) and ε = 1/100
(right).
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FIGURE 2. Displacement function of differential equation (15)
assuming k = 2 and E = 0 for ε = 1/20 (left) and ε = 1/100
(right).
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FIGURE 3. Displacement function of differential equation (15)
assuming k = 3 and E = 0 for ε = 1/20 (left) and ε = 1/100
(right).
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