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EFFICIENT SCALING AND MOVING TECHNIQUES FOR SPECTRAL

METHODS IN UNBOUNDED DOMAINS

MINGTAO XIA† ,‡ , SIHONG SHAO‡ ,∗, AND TOM CHOU†

Abstract. When using Laguerre and Hermite spectral methods to numerically solve PDEs in unbounded
domains, the number of collocation points assigned inside the region of interest is often insufficient, particularly
when the region is expanded or translated to safely capture the unknown solution. Simply increasing the number
of collocation points cannot ensure a fast convergence to spectral accuracy. In this paper, we propose a scaling
technique and a moving technique to adaptively cluster enough collocation points in a region of interest in order to
achieve a fast spectral convergence. Our scaling algorithm employs an indicator in the frequency domain that is used
to determine when scaling is needed and informs the tuning of a scaling factor to redistribute collocation points to
adapt to the diffusive behavior of the solution. Our moving technique adopts an exterior-error indicator and moves
the collocation points to capture the translation. Both frequency and exterior-error indicators are defined using only
the numerical solutions. We apply our methods to a number of different models, including diffusive and moving
Fermi-Dirac distributions and nonlinear Dirac solitary waves, and demonstrate recovery of spectral convergence for
time-dependent simulations. Performance comparison in solving a linear parabolic problem shows that our frequency
scaling algorithm outperforms the existing scaling approaches. We also show our frequency scaling technique is able
to track the blowup of average cell sizes in a model for cell proliferation.

AMS subject classifications: 65M70; 65F35; 65M50; 33C45; 41A05;
Keywords: Unbounded domain; Scaling; Moving mesh; Laguerre function; Hermite function; Blowup; Spectral
method

1. Introduction. Many scientific models described by PDEs with blowup solutions are set in
unbounded domains. For example, in many models of cellular proliferation, a “blowup” in which
the average size of a population of cells becomes uncontrolled and diverges over many generations
of growth is possible [3]. The conditions under which blowup occurs is difficult to determine analyt-
ically [1] but has been explored numerically [22]. However, numerically tracking “blowup” behavior
over long times is extremely difficult, as it requires solving the problem in a truly unbounded do-
main to capture the diverging mean size. There are many other problems where it is desirable to
find a numerical solution in an unbounded domain, including the stability of solitary waves arising
from the nonlinear Dirac equation [14, 6] and diffusion in a parabolic system [10].

Considerable progress has recently been made in spectral methods for solving PDEs in un-
bounded domains [16]. Among the existing spectral methods, the direct approach that is typically
used is based on orthogonal basis functions defined on infinite intervals, e.g., the Hermite and La-
guerre spectral methods [5, 7, 20]. It has been demonstrated that the performance of these spectral
methods can be greatly improved when a proper coordinate scaling is used [19, 16]. However, it is
not clear how to systematically perform the scaling, especially when transient behavior arises. A
Hermite spectral method with time dependent scaling has been proposed for parabolic problems by
introducing a time dependent scaling factor β(t) to meet the coercive condition [10]. Nonetheless,
the form of β(t) and related parameters are chosen based on specified knowledge of parabolic models
and thus cannot be easily generalized to other problems.

Motivated by the success of adaptive methods in bounded domains [13, 18, 9], we propose two
indicators to adaptively allocate a sufficient number of collocation points to represent the unknown
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solution in the region of interest. The first indicator, designed for matching the diffusion of unknown
solutions, extracts the frequency-space information of intermediate numerical solutions and isolates
its high frequency components. This frequency indicator not only provides a lower bound for
the interpolation error, but also measures the decay of the derivatives of the reference solution as
|x| → +∞. By tuning a scaling factor in our proposed scaling technique, the frequency indicator can
be maintained at a low level. However, the translation of unknown solutions may also amplify the
frequency indicator and thus may result in larger errors for excessive scaling. To accommodate this
scenario, a second, exterior-error indicator is used to calculate an upper bound for the error in the
exterior domain, allowing one to capture translation via moving collocation points. Accordingly,
for problems that may involve both translation and diffusion in unbounded domains, the above
two indicators are combined in a “first moving then scaling” approach. Numerical experiments
demonstrate their ability to recover a faster spectral convergence for time-dependent solutions.

The remainder of this paper is organized as follows. Section 2 introduces the frequency indica-
tor, connects it to the approximation error, and proposes the frequency-dependent scaling technique
for diffusion. Section 3 proposes the exterior-error-dependentmoving technique for translating prob-
lems. We then combine, in Section 4, the above two approaches to solve time-dependent problems
involving both diffusion and translation. Section 5 compares the frequency-dependent scaling with
a time-dependent scaling proposed in [10] for solving parabolic systems. In Section 6, we apply
the frequency-dependent scaling method to a PDE model describing structured cell populations to
track blowup behavior. Finally, we summarize our approaches and make concluding remarks in
Section 7.

2. Frequency-dependent scaling. In this section, we formulate a scaling technique by first
extracting frequency domain information on the evolution of numerical solutions, the pseudo-code
of which is presented in Alg. 2.1. Following Guo et al. [7], the discussion utilizes the generalized
Laguerre polynomials which are mutually orthogonal on the half-line Λ := (0,+∞) with weight
function

(2.1) ωα,β(x) = xαe−βx, α > −1, β > 0.

The generalized Laguerre polynomials of degree ℓ are denoted by L
(α,β)
ℓ (x) and reduce to the usual

Laguerre polynomials when β = 1. In this work, we regard β to be the scaling factor, and seek a
time-dependent spectral approximation of u(x, t) on Λ. Henceforth, for notational simplicity, the
t-dependence will usually be omitted.

For any u ∈ L2
ωα,β

(Λ), the spectral approximation using the interpolation operator IN,α,β is

(2.2) u(x) ≈ U
(α,β)
N (x) = IN,α,βu =

N
∑

ℓ=0

u
(α,β)
ℓ L

(α,β)
ℓ (x),

where the coefficients u
(α,β)
ℓ can be computed by using e.g., the Laguerre-Gauss collocation points

x
(α,β)
j ,

(2.3) u
(α,β)
ℓ =

1

γ
(α,β)
ℓ

N
∑

j=0

L
(α,β)
ℓ (x

(α,β)
j )u(x

(α,β)
j )w

(α,β)
j , ℓ = 0, 1, . . . , N,
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where N is the expansion order (i.e., N + 1 collocation points or N + 1 basis functions), γ
(α,β)
ℓ =

(L
(α,β)
ℓ ,L

(α,β)
ℓ )ωα,β

is the L2
ωα,β

inner product, w
(α,β)
j denotes the corresponding weight for colloca-

tion point x
(α,β)
j , and

(2.4) u(x
(α,β)
j ) = U

(α,β)
N (x

(α,β)
j ) = IN,α,βu(x

(α,β)
j ), j = 0, 1, . . . , N.

Let Ar
α,β(Λ) be the nonuniformly weighted Sobolev space. For any integer r ≥ 0, its seminorm

and norm are defined by

(2.5) |u|Ar
α,β

= ‖∂r
xu‖ωα+r,β

, ‖u‖Ar
α,β

=

(

r
∑

k=0

|u|2Ak
α,β

)1/2

.

For any u ∈ Ar
α−1,β(Λ) ∩ Ar

α,β(Λ) with integer r ≥ 1, there is a well-known interpolation error
estimate when using Laguerre-Gauss collocation points [7]:

(2.6) ‖IN,α,βu− u‖ωα,β
≤ c(βN)

1−r
2 (β−1|u|Ar

α−1,β
+ (1 + β−

1
2 )(lnN)

1
2 |u|Ar

α,β
).

Here, c denotes a generic positive constant which does not depend on α, β, N , or any function.
This error estimate is a crucial element in the formal development and successful implementation
of the proposed scaling and moving techniques.

When the scaling factor is updated from β to β̃, the collocation points, weights and L2
ωα,β

norms are updated according to

(2.7) x
(α,β̃)
j =

β

β̃
x
(α,β)
j , w

(α,β̃)
j =

βα+1

β̃α+1
w

(α,β)
j , γ

(α,β̃)
ℓ =

βα+1

β̃α+1
γ
(α,β)
ℓ .

The expansion coefficients u
(α,β̃)
ℓ can then be estimated through Eq. (2.3) where we may use the

approximation (2.2): u(x
(α,β̃)
j ) ≈ U

(α,β)
N (x

(α,β̃)
j ). This procedure constitutes the scale subroutine

in Lines 9 and 17 of Alg. 2.1.
To implement the scaling technique, one needs to determine when to apply it and how to choose

a new scaling factor β̃ such that spectral accuracy can be kept for a prescribed expansion of order

N . To this end, we propose a frequency indicator acting on the numerical solution U
(α,β)
N :

(2.8) F(U
(α,β)
N ) =











N
∑

ℓ=N−M+1

γ
(α,β)
ℓ (u

(α,β)
ℓ )2

N
∑

ℓ=0

γ
(α,β)
ℓ (u

(α,β)
ℓ )2











1
2

,

which measures the contribution of the M highest-frequency components to the L2
ωα,β

-norm of

U
(α,β)
N . The subroutine frequency indicator in Lines 3, 6, 10, and 18 of Alg. 2.1 calculates this

contribution in which we choose M = [N3 ] in view of the often-used 2
3 -rule [8, 12].
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Algorithm 2.1 Pseudo-code of spectral methods with frequency-dependent scaling.

1: Initialize N , ν > 1, q < 1, ∆t, T , α, β, U
(α,β)
N (0), β

2: t← 0
3: f0 ← frequency indicator(U

(α,β)
N (t))

4: while t < T do

5: U
(α,β)
N (t+∆t)← evolve(U

(α,β)
N (t),∆t)

6: f ← frequency indicator(U
(α,β)
N (t+∆t))

7: if f > νf0 then

8: β̃ ← qβ

9: U
(α,β̃)
N ← scale(U

(α,β)
N (t+∆t), β̃)

10: f̃ ← frequency indicator(U
(α,β̃)
N )

11: while f̃ ≤ f and β̃ ≥ β do

12: β ← β̃

13: U
(α,β)
N (t+∆t)← U

(α,β̃)
N

14: f0 ← f̃
15: f ← f̃
16: β̃ ← qβ

17: U
(α,β̃)
N ← scale(U

(α,β)
N (t+∆t), β̃)

18: f̃ ← frequency indicator(U
(α,β̃)
N )

19: end while

20: end if

21: t← t+∆t
22: end while

If the frequency indicator F(U
(α,β)
N ) increases over time, the contribution of high frequency

components to the numerical solution increases, indicating that the numerical solution is decaying
more slowly in x and that we need to adjust the scaling factor to enlarge the computational domain

[x
(α,β)
0 , x

(α,β)
N ] demarcated by the smallest and largest collocation point positions. In Line 7 of

Alg. 2.1, νf0 is the threshold at some time t. If the value of the frequency indicator of the current
numerical solution f > νf0, then we consider scaling. The parameter ν is usually chosen to
be slightly larger than 1 to prevent the frequency indicator becoming too large without invoking
scaling.

However, the if condition is only a necessary condition. Only after we enter the while loop in

Line 11 will we perform scaling, which aims to ensure that the frequency indicator F(U
(α,β)
N ) will

not increase after scaling. Actually, this while loop tries to minimize F(U
(α,β)
N ) by geometrically

shrinking the scaling factor β (q in Line 16 is the common ratio) to ensure sufficient scaling since

F(U
(α,β)
N ) is a lower bound for the numerical error, as shown in Eq. (2.11). A more continuous

adjustment is preferred by setting q to be slightly less than 1, which may also prevent over-shrinking
of the scaling factor within one single time step. Henceforth, we will choose q = 0.95 and ν = 1/q.
Moreover, at the initial time t = 0, we also ensure the frequency indicator is small enough by
choosing a suitable initial scaling factor.

In this work, the generalized Laguerre polynomials with α = 0 are used and the relative L2
ωα,β

-
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error

(2.9) Error =
‖U

(α,β)
N − u‖ωα,β

‖u‖ωα,β

,

is used to measure the quality of the spectral approximation U
(α,β)
N (x) to the reference solution

u(x). We always use the most updated scaling factor to calculate the above error.

Fig. 1. Numerical approximation to the diffusive Fermi-Dirac distribution u(x, t) given by Eq. (2.10).
The scaling algorithm 2.1 produces much more accurate solutions and recovers a faster spectral convergence
with respect to the expansion order N . As we expected, the frequency indicator defined in Eq. (2.8) shows a
similar behavior to the error defined in Eq. (2.9) against either time or N . The data in last two plots are
measured at t = 10.

Example 1. We use the spreading Fermi-Dirac distribution

(2.10) u(x, t) =
1

1 + e
x−5
2+t

,

to test the performance of the scaling algorithm 2.1. It can be readily verified that the reference
solution u(x, t) expands over time as shown in Fig. 1(a). The proposed frequency-dependent scaling
with N = 40 effectively maintains the relative error under 10−10 up until time t = 10 whereas the
error for the corresponding unscaled solution rapidly grows to over 10−4 (see Fig. 1(b)). We also

plot, as u(x, t) evolves, the history of the scaling factor β and frequency indicator F(U
(α,β)
N ) in

Figs. 1(c) and 1(d), respectively. It is clear that the frequency indicator increases for the unscaled
solution as time evolves and that time-dependent scaling is required to preserve the accuracy. The
proposed frequency-dependent scaling technique detects the error and shrinks the scaling factor
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in order to enlarge the computational domain in accordance with the expansion of the reference
solution. The spectral convergence as a function of the expansion order N can be also recovered by
Alg. 2.1. The errors at the final time, for the scaled and unscaled approach, are displayed in Fig. 1(e).
The final scaling factors at t = 10 are 0.3213, 0.3560, 0.3747, 0.3945, 0.3945 for N = 25, 30, 35, 40, 45,
respectively, having all decreased from the common initial scaling factor of 2.5. Figs. 1(e, f) show
very similar and expected behavior of the frequency indicator and error as a function of N . Since
the error and the frequency indicators behave similarly across time (see Figs. 1(b, d)), we also
expect them to behave similarly with N . These similarities suggest a possible connection between
the error and the frequency indicator.

The success of the scaling algorithm 2.1 is rooted in the connection between the frequency
indicator (2.8) and the evolution of the information embedded in the numerical solutions. There
are two reasons to use a frequency indicator. First, starting from Eq. (2.8) with M = [n3 ] and a
sufficiently large expansion order N , we have

1

2
F(U

(α,β)
N ) ≈

1

2

‖IN,α,βu− IN−M,α,βu‖ωα,β

‖IN,α,βu‖ωα,β

≤
1

2

‖u− IN,α,βu‖ωα,β
+ ‖u− IN−M,α,βu‖ωα,β

‖IN,α,βu‖ωα,β

(2.11)

≤
‖u− IN−M,α,βu‖ωα,β

‖IN,α,βu‖ωα,β

,

which provides an estimate to the lower bound of ‖u − IN−M,α,βu‖ωα,β
. Minimizing F(U

(α,β)
N )

in Alg. 2.1 may reduce the lower bound of the interpolation error. Moreover, a straightforward
application of the interpolation error estimator (2.6) to the two terms in the numerator of Eq. (2.11)
yields

(2.12)

(

N
∑

ℓ=N−M+1

γ
(α,β)
ℓ (u

(α,β)
ℓ )2

)1/2

≤ cF (βN)
1−r
2

(

β−1|u|Ar
α−1,β

+ (1 + β−
1
2 )(lnN)

1
2 |u|Ar

α,β

)

,

where the constant cF ≡ (1 + 2
r−1
2 )c. Thus, we find

(2.13) F(U
(α,β)
N ) ≤ cF (βN)

1−r
2

(

β−1
|u|Ar

α−1,β

‖U
(α,β)
N ‖ωα,β

+ (1 + β−
1
2 )(lnN)

1
2

|u|Ar
α,β

‖U
(α,β)
N ‖ωα,β

)

,

implying that ∀ ε ∈ (0, 1), we may choose a sufficiently large N such that F(U
(α,β)
N ) < ε.

Secondly, the frequency indicator F(U
(α,β)
N ) can be used to measure the decay of the reference

solution’s derivatives as x tends to infinity. According to inequality (2.13), if |u|Ar
α−1,β

/‖U
(α,β)
N ‖ωα,β

is fixed, a larger F(U
(α,β)
N ) implies a larger |u|Ar

α,β
/‖U

(α,β)
N ‖ωα,β

. In particular, given s ∈ Λ (e.g.,

s =

√

2x
(α,β)
N ), if

(2.14) F(U
(α,β)
N ) > cF (βN)

1−r
2

|u|Ar
α−1,β

‖U
(α,β)
N ‖ωα,β

(β−1 + s(1 + β−
1
2 )(lnN)

1
2 ),
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we can combine (2.13) and (2.14) to find

(2.15) s|u|Ar
α−1,β

< |u|Ar
α,β

and

(2.16)

∫ s2

2

0

(∂r
xu(x))

2xα+re−βxdx <

∫ +∞

s2

2

(∂r
xu(x))

2xα+re−βxdx.

In other words, as the frequency indicator increases, the norm of ∂r
xu(x)·I(s2/2,+∞)(x) becomes larger

than that of ∂r
xu(x) · I(0,s2/2)(x), implying scaling is indeed needed to enlarge the computational

domain because ‖∂r
xu · I(x>s2/2)‖ωα,β

is the dominant component of ‖∂r
xu‖ωα,β

. Here, IS(x) denotes
the characteristic function on a set S. The verification of inequality (2.16) can be finished by
contradiction. If (2.16) does not hold, we would have

|u|2Ar
α,β

=

∫ +∞

0

(∂r
xu(x))

2xα+re−βxdx

≤ 2

∫ s2

2

0

(∂r
xu(x))

2xα+re−βxdx

≤ 2 ·
s2

2

∫ s2

2

0

(∂r
xu(x))

2xα+r−1e−βxdx

≤ s2
∫ +∞

0

(∂r
xu(x))

2xα+r−1e−βxdx = s2|u|2Ar
α−1,β

,

which would contradict the inequality (2.15). Intuitively, basis functions of higher degree decay
more slowly than those of lower degree, so an increase in the frequency indicator implies slower
decay at infinity. This slower spatial decay as time increases requires using a larger computational
domain which is achieved by decreasing β. In practice, we can also obtain good numerical results
using α = 0 although no theoretical result like the above observation is guaranteed since Ar

−1,β is
not defined.

3. Exterior-error-dependent moving. Dynamics in unbounded domains can be much richer
than the simple diffusive behavior successfully captured by our frequency-dependent scaling. Other
physical mechanisms may induce, for example, translations (Examples 2 and 3) and emerging os-
cillations (Example 4). A purely scaling approach fails in these cases.

In this section, we develop an exterior-error-dependent moving method that will be able to
resolve a solution’s decay in an undetermined exterior domain Λe := (xL,+∞). Alg. 3.1 presents
the pseudo-code of our exterior-error-dependent moving technique. In the algorithm, we first need
to determine the time-dependent left-end point xL. Next, we move the spectral basis accordingly

so that the spectral approximation for an unknown function u(x) in Λe (denoted by U
(α,β)
N,xL

(x))
maintains accuracy. To implement this procedure, we adopt an exterior-error indicator:

(3.1) E(U
(α,β)
N,xL

, xR) =
‖∂xU

(α,β)
N,xL

· I(xR,+∞)‖ωα,β

‖∂xU
(α,β)
N,xL

· I(xL,+∞)‖ωα,β

,

7



Algorithm 3.1 Pseudo-code of spectral methods with exterior-error-dependent moving.

1: Initialize N , ∆t, T , α, β, U
(α,β)
N,0 (0), µ > 1, dmax > δ > 0

2: t← 0
3: xL ← 0
4: xR ← x

(α,β)

[N+2
3 ]

5: e0 ← exterior error indicator(U
(α,β)
N,xL

(0), xR)
6: while t < T do

7: U
(α,β)
N,xL

(t+∆t)← evolve(U
(α,β)
N,xL

(t),∆t)

8: e← exterior error indicator(U
(α,β)
N,xL

(t+∆t), xR)
9: if e > µe0 then

10: (d0, U
(α,β)
N,xL+d0

)← move(U
(α,β)
N,xL

(t+∆t), δ, dmax, µe0)
11: xL ← xL + d0
12: xR ← xR + d0
13: e0 ← exterior error indicator(U

(α,β)
N,xL

(t+∆t), xR)
14: end if

15: t← t+∆t
16: end while

which measures the proportion of the norm ‖∂xU
(α,β)
N,xL

·I(xL,+∞)‖ωα,β
inside a prescribed unbounded

domain (xR,+∞).
The subroutine exterior error indicator in Lines 5, 8, and 13 of Alg. 3.1 calculates

E(U
(α,β)
N,xL

, xR). Here, following the often-used 2
3 -rule [8, 12], we choose xR = x

(α,β)

[N+2
3 ]

from the

collocation points x
(α,β)
j (j = 0, 1, . . . , N) in the exterior domain Λe.

Intuitively, if u(x) moves rightward in time, such as the moving Fermi-Dirac distribution in
Example 2, the spectral approximation at large distances may deteriorate and the exterior-error

indicator E(U
(α,β)
N,xL

) will increase. Consequently, the moving mechanism is triggered in Line 9 of
Alg. 3.1, and completed by updating the left end point xL = xL+ d0 in Line 11. Thus, the starting
point of the spectral approximation also moves rightward with time to capture the translation.

The displacement d0 = min{nδ, dmax} is determined by the move subroutine in Line 10, where

n is the smallest integer satisfying E(U
(α,β)
N,xL

, xR + nδ) < µe0, δ is the minimum displacement,
dmax is the maximum displacement, and µ represents the threshold of the increase in the exterior-
error indicator that we can tolerate. In practice, dmax should be based on a prior knowledge of
the maximum translation speed of the function u(x). We usually choose µ & 1 to prevent the
exterior-error indicator from becoming too large without invoking moving. The move subroutine

also generates U
(α,β)
N,xL+d0

from U
(α,β)
N,xL

.

Example 2. In this example, we consider the moving Fermi-Dirac distribution

(3.2) u(x, t) =
1

1 + e
x−5t

2

,

which travels to the right at a speed of 5 without any shape change (see Fig. 2(a)). The scaling
algorithm 2.1, equipped with the same parameters that worked well for the diffusive Fermi-Dirac
distribution in Example 1, fails to capture the translation. In fact, the errors of the scaled solutions
are larger than those of unscaled ones as shown in Fig. 2(b). It seems that the decrease of the scaling

8



factor (black curve with asterisks in Fig. 2(c)) cannot compensate for the increase in the frequency
indicator (black curve with asterisks in Fig. 2(d)). In other words, the scaling algorithm 2.1 mistakes
translation as diffusion and performs excessive scaling. In contrast, the exterior-error-dependent
moving algorithm 3.1 with δ = 0.004, dmax = 0.04 and µ = 1.005 succeeds in producing a much
more accurate approximation to the moving Fermi-Dirac distribution given by Eq. (3.2) in the
exterior domain Λe, with errors kept under 10−11 up to time t = 10 (red curve with left-pointing
triangles in Fig. 2(b)). The moving technique recovers a faster spectral convergence with respect
to the expansion order N as shown in Fig. 2(e).

During the moving process, the exterior-error indicator E(U
(α,β)
N,xL

, xR) is well controlled (red
curve with left-pointing triangles in Fig. 2(f)) and the left-end point of the exterior domain closely
tracks the uniform linear motion (red curve with left-pointing triangles in Fig. 2(c)). The exterior-
error indicator monotonically increases for the unscaled and unmoved solutions (blue curve with
squares in Fig. 2(f)) and oscillates rapidly for the scaled and unmoved solutions (black curve with
asterisks in Fig. 2(f)). Moreover, the similarity between the relative error and frequency indicator
as a function of time is again confirmed by comparing Fig. 2(d) to Fig. 2(b), thus providing strong
evidence for the effectiveness of using the frequency indicator (2.8). Spectral convergence in N is
clearly observed for the moving spectral method in Fig. 2(e) while the error decays slowly with N
for the unmoved spectral method.

Fig. 2. Numerical approximation to the moving Fermi-Dirac distribution u(x, t) given by Eq. (3.2). The
moving algorithm 3.1 produces much more accurate solutions and recovers a faster spectral convergence with
respect to the expansion order N in the exterior domain Λe = (xL,+∞), whereas a pure scaling fails to
capture this translation. The data in the last plot are measured at t = 10.

Example 3. Another class of dynamical systems are described by solitons or solitary waves
in which nonlinearities and dispersion counteract. While solitons have been well-studied, there has
been recent interest in nonlinear Dirac solitary waves as they emerge naturally in many physical
systems [6]. Stability of the nonlinear Dirac solitary waves on the whole line and its connection
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to the multi-hump structure is a challenging topic of research [14, 24, 2]. In this example, we
approximate a right-moving two-hump solitary wave, the explicit form of which is given in [15] with
v = 0.25, λ = 0.5, m = 1, x0 = −1.5 and Λ = 0.1. The reference solutions are plotted in Fig. 3(a).

Numerical results are displayed in Fig. 3 where we set δ = 0.004, dmax = 0.012, µ = 1.005.
It can be readily observed there that the exterior-error-dependent moving algorithm 3.1 produces
much more accurate solutions with errors kept under 10−11 until the final time t = 15 (red curve
with left-pointing triangles in Fig. 3(b)). The moving algorithm also recovers a faster spectral
convergence with respect to the expansion order N (see Fig. 3(c)). The scaling-only algorithm 2.1
fails to maintain the accuracy (black curve with asterisks in Fig. 3(b)). The similarity between the
relative error and frequency indicator is again confirmed by comparing Fig. 3(d) to Fig. 3(b).

Fig. 3. Approximating a two-hump nonlinear Dirac solitary wave. The moving algorithm Alg. 3.1
produces much more accurate solutions and recovers a faster spectral convergence with respect to the expan-
sion order N in the exterior domain Λe = (xL,+∞), whereas a pure scaling approach fails to capture this
translation. The data in the last plot are measured at t = 15.

In Examples 2 and 3, the exterior-error indicator (3.1) efficiently guides us in finding an xL

such that the moved spectral approximation retains accuracy in the resulting exterior domain. The
accuracy arises from the fact that the exterior-error indicator is related to the upper bound of the

error for asymptotically large x. If we assume a large indicator E(U
(α,β)
N,xL

, xR) > µ with µ ∈ (0, 1),
then the upper bound for the error in x > xR is larger than the upper bound for the error in Λe:

E(U
(α,β)
N,xL

, xR) > µ⇒ |U
(α,β)
N,xL

· I[xR,+∞)|A1
α−1,β

> µ|U
(α,β)
N,xL

· I[xL,+∞)|A1
α−1,β

,

⇒ |U
(α,β)
N,xL

· I[xR,+∞)|A1
α,β

> µ|U
(α,β)
N,xL

· I[xL,+∞)|A1
α,β

.

The solution in the interior domain Λi := (0, xL] is not approximated by the basis functions used
to approximate the solution in the exterior domain. Obstacles to designing moving mesh methods
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in unbounded domains include the construction of an interior numerical solution and its consis-
tent coupling with the exterior spectral approximation. More on these issues will be illustrated in
Example 4.

Fig. 4. Oscillations emanate from the left but the moving algorithm 3.1 generates accurate solutions
in the exterior domain Λe, with relative errors under 10−7 up to t = 10 with N = 30 (red curve with left-
pointing triangles in (c)). By further coupling with a spectral approximation using 80 Chebyshev polynomials
in the interior domain Λi, we generate the whole solution with total relative error, up until t = 10, under
2×10−5, as shown by the red curves with left-pointing triangles in (a) and (d). The data in (b) are measured
at t = 10.

Example 4. Let us approximate the following function in Λ:

(3.3) u(x, t) =

{

cos(x− 10t), x ≤ 10t,

e−(x−10t)2 , x > 10t,

which represents a wave with period 2π traveling to the right with speed 10 and exponentially
decaying at infinity. The reference solution u(x, 10) is plotted by the green curve with circles
in Fig. 4(a), which coincides with the red curve with left-pointing triangles hat approximates u
seperately in Λi and Λe using different basis funcitons. As shown by the blue curve with squares
in Fig. 4(a), applying a Laguerre spectral approximation with N = 30 and β = 5 in Λ fails to
accurately approximate u(x, t). This failure arises because more oscillations emerge from x = 0 and
translate to +∞ as time evolves. Specifically, at t = 10, the reference solution u(x, t) possesses 32
extrema while any Laguerre spectral approximation (2.2) with N = 30 can have at most 30 extrema,
implying that the approximation is doomed to fail since all oscillations cannot be captured. Simply

11



increasing the number of basis functions does little to help, even with different scaling factors as
shown in Fig. 4(b). The ineffectiveness of increasing N is mainly due to the presence of oscillatory
components with significantly different frequencies in each of the two different domains. As shown
by the black curves with asterisks in Figs. 4(a, c, d), the scaling technique is also doomed to fail
because it totally neglects this scale difference and only adjusts the scaling factor to redistribute
collocation points.

We propose a divide-and-conquer strategy to address Example 4 that can be implemented by
applying two subroutines, within each time step. The first step is to use the exterior-error-dependent
moving algorithm 3.1 to determine the exterior spectral approximation for the exponential decay
component of the reference solution. The second step is to introduce a new spectral approximation
in the remaining bounded interior domain Λi for the left-side oscillating component. The full
numerical solution in the half-line Λ is constructed from concatenating the solution in the exterior
domain Λe to the one in the interior domain Λi.

Fig. 4(c) plots the error in the exterior domain against time and shows that the errors of of
the moved solution with N = 30, δ = 0.008, dmax = 0.08 and µ = 1.001 are kept under 10−7

up to time t = 10 (red curve with left-pointing triangles), confirming that the Laguerre spectral
approximation is accurate in the exterior domain. In fact, the numerical values of xL obtained
by the moving algorithm 3.1 are consistent with the expected value of 10t as shown in Eq. (3.3).
Coupling the exterior solution with a spectral approximation using 80 Chebyshev polynomials in
the interior domain, we find a combined numerical solution with total relative error under 2× 10−5

up to t = 10 (red curves with left-pointing triangles in Figs. 4(a, d)) using 111 = 31+80 total basis
functions. By contrast, Fig. 4(b) shows that the errors for direct refinement using N = 180 are
larger than 0.2.

It must be pointed out that when solving PDEs in unbounded domains, we may need informa-
tion about the solution in the exterior domain to construct the interior numerical solution. Further
discussion on this point can be found in Example 6.

4. Spectral methods incorporating both scaling and moving. For problems that involve
both translation and diffusion in unbounded domains, we need to incorporate both the moving and
scaling procedures. Since the scaling algorithm 2.1 may mistake translation for diffusion and trigger
an inappropriate scaling as shown in Examples 2 and 3, we propose a “first moving then scaling”
algorithm. The associated pseudo-code is described in Alg. 4.1. A direct application of Alg. 4.1 to
Example 1 recovers exactly the same results as Alg. 2.1 since the moving procedure is not invoked.
When Alg. 4.1 is applied to Examples 2 and 3, it gives the same results as Alg. 3.1 since the scaling
mechanism is not triggered. That is, the combined moving-scaling algorithm 4.1 can deal with both
translation-only and diffusion-only problems since it can distinguish translation from diffusion.

Alg. 4.1 can be extended to unbounded domains in multiple dimensions in a dimension-by-
dimension manner by using the tensor product of one-dimensional basis functions. For example,
consider the two-dimensional spectral approximation

(4.1) U
(~α,~β)
N,xL,yL

(x, y) :=

Nx
∑

ℓ=0

Ny
∑

m=0

u
(~α,~β)
ℓ,m L

αx,βx

ℓ (x)Lαy ,βy
m (y)

in Λx
e ×Λy

e := (xL,+∞)× (yL,+∞) where ~α = (αx, αy) and ~β = (βx, βy). We choose the exterior-
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error indicator in x-dimension to be

Ex(U
(~α,~β)
N,xL,yL

(x, y), xR) := E(Ũ
(αx,βx)
N,xL

(x), xR),(4.2)

Ũ
(αx,βx)
N,xL

(x) :=

∫

Λy
e

U
(~α,~β)
N,xL,yL

(x, y)dy.(4.3)

Similarly, Ey(U
(~α,~β)
N,xL,yL

(x, y), yR) gives the exterior-error indicator in y-dimension. Accordingly, we

use Ex(U
(~α,~β)
N,xL,yL

, xR) to judge the if statement in Line 10 of Alg. 4.1. If satisfied, then the move

subroutine in Line 11 will move the solution in x-direction via xL → xL + dx0 . Simultaneously, we

use Ey(U
(~α,~β)
N,xL,yL

(x, y), yR) to determine the shift in the y-direction.
To allow scaling in x-direction, the corresponding frequency indicator can be defined as

(4.4) Fx(U
(~α,~β)
N,xL,yL

) :=











Nx
∑

ℓ=Nx−Mx+1

Ny
∑

m=0
γ
(αx,βx)
ℓ γ

(αy,βy)
m (u

(~α,~β)
ℓ,m )2

Nx
∑

ℓ=0

Ny
∑

m=0
γ
(αx,βx)
ℓ γ

(αy,βy)
m (u

(~α,~β)
ℓ,m )2











1
2

,

whereMx = [Nx

3 ] andNx, Ny are the expansion orders in the x-, y-directions, respectively. Similarly,
we define Fy to be the frequency indicator in y-direction. We first keep βy fixed and use Fx to
evaluate the if statement in Line 16 for scaling. If scaling in x-direction is needed, then the while

loop in Line 20 will update the scaling factor to β̃x. Simultaneously, we fix βx and use Fy to update

the scaling factor in the y-direction to β̃y. After that, the scaling factors for time t+∆t are set to

β̃x and β̃y.

Example 5. We will investigate the performance of Alg. 4.1 in a two-dimensional unbounded
domain by considering the function

(4.5) u(x, y, t) = cos(
xy

400
) ·

1

1 + e
x−6t−2−t cos(t)

2+0.3t

·
1

1 + e
y−4t−2−t sin(t)

2+0.4t

, x, y, t > 0,

which displays both advective and diffusive behavior. This function exhibits oscillations in space
from the factor cos( xy

400 ), an exponential decay, and a translation to infinity with time-varying
velocity ~v = (vx, vy) = (6 + cos(t), 4 + sin(t)). The numerical results shown in Fig. 5 are generated
using a time step ∆t = 0.01, the same parameters in the x-, y- directions, and Nx = 40, µx = 1.003,
δx = 0.005, dxmax = 0.1.

As expected, only the combined scaling-moving algorithm 4.1 keeps the errors in the exterior
domain under 10−11 (up to the final time t = 4), as shown by the error curves in Fig. 5(a). This
accuracy is achieved because the corresponding frequency indicator and exterior-error indicator are
controlled by our “first moving then scaling” techniques, see e.g., Fx in Fig. 5(b) and Ey in Fig. 5(c).

Although the moving algorithm 3.1 may accurately capture the function near the left end of
the exterior domain, the resulting exterior-error indicator does not stay low enough to preserve
accuracy in the exterior domain Λx

e × Λy
e , as shown by the green curves with asterisks in Figs. 5(a,

c, d). The moving algorithm neglects the diffusion and thus uses an improper (smaller) xR and yR.
The right choice for these two variables depends on proper scaling for the diffusion, revealing why
we need to update xR in Line 7 of Alg. 4.1 after scaling. That is, the moving determines xL while
the scaling determines xR, making it necessary to combine moving with scaling.
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Fig. 5. A two-dimensional oscillatory function with both translation and diffusion given by Eq. (4.5).
Only the combined moving-scaling algorithm 4.1 produces accurate solutions in the exterior domain with
errors kept under 10−11 up to t = 4. The need for combining moving and scaling is evident. For simplicity,
we only used Fx (the frequency indicator in the x-direction), Ey (the exterior-error indicator in the y-
direction), and yL (the left end of Λy

e ) as an example. The corresponding curves for Fy, Ex, and xL are
very similar and not shown. Here, we used Nx = Ny = 40, and the initial scaling factors: βx = βy = 2.5.

As we have mentioned in Example 4, numerically solving evolving PDEs in unbounded domains
requires both the interior solution U interior

xL(t) (x, t) in Λi(t) = (0, xL(t)] and the exterior solution

U
(α,β)
N,xL(t)(x, t) in Λe(t) = (xL(t),+∞) after applying the divide-and-conquer strategy. When using

the moving-scaling algorithm 4.1 to march the solution from t to t+∆t, if the moving mechanism
is not triggered (i.e., xL is unchanged), then the interior and exterior solutions can be updated
individually in the normal way. If it is triggered, extra steps are needed to approximate the solution
in the enlarged interior domain Λi(t+∆t) = Λi(t)∪(Λe(t)\Λe(t+∆t)) since xL(t+∆t) = xL(t)+d0
after running Line 12 of Alg. 4.1.

In the next Example, we will test the ability of Alg. 4.1 to solve a one-dimensional PDE where

we will use the intermediate (unmoved) exterior solution U
(α,β)
N,xL(t)(x, t+∆t) (obtained immediately

after running Line 8) to interpolate the required function values in Λi(t+∆t) \ Λi(t).

Example 6. We solve the following first-order PDE

(4.6) ∂tu(x, t) +

(

2 +
x− 2t

2 + t

)

∂xu(x, t) = 0

with initial data u(x, 0) = (1 + e
x
2 )−1 and Dirichlet boundary condition u(0, t) = (1 + e

−2t
2+t )−1.
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Algorithm 4.1 Pseudo-code of spectral methods with both scaling and moving.

1: Initialize N , ν > 1, q < 1, ∆t, T , α, β, U
(α,β)
N (0), β, µ > 1, dmax > δ > 0, xR(0) = x

(α,β)

[N+2
3 ]

2: t, xL ← 0

3: xR ← x
(α,β)

[N+2
3 ]

4: f0 ← frequency indicator(U
(α,β)
N,xL

(x, t))

5: e0 ← exterior error indicator(U
(α,β)
N,xL

(0), xR)
6: while t < T do

7: xR ← x
(α,β)

[N+2
3 ]

8: U
(α,β)
N,xL

(x, t+∆t)← evolve(U
(α,β)
N,xL

(x, t)),∆t)

9: e← exterior error indicator(U
(α,β)
N,xL

(x, t+∆t), xR)
10: if e > µe0 then

11: (d0, U
(α,β)
N,xL+d0

)← move(U
(α,β)
N,xL

(x, t+∆t), δ, dmax, µe0)
12: xL ← xL + d0
13: e0 ← exterior error indicator(U

(α,β)
N,xL

(x, t+∆t), xR)
14: end if

15: f ← frequency indicator(U
(α,β)
N,xL

(x, t+∆t))
16: if f > νf0 then

17: β̃ ← qβ

18: U
(α,β̃)
N,xL

← scale(U
(α,β)
N,xL

(x, t+∆t), β̃)

19: f̃ ← frequency indicator(U
(α,β̃)
N,xL

)

20: while f̃ ≤ f and β̃ ≥ β do

21: β ← β̃

22: U
(α,β)
N,xL

(x, t+∆t)← U
(α,β̃)
N,xL

23: f0 ← f̃
24: f ← f̃
25: β̃ ← qβ

26: U
(α,β̃)
N,xL

← scale(U
(α,β)
N,xL

(x, t+∆t), β̃)

27: f̃ ← frequency indicator(U
(α,β̃)
N,xL

)
28: end while

29: end if

30: t← t+∆t
31: end while

The analytical solution is a moving and diffusive Fermi-Dirac distribution: u(x, t) = (1 + e
x−2t
2+t )−1,

which travels rightward to infinity at a speed of 2. A simple numerical scheme for evolving Eq. (4.6)
is employed here for testing the performance of Alg. 4.1 within the divide-and-conquer strategy.

Specifically, we adopt the Laguerre spectral approximation (2.2) in the exterior domain, the
first order backward finite difference method in the interior domain, and the second order improved
Euler scheme in time. We use a nonuniform mesh, e.g., 10 Gauss-Lobatto points, to avoid possible
poor resolution in the tiny interior domain 0 < xL < dmax at short times. For xL ≥ dmax, a uniform
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mesh with spacing ∆x = δ = 0.02 is used so new grid points in Λi(t + ∆t) \ Λi(t) can be easily
added. The other parameters were set to N = 40, µ = 1.004, dmax = 0.2, and ∆t = 0.001.

The results summarized in Fig. 6 clearly show that, up to the final time t = 5, the proposed
divide-and-conquer strategy maintains the errors in the whole domain Λ = Λi ∪Λe under 2× 10−4

(red curve with left-pointing triangles in Fig. 6(a)). Alg. 4.1 succeeds in capturing the translation,
as shown by the red curve with left-pointing triangles in Fig. 6(b), thus determining the exterior
domain Λe. Without this strategy, a straightforward use of the Laguerre spectral approximation in
Λ leads to huge errors as indicated by the blue curve with right-pointing triangles in Fig. 6(a).

Fig. 6(c) shows that the frequency indicator is always kept under 3 × 10−10 as shown by the
black curve with asterisks, a sufficiently small lower error bound for scaling, by continually shrinking
the scaling factor shown as the black curve with asterisks in Fig. 6(b). The exterior-error indicator
is always maintained around 0.2 as shown by the red curve with left-pointing triangles in Fig. 6(c),
which implies the error in (xR,+∞) divided by the error in Λe is almost unchanged, ensuring small
errors at infinity. Fig. 6(d) plots |U(x, t)− u(x, t)| at different times (U(x, t) and u(x, t) denote the
numerical and analytical solution, respectively). There is a clear divide near xL arising from the
different numerical treatments between the interior and exterior domains.

5. Performance comparison in solving parabolic PDEs. We now apply the frequency-
dependent scaling algorithm 2.1 to solve

(5.1) ∂tu(x, t)− ∂xxu(x, t) = f(x, t)

in R × Λ, and compare our results with those obtained with the time-dependent scaling method
developed in [10]. First, we need to generalize our scaling approach from Λ to R by using scaled

Hermite polynomials, denoted by H
(β)
ℓ (x), which are mutually orthogonal under the weight function

ωβ(x) = e−(βx)2 (β > 0). Similarly, we use β to denote the scaling factor and the frequency indicator
defined in Eq. (2.8) still serves as a lower bound for the interpolation error.

We use a standard Galerkin Hermite spectral method to find a solution U
(β)
N =

∑N
ℓ=0 u

(β)
ℓ Ĥ

β
ℓ (x)

in V
(β)
N = span{Ĥ

(β)
0 (x), ..., Ĥ

(β)
N (x)} satisfying the initial condition and

(5.2) (∂tU
(β)
N , v) + (∂xU

(β)
N , ∂xv) = (f, v), ∀ v ∈ V

(β)
N ,

where Ĥ
(β)
ℓ (x) :=

√

ωβ(x)H
(β)
ℓ (x)/‖Hℓ‖ωβ

denotes the corresponding scaled Hermite functions and
(·, ·) is the conventional inner product in L2(R) space. The Galerkin discretization (5.2) is stable
in the sense that

(5.3) (∂xU
(b)
N , ∂xU

(β)
N ) =

N+1
∑

ℓ=0

ℓ+ 1

2
(u

(β)
ℓ )2 −

N−2
∑

ℓ=0

√

(ℓ+ 1)(ℓ+ 2)u
(β)
ℓ u

(β)
ℓ+2

is strictly positive and can be controlled by (N + 1)‖U
(β)
N ‖

2
2 = (N + 1)

∑N
ℓ=0(u

(β)
ℓ )2. By contrast,

a time-dependent scaling factor:

(5.4) β(t) =
1

2
√

δ0(δt+ 1)
16



Fig. 6. Numerical results obtained by the moving-scaling algorithm 4.1 for the one-dimensional problem
in Eq. (4.6). The proposed divide-and-conquer strategy maintains the errors in the whole domain Λ = Λi∪Λe

under 2× 10−4 until the final time t = 5 where the exterior domain Λe is determined by the “first moving
then scaling” technique built in to Alg. 4.1. We adopt the Laguerre spectral approximation (2.2) with
N = 40 in the exterior domain Λe = (xL,+∞), the first order backward finite difference method with
spacing ∆x = 0.02 in the interior domain Λi = (0, xL], and the second order improved Euler time marching
scheme with ∆t = 0.001. The last plot displays the absolute difference between the numerical solution U(x, t)
and the analytical one u(x, t) at different times.

was taken in [10] to fix the instability of the Petrov–Galerkin discretization by tuning the parameters
δ0 and δ.

Example 7. We apply the frequency-dependent scaling algorithm 2.1 to Example 6.1 in [10].
In order to facilitate comparison, we also adopt the same second order-accurate Crank-Nicholson
scheme to march Eq. (5.2), and the same errors EN and EN,∞ to measure the accuracy. Table 1
presents the numerical errors with different time steps and expansion orders where the second-order
accuracy in time and the spectral convergence in space are clearly demonstrated. Table 2 compares
the errors EN without scaling to those obtained using the scaling algorithm 2.1 and the time-
dependent scaling method in [10] on the same mesh. Both scaling methods produce much more
accurate numerical results but the proposed frequency-dependent scaling keeps the errors around
or below 10−7, outperforming the time-dependent scaling of [10].

The scaling factor adjusted adaptively by the frequency indicator (2.8) takes on the value
β = 0.5357 at t = 1 for all choices of time steps shown in Table 2 whereas the time-dependent
scaling factor in [10] decreases to β = 0.3536 at t = 1 (Eq. 5.4). The smaller scaling factor arises
from the stability requirement β′(t) + 2β3(t) ≤ 0, an initial value of 0.5, and using δ0 = δ = 1
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Table 1

Numerical results for the parabolic problem in Eq. (5.1): Errors associated with the frequency-dependent
scaling algorithm 2.1 at t = 1 with different time step and expansion order N .

Time step N EN (1) Order EN,∞(1) Order
10−1

25

2.500e-04 2.182e-04
10−2 2.499e-07 -2.000 2.227e-06 1.991
10−3 2.500e-09 -2.000 2.227e-08 -2.000
10−4 2.555e-10 -1.991 2.350e-10 -1.977

1/40000

10 2.203e-04 1.619e-04
15 2.189e-07 N−16.85 4.335e-08 N−20.29

20 1.353e-09 N−17.68 8.880e-09 N−13.52

25 4.840e-11 N−14.93 6.183e-11 N−11.94

Table 2

Numerical results for the parabolic problem in Eq. (5.1): Comparison of the errors at t = 1 with N = 20.

Time step No scaling Time-dependent
scaling in [10]

Frequency-dependent
scaling in Alg. 2.1

1/250 3.969e-04 2.598e-06 3.998e-07
1/1000 3.910e-04 1.189e-06 2.503e-08
1/4000 3.390e-04 1.117e-06 2.085e-09
1/16000 3.390e-04 1.117e-06 1.381e-09

in Eq. 5.4 [10], and prevents the error from decreasing when the time step is refined from 1/4000
to 1/16000 (see the third column of Table 2). There is no accuracy improvement without scaling
when the timestep is decreased as shown in the second column of Table 2 where a scaling factor
is fixed to β = 0.85. Regardless of what time step is used in the unscaled method, the error EN

experiences a sudden increase across t ∈ [0.3, 0.7], rising from below 10−6 to about 10−4, as it fails
to capture the diffusion. A similar observation was shown in Table 6.1 of [10].

6. Applications to structured cell population models. One example of an application
requiring the solution of PDEs in an unbounded domain is the structured population models that
track populations of cells endowed with attributes such as their size. The standard sizer-timer model
for the density of cells with age near a and size near x is formulated in [11], and generalizations
to include stochasticity in growth rate is studied in [17, 4]. Here we address a continuum model
describing a stochastic model for cell populations [21]:

(6.1)
∂n

∂t
+

∂n

∂a
+

∂(ng)

∂x
−

1

2

∂2(σn)

∂x2
= −D(a, x, t)n(a, x, t), (a, x) ∈ Λ × Λ,

where n(a, x, t) describes the density of cells with respect to age a and size x at time t, g(a, x, t) is
the mean growth rate of an individual cell and σ(a, x, t) is the variance of stochasticity in the growth
rate, i.e., dx = gdt + σdBt, for an individual cell. The fluctuating growth rate manifests itself as
a diffusive term. The right-hand-side of Eq. (6.1) represents cell division occurring with division
rate D(a, x, t). Dirichlet boundary conditions are imposed at x = 0, n(a, 0, t) = n0(a, t), and at
x = +∞, n(a,+∞, t) = 0 if we assume that there are no cells of infinite size. More importantly,
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the boundary condition at a = 0 should account for two daughter cells (one of size x and one of
size y − x) from the binary fission of a mother cell of size y > x:

(6.2) n(x, 0, t) = 2

∫ +∞

0

da

∫ +∞

x

dy D̃(a, y, x, t)n(a, y, t),

where D̃(a, y, x, t) is the differential division rate representing the rate that a cell of age a and size
y gives birth to a daughter cell of size x < y. Integrating over the daughter cell’s size x, D and
D̃ satisfy D(a, y, t) =

∫ y

0 D̃(a, y, x, t)dx, reflecting cell number conservation. Finally, to maintain

biomass conservation during division, D̃(a, x, y, t) = D̃(a, x, x − y, t). The prefactor 2 in Eq. (6.2)
indicates that a cell of size y gives birth to one daughter cell of size y − x and another of size x.

The nonlocal boundary condition (6.2) for cell proliferation plays an essential role in depicting
how cell division affects the cell population size and age structure, and presents a major obstacle
in numerical computation as the integration is taken in the unbounded domain (x,+∞)× (0,+∞).
Another numerical challenge arises from a possible “blow-up” behavior in which

(6.3) lim
t→+∞

〈x(t)〉 =

∫ +∞

0

∫ +∞

0
xn(a, x, t)dadx

∫ +∞

0

∫ +∞

0
n(a, x, t)dadx

= +∞.

Whether blowup can occur is of biological interest [3, 22] and has been predicted within certain cell
proliferation models (6.1) under specific conditions [3].

Existing numerical methods such as the finite volume method in [22] typically truncate the
unbounded domain into a bounded domain and therefore cannot accurately capture long time
blowup behavior of 〈x(t)〉. The need for numerical solutions in the unbounded domain Λ × Λ for
Eqs. (6.1) and (6.2) is thus evident. We apply the scaling technique built in to Alg. 2.1 only in
x-dimension for tracking the increasing 〈x(t)〉, considering the age distribution is often presumed
to be stable since no cell could live too long without division. A standard two-dimensional pseudo-
spectral method with the generalized Laguerre functions are used in (a, x)-space, coupled with a
third-order TVD Runge-Kutta time discretization in t.

Example 8. We solve Eqs. (6.1) and (6.2) with g(a, x, t) = t + 7, σ(a, x, t) = 2(t + 6)x,
D(a, x, t) = x/(t+ 5), D̃(a, y, x, t) = 1/(t+ 5). These parameters leads to the analytic solution
n(a, x, t) = ete−2a exp(−x/(5 + t)), which produces the mean size 〈x(t)〉 = 5 + t. This result
shows that the average size is unbounded as it grows linearly in time and thus, for general cases,
requires proper scaling in x-dimension. We adopt the same expansion order N in both size x-
and age a-dimensions. For the nonlocal boundary condition given in Eq. (6.2), we also use N + 1
Laguerre-Robatto collocation points in each dimension to perform the numerical integration.

Fig. 7 presents the numerical results with the initial scaling factors (βa, βx) = (1, 0.9) and a
timestep of 0.002. We observe that the frequency-dependent scaling algorithm 2.1 in x-dimension
shows a faster spectral convergence with N than that of the unscaled algorithm (see Fig. 7(a)).
That is, both the sizer-timer model (6.1) in unbounded domain and the nonlocal boundary condition
(6.2) are well resolved by the Laguerre spectral approximation with frequency-dependent scaling.
When fixing N = 20, the unscaled numerical solution experiences an error growth to 1.143e-02 till
t = 10 for using inappropriate scaling factors, whereas the error of the scaled solution is less than
8.662e-06 (see Fig. 7(b)). The frequency indicator in the x-dimension is kept around 10−6 (red
curve with left-pointing triangles in Fig. 7(c)) by continuously shrinking the scaling factor βx from
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0.9 to 0.2766 for tracking the blowup (black curve with asterisks in Fig. 7(d)). The average size of
the scaled solution behaves almost exactly like 〈x(t)〉 = 5+ t and the value at t = 10 is 15.001 (see
red curve with left-pointing triangles in Fig. 7(d)). Note that the scaling in a-dimension will really
not be triggered even when we apply the scaling algorithm for both x- and a-dimensions.

Fig. 7. Numerical results obtained by the scaling algorithm 2.1 for the structured cell population pro-
liferation model (6.1) with the nonlocal boundary (6.2): The scaled method gives better results than the
unscaled one till t = 10. The latter experiences a growth in error because inappropriate scaling factors are
used, whereas the former gains a faster spectral convergence in the expansion order N . We adopt the same
N in both size x- and age a-dimensions and set N = 20 for the last three plots. The frequency-dependent
scaling is applied only in x-dimension for tracking the blowup behavior in Eq. (6.3). The frequency indi-
cator in x-dimension is kept around 10−6 through constantly shrinking the scaling factor βx to capture the
blowup. The average size of the scaled solution is in good agreement with that of the analytical solution,
i.e., 〈x(t)〉 = 5 + t.

7. Summary and Conclusions. The key to making spectral approximations in unbounded
domains more efficient is to allocate collocation points in an economical manner such that crucial
regimes of unknown solutions can be resolved accurately. This is essentially an adaptive numerical
method for PDEs in unbounded domains, for which there are very few studies compared with its
bounded-domain counterpart. Using the standard language of adaptive methods, the proposed
scaling technique based on the frequency indicator can be regarded as r-adaptivity to redistribute
collocation points via adjusting the scaling factor, while the proposed moving technique based
on the exterior-error indicator is similar to h-adaptivity to add collocation points in the interior
subdomain. Both indicators utilize only the numerical solution and do not require any a prior
knowledge of unknown solutions. The frequency indicator can be also used in a refinement technique
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[23] which corresponds to the p-adaptivity, useful for time-dependent problems with oscillations at
infinity.
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