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RIEMANNIAN OPTIMIZATION ON THE SYMPLECTIC STIEFEL MANIFOLD∗

BIN GAO†, NGUYEN THANH SON‡, P.-A. ABSIL†, AND TATJANA STYKEL§

Abstract. The symplectic Stiefel manifold, denoted by Sp(2p, 2n), is the set of linear symplectic maps between

the standard symplectic spaces R2p and R2n. When p = n, it reduces to the well-known set of 2n× 2n symplectic

matrices. Optimization problems on Sp(2p, 2n) find applications in various areas, such as optics, quantum physics,

numerical linear algebra and model order reduction of dynamical systems. The purpose of this paper is to propose and

analyze gradient-descent methods on Sp(2p, 2n), where the notion of gradient stems from a Riemannian metric. We

consider a novel Riemannian metric on Sp(2p, 2n) akin to the canonical metric of the (standard) Stiefel manifold.

In order to perform a feasible step along the antigradient, we develop two types of search strategies: one is based on

quasi-geodesic curves, and the other one on the symplectic Cayley transform. The resulting optimization algorithms

are proved to converge globally to critical points of the objective function. Numerical experiments illustrate the

efficiency of the proposed methods.
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1. Introduction. We consider the following optimization problem with symplectic con-

straints:

min
X∈R2n×2p

f(X)

s. t. X⊤J2nX = J2p,
(1.1)

where p ≤ n, J2m =
[

0 Im
−Im 0

]

, and Im is the m × m identity matrix for any positive

integer m. When there is no confusion, we omit the subscript of J2m and Im for simplicity.

We assume that the objective function f : R2n×2p → R is continuously differentiable. The

feasible set of problem (1.1) is known as the symplectic Stiefel manifold [35, 4]

Sp(2p, 2n) :=
{

X ∈ R
2n×2p : X⊤J2nX = J2p

}

.

Whereas the term usually refers to the p = n case, we call a matrix X symplectic whenever

X ∈ Sp(2p, 2n), as [33] does. When p = n, the symplectic Stiefel manifold Sp(2p, 2n)
becomes a matrix Lie group, termed the symplectic group and denoted by Sp(2n).

Note that the name “symplectic Stiefel manifold” is also found in the literature [26]

to denote the set of orthogonal frames in the quaternion n-space. This definition differs

fundamentally from Sp(2p, 2n) since the latter is noncompact, as we will see in section 3.

Optimization with symplectic constraints appears in various fields. In the case p = n,

i.e., the symplectic group, most applications are found in physics. In the study of optical

systems, such as human eyeballs [24, 21], the problem of averaging optical transference ma-

trices can be formulated as an optimization problem with symplectic constraints. Another

application can be found in accelerator design and charged-particle beam transport [18],

where symplectic constraints are required for characterizing beam dynamics. A recent ap-

plication is also found in the optimal control of quantum symplectic gates [39], where one

has to find a (square) symplectic matrix such that the distance from this sought matrix to a
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given symplectic matrix is minimal. It is indeed an optimization problem on Sp(2n), where

n corresponds to the number of quantum observables.

Furthermore, several problems in scientific computing require solving (1.1) for p < n.

For instance, [38] states that there exists a symplectic matrix that diagonalizes a given sym-

metric positive definite matrix, which is popularly termed the symplectic eigenvalue problem.

In many cases, one is interested in computing only a few extreme eigenvalues. In [7], it is es-

tablished that the sum of the p smallest symplectic eigenvalues is equal to the minimal value

of an optimization problem on Sp(2p, 2n). We also mention the projection-based symplectic

model order reduction problem in systems and control theory [33, 3, 14]. This problem re-

quires to reduce the order (p ≪ n) of a Hamiltonian system, and at the same time, preserve

the Hamiltonian structure. This can only be done via finding so-called symplectic projection

matrices, and it is formulated as the problem (1.1) where the objective function describes the

projection error.

The symplectic constraints make the problem (1.1) out of the reach of several optimiza-

tion techniques: the feasible set is nonconvex and, in contrast with the (standard) Stiefel

manifold [8, Theorem 10.2], the projection onto the symplectic Stiefel manifold does not ad-

mit a known closed-form expression. It appears that all the existing methods that explicitly

address (1.1) restrict either to a specific objective function or to the case p = n (symplectic

group). Optimality conditions of the Brockett function [13] over quadratic matrix Lie groups,

which include the symplectic group, were studied in [30]. In [40], the critical landscape

topology for optimization on the symplectic group was investigated, where the correspond-

ing cost function is the Frobenius distance from a target symplectic transformation. In [20],

Fiori studied the geodesics of the symplectic group under a pseudo-Riemannian metric and

proposed a geodesic-based method for computing the empirical mean of a set of symplectic

matrices. Follow-up work can be found in [21, 36]. More recently, Birtea et al. [10] studied

the first and second order optimality conditions for optimization problems on the symplec-

tic group. Their proposed method computes the steepest-descent direction with respect to

a left-invariant metric, and adopts the symplectic Cayley transform [30, 17] as a retraction to

preserve the symplectic group constraint.

In this paper, we propose Riemannian gradient methods for optimization problems on

Sp(2p, 2n). To this end, we first prove that Sp(2p, 2n) is a closed unbounded embedded sub-

manifold of the Euclidean space R
2n×2p. Then, leveraging two explicit characterizations of

its tangent space, we develop a class of novel canonical-like Riemannian metrics, with respect

to which we obtain expressions for the normal space, the tangent and normal projections, and

the Riemannian gradient.

We propose two strategies to select a search curve on Sp(2p, 2n) along a given tangent

direction. One is based on a quasi-geodesic curve, and it needs to compute two matrix ex-

ponentials. The other is based on the symplectic Cayley transform, which requires to solve

a 2n × 2n linear system. By exploiting the low-rank structure of the tangent vectors, we

construct a numerically efficient update for the symplectic Cayley transform. In addition, we

find that the Cayley transform can be interpreted as an instance of the trapezoidal rule for

solving ODEs on quadratic Lie groups.

We develop and analyze Riemannian gradient algorithms that combine each of the two

curve selection strategies with a non-monotone line search scheme. We prove that the accu-

mulation points of the sequences of iterates produced by the proposed algorithms are critical

points of (1.1).

Note that all these results subsume the case of the symplectic group (p = n). Along

the way, we extend the convergence analysis of general non-monotone Riemannian gradient

methods to the case of retractions that are not globally defined; see Theorem 5.6.

Numerical experiments investigate the impact of various algorithmic choices—curve se-
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lection strategy, Riemannian metric, line search scheme—on the convergence and feasibil-

ity of the iterates. Moreover, tests on various instances of (1.1)—nearest symplectic matrix

problem, minimization of the Brockett cost function, and symplectic eigenvalue problem—

illustrate the efficiency of the proposed algorithms.

The paper is organized as follows. In section 3, we study the geometric structure of

Sp(2p, 2n). The Riemannian geometry of Sp(2p, 2n) endowed with the canonical-like metric

is investigated in section 4. We construct two different curve selection strategies and propose

a Riemannian gradient framework with a non-monotone line search scheme in section 5.

Numerical results on several problems are reported in section 6. Conclusions are drawn in

section 7.

2. Notation. The Euclidean inner product of two matrices X,Y ∈ R
2n×2p is denoted

by 〈X,Y 〉 = tr(X⊤Y ), where tr(·) denotes the trace of the matrix argument. The Frobenius

norm of X is denoted by ‖X‖F :=
√

〈X,X〉. Given A ∈ R
m×m, eA or exp(A) represents

the matrix exponential of A. Moreover,

sym(A) :=
1

2
(A+A⊤) and skew(A) :=

1

2
(A−A⊤)

stand for the symmetric part and the skew-symmetric part of A, respectively, and det(A)
denotes the determinant of A. We let diag(v) ∈ R

m×m denote the diagonal matrix with the

components of v ∈ R
m on the diagonal. We use span(A) to express the subspace spanned

by the columns of A. Furthermore, Ssym(n) and Sskew(n) denote the sets of all symmetric

and skew-symmetric n × n matrices, respectively. Let E1 and E2 be two finite-dimensional

vector spaces over R. The Fréchet derivative of a map F : E1 → E2 at X ∈ E1 is the linear

operator

DF (X) : E1 → E2 : Z 7→ DF (X)[Z]

satisfying F (X + Z) = F (X) + DF (X)[Z] + o(‖Z‖). The rank of F at X ∈ E1, denoted

by rank(F )(X), is the dimension of the range of DF (X). The domain of F is denoted by

dom(F ).

3. The symplectic Stiefel manifold. In this section, we investigate the submanifold

structure of Sp(2p, 2n).
The matrix J defined in section 1 satisfies the following properties

J⊤ = −J, J⊤J = I, J2 = −I, J−1 = J⊤,

which imply that J is skew-symmetric and orthogonal. Table 1 collects the notation and

definition of several matrix manifolds that appear in this paper.

TABLE 1

Notation for matrix manifolds

SPACE SYMBOL ELEMENT

Orthogonal group O(n) Q ∈ R
n×n : Q⊤Q = In

Stiefel manifold St(p, n) V ∈ R
n×p : V ⊤V = Ip

Symplectic group Sp(2n) U ∈ R
2n×2n : U⊤J2nU = J2n

Symplectic Stiefel manifold Sp(2p, 2n) X ∈ R
2n×2p : X⊤J2nX = J2p

First we show that Sp(2p, 2n) is an embedded submanifold of the Euclidean space

R
2n×2p.



4 B. GAO, N. T. SON, P.-A. ABSIL, AND T. STYKEL

PROPOSITION 3.1. The symplectic Stiefel manifold Sp(2p, 2n) is a closed embedded

submanifold of the Euclidean space R2n×2p. Moreover, it has dimension 4np− p(2p− 1).

Proof. Consider the map

(3.1) F : R2n×2p → Sskew(2p) : X 7→ X⊤JX − J.

We have

(3.2) Sp(2p, 2n) = F−1(0),

which implies that Sp(2p, 2n) is closed since it is the inverse image of the closed set {0}
under the continuous map F .

Next, we prove that the rank of F is p(2p − 1) at every point of Sp(2p, 2n). Let X ∈
Sp(2p, 2n). It is sufficient to show that DF (X) is a surjection, i.e., for all Z̄ ∈ Sskew(2p),
there exists Z ∈ R

2n×2p such that DF (X)[Z] = Z̄ . We have

(3.3) DF (X)[Z] = X⊤JZ + Z⊤JX

for all Z ∈ R
2n×2p. Let Z̄ ∈ Sskew(2p). Then substituting Z = 1

2XJ⊤Z̄ into the above

equation, we obtain DF (X)[ 12XJ⊤Z̄] = 1
2X

⊤JXJ⊤Z̄ + 1
2 Z̄

⊤JX⊤JX = 1
2 Z̄ − 1

2 Z̄
⊤ =

Z̄. Hence F has full rank, namely, rank(F )(X) = dim(Sskew(2p)) = p(2p − 1). Using

(3.2) and the submersion theorem [1, Proposition 3.3.3], it follows that Sp(2p, 2n) is a closed

embedded submanifold of R2n×2p. Its dimension is dim(Sp(2p, 2n)) = dim(F−1(0)) =
dim(R2n×2p)− dim(Sskew(2p)) = 4np− p(2p− 1).

Observe that the dimension of the symplectic Stiefel manifold Sp(2p, 2n) is larger than

the dimension of Stiefel manifold St(2p, 2n), which is equal to 4np − p(2p + 1). Another

essential difference between Sp(2p, 2n) and St(2p, 2n) is that the symplectic Stiefel manifold

is unbounded, hence noncompact. We show it for the simplest case, p = n = 1. For

X =
[

a b
c d

]

∈ R
2×2, we readily obtain that X ∈ Sp(2) if and only if ad− bc = 1. Hence,

Sp(2) =

{[

a b
c d

]

∈ R
2×2 : ad− bc = 1

}

and it has dimension 3. In particular, the matrix
[

a 0
0 1/a

]

is symplectic for all a ∈ R \ {0},

which implies that Sp(2) is unbounded. On the other hand, the orthogonal group

O(2) =

{[

sin θ cos θ
cos θ − sin θ

]

: θ ∈ [0, 2π]

}

has dimension 1 and is compact.

We now set the scene for the descriptions of the tangent space that will come in Proposi-

tion 3.3. Given X ∈ Sp(2p, 2n), we let X⊥ ∈ R
2n×(2n−2p) be a full rank matrix such that

span(X⊥) is the orthogonal complement of span(X), and we let

(3.4) E := [XJ JX⊥] ∈ R
2n×2n.

Note that X⊥ is not assumed to be an orthonormal matrix. The next lemma gathers basic

linear algebra results that will be useful later on.

LEMMA 3.2. The matrix E = [XJ JX⊥] defined in (3.4) has the following properties.

(i) E is invertible;

(ii) E⊤JE =
[

J 0
0 X⊤

⊥
JX⊥

]

and X⊤
⊥JX⊥ is invertible;



RIEMANNIAN OPTIMIZATION ON THE SYMPLECTIC STIEFEL MANIFOLD 5

(iii) E−1 =
[

X⊤J⊤

(X⊤

⊥
JX⊥)

−1

X⊤

⊥

]

;

(iv) Every matrix Z ∈ R
2n×2p can be represented as Z = E [WK ], i.e.,

Z = XJW + JX⊥K,(3.5)

where W ∈ R
2p×2p and K ∈ R

(2n−2p)×2p. Moreover, we have

W = X⊤J⊤Z, K =
(

X⊤
⊥JX⊥

)−1
X⊤

⊥Z.(3.6)

Proof. (i) Suppose E [ y1

y2
] = 0. Multiplying this equation from the left by X⊤J yields

y1 = 0. The equation thus reduces to JX⊥y2 = 0, which yields y2 = 0 since JX⊥ has full

column rank. This shows that E has full rank.

(ii) By using X⊤JX = J and X⊤X⊥ = 0, we have E⊤JE =
[

J 0
0 X⊤

⊥
JX⊥

]

. From (i),

we know that E is invertible, hence E⊤JE is invertible, and so is X⊤
⊥JX⊥.

(iii) From (ii), we have E−1 =
[

J 0
0 X⊤

⊥
JX⊥

]−1

E⊤J , and the result follows.

(iv) The first claim follows from the invertibility of E. Using (iii), we have

[

W
K

]

= E−1Z =

[

X⊤J⊤Z
(

X⊤
⊥JX⊥

)−1
X⊤

⊥Z

]

.

Given X ∈ Sp(2p, 2n), there are infinitely many possible choices of X⊥. The choice

of X⊥ affects E in (3.4) and K in the decomposition (3.5) of Z . However, it does not affect

JX⊥K . In fact, it follows from (iii) in Lemma 3.2 that

(3.7) I = EE−1 = XJX⊤J⊤ + JX⊥

(

X⊤
⊥JX⊥

)−1
X⊤

⊥ ,

which further implies that JX⊥K = JX⊥

(

X⊤
⊥JX⊥

)−1
X⊤

⊥Z = (I−XJX⊤J⊤)Z , where

we used the expression of K in (3.6).

The tangent space of the symplectic Stiefel manifold at X ∈ Sp(2p, 2n), denoted by

TXSp(2p, 2n), is defined by

TXSp(2p, 2n) := {γ′(0) : γ(t) is a smooth curve in Sp(2p, 2n) with γ(0) = X} .

The next result gives an implicit form and two explicit forms of TXSp(2p, 2n).

PROPOSITION 3.3. Given X ∈ Sp(2p, 2n), the tangent space of Sp(2p, 2n) at X admits

the following expressions

TXSp(2p, 2n) = {Z ∈ R
2n×2p : Z⊤JX +X⊤JZ = 0}(3.8a)

= {XJW + JX⊥K : W ∈ Ssym(2p),K ∈ R
(2n−2p)×2p}(3.8b)

= {SJX : S ∈ Ssym(2n)}.(3.8c)

Proof. Let F be as in (3.1). According to (3.3), we observe that the right-hand side of

(3.8a) is the null space of DF (X), namely, {Z ∈ R
2n×2p : DF (X)[Z] = 0}. It follows from

[1, (3.19)] that it coincides with TXSp(2p, 2n).
Using (3.5), relation (3.8a) is equivalent to W = W⊤, which yields (3.8b).

Finally, we prove that the form (3.8a) is equivalent to (3.8c). We readily obtain

(3.9) {SJX : S ∈ Ssym(2n)} ⊂ {Z ∈ R
2n×2p : Z⊤JX +X⊤JZ = 0}.

Since both sets are linear subspaces of R2n×2p, it remains to show that they have the same

dimension in order to conclude that they are equal. The dimension of the right-hand set is the
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dimension of TXSp(2p, 2n), which is the dimension of Sp(2p, 2n), i.e., 4np − p(2p − 1);
see Proposition 3.1. As for the dimension of the left-hand set, choose X⊥ as above and

observe that P := JE
[

J⊤ 0
0 −I

]

= [JX X⊥] ∈ R
2n×2n is invertible. Let B := P⊤SP =

[

B11 B⊤

21

B21 B22

]

. Then we have

dim{SJX : S ∈ Ssym(2n)} = dim{P⊤SJX : S ∈ Ssym(2n)}
= dim{P⊤SP

[

I2p
0

]

: S ∈ Ssym(2n)} = dim{B
[

I2p
0

]

: B ∈ Ssym(2n)}
= dim{

[

B11

B21

]

: B11 ∈ Ssym(2p), B21 ∈ R
(2n−2p)×2p}

= p(2p+ 1) + (2n− 2p)2p = 4np− p(2p− 1),

yielding the equality of dimensions that concludes the proof. The first equality follows from

dim(PS) = dim(S) for any subspace S ⊂ R
2n×2p and invertible matrix P . The sec-

ond equality follows from JX = P
[

I2p
0

]

. The third equality is due to P⊤Ssym(2n)P =
Ssym(2n), and the last equality comes from the fact dim(Ssym(2p)) = p(2p+ 1).

In fact, it follows from the proof above that the derivation of (3.8c) also works for

{JSX : S ∈ Ssym(2n)}, namely, TXSp(2p, 2n) = {JSX : S ∈ Ssym(2n)}, but we

will restrict to (3.8c) in the following.

Unlike (3.8b), when p < n, (3.8c) is an over-parameterization, i.e., dim(Ssym(2n)) >
dim(TXSp(2p, 2n)). However, S can be chosen with a low-rank structure. Indeed, letting

P := JE
[

J⊤ 0
0 −I

]

= [JX X⊥] and B := P⊤SP , we have that SJX = P−⊤BP−1JX =

P−⊤B
[

I2p
0

]

, which shows that only the first 2p columns of the symmetric matrix B have an

impact on SJX . Hence there is no restriction on SJX , S ∈ Ssym(2n), if we restrict B to

the form B = M [ I2p 0 ] +
[

I2p
0

]

M⊤, with M ∈ R
2n×2p, or equivalently, if we restrict S to

the form

(3.10) S = P−⊤BP−1 = L(XJ)⊤ +XJL⊤ =
[

L XJ
]

[

(XJ)⊤

L⊤

]

,

where L = P−⊤M ∈ R
2n×2p and the second equality follows from Lemma 3.2. Note

that such S has rank at most 4p. This low-rank structure will have a crucial impact on the

computational cost of the Cayley retraction introduced in subsection 5.2.

4. The canonical-like metric. Given an objective function f : Sp(2p, 2n) → R,

finding the steepest-descent direction at a point X ∈ Sp(2p, 2n) amounts to finding Z ∈
TXSp(2p, 2n) subject to ‖Z‖X = 1 that minimizes Df(X)[Z]. In order to define ‖·‖X ,

it is customary to endow TXSp(2p, 2n) with an inner product 〈·, ·〉X that depends smootly

on X ; ‖·‖X is then the norm induced by the inner product. Such an inner product is termed

a Riemanian metric—metric for short—and turns Sp(2p, 2n) into a Riemannian manifold.

In this section, we propose a class of metrics on Sp(2p, 2n) that are inspired from the canon-

ical metric on the Stiefel manifold. Then we work out formulas for the normal space and

gradient, and we propose a class of curves that we term quasi-geodesics.

For the Stiefel manifold St(p, n), any tangent vector at V ∈ St(p, n) has a unique ex-

pression ∆ = V A+ V⊥B, where V⊥ satisfies V ⊤
⊥ V = 0 and V ⊤

⊥ V⊥ = I , A ∈ Sskew(p) and

B ∈ R
(n−p)×p, see [19]. The canonical metric [19, (2.39)] on St(p, n) is defined as

gc(∆1,∆2) = tr

(

∆⊤
1 (I −

1

2
V V ⊤)∆2

)

=
1

2
tr(A⊤

1 A2) + tr(B⊤
1 B2)

for ∆i = V Ai + V⊥Bi, i = 1, 2.
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By using the tangent vector representation in (3.8b), we develop a similar metric for the

symplectic Stiefel manifold Sp(2p, 2n). We choose the inner product on TXSp(2p, 2n) to be

gρ,X⊥
(Z1, Z2) ≡ 〈Z1, Z2〉X :=

1

ρ
tr(W⊤

1 W2) + tr(K⊤
1 K2),(4.1)

where ρ > 0 is a parameter and Wi ∈ Ssym(2p) and Ki ∈ R
(2n−2p)×2p are obtained from

Zi as in (3.6), i.e.,
[

Wi

Ki

]

= E−1Zi for i = 1, 2. Hence, we have

gρ,X⊥
(Z1, Z2) = tr

(

[

W1

K1

]⊤ [ 1
ρI 0

0 I

] [

W2

K2

]

)

= tr

(

(E−1Z1)
⊤

[ 1
ρI 0

0 I

]

E−1Z2

)

= tr

(

Z⊤
1 E−⊤

[ 1
ρI 0

0 I

]

E−1Z2

)

= tr(Z⊤
1 BXZ2),

where

BX := E−⊤

[ 1
ρI 0

0 I

]

E−1 =
1

ρ
JXX⊤J⊤ −X⊥(X

⊤
⊥JX⊥)

−2X⊤
⊥ .(4.2)

The last expression of BX follows from (iii) in Lemma 3.2. In view of its definition, BX is

positive definite; this confirms that (4.1) is a bona-fide inner product. The expressions of BX

also confirm that gρ,X⊥
depend on ρ and X⊥. There is however an invariance: gρ,X⊥Q =

gρ,X⊥
for all Q ∈ O(2n− 2p).

In order to make gρ,X⊥
a bona-fide Riemannian metric, it remains to choose the “X⊥

map” Sp(2p, 2n) ∋ X 7→ X⊥ in such a way that BX smoothly depends on X . Choosing

a smooth X 7→ X⊥ map would be sufficient, but it is unknown whether such a smooth

map globally exists. However, if orthonormalization conditions are imposed on X⊥ such

that the X⊥-term of BX can be rewritten as a smooth expression of X ∈ Sp(2p, 2n), then

gρ,X⊥
becomes a bona-fide Riemannian metric, which we term canonical-like metric. We

will consider the following two such orthonormalization conditions on X⊥, which are readily

seen to be achievable since the set of all admissible X⊥ matrices has the form {X⊥M : M ∈
R

(2n−2p)×(2n−2p) is invertible}:

(I) X⊥ is orthonormal.

(II) X⊥(X
⊤
⊥JX⊥)

−1 is orthonormal.

The announced smooth expressions of BX are given next.

PROPOSITION 4.1. Under the orthonormalization condition (I), the X⊥-term of BX

in (4.2), namely, −X⊥(X
⊤
⊥JX⊥)

−2X⊤
⊥ , is equal to −(JXJX⊤J⊤ − J)2. Under the or-

thonormalization condition (II), it is equal to I −X(X⊤X)−1X⊤.

Proof. For the first claim, since X⊥ is restricted to be orthonormal, it follows that

X⊥(X
⊤
⊥JX⊥)

−2X⊤
⊥ = X⊥(X

⊤
⊥JX⊥)

−1X⊤
⊥X⊥(X

⊤
⊥JX⊥)

−1X⊤
⊥ = (JXJX⊤J⊤−J)2.

The last equality is due to the fact X⊥(X
⊤
⊥JX⊥)

−1X⊤
⊥ = JXJX⊤J⊤ − J which is

readily derived from (3.7). For the second claim, since X⊥(X
⊤
⊥JX⊥)

−1 is now restricted

to be orthonormal, we have that (X⊤
⊥JX⊥)

−⊤X⊤
⊥X⊥(X

⊤
⊥JX⊥)

−1 = I , which yields

(X⊤
⊥JX⊥)

2 = −X⊤
⊥X⊥. Consequently, we obtain that

X⊥(X
⊤
⊥JX⊥)

−2X⊤
⊥ = −X⊥(X

⊤
⊥X⊥)

−1X⊤
⊥ = X(X⊤X)−1X⊤ − I,

where the last equality can be checked by observing that multiplying each side by the invert-

ible matrix [X X⊥] yields −[0X⊥].
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We will use gρ to denote gρ,X⊥
if there is no confusion.

In the particular case p = n, where Sp(2p, 2n) reduces to the symplectic group Sp(2n),
the K-term in (3.8b) disappears. Further choose ρ = 1. Then, for all U ∈ Sp(2n), we

have BU = JUU⊤J⊤. Since U−1 = JU⊤J⊤, we also have BU = U−⊤U−1, and the

canonical-like metric reduces to 〈Z1, Z2〉U := tr
(

Z⊤
1 BUZ2

)

=
〈

U−1Z1, U
−1Z2

〉

, which

is the left-invariant metric used in [36, 10].

4.1. Normal space and projections. The symmetric matrix BX in (4.2) is positive def-

inite if and only if X ∈ R
2n×2p
⋆ := {X ∈ R

2n×2p : det(X⊤JX) 6= 0}. Hence the

Riemannian metric gρ defined in (4.1), extended to R
2n×2p
⋆ , remains a Riemannian metric,

which we also denote by gρ. In this section, we give an expression for the normal space of

Sp(2p, 2n) viewed as a submanifold of (R2n×2p
⋆ , gρ), and we obtain expression for the pro-

jections onto the tangent and normal spaces. This will be instrumental in the expression of

the gradient in subsection 4.2.

The normal space at X ∈ Sp(2p, 2n) with respect to gρ is defined as

(TXSp(2p, 2n))
⊥
:=
{

N ∈ R
2n×2p : gρ(N,Z) = 0 for all Z ∈ TXSp(2p, 2n)

}

,

where we have used the fact that TXR
2n×2p
⋆ ≃ TXR

2n×2p ≃ R
2n×2p.

PROPOSITION 4.2. Given X ∈ Sp(2p, 2n), we have

(4.3) (TXSp(2p, 2n))
⊥
= {XJΩ : Ω ∈ Sskew(2p)} .

Proof. Using Lemma 3.2 and (3.8b), we have that N ∈ R
2n×2p and Z ∈ TXSp(2p, 2n)

if and only if

N = XJΩ + JX⊥KN , Ω ∈ R
2p×2p, KN ∈ R

(2n−2p)×2p,

Z = XJW + JX⊥KZ , W ∈ Ssym(2p), KZ ∈ R
(2n−2p)×2p.

The normal space condition, gρ(N,Z) = 0 for all Z ∈ TXSp(2p, 2n), is thus equivalent to

1

ρ
tr(Ω⊤W ) + tr(K⊤

NKZ) = 0 for all W ∈ Ssym(2p) and KZ ∈ R
(2n−2p)×2p.

In turn, this equation is equivalent to Ω ∈ Sskew(2p) (since Sskew(2p) is the orthogonal

complement of Ssym(2p) with respect to the Euclidean inner product) and KN = 0.

Every Y ∈ R
2n×2p admits a decomposition Y = PX(Y ) + P⊥

X(Y ), where PX and

P⊥
X denote the orthogonal (in the sense of gρ) projections onto the tangent and normal space,

respectively. Next, we derive explicit expressions of PX—in the forms (3.8b) and (3.8c)—

and P⊥
X .

PROPOSITION 4.3. Given X ∈ Sp(2p, 2n) and Y ∈ R
2n×2p, the orthogonal projec-

tion onto TXSp(2p, 2n) and (TXSp(2p, 2n))
⊥

of Y with respect to the metric gρ has the

following expressions

PX(Y ) = XJ sym(X⊤J⊤Y ) + (I −XJX⊤J⊤)Y(4.4a)

= SX,Y JX,(4.4b)

P⊥
X(Y ) = XJ skew(X⊤J⊤Y ),(4.5)

where SX,Y = GXY (XJ)⊤ +XJ(GXY )⊤ and GX = I − 1
2XJX⊤J⊤.
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Proof. First we prove (4.4a) and (4.5). For all Y ∈ R
2n×2p, according to (3.8b) and

Proposition 4.2, we have

PX(Y ) = XJWY + JX⊥KY ,

P⊥
X(Y ) = XJΩY ,

where WY ∈ Ssym(2p), KY ∈ R
(2n−2p)×2p and ΩY ∈ Sskew(2p). We thus have

Y = PX(Y ) + P⊥
X(Y ) = XJWY + JX⊥KY +XJΩY .(4.6)

Multiplying (4.6) from the left by X⊤J⊤ yields X⊤J⊤Y = WY + ΩY , hence WY =
sym(X⊤J⊤Y ) and ΩY = skew(X⊤J⊤Y ). Replacing these expressions in (4.6) yields

JX⊥KY = Y − XJWY − XJΩY = (I − XJX⊤J⊤)Y . We have thus obtained (4.4a)

and (4.5).

It remains to prove (4.4b). A fairly straightforward development confirms that (4.4b) is

equal to Y −XJ skew(X⊤J⊤Y ) = Y −P⊥
X(Y ) = PX(Y ). Instead we give a constructive

proof which explains how we obtained the expression of SX,Y . We thus seek SX,Y symmetric

such that SX,Y JX = PX(Y ). In view of (3.10) and Lemma 3.2, we can restrict our search

to SX,Y = L(XJ)⊤ + (XJ)L⊤ with L = XJWL + JX⊥KL, and the task thus reduces to

finding WL ∈ R
2p×2p and KL ∈ R

(2n−2p)×2p such that

2XJ sym(WL) + JX⊥KL = PX(Y ) = Y − P⊥
X(Y ) = Y −XJ skew(X⊤J⊤Y ),(4.7)

where the last equality comes from (4.5). Multiplying (4.7) from the left by X⊤J⊤ yields

2 sym(WL) = sym(X⊤J⊤Y ), a solution of which is WL = 1
2X

⊤J⊤Y . It further follows

from (4.7) that JX⊥KL = (I − XJX⊤J⊤)Y . Replacing the obtained expressions in the

above-mentioned decomposition of L yields L = XJWL + JX⊥KL = 1
2XJX⊤J⊤Y +

(I − XJX⊤J⊤)Y = (I − 1
2XJX⊤J⊤)Y . Replacing this expression in (3.10) yields the

sought expression of SX,Y .

Note that the projections do not depend on ρ nor X⊥, though the metric gρ does. Never-

theless, by using (3.7), we obtain

PX(Y ) = XJ sym(X⊤J⊤Y ) + JX⊥

(

X⊤
⊥JX⊥

)−1
X⊤

⊥Y.(4.8)

Therefore, the projection PX(Y ) in (4.4a) can alternatively be computed by involving X⊥.

For later reference, we record the following result which follows from (4.4b) and the fact

that PX(Z) = Z when Z ∈ TXSp(2p, 2n). It shows how to write a tangent vector in the

form (3.8c).

COROLLARY 4.4. If X ∈ Sp(2p, 2n) and Z ∈ TXSp(2p, 2n), then Z = SX,ZJX with

SX,Z as in Proposition 4.3.

4.2. Riemannian gradient. All is now in place to specify how, given the Euclidean

gradient ∇f̄(X) where f̄ is any smooth extension of f : Sp(2p, 2n) → R around X in

R
2n×2p, one can compute the steepest-descent direction of f at X in the sense of the metric

gρ given in (4.1), as announced at the beginning of section 4.

It is well known (see, e.g., [1, §3.6]) that the steepest-descent direction is along the

opposite of the Riemannian gradient. Denoted by gradf(X), the Riemannian gradient of f
with respect to a metric g is defined to be the unique element of TXSp(2p, 2n) satisfying the

condition

(4.9) g(gradf(X), Z) = Df̄(X)[Z] =
〈

∇f̄(X), Z
〉

for all Z ∈ TXSp(2p, 2n),

where the last expression is the standard Euclidean inner product. (The second equality fol-

lows from the definition of Fréchet derivative in R
2n×2p.)
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PROPOSITION 4.5. The forms (3.8b) and (3.8c) of the Riemannian gradient of a function

f : Sp(2p, 2n) → R with respect to the metric gρ defined in (4.1) are

gradρf(X) = ρXJ sym(J⊤X⊤∇f̄(X)) + JX⊥X
⊤
⊥J⊤∇f̄(X)(4.10a)

= SXJX,(4.10b)

where ∇f̄(X) is the Euclidean gradient of any smooth extension f̄ of f around X in R
2n×2p,

and SX =
(

HX∇f̄(X)
)

(XJ)⊤ +XJ
(

HX∇f̄(X)
)⊤

with HX = ρ
2XX⊤+JX⊥X

⊤
⊥J⊤.

Proof. According to the definitions of the Riemannian gradient (4.9) and gρ, for all

Z ∈ R
2n×2p, it follows that

〈

BXgradρf̄(X), Z
〉

= gρ(gradρf̄(X), Z) = Df̄(X)[Z] =
〈

∇f̄(X), Z
〉

. Hence, gradρf̄(X) = B−1
X ∇f̄(X). The expression of BX in (4.2) yields

gradρf̄(X) = B−1
X ∇f̄(X) = E

[

ρI 0
0 I

]

E⊤∇f̄(X) = (ρXX⊤ + JX⊥X
⊤
⊥J⊤)∇f̄(X).

Owing to [1, (3.37)], it holds that gradρf(X) = PX(gradρf̄(X)). By fairly straightforward

developments, the expression (4.8) of PX yields (4.10a) while the expression (4.4b) of PX

yields (4.10b).

Just as the Riemannian metric gρ,X⊥
in (4.1), the gradient gradρf(X) depends on ρ and

X⊥. The dependence on X⊥ is through the factor JX⊥X
⊤
⊥J⊤. However, we have seen

that when we impose the orthonormalization condition (I) or (II), the metric gρ,X⊥
no longer

depends on the remaining freedom in the choice of X⊥. Hence the same can be said of

gradρf(X). Specifically:

(I) X⊥ is orthonormal. Then X⊥X
⊤
⊥ is the symmetric projection matrix onto the or-

thogonal complement of span(X), i.e.,

X⊥X
⊤
⊥ = I −X(X⊤X)−1X⊤;

(II) X⊥(X
⊤
⊥JX⊥)

−1 is orthonormal. Then the factor

JX⊥X
⊤
⊥J⊤ = JX⊥(X

⊤
⊥JX⊥)

−⊤X⊤
⊥X⊥(X

⊤
⊥JX⊥)

−1X⊤
⊥J⊤

= (I −XJX⊤J⊤)(I −XJX⊤J⊤)⊤,

where the last equality follows from (3.7).

In practice, we compute the gradient by means of above two formulations. Note that we do

not need to compute X⊥.

Even when a restriction on X⊥ makes gradρf(X) independent of the choice of X⊥, it

is still impacted by the choice of ρ. The influence of ρ on the algorithmic performance will

be investigated in subsection 6.2.

As we have seen, in the particular case p = n and ρ = 1, the matrix X⊥ disappears

and the canonical-like metric gρ reduces to the left-invariant metric used in [36, 10]. In that

particular case, the Riemannian gradient (4.10a) is thus also the same as that developed in

[36, 10].

4.3. Quasi-geodesics. Searching along geodesics can be viewed as the most “geomet-

rically natural” way to minimize a function on a manifold. In this section, we observe that

it is difficult, perhaps impossible, to obtain a closed-form expression of the geodesics of

Sp(2p, 2n) with respect to gρ in (4.1). Instead, we develop an approximation, termed quasi-

geodesics, defined by imposing that its Euclidean second derivative (in lieu of the Riemannian

second derivative in R
2n×2p endowed with gρ) belongs to the normal space (4.3).

The geodesics on (Sp(2p, 2n), gρ) are the smooth curves on Sp(2p, 2n) with zero Rie-

mannian acceleration. Since (Sp(2p, 2n), gρ) is a Riemannian submanifold of (R2n×2p, gρ),
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it follows that the Riemannian acceleration of a curve on (Sp(2p, 2n), gρ) is the orthogo-

nal projection (in the sense of gρ) onto TXSp(2p, 2n) of its Riemannian acceleration as a

curve in (R2n×2p, gρ); see, e.g., [1, Prop. 5.3.2 and (5.23)]. In other words, the geodesics on

(Sp(2p, 2n), gρ) are the curves Y (t) in Sp(2p, 2n) that satisfy

(4.11)
D
dt

Ẏ (t) + Y (t)JΩ = 0 with Ω ∈ Sskew(2p),

where we have used the characterization (4.3) of the normal space, and where D
dt denotes the

Riemannian covariant derivative [1, (5.23)] on
(

R
2n×2p, gρ

)

.

Finding a closed-form solution of (4.11) is elusive. Instead, we replace D
dt Ẏ in (4.11) by

the classical (Euclidean) second derivative Ÿ in R
2n×2p, yielding

(4.12) Ÿ (t) + Y (t)JΩ = 0 with Ω ∈ Sskew(2p),

which we term quasi-geodesic equation.

The purpose of the rest of this section is to obtain a closed-form solution of (4.12).

For ease of notation, we write Y instead of Y (t) if there is no confusion. Since the

curve Y (t) remains on Sp(2p, 2n), we have Y (t)⊤JY (t) = J for all t. Differentiating this

equation twice with respect to t, we have

(4.13) Y ⊤JẎ + Ẏ ⊤JY = 0, Y ⊤JŸ + 2Ẏ ⊤JẎ + Ÿ ⊤JY = 0.

Substituting Ÿ of (4.12) into the second equation of (4.13), we arrive at Ω = −Ẏ ⊤JẎ .

Therefore, (4.12) can equivalently be written as

(4.14) Ÿ − Y J(Ẏ ⊤JẎ ) = 0.

Following an approach similar to the one used in [19] to obtain the geodesics on the Stiefel

manifold, we rewrite the differential equation (4.14) by involving three types of first integrals.

Let

C = Y ⊤JY, W = Y ⊤JẎ , S = Ẏ ⊤JẎ .

According to (4.14), it is straightforward to verify that

Ċ = W −W⊤, Ẇ = S + CJS, Ṡ = SJW −W⊤JS.

Since Y ∈ Sp(2p, 2n), we have that C = J and therefore Ċ = 0. This in turn implies that

W = W⊤ and Ẇ = 0. As a consequence, we get W = W (0). Thus, integrals of the above

motion are

C(t) = J, W (t) = W (0), S(t) = e(JW )⊤tS(0)eJWt.(4.15)

Since W is symmetric, the matrix JW is a Hamiltonian matrix. We will make use

of the following classical result stating that the exponential of every Hamiltonian matrix is

symplectic.

PROPOSITION 4.6. For every symmetric matrix W ∈ R
2p×2p, the matrix exponential

eJW is symplectic.

Proof. A proof can be found, e.g., in [31, Corollary 3.1] and [16, Proposition 2.15].

Briefly, letting U(t) = (etJW )⊤JetJW , it follows from d
dte

At = AeAt = eAtA that U̇(t) =
(etJW )⊤((JW )⊤J + J(JW ))etJW = (etJW )⊤(W⊤ −W )etJW = 0 for all t. Hence U(t)
is constant, and since U(0) = J , the claim follows.
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Next, we reorganize (4.15) as an integrable equation to derive the closed-form expression

of quasi-geodesics.

PROPOSITION 4.7. Let Y (t) on Sp(2p, 2n) satisfy the quasi-geodesic equation (4.14)

with the initial conditions Y (0) = X ∈ Sp(2p, 2n) and Ẏ (0) = Z ∈ TXSp(2p, 2n). Then

(4.16) Y (t) = Y qgeo
X (t;Z) := [X,Z] exp

(

t

[

−JW JZ⊤JZ
I2p −JW

])[

I2p
0

]

eJWt,

where W = X⊤JZ .

Proof. Using the notation and results introduced above, we have

d
dt

(

Y (t)e−JWt
)

= Ẏ (t)e−JWt − Y (t)e−JWtJW,
d
dt

(

Ẏ (t)e−JWt
)

= Ÿ (t)e−JWt − Ẏ (t)e−JWtJW

= Y (t)JS(t)e−JWt − Ẏ (t)e−JWtJW

= Y (t)Je(JW )⊤tS(0)eJWte−JWt − Ẏ (t)e−JWtJW

= Y (t)e−JWtJS(0)− Ẏ (t)e−JWtJW,

where the last equality uses the identity Je(JW )⊤t = e−JWtJ follows from the fact (Propo-

sition 4.6) that eJWt is symplectic. Stacking the above equations together yields

d

dt

[

Y (t)e−JWt, Ẏ (t)e−JWt
]

=
[

Y (t)e−JWt, Ẏ (t)e−JWt
]

[

−JW JS(0)
I2p −JW

]

,

which implies that

Y (t) =
[

Y (0), Ẏ (0)
]

exp

(

t

[

−JW JS(0)
I2p −JW

])[

I2p
0

]

eJWt.

Since Y (0) = X , Ẏ (0) = Z , W = W (0) = X⊤JZ , S(0) = Z⊤JZ , we arrive at (4.16).

Note that if a tangent vector is given by Z = XJWZ + JX⊥KZ with WZ ∈ Ssym(2p)
and KZ ∈ R

(2n−2p)×2p, then W = −WZ in (4.16).

In the case of the symplectic group (p = n), quasi-geodesics can be computed directly

by solving W = Y ⊤JẎ = W (0), which leads to Y qgeo
U (t;Z) = Ue−JWt, where Y (0) =

U ∈ Sp(2n) and W = U⊤JZ . It turns out that the quasi-geodesic curves for p = n
coincide with the geodesic curves corresponding to the indefinite Khvedelidze–Mladenov

metric 〈Z1, Z2〉U := tr
(

U−1Z1U
−1Z2

)

; see [20, Theorem 2.4].

5. Optimization on the symplectic Stiefel manifold. With the geometric tools of sec-

tion 3 and section 4 at hand, almost everything is in place to apply to problem (1.1) first-order

Riemannian optimization methods such as those proposed and analyzed in [1, 34, 29, 28,

11, 27]. The remaining task is to choose a mechanism which, given a search direction in

the tangent space TXSp(2p, 2n), returns a curve on Sp(2p, 2n) along that direction. In Rie-

mannian optimization, it is customary to provide such a mechanism by choosing a retraction.

In subsection 5.1 and subsection 5.2, we propose two retractions on Sp(2p, 2n). Then, in

subsection 5.3, we work out a non-monotone gradient method for problem (1.1).

First we briefly recall the concept of (first-order) retraction on a manifold M; see [2]

or [1, §4.1] for details. Let TM :=
⋃

X∈M TXM be the tangent bundle to M. A smooth

mappingR : TM → M is called a retraction if the following properties hold for allX ∈ M:

1) RX(0X) = X , where 0X is the origin of TXM;

2) d
dt
RX(tZ)|t=0 = Z for all Z ∈ TXM,



RIEMANNIAN OPTIMIZATION ON THE SYMPLECTIC STIEFEL MANIFOLD 13

where RX denotes the restriction of R to TXM. Then, given a search direction Z at a point

X , the above-mentioned mechanism simply returns the curve t 7→ RX(tZ).
In most analyses available in the literature, the retraction R is assumed to be globally

defined, i.e., defined everywhere on the tangent bundle TM. In [11], however, RX is only

required to be defined locally, in a closed ball of radius ̺(X) > 0 centered at 0X ∈ TXM,

provided that infk ̺(X
k) > 0 where the Xk’s denote the iterates of the considered method.

Henceforth, unless otherwise stated, we only assume that, for all X ∈ M, RX is defined in

a neighborhood of 0X in TXM.

5.1. Quasi-geodesic curve. In view of the results of subsection 4.3, we define Rqgeo by

Rqgeo
X (Z) := Y qgeo

X (1;Z) = [X,Z] exp

([

−JW JZ⊤JZ
I2p −JW

])[

I2p
0

]

eJW ,(5.1)

where Z ∈ TXSp(2p, 2n) and W = X⊤JZ . The concept is illustrated in Figure 1. We

prove next that Rqgeo is a well-defined retraction on Sp(2p, 2n).

X
Z

Sp(2p, 2n)

TXSp(2p, 2n)

R
qgeo

X (tZ)

FIG. 1. Quasi-geodesic curve

LEMMA 5.1. The map Rqgeo : TSp(2p, 2n) → Sp(2p, 2n) defined in (5.1) is a globally

defined retraction.

Proof. In view of (5.1), Rqgeo is well defined and smooth on TSp(2p, 2n). From

the power series definition of the matrix exponential, we obtain that Y qgeo
X (1; 0X) = X .

It also follows from this definition (or from the Baker–Campbell–Hausdorff formula) that
d
dt exp(A(t))|t=0 = exp(A(0))Ȧ(0) when A(0) and Ȧ(0) commute. This property can be

exploited along with the product rule to deduce that d
dtY

qgeo
X (1; tZ)|t=0 = Z .

Numerically, computing the exponential will dominate the complexity when p is rela-

tively large; see Figure 3 for timing experiments.

5.2. Symplectic Cayley transform. In this section, we present another retraction, based

on the Cayley transform. It follows naturally from the Cayley transform on quadratic Lie

groups [23, Lemma 8.7] and the Cayley retraction on the Stiefel manifold [37, (7)], with the

crucial help of the tangent vector representation given in Corollary 4.4.

Given Q ∈ R
n×n, and considering the quadratic Lie group GQ := {X ∈ R

n×n :
X⊤QX = Q} and its Lie algebra gQ := {A ∈ R

n×n : QA + A⊤Q = 0}, the Cayley

transform is given by [23, Lemma 8.7]

(5.2) cay : gQ → GQ : A 7→ cay(A) := (I −A)−1(I +A),

which is well defined whenever I − A is invertible. As for the Cayley retraction on the

Stiefel manifold, it is defined, in view of by [37, (7)], by RX(Z) = cay(AX,Z)X where

AX,Z = (I − 1
2XX⊤)ZX⊤ −XZ⊤(I − 1

2XX⊤). This inspires the following definition.
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DEFINITION 5.2. The Cayley retraction on the symplectic Stiefel manifold Sp(2p, 2n) is

defined, for X ∈ Sp(2p, 2n) and Z ∈ TXSp(2p, 2n), by

(5.3) Rcay
X (Z) :=

(

I − 1

2
SX,ZJ

)−1(

I +
1

2
SX,ZJ

)

X,

where SX,Z is as in Proposition 4.3, i.e., SX,Z = GXZ(XJ)⊤ +XJ(GXZ)⊤ and GX =
I − 1

2XJX⊤J⊤. It is well defined whenever I − 1
2SX,ZJ is invertible.

In other words, the selected curve along Z ∈ TXSp(2p, 2n) is

(5.4) Y cay
X (t;S) :=

(

I − t

2
SJ

)−1(

I +
t

2
SJ

)

X = cay

(

t

2
SJ

)

X,

where S = SX,Z as defined above.

We confirm right away that Rcay is indeed a retraction.

PROPOSITION 5.3. The map Rcay : TSp(2p, 2n) → Sp(2p, 2n) in (5.3) is a retraction.

Proof. When Z = 0, we have SX,Z = 0 and we obtain Rcay
X (Z) = X , which is the

first defining property of retractions. For the second property, we have d
dtR

cay
X (tZ)|t=0 =

d
dt cay(

t
2SX,ZJ)X |t=0 = Dcay( t

2SX,ZJ)[
1
2SX,ZJ ]X |t=0 = SX,ZJX = Z , where the last

two equalities come from Dcay(A)[Ȧ] = 2(I − A)−1Ȧ(I + A)−1 (see [23, Lemma 8.8])

and Corollary 4.4.

Incidentally, we point out that the Cayley transform (5.2) can be interpreted as the trape-

zoidal rule for solving ODEs on quadratic Lie groups. According to [23, IV. (6.3)], notice

that TXGQ = {AX : A ∈ gQ}. Hence, the following defines a differential equation on GQ:

(5.5) Ẏ (t) = AY (t), Y (0) = X ∈ GQ,

where A ∈ gQ. To solve it numerically, we adopt one step of the trapezoidal rule over [0, t],

(5.6) Y (t) = X +
t

2
(AX +AY (t)) .

Its solution is given by Y (t) = cay
(

t
2A
)

X whenever I − t
2A is invertible. Since cay( t

2A),
X ∈ GQ, it follows that Y (t) ∈ GQ. This means that the trapezoidal rule for (5.5) is

indeed achieved by the Cayley transform (5.2) and remains on GQ. In particular, letting

A = SX,ZJ ∈ gSp(2n), Z = AX ∈ TXSp(2p, 2n) and Y = Rcay
X (Z), the Cayley retrac-

tion (5.3) can be exactly recovered by the same trapezoidal rule (5.6); see Figure 2 for an

illustration.

X

Sp(2p, 2n)

TXSp(2p, 2n) 1

2
AX

1

2
AY

Z = AX

R
cay

X (Z)

FIG. 2. Trapezoidal rule on the symplectic Stiefel manifold

In the case of the symplectic group (p = n), it can be shown that Rcay reduces to the

retraction proposed in [10, Proposition 2].
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The retraction Rcay
X (tZ) in (5.3) is not globally defined. It is defined if and only if

I− t
2SX,ZJ is invertible, i.e., 2

t is not an eigenvalue of the Hamiltonian matrix SX,ZJ . Since

the eigenvalues of Hamiltonian matrices come in opposite pairs, we have that Y cay
X (t;S)

exists for all t ≥ 0 if and only if SJ has no real eigenvalue. This situation constrasts with the

Cayley retraction on the (standard) Stiefel manifold, which is everywhere defined due to the

fact that I −A is invertible for all skew-symmetric A.

The fact that Rcay is not globally defined does not preclude us from applying the con-

vergence and complexity results of [11]. However, we have to ensure that RX is defined

in a closed ball of radius ̺(X) > 0 centered at 0X ∈ TXM, with infk ̺(X
k) > 0 where

the Xk’s denote the iterates of the considered method. An assumption that guarantees this

condition is that (i) the objective function f in (1.1) has compact sublevel sets and (ii) the

considered optimization scheme guarantees that f(Xk) ≤ f(X0) for all k. Indeed, in that

case, since {Xk}k=0,1,... remains in a compact subset of Sp(2p, 2n), it is possible to find ρ
such that, for all k, if ‖Z‖Xk ≤ ρ, then the spectral radius of 1

2SXk,ZJ is stricly smaller than

one, making I − 1
2SXk,ZJ invertible.

The main computational cost of Rcay
X (Z) (Definition 5.2) is the symplectic Cayley trans-

form, which requires solving linear systems with the 2n× 2n system matrix (I − 1
2SX,ZJ).

In general, this has complexity O(n3). However, as we now show, the low-rank structure of

SX,Z can be exploited to reduce the linear system matrix to the size 4p×4p, thereby inducing

a considerable reduction of computational cost when p ≪ n. The development parallels the

one given in [37, Lemma 4(1)] for the (standard) Stiefel manifold.

PROPOSITION 5.4. Let S = LR⊤ + RL⊤ = UV ⊤, where L,R ∈ R
2n×2p and U =

[L R] ∈ R
2n×4p, V = [R L] ∈ R

2n×4p. If I + t
2V

⊤J⊤U is invertible, then (5.4) admits the

expression

(5.7) Y cay
X (t;S) = X + tU

(

I +
t

2
V ⊤J⊤U

)−1

V ⊤JX.

In particular, if we choose L = −HX∇f̄(X) and R = XJ , then we get S = −SX with

SX given in the gradient formula (Proposition 4.5), and we have that Rcay
X (−tgradρf(X))

is given by

(5.8) Y cay
X (t;−SX) = X + t[−Pf XJ ]

(

I +
t

2

[

Eρ J⊤

P⊤
f J⊤Pf −E⊤

ρ

])−1 [
I

−E⊤
ρ J

]

,

where HX is defined in Proposition 4.5, Pf := HX∇f̄(X), and Eρ := ρ
2X

⊤∇f̄(X).

Proof. By using Sherman–Morrison–Woodbury (SMW) formula [22, (2.1.4)]:

(A+ Ū V̄ ⊤)−1 = A−1 −A−1Ū
(

I + V̄ ⊤A−1Ū
)−1

V̄ ⊤A−1

with A = I , Ū = − t
2U and V̄ = J⊤V , it follows that

(

I − t
2SJ

)−1
=
(

I − t
2UV ⊤J

)−1
=

(A+ Ū V̄ ⊤)−1 = I − t
2U(I + t

2V
⊤J⊤U)−1V ⊤J⊤. In view of (5.4), it turns out that

Y cay
X (t;S) = cay

(

t
2SJ

)

X =
(

I − t
2SJ

)−1 (
I + t

2SJ
)

X
= X + t

2U
(

I + (I + t
2V

⊤J⊤U)−1(I − t
2V

⊤J⊤U)
)

V ⊤JX

= X + tU
(

I + t
2V

⊤J⊤U
)−1

V ⊤JX,

which completes the proof of (5.7). Substituting L = −HX∇f̄(X) and R = XJ into

Y cay
X (t;S), it is straightforward to arrive at (5.8).
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5.3. A non-monotone line search scheme on manifolds. Now, since we can compute

a gradient gradf(X) and a retraction RX(Z), various first-order Riemannian optimization

methods can be applied to problem (1.1). Here, we adopt an approach called non-monotone

line search [41]. It was extended to the Stiefel manifold in [37] and to general Riemannian

manifolds in [29] and [27, §3.3]. The non-monotone approach has been observed to work well

on various Riemannian optimization problems. In this section, we first present and analyze

the non-monotone line search algorithm on general Riemannian manifolds endowed with a

retraction that need not be globally defined. Then we apply the algorithm and its analysis to

the case of the symplectic Stiefel manifold Sp(2p, 2n).
Given β ∈ (0, 1), a backtracking parameter δ ∈ (0, 1), a search direction Zk and a trial

step size γk > 0, the non-monotone line search procedure proposed in [27] uses the step size

tk = γkδ
h, where h is the smallest integer such that

(5.9) f
(

RXk(tkZ
k)
)

≤ ck + βtk
〈

gradf(Xk), Zk
〉

Xk ,

and the next iterate is given by Xk+1 = RXk(tkZ
k). The scalar ck in (5.9) is a convex

combination of ck−1 and f(Xk). Specifically, we set q0 = 1, c0 = f(X0),

qk = αqk−1 + 1,
ck = αqk−1

qk
ck−1 +

1
qk
f(Xk)

(5.10)

with a parameter α ∈ [0, 1]. When α = 0, it follows that qk = 1 and ck = f(Xk), and the

non-monotone condition (5.9) reduces to the standard Armijo backtracking line search

(5.11) f
(

RXk(tkZ
k)
)

≤ f(Xk) + βtk
〈

gradf(Xk), Zk
〉

Xk .

The corresponding Riemannian gradient method is presented in Algorithm 1. The search

direction is chosen as the Riemannian antigradient in line 4. On the other hand, there is no

restriction on the choice of the trial step size γk in line 5. One possible strategy is the Barzilai–

Borwein (BB) method [5], which often accelerates the convergence of gradient methods when

the search space is a Euclidean space. This method was extended to general Riemannian

manifolds in [29]. We implement and compare several choices of γk; see subsection 6.2 for

details.

Algorithm 1: Riemannian gradient method with non-monotone line search

1 Input: X0 ∈ M.

2 Require: Continuously differentiable function f : M → R; retraction R on M
defined on dom(R); β, δ ∈ (0, 1), α ∈ [0, 1], 0 < γmin < γmax, c0 = f(X0),
q0 = 1, γ0 = f(X0).

3 for k = 0, 1, 2, . . . do

4 Choose Zk = −gradf(Xk).
5 Choose a trial step size γk > 0 and set γk = max(γmin,min(γk, γmax)). Find the

smallest integer h such that γkδ
hZk ∈ dom(R) and the non-monotone

condition (5.9) hold. Set tk = γkδ
h.

6 Set Xk+1 = RXk(tkZ
k).

7 Update qk+1 and ck+1 by (5.10).

8 Output: Sequence of iterates {Xk}.

Next we prove the convergence of Algorithm 1 on a general Riemannian manifold M.

Note that, in terms of convergence analysis, the only relevant difference between Algorithm 1
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and [27, Algorithm 1] is that the latter assumes that the retraction R is globally defined,

whereas we only assume that, for all X ∈ M, RX is defined in a neighborhood of 0X
in TXM. In other words, we only assume that, for every X ∈ M, there exists a ball

Br
0X := {Z ∈ TXM : ‖Z‖X < r} ⊆ dom(R). Hence, the convergence result in [27,

Theorem 3.3] does not directly apply to our case.

First, we show that Algorithm 1 does not abort.

PROPOSITION 5.5. Algorithm 1 generates an infinite sequence of iterates.

Proof. Let Xk be the current iterate. In view of Zk = −gradf(Xk), by applying [41,

Lemma 1.1] to the Riemannian case, it yields f(Xk) ≤ ck. Since R is locally defined and

δ, β ∈ (0, 1), it follows that

lim
h→+∞

f
(

RXk(γkδ
hZk)

)

− ck

γkδh
≤ lim

h→+∞

f
(

RXk(γkδ
hZk)

)

− f(Xk)

γkδh

=
〈

gradf(Xk), Zk
〉

Xk < β
〈

gradf(Xk), Zk
〉

Xk .

It implies that there exists h̄ ∈ N such that tk = γkδ
h̄ ∈ (0, r

‖Zk‖
Xk

) and the non-monotone

condition (5.9) hold. It means that tkZ
k ∈ Br

0
Xk

⊆ dom(R), and hence it is accepted.

Next, we give the proof of the convergence for Algorithm 1.

THEOREM 5.6. Let {Xk} be an infinite sequence of iterates generated by Algorithm 1.

Then every accumulation point X∗ of {Xk} such that 0X∗ ∈ TX∗M in the interior of

dom(R), is a critical point of f , i.e., gradf(X∗) = 0.

Proof. We adapt the proof strategy of [27, Theorem 3.3] (that invokes [1, Theorem 4.3.1],

which itself is a generalization to manifolds of the proof of [6, Proposition 1.2.1]) in order to

handle the locally defined retraction. The adaptation consists in defining and making use of

the neighborhood N0X∗ .

Since X∗ is an accumulation point of {Xk}, there exists a subsequence {Xk}k∈K that

converges to it. In view of (5.9) and (5.10), it holds that qk+1 = 1+αqk = 1+α+α2qk−1 =

· · · =∑k+1
i=0 αi ≤ k + 2. Moreover, it follows that

ck+1 − ck =
αqkck + f(Xk+1)

qk+1
− ck =

αqkck + f(Xk+1)

qk+1
− αqk + 1

qk+1
ck

=
f(Xk+1)− ck

qk+1
≤ −

βtk
∥

∥gradf(Xk)
∥

∥

2

Xk

qk+1
< 0.

Hence, {ck} is monotonically decreasing. Since f(Xk) ≤ ck (in the proof of Proposition 5.5)

and {f(Xk)}k∈K → f(X∗), it readily follows that c∞ := limk→+∞ ck > −∞. Summing

above inequalities and using qk+1 ≤ k + 2, it turns out

∞
∑

k=0

βtk
∥

∥gradf(Xk)
∥

∥

2

Xk

k + 2
≤

∞
∑

k=0

βtk
∥

∥gradf(Xk)
∥

∥

2

Xk

qk+1
≤

∞
∑

k=0

(ck − ck+1) = c0− c∞ < ∞.

This inequality implies that

(5.12) lim
k→+∞

tk
∥

∥gradf(Xk)
∥

∥

2

Xk = 0, k ∈ K.

For the sake of contradiction, suppose that X∗ is not a critical point of f , i.e., that

gradf(X∗) 6= 0. It readily follows from (5.12) that {tk}k∈K → 0. By the construction
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of Algorithm 1, the step size tk has the form of tk = γkδ
h with γk ≥ γmin > 0. Since

0X∗ is in the interior of dom(R), there exists a neighborhood N0X∗ := {(X,Z) ∈ TM :

dist2(X,X∗) + ‖Z‖2X < r} ⊆ dom(R). Due to {tk}k∈K → 0, it follows that there exists

k̄ ∈ K and hk ∈ N with hk ≥ 1 such that for all k > k̄, tk = γkδ
hk and (Xk, tk

δ Z
k) ∈ N0X∗ .

Since hk is the smallest integer such that the non-monotone condition (5.9) holds, it follows

that tk
δ Z

k does not satisfy (5.9), i.e.,

f(Xk)− f

(

RXk(
tk
δ
Zk)

)

≤ ck − f

(

RXk(
tk
δ
Zk)

)

< β
tk
δ

∥

∥gradf(Xk)
∥

∥

2

Xk .(5.13)

The mean value theorem for (5.13) ensures that there exists t̄k ∈
[

0, tkδ
]

such that

D(f ◦ RXk)(t̄kZ
k)[Zk] < β

∥

∥gradf(Xk)
∥

∥

2

Xk , for all k ∈ K, k > k̄.

We now take the limit in the above inequality as k → ∞ over K. Using the fact that

D(f ◦ RX∗)(0X∗) = Df(X∗) in view of the defining properties of a retraction, we ob-

tain ‖gradf(X∗)‖2X∗ ≤ β ‖gradf(X∗)‖2X∗ . Since β < 1, this is a contradiction with the

supposition that gradf(X∗) 6= 0.

Algorithm 1 applies to M = Sp(2p, 2n) as follows. Pick a constant ρ > 0 and one

of the orthonormalization conditions (I) or (II) for X⊥ in order to make (4.1) a bona-fide

Riemannian metric. In line 4, the gradient is then as stated in Proposition 4.5. Finally,

choose the retraction R as either the quasi-geodesic curve (5.1) or the symplectic Cayley

transform (5.3). The initialization techniques for X0 ∈ Sp(2p, 2n) and the stopping criterion

will be discussed in subsection 6.1.

COROLLARY 5.7. Apply Algorithm 1 to Sp(2p, 2n) as specified in the previous para-

graph. Let {Xk} be an infinite sequence of iterates generated by Algorithm 1. Then every

accumulation point X∗ of {Xk} is a critical point of f , i.e., gradf(X∗) = 0.

Proof. First, the quasi-geodesic retraction is globally defined. Hence, Theorem 5.6 can

be directly applied.

Next, we consider the Cayley-based algorithm. In order to conclude by invoking Theo-

rem 5.6, it is sufficient to show that, for all X ∈ Sp(2p, 2n), 0X ∈ TXSp(2p, 2n) is in the in-

terior of dom(Rcay). In view of the properties of retractions, we have that 0X ∈ dom(Rcay),
and we finish the proof by showing that all points of dom(Rcay) are in its interior, namely,

dom(Rcay) is open. To this end, let F : TSp(2p, 2n) → R : (X,Z) 7→ det(I − 1
2SX,Z),

where SX,Z is as in Definition 5.2. Since F is continuous and {0} is closed, it follows that

F−1(0) = {(X,Z) ∈ TSp(2p, 2n) : F (X,Z) = 0} is a closed set. Its complement in the

tangent bundle is thus open, and it is also the domain of Rcay.

6. Numerical experiments. In this section, we report the numerical performance of

Algorithm 1. Both methods based on the quasi-geodesics (5.1) and the symplectic Cayley

transform (5.3) are evaluated. We first introduce implementation details in subsection 6.1.

To determine default settings, we investigate the parameters of our proposed algorithms in

subsection 6.2. Finally, the efficiency of Algorithm 1 is assessed by solving several differ-

ent problems. The experiments are performed on a workstation with two Intel(R) Xeon(R)

Processors Silver 4110 (at 2.10GHz×8, 12M Cache) and 384GB of RAM running MAT-

LAB R2018a under Ubuntu 18.10. The code that produced the results is available from

https://github.com/opt-gaobin/spopt.

6.1. Implementation details. As we mentioned in subsection 4.2, we propose two

strategies to compute the Riemannian gradient gradρf(X). Both algorithms with type (I)

https://github.com/opt-gaobin/spopt
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and type (II) perform well in our preliminary experiments. In this section, Algorithm 1 with

the symplectic Cayley transform is denoted by “Sp-Cayley”, and its instances using type (I)

and (II) for the gradient are represented as “Sp-Cayley-I” and “Sp-Cayley-II”, respectively.

Similarly, quasi-geodesic algorithms are denoted by “Quasi-geodesics”, “Quasi-geodesics-I”

and “Quasi-geodesics-II”.

We adopt formula (4.10b), i.e., HX∇f̄(X)(XJ)⊤JX +XJ(HX∇f̄(X))⊤JX , to as-

semble gradρf(X) for all the algorithms. In order to save flops and obtain a good feasibility

(see Figure 3), we choose (5.8) to compute the Cayley retraction. Note that we keep the calcu-

lation of (XJ)⊤JX in the first term of gradρf(X), although it is trivial that (XJ)⊤JX = I
for X ∈ Sp(2p, 2n). This is due to our observation that the feasibility of Quasi-geodesics

gradually degrades when we omit this calculation.

At the beginning of Algorithm 1, we need a feasible point X0 ∈ Sp(2p, 2n) to start the

iteration. The easiest way to generate a symplectic matrix is to choose the “identity” matrix

in Sp(2p, 2n), namely, I0 =
[

Ip 0 0 0
0 0 Ip 0

]⊤

. Moreover, by using Proposition 4.6, we suggest

the following strategies to generate an initial point:

1) X0 = I0;

2) X0 = I0eJ(W+W⊤), where W is randomly generated by W=randn(2*p,2*p);

3) X0 is assembled by the first p columns and (n + 1)-th to (n + p)-th columns of

eJ(W+W⊤), where W is randomly generated by W=randn(2*n,2*n).

The matrix exponential is computed by the function expm in MATLAB. Unless otherwise

specified, we choose strategy 2) as our initialization.

For a stopping criterion, we check the following two conditions:

∥

∥gradρf(X
k)
∥

∥

F
≤ ǫ,(6.1)

∥

∥Xk −Xk+1
∥

∥

F√
2n

< ǫx and

∣

∣f(Xk)− f(Xk+1)
∣

∣

|f(Xk)|+ 1
< ǫf(6.2)

with given tolerances ǫ, ǫx, ǫf > 0. We terminate the algorithms once one of the criteria (6.1)-

(6.2) or a maximum iteration number MaxIter is reached. The default tolerance parameters

are chosen as ǫ = 10−5, ǫx = 10−5, ǫf = 10−8 and MaxIter = 1000. For parameters

to control the non-monotone line search, we follow the choices in the code OptM1 [37],

specifically, β = 10−4, δ = 0.1, α = 0.85, as our default settings. In addition, we choose

γmin = 10−15, γmax = 1015, and a trial step size γk as in (6.4).

6.2. Default settings of the algorithms. In this section, we study the performance and

robustness of our algorithms by choosing different parameters. All the comparisons and

results are based on a test problem, called the nearest symplectic matrix problem, which aims

to calculate the nearest symplectic matrix to a target matrix A ∈ R
2n×2p with respect to the

Frobenius norm, i.e.,

(6.3) min
X∈Sp(2p,2n)

‖X −A‖2F .

The special case of this problem on the symplectic group (i.e., p = n) was studied in [40]. In

our experiments, A is randomly generated by A=randn(2*n,2*p), then it is scaled using

A=A/norm(A).

6.2.1. A comparison between quasi-geodesics and symplectic Cayley transform. In

Algorithm 1, we can choose between two different retractions: quasi-geodesic and Cayley. In

1Available from https://github.com/wenstone/OptM.

https://github.com/wenstone/OptM
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order to investigate the numerical performance of the two alternatives, we solve the nearest

symplectic matrix problem (6.3) of size 2000× 400 and choose the parameter for the metric

gρ to be ρ = 1. We stop our algorithms only when MaxIter = 120 is reached. The evolution

of the norm of the gradient and the feasibility violation
∥

∥X⊤JX − J
∥

∥

F
for both algorithms

is shown in Figure 3. It illustrates that Sp-Cayley performs better than Quasi-geodesics in

terms of efficiency and feasibility. Therefore, we choose Sp-Cayley as our default algorithm

and the following experiments will focus on Sp-Cayley.
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FIG. 3. A comparison of Algorithm 1 based on the quasi-geodesic curve and the symplectic Cayley transform

6.2.2. A comparison of different metrics. In this section, we compare the performance

of Sp-Cayley with different metrics. Namely, we compare Sp-Cayley-I and Sp-Cayley-II for

a set of parameters ρ = 2l with l chosen from {−3,−2,−1, 0, 1, 2, 3}. We run both algo-

rithms 100 times on randomly generated nearest symplectic matrix problems of size 2000×
40. Note that for each instance, Sp-Cayley-I and Sp-Cayley-II use the same initial guess.

In order to get an average performance, we stop algorithms only when
∥

∥gradρf(X
k)
∥

∥

F
≤

10−4. A summary of numerical results is reported in Figure 4. It displays average iteration

numbers and the feasibility violation for the two algorithms with different ρ. We can learn

from the figures that:

• The value ρ∗ at which Sp-Cayley-I and Sp-Cayley-II achieve the best performance

is approximately equal to 1/2 and 1, respectively. The difference of ρ∗ is due to the

different choice of X⊥, which also has an effect on the metric gρ. We have observed

that ρ∗ may vary for different objective functions. This indicates that tuning ρ for the

problem class of interest may significantly improve the performance of Algorithm 1.

• Sp-Cayley-I has a lower average iteration number than Sp-Cayley-II when ρ ≤ 1.

Over all the variants considered in Figure 4, Sp-Cayley-I with ρ = 1/2 has the best

performance.

• Both Sp-Cayley-I and Sp-Cayley-II show a loss of feasibility when ρ becomes large.

A possible reason is that the non-normalized second term of HX = JX⊥X
⊤
⊥J⊤ +

ρ
2XX⊤ in the Riemannian gradient becomes dominant.

According to the above observations, we choose ρ = 1/2 for Sp-Cayley-I and ρ = 1 for

Sp-Cayley-II as our default settings.

6.2.3. A comparison of different line search schemes. The non-monotone line search

strategy (subsection 5.3) depends on several parameters. The purpose of this section is to

investigate which among those parameters have a significant impact on the performance of
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FIG. 4. A comparison of Sp-Cayley-I and Sp-Cayley-II with different parameter ρ

Algorithm 1.

First, we consider the choice of the trial step size γk in Algorithm 1. In our case, the

ambient space is Euclidean. Thus, we can use the BB method proposed in [37] and define

γBB1
k :=

〈

Sk−1, Sk−1
〉

|〈Sk−1, Y k−1〉| , γBB2
k :=

∣

∣

〈

Sk−1, Y k−1
〉∣

∣

〈Y k−1, Y k−1〉 ,

where Sk−1 = Xk − Xk−1 and Y k−1 = gradρf(X
k) − gradρf(X

k−1). Note that this

differs from the Riemannian BB method in [29] since it adopts the Euclidean inner product

〈·, ·〉 rather than gρ. This choice is cheaper in flops and we have observed that it speeds up

the algorithm. Owing to its efficiency, we further adopt the alternating BB strategy [15] and

choose the trial step size as

γABB
k :=

{

γBB1
k , for odd k,

γBB2
k , for even k.

(6.4)

We next compare γBB1
k , γBB2

k , γABB
k , and the step size

γM
k := 2

∣

∣

∣

∣

f(Xk)− f(Xk−1)

Df(X)[Z]

∣

∣

∣

∣

proposed in [32, (3.60)], where γM
k is also used in the line search function in Manopt2 [12].

In this test, we opt for the monotone line search (α = 0) adopted with tolerances ǫ = 10−10,

ǫx = 10−10, ǫf = 10−14. Figure 5 reveals that the BB strategies greatly improve the perfor-

mance of the Riemannian gradient method, and outperform the classical initial step size γM

in iteration number and function value decreasing. We have obtained similar results, omitted

here, for Sp-Cayley-II. Since γABB
k is the most efficient choice in this experiment, we employ

it as our default setting henceforth.

Next we investigate the impact of the parameter α, which controls the degree of non-

monotonicity. If α = 0, then condition (5.9) reduces to the usual monotone condition (5.11).

Here we scale the problem as A=2*A/norm(A) because we found that it reveals better the

advantage that the non-monotone approach can have. We test Sp-Cayley-II with α = 0, 0.85,

i.e., the monotone and non-monotone schemes. The results are shown in Figure 6. The

2A MATLAB toolbox for optimization on manifolds (available from https://www.manopt.org/).

https://www.manopt.org/
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FIG. 5. A comparison of Sp-Cayley-I with different initial step size γk in the monotone line search scheme

purpose of the non-monotone strategy is to make the line search condition (5.9) more prone

than the monotone strategy to accept the trial step size γk, here γABB
k . We see that this results

in a faster convergence in this experiment. Since the non-monotone condition (5.9) works

well in our problem, thus we choose it as a default setting henceforth.
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FIG. 6. A comparison of Sp-Cayley-II with the monotone and non-monotone line search schemes

6.3. Nearest symplectic matrix problem. In this section, we still focus on the near-

est symplectic matrix problem (6.3). We first compare the algorithms Sp-Cayley-I and Sp-

Cayley-II on an open matrix dataset: SuiteSparse Matrix Collection3. Due to the different size

and scale of data matrices, we choose the column number p from the set {5, 10, 20, 40, 80},

and the target matrix A ∈ R
2n×2p is generated by the first 2p columns of an original data

matrix. In order to obtain a comparable error, we normalize all matrices as A/‖A‖max, where

‖A‖max := maxi,j |Aij |. Numerical results are presented in Table 2 for representative prob-

lem instances. Here, “fval” represents the function value, “gradf”, “feasi”, “iter”, and “time”

stand for
∥

∥gradρf
∥

∥

F
,
∥

∥X⊤JX − J
∥

∥

F
, the number of iterations, and the wall-clock time in

seconds, respectively. From the table, we find that both algorithms perform well on most of

the instances, and Sp-Cayley-I performs better than Sp-Cayley-II with fewer iteration number

3Available from https://sparse.tamu.edu/.

https://sparse.tamu.edu/
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and fewer running time. In the largest problem “2cubes sphere”, both methods converge and

obtain comparable results for the function value and gradient error. In addition, Sp-Cayley-II

diverges on the problem “msc23052” with p = 10, while Sp-Cayley-I converges. Therefore,

we conclude that for the nearest symplectic matrix problem, Sp-Cayley-I is more robust and

efficient than Sp-Cayley-II.

TABLE 2

Numerical results for the nearest symplectic matrix problem

p
Sp-Cayley-I Sp-Cayley-II

fval gradf feasi iter time fval gradf feasi iter time

2cubes sphere, 2n = 101492
5 3.995e+00 8.38e-05 1.39e-14 24 2.11 3.995e+00 1.40e-04 4.53e-15 23 2.18

10 7.331e+00 2.23e-04 1.95e-14 27 4.14 7.331e+00 5.28e-04 9.13e-15 28 4.60

20 1.602e+01 2.19e-04 4.76e-14 30 8.81 1.602e+01 6.72e-04 5.26e-14 36 12.53

40 3.423e+01 2.51e-03 7.08e-14 32 23.60 3.423e+01 7.20e-04 4.58e-14 40 31.79

80 1.056e+02 7.98e-04 4.05e-13 39 55.97 1.056e+02 1.50e-03 2.81e-10 41 71.11

cvxbqp1, 2n = 50000
5 2.649e+00 2.03e-04 1.00e-14 22 0.78 2.649e+00 1.49e-03 3.15e-15 27 1.01

10 6.230e+00 2.16e-04 1.65e-14 26 1.54 6.230e+00 6.35e-04 6.35e-15 36 2.30

20 1.289e+01 2.86e-04 3.00e-14 26 2.79 1.289e+01 6.85e-04 1.08e-14 38 4.31

40 2.542e+01 1.33e-03 5.74e-14 28 8.19 2.542e+01 6.75e-04 3.72e-14 36 11.78

80 5.156e+01 6.38e-04 1.08e-13 26 19.81 5.156e+01 1.47e-03 7.33e-14 36 30.05

msc23052, 2n = 23052
5 6.204e+00 1.23e-04 2.47e-04 92 1.30 6.204e+00 7.61e-04 5.26e-06 66 1.04

10 1.361e+01 5.87e-04 7.06e-08 67 1.66 4.556e-01 2.72e-02 4.24e+00 637 17.69

20 2.732e+01 9.82e-04 1.48e-04 80 3.70 2.730e+01 1.14e-02 8.69e-03 112 5.91

40 5.721e+01 2.18e-03 1.74e-06 70 6.78 5.721e+01 4.36e-03 1.98e-03 90 9.90

80 1.302e+02 9.96e-03 8.89e-03 98 27.87 1.302e+02 1.60e-02 1.00e-02 88 28.35

Na5, 2n = 5832
5 2.170e+00 3.34e-04 1.29e-14 34 0.16 2.170e+00 1.05e-03 3.79e-15 35 0.17

10 4.378e+00 1.53e-04 3.62e-14 35 0.25 4.378e+00 4.34e-03 9.72e-15 41 0.29

20 9.033e+00 3.54e-04 6.24e-14 34 0.44 9.033e+00 1.46e-03 1.41e-14 37 0.53

40 1.828e+01 7.82e-04 8.58e-14 40 1.09 1.828e+01 1.75e-03 2.81e-14 44 1.24

80 3.731e+01 3.42e-04 3.32e-13 48 3.00 3.731e+01 6.74e-04 5.79e-14 56 3.92

We next compare our algorithms on randomly generated datasets. Given a set of samples

{X1, X2, . . . , XN} with Xi ∈ Sp(2p, 2n) for i = 1, . . . , N , the extrinsic mean problem [9,

Section 3] on Sp(2p, 2n) is defined as

(6.5) min
X∈Sp(2p,2n)

1

N

N
∑

i=1

‖X −Xi‖2F .

In view of [9, Section 3], the solutions of (6.5) are those of (6.3) with A = 1
N

∑N
i=1 Xi. This

allows us to reuse the code that addressed (6.3). We test Sp-Cayley-I and Sp-Cayley-II for

solving the problem (6.5) with three different random sample sets: (i) N = 100, n = p = 2;

(ii) N = 100, n = p = 10; (iii) N = 1000, n = 1000, p = 20. In each dataset, samples

are randomly generated around a selected center Y 0 ∈ Sp(2p, 2n). Specifically, we choose

Xi = Y 0eJ(Wi+W⊤

i ), where Wi=0.1*randn(2*p,2*p). The initial point X0 and the

center Y 0 are calculated by the strategy 3) (subsection 6.1) for datasets (i)-(ii), and 2) for

dataset (iii). In the first two sets (the symplectic group), Sp-Cayley-I and Sp-Cayley-II reduce

to the same algorithm due to the same Riemannian gradient. Therefore, we omit the results

of Sp-Cayley-II. We run our algorithms twice with different stopping tolerances: default

and {ǫ = 10−10, ǫx = 10−10, ǫf = 10−14}. The detailed results for these two setting are

presented in Table 3. It reveals that our algorithms converge for three different sample sets

with different stopping tolerances. Moreover, we show the initial and final errors of each

sample in Figure 7, where X∗ denotes the solution obtained by Sp-Cayley. From the figure,

we observe that for both dataset (i) and (ii), the sample error greatly decreases with Sp-Cayley.
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TABLE 3

Numerical results for the extrinsic mean problem on Sp(2p, 2n)

ǫ
Sp-Cayley-I Sp-Cayley-II

fval gradf feasi iter time fval gradf feasi iter time

dataset (i), n = 2, p = 2, N = 100
1e-05 1.627e+00 3.74e-05 1.07e-14 82 0.01 - - - - -

1e-10 1.627e+00 9.14e-10 8.84e-15 158 0.01 - - - - -

dataset (ii), n = 10, p = 10, N = 100
1e-05 3.068e+01 1.13e-04 8.97e-14 158 0.02 - - - - -

1e-10 3.068e+01 6.91e-09 1.12e-13 316 0.03 - - - - -

dataset (iii), n = 1000, p = 20, N = 1000
1e-05 1.333e+02 1.54e-04 3.56e-13 154 0.96 1.333e+02 2.54e-04 3.38e-13 178 1.05

1e-10 1.333e+02 3.67e-08 5.32e-13 256 1.33 1.333e+02 2.83e-07 4.63e-13 262 1.50

n=2, p=2, N=100

10 20 30 40 50 60 70 80 90 100
sample

0

1

2

3

4

5

6

7

er
ro

r

||X*-X
i
||

F

||X0-X
i
||

F

(a) Dataset (i), ǫ = 10−10

n=10, p=10, N=100

10 20 30 40 50 60 70 80 90 100
sample

0

2

4

6

8

10

12

14

16

er
ro

r
||X*-X

i
||

F

||X0-X
i
||

F

(b) Dataset (ii), ǫ = 10−10

FIG. 7. A comparison of initial and final errors for each sample

6.4. Minimization of the Brockett cost function. In [13], Brockett investigated least

squares matching problems on matrix Lie groups with an objective function

(6.6) f(X) := tr(X⊤AXN − 2BX⊤),

where A,N,B ∈ R
n×n are given matrices. This function is widely known as the Brockett

cost function. Recently, in [30], the results of [13] were extended to P -orthogonal matrices

satisfying X⊤PX = P with a given orthogonal matrix P ∈ R
n×n. For P = J , the problem

reduces to an optimization problem on the symplectic group Sp(2n). Such a problem was

more recently considered in [10], where several optimization algorithms were proposed.

In this section, we study a well-defined (bounded from below) minimization problem

based on the Brockett cost function (6.6) with N = I and B = 0. Specifically, we consider

the following optimization problem

min
X∈Sp(2p,2n)

tr(X⊤AX),

where A ∈ R
2n×2n is a symmetric positive definite matrix. Such a problem arises, for

example, in the symplectic eigenvalue problem [38, 7] which will be investigated in more

detail in subsection 6.5. In this test, the matrix A ∈ R
2n×2n is randomly generated as

A = QΛQ⊤, where Q ∈ R
2n×2n is an orthogonal matrix computed from a QR factorization

Q=qr(randn(2*n,2*n)), and Λ ∈ R
2n×2n is a diagonal matrix with diagonal elements
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Λii = λ1−i for i = 1, 2, . . . , 2n. The parameter λ ≥ 1 determines the decay of eigenval-

ues of A. Th experiments are divided into two parts. At first, we solve the problem on the

symplectic group, i.e., n = p, for matrices of different size 20× 20, 80× 80 and 160× 160
and different parameters λ ∈ {1.01, 1.04, 1.07, 1.1}. The numerical results are presented in

Table 4. From the table, we observe that Sp-Cayley (since Sp-Cayley-I and Sp-Cayley-II re-

duce to the same method when n = p) works well on different problems. In the second part,

we move to the symplectic Stiefel manifold and test our algorithms on different problems

with parameters n = 1000, 2000, 3000, p = 5, 10, 20, 40, 80, and λ as above. The corre-

sponding results are also presented in Table 4. It illustrates that for relatively large problems,

Sp-Cayley-I and Sp-Cayley-II still perform well, and have the comparable function values

and feasibility violations.

TABLE 4

Numerical results in the Brockett cost function minimization

Sp-Cayley-I Sp-Cayley-II

fval gradf feasi iter time fval gradf feasi iter time

λ n = p = 10
1.01 3.642e+01 5.73e-06 3.98e-14 12 0.01 - - - - -

1.04 2.793e+01 5.75e-06 5.19e-14 14 0.01 - - - - -

1.07 2.168e+01 1.10e-05 2.20e-14 14 0.01 - - - - -

1.10 1.737e+01 6.26e-06 4.85e-14 19 0.01 - - - - -

n = p = 40
1.01 1.094e+02 4.25e-06 4.90e-13 14 0.01 - - - - -

1.04 4.197e+01 1.61e-04 6.56e-13 25 0.02 - - - - -

1.07 2.032e+01 4.69e-05 6.15e-13 46 0.04 - - - - -

1.10 1.222e+01 1.00e-04 5.28e-13 72 0.07 - - - - -

n = p = 80
1.01 1.531e+02 2.98e-05 3.30e-12 19 0.07 - - - - -

1.04 3.256e+01 1.46e-04 3.95e-12 59 0.21 - - - - -

1.07 1.421e+01 2.06e-04 2.89e-12 154 0.58 - - - - -

1.10 8.442e+00 1.90e-04 2.39e-12 252 0.94 - - - - -

p n = 1000, λ = 1.01
5 3.150e-04 2.10e-04 1.20e-14 182 0.90 2.015e-04 1.62e-04 1.50e-14 208 1.05

10 3.631e-04 1.61e-04 3.07e-14 293 2.05 4.028e-04 1.95e-04 4.40e-14 260 1.93

20 5.902e-04 1.85e-04 9.02e-14 362 3.18 5.350e-04 1.81e-04 1.37e-13 280 2.97

40 7.764e-04 1.61e-04 3.82e-13 484 7.06 6.669e-04 1.52e-04 7.34e-13 548 9.77

80 1.037e-03 5.72e-04 1.65e-12 649 24.33 1.094e-03 1.72e-04 3.02e-12 619 21.14

n = 2000, λ = 1.04
10 1.241e-04 1.77e-04 2.95e-14 146 5.15 1.105e-04 1.85e-04 3.08e-14 174 6.22

20 1.748e-04 1.84e-04 2.12e-13 164 7.06 1.671e-04 2.06e-04 1.99e-13 234 10.61

40 2.216e-04 1.77e-04 3.37e-13 220 11.93 1.499e-04 1.36e-04 3.13e-13 270 17.54

80 2.948e-04 1.69e-04 1.91e-12 303 27.72 2.031e-04 1.47e-04 1.75e-12 273 24.48

n = 3000, λ = 1.10
5 1.794e-05 7.72e-04 9.63e-15 87 5.65 3.433e-05 1.70e-04 7.48e-15 74 4.98

10 5.133e-05 1.55e-04 5.01e-14 110 8.19 3.337e-05 2.34e-04 4.91e-14 125 8.65

20 7.352e-05 1.49e-04 1.58e-13 141 12.33 4.253e-05 1.32e-04 1.53e-13 142 12.41

40 1.226e-04 1.80e-04 4.43e-13 176 20.75 1.085e-04 1.91e-04 4.14e-13 134 16.43

80 1.661e-04 1.70e-04 3.96e-12 180 31.62 1.637e-04 1.91e-04 3.48e-12 188 35.02

6.5. The symplectic eigenvalue problem. It was shown in [38] that for every symmet-

ric positive definite matrix M ∈ R
2n×2n, there exists X ∈ Sp(2n) such that

(6.7) X⊤MX =

[

D
D

]

,

where D = diag(d1, . . . , dn) and 0 < d1 ≤ · · · ≤ dn. These entries are called symplectic

eigenvalues, and (6.7) is referred to as the symplectic eigenvalue problem. Note that the

symplectic eigenvalues are uniquely defined, whereas the symplectic transformation X is

not unique. It can be shown (see [25, (12)]) that the symplectic eigenvalues of M coincide
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with the positive (standard) eigenvalues of the matrix G = iJ⊤M , where i =
√
−1 is the

imaginary unit.

In practice, it can be of interest to compute only a few extreme symplectic eigenvalues.

They can be determined by exploiting the following relationship between the p ≤ n smallest

symplectic eigenvalues of M and a symplectic optimization problem

2

p
∑

j=1

dj = min
X∈Sp(2p,2n)

tr(X⊤MX)

which was first established in [25] and further investigated in [7]. Based on this relation,

we aim to compute the smallest symplectic eigenvalue d1 using Algorithm 1 with p = 1.

We test this algorithm on different data matrices from the MATLAB matrix gallery: (i) the

Lehmer matrix; (ii) the Wilkinson matrix; (iii) the companion matrix of the polynomial whose

coefficients are 1, . . . , 2n + 1; (iv) the central finite difference matrix. Whenever M is not

positive definite, which happens to the second and third case, we use M⊤M instead of M to

generate the appropriate problem. The parameters in Algorithm 1 are default settings. For a

comparison, we also compute the smallest positive eigenvalue of G by using the MATLAB

function eig. The obtained results are shown in Table 5. We observe that the symplectic

eigenvalues computed by Sp-Cayley-I are comparable with that provided by eig.

TABLE 5

The smallest symplectic eigenvalues

Model matrix n eig Sp-Cayley-I

Lehmer 50 7.67480301454e-03 7.67480302204e-03

Wilkinson 75 1.53471652403e+01 1.53471650305e+01

Companion 500 5.47240371331e-02 5.47244189951e-02

Centr. Finite Diff. 500 2.23005375485e-05 2.23005375834e-05

7. Conclusion and perspectives. We have developed the ingredients—retraction and

Riemannian gradient—that turn general first-order Riemannian optimization methods into

concrete numerical algorithms for the optimization problem (1.1) on the symplectic Stiefel

manifold Sp(2p, 2n). The algorithms only need to be provided with functions that evalu-

ate the objective function f and the Euclidean gradient ∇f̄ . In order to cover the case of the

Cayley retraction, we have extended the convergence analysis of a Riemannian non-monotone

gradient descent method to encompass the situation where the retraction is not globally de-

fined. This extended analysis leads to the conclusion that, for the sequences generated by the

proposed algorithms, every accumulation point is a stationary point. Numerical experiments

demonstrate the efficiency of the proposed algorithms. All the results in this paper apply to

the symplectic group as the special case p = n.

This paper opens several perspectives for further research. In particular, it is tempting to

further exploit the leeway in the choice of the metric and the retraction. Extensions to quo-

tients of other quadratic Lie groups are also worth considering, as well as other applications.
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